WorldWideScience

Sample records for atlas pion calibration

  1. A Layer Correlation Technique for Pion Energy Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Grahn, Karl-Johan

    2009-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the ATLAS calorimeters were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by about 20% compared to the electromagnetic scale.

  2. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O. K.; Banfi, D.; Baron, S.; Barr, A. J.; Beccherle, R.; Beck, H. P.; Belhorma, B.; Bell, P. J.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H. O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A. I.; Fabich, A.; Facius, K.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B. J.; Gameiro, S.; Gan, K. K.; Garcia, R.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Goettfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.-J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Harvey, A., Jr.; Hawkings, R. J.; Heinemann, F. E. W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J. C.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klingenberg, R.; Klinkby, E. B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.-C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C. G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Lourerio, K. F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Garcia, S. Marti i.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K. W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Moyse, E. W. J.; Munar, A.; Myagkov, A.; Nadtochi, A. V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S. M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Phillips, P. W.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; RØhne, O.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P. A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Timmermans, C. J. W. P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J. A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J. B.; Volpi, M.; Anh, T. Vu; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-06-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  3. A Layer Correlation Technique for Pion Energy Calibration at the 2004 ATLAS Combined Beam Test (Conference record)

    CERN Document Server

    Grahn, K-J; The ATLAS collaboration

    2009-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the ATLAS calorimeters were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by about 20% compared to the electromagnetic scale.

  4. A Study of Hadronic Calibration Schemes for Pion Test Beam Data in the ATLAS Forward Calorimeter

    CERN Document Server

    McCarthy, Thomas G

    The ATLAS forward calorimeters constitute a small though important fraction of the detector's calorimeter system, designed in part to accurately and precisely measure the energy of particles and jets of particles originating from the collisions of high-energy protons at the detector's centre. The application of hadronic weights, a practice common in high-energy calorimetry, provides a means of compensation for the fraction of energy which is deposited by particles in the detector, but which is invisible to the detector due to the nature of hadronic showers. Explored here are various schemes of extracting hadronic weights, as well as the application of such weights, based on pion data from the 2003 ATLAS forward calorimeter test beam. During the collection of test beam data, beams of both pions and electrons of known energy, ranging from 10 to 200 GeV, were fired at specific points of an isolated detector in order to understand its response. The improvement in noise-subtracted energy resolution with respect to...

  5. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2010-01-01

    Roč. 6, č. 6 (2010), P06001/1-P06001/28 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter methods * calorimeter s * detector modelling and simulations * pattern recognition * cluster finding * calibration and fitting methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010

  6. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  7. ATLAS Muon Calibration Frameowrk

    CERN Document Server

    Carlino, Dr; The ATLAS collaboration; Jha, Dr; Kortner, Dr; Mazzaferro, Dr; Petrucci, Dr; Salvo, Dr; Simone, Dr; WALKER, Dr

    2010-01-01

    Automated calibration of the ATLAS detector subsystems ( like MDT and RPC chambers) are being performed at remote sites, called Remote Calibration Centers. The calibration data for the assigned part of the detector are being processed at these centers and send the result back to CERN for general use in reconstruction and analysis. In this work, we present the recent developments in data discovery mechanism and integration of Ganga as a backend which allows for the specification, submission, bookkeeping and post processing of calibration tasks on a wide set of available heterogeneous resources at remote centers.

  8. ATLAS Muon Calibration Framework

    CERN Document Server

    CARLINO, G; The ATLAS collaboration; Di Simone, A; Doria, A; Jha, MK; Mazzaferro, L; Walker, R

    2011-01-01

    Automated calibration of the ATLAS detector subsystems ( like MDT and RPC chambers) are being performed at remote sites, called Remote Calibration Centers. The calibration data for the assigned part of the detector are being processed at these centers and send the result back to CERN for general use in reconstruction and analysis. In this work, we present the recent developments in data discovery mechanism and integration of Ganga as a backend which allows for the specification, submission, bookkeeping and post processing of calibration tasks on a wide set of available heterogeneous resources at remote centers.

  9. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration

    2011-01-01

    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  10. Jet energy calibration in ATLAS

    CERN Document Server

    Schouten, Doug

    A correct energy calibration for jets is essential to the success of the ATLAS experi- ment. In this thesis I study a method for deriving an in situ jet energy calibration for the ATLAS detector. In particular, I show the applicability of the missing transverse energy projection fraction method. This method is shown to set the correct mean energy for jets. Pileup effects due to the high luminosities at ATLAS are also stud- ied. I study the correlations in lateral distributions of pileup energy, as well as the luminosity dependence of the in situ calibration metho

  11. Energy-Calibration of the ATLAS Hadronic and Electromagnetic Liquid-Argon Endcap Calorimeters

    CERN Document Server

    Menke, Sven

    2003-01-01

    In 2002 the first combined beam test of the hadronic and electromagnetic liquid-argon endcap calorimeters of the ATLAS experiment took place at the SPS test beam at CERN. A total of 15 million events from electrons, muons and pions in the energy range from 6 to 200 GeV were recorded. The entire calibration chain, from digital filter weights, over calibration constants, to clustering and energy weights, as is relevant for the energy calibration of hadronic and electromagnetic showers in ATLAS was tested and applied to the beam test data. The calibration methods and first results for the combined performance of the two calorimeters are presented.

  12. A Layer Correlation Technique for ATLAS Calorimetry Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Carli, T; Spanò, F; Speckmayer, P

    2008-01-01

    A method for calibrating the response of a segmented calorimeter to hadrons is developed. The ansatz is that information on longitudinal shower fluctuations gained from a principal component analysis of the layer energy depositions can improve energy resolution by correcting for hadronic invisible energy and dead material losses: projections along the eigenvectors of the correlation matrix are used as input for the calibration. The technique is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are used to derive corrections for invisible energy lost in nuclear reactions and in dead material in front and in between the calorimeters. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by about 20%.

  13. Calibration of the ATLAS calorimeters and discovery potential for massive top quark resonances at the LHC

    CERN Document Server

    Bergeaas Kuutmann, E; Jon-And, K; Hellman, S

    2010-01-01

    ATLAS is a multi-purpose detector which has recently started to take data at the LHC at CERN. This thesis describes the tests and calibrations of the central calorimeters of ATLAS and outlines a search for heavy top quark pair resonances.The calorimeter tests were performed before the ATLAS detector was assembled at the LHC, in such a way that particle beams of known energy were targeted at the calorimeter modules. In one of the studies presented here, modules of the hadronic barrel calorimeter, TileCal, were exposed to beams of pions of energies between 3 and 9 GeV. It is shown that muons from pion decays in the beam can be separated from the pions, and that the simulation of the detector correctly describes the muon behaviour. In the second calorimeter study, a scheme for local hadronic calibration is developed and applied to single pion test beam data in a wide range of energies, measured by the combination of the electromagnetic barrel calorimeter and the TileCal hadronic calorimeter. The calibration meth...

  14. Validation of the Local Hadronic Calibration Scheme of ATLAS with Combined Beam Test Data in the End-Cap and Forward Regions of ATLAS

    CERN Document Server

    Kiryunin, A; The ATLAS collaboration

    2011-01-01

    The three Atlas calorimeter systems in the region of the forward crack at |eta| = 3.2 in the nominal Atlas setup have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented. The Local Hadron Calibration developed for the energy reconstruction and the calibration of jets and missing transverse energy in ATLAS, has been validated using data obtained during these beam tests. The analysis has been carried out by using special sets of calibration weights and corrections obtained with the Geant4 simulation of a detailed beam test set-up. The validation itself has been performed by careful studying specific calorimeter performance parameters such as e.g. energy response, energy resolution, shower shapes, cluster energy density as well as different physics lists of the Geant4 simulation.

  15. Calibration of Tilecal hadronic calorimeter of the ATLAS

    International Nuclear Information System (INIS)

    Batkova, L.

    2009-01-01

    The aim of a precise calibration of a calorimeter is to get the best response relationship between the calorimeter and the energy of incident particles. Different types of particles interact through various types of interactions with the environment. Therefore, calorimeters are optimized to detect one type of particle (electromagnetic particles and hadrons). Within current high energy physics experiments, where the detectors reached gigantic proportions, calorimeters hold two important features: - serve to measure power showers by complete absorption method; - reconstruct a direction of showers of particles after their interaction with the environment of calorimeter. To deterioration of the resolving power of the hadronic calorimeter contributes incompensation of its response to hadrons and electromagnetic particles (e, μ). They record more energy from electrons as from pions of the same nominal power. During building of experiment of the ATLAS the prototypes of Tile calorimeter were calibrated using Cs and then were tested by means of calibration particle beams (e, μ, π). The work is aimed to evaluation of the response of the muon beam calibration experiment ATLAS. The scope of the work is to determine correction factors for the calibration constants obtained from the primary calibration of the calorimeter by cesium for end Tilecal calorimeter modules. Tile calorimeter modules consist of three layers A, BC and D. A correction factor for calibration constant for A layer was determined by electron beam firing angle less than 20 grad. Muons are used to determine correction factors for the remaining two layers of the end calorimeter module, where the electrons of given energy do not penetrate. (author)

  16. ATLAS FCal Diagnostics using the Calibration Pulse

    CERN Document Server

    Rutherfoord, J

    2004-01-01

    The calibration pulser in the ATLAS Forward Calorimeter electronics is used to 1) directly calibrate the warm, active electronics and 2) diagnose the cold, passive electronics chain all the way to the liquid argon electrodes. The study presented here shows that reflections of the calibration pulse coming from discontinuities located at or between the warm preamplifier and the electrode can differentiate and identify all known defects so far observed in this chain.

  17. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  18. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  19. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  20. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  1. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  2. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  3. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  4. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  5. Tests of Local Hadron Calibration Approaches in ATLAS Combined Beam Tests

    CERN Document Server

    Grahn, KJ; The ATLAS collaboration; Pospelov, G

    2010-01-01

    Three ATLAS calorimeters in the region of the forward crack at $|eta| = 3.2$ in the nominal ATLAS setup and a typical section of the two barrel calorimeters at $|eta| = 0.45$ of ATLAS have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap testbeam. The local hadronic calibration approach as used in the full Atlas setup has been applied to the endcap testbeam data. An extension of it using layer correlations has been tested with the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to Monte-Carlo simulations are presented.

  6. Tests of Local Hadron Calibration approaches in ATLAS Combined Beam Tests

    CERN Document Server

    Pospelov, G; The ATLAS collaboration

    2010-01-01

    The three Atlas calorimeter systems in the region of the forward crack at |eta| = 3.2 in the nominal Atlas setup and a typical section of the two barrel calorimeters at |eta| = 0.45 of Atlas have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap testbeam. The local hadronic calibration approach as used in the full Atlas setup has been applied to the endcap test beam data. An extension of it using layer correlations has been tested on the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to MC simulations are presented.

  7. An in-beam test study of the response of calorimeters in the ATLAS Experiment of LHC to charged pions of 3 to 350 GeV energy range; Etude en faisceau-test de la reponse des calorimetres de l'Experience ATLAS du LHC a des pions charges, d'energie comprise entre 3 et 350 Gev

    Energy Technology Data Exchange (ETDEWEB)

    Giangiobbe Vincent [Ecole Doctorale des Sciences Fondamentales, Universite Blaise Pascal, U.F.R de Recherches Scientifiques et Techniques, 34, avenue Carnot - BP 185, 63006 Clermont-Ferrand Cedex (France)

    2006-11-15

    ATLAS is one of the four main experiments under way of installing within the Large Hadron Project (LHC). LHC will provide two proton beams of high luminosity (1 x 10{sup 34} cm{sup -2} s{sup -1} at peak), colliding in the center of ATLAS detector at a 14 TeV rated COM energy. The aim of this study is an in-beam test characterization of the response of calorimeters in the central part of ATLAS. The study will be focused on the response to pions as main jet components. In the beginning a short presentation of the ATLAS program of physics is given enlightening the basic theoretical and experimental aspects of the experiment. A description of the ATLAS detector is also presented. The second chapter is devoted to detailed description of the central calorimetry of ATLAS. One starts from the mechanism of signal production in calorimeters, through the electronic processing up to the reconstruction of the released energy. The third chapter deals with the processing electronics of the TileCal hadron calorimeter the installation and certification at CERN of which was in charge of Clermont-Ferrand team. The chapter 4 gives a description of the SPS beam line and of the associated instrumentation tested in-beam in 2004. The chapters 6 and 7 are devoted to the study of the response of calorimeters to high energy pions (within 20 to 350 GeV range). The pion selection is described in the chapter 5. In the eighth chapter the calorimeter response to low energy pions (up to 9 GeV) is examined. In conclusion this study has shown that the data concerning pions obtained in-beam in 2004 are usable for energies within 3 to 350 GeV. The response and the energy resolution of LAr and TileCal were measured with a satisfactory accuracy,. A systematic comparison of these results with simulations (in the configuration of in-beam test) can now be done. Should the agreement be satisfying, the modelling could be used for the study of calibration of calorimeter response for the case of works with the

  8. Results from pion calibration runs for the H1 liquid argon calorimeter and comparisons with simulations

    International Nuclear Information System (INIS)

    Andrieu, B.; Ban, J.; Barrelet, E.; Bergstein, H.; Bernardi, G.; Besancon, M.; Binder, E.; Blume, H.; Borras, K.; Boudry, V.; Brasse, F.; Braunschweig, W.; Brisson, V.; Campbell, A.J.; Carli, T.; Colombo, M.; Coutures, C.; Cozzika, G.; David, M.; Delcourt, B.; DelBuono, L.; Devel, M.; Dingus, P.; Drescher, A.; Duboc, J.; Duenger, O.; Ebbinghaus, R.; Egli, S.; Ellis, N.N.; Feltesse, J.; Feng, Y.; Ferrarotto, F.; Flauger, W.; Flieser, M.; Gamerdinger, K.; Gayler, J.; Godfrey, L.; Goerlich, L.; Goldberg, M.; Graessler, R.; Greenshaw, T.; Greif, H.; Haguenauer, M.; Hajduk, L.; Hamon, O.; Hartz, P.; Haustein, V.; Haydar, R.; Hildesheim, W.; Huot, N.; Jabiol, M.A.; Jacholkowska, A.; Jaffre, M.; Jung, H.; Just, F.; Kiesling, C.; Kirchhoff, T.; Kole, F.; Korbel, V.; Korn, M.; Krasny, W.; Kubenka, J.P.; Kuester, H.; Kurzhoefer, J.; Kuznik, B.; Lander, R.; Laporte, J.F.; Lenhardt, U.; Loch, P.; Lueers, D.; Marks, J.; Martyniak, J.; Merz, T.; Naroska, B.; Nau, A.; Nguyen, H.K.; Niebergall, F.; Oberlack, H.; Obrock, U.; Ould-Saada, F.; Pascaud, C.; Pyo, H.B.; Rauschnabel, K.; Ribarics, P.; Rietz, M.; Royon, C.; Rusinov, V.; Sahlmann, N.; Sanchez, E.; Schacht, P.; Schleper, P.; Schlippe, W. von; Schmidt, C.; Schmidt, D.; Shekelyan, V.; Shooshtari, H.; Sirois, Y.; Staroba, P.; Steenbock, M.; Steiner, H.; Stella, B.; Straumann, U.; Turnau, J.; Tutas, J.; Urban, L.; Vallee, C.; Vecko, M.; Verrecchia, P.; Villet, G.; Vogel, E.; Wagener, A.; Wegener, D.; Wegner, A.; Wellisch, H.P.; Yiou, T.P.; Zacek, J.; Zeitnitz, Ch.; Zomer, F.

    1993-01-01

    We present results on calibration runs performed with pions at CERN SPS for different modules of the H1 liquid argon calorimeter which consists of an electromagnetic section with lead absorbers and a hadronic section with steel absorbers. The data cover an energy range from 3.7 to 205 GeV. Detailed comparisons of the data and simulation with GHEISHA 8 in the framework of GEANT 3.14 are presented. The measured pion induced shower profiles are well described by the simulation. The total signal of pions on an energy scale determined from electron measurements is reproduced to better than 3% in various module configurations. After application of weighting functions, determined from Monte Carlo data and needed to achieve compensation, the reconstructed measured energies agree with simulation to about 3%. The energies of hadronic showers are reconstructed with a resolution of about 50%/√E + 2%. This result is achieved by inclusion of signals from an iron streamer tube tail catcher behind the liquid argon stacks. (orig.)

  9. Studies Concerning the ATLAS IBL Calibration Architecture

    CERN Document Server

    Kretz, Moritz; Kugel, Andreas

    With the commissioning of the Insertable B-Layer (IBL) in 2013 at the ATLAS experiment 12~million additional pixels will be added to the current Pixel Detector. While the idea of employing pairs of VME based Read-Out Driver (ROD) and Back of Crate (BOC) cards in the read-out chain remains unchanged, modifications regarding the IBL calibration procedure were introduced to overcome current hardware limitations. The analysis of calibration histograms will no longer be performed on the RODs, but on an external computing farm that is connected to the RODs via Ethernet. This thesis contributes to the new IBL calibration procedure and presents a concept for a scalable software and hardware architecture. An embedded system targeted to the ROD FPGAs is realized for sending data from the RODs to the fit farm servers and benchmarks are carried out with a Linux based networking stack, as well as a standalone software stack. Furthermore, the histogram fitting algorithm currently being employed on the Pixel Detector RODs i...

  10. ATLAS calorimetry. Trigger, simulation and jet calibration

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.

    2007-02-06

    The Pre-Processor system of the ATLAS Level-1 Calorimeter Trigger performs complex processing of analog trigger tower signals from electromagnetic and hadronic calorimeters. The main processing block of the Pre-Processor System is the Multi-Chip Module (MCM). The first part of this thesis describes MCM quality assurance tests that have been developed, their use in the MCM large scale production and the results that have been obtained. In the second part of the thesis a validation of a shower parametrisation model for the ATLAS fast simulation package ATLFAST based on QCD dijet events is performed. A detailed comparison of jet response and jet energy resolution between the fast and the full simulation is presented. The uniformity of the calorimeter response has a significant impact on the accuracy of the jet energy measurement. A study of the calorimeter intercalibration using QCD dijet events is presented in the last part of the thesis. The intercalibration study is performed in azimuth angle {phi} and in pseudorapidity {eta}. The performance of the calibration methods including possible systematic and statistical effects is described. (orig.)

  11. Performance of the ATLAS Tile LaserII Calibration System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00124895; The ATLAS collaboration

    2015-01-01

    The new laser calibration system of the ATLAS Tile hadron calorimeter is presented. The perfomances of the calibration and monitor tools internal to the laser system are given in terms of operation time stability. The use of the laser system in the normal Tile calibration procedures is also described.

  12. The ATLAS Inner Detector commissioning and calibration

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos, F.Santos Pedrosa; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Guimara, J.Barreiro; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Urban, S.Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernadez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El, R.Moursli; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Muino, P.Conde; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro, P.E.Faria Salgado; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira, M.Branco; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Do Valle, A.Wemans; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Navarro, J.E.Garcia; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Plante, I.Jen-La; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook, A.Cheong; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Dit Latour, B.Martin; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llacer, M.Moreno; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos, D.Santos; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R.D.St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires, F.J.Viegas; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Pastor, E.Torro; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G.Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 {\\mu}m and a relative momentum resolution {\\sigma}p/p = (4.83+/-0.16)...

  13. Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Baker, O. K.; Banfi, D.; Baron, S.; Beck, H. P.; Belhorma, B.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cavalli Sforza, M.; Cavalli, D.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevallier, F.; Ciobotaru, M.; Citterio, M.; Cleland, B.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Corso Radu, A.; Costa, G.; Cwetanski, P.; Da Silva, D.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Delmastro, M.; Del Prete, T.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; El Kacimi, M.; Etienvre, A. I.; Fabich, A.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Filippini, G.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagnon, P.; Gameiro, S.; Garcia, R.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gorini, B.; Goujdami, D.; Grahn, K. J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, P. H.; Harvey, A.; Henriques Correia, A.; Hervas, L.; Higon, E.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klinkby, E.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Kopikov, S.; Korolkov, I.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Le Bihan, A. C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Liang, Z.; Liang, Z.; Lichard, P.; Lokajicek, M.; Louchard, L.; Loureiro, K.; Lucotte, A.; Luehring, F.; Lundberg, B.; Lund-Jensen, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Maneira, J.; Mandelli, L.; Mazzanti, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Martin, F.; Mazzanti, M.; McFarlane, K. W.; Mchedlidze, G.; McPherson, R.; Meirosu, C.; Meng, Z.; Miagkov, A.; Mialkovski, V.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Monnier, E.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Munar, A.; Nadtochi, A. V.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parsons, J.; Pasqualucci, E.; Passmore, M. S.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Pilcher, J.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; Rajagopalan, S.; Rembser, C.; Ridel, M.; Riu, I.; Roda, C.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Santamarina Rios, C.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Shalanda, N.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu.; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmeyer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R. R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Tisserant, S.; Tremblet, L.; Tsiareshka, P.; Unal, G.; Unel, G.; Usai, G.; Valero, A.; Valkar, S.; Valls, J. A.; Van Berg, R.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vassilieva, L.; Vazeille, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Vivarelli, I.; Volpi, M.; Wang, C.; Werner, P.; Wheeler, S.; Wiesmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhou, N.

    2009-08-01

    A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.

  14. Calibration of electrons and photons with the ATLAS detector, and its impact on ATLAS precision measurements

    CERN Document Server

    Becot, C; The ATLAS collaboration

    2014-01-01

    A precise energy calibration of electrons and photons is a key ingredient to many measurements performed with the ATLAS detector, such as the measurement of the Higgs boson mass. An improved calibration scheme is based on corrections derived from collision data, multivariant algorithms for the energy reconstruction and finally electrons from Z boson decays to set the absolute energy scale. Studies of the longitudinal shape of electromagnetic showers also lead to an improved detector material simulation. The calibration is checked with electrons from J/psi decays and photons from radiative photon decays. This contribution will describe the calibration scheme and the cross checks and the impact on ATLAS measurements.

  15. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, F.

    2007-12-19

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  16. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    International Nuclear Information System (INIS)

    Foehlisch, F.

    2007-01-01

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  17. ATLAS jet and missing-ET reconstruction, calibration, and performance

    Science.gov (United States)

    Berta, Peter; ATLAS Collaboration

    2016-04-01

    The ATLAS experiment has achieved a very high precision on jet and missing transverse energy performance by the use of advanced calorimeter-based topological clustering and local cluster calibration, event-by-event pile-up subtraction methods, and in situ techniques to correct for the residual jet energy response difference between data and simulation. Tracking information is being combined with calorimeter to further improve the jet and missing transverse energy performance. ATLAS has also commissioned several new powerful tools for the analysis and interpretation of hadronic final states at the LHC such as jet substructure, jet mass, quark-gluon discrimination, and jet tagging tools for the identification of boosted heavy particles. An overview of the reconstruction, calibration, and performance of jets, missing transverse energy, jet substructure, and jet tagging at ATLAS is presented.

  18. ATLAS jet and missing ET reconstruction, calibration, and performance

    CERN Document Server

    Berta, P; The ATLAS collaboration

    2014-01-01

    ATLAS has achieved a very high precision on jet and missing transverse energy performance by the use of advanced calorimeter-based topological clustering and local cluster calibration, event-by-event pile-up subtraction methods, and in situ techniques to correct for the residual jet energy response difference between data and simulation. Tracking information is being combined with calorimeter to further improve the jet and missing ET performance. ATLAS has also commissioned several new powerful tools for for the analysis and interpretation of hadronic final states at the LHC such as jet substructure, jet mass, quark-gluon discrimination, and jet tagging tools for the identification of boosted heavy particles. An overview of the reconstruction, calibration and performance of jets, missing ET, and jet substructure and tagging at ATLAS is presented.

  19. ATLAS jet and missing-ET reconstruction, calibration, and performance

    CERN Document Server

    Berta, P; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment has achieved a very high precision on jet and missing transverse energy performance by the use of advanced calorimeter-based topological clustering and local cluster calibration, event-by-event pile-up subtraction methods, and in situ techniques to correct for the residual jet energy response difference between data and simulation. Tracking information is being combined with calorimeter to further improve the jet and missing transverse energy performance. ATLAS has also commissioned several new powerful tools for the analysis and interpretation of hadronic final states at the LHC such as jet substructure, jet mass, quark-gluon discrimination, and jet tagging tools for the identification of boosted heavy particles. An overview of the reconstruction, calibration, and performance of jets, missing transverse energy, jet substructure, and jet tagging at ATLAS is presented.

  20. VALIDATION OF THE HADRONIC CALIBRATION OF THE ATLAS CALORIMETER WITH TESTBEAM DATA CORRESPONDING TO THE PSEUDORAPIDITY RANGE $2.5<|eta|<4.0$}

    CERN Document Server

    Pospelov, G; The ATLAS collaboration

    2009-01-01

    The pseudorapidity region $2.5<|eta|<4.0$ in ATLAS is a particularly complex transition zone between the endcap and forward calorimeters. A set-up consisting of 1/4 resp. 1/8 of the full azimuthal acceptance of the ATLAS liquid argon endcap and forward calorimeters has been exposed to beams of electrons, pions and muons in the energy range $E < 200 GeV$ at the CERN SPS. Data have been taken in the endcap and forward calorimeter regions as well as in the transition region. This beam test set-up corresponds very closely to the geometry and support structures in ATLAS. Pion data have been analyzed using the standard local hadronic calibration scheme as forseen for the ATLAS calorimeter. In particular the weighting scheme to compensate for the different electron to pion response as well as corrections for dead material in the transition region have been extensively tested and compared to simulation based on GEANT 4 models.

  1. Validation of the hadronic calibration of the ATLAS calorimeter with testbeam data corresponding to the pseudorapidity range 2.5<|eta|<4.0

    CERN Document Server

    Pospelov, G; The ATLAS collaboration

    2009-01-01

    The pseudorapidity region $2.5<|eta|<4.0$ in ATLAS is a particularly complex transition zone between the endcap and forward calorimeters. A set-up consisting of 1/4 resp. 1/8 of the full azimuthal acceptance of the ATLAS liquid argon endcap and forward calorimeters has been exposed to beams of electrons, pions and muons in the energy range $E < 200 GeV$ at the CERN SPS. Data have been taken in the endcap and forward calorimeter regions as well as in the transition region. This beam test set-up corresponds very closely to the geometry and support structures in ATLAS. Pion data have been analyzed using the standard local hadronic calibration scheme as forseen for the ATLAS calorimeter. In particular the weighting scheme to compensate for the different electron to pion response as well as corrections for dead material in the transition region have been extensively tested and compared to simulation based on GEANT 4 models.

  2. Radioactive sources for ATLAS hadron tile calorimeter calibration

    International Nuclear Information System (INIS)

    Budagov, Yu.; Cavalli-Sforza, M.; Ivanyushenkov, Yu.

    1997-01-01

    The main requirements for radioactive sources applied in the TileCal calibration systems are formulated; technology of the sources production developed in the Laboratory of Nuclear Problems, JINR is described. Design and characteristics of the prototype sources manufactured in Dubna and tested on ATLAS TileCal module 0 are presented

  3. Tau reconstruction, energy calibration and identification at ATLAS

    Indian Academy of Sciences (India)

    A solid understanding of the combined performance of the calorimeter and tracking detectors is also required. We present the current status of the tau reconstruction, energy calibration and identification with the ATLAS detector at the LHC. Identification efficiencies are measured in → events in data and compared with ...

  4. Tau reconstruction, energy calibration and identification at ATLAS

    Indian Academy of Sciences (India)

    ... hadronically decaying tau leptons, as well as large suppression of fake candidates. A solid understanding of the combined performance of the calorimeter and tracking detectors is also required. We present the current status of the tau reconstruction, energy calibration and identification with the ATLAS detector at the LHC.

  5. Tau reconstruction, energy calibration and identification at ATLAS

    Indian Academy of Sciences (India)

    2012-11-10

    Nov 10, 2012 ... We present the current status of the tau reconstruction, energy calibration and identification with the ATLAS detector at the LHC. Identification efficiencies are measured in. W → τν events in data and compared with predictions from Monte Carlo simulations, whereas the misidentification probabilities of QCD ...

  6. Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2009-01-01

    Roč. 607, č. 2 (2009), s. 372-386 ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter * pions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.317, year: 2009 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJM-4WHDD3N-5&_user=10&_coverDate=08%2F11%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_do

  7. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  8. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  9. The ATLAS Inner Detector commissioning and calibration

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Bazalová, Magdalena; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Havránek, Miroslav; Hruška, I.; Jahoda, M.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Kvasnička, Jiří; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Popule, Jiří; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Sluka, T.; Staroba, Pavel; Šťastný, Jan; Taševský, Marek; Tic, Tomáš; Tomášek, Lukáš; Tomášek, Michal; Valenta, J.; Vrba, Václav

    2010-01-01

    Roč. 70, č. 3 (2010), s. 787-821 ISSN 1434-6044 R&D Projects: GA MŠk LC527; GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS, * inner detector * commisioning Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.248, year: 2010 http://epjc.edpsciences.org/ articles /epjc/pdf/2010/12/10052_2010_Article_1354.pdf

  10. ATLAS calorimetry: Trigger, simulation and jet calibration

    CERN Document Server

    Weber, Pavel

    2008-01-01

    The Pre-Processor system of the ATLAS Level-1 Calorimeter Trigger performs complex processing of analog trigger tower signals from electromagnetic and hadronic calorimeters. The main processing block of the Pre-Processor System is the Multi-Chip Module (MCM). The first part of this thesis describes MCM quality assurance tests that have been developed, their use in the MCM large scale production and the results that have been obtained. In the second part of the thesis a validation of a shower parametrisation model for the ATLAS fast simulation package ATLFAST based on QCD dijet events is performed. A detailed comparison of jet response and jet energy resolution between the fast and the full simulation is presented. The uniformity of the calorimeter response has a significant impact on the accuracy of the jet energy measurement. A study of the calorimeter intercalibration using QCD dijet events is presented in the last part of the thesis. The intercalibration study is performed in azimuth angle phi and in pseud...

  11. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  12. Electron and photon energy calibration with the ATLAS detector

    CERN Document Server

    Falke, Saskia; The ATLAS collaboration

    2017-01-01

    An accurate calibration of the energy measurement of electron and photon is needed for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. A pre-requisite of this calibration is a good understanding of the material in front of the calorimeter and of the inter-calibration of the different calorimeter layers. The Z->ee sample is also used to measure the energy resolution. The results obtained with the pp collisions data at sqrt(s)=13 TeV in 2016 (2015) corresponding to an integrated luminosity of 33.9 (3.1)fb-1 of sqrt(s)=13 TeV are presented as well as the corresponding uncertainties on the electron and photon energy scales.

  13. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  14. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    Manzoni, Stefano; The ATLAS collaboration

    2016-01-01

    An accurate calibration of the energy measurement of electron and photon is paramount for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. The results obtained with the pp collisions data recorded in 2015 and 2016 at sqrt(s)= 13 TeV, corresponding to an integrated luminosity of 3.2 fb-1 and 2.7 fb-1 respectively , as well as the corresponding uncertainties on the electron and photon energy scales, are presented.

  15. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436885; The ATLAS collaboration

    2016-01-01

    An accurate calibration of the energy measurement of electrons and photons is paramount for many ATLAS physics analyses. The calibration of the energy measurement is performed $in$-$situ$ using a large statistics of $Z \\rightarrow ee$ events. The results obtained with the $pp$ collisions data recorded in 2015 and 2016 at $\\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 3.2 fb$^{-1}$ and 2.7 fb$^{-1}$ respectively, as well as the corresponding uncertainties on the electron and photon energy scales, are presented

  16. Performances of the ATLAS Hadronic Tile Calorimeter Modules for Electrons and Pions

    CERN Document Server

    Kulchitskii, Yu A

    2004-01-01

    With the aim of establishing of an electromagnetic energy scale of the ATLAS Tile calorimeter and understanding of performance of the calorimeter to electrons 12 \\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron calibration constants and electron energy resolutions some of these barrel and extended barrel modules at energies E = 10, 20, 50, 100 and 180 GeV for the cell-scan at $\\theta = 20^o$, the $\\eta$ scan and the tile scan at $90^o$. The average values of these constants are equal to $\\langle R_e \\rangle =1.157\\pm0.002$ pC/GeV for the cell-scan at $\\theta = 20^o$, $\\langle R_e \\rangle =1.143\\pm0.005$ pC/GeV for the $\\eta$-scan and $\\langle R_e\\rangle =1.196\\pm0.005$ pC/GeV for the tile-scan at $\\theta = 90^o$. The RMS values are the following: for the cell-scan is $RMS=2.6\\pm0.1$ \\%, for t...

  17. Off-line time calibration of the ATLAS RPC system

    CERN Document Server

    Chiodini, G; The ATLAS collaboration

    2012-01-01

    Resistive Plate Chambers (RPC's), operated in saturated avalanche regime, are used in the Muon Spectrometer of the ATLAS experiment to produce the first level of the muon trigger in the central region, $|eta| <$ 1.05. The logic, based on a coincidence of hits in three layers of detector doublets, takes advantage of the very good time resolution of these detectors which allows to easily identify the LHC bunch crossing. The RPC readout electronics, based on a 320 MHz clock, allows to store a very granular time information, making potentially the RPC system the detector providing the most accurate time measurement in ATLAS. To fully exploit the intrinsic time resolution of detector and readout electronics a careful calibration of the system is needed, involving about 330,000 channels. The ATLAS data recorded during 2011 in LHC p-p collisions at $sqrt{s}$ = 7 TeV have been used to show that, after applying an offline calibration procedure, a time resolution uniform over the entire detector and stable in time c...

  18. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  19. Calibration of ATLAS Tile Calorimeter at Electromagnetic Scale

    CERN Document Server

    Anderson, K J; Cavalli-Sforza, M; Carli, T; Cascella, M; Davidek, T; Del Prete, T; Djobava, T; Dotti, A; Febbraro, R; Gollub, N; Hakobyan, H; Henriques, A; Hurwitz, M H; Isaev, A; Jen-La Plante, I; Karyukhin, A; Khandanyan, H; Khramov, J; Kulchitsky, Y; Makouski, M; Mosidze, M; Myagkov, A; Pilcher, J E; Pribyl, L; Rullgard, M; Santoni, C; Shalanda, N; Solodkov, A; Solovyanov, O; Starchenko, J; Stavina, P; Simonyan, M; Teuscher, R; Tsiareshka, P; Vichou, E; Vinogradov, V; Vivarelli, I; Volpi, M; Zenis, T

    2008-01-01

    In this paper we summarize the measurement of the electromagnetic (EM) scale calibration constant for 11% of the Tile Calorimeter modules exposed to electron and muon test beams at CERN SPS accelerator. The Tile Calorimeter modules are currently installed in the ATLAS detector. The analysis presented in this paper takes into account the recent improvements in the Tile Calorimeter cesium calibration, charge injection system calibration and Fit Method energy reconstruction. The overall conversion factor between the measured charge and the energy deposited by measured particles for Tile Calorimeter cells is $1.050pm0.003$~pC/GeV, with spread of $2.4pm0.1$%. We discuss in detail the sources of uncertainties of EM scale calibration constant. We also show, that after inter-calibrating all the Tile Calorimeter cells with a~radioactive cesium source and setting the EM scale in the first calorimeter sampling with electron beams, the values of signals measured in the second and third calorimeter sampling need to be inc...

  20. Analysis of test beam data of ATLAS Pixel Detector production modules with a high intensity pion beam.

    CERN Document Server

    Alimonti, G; Bazalova, M; Beccherle, R; Breugnon, P; Brüser, D; Cauz, D; Clemens, J C; Cobal-Grassman, M; Dobos, D; Einsweiler, Kevin F; Flick, T; Gagliardi, G; Gemme, C; Gerlach, P; Gorelov, I; Grosse-Knetter, J; Hügging, F G; Imhauser, M; Kersten, S; Klingenberg, R; Kuhn, M; Lari, T; Martínez, G; Mass, M; Massman, F; Matera, A; Mathes, M; Meroni, C; Morettini, P; Naumov, D; Netchaeva, P; Ragusa, F; Richardson, J; Rossi, L; Rozanov, A; Santi, L; Schiavi, C; Schultes, J; Sícho, P; Stahl, T; Ta, D B; Tieman, D; Tomasek, L; Troncon, C; Vahsen, S; Valenta, J; Virzi, J; Vrba, V; Weingarten, J

    2005-01-01

    Beam tests of ATLAS Pixel Detector production modules were performed with a high intensity pion bion at the SPS H8 test beam facility. Several of the modules had been previously irradiated to the fluence of 10**15 neq/cm2. Data were taken at different beam intensities, up to the value foreseen for the innermost pixel layer at the design LHC luminosity of 10**34/cm2/s. At each intensity, data were taken with different configurations of the front-end chip. This note describes the analysis of the high intensity run of August 2004. The particles trajectories were reconstructed using the pixel detectors under test and the detection efficiency was measured as a function of the beam intensity. With the standard ATLAS b-layer configuration and at the B-layer expected column-pair hit occupancy of 0.17 pixel hits per bunch crossing, the measured readout efficiency is 98 %, which is the same value found at low intensity. Efficiency losses are observed only when the column pair occupancy exceeds 0.24 hits per bunch cross...

  1. Energy reconstruction and calibration algorithms for the ATLAS electromagnetic calorimeter

    CERN Document Server

    Delmastro, M

    2003-01-01

    The work of this thesis is devoted to the study, development and optimization of the algorithms of energy reconstruction and calibration for the electromagnetic calorimeter (EMC) of the ATLAS experiment, presently under installation and commissioning at the CERN Large Hadron Collider in Geneva (Switzerland). A deep study of the electrical characteristics of the detector and of the signals formation and propagation is conduced: an electrical model of the detector is developed and analyzed through simulations; a hardware model (mock-up) of a group of the EMC readout cells has been built, allowing the direct collection and properties study of the signals emerging from the EMC cells. We analyze the existing multiple-sampled signal reconstruction strategy, showing the need of an improvement in order to reach the advertised performances of the detector. The optimal filtering reconstruction technique is studied and implemented, taking into account the differences between the ionization and calibration waveforms as e...

  2. Jet calibration in the ATLAS experiment at LHC

    CERN Document Server

    Francavilla, P

    2009-01-01

    Jets produced in the hadronisation of quarks and gluons play a central role in the rich physics program that will be covered by the ATLAS experiment at the LHC, and are central elements of the signature for many physics channels. A well understood energy scale, which for some processes demands an uncertainty in the energy scale of order 1%, is a prerequisite. Moreover, in early data we face the challenge of dealing with the unexpected issues of a brand new detector in an unexplored energy domain. The ATLAS collaboration is carrying out a program to revisit the jet calibration strategies used in earlier hadron-collider experiments and develop a strategy which takes into account the new experimental problems introduced from higher measurement precision and from the LHC environment. The ATLAS calorimeter is intrinsically non-compensating and we will discuss the use of different offline approaches based on cell energy density and jet topology to correct the linearity response while improving the resolution. In ad...

  3. Jet calibration in the ATLAS experiment at LHC

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    Jets produced in the hadronisation of quarks and gluons play a central role in the rich physics program that will be covered by the ATLAS experiment at the LHC, and are central elements of the signature for many physics channels. A well understood energy scale, which for some process demands an uncertainty in the energy scale of order 1%, is a prerequisite. Moreover, in early data we face the challenge of dealing with the unexpected issues of a brand new detector in an unexplored energy domain. The ATLAS collaboration is carrying out a program to revisit the jet calibration strategies used in earlier hadron-collider experiments and develop a strategy which takes account of the new experimental problems and demand for greater measurement precision which will be faced at the LHC. The ATLAS calorimeter is intrinsically non-compensating and we will present the use of different offline approaches based on cell energy density and jet topology to correct for this effect on jet energy resolution and scale. In additio...

  4. The contribution to the the calibration of LAr calorimeters at the ATLAS Experiment

    CERN Document Server

    Pecsy, Martin; Strizenec, Pavol

    The presented thesis brings various contributions to the testing and validation of the ATLAS detector calorimeter calibration. Since the ATLAS calorimeter is non-compensating, the sophisticated software calibration of the calorimeter response is needed. One of the ATLAS official calibration methods is the local hadron calibration. This method is based on detailed simulations providing information about the true deposited energy in calorimeter. Such calibration consists of several independent steps, starting with the basic electromagnetic scale signal calibration and proceeding to the particle energy calibration. Calibration starts from the topological clusters reconstruction and calibration at EM scale. These clusters are classified as EM or hadronic and the hadronic ones receive weights to correct for the invisible energy deposits of hadrons. To get the final reconstructed energy the out-of-cluster and dead material corrections are applied in next steps. The tests of calorimeter response with the first real ...

  5. Measurement of Pion and Proton Response and Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, J; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clement, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; Gonzalez, V; Gorini, B; Grenier, P; Gris, P; Gruwe, M; Guarino, V; Guicheney, C; Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higon, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; LeCompte, T; Lefevre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajicek, M; Lomakin, Y; Lupi, A; Maidanchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F; Miagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Myagkov, A; Nemecek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Novakova, J; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J; Pina, J; Pinhao, J; Podlyski, F; Portell Bueso, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachua, B; Sanchis, E; Sanders, H; Santoni, C; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L P; Schlager, G; Schlereth, J; Seixas, J M; Sellden, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sissakian, A; Sjolin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spano, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Unel, G; Usai, G; Valero, A; Valkar, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2010-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS iron-scintillator Tile hadron calorimeter has been measured. The test-beam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parameterised as a function of the b...

  6. The ATLAS Barrel Level-1 Muon Trigger Calibration

    CERN Document Server

    Ciapetti, G; Petrolo, E; Rosati, S; Spila, F; Vari, R; Veneziano, S; Zanello, L; 12th Workshop on Electronics For LHC and Future Experiments

    2007-01-01

    The ATLAS experiment uses a system of three concentric Resistive Plate Chambers detectors layers for the level-1 muon trigger in the air-core barrel toroid region. The trigger classifies muons within different programmable transverse momentum ranges, and tags the identified tracks with the corresponding bunch crossing number. The algorithm looks for hit coincidences within different detector layers inside the programmed geometrical road which defines the transverse momentum cut. The on-detector electronics providing the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Because of the different time-of-flights and cables and optical fibres lengths, signals have to be adjusted in time in order to be correctly aligned before being processed. Programmable delay logics are provided in the trigger and readout system to allow for time adjustment, for hit signals as well as for LHC Timing, Trigger and Control signals. The trigger calibration provides the set of numbers...

  7. Proton-Proton Central Exclusive Pion Production at $\\sqrt{13}$ TeV with the ALFA and ATLAS Detector

    CERN Document Server

    Bols, Emil Sorensen

    The cross section for proton-proton central exclusive dipion production, $pp\\rightarrow p + \\pi^+ \\pi^- + p$, has been measured at the center of mass energy $\\sqrt{s}=13\\mathrm{TeV}$, where double Pomeron exchange is expected to dominate. The LHC was used to create the central diffractive events, and all the final state particles were measured using the ATLAS and ALFA detector. After correcting for detector inefficiencies and proton acceptance using the Donnachie-Landshoff model with $\\alpha'=0.126\\mathrm{GeV}^{-2}$ and $\\epsilon=0.085$, the cross section was found to be: \\begin{equation} \\sigma_{pp\\rightarrow p+\\pi^+\\pi^-+p}=18.754\\pm0.048(\\mathrm{stat}.)\\pm0.770(\\mathrm{syst}.)\\mu\\mathrm{b} , \\quad |\\eta_{\\pi}| 100\\mathrm{MeV} \\end{equation} The invariant mass spectrum of the pions has been analyzed in order to extract the widths and masses of the $f_0(500)$, $f_0(980)$, $f_2(1275)$ and $f_0(1500)$ mesons. A correlation between the two outgoing protons has been observed, which is not in agreement with Pom...

  8. ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The performance of the reconstruction and calibration of the jet energy scale and missing transverse energy scale with the ATLAS detector at the LHC is a key component to realize the ATLAS full physics potential, both in the searches for new physics and in precision measurements. New algorithms used for the reconstruction and calibration of jets and missing energy with the ATLAS detector during LHC run 2 are presented. Measurements of the performance and uncertainties are derived from data. The results from the 2016 pp collision data set at sqrt(s)=13 TeV are reported.

  9. ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00383643; The ATLAS collaboration

    2017-01-01

    The performance of the reconstruction and calibration of the jet energy scale and missing transverse energy scale with the ATLAS detector at the LHC is a key component to realize the ATLAS full physics potential, both in the searches for new physics and in precision measurements. New algorithms used for the reconstruction and calibration of jets and missing energy with the ATLAS detector during LHC run 2 are presented. Measurements of the performance and uncertainties are derived from data. The results from the 2016 pp collision data set at $\\sqrt{s}=13$ TeV are reported.

  10. Pion, pion-pion, and pion-nucleus interactions

    CERN Document Server

    Mukhin, K N; Tikhonov, V N

    2002-01-01

    This survey is devoted to describing the early studies of 1.1. Gurevich on pion physics that were performed by the photoemulsion method and the studies of the pion-pion interaction that were made by his colleagues on the basis of the hydrogen-bubble-chamber and the magnetic-spectrometer method (as well-as on the basis of the photoemulsion method). Two approaches-an extrapolation of experimental data from the physical region to the pion pole and a theoretical calculation based on the Roy integral equations-are used to deduce information about the pion-pion interaction. The first results obtained for pion-pion and pion-nucleus interactions in the experiments that are being currently performed in Brookhaven and at CERN ( pi pi interaction) and at TRIUMF (Canada) and in Brookhaven (pion-nucleus interaction) are presented, along with the existing theoretical concepts in these realms of physics. (80 refs).

  11. ATLAS Jet Reconstruction, Energy Scale Calibration, and Tagging of Lorentz-boosted Objects

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2017-01-01

    The reconstruction and calibration of jets in ATLAS is a critical component in producing precise analyses, whether precision measurements or searches for new physics. This talk describes the steps involved in deriving the jet energy scale (JES) and presents the results. Calibrations and their uncertainties are shown using the full 2015 + 2016 datasets. The study of jet substructure has also become increasingly more prevalent throughout a wide array of searches and measurements. We also report on the latest results from ATLAS for the reconstruction and tagging of large-R jets as well as the calibration and determination of the uncertainties associated with these techniques.

  12. Reconstruction and Calibration of Small Radius Jets in the ATLAS Experiment for LHC Run 2

    CERN Document Server

    Loch, Peter; The ATLAS collaboration

    2017-01-01

    Small radius jets with R = 0.4 are standard tools in ATLAS for physics analysis. They are calibrated using a sequence of Monte Carlo simulation-derived calibrations and corrections followed by in-situ calibrations based on the transverse momentum balance between the probed jets and well-measured reference signals. In this talk the inputs to jet reconstruction in LHC Run 2 comprising calorimeter cell clusters, reconstructed charge particle tracks, and particle flow objects, are discussed together with the jet energy calibration scheme. Selected results from the performance of the procedure and the associated systematic uncertainties are presented.

  13. Response and Shower Topology of 2 to 180 GeV Pions Measured with the ATLAS Barrel Calorimeter at the CERN Test-beam and Comparison to Monte Carlo Simulations

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, G; Drohan, J; Ebenstein, W L; Eerola, P; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Di Girolamo, B; Glonti, G; Goettfert, T; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Haertel, R; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, D J; Hansen, P H; Hara, K; Harvey Jr, A; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Le Bihan, A C; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Latorre, S; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i García, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Miagkov, A; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmore, M S; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Rohne, O; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; De Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2010-01-01

    The response of the ATLAS barrel calorimeter to pions with momenta from $2$ to $180$~GeV~ is studied in a test--beam at the CERN H8 beam line. %Various methods to reconstruct the deposited pion energies are studied. The mean energy, the energy resolution and the longitudinal and radial shower profiles, and, various observables characterising the shower topology in the calorimeter are measured. The data are compared to Monte Carlo simulations based on a detailed description of the experimental set--up and on various models describing the interaction of particles with matter based on Geant4.

  14. Femtoscopy with identified charged pions in proton-lead collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV with ATLAS

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    Bose-Einstein correlations between identified charged pions are measured for $p+\\mathrm{Pb}$ collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV with the ATLAS detector with a total integrated luminosity of $28~\\mathrm{nb}^{-1}$. Pions are identified using ionisation energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum ($k_{\\mathrm{T}}$) and rapidity ($y^{\\star}_{\\pi\\pi}$) of the pair. Pairs are selected with a rapidity $-2 < y^{\\star}_{\\pi\\pi} < 1$ and with an average transverse momentum $0.1 < k_{\\mathrm{T}} < 0.8$ GeV. The effect on the two-particle correlation function from jet fragmentation is studied, and a new method for constraining its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair $k_{\\mathrm{T}}$. A correl...

  15. Femtoscopy with identified charged pions in proton-lead collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02~\\mathrm{TeV}$ with the ATLAS detector

    CERN Document Server

    Clark, Michael; The ATLAS collaboration

    2016-01-01

    Bose-Einstein correlations between identified charged pions are measured for p+Pb collisions at √sNN=5.02 TeV with the ATLAS detector with a total integrated luminosity of 28 nb−1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of average transverse pair momentum (kT) and rapidity (y∗k) as well as collision centrality. Pairs are selected with a rapidity −2

  16. Femtoscopy with identified charged pions in proton-lead collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02~\\mathrm{TeV}$ with the ATLAS detector

    CERN Document Server

    Clark, Michael; The ATLAS collaboration

    2016-01-01

    Bose-Einstein correlations between identified charged pions are measured for $p$+Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02~\\mathrm{TeV}$ with the ATLAS detector with a total integrated luminosity of $28~\\textrm{nb}^{-1}$. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of average transverse pair momentum ($k_{\\mathrm{T}}$) and rapidity ($y^{*}_{k}$) as well as collision centrality. Pairs are selected with a rapidity $-2 < y^{*}_{k} < 1$ and with an average transverse momentum $0.1 < k_{\\mathrm{T}} < 0.8$ GeV. The effect on the two-particle correlation function from jet fragmentation is studied, and a new method for constraining its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair $k_{\\mathrm{T}}$. A correlation with the local multipli...

  17. arXiv Femtoscopy with identified charged pions in proton-lead collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV with ATLAS

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Hadef, Asma; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-12-28

    Bose-Einstein correlations between identified charged pions are measured for $p$+Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV using data recorded by the ATLAS detector at the LHC corresponding to a total integrated luminosity of $28~\\mathrm{nb}^{-1}$. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum ($k_{\\mathrm{T}}$) and rapidity ($y^{\\star}_{\\pi\\pi}$) of the pair. Pairs are selected with a rapidity $-2 < y^{\\star}_{\\pi\\pi} < 1$ and with an average transverse momentum $0.1 < k_{\\mathrm{T}} < 0.8$ GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to de...

  18. Radioactive source control and electronics for the ATLAS tile calorimeter cesium calibration system

    CERN Document Server

    Shalanda, N A; Kopikov, S; Shalimov, A; Soldatov, M; Solodkov, A; Starchenko, E A

    2003-01-01

    A system using a radioactive /sup 137/Cs source to calibrate and monitor the Hadron Calorimeter (TileCal) of the ATLAS experiment at the LHC is described. The system includes a set of sensors to monitor the position of the source which moves via hydraulic propulsion. The design of the sensors, the corresponding electronic modules and their performance are detailed. (6 refs).

  19. Performance and Calibration of the ATLAS Jet Trigger

    CERN Document Server

    Machado Miguens, J; The ATLAS collaboration

    2011-01-01

    ATLAS has been successfully collecting 7 TeV pp collision data from the LHC since 2010, at a rate that will ultimately reach 40 MHz for nominal LHC conditions. The ATLAS trigger system handles this enormous data flow, providing efficient rejection and maintaining an unbiased efficiency for rare signals. It is organized in three levels that reduce the rate to approximately 200 Hz, by reconstructing and selecting high transverse momentum objects such as jets, taus, electrons, photons or missing transverse energy. The first level (L1) is implemented in custom made electronic modules, while the High Level Trigger (HLT), which comprises the second (L2) and third (Event Filter, EF) trigger levels, is based on software running in commercial computers. High performance of the jet trigger is essential to achieve the physics goals of ATLAS and the ATLAS jet trigger is prepared to cover a wide variety of physics topics, ranging from QCD studies to SUSY searches. At the LHC, where jets are produced at a high rate and hav...

  20. The Data Acquisition and Calibration System for the ATLAS Semiconductor Tracker

    CERN Document Server

    Abdesselam, A; Barr, A J; Bell, P; Bernabeu, J; Butterworth, J M; Carter, J R; Carter, A A; Charles, E; Clark, A; Colijn, A P; Costa, M J; Dalmau, J M; Demirkoz, B; Dervan, P J; Donega, M; D'Onifrio, M; Escobar, C; Fasching, D; Ferguson, D P S; Ferrari, P; Ferrère, D; Fuster, J; Gallop, B; García, C; González, S; González-Sevilla, S; Goodrick, M J; Gorisek, A; Greenall, A; Grillo, A A; Hessey, N P; Hill, J C; Jackson, J N; Jared, R C; Johannson, P D C; de Jong, P; Joseph, J; Lacasta, C; Lane, J B; Lester, C G; Limper, M; Lindsay, S W; McKay, R L; Magrath, C A; Mangin-Brinet, M; Martí i García, S; Mellado, B; Meyer, W T; Mikulec, B; Minano, M; Mitsou, V A; Moorhead, G; Morrissey, M; Paganis, E; Palmer, M J; Parker, M A; Pernegger, H; Phillips, A; Phillips, P W; Postranecky, M; Robichaud-Véronneau, A; Robinson, D; Roe, S; Sandaker, H; Sciacca, F; Sfyrla, A; Stanecka, E; Stapnes, S; Stradling, A; Tyndel, M; Tricoli, A; Vickey, T; Vossebeld, J H; Warren, M R M; Weidberg, A R; Wells, P S; Wu, S L

    2008-01-01

    The SemiConductor Tracker (SCT) data acquisition (DAQ) system will calibrate, configure, and control the approximately six million front-end channels of the ATLAS silicon strip detector. It will provide a synchronized bunch-crossing clock to the front-end modules, communicate first-level triggers to the front-end chips, and transfer information about hit strips to the ATLAS high-level trigger system. The system has been used extensively for calibration and quality assurance during SCT barrel and endcap assembly and for performance confirmation tests after transport of the barrels and endcaps to CERN. Operating in data-taking mode, the DAQ has recorded nearly twenty million synchronously-triggered events during commissioning tests including almost a million cosmic ray triggered events. In this paper we describe the components of the data acquisition system, discuss its operation in calibration and data-taking modes and present some detector performance results from these tests.

  1. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  2. The Calibration of Hadron Calorimeter Tilecal for the ATLAS Experiment at the LHC Accelerator

    CERN Document Server

    Pribyl, L

    2003-01-01

    This diploma thesis describes calibration of hadron calorimeter Tilecal by muon and electron beams. In the first chapter, some calorimetry concepts and basic variables are mentioned or defined. In the second chapter, a detailed Tilecal description is given, special attention was given to provide an up-to-date information (written in April 2003). In this chapter, Tilecal calibration systems and data-taking during testbeams at CERN laboratory in summer 2002 are described. In the third chapter, results of data analyses of muon theta=90 deg and eta-projective runs taken during June, July and August 2002 testbeam periods are given. Results of analyses of calibration by electron beams measured in August 2002 are shown as well. It is also shown, that results of analyses mentioned above are important for the calorimeter calibration for ATLAS detector and also for checking the status of calibrated calorimeter modules.

  3. The laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Alexa, C.; Coutinho, Y.A.; Lokajíček, Miloš; Němeček, Stanislav

    2016-01-01

    Roč. 11, Oct (2016), 1-31, č. článku T10005. ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG15047; GA MŠk LM2015068 Institutional support: RVO:68378271 Keywords : electronics * readout * calorimeter * hadronic * calibration * laser * stability * ATLAS * data analysis method Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.220, year: 2016

  4. Read-out and calibration of a tile calorimeter for ATLAS

    International Nuclear Information System (INIS)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained

  5. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  6. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  7. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC run II conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slo...

  8. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00352208

    2016-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC Run 2 conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slow...

  9. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  10. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  11. Large R jet reconstruction and calibration at 13 TeV with the ATLAS detector

    CERN Document Server

    Taenzer, Joe; The ATLAS collaboration

    2017-01-01

    Large-R jets are used by many ATLAS analyses working in boosted regimes. ATLAS Large-R jets are reconstructed from locally callibrated calorimeter topoclusters with the Anti-k_{t} algorithm with radius parameter R=1.0, and then groomed to remove pile-up with the trimming algorithm with f_{cut} 0.05 and subjet radius R=0.2. Monte Carlo based energy and mass calibrations correct the reconstructed jet energy and mass to truth, followed by in-situ calibrations using a number of different techniques. Large-R jets can also be reconstructed using small-R jets as constituents, instead of topoclusters, a technique called jet reclustering, or from track calo clusters (TCCs), which are constituents constructed using both tracking and calorimeter information. An overview of large-R jet reconstruction will be presented here, along with selected results from the jet mass calibrations, both Monte Carlo based an insitu, from jet reclustering, and from track calo clusters.

  12. A quasi-online distributed data processing on WAN: the ATLAS muon calibration system

    CERN Document Server

    De Salvo, A; The ATLAS collaboration

    2013-01-01

    In the Atlas experiment, the calibration of the precision tracking chambers of the muon detector is very demanding, since the rate of muon tracks required to get a complete calibration in homogeneous conditions and to feed prompt reconstruction with fresh constants is very high (several hundreds Hz for 8-10 hours runs). The calculation of calibration constants is highly CPU consuming. In order to fulfill the requirement of completing the cycle and having the final constants available within 24 hours, distributed resources at Tier-2 centers have been allocated. The best place to get muon tracks suitable for detector calibration is the second level trigger, where the pre-selection of data sitting in a limited region by the first level trigger via the Region of Interest mechanism allows selecting all the hits from a single track in a limited region of the detector. Online data extraction allows calibration data collection without performing special runs. Small event pseudo-fragments (about 0.5 kB) built at the m...

  13. The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    CERN Document Server

    INSPIRE-00305555

    2016-10-12

    This article describes the Laser calibration system of the Atlas hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.

  14. Readout Electronics Calibration and Energy Resolution Analysis for ATLAS New Small Wheel Phase I Upgrade

    CERN Document Server

    Trischuk, Dominique Anderson

    2016-01-01

    The High Luminosity Large Hadron Collider (HL-LHC), a planned upgrade of the LHC for 2025, will provide a challenging environment the detectors. The ATLAS muon endcap system was not designed to operate at the high rates that will be provided by the HL-LHC and must be upgraded. The New Small Wheel (NSW) will replace the current Muon Small Wheel and will provide enhanced trigger and tracking capabilities. The VMM chip is a custom applied specific integrated circuit (ASIC), designed at Brookhaven National Laboratory, that will serve as the frontend ASIC for the detectors in the NSW. In order to provide precise timing measurements, the VMM chip must be calibrated. The micromegas are one of two detectors that will be installed in the NSW. A measurement of the energy spectrum can be used to calculate the energy resolution of the micromegas. The calibration method for the VMM chips and energy resolution measurements of the micromegas are described in this report.

  15. ATLAS level-1 calorimeter trigger hardware: initial timing and energy calibration

    International Nuclear Information System (INIS)

    Childers, J T

    2011-01-01

    The ATLAS Level-1 Calorimeter Trigger identifies high-pT objects in the Liquid Argon and Tile Calorimeters with a fixed latency of up to 2.5μs using a hardware-based, pipelined system built with custom electronics. The Preprocessor Module conditions and digitizes about 7200 pre-summed analogue signals from the calorimeters at the LHC bunch-crossing frequency of 40 MHz, and performs bunch-crossing identification (BCID) and deposited energy measurement for each input signal. This information is passed to further processors for object classification and total energy calculation, and the results are used to make the Level-1 trigger decision for the ATLAS detector. The BCID and energy measurement in the trigger depend on precise timing adjustments to achieve correct sampling of the input signal peak. Test pulses from the calorimeters were analysed to derive the initial timing and energy calibration, and first data from the LHC restart in autumn 2009 and early 2010 were used for validation and further optimization. The results from these calibration measurements are presented.

  16. Calibration and Performance of the ATLAS Tile Calorimeter During the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMT). The TileCal is regularly monitored and calibrated by several di erent calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadroni...

  17. Calibration and performance of the ATLAS Tile Calorimeter during the LHC Run 2

    Science.gov (United States)

    Cerda Alberich, L.

    2018-02-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region | η| < 1.7. Jointly with the other sub-detectors it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source, a laser light system to check the PMT response, and a charge injection system (CIS) to check the front-end electronics. These calibration systems, in conjunction with data collected during proton-proton collisions, Minimum Bias (MB) events, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions and compared to Monte Carlo (MC) simulations. The response of high momentum isolated muons is also used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response. The calorimeter time resolution is studied with multijet events. A description of the different TileCal calibration systems and the results on the calorimeter performance during the LHC Run 2 are presented. The results on the pile-up noise and response uniformity studies are also discussed.

  18. A NEW ELECTRONIC BOARD TO DRIVE THE LASER CALIBRATION SYSTEM OF THE ATLAS HADRON CALORIMETER

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00086824; The ATLAS collaboration

    2016-01-01

    The LASER calibration system of the ATLAS hadron calorimeter aims at monitoring the ~10000 PMTs of the TileCal. The LASER light injected in the PMTs is measured by sets of photodiodes at several stages of the optical path. The monitoring of the photodiodes is performed by a redundant internal calibration system using an LED, a radioactive source, and a charge injection system. The LASer Calibration Rod (LASCAR) electronics card is a major component of the LASER calibration scheme. Housed in a VME crate, its main components include a charge ADC, a TTCRx, a HOLA part, an interface to control the LASER, and a charge injection system. The 13 bits ADC is a 2000pc full-scale converter that processes up to 16 signals stemming from 11 photodiodes, 2 PMTs, and 3 charge injection channels. Two gains are used (x1 and x4) to increase the dynamic range and avoid a saturation of the LASER signal for high intensities. The TTCRx chip (designed by CERN) retrieves LHC signals to synchronize the LASCAR card with the collider. T...

  19. The upgrade of the laser calibration system for the ATLAS hadron calorimeter TileCal

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. TileCal is built of steel and scintillating tiles coupled to optical fibers and read‐out by photomultipliers (PMT). The performance of TileCal relies on a continuous, high resolution calibration of the individual response of the 10,000 channels forming the detector. The calibration is based on a three level architecture: a charge injection system used to monitor the full electronics chain including front-end amplifiers, digitizers and event builder blocks for each individual channel; a distributed optical system using laser pulses to excite all PMTs; and a mobile Cesium radiative source which is driven through the detector cell floating inside a pipe system. This architecture allows for a cascade calibration of the electronics, of the PMT and electronics, and of full chain including the active detec...

  20. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  1. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  2. Performance and calibration of b-tagging with the ATLAS experiment at LHC Run-2

    CERN Document Server

    Connelly, Ian; The ATLAS collaboration

    2016-01-01

    The identification of $b$-flavoured jets is key to many physics analyses at the LHC, including measurements involving Higgs bosons or top quarks, and searches for physics beyond the Standard Model. The capacity of ATLAS to efficiently tag $b$-jets has been enhanced for Run-2 with the addition of the Insertable B Layer (IBL), and improvements in the tracking and $b$-tagging algorithms. In the algorithm optimisation special emphasis has been placed in improving the performance for reconstructing high-pt $b$-jets, addressing the challenges posed by track and vertex reconstruction in such an environment. The efficiency and rejection power of these algorithms have been calibrated on data taken in 2015, in particular by exploiting the copious production of $b$-jets in top quark decays, complemented by studies in multi-jet events.

  3. Measurements of cross sections for Higgs boson production and forward jet calibration with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367060

    This thesis presents measurements of inclusive and differential cross sections for Higgs boson production in the fiducial and total phase space regions, as well as a calibration of the ATLAS calorimeter response to jets. The fiducial $pp \\rightarrow H \\rightarrow \\gamma\\gamma$ cross section for $m_{H}=125.4$ GeV was measured at ${\\sqrt{s}=8}$ TeV with 20.3 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector. The $H \\rightarrow \\gamma\\gamma$ signal was extracted from the background with a fit to the diphoton invariant mass spectrum, within the fiducial phase space defined by two isolated photons with $|\\eta|<2.37$ and fractional transverse momentum greater than 0.35 and 0.25 relative to the diphoton invariant mass. The signal yields were corrected for inefficiency and resolution of the detector. The $pp \\rightarrow H \\rightarrow \\gamma\\gamma$ cross section is measured to be $\\sigma_{\\rm fid} = 43.2 \\pm 9.4 \\, ({\\rm stat.}) \\, {}^{+3.2}_{-2.9} \\, ({\\rm syst.}) \\pm 1.2 \\, ({\\rm ...

  4. The Upgraded Calibration System for the Scintillator-PMT Tile Hadronic Calorimeter of the ATLAS experiment at CERN/LHC

    CERN Document Server

    Chakraborty, Dhiman; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...

  5. The upgraded calibration system for the scintillator-PMT Tile Hadronic Calorimeter of the ATLAS experiment at CERN/LHC

    CERN Document Server

    Chakraborty, Dhiman; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...

  6. ATLAS Jet Reconstruction, Calibration, and Tagging of Lorentz-boosted Objects

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2017-01-01

    Jet reconstruction in the ATLAS detector takes multiple forms, as motivated by the intended usage of the jet. Different jet definitions are used in particular for the study of QCD jets and jets containing the hadronic decay of boosted massive particles. These different types of jets are calibrated through a series of mostly sequential steps, providing excellent uncertainties, including a first in situ calibration of the jet mass scale. Jet tagging is investigated, including both not-top-quark vs gluon discrimination as well as W/Z boson, H$\\to$bb, and top-quark identification. This includes a first look at the use of Boosted Decision Trees and Deep Neural Networks built from jet substructure variables, as well as Convolutional Neural Networks built from jet images. In all cases, these advanced techniques are seen to provide gains over the standard approaches, with the magnitude of the gain depending on the use case. Future methods for improving jet tagging are briefly discussed, including jet substructure-ori...

  7. Time Calibration of the ATLAS Hadronic Tile Calorimeter using the Laser System

    CERN Document Server

    Clément, C; Solovyanov, O; Vivarelli, I

    2008-01-01

    The ATLAS Tile Calorimeter (TileCal) will be used to measure i) the energy of hadronic showers and ii) the Time of Flight (ToF) of particles passing through it. To allow for optimal reconstruction of the energy deposited in the calorimeter with optimal filtering, the phase between the signal sampling clock and the maximum of the incoming pulses needs to be minimised and the residual difference needs to be measured for later use for both energy and time of flight measurements. In this note we present the timing equalisation of all TileCal read out channels using the TileCal laser calibration system and a measurement of the time differences between the 4 TileCal TTC partitions. The residual phases after timing equalisation have been measured. Several characteristics of the laser calibration system relevant for timing have also been studied and a solution is proposed to take into account the time difference between the high and low gain paths. Finally we discuss the sources of uncertainties on the timing of the ...

  8. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative in...

  9. Pion inelastic scattering and the pion-nucleus effective interaction

    International Nuclear Information System (INIS)

    Carr, J.A.

    1983-01-01

    This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion

  10. Search of new resonances decaying into top quark pairs with the ATLAS detector at the LHC and jet calibration studies

    International Nuclear Information System (INIS)

    Camacho, R.

    2012-01-01

    The studies presented in this thesis were performed using data collected by the ATLAS detector at the LHC. The ATLAS detector consists of a tracking system in a 2 T solenoid field, providing coverage up to a pseudo-rapidity of |η| -1 of data collected by the ATLAS detector in 2011. Secondly and related to this search, performance studies of the Jet Vertex Fraction (JVF) in top-quark pairs topologies are presented too. JVF is a variable that can be used to reduce the pile-up effects to improve the precision and sensitivity of physics analyses at high luminosities. Finally, results regarding the performance, validation in data and associated systematic uncertainty derivation of the Global Sequential (GS) jet calibration are discussed

  11. Calibration of the ATLAS $b$-tagging algorithm in $t\\bar{t}$ events with high multiplicity of jets

    CERN Document Server

    La Ruffa, Francesco; The ATLAS collaboration

    2017-01-01

    The calibration of the ATLAS $b$-tagging in environments characterised by high multiplicity of jets is presented. The calibration uses reconstructed $t\\bar{t}$ candidate events collected by the ATLAS detector in proton-proton collisions at LHC with a centre-of-mass energy $\\sqrt{s}$ of 13$\\,$TeV, with a final state containing one charged lepton, missing transverse momentum and at least four jets. The $b$-tagging efficiencies are measured not only as a function of the most relevant kinematic quantities, such as the transverse momentum or the presudo-rapidity of the jets, but also as a function of quantities that are sensitive to close-by jet activity. The results extend the regions where data-to-simulation $b$-tagging scale factors are derived when using dilepton $t\\bar{t}$ events.

  12. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  13. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Dicello, J.F.

    1975-01-01

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  14. Multi-pion production

    International Nuclear Information System (INIS)

    Beavis, D.; Fung, S.Y.; Gorn, W.; Keane, D.; Liu, Y.M.; Poe, R.T.; VanDalen, G.; Vient, M.

    1984-01-01

    Preliminary analysis of pion production in 1.2 GeV/nucleon Kr-RbBr collisions is presented. The negative pion multiplicity is consistent with a convolution of Poisson distributions and a freeze-out density between 1/3 and 1/2 normal nuclear density is extracted. Global negative pion kinematic variables are used to search for possible structure in the multi-pion emission. No evidence for structured emission or conservation constraints is found. Pion interferometry analysis gives a source radius of 5.4 +- 1.2 Fermi and a freeze-out density of .3 +- .2 times normal nuclear density. 10 refs., 5 figs

  15. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  16. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  17. Improvement in separation of isolated muons and pions at low pT in ATLAS hadron calorimeter using artificial neural networks technique

    International Nuclear Information System (INIS)

    Astvatsaturov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Shigaev, V.; Paplevka, A.; Sushkov, S.; Bosman, M.; Nessi, M.

    1995-01-01

    Advantages of artificial neural networks techniques in handling data from highly granulated ATLAS hadron calorimeter (HC) are shown in application to isolated π/μ separation task in the range 3 T T muons have a significant probability to be absorbed in the calorimeter and therefore they cannot be reliably registered by the muon detector. The comparative analysis of main characteristics is presented for several neural net discriminators and a linear threshold discriminator operating on energy deposition in the last depth of HC. The analysis is based on MC data obtained with ATLAS simulation programs. 9 refs., 12 figs

  18. Pion coupling to nuclei

    International Nuclear Information System (INIS)

    Dumbrajs, O.

    1981-01-01

    The concept of the pion-nucleus coupling constants is discussed. Methods of their determination are reviewed. These include: forward dispersion relations, extrapolation of differential cross sections to the poles in the angular variable, analysis of data on electromagnetic form factors with the use of the PCAC and CVC hypotheses, pion photoproduction at threshold and low-energy theorems. Our present knowledge of the pion coupling to the He, Li, Be, C, N and O nuclei is summarized. (author)

  19. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  20. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    Czech Academy of Sciences Publication Activity Database

    Adragna, P.; Alexa, C.; Anderson, K.; Lokajíček, Miloš; Němeček, Stanislav; Přibyl, Lukáš

    2010-01-01

    Roč. 615, č. 2 (2010), s. 158-181 ISSN 0168-9002 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimetry * test-beam * Monte Carlo simulation * GEANT4 * hadronic shower development * pion–proton response Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.142, year: 2010 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJM-4Y95RDG-1&_user=625012&_coverDate=04%2F01%2F2010&_alid=1542842401&_rdoc=19&_fmt=high&_o

  1. Muon identification and pion rejection in the 4th concept

    Indian Academy of Sciences (India)

    The ATLAS detector at the LHC has avoided this limit with air-core toroids both around the cylindrical detector providing a largely azimuthal field, and separate toroids to cover the end cap regions of the detector. 2. Two essential features. Momentum resolution for background pion rejection. On the 4th concept we also.

  2. Optimization and Calibration of the Drift-Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2067746

    2000-01-01

    The final phase of preparations for the ATLAS experiment at the future Large Hadron Collider (LHC) has begun. In the last decade the collaboration has carried out various test-beam experiments to study and optimize prototypes of all subdetectors under more and more realistic conditions. To enhance the detector-physical understanding, these hardware activities were complemented by detailed simulations. In parallel the development of reconstruction software has made important progress. The present work focusses on some advanced aspects of optimizing the Monitored Drift Tube Chambers (MDT) for operation as precision chambers in the Muon Spectrometer. It will be shown how this system has been tuned for maximum performance in order to meet the ambitious goals defined by the objectives of LHC particle physics. After defining the basic detector parameters, the tubes' capability of running in ATLAS's high-rate gamma radiation background was verified. Both tasks necessitated several years of gathering experience in mu...

  3. Measurement of the charmonium production and energy calibration for electrons with the ATLAS experiment; Messung der Charmonium-Produktion und Energiekalibration fuer Elektronen mit dem Atlas-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Handel, Carsten

    2011-11-29

    The cross section of Charmonium production was measured using data from pp collisions at {radical}(s)=7 TeV taken by the Atlas experiment at the LHC in 2010. To improve the necessary knowledge of the detector performance, a calibration of the energy was performed. Using electrons from decays of the Charmonium, the energy scale of the electromagnetic calorimeters was studied at low energies. After applying the calibration, deviations in the energy measurement were found to be lower than 0.5% by comparing with energies determined in Monte Carlo simulations.rnrnrnWith an integrated luminosity of 2.2 pb{sup -1}, a first measurement of the inclusive cross section of the process pp{yields}J/{psi}(e{sup +}e{sup -})+X at {radical}(s)=7 TeV was done. For this, the accessible region of transverse momenta p{sub T,ee}>7 GeV and of rapidities vertical stroke y{sub ee} vertical stroke <2.4 was used. Differential cross sections for the transverse momentum p{sub T,ee}, and for the rapidity vertical stroke y{sub ee} vertical stroke were determined. Integration of the differential cross sections yields the values (85.1{+-}1.9{sub stat}{+-}11.2{sub syst}{+-} 2.9{sub Lum}) nb, and (75.4 {+-} 1.6{sub stat} {+-} 11.9{sub syst} {+-} 2.6{sub Lum}) nb for {sigma} (pp{yields}J/{psi}X)BR(J/{psi}{yields}e{sup +}e{sup -}), being compatible within systematics. Comparisons with measurements of the process pp{yields} J/{psi}({mu}{sup +}{mu}{sup -})+X done by Atlas and CMS have shown good agreement. To compare with theory, predictions from different models in next-to-leading order, and partially considering contributions in next-to-next-to-leading order were combined. Comparisons show a good agreement when taking into account contributions in next-to-next-to-leading order.

  4. Somewhat virtual pions

    International Nuclear Information System (INIS)

    Ericson, T.E.O.

    1978-01-01

    The fleeting existence of pions inside nuclei is responsible for the modification of nucleon properties in β decay μ-capture, photo-processes, magnetic moments and the like. The physical situations in which the interaction of the pions is expected to be very close to that of real pions, but in which the binding effects will manifest themselves fully are here discussed. The effect of such binding is illustrated by the line-shape of an absorbing (pionic) atom. μ-capture at large energy transfers is discussed. (U.K.)

  5. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  6. TeV-scale jet energy calibration using multijet events including close-by jet effects at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    With the large number of proton-proton collisions delivered by the Large Hadron Collider at a centre-of-mass energy of $\\sqrt{s}=7$ TeV in 2011, it became possible to probe the jet transverse momentum (pT) scale beyond the TeV range in events with multijet production. The jet energy scale (JES) uncertainty, which is one of the most important sources of systematic uncertainties for new physics searches at high pT, is evaluated using in-situ techniques based on the pT balance in events with a photon or $Z$ boson as well as in dijet events. Exploiting the pT balance technique between a system of low-pT jets and a leading jet at high pT in multijet events, with the calibration (provided by the gamma-jet and Z+jet events) applied to the low-pT jets, allows the extension of the in-situ determination of JES calibration and uncertainty to the TeV-scale. Results are presented for the JES uncertainty using the multijet balance technique based on the ATLAS data collected in 2011 corresponding to an integrated luminosity...

  7. Studies for a top quark mass measurement and development of a jet energy calibration with the ATLAS detector

    International Nuclear Information System (INIS)

    Jantsch, Andreas

    2012-01-01

    In this thesis, the development of a new jet energy calibration method as well as studies for a top quark mass measurement with the ATLAS detector are presented. The new calibration method considers jet shape variables in order to improve the linearity and resolution of the jet energy response. Promising results are shown for jet events from Monte Carlo simulation as well as from first √(s)=900 GeV proton-proton collision data of the Large Hadron Collider. In addition, Monte Carlo studies for a top quark mass measurement in the lepton plus jets decay channel of top quark pair events are performed. Several top quark reconstruction methods are investigated in pseudo-experiments which are equivalent to an integrated luminosity of L=200 pb -1 at √(s)=10 TeV. Assuming a generated top quark mass of m t gen =172.5 GeV, the most promising result is achieved with the Max-p T reconstruction method which returns a top quark mass of m Max-p T t,el-channel =170.4±2.2 vertical stroke stat. ± 8.8 vertical stroke syst. GeV in the electron plus jets decay channel including a bias correction of +5.2 GeV for the central top quark mass value.

  8. Studies for a top quark mass measurement and development of a jet energy calibration with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Jantsch, Andreas

    2012-06-11

    In this thesis, the development of a new jet energy calibration method as well as studies for a top quark mass measurement with the ATLAS detector are presented. The new calibration method considers jet shape variables in order to improve the linearity and resolution of the jet energy response. Promising results are shown for jet events from Monte Carlo simulation as well as from first {radical}(s)=900 GeV proton-proton collision data of the Large Hadron Collider. In addition, Monte Carlo studies for a top quark mass measurement in the lepton plus jets decay channel of top quark pair events are performed. Several top quark reconstruction methods are investigated in pseudo-experiments which are equivalent to an integrated luminosity of L=200 pb{sup -1} at {radical}(s)=10 TeV. Assuming a generated top quark mass of m{sub t}{sup gen}=172.5 GeV, the most promising result is achieved with the Max-p{sub T} reconstruction method which returns a top quark mass of m{sup Max-p{sub Tt,el-channel}}=170.4{+-}2.2 vertical stroke {sub stat.}{+-} 8.8 vertical stroke {sub syst.} GeV in the electron plus jets decay channel including a bias correction of +5.2 GeV for the central top quark mass value.

  9. Jet calibration and top quark mass measurement in the semi-leptonic channel in the ATLAS experiment

    International Nuclear Information System (INIS)

    Balli, Fabrice

    2014-01-01

    The main goal of this thesis is to provide a measurement as accurate as possible of the top quark mass in the semi-leptonic decay channel. This experimental measurement is made thanks to the ATLAS detector near LHC, a proton-proton collider. The main interests for this precision measurement are the physics constraints to the theoretical models of fundamental constituents. Besides, the top quark mass is a parameter allowing to have more information on the vacuum stability at the Planck scale within the Standard Model. Jet energy calibration is crucial to this measurement. The impact of real data taking conditions on this calibration and on jet performance is detailed. The top quark mass measurement using 2011 data collected at an energy in the center-of-mass of 7 TeV is presented. It is using a tri dimensional template analysis method. The measured top quark mass is: m(top) = 172.01 ± 0.92 (stat) ± 1.17 (syst) GeV. The 2012 data collected at an energy in the center-of-mass of 8 TeV are also analysed, and a preliminary result for the top quark mass is provided: m(top) = 172.82 ± 0.39 (stat) ± 1.12 (syst) GeV, the combination of both measurements being the most accurate result of this thesis: m(top) = 172.64 ± 0.37 (stat) ± 1.10 (syst) GeV. (author) [fr

  10. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic-ray muon data

    CERN Document Server

    Weng, Z

    2012-01-01

    The ATLAS iron-scintillator hadronic calorimeter (TileCal) provides precision measurements of jets and missing transverse energy produced in the LHC proton-proton collisions. Results assessing the calorimeter calibration obtained using cosmic ray muons collected in 2008, 2009 and 2010 are presented. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First the average non-uniformity of the response of the cells within a layer was estimated to be about ±2% . Second, the average response of different layers is found to be not inter-calibrated, considering the sources of error. The largest difference between the responses of two layers is ±4% . Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -3% and +1%. The sources of uncertainties in the response measurements are strongly correlated, including the uncertainty in the simulation. The tot...

  11. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  12. Electronic Readout of the Atlas Liquid Argon Calorimeter: Calibration and Performance

    CERN Document Server

    Majewski, S; The ATLAS collaboration

    2010-01-01

    The Liquid Argon (LAr) calorimeter is a key detector component in the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The LHC is a proton-proton collider with a center-of-mass energy of 14 TeV. The machine has been operated at energies of 900 GeV and 2.36 TeV in 2009 and is expected to reach the energy of 7 TeV in 2010. The LAr calorimeter is designed to provide precision measurements of electrons, photons, jets and missing transverse energy. It consists of a set of sampling calorimeters with liquid argon as active medium kept into three separate cryostats. The LAr calorimeters are read out via a system of custom electronics. The electronic readout of the ATLAS LAr calorimeters is divided into a Front End (FE) system of boards mounted in custom crates directly on the cryostat feedthroughs, and a Back End (BE) system of VME-based boards located in an off-detector underground counting room where there is no radiation. The FE system includes Front End boards (FEBs), which perform the readout and dig...

  13. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 74, č. 10 (2014), "3071-1"-"3071-48" ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : photon * energy * calibration * detector * resolution * showers * electromagnetic * electron * transverse energy * CERN LHC Coll * calorimeter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.084, year: 2014

  14. Search for supersymmetry in the fully hadronic channel and jet calibration with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436210

    The Standard Model of particle physics is a very precise model describing the elementary particles and their interactions. However, some issues lead physicists to search for physics beyond the Standard Model. Supersymmetry is an extension of the Standard Model providing solutions to the current issues. In this thesis, results are obtained using the data collected in 2015 and 2016 with the ATLAS detector at the LHC (CERN). The thesis is based in two parts: The first part is a performance analysis improving the energy measurement of high energy objects called "jets". They are generated by the hadronization of quarks and gluons in the detector via the strong nuclear interaction. My contribution is the last step of the the reconstruction and calibration chain and is fully based on data. The method uses the very precise measurement of the photon energy, and provides corrections to the jet energy scale. My contribution consists in set-up the method, estimate the corrections, measure the jet energy scale and evalua...

  15. The ATLAS LAr Calorimeter Level 1 Trigger Signal pre-Processing System: Installation, Commissioning and Calibration Results.

    CERN Document Server

    Boulahouache, C; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The calorimeter information is a key ingredient in the first level (L1) trigger decision to reduce the 40 MHz p-p bunch crossing rate to few 100 kHz of accepted events waiting to be readout in full precision, in the system pipelines. This presentation covers the LAr calorimeter electronics used to prepare signals for the L1 trigger. After exiting the cryostat, part of the current signal, at the front end, is directly split off the main readout path and summed with neighbouring channels forming trigger towers which are transmitted in analog form over 50 to 70 meters to the counting room. There, the signals are calibrated, reordered and futher summed for fast digitization using the L1 trigger hardware. Many factors like calorimeter capacitances and pulse shapes have to be taken into accoun...

  16. Selection, calibration and mosaicing of AMIE images to build a Moon Atlas as seen by SMART-1

    Science.gov (United States)

    Almeida, M.; Fonseca, J. M.; Grieger, B.; Costa, M.; Mora, A.

    2014-04-01

    In mid 2010 the European Space Agency opened the SMART-1 data to general public. The free access to these data opened new possibilities for its exploitation and use. In this dataset, there are data from the three instruments carried on-board: an ultracompact electronic camera to survey the lunar terrain in visible and near-infrared light (AMIE), an infrared spectrometer to analyze the Moon's minerals (SIR) and an X-ray spectrometer to identify key chemical elements in the lunar surface (D-CIXS). This work is focused on the AMIE captured images, that are used to produce a complete high-resolution atlas of the Moon. During the SMART-1 mission from 2004 to 2006, the onboard AMIE camera collected 31947 start-of-the-art (at the time) resolution and coverage images from lunar surface. However, a considerable number of images were contaminated with noise or suffered from transmission errors, being unusable for any purposes. Also, during the Earth escape phase the radiation damaged significantly the AMIE sensor invalidating the laboratorial flat field correction algorithm. This malfunction was compensated by a new calibration procedure based on in-flight images and theoretical models that will be presented on this paper. After flat field compensated, all images were also calibrated to compensate the sensor color filters at 750, 915 and 960 nm, designed for multi-spectral analysis, although now we use them as full-frame gray scale images. The resulting 1024x1024 images were geographically referenced using the in-board data and mosaiced considering illumination angle and image quality, in order to produce 88 lunar surface maps with lower resolution on the North Lunar pole (spacecraft apolune altitude of 3000Km) and higher resolution on the South Lunar pole (perilune altitude of 27Km). The final maps achieved a coverture of approximately 96% of the Lunar surface. For the latitudes higher than 60ºN and lower than 75ºS polar projection was used with a resolution of 300m

  17. Muon Results from the EMEC/HEC Combined Run corresponding to the ATLAS Pseudorapidity region 1.6 < eta < 1.8

    CERN Document Server

    Cojocaru, C; Soukup, J; Vincter, M G; Datskov, V I; Fedorov, A; Golubyh, S M; Javadov, N; Kalinnikov, V; Kakurin, S; Kazarinov, M; Kukhtin, V; Ladygin, E; Lazarev, A B; Neganov, A B; Pisarev, I; Rousakovitch, N; Serochkin, E; Shilov, S N; Shalyugin, A N; Usov, Yu; Bruncko, Dusan; Chytracek, R; Kladiva, E; Strízenec, P; Barreiro, F; García, G; Labarga, F; Rodier, S; Del Peso, J; Heldmann, M; Jakobs, K; Köpke, L; Othegraven, R; Schroff, D; Thomas, J; Zeitnitz, C; Barrillon, P; Benchouk, C; Djama, F; Henry-Coüannier, F; Hinz, L; Hubaut, F; Monnier, E; Olivier, C; Pralavorio, Pascal; Raymond, R; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Azuelos, Georges; Leroy, C; Mehdiyev, R; Akimov, A; Blagov, M I; Komar, A; Snesarev, A A; Speransky, M N; Sulin, V; Yakimenko, M; Aderholz, M; Barillari, T; Bartko, H; Cwienk, W D; Fischer, A; Habring, J; Huber, J; Karev, A; Kiryunin, A E; Kurchaninov, L L; Menke, S; Mooshofer, P; Oberlack, H; Salihagic, D; Schacht, P; Chen, T; Ping, J; Qi, M; Aoulthenko, W; Kazanin, V; Kolatchev, G; Malychev, W; Maslennikov, A L; Pospelov, G E; Snopkov, R; Shousharo, A; Soukharev, A M; Talyshev, A A; Tikhonov, Yu A; Chekulaev, S V; Denisov, S; Levitsky, M; Minaenko, A A; Mitrofanov, G Ya; Moiseev, A; Pleskatch, A; Sytnik, V V; Zakamsky, L; Losty, Michael J; Oram, C J; Wielers, M; Birney, P; Fincke-Keeler, M; Gable, I; Hodges, T; Hughes, T; Ince, I; Kanaya, N; Keeler, Richard K; Langstaf, R; Lefebvre, M; Lenckowski, M; McPherson, R A; Braun, H; Thadome, J

    2004-01-01

    A full azimuthal $\\phi$-wedge of the ATLAS liquid argon end-cap calorimeter has been exposed to beams of electrons, muons and pions in the energy range $6\\,\\GeV\\le E\\le 200\\,\\GeV$ at the CERN SPS. The angular region studied corresponds to the ATLAS impact position around the pseudorapidity interval $1.6<|\\eta|<1.8$. The beam test set-up is described. A detailed study of the performance is given as well as the related intercalibration constants obtained. Following the ATLAS hadronic calibration proposal, a first study of the hadron calibration using a weighting ansatz is presented. The results are compared to predictions from Monte Carlo simulations, based on GEANT~3 and GEANT~4 models.

  18. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  19. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−}+(A,Z) \\rightarrow\\pi^{−}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric ($\\bar{\\alpha_{\\pi}}$) and the magnetic ($\\bar{\\beta_{\\pi}}$) polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with a $\\pi^{-}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction.

  20. Pion Polarizability Status Report (2017)

    OpenAIRE

    Moinester, Murray

    2017-01-01

    The electric ${\\alpha}_{\\pi}$ and magnetic $\\beta_{\\pi}$ charged pion Compton polarizabilities are of fundamental interest in the low-energy sector of quantum chromodynamics (QCD).They are directly linked to the phenomenon of spontaneously broken chiral symmetry within QCD and to the dynamics of the pion-photon interaction.The combination (${\\alpha}_{\\pi}-\\beta_{\\pi}$) was measured by:(1) CERN COMPASS via radiative pion Primakoff scattering (Bremsstrahlung) in the nuclear Coulomb field, ${\\pi...

  1. Exclusive electroproduction of pion pairs

    International Nuclear Information System (INIS)

    Warkentin, N.; Schaefer, A.; Diehl, M.; Ivanov, D. Yu.

    2007-01-01

    We investigate electroproduction of pion pairs on the nucleon in the framework of QCD factorization for hard exclusive processes. We extend previous analyses by taking the hard-scattering coefficients at next-to-leading order in α s . The dynamics of the produced pion pair is described by two-pion distribution amplitudes, for which we perform a detailed theoretical and phenomenological analysis. In particular, we obtain constraints on these quantities by comparing our results with measurements of angular observables that are sensitive to the interference between two-pion production in the isoscalar and isovector channels. (orig.)

  2. Calibration of the ATLAS precision muon chambers and study of the decay {tau} {yields} {mu}{mu}{mu} at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Loeben, Joerg Horst Jochen von

    2010-07-07

    The Large Hadron Collider (LHC) is designed to collide protons at centre-of-mass energies of up to 14 TeV. One of the two general purpose experiments at the LHC is ATLAS, built to probe a broad spectrum of physics processes of the Standard Model of particle physics and beyond. ATLAS is equipped with a muon spectrometer comprising three superconducting air-core toroid magnets and 1150 precision drift tube (MDT) chambers measuring muon trajectories with better than 50 {mu}m position resolution. The accuracy of the space-to-drift-time relationships of the MDT chambers is one of the main contributions to the momentum resolution. In this thesis, an improved method for the calibration of the precision drift tube chambers in magnetic fields has been developed and tested using curved muon track segments. An accuracy of the drift distance measurement of better than 20 {mu}m is achieved leading to negligible deterioration of the muon momentum resolution. The second part of this work is dedicated to the study of the lepton flavour violating decay {tau}{yields}{mu}{mu}{mu}. Lepton flavour violation is predicted by almost every extension of the Standard Model. About 10{sup 12}{tau} leptons are produced per year at an instantaneous luminosity of 10{sup 33} cm{sup -2}s{sup -1} and a centre-of-mass energy of 14 TeV. Simulated data samples have been used to evaluate the sensitivity of the ATLAS experiment for {tau}{yields}{mu}{mu}{mu} decays with an integrated luminosity of 10 fb{sup -1}. Taking theoretical and experimental systematic uncertainties into account an upper limit on the signal branching ratio of B({tau}{yields}{mu}{mu}{mu}) <5.9 x 10{sup -7} at 90% confidence level is achievable. This result represents the first estimation in ATLAS. (orig.)

  3. Software framework and jet energy scale calibration in the ATLAS experiment; Environnement logiciel et etalonnage de l'echelle en energie des jets dans l'experience ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Binet, Sebastien [Laboratoire de Physique Corpusculaire, Universite Blaise Pascal - CNRS/IN2P3, 63000 Aubiere Cedex (France)

    2006-07-01

    This thesis presents the work achieved to instrument the ATLAS software framework, ATHENA, with a library of tools and utensils for the physics analysis as well as the extraction of the jet energy scale using physics events (in-situ calibration). The software part presents the various components of the ATHENA framework which handles the simulated and reconstructed data flow as well as the different stages of this process, before and during the data taking. The building of a library of tools easing the reconstruction of physics objects, their association with Monte-Carlo particles and their API is then explained. The need for common language and collaboration-wide utensils is emphasised as it allows to share the workload of validating these tools and to get reproducible physics results. The analysis part deals with the implementation of a light jet energy scale calibration algorithm within the C++ framework. This calibration algorithm makes use of W bosons decaying into light jets within semileptonic t t-bar events. From the processing of fast and full simulation data with this algorithm, it seems possible to reach a percent level knowledge of the light jet energy scale. Finally, the feasibility study of the b-jet energy scale calibration using {gamma}Z{sup 0} {yields} {gamma}b b-bar events is presented. It is shown that a purely sequential approach is not sufficient to extract the signal nor to collect a sufficient amount of Z{sup 0} to calibrate the b-jet energy scale. (author)

  4. To the bottom of the stop: calibration of bottom-quark jets identification algorithms and search for scalar top-quarks and dark matter with the Run I ATLAS data

    NARCIS (Netherlands)

    Pani, P.

    2014-01-01

    In the first part of this thesis, the results of a calibration of bottomquark jets identification algorithms are reported. The analysis is performed with 5 fb-1 of proton-proton collisions at 7 TeV centre-of-mass energy recorded by the ATLAS detector at the LHC. A b-jet enriched sample from fully

  5. Pions from and about heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.O.

    1982-09-01

    A review is presented of the possibilities of pion production with heavy ion reactions. Major headings include: pion thermometry; hills and valleys in pion spectra; pionic orbits of nuclear size; pion confinement in the fireball; anomalons; and Schroedinger equation solutions for pionic atoms. 47 references, 9 figures. (GHT)

  6. Testing and calibration through laser radiation and muon beams of the hadron calorimeter in ATLAS detector; Controle et etalonnage par lumiere laser et par faisceaux de muons du calorimetre hadronique a tuiles scintillantes d'ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Garde, V

    2003-10-15

    This study is dedicated to the calibration of the hadronic calorimeter (Tilecal) of the ATLAS detector. This detector will be installed on the LHC collider at CERN. The first data will be taken in 2007. This thesis is divided in two parts. The first part is dedicated to the study of the LASER system. A prototype of the final system was studied. It was shown that the stability and the linearity of this prototype are conform to the specification. Several studies were devoted to measurements which can be done on the Tilecal: The relative gain can be calculated and gives the stability of the Tilecal with a resolution of 0.35 %. The number of photoelectrons per charge unit has been calculated. The linearity was checked for a normal range of functioning and was corrected for the functioning at high charge. In both cases it was shown that the non-linearity was smaller than 0.5 %. The second study is devoted to muons beams in test beam periods. These results are used to find a calibration constant. Several problems which come from the difference of size cells are not totally solved. But the resolution of the calibration constant found by this method cannot exceed 2.3%. (author)

  7. Pion polarizabilities measurement at COMPASS

    CERN Document Server

    Guskov, Alexey

    2008-01-01

    The electromagnetic structure of pions is probed in $\\pi^{−} + (A,Z)\\rightarrow\\pi^{−} + (A,Z) +\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\bar{\\alpha_{\\pi}})$ and the magnetic $(\\bar{\\beta_{\\pi}})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with $a \\pi^{−}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction. The preliminary result for pion polarizabilities under the assumption of $\\bar{\\alpha_{\\pi}} + \\bar{\\beta_{\\pi}} =$ 0 is $\\ba...

  8. Pions in the nuclear medium

    International Nuclear Information System (INIS)

    Chanfray, G.

    1996-07-01

    We discuss various aspects of pion physics in the nuclear medium. We first study s-wave pion-nucleus interaction in connection with chiral symmetry restoration and quark condensate in the nuclear medium. We then address the question of p-wave pion-nucleus interaction and collective pionic modes in nuclei and draw the consequences for in medium ππ correlations especially in the scalar-isoscalar channel. We finally discuss the modification of the rho meson mass spectrum at finite density and/or temperature in connection with relativistic heavy ion collisions

  9. Pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  10. Charged Pion Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Haiyan Gao, Wei Chen

    2009-12-01

    We extracted the differential cross section for the gn --> pi-p process from a deuterium target using the CLAS detector at Jefferson Lab in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles (theta c.m.) between 50 deg. and 115 deg. We confirm a previous indication of a broad enhancement around a c.m. energy (sqrt s) of 2.1 GeV at theta c.m. =90 deg. in the scaled differential cross section, s^7 ds/dt and a rapid fall-off in a center-of-mass energy region of about 400 MeV following the enhancement. Our data show an angular dependence of this enhancement as the suggested scaling region is approached for theta c.m. from 70 deg. to 10 deg.

  11. Improved pion pion scattering amplitude from dispersion relation formalism

    International Nuclear Information System (INIS)

    Cavalcante, I.P.; Coutinho, Y.A.; Borges, J. Sa

    2005-01-01

    Pion-pion scattering amplitude is obtained from Chiral Perturbation Theory at one- and two-loop approximations. Dispersion relation formalism provides a more economic method, which was proved to reproduce the analytical structure of that amplitude at both approximation levels. This work extends the use of the formalism in order to compute further unitarity corrections to partial waves, including the D-wave amplitude. (author)

  12. Shape of Pion Distribution Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  13. Microdosimetry of negative pions

    International Nuclear Information System (INIS)

    Amols, H.I.; Dicello, J.F.; Lane, T.F.

    1976-01-01

    The radiation quality of negative and positive pions of initial momentum 168MeV/c has been determined at eight different depths in a liquid phantom. The measurements were made with a 2.5cm diameter spherical proportional counter with Shonka A-150 neutron tissue equivalent plastic walls. The gas pressure in the sensitive volume was chosen to stimulate a diameter of 2μm in unit density material. Dose distributions as a function of lineal energy change slowly in the entrance and plateau regions with a dose mean lineal energy of 6-8keV/μm. Less than 3% of the dose is delivered in excess of 50keV/μm in this region. In the Bragg peak region the distributions change rapidly as a function of depth with the dose mean lineal energy increasing to 38keV/μm at the peak and to 57keV/μm just beyond the peak. On the basis of these microdosimetric data predictions of RBE and OER have been made with the use of both the theory of dual radiation action and also the delta ray theory of cell survival. The former has been used to predict biological response at low doses and the latter at high doses. A comparison is made between the two theories at intermediate doses. The results of these calculations are not inconsistant with recent biological data

  14. Pions to Quarks

    Science.gov (United States)

    Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian

    2009-01-01

    Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the

  15. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  16. Pion structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Javadi Motaghi, Narjes

    2015-05-12

    In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.

  17. Scrutinizing the pion condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-02-15

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)

  18. Crystal physics with positive pions

    International Nuclear Information System (INIS)

    Flik, G.

    1983-01-01

    The π + /μ + lattice channeling is a new method of investigation in solid state physics. In the present thesis axial and planar channeling effects could be observed for the first time in monocrystalline Tantalum for 4, 12 MeV Muons generated by the decay of implanted positive pions. It is found that pions for T + /μ + channeling is investigated in Germanium for low temperatures. For T > 80 K tetrahedral sites are found, but for T < 80 K hexaedral sites or sites in the middle of the Ge-Ge bond are preferred. (BHO)

  19. Two pion correlation from SPACER

    International Nuclear Information System (INIS)

    Csoergoe, T.; Zimanyi, J.; Pratt, S.

    1989-12-01

    The correlation function for neutral and negative pions produced in ultrarelativistic heavy ion collisions was calculated without free parameters based on a space-time version of the LUND model, called SPACER: Simulation of Phase space distribution of Atomic nuclear Collisions in Energetic Reactions. This method includes the effect of Bose correlations for the emitted pion pair. Effects arising from correlations between space-time and momentum space distributions are investigated. The results are compared to the data of two different experiments. The role and interpretation of the chaocity parameter are discussed. (D.G.) 14 refs.; 4 figs

  20. Tagging calibration of the jets from beauty quarks and the search for Higgs boson in the tt-bar H → lνb, jjb, bb-bar channel in the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Correard, Sebastien

    2006-02-01

    B-tagging calibration and search for the Higgs boson in the tt-bar H → lνb, jjb, bb-bar channel with ATLAS at LHC The ATLAS experiment, based at CERN, will use the LHC proton collisions to deepen the Standard Model measurements, and look for possible signs of new physics. One of its main tasks will be the search for the Higgs boson. This thesis first describes the latest b-tagging algorithms, shows the importance of its calibration, and proposes a b-tagging calibration method based on the first data recorded by ATLAS. Then, considering that the Higgs boson may be light (m H 2 ), the ttH channel is studied, with H decaying in a b quark pair. Full simulation and the latest realistic b-tagging methods have been combined for the first time. For an integrated luminosity of 30 fb -1 (3 years of data taking), the S/√B ratio, determining the sensitivity of this analysis, is raised to 4.9. This should allow a non-ambiguous observation of the Higgs boson in this channel. (author)

  1. Real-pion states formed by virtual-pion beam

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-04-01

    Deeply bound pionic states are discussed from various points of view; highly excited nuclear states as a cluster family of pionic bound states, Σ atom/Σ hypernuclei, halo-like density distributions, virtual pion beam to produce pionic states, etc. (author)

  2. Tagging calibration of the jets from beauty quarks and the search for Higgs boson in the tt-bar H {yields} l{nu}b, jjb, bb-bar channel in the ATLAS experiment at LHC; Calibration de l'etiquetage de jets issus de quarks beaux et recherche du boson de Higgs dans le canal tt-barH {yields} l{nu}b, jjb, bb-bar dans l'experience ATLAS aupres du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Correard, Sebastien [Faculte des Sciences de Luminy, Universite de la Mediterranee, Aix-Marseille II, 163 avenue de Luminy, 13288 Marseille cedex 09 (France)

    2006-02-15

    B-tagging calibration and search for the Higgs boson in the tt-bar H {yields} l{nu}b, jjb, bb-bar channel with ATLAS at LHC The ATLAS experiment, based at CERN, will use the LHC proton collisions to deepen the Standard Model measurements, and look for possible signs of new physics. One of its main tasks will be the search for the Higgs boson. This thesis first describes the latest b-tagging algorithms, shows the importance of its calibration, and proposes a b-tagging calibration method based on the first data recorded by ATLAS. Then, considering that the Higgs boson may be light (m{sub H} < 135 GeV/c{sup 2}), the ttH channel is studied, with H decaying in a b quark pair. Full simulation and the latest realistic b-tagging methods have been combined for the first time. For an integrated luminosity of 30 fb{sup -1} (3 years of data taking), the S/{radical}B ratio, determining the sensitivity of this analysis, is raised to 4.9. This should allow a non-ambiguous observation of the Higgs boson in this channel. (author)

  3. Rare pion and kaon decays

    International Nuclear Information System (INIS)

    Bryman, D.

    1983-09-01

    Some rare pion and kaon decays, which provide clues to the generation puzzle, are discussed. The π→ eν/π→μ/ν branching ratio test of universality and the status of searches for K + → π + rho anti rho are reviewed

  4. Pions and kaons in QCD

    NARCIS (Netherlands)

    Atkinson, D.; de Groot, H. J.; Johnson, P. W.

    1991-01-01

    From reliable numerical solutions of an approximate Dyson-Schwinger equation for the quark propagator, we obtain values of the pion and kaon decay constants that differ significantly from those obtained recently by Munczek and McKay using ad hoc quark mass functions. We present arguments that the

  5. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    Abstract. The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in ...

  6. Pauli Principle and Pion Scattering

    Science.gov (United States)

    Bethe, H. A.

    1972-10-01

    It is pointed out that if the Pauli principle is taken into account in the discussion of pion scattering by complex nuclei (as it ought, of course, to be) some rather implausible consequences of some earlier treatments of this problem can be avoided. (auth)

  7. Radiative decay of the pion

    International Nuclear Information System (INIS)

    Bay, A.; Joseph, C.; Loude, J.-F.; Perroud, J.-P.; Ruegger, D.; Schoeri, O.; Steiner, D.; Tran, M.T.

    1982-01-01

    Two experimental studies of the radiative decay of the pion (π + →e + γγ) have been published so far. Each has measured (1+γ) 2 , where γ is the ratio of the axial and vectorial form factors. An investigation has been carried out giving fuller information on each of these (rare) events detected. (G.F.F.)

  8. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    The pion production processes from nucleons and nuclei at intermediate energies are important tools to study the hadronic structure. The dynamic models of the hadronic structure are used to calculate the various nucleon and transition form factors which are tested by using the experimental data on photo, electro and.

  9. Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in $pp$ collisions at $\\sqrt{s}$=8 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2015-07-02

    This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from $pp$ collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy $\\sqrt{s}$ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than $20$ GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is me...

  10. Measurement of the W boson mass and the calibration of the muon momentum with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00358147

    In this thesis measurement of the $W$-boson mass based on data collected during 2011 in proton-proton collisions at a centre-of-mass energy of $7~\\mathrm{TeV}$ with the ATLAS detector at the Large Hadron Collider (LHC) is presented. In the Standard Model, the $W$-boson mass depends on the top quark mass and the Higgs-boson mass through higher order corrections. Therefore, a precise measurements the mass of the top quark, $W$- and Higgs-boson, provide a stringent test of the Standard Model. Any observed inconsistency can be an indirect proof of the physics beyond the Standard Model. Previous measurements of the mass of the $W$ boson are performed at the Large electron-positron collider, and at the Tevatron proton-antiproton collider with the CDF and D0 experiments. The current world average value of the $W$-boson mass is $m_W=80385\\pm15~\\mathrm{MeV}$, while the most precise single measurement with an uncertainty of $19~\\mathrm{MeV}$ is performed with the CDF experiment. On the other hand, the indirect constra...

  11. Intermediate-energy nuclear photoabsorption and the pion optical potential

    International Nuclear Information System (INIS)

    Christillin, P.

    1984-01-01

    Nuclear photoabsorption around the pion threshold is schematised as photoproduction of a pion which undergoes final-stae interaction with the nucleus, accounted for by the pion optical potential. It is shown that real pion photoproduction and exchange effects are naturally described by the same mechanism with a non-static pion. The complementarity of photoabsorption to pion physics and its usefulness in gaining new information about pion-nucleus dynamics are stressed. (author)

  12. A 12bits 40MSPS SAR ADC with a redundancy algorithm and digital calibration for the ATLAS LAr calorimeter readout

    CERN Document Server

    Zeloufi, Mohamed; The ATLAS collaboration; Rarbi, Fatah-ellah

    2015-01-01

    We present a SAR ADC with a generalized redundant search algorithm offering the flexibility to relax the requirements on the DAC settling time. The redundancy allows also a digital background calibration, based on a code density analysis, to compensate the capacitors mismatching effects. The total of capacitors used in this architecture is limited to a half of the one in a classical SAR design. Only 2^11 unit capacitors were necessary to reach 12bits resolution, and the switching algorithm is intrinsically monotonic. The design is fully differential featuring 12-bit 40MS/s in a CMOS 130nm 1P8M process.

  13. A 12bits 40MSPS SAR ADC with a redundancy algorithm and digital calibration for the ATLAS LArg calorimeter readout

    CERN Document Server

    Zeloufi, Mohamed; The ATLAS collaboration; Rarbi, Fatah-ellah

    2015-01-01

    This paper presents a SAR ADC with a generalized redundant search algorithm offering the flexibility to relax the requirements on the DAC settling time. The redundancy allows also a digital background calibration, based on a code density analysis, to compensate the capacitors mismatching effects. The total of capacitors used in this architecture is limited to a half of the one in a classical SAR design. Only 211 unit capacitors were necessary to reach 12bit resolution, and the switching algorithm is intrinsically monotonic. The design is fully differential featuring 12-bit 40MS/s in a CMOS 130nm 1P8M process.

  14. Calibration of the electromagnetic calorimeter of the Atlas detector: reconstruction of events with non-pointing photons in the frame of a GMSB supersymmetric model; Etalonnage du calorimetre electromagnetique du detecteur Atlas: reconstruction des evenements avec des photons non pointants das le cadre d'un modele supersymetrique GMSB

    Energy Technology Data Exchange (ETDEWEB)

    Prieur, D

    2005-04-15

    The analysis of test-beam data is focused on the calibration of the ATLAS electromagnetic calorimeter. An electrical model has been developed to predict the shape of the physics pulse out of the calibration signal in order to produce optimal filtering coefficients. They are used to compute energy while minimizing electronic noise and getting rid of any possible time shift. Using these coefficients, the uniformity response is 0.6%, in agreement with the 0.7% global constant term required for the whole calorimeter. The study of non pointing photon is driven by the detection of long lived neutralinos predicted by GMSB SUSY models. A systematic study with a detailed simulation of the ATLAS detector was performed to determine the electromagnetic calorimeter angular resolution for such photons. Results were used to parametrized the detector response and to reconstruct SUSY events from this model. (author)

  15. Topics in the measurement of top quark events with ATLAS. Pixel detector optoelectronics, track impact parameter calibration, acceptance correction methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandvoss, Stephan A.

    2010-07-01

    The LHC and its experiments will open new possibilities to study precisely the properties of known particles such as the top quark and to find particles never observed before. Careful operation, maintenance and tuning of the detectors and their readout systems are mandatory, in order to obtain high statistics data samples and perform precision measurements. The control and the readout of the ATLAS pixel detector is performed through an optical transmission line. The installation and commissioning of the optical cables as well as the steps from the production to the operation of the Back of Crate cards, which are the optical interface on the off-detector side, are presented in this thesis. Tests of the optical cables have been developed and realized. These tests ensure a complete functionality of all optical cables and prove its operation within given limits. Similarly, the full operability of the Back of Crate cards is assured by a precise production, extensive tests and a careful installation. Since spring 2008, the readout of the pixel detector is ready for operation. Data was taken successfully during cosmics runs, and the tuning of detector and readout is ongoing. A method to map MC distributions of track impact parameters on data was developed, implemented and tested by using misaligned MC samples as data. From the experience gained by the Tevatron experiments CDF and D0 Monte Carlo generators were tuned to predict top quark observables at the LHC. A comparison of five common MC generators was done for the total selection efficiencies and for many distributions, for example the transverse momentum and pseudorapidity of the hadronically decaying top quark. Likewise, detector effects on these distributions were studied by using a full detector simulation and event reconstruction. A method was developed, implemented and tested to reweight the MC distributions from one observable, for example the transverse momentum of the hadronically decaying top quark, such

  16. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  17. ABC's of pion charge exchange

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kaufmann, W.B.; Siegel, P.B.

    1985-01-01

    Calculations of pion single charge exchange using the PWIA and DWIA are presented. Emphasis is given to the effects of absorbtion and blocking. A microscopic calculation of the 0 0 excitation and low energy angular distribution is in excellent agreement with the data. A fixed nucleon multiple scattering calculation of the pion double charge exchange reaction is presented. Various valence neutron wave functions are used, and the contributions of different spatial orientations of the last two neutrons to the reaction are examined. The DCX cross section is found to be very sensitive to the inclusion of correlations in the two-neutron wave function. Satisfactory agreement with DCX data on 14 C can be obtained using a nucleonic picture of the nucleus

  18. Radiative decay of the pion

    International Nuclear Information System (INIS)

    Bay, A.; Joseph, C.; Loude, J.-F.; Perroud, J.-P.; Rueegger, D.; Schoeri, O.; Steiner, D.; Tran, M.T.

    1982-01-01

    So far, only two experimental studies of the radiative decay of the pion (π + →e + γγ) have been reported. From these studies the ratio γ of the axial and the vector weak form factors of the pion can be extracted. The present knowledge of γ is based on 121 events and 226 events only; furthermore an ambiguity in the absolute value of γ associated with its sign still remains. The authors therefore undertook a measurement of this rare decay using a magnetic spectrometer and a large array of 64 NaI modules each with a square cross section of 63 x 63 mm 2 and a length of 406 mm to detect in coincidence the positron and the photon respectively. (Auth.)

  19. Neutral Pion Photoproduction on Neutron

    Science.gov (United States)

    Bulychev, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; Martem'yanov, M. A.; Tarasov, V. E.; Briscoe, W. J.; Strakovsky, I. I.

    2017-12-01

    The reaction γ n → π0 n is investigated both theoretically and experimentally as an important step toward determining the electromagnetic coupling constants of the N* and Δ* resonances [1]. We analyze the data on the collisions of γ quanta with energies between 200 and 800 MeV with a deuterium target collected by the A2 experiment in Mainz, Germany. These complement the data for neutral-pion photoproduction on protons obtained by the same experiment [2].

  20. Pion scattering and nuclear dynamics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab

  1. Measurement of the pion polarizabilities at COMPASS

    CERN Document Server

    Guskov, A V

    2006-01-01

    The electromagnetic structure of pions is probed in $\\pi\\gamma$ Compton scattering in inverse kinematics (Primakoff effect) and described by the electric ($\\alpha_{\\pi}$) and magnetic ($\\beta_{\\pi}$) polarizabilities, that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the theoretically predicted (under approximation of unstructured pion) cross section of Primakoff scattering and the measured cross section. The high beam intensity, good spectrometer resolution, the high rate capability, the high acceptance and possibility to use pion and muon beams, that are unique to the COMPASS experiment provide the tools to measure precisely the pion polarizabilities in the $\\pi^{-} + (A,Z)\\rightarrow\\pi^{-} + (A,Z) + \\gamma$ Primakoff reaction. This cross section is related to the cross section of Compton scattering on pion. A precise tracking system, electromagnetic and hadron calorimeters provide good conditions for...

  2. The pion mass: Looking for its origins

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1985-10-01

    After explaining why pions are special excitations in QCD, I discuss how the pion mass reflects directly the dynamical scale of the strong interactions (Λsub(QCD)) and the scale of breaking of the weak interactions (Λsub(F)). To actually calculate the pion mass, however, requires understanding the origin of the quark masses and so I compare and contrast approaches to this latter problem, based on composite models and on superstrings. (orig.)

  3. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  4. Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kamenev, Alexey; Konoplianikov, V; Kosarev, Ivan; Moissenz, K; Moissenz, P; Oleynik, Danila; Petrosian, A; Rogalev, Evgueni; Semenov, Roman; Sergeyev, S; Shmatov, Sergey; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Druzhkin, Dmitry; Ivanov, Alexander; Kudinov, Vladimir; Orlov, Alexandre; Smetannikov, Vladimir; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; de Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankoc, K; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grynev, B; Lyubynskiy, Vadym; Senchyshyn, Vitaliy; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; ODell, V; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gusum, K; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2008-01-01

    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\\% to 5\\%.

  5. Electron response and e/h ratio of ATLAS barrel hadron prototype calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Arkadov, V.V.; Karapetyan, G.V.

    1995-01-01

    The detailed information about electron response, electron energy resolution and e/h ratio as a function of incident energy E, impact point Z and incidence angle Θ of ATLAS iron-scintillator hadron prototype calorimeter with longitudinal tile configuration is presented. These results are based on electron and pion beams data of E=20, 50, 100, 150, 300 GeV at Θ=10 deg, 20 deg, 30 deg, which were obtained during test beam period in July 1995. The obtained calibration constant is used for muon response converting from pC to GeV. The results are compared with existing experimental data and with some Monte Carlo calculations. For some E, Θ, Z values the compensation (e/h=1) is observed. 23 refs., 18 figs., 9 tabs

  6. Pion form factor in QCD

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1980-01-01

    The calculation of the next-to-leading order corrections to pion form factor Fsub(π)(Q) in the QCD shows that analysis of Fsub(π)(Q) is not a short-distance problem up to Q 2 =10 4 -10 6 GeV 2 . A QCD-inspired model is proposed which in a semi-phenomenological way, takes into account the most important confinement effects. The curve obtained for Fsub(π)(Q) is in good agreement with existing experimental data

  7. The future IKO-PION-MUON-facility

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Arnold, H.; Dantzig, R. van; Konijn, J.

    1975-09-01

    Information is given on the pion and muon physics facility planned at the Institute for Nuclear Physics Research (IKO) with special notice of the fluxes of pions and muons expected at this facility, as well as on the structure of these secondary beams

  8. Strangeness production with protons and pions

    International Nuclear Information System (INIS)

    Dover, C.B.

    1993-01-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei

  9. Pion double charge exchange and nuclear structure

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1987-01-01

    Pion double charge exchange to both the double-analog state and the ground state is studied for medium weight nuclei. The relative cross section of these two transitions and the importance of nuclear structure as a function of pion kinetic energy is examined. 16 figs., 5 tabs

  10. Pion-induced knock-out reactions

    International Nuclear Information System (INIS)

    Jain, B.K.; Phatak, S.C.

    1977-01-01

    A strong absorption model for pion-induced Knock-out reactions is proposed. The distortion of the in-coming and out-going pions has been included by (1) computing pion wave number in nuclear medium (dispersive effect) and (2) excluding the central region of the nucleus where the real pion-absorption is dominant (absorption effect). In order to study the dependence of the (π + π + p) reaction on the off-shell pion-nucleon t-matrix, different off-shell extrapolations are used. The magnitude of the cross-sections seems to be sensitive to the type of off-shell extrapolation; their shapes, however, are similar. The theoretical results are compared with experimental data. The agreement between the theoretical results for separable off-shell extrapolation and the data is good. (author)

  11. Calibration of the Electromagnetic Calorimeter of the ATLAS Experiment and Application to the Measurement of (BE)H Boson Couplings in the Diphoton Channel with Run 2 Data of the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436282

    The discovery of the Higgs boson was a major success of the run 1 of the LHC. The era of precision measurements began as any deviation from the expected Standard Model (SM) value would be an indirect hint of new physics Beyond the Standard Model (BSM). This is important since no direct evidence was found. This thesis has a first focus on the calibration of the electromagnetic calorimeter of the ATLAS experiment. The final step of this calibration uses the knowledge of the lineshape of the Z boson in order to correct the measured energy of electrons and photons. Recommendations for the beginning of run 2 have been given to provide calibration constants for early analyses. Run 2 calibration constants have been computed and the performances of run 1 have been reached and improved : the systematic uncertainty on the resolution constant term of the electromagnetic calorimeter, which was dominant for the Higgs boson couplings measurement at run 1, has been divided by a factor 3. The measurement of the H boson coupl...

  12. ATLAS calibration delay chip study

    CERN Document Server

    Massol, N

    2003-01-01

    The delay chip is an ASIC developed to precisely adjust signals within the range of 0-24ns in steps of 1ns. In this note, we report the study of the characteristics of this chip like the linearity and the jitter. We describe the influence of temperature and supply voltage on its behavior. Finally, we study its dependency due to the variations in process on a whole production.

  13. Chiral Dynamics in Pion-Photon Reactions Habilitation

    CERN Document Server

    Friedrich, Jan Michael

    As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...

  14. A measurement of the pion charge radius

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Badelek, B.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Codino, A.; Fabbri, F.L.; Laurelli, P.; Satta, L.; Spillantini, P.; Zallo, A.; Counihan, M.J.; Frank, S.G.F.; Harvey, J.; Storey, D.; Menasce, D.; Meroni, E.; Moroni, L.

    1984-01-01

    We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 2 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of (rho 2 )sup(1/2) = 0.657 +- 0.012 fm. (orig.)

  15. Learning about nucleon resonances with pion photoproduction

    International Nuclear Information System (INIS)

    Walker, R.L.

    1989-01-01

    This chapter charts the discovery of nucleon resonances from pion-nucleon interactions. It was not until after the Albuquerque meeting in 1953 the experimentalists were able to persuade physicists about the existence of this phenomenon with the discovery of the P 33 resonance. The second and third resonances to be discovered, D 13 and F 15 , were seen as peaks in the total cross section for pion plus photoproduction, from 1956 onwards. Knowledge of pion-nucleon scattering has played an important role in the development of quark models. (UK)

  16. Radiative corrections for pion polarizability experiments

    International Nuclear Information System (INIS)

    Akhundov, A.A.; Gerzon, S.; Kananov, S.; Moinester, M.A.

    1994-08-01

    We use the semi-analytical program RCFORGV to evaluate radiative corrections to one-photon radiative emission in the high-energy scattering of pions in the Coulomb field of a nucleus with atomic number Z. It is shown that radiative corrections can simulate a pion polarizability effect. The average effect is α rc π =-β rc π =(0.20±0.05) x 10 -43 cm 3 , for pion energies 40-600 GeV. We also study the range of applicability of the equivalent photon approximation in describing one-photon radiative emission. (author). 21 refs, 6 figs, 1 tab

  17. A new determination of the pion mass

    International Nuclear Information System (INIS)

    Anagnastopoulos, D.; Belmiloud, D.; El-Khoury, P.; Indelicato, P.; Borchert, G.; Gorke, H.; Gotta, D.; Lenz, S.; Siems, T.; Daum, M.; Frosch, R.; Hauser, P.; Kirch, K.; Simons, L.M.

    1996-01-01

    Initial measurements concerning the feasibility of a new pion mass determination are described. In a first step, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high pion stopping density, sufficient to check predictions for the cascade process and to measure the stability of the apparatus. A comparison with the measured Cu K α fluorescence line resolves an ambiguity in the value of the pion mass. The preliminary result from this experiment is m π -=(139.57040±0.00045) MeV/c 2 . (orig.)

  18. The pion pole term in electroproduction of off-mass-shell pions

    International Nuclear Information System (INIS)

    McKellar, B.H.; Ellis, R.G.

    1983-01-01

    The dependence of the invariant amplitudes for electroproduction of off-mass-shell pions on the pion Born term is investigated when current algebra Ward identities and PCAC are used to determine pion electroproduction invariant amplitudes. The authors show that an amplitude satisfying the Ward identities can be constructed starting from the usual Born terms which do not satisfy them and that this same amplitude will be obtained for a large class of input Born terms

  19. The pion pole term in electroproduction of off-mass-shell pions

    International Nuclear Information System (INIS)

    Ellis, R.G.; McKellar, B.H.J.

    1983-01-01

    The dependence of the invariant amplitudes for electroproduction of off-mass-shell pions on the pion Born term is investigated when Current Algebra Ward identities and PCAC are used to determine pion electroproduction invariant amplitudes. It is shown that an amplitude satisfying the Ward identities can be constructed starting from the usual Born terms which do not satisfy them and that this same amplitude will be obtained for a large class of input Born terms

  20. Construction and tests of the Atlas barrel pre sampler and study of the photon/pion rejection in the electromagnetic calorimeter; Realisation du pre-echantillonneur central d'ATLAS et etude de la separation {gamma}/{pi}{sup 0} dans le calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Saboumazrag, S

    2004-02-01

    ATLAS is one of the detectors which will equip the future proton-proton collider LHC at CERN. The main motivation for the ATLAS experiment is the quest for the Higgs boson. The observation of this particle would be an important step in the understanding of particle physics in the context of the standard model, with or without supersymmetry. This thesis aims to present the construction of the barrel pre-sampler which will equip the front face of the ATLAS electromagnetic calorimeter. The construction and tests of sectors were achieved at the Laboratory of Subatomic Physics and Cosmology of Grenoble. Two of these sectors were mounted on one module of the electromagnetic calorimeter and tested with electron, photon and muon beams at CERN. I participated in these tests and analysed the data. The results were compared to a Monte-Carlo simulation GEANT3. One of the difficulties lies in the necessity to discard photons coming from {pi}{sup 0} {yields} {gamma}{gamma} events because they can be mistaken for photons released in gamma channels of Higgs boson decay. In the mass range spreading from 95 MeV to 150 MeV, H{sup 0} {yields} {gamma}{gamma} is the most adequate process to detect the Higgs boson. A study of the discard parameter {gamma}/{pi}{sup 0} has been performed. For a photon detection efficiency of 90%, the average discard parameter has been assessed to be 2.5 which is slightly lower than the value given by the simulation.

  1. Low energy pion-pion phase shifts from chiral perturbation theory

    International Nuclear Information System (INIS)

    Borges, J. Sa; Barbosa, J. Soares; Oguri, V.

    1997-01-01

    The low energy pion-pion S- and P- experimental phase-shifts are fitted with chiral perturbation theory (Ch PT) amplitude. The low energy pion-pion S- and P- experimental phase-shifts. The parameters l 1 and l 2 of the one loop corrected amplitude are fixed and the corresponding values of the scattering lengths are calculated. We propose that the present method is the best way to fix Ch P T parameters. The unitarization program of current algebra is also discussed. (author)

  2. Negative pion irradiations of the mouse testis

    International Nuclear Information System (INIS)

    Coggle, J.E.; Lambert, B.E.; Peel, D.M.; Davies, R.W.

    1977-01-01

    A study has been made of testicular weight-loss in the mouse 28 days after 70 MeV pion irradiation. The data on weight loss after peak or plateau pion irradiation of anaesthetized mice have been compared with those after high-dose-rate 14 MeV electrons and low-dose-rate 200 kVp X-rays. The data points for the initial radiosensitive component of weight loss all fell on the same line; 1 Gy of pions, 14 MeV electrons and X-rays all produced approximately 45% reduction in testicular weight. There was no evidence of a dose-rate effect for rates between 1.2 Gy h -1 and 14 400 Gy h -1 . The r.b.e. of pions for testicular weight loss is therefore unity compared with low-LET electrons and X-rays. (U.K.)

  3. Charged pions polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with $a$ $\\pi^{-}$ beam of 190 GeV during pilot run 2004. The obtained results were used for preparation of the new data taking which was performed in 2009.

  4. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  5. Electron linac design for pion radiotherapy

    International Nuclear Information System (INIS)

    Loew, G.A.; Brown, K.L.; Miller, R.H.; Walz, D.R.

    1977-03-01

    The electron linac provides a straightforward, state-of-the-art method of producing the primary beam required for a hospital-based multiport pion radiotherapy facility for cancer treatment. The accelerator and associated beam transport system described are capable of generating an electron beam of about 250 kW and delivering it alternately to one of several pion generators and treatment areas. Each pion generator, a prototype of which now exists at the Stanford W. W. Hansen Laboratory, would contain a target for the electron beam and sixty separate superconducting magnet channels which focus the pions in the patient. The considerations which enter the design of a practical linac are presented together with a possible layout of a flexible beam transport system

  6. Low energy theorems in pion production

    International Nuclear Information System (INIS)

    Holstein, B.R.; Washington Univ., Seattle, WA

    1992-01-01

    Considerable activity-both theoretical and experimental-has recently taken place involving the threshold and near threshold of pion photo- and electroproduction. This activity is herein summarized and a program for future work is outlined

  7. Pion photoproduction on very light nuclei

    International Nuclear Information System (INIS)

    Botton, N. de

    1981-01-01

    The most fruitful frame of interpretation of pion photoproduction on nuclei is a microscopic description which involves - the elementary pion photoproduction amplitude on the nucleon, - the structure of the initial and final nuclear states, - the many-body effects which include the distortion of the pion wave resulting from its strong interaction with the nucleus. According to the specific nature of the performed experiments we have gained knowledge on the elementary photoproduction multipole amplitudes, on the nuclear form factors and on the pion propagation inside the nucleus; we have got some hints on the Δ-nucleon interaction and some of us have been speculating about the manifestation of exotic dibaryonic states. A few selected examples of recent experimental and theoretical work are presented which illustrate, from the point of view of an experimentalist, the possibilities and the limitations of this method of investigation. Some forthcoming developments in the field are also reported. (Auth.)

  8. Pion production models and neutrino factories

    International Nuclear Information System (INIS)

    Collot, Johann; Kirk, Harold G.; Mokhov, Nikolai V.

    2000-01-01

    Scenarios for the building of muon colliders or storage rings suitable for the generation of robust neutrino beams call for the generation of a prodigious quantity of pions. These pions are then conducted into a decay channel where the resulting muon decay products can be collected for cooling and subsequent acceleration. Central to this concept is the design and construction of a target which will be highly efficient in producing pions of both signs while mitigating the absorption of these pions before they decay. This design effort is being facilitated by using two computer codes FLUKA and MARS. We present comparisons of the two computer codes and also present a comparison of these codes with available data

  9. PION PRODUCTION MODELS AND NEUTRINO FACTORIES

    International Nuclear Information System (INIS)

    COLLOT, J.; KIRK, H.G.; MOKHOV, N.V.

    2000-01-01

    Scenarios for the building of muon colliders or storage rings suitable for the generation of robust neutrino beams call for the generation of a prodigious quantity of pions. These pions are then conducted into a decay channel where the resulting muon decay products can be collected for cooling and subsequent acceleration. Central to this concept is the design and construction of a target which will be highly efficient in producing pions of both signs while mitigating the absorption of these pions before they decay. This design effort is being facilitated by using two computer codes FLUKA and MARS. The authors present comparisons of the two computer codes and also present a comparison of these codes with available data

  10. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  11. Pion production cross sections and associated parameters

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1985-01-01

    Negative pions have been used for radiotherapy at the meson factories LAMPF (USA), SIN (Switzerland), and TRIUMF (Canada) and have been planned for use at new meson facilities under construction (USSR) and at proposed dedicated medical facilities. Providing therapeutically useful dose rates of pions requires a knowledge of the pion production cross sections as a function of primary proton energy (500 to 1000 MeV), pion energy (less than or equal to100 MeV), production angle, and target material. The current status of the data base in this area is presented including theoretical guidelines for extrapolation purposes. The target material and geometry, as well as the proton and pion beam parameters, will affect the electron (and muon) contamination in the beam which may have an important effect on both the LET characteristics of the dose and the dose distribution. In addition to cross-section data, channel characteristics such as length of pion trajectory, solid-angle acceptance, and momentum analysis will affect dose rate, distribution, and quality. Such considerations are briefly addressed in terms of existing facilities and proposed systems. 16 refs., 6 figs

  12. ATLAS Transition Radiation Tracker test-beam results

    Science.gov (United States)

    Akesson, T.; Arik, E.; Baker, K.; Baron, S.; Benjamin, D.; Bertelsen, H.; Bondarenko, V.; Bytchkov, V.; Callahan, J.; Capeans, M.; Cardiel-Sas, L.; Catinaccio, A.; Cetin, S. A.; Cwetanski, P.; Dam, M.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Driouichi, C.; Ebenstein, W. L.; Eerola, P.; Farthouat, P.; Fedin, O.; Froidevaux, D.; Gagnon, P.; Grichkevitch, Y.; Grigalashvili, N.; Hajduk, Z.; Hansen, P.; Kayumov, F.; Keener, P. T.; Kekelidze, G.; Khristatchev, A.; Konovalov, S.; Koudine, L.; Kovalenko, S.; Kowalski, T.; Kramarenko, V. A.; Kruger, K.; Laritchev, A.; Lichard, P.; Luehring, F.; Lundberg, B.; Maleev, V.; Markina, I.; McFarlane, K.; Mialkovski, V.; Mitsou, V. A.; Mindur, B.; Morozov, S.; Munar, A.; Muraviev, S.; Nadtochy, A.; Newcomer, F. M.; Ogren, H.; Oh, S. H.; Oleshko, S.; Olszowska, J.; Passmore, S.; Patritchev, S.; Peshekhonov, V.; Petti, R.; Price, M.; Rembser, C.; Rohne, O.; Romaniouk, A.; Rust, D. R.; Ryabov, Yu.; Schegelsky, V.; Seliverstov, D.; Shin, T.; Shmeleva, A.; Smirnov, S.; Sosnovtsev, V.; Soutchkov, V.; Spiridenkov, E.; Tikhomirov, V.; Van Berg, R.; Vassilakopoulos, V.; Vassilieva, L.; Wang, C.; Williams, H. H.; Zalite, A.

    2004-04-01

    Several prototypes of the Transition Radiation Tracker for the ATLAS experiment at the LHC have been built and tested at the CERN SPS accelerator. Results from detailed studies of the straw-tube hit registration efficiency and drift-time measurements and of the pion and electron spectra without and with radiators are presented.

  13. Pion-pion phase shifts from two loop chiral perturbation theory

    International Nuclear Information System (INIS)

    Borges, J. Sa; Barbosa, J. Soares; Tonasse, M.

    1999-01-01

    We present a two parameters fit of low energy P-wave shifts, using the recent published results of pion-pion scattering amplitudes from chiral perturbation theory, including two loops contributions. We show that, once given the P-wave, the isospin zero S-waves is in good agreement with experimental data. (author)

  14. The Jet Energy Scale Uncertainty Derived from γ-jet Events for Small and Large Radius Jets and the Calibration and Performance of Variable R Jets with the ATLAS Detector

    CERN Document Server

    Kogan, Lucy

    In this thesis the jet energy scale uncertainty of small and large radius jets at the ATLAS detector is evaluated in-situ using γ-jet events. The well calibrated photon in the γ-jet events is used to probe the energy scale of the jets. The studies of the jet energy scale of small radius jets are performed using 4.7 fb−1 of data collected at √s = 7 TeV in 2011. The γ-jet methods which were developed are then adapted and applied to large radius jets, using 20.3 fb−1 of data collected at √s = 8 TeV in 2012. The new jet energy scale uncertainties are found to be ∼1 % for |η| 0.8. These uncertainties are significantly lower than the 3-6 % precision which has previously been achieved at ATLAS using track jets as a reference object. Due to the increase in precision, uncertainties due to pile-up and the topology of the jet also had to be evaluated. The total energy scale uncertainties for large radius jets are reduced by ∼1-2 % (0.5-1 %) for |η| 0.8). This reduction will be beneficial to analyses u...

  15. Elastic and inelastic pion reactions on few nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, V.

    2007-09-29

    In the present work, we are studying elastic and inelastic pion reactions on few-body systems within the framework of chiral effective theory. We consider two specific reactions involving pions on few-nucleon systems, namely pion production in nucleon-nucleon collisions, and incoherent pion photoproduction on the deuteron. These two reactions are closely related to the issue of dispersive and absorptive corrections to the pion-deuteron scattering length, which we also consider in our analysis. The incoherent pion photoproduction is also considered as the possible source for a high-precision determination of the neutron-neutron scattering length. (orig.)

  16. Elastic and inelastic pion reactions on few nucleon systems

    International Nuclear Information System (INIS)

    Lensky, V.

    2007-01-01

    In the present work, we are studying elastic and inelastic pion reactions on few-body systems within the framework of chiral effective theory. We consider two specific reactions involving pions on few-nucleon systems, namely pion production in nucleon-nucleon collisions, and incoherent pion photoproduction on the deuteron. These two reactions are closely related to the issue of dispersive and absorptive corrections to the pion-deuteron scattering length, which we also consider in our analysis. The incoherent pion photoproduction is also considered as the possible source for a high-precision determination of the neutron-neutron scattering length. (orig.)

  17. Precision determination of pion mass using X-ray CCD spectroscopy

    CERN Document Server

    Nelms, N; Augsburger, M A; Borchert, G; Chatellard, D; Daum, M; Egger, J P; Gotta, D; Hauser, P; Indelicato, P J; Jeannet, E; Kirch, K; Schult, O W B; Siems, T; Simons, L M; Wells, A

    2002-01-01

    An experiment is described which aims to determine the charged pion mass to 1 ppm or better, from which a new determination of the upper limit of the muon neutrino mass is anticipated. The experimental approach uses a high-intensity negative pion beam (produced at the PSI 590 MeV proton cyclotron), injected into a cyclotron trap and stopped inside a gas-filled target chamber, to form highly excited exotic atoms of pionic nitrogen and muonic oxygen. The energy of photons, emitted during de-excitation, is directly proportional to the mass of the pion or muon. These soft X-ray emission spectra are measured using a high-precision crystal spectrometer, with an array of six, high quantum efficiency X-ray position resolving CCDs at the focus. To achieve sub-ppm accuracy, simultaneous calibration of the pionic nitrogen line is provided by measurement of an adjacent muonic oxygen line, whose energy is known to 0.3 ppm. The high precision of the experiment offers a new opportunity to determine the pion mass to the leve...

  18. Low-energy photo- and electroproduction for physical pions

    International Nuclear Information System (INIS)

    MacMullen, J.T.

    1979-02-01

    The Ward identities of current algebra are combined with gauge invariance constraints, on-shell PCAC and the Bjorken limit to obtain the low-energy expressions of the pion photo- and electroproduction invariant amplitudes for physical pions

  19. Calibration de l'echelle d'energie des jets et mesure de la masse du quark top dans le canal semi-leptonique dans l'experience ATLAS

    CERN Document Server

    AUTHOR|(CDS)2083328

    The main goal of this thesis is to provide a measurement as accurate as possible of the top quark mass in the semi-leptonic decay channel. This experimental measurement is made thanks to the ATLAS detector near LHC, a proton-proton collider. The main interests for this precison measurement are the physics constraints to the theoretical models of fundamental constituents. Besides, the top quark mass is a parameter allowing to have more information on the vacuum stability at the Planck scale within the Standard Model. Jet energy calibration is crucial to this measurement. The impact of real data taking conditions on this calibration and on jet performance is detailed. The top quark mass measurement using 2011 data collected at an energy in the center-of-mass of 7 TeV is presented. It is using a tridimensional template analysis method. The measured top quark mass is: mtop = 172.01 ± 0.92 (stat) ± 1.17 (syst) GeV. The 2012 data collected at an energy in the center-of-mass of 8 TeV are also analysed, and a preli...

  20. Single Event Upset Studies Using the ATLAS SCT

    CERN Document Server

    Weidberg, A R; The ATLAS collaboration

    2013-01-01

    Single Event Upsets (SEU) are expected to occur during high luminosity running of the ATLAS SemiConductor Tracker (SCT). The SEU cross sections were measured in pion beams with momenta in the range 200 to 465 MeV/c and proton test beams at 24 GeV/c but the extrapolation to LHC conditions is non-trivial because of the range of particle types and momenta. The SEUs studied occur in the \\emph{p-i-n} photodiode and the registers in the ABCD chip. Comparisons between predicted SEU rates and those measured from ATLAS data are presented. The implications for ATLAS operation are discussed.

  1. Single Event Upset Studies Using the ATLAS SCT

    CERN Document Server

    Dafinca, A; The ATLAS collaboration; Weidberg, A R

    2014-01-01

    Single Event Upsets (SEU) are expected to occur during high luminosity running of the ATLAS SemiConductor Tracker (SCT). The SEU cross sections were measured in pion beams with momenta in the range 200 to 465 MeV/c and proton test beams at 24 GeV/c but the extrapolation to LHC conditions is non-trivial because of the range of particle types and momenta. The SEUs studied occur in the p-i-n photodiode and the registers in the ABCD chip. Comparisons between predicted SEU rates and those measured from ATLAS data are presented. The implications for ATLAS operation are discussed

  2. Chiral pion dynamics for spherical nucleon bags

    International Nuclear Information System (INIS)

    Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1980-01-01

    A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)

  3. Experimental study of the pion-xenon nucleus collisions at 3.5 GeV/c. Neutral pion production

    International Nuclear Information System (INIS)

    Strugalski, Z.; Abrosimov, A.T.; Wosinska, K.; Pawlak, T.; Nluta, J.; Sredniawa, B.; Il'ina, A.N.; Okhrimenko, L.S.; Peryt, W.; Miller, K.

    1983-01-01

    Experimental investigations of the neutral pion production are performed in pion-xenon collisions at 3.5 GeV/c. It is obtained that: 1) the average neutral pion multiplicity changes with the multiplicity of the protons emitted; 2) nearly 20% of the pions produced are emitted into the backward hemisphere; 3) the energy spectrum of the neutral pions is smooth; 4) the longitudinal component of the neutral pion momentum changes within the limits from -600 MeV/c to +1800 MeV/c; 5) the average value of the transversal component of the neutral pion momentum changes with the multiplicity of the protons emitted from approximately 270 to approximately 170 MeV/c; 6) the average value of the cosine of the neutral pion emission angle decreases with the multiplicity of the protons emitted

  4. Capture and transfer of pions in hydrogenous materials

    International Nuclear Information System (INIS)

    Armstrong, D.S.

    1990-05-01

    Pionic hydrogen is a short-lived exotic hydrogen isotope in which a negative pion replaces the atomic electron. The formation and subsequent interactions of pionic hydrogen are discussed, with emphasis on the process of pion transfer. Recent results using the pion charge-exchange reaction (π - , π 0 ) obtained at TRIUMF are reviewed. (Author) (35 refs., 3 tabs., 9 figs.)

  5. The pion form factor from analyticity and unitarity

    Indian Academy of Sciences (India)

    Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the pion electromagnetic form factor at = 0 by exploiting the recently evaluated two-pion contribution to the muon ( − 2) and the phase of the pion electromagnetic form factor in the elastic region, known from scattering by ...

  6. Physics with photons with the ATLAS Run 2 data: calibration and identification, measurement of the Higgs boson mass and search for supersymmetry in di-photon final state.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436885; Carminati, Leonardo; Marchiori, Giovanni

    The work presented in this manuscript is based on the proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The research program of the ATLAS experiment includes the precise measurement of the parameters of the Standard Model (SM) and the search for signals of physics beyond the SM. Both these approaches are pursued in this thesis, which presents two different analyses. The first one is the measurement of the Higgs boson mass in the di-photon decay channel. The measured value of the mass is $m_H=125.11 \\pm 0.42$ GeV. Its combination with a similar measurement in the four lepton Higgs boson decay final state is presented. The value of the Higgs boson mass obtained from the combined measurement is $m_H=124.98 \\pm 0.28$ GeV. The second one is the search for production of supersymmetric particles (gluinos, squarks or winos) in a final state containing two photons and missing transverse momentum. No significant excess wit...

  7. Calibration of light-flavour jet $b$-tagging rates on ATLAS proton-proton collision data at $\\sqrt{s}=13$~TeV

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The identification of jets containing $b$-hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Two evaluations of the misidentification rate of light-flavour jets for the $b$-tagging algorithm MV2c10, used in the LHC Run 2 ATLAS analyses, are described. The evaluations are performed in various ranges of jet transverse momenta and pseudorapidities with proton-proton collision data collected at a centre-of-mass energy of ${\\sqrt{s} = 13}$~TeV during the years 2015 and 2016. The first evaluation is based on a data sample enriched in light-flavour jets thanks to the application of a dedicated algorithm with much reduced capabilities in tagging $b$-jets and similar performance in mistagging light-flavour jets when compared to the standard $b$-tagging algorithm. The second evaluation is based on a bottom-up approach where the underlying tracking variables in the simulation are adjusted to match performance observed in data; the $b$-tagging algorithm is then re-evaluat...

  8. Funny hills in pion spectra from heavy-ion collisions

    International Nuclear Information System (INIS)

    Rasmussen, J.O.

    1982-03-01

    A discussion of some of the systematic features of the pion spectra in heavy-ions reactions is given. A discussion of the hills and valleys in heavy ion pion spectra that show up at the lower pion energies is given. The following topics are discussed: (1) three kinds of funny hills; (2) π - / + ratios near center of mass; (3) new Monte Carlo studies of charged pion spectra; and (4) pion orbiting about fireballs and Bose-Einstein behavior as explanation for the mid-rapidity P/sub perpendicular to/ approx. = 0.4 to 0.5 m/sub π/c hill

  9. Precision tracking and electromagnetic calorimetry towards a measurement of the pion polarisabilities at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, Anna-Maria Elisabeth

    2010-07-20

    In 2004 the COMPASS experiment at CERN SPS measured soft reactions with a beam of negatively charged pions on various nuclear targets. For this measurement, a silicon micro-strip telescope was installed in the target region. For the first time 5 silicon detector stations were operated simultaneously in the COMPASS experiment. A novel method of time calibration, with a clustering algorithm accordingly adapted, and refined alignment corrections were implemented in the analysis software. The spatial resolution of a silicon detector was determined to be 5 - 14 {mu}m and the time resolution 2 - 3 ns. Combining the time information of all stations, a track time resolution of 530 ps from the silicon telescope could be reached. One of the key points of this experiment was the observation of Primakoff events, namely pions scattering off quasi-real photons in the Coulomb field of a heavy nucleus. The production of real photons corresponds to pion Compton scattering in inverse kinematics which is sensitive to the pion polarisabilities {alpha}{sub {pi}} and {beta}{sub {pi}}. Key ingredient for such measurements is a precise knowledge of the performance of the electromagnetic calorimeter. This includes a study of the instabilities of calorimeter cells and an improved reconstruction algorithm. A data-driven shower model was developed, which was used for a timedependent recalibration of the calorimeter. A new cluster refitting method was used to recover position and energy of clusters containing passive or saturated cells and detects double-hit clusters. The latter are important, as the main background to the Primakoff Compton events stems from neutral pions misinterpreted as single-photon hits. The physics analysis comprised the selection of Primakoff events and the necessary steps to obtain the pionic polarisabilities. The measurement was limited by systematic effects of the apparatus also determined within this thesis. (orig.)

  10. Calibration of the Atlas electromagnetic calorimeter. Search for the Higgs boson in its invisible decays; Etalonnage du calorimetre electromagnetique d'ATLAS. Recherche du boson de Higgs dans ses desintegrations invisibles

    Energy Technology Data Exchange (ETDEWEB)

    Neukermans, L

    2002-05-01

    The most promising channels for an intermediate mass Higgs boson discovery at LHC are leptonic and photonic decays. Therefore, a good uniformity of response of the electromagnetic calorimeter is required to reach the 0.7% constant term needed. This thesis deals with the absolute calibration of this detector. An electrical description of the calibration system, the detector and its read-out chain has been made for a better comprehension of the signal pulse shapes. A method, using a convolution of the calibration waveforms, has been developed to predict physics response, leading to absolute calibration. The level of accuracy obtained allows to reach the 0.3% contribution to the constant term required. Test beam analysis of a prototype module showed the performance of the electromagnetic calorimeter in terms of local resolution and linearity. A uniformity study has been made, leading to a 0.8% dispersion on a {delta}{eta} x {delta}{phi} = 1.2 x 0.75 area. In a second part, the observability of an invisible Higgs boson produced via weak boson fusion at the LHC is presented. A level 1 trigger strategy for this purely jet and missing E{sub T} final states is discussed. A method to measure the level of background using physics events is presented. This analysis shows that an invisible branching ratio of 25% could be reached at 95% CL with only 30 fb{sup -1} for a Higgs boson mass of 120 GeV/c{sup 2}. (author)

  11. Exclusive electroproduction of two pions at HERA

    CERN Document Server

    Abramowicz, H.

    2012-01-25

    The exclusive electroproduction of two pions in the mass range 0.4 < M{\\pi}{\\pi} < 2.5 GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The analysis was carried out in the kinematic range of 2 < Q2 < 80 GeV2, 32 < W < 180 GeV and |t| < 0.6 GeV2, where Q2 is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, |F(M{\\pi}{\\pi})|, assuming that the studied mass range includes the contributions of the {\\rho}, {\\rho}' and {\\rho}" vector-meson states. The masses and widths of the resonances were obtained and the Q2 dependence of the cross-section ratios {\\sigma}({\\rho}' \\rightarrow {\\pi}{\\pi})/{\\sigma}({\\rho}) and {\\sigma}({\\rho}" \\rightarrow {\\pi}{\\pi})/{\\sigma}({\\rho}) was extracted. The pion form factor obtained in the present analysis is compared to that obtained...

  12. Study of giant resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1984-01-01

    Recent results on giant resonances obtained with pion-inelastic scattering and with single- and double-charge-exchange scattering are reviewed. The states discussed are isobaric analog states, double-isobaric analog states, and isovector L = 0, 1, and 2 collective states. 36 references

  13. Exclusive electroproduction of two pions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Ashery, D.; Gueta, O.; Gurvich, E.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A. [Tel Aviv Univ., Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv (Israel); Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W.B. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Suszycki, L. [AGH-Univ. of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Adamus, M.; Plucinski, P.; Tymieniecka, T. [National Centre for Nuclear Research, Warsaw (Poland); Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I. [Panjab Univ., Dept. of Physics, Chandigarh (India); Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A. [Univ. Bologna (Italy); INFN Bologna (Italy); Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Margotti, A.; Nania, R.; Polini, A. [INFN Bologna (Italy); Antonov, A.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S. [Moscow Engineering Physics Inst., Moscow (Russian Federation); Arneodo, M.; Ruspa, M. [Univ. del Piemonte Orientale, Novara, (Italy); INFN, Torino (Italy); Aushev, V.; Dolinska, G.; Gogota, O.; Korol, I.; Viazlo, O. [National Academy of Sciences, Inst. for Nuclear Research, Kyiv (Ukraine); National Taras Shevchenko Univ. of Kyiv, Dept. of Nuclear Physics, Kyiv (Ukraine); Aushev, Y.; Bartosik, N.; Bondarenko, K.; Kadenko, I.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Volynets, O.; Zolko, M. [National Taras Shevchenko Univ. of Kyiv, Dept. of Nuclear Physics, Kyiv (Ukraine); Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)] [and others

    2012-01-15

    The exclusive electroproduction of two pions in the mass range 0.4pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, vertical stroke F(M{sub {pi}}{sub {pi}}) vertical stroke, assuming that the studied mass range includes the contributions of the {rho}, {rho}' and {rho}'' vector-meson states. The masses and widths of the resonances were obtained and the Q {sup 2} dependence of the cross-section ratios {sigma}({rho}'{yields}{pi}{pi})/ {sigma}({rho}) and {sigma}({rho}''{yields}{pi}{pi})/ {sigma}({rho}) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e{sup +}e{sup -}{yields}{pi}{sup +}{pi}{sup -}. (orig.)

  14. Photoproduction of neutral pions off protons

    NARCIS (Netherlands)

    Crede, V.; Sparks, N.; Wilson, A.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, R.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Funke, Chr; Gregor, R.; Gridnev, A.; Gutz, E.; Hillert, W.; Hoffmeister, P.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Löhner, H.; Lopatin, I. V.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Nanova, M.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S.; Sokhoyan, V.; Suele, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, Ch

    2011-01-01

    Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction gamma p -> p pi(0) for photon energies between 0.85 and 2.50 GeV. The pi(0) mesons are observed in their dominant neutral decay mode: pi(0) -> gamma gamma. For the first time, the differential cross

  15. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  16. Nuclear potentials due to pion exchange

    International Nuclear Information System (INIS)

    Robillota, M.R.

    1984-01-01

    The two, three and four nucleon potentials due to the exchange of pions can be accurately calculated by means of chiral symmetry. The comparison of the dynamical content of these potentials allow us to understand the geometrical origin of the hierarchy existing among them. (Author) [pt

  17. Investigation of pion-nucleus interactions

    International Nuclear Information System (INIS)

    Moore, C.F.

    1992-09-01

    This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The research activities involved experiments done with the Energetic Pion Channel and Spectrometer (EPICS), the Low Energy Pion Channel (LEP), the Pion and Particle Physics Channel (P 3 ), the High Resolution Spectrometer (HRS), and planning a new experimental program associated with the new high-resolution Neutral Meson Spectrometer (NMS) at LAMPF. A brief overview of work supported by this grant is given followed by an account of the study of the double giant resonances in pion double charge exchange on 51 V, 115 In, and 197 Au. This report contains a list of published papers and preprints, abstracts, and invited talks. These papers summarize experiments involving participants supported by this grant and indicate the work accomplished by these participants in this program of medium energy nuclear physics research. Lists of the most recent proposals on which we have participation at LAMPF, proposals which have been approved this past year to run as experiments, personnel who have participated in this research program are included. The research cited in this report is, in many cases, the collaborative effort of many groups associated with research at LAMPF

  18. Exclusive electroproduction of two pions at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Ashery, D.; Gueta, O.; Gurvich, E.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.

    2012-01-01

    The exclusive electroproduction of two pions in the mass range 0.4 ππ -1 . The analysis was carried out in the kinematic range of 2 2 2 , 32 2 , where Q 2 is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, vertical stroke F(M ππ ) vertical stroke, assuming that the studied mass range includes the contributions of the ρ, ρ' and ρ'' vector-meson states. The masses and widths of the resonances were obtained and the Q 2 dependence of the cross-section ratios σ(ρ'→ππ)/ σ(ρ) and σ(ρ''→ππ)/ σ(ρ) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e + e - →π + π - . (orig.)

  19. Exclusive electroproduction of two pions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2011-11-15

    The exclusive electroproduction of two pions in the mass range 0.4< M{sub {pi}}{sub {pi}} <2.5 GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb{sup -1}. The analysis was carried out in the kinematic range of 2< Q{sup 2}<80 GeV{sup 2}, 32pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, vertical stroke F(M{sub {pi}}{sub {pi}}) vertical stroke, assuming that the studied mass range includes the contributions of the {rho}, {rho}{sup '} and {rho}'' vector-meson states. The masses and widths of the resonances were obtained and the Q{sup 2} dependence of the cross-section ratios {sigma}({rho}{sup '} {yields} {pi}{pi})/{sigma}({rho}) and {sigma}({rho}'' {yields} {pi}{pi})/{sigma}({rho}) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e{sup +}e{sup -} {yields} {pi}{sup +}{pi}{sup -}. (orig.)

  20. Pion electromagnetic mass difference in QCD

    International Nuclear Information System (INIS)

    Margvelashvili, M.V.

    1989-01-01

    The results of currents algebra and the theory of partial conservation of axial currents the sum rules for the calculation of electromagnetic pion mass difference are developed. The procedure applied is suitable for other physical applications as it permits to calculate the integrals from different correlators with the assigned weight functions

  1. Measurement of the Charged-Pion Polarizability

    CERN Document Server

    Adolph, C; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The COMPASS collaboration at CERN has investigated pion Compton scattering, $\\pi^-\\gamma\\rightarrow \\pi^-\\gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\\pi^-\\mathrm{Ni}\\rightarrow\\pi^-\\gamma\\;\\mathrm{Ni}$, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2<0.0015$ (GeV/$c$)$^2$. From a sample of 63 000 events the pion electric polarisability is determined to be $\\alpha_\\pi = (2.0 \\pm 0.6_{\\mbox{stat}} \\pm 0.7_{\\mbox{syst}}) \\times 10^{-4} \\mbox{fm}^3$ under the assumption $\\alpha_\\pi=-\\beta_\\pi$, which relates the electric and magnetic dipole polarisabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction, that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is fou...

  2. Low energy scattering with a nontrivial pion

    International Nuclear Information System (INIS)

    Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2007-01-01

    An earlier calculation in a generalized linear sigma model showed that the well-known current algebra formula for low energy pion-pion scattering held even though the massless Nambu Goldstone pion contained a small admixture of a two-quark two-antiquark field. Here we turn on the pion mass and note that the current algebra formula no longer holds exactly. We discuss this small deviation and also study the effects of a SU(3) symmetric quark mass type term on the masses and mixings of the eight SU(3) multiplets in the model. We calculate the s-wave scattering lengths, including the beyond current algebra theorem corrections due to the scalar mesons, and observe that the effect of the scalar mesons is to improve the agreement with experiment. In the process, we uncover the way in which linear sigma models give controlled corrections (due to the presence of scalar mesons) to the current algebra scattering formula. Such a feature is commonly thought to exist only in the nonlinear sigma model approach

  3. Pion photoproduction in nucleons at low energies

    International Nuclear Information System (INIS)

    Carvalho, F.A.B.R. de.

    1983-01-01

    A new semiphenomenological analysis of the multipoles for pion photoproduction from nucleons, in the region of the first π-N resonance is presented. Through an energy dependent model, multipoles with isospin 1/2 and 3/2 and total angular momentum J [pt

  4. PION-NUCLEON COUPLING-CONSTANT

    NARCIS (Netherlands)

    STOKS,; TIMMERMANS, R; DESWART, JJ

    In view of the persisting misunderstandings about the determination of the pion-nucleon coupling constants in the Nijmegen multienergy partial-wave analyses of pp, np, and ppBAR scattering data, we present additional information which may clarify several points of discussion. We comment on several

  5. Effects of pions on normal tissues

    International Nuclear Information System (INIS)

    Tokita, N.

    1981-01-01

    Verification of the uniform biological effectiveness of pion beams of various dimensions produced at LAMPF has been made using cultured mammalian cells and mouse jejunum. Normal tissue radiobiology studies at LAMPF are reviewed with regard to biological beam characterization for the therapy program and the current status of acute and late effect studies on rodents

  6. Physics objects for top physics in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00148070; The ATLAS collaboration

    2016-01-01

    This talk reviews the reconstruction and calibration of physics objects in ATLAS as they are applied to top quark physics. Examples of the precision attainable and the resulting uncertainties on key top physics measurements are also given.

  7. The pion: an enigma within the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Tanja; Roberts, Craig D.

    2016-05-27

    Almost 50 years after the discovery of gluons & quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons, protons, and the pions that bind them. QCD is characterised by two emergent phenomena: confinement & dynamical chiral symmetry breaking (DCSB). They are expressed with great force in the character of the pion. In turn, pion properties suggest that confinement & DCSB are closely connected. As both a Nambu-Goldstone boson and a quark-antiquark bound-state, the pion is unique in Nature. Developing an understanding of its properties is thus critical to revealing basic features of the Standard Model. We describe experimental progress in this direction, made using electromagnetic probes, highlighting both improvements in the precision of charged-pion form factor data, achieved in the past decade, and new results on the neutral-pion transition form factor. Both challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, first explaining how DCSB works to guarantee that the pion is unnaturally light; but also, nevertheless, ensures the pion is key to revealing the mechanisms that generate nearly all the mass of hadrons. Our discussion unifies the charged-pion elastic and neutral-pion transition form factors, and the pion's twist-2 parton distribution amplitude. It also indicates how studies of the charged-kaon form factor can provide significant contributions. Importantly, recent predictions for the large-$Q^2$ behaviour of the pion form factor can be tested by experiments planned at JLab 12. Those experiments will extend precise charged-pion form factor data to momenta that can potentially serve in validating factorisation theorems in QCD, exposing the transition between the nonperturbative and perturbative domains, and thereby reaching a goal that has long driven hadro-particle physics.

  8. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  9. Searching for the Higgs Boson in Pairs of Tau Leptons in Data from the ATLAS Experiment Automation of the SCT prompt calibration

    CERN Document Server

    Rosendahl, Peter Lundgaard

    One of the key questions in particle physics today, is the origin of the electroweak symmetry breaking. The answer to this question will most likely be solved with the data provided by the Large Hadron Collider which started colliding protons in 2008. Many ideas have been posed to how particles gain their masses. The most promising of these ideas is the Higgs mechanism which predicts the existence of a new massive scalar boson, the Higgs boson. Since the discovery of a new particle consistent with a Standard Model Higgs boson was made on July 4 by the ATLAS and CMS experiment, the solution for the puzzle of the electroweak symmetry breaking might be very near. However, in order to fully claim a discovery of the Standard Model Higgs boson, the new particle has to be proven to be a scalar boson and its decay has to be observed in both bosonic and fermionic final states with the corrected branching ratios predicted by the Standard Model. So far the new boson has only been seen in the bosonic gamma-gamma, ZZ and ...

  10. Z+$\\gamma$ differential cross section measurements and the digital timing calibration of the level-1 calorimeter trigger cluster processor system in ATLAS.

    CERN Document Server

    Lilley, Joseph

    2011-01-01

    This thesis investigates the reconstruction of $Z(\\rightarrow ee)\\gamma$ events with the ATLAS detector at the LHC. The capabilities of the detector are explored for the initial run scenario with a proton-proton centre of mass collision energy of $\\sqrt{s}$ = 7TeV, and an integrated luminosity of $\\mathcal{L} = 1,fb^{-1}$. Monte Carlo simulations are used to predict the expected precision of a differential cross-section measurement for initial state radiation $Z+\\gamma$ events, both with respect to the transverse momentum of the photon, $p_{T}(\\gamma)$, and the three body $ee\\gamma$ invariant mass. A bin-by-bin correction is used to account for the signal selection efficiency and purity, and to correct the measured (simulated) distribution back to the theoretical prediction. The main backgrounds are found to be from the final state radiation $Z+\\gamma$ process, and from jets faking photons in $Z \\rightarrow ee$ events. The possible QCD multijet background is studied using a fake-rate method, and found to be ...

  11. Pion source parameters in heavy ion collisions

    International Nuclear Information System (INIS)

    Crowe, K.M.; Bistirlich, J.A.; Bossingham, R.R.

    1984-12-01

    Following the early work of Goldhaber, Lee, and Pais, many experiments have used the momentum correlations between identical bosons to determine the space-time extent of the pion source for various reactions between elementary hadrons. This technique, known as intensity interferometry, has recently been applied to nuclear collisions at both intermediate and very high energies. Here we report on measurements of the radius and lifetime of the pion source in the reactions 1.8 A GeV 40 Ar + KCl → 2π/sup +-/ + X, 1.8 A GeV 20 Na + NaF → 2π - + X, and 1.71 A GeV 56 Fe + Fe → 2π - + X. 11 references

  12. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  13. Low-energy pion-nucleon scattering

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-01-01

    An analysis of low-energy charged pion-nucleon data from recent π ± p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f 2 =0.0756±0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P 31 and P 13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided. copyright 1998 The American Physical Society

  14. Pion interactions at medium energies: Progress report

    International Nuclear Information System (INIS)

    Allred, J.C.; Goodman, C.

    1970-01-01

    Accelerating equipment, radiation detectors, and data acquisition equipment are described for a proposed study of 300 MeV pion scattering on deuterium targets at the Space Radiation Effects Laboratory in Newport News, Virginia. A key concept in the proposed program of measurements is a proposal by G.C Phillips to develop planes of proportional counters compatible with fast scintillation logic from pre-existing counters. The impetus for the research is the eventual use of the LAMPF accelerator at Los Alamos

  15. An Overview of CC Coherent Pion Production

    Science.gov (United States)

    Williams, Zachary

    2017-01-01

    Neutrino cross-sections are a critical component to any neutrino measurement. With the modern neutrino experiments aiming to measure precision parameters, such as those in long-baseline oscillation experiments, the need for a detailed understanding of neutrino interactions has become even more important. Within this landscape remains a number of experimental challenges in the regime of low energy neutrino cross-sections. This talk will give an overview of recent publications on Charged Current-Coherent Pion Production (CC-Coh Pion) results from a number of experimental collaborations. Specifically, the lack of observation from the SciBooNE and T2K collaborations to observe CC-Coh Pion below one GeV in contrast to the observation of this signature at higher energies by other experiments. The work presented here is a part of the beginning steps to a reanalysis of the SciBooNE data using a modern neutrino generator in order to better understand the previous results. There will be included details of a liquid Argon purification system that is being built at UTA, and of plans for a ``Baby Time Projection Chamber (TPC)'' which will also be built at UTA, and the instrumentation and detector methods used in their construction. The closing is a look to the future for a new analysis at low neutrino energies utilizing Liquid Argon Time Projection Chambers (LArTPCs) based at Fermilab.

  16. Weak pion production off the nucleon

    International Nuclear Information System (INIS)

    Hernandez, E.; Nieves, J.; Valverde, M.

    2007-01-01

    We develop a model for the weak pion production off the nucleon, which besides the delta pole mechanism [weak excitation of the Δ(1232) resonance and its subsequent decay into Nπ], includes also some background terms required by chiral symmetry. We refit the C 5 A (q 2 ) form factor to the flux-averaged ν μ p→μ - pπ + ANL q 2 -differential cross section data, finding a substantially smaller contribution of the delta pole mechanism than traditionally assumed in the literature. Within this scheme, we calculate several differential and integrated cross sections, including pion angular distributions, induced by neutrinos and antineutrinos and driven both by charged and neutral currents. In all cases we find that the background terms produce quite significant effects, and that they lead to an overall improved description of the data, as compared to the case where only the delta pole mechanism is considered. We also show that the interference between the delta pole and the background terms produces parity-violating contributions to the pion angular differential cross section, which are intimately linked to T-odd correlations in the contraction between the leptonic and hadronic tensors. However, these latter correlations do not imply a genuine violation of time-reversal invariance because of the existence of strong final state interaction effects

  17. Determination of some parameters for pion radiobiology studies

    CERN Document Server

    Nordell, B; Sullivan, A H; Zielczynski, M

    1977-01-01

    An experimental investigation of the central axis depth-dose and stopping rate distribution of the SIN biomedical pion beam is reported. The pion stopping rate in a thin disc of tissue-equivalent plastic was determined using a counter telescope. The dose rate at the position of this disc 'target' was measured using a specially designed parallel-plate tissue-equivalent ionization chamber. Both dose rate and pion stopping rate are given as a function of depth for beams of two different momenta spread. The energy deposition required per pion stop to fit the measured dose rate curves was calculated and found to be between 37 and 40 MeV. From the stopping rate measurements the depth-dose distribution of pion interaction dose (star-dose) and the dose due to the pion slowing down were evaluated. (8 refs).

  18. Pion momentum distributions in the nucleon in chiral effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, Matthias R. [New Mexico State U.; Hendricks, K. S. [North Carolina State U.; Ji, Cheung Ryong [North Carolina State U.; Melnitchouk, Wally [JLAB; Thomas, Anthony W. [Adelaide U.

    2013-03-01

    We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion--nucleon couplings. For the pseudovector coupling we identify $\\delta$-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the $\\pi NN$ vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  19. Measurement of the charged-pion polarisability at COMPASS

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    For more than a decade, COMPASS has been tackling the measurement of the electromagnetic polarizability of the charged pion, which describes the stiffness of the pion against deformation in electromagnetic fields. Previous experiments date back to the 1980's in Serpukhov (Russia), where the Primakoff method for realizing interactions of charged pions with quasi-real photons was first employed. Later also other techniques in photon-nucleon and photon-photon collisions were carried out at different machines. The COMPASS measurement demonstrates that the charged-pion polarizability is significantly smaller than the previous results, roughly by a factor two, with the smallest uncertainties realized so far. The pion polarisability is of fundamental interest in the low-energy sector of quantum chromodynamics. It is directly linked to the quark-gluon substructure and dynamics of the pion, the lightest bound system of strong interaction.

  20. Single pion electro- and neutrino production on heavy targets

    International Nuclear Information System (INIS)

    Paschos, E. A.; Schienbein, I.; Yu, J.Y.

    2007-04-01

    We present a calculation of single pion electroproduction cross sections on heavy targets in the kinematic region of the Δ(1232) resonance. Final state interactions of the pions are taken into account using the pion multiple scattering model of Adler, Nussinov and Paschos (ANP model). For electroproduction and neutral current reactions we obtain results for carbon, oxygen, argon and iron targets and find a significant reduction of the W-spectra for π 0 as compared to the free nucleon case. On the other hand, the charged pion spectra are only little affected by final state interactions. Measurements of such cross sections with the CLAS detector at JLAB could help to improve our understanding of pion rescattering effects and serve as important/valuable input for calculations of single pion neutrino production on heavy targets relevant for current and future long baseline neutrino experiments. Two ratios, in Eq. (3.8) and (3.10), will test important properties of the model. (authors)

  1. [Measurements of observables of pion-nucleon reactions]. Progress report

    International Nuclear Information System (INIS)

    Sadler, M.E.

    1985-01-01

    This document reports the progress of the research of pion reactions. These include (1) a study to measure observables in the pion-nucleon system in the momentum interval 400 to 700 MeV/c, (2) differential cross section measurements at low energy for pion-nucleon charge exchange, and (3) elastic and inelastic scattering of π +- on 3 H and 3 He. Individual experiments will be indexed separately

  2. Particle identification using the time-over-threshold method in the ATLAS Transition Radiation Tracker

    Science.gov (United States)

    Akesson, T.; Arik, E.; Assamagan, K.; Baker, K.; Barberio, E.; Barberis, D.; Bertelsen, H.; Bytchkov, V.; Callahan, J.; Catinaccio, A.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Ebenstein, W. L.; Eerola, P.; Farthouat, P.; Froidevaux, D.; Grichkevitch, Y.; Hajduk, Z.; Hansen, J. R.; Keener, P. T.; Kekelidze, G.; Konovalov, S.; Kowalski, T.; Kramarenko, V. A.; Krivchitch, A.; Laritchev, A.; Lichard, P.; Lucotte, A.; Lundberg, B.; Luehring, F.; Mailov, A.; Manara, A.; McFarlane, K.; Mitsou, V. A.; Morozov, S.; Muraviev, S.; Nadtochy, A.; Newcomer, F. M.; Olszowska, J.; Ogren, H.; Oh, S. H.; Peshekhonov, V.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D. R.; Schegelsky, V.; Sapinski, M.; Shmeleva, A.; Smirnov, S.; Smirnova, L. N.; Sosnovtsev, V.; Soutchkov, S.; Spiridenkov, E.; Tikhomirov, V.; Van Berg, R.; Vassilakopoulos, V.; Wang, C.; Williams, H. H.

    2001-12-01

    Test-beam studies of the ATLAS Transition Radiation Tracker (TRT) straw tube performance in terms of electron-pion separation using a time-over-threshold method are described. The test-beam data are compared with Monte Carlo simulations of charged particles passing through the straw tubes of the TRT. For energies below 10 GeV, the time-over-threshold method combined with the standard transition-radiation cluster-counting technique significantly improves the electron-pion separation in the TRT. The use of the time-over-threshold information also provides some kaon-pion separation, thereby significantly enhancing the B-physics capabilities of the ATLAS detector.

  3. Study of Calorimeter Calibration with Tau's in CMS.

    CERN Document Server

    Denegri, Daniel; Nikitenko, Alexander

    1997-01-01

    We propose to calibrate in situ the CMS calorimetry using the single, isolated pions from tau-> pi nu in W -> tau nu and Z, gamma^* -> tau tau processes applying the p/E method. In case of pions non-interacting in the ECAL the method is straightforward, but for pions interacting in the ECAL care is needed to suppress and keep under control pi+- pi0's from tau's or QCS jets, which could vitiate the method. This can be achieved exploiting the ECAL granularity and tracker-calorimetry special matching. The momentum of the isolated high pt pion can be directly compared to the calorimeter measurement. Triggering of the W -> tau nu events is envisaged with a special tau-jet trigger combined with a missing transverse energy trigger. The Z gamma^* -> tau tau events could be triggered by lepton + tau-jet and double tau-jet trigger. The event rate for pt of pion > 15 GeV is e nough to calibrate each HCAL cell at a 1% precision after collection of 10^4 pb-1 of data.

  4. Non-compensation of the ATLAS barrel combined calorimeter prototype

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Kuz'min, M.V.

    1998-01-01

    The e / π ratio for the ATLAS Barrel Combined Calorimeter Prototype, composed from electromagnetic LArg calorimeter and hadronic Tile calorimeter was investigated. Response of Combined Calorimeter on pions and electrons in the energy region of 20-300 GeV was studied. Found e / h = 1.37 ± 0.01 ± 0.02 is in good agreement with the results from previous Combined Calorimeter tests but has more precisions

  5. New results on diamond pixel sensors using ATLAS frontend electronics

    CERN Document Server

    Keil, Markus; Berdermann, E; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  6. Calibration of the electromagnetic barrel calorimeter. Identification of the tau leptons and search for a Higgs boson in the channel qqH {yields} qq {tau}{tau} in the Atlas experiment at LHC; Etalonnage du calorimetre electromagnetique tonneau. Identification des leptons taus et recherche d'un boson de Higgs dans le canal qqH {yields} qq {tau}{tau} dans l'experience ATLAS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tarrade, F

    2006-09-15

    The Standard Model is the theory which describes the fundamental interactions most accurately. However, the Higgs mechanism and its associated boson have not yet been discovered. The ATLAS electromagnetic calorimeter will play an important role in its discovery if it exists. In the first part of this work, a final mapping of all barrel electromagnetic calorimeter cells, and in particular the problematic ones, was made. Then, the code for the calorimeter calibration was migrated into the ATLAS software environment (ATHENA), where it was tested and validated with the 2004 test beam data. In this code, the optimal filtering coefficients, which enable to reconstruct the energy deposited in the calorimeter while minimizing the electronic and pile-up noises, are calculated. For this, a model was developed to predict the physics signal waveform from the calibration waveform. In a third part, two algorithms for reconstructing and identifying {tau} leptons in their hadronic decay mode were studied and compared. Finally in a fourth part, one amongst the most important Standard Model Higgs production and decay channels was investigated, namely the weak boson fusion production followed by the Higgs decay into a tau lepton pair, for a low mass Higgs (115 < m{sub Higgs} < 145 GeV/c{sup 2}). This study was performed for 30 fb{sup -1} of integrated luminosity using fast and fully simulated data. A study of the dominant background Z + n jets (n {<=} 5) was also performed. (author)

  7. Nuclear transparencies from photoinduced pion production

    Energy Technology Data Exchange (ETDEWEB)

    W. Cosyn; M.C. Martinez; J. Ryckebusch; B. Van Overmeire

    2006-12-01

    We present a relativistic and cross-section factorized framework for computing nuclear transparencies extracted from A({gamma}, {pi} N) reactions at intermediate energies. The proposed quantum mechanical model adopts a relativistic extension to the multiple-scattering Glauber approximation to account for the final state interactions of the ejected nucleon and pion. The theoretical predictions are compared against the experimental {sup 4}He({gamma},p {pi}{sup -}) data from Jefferson Lab. For those data, our results show no conclusive evidence for the onset of mechanisms related to color transparency.

  8. Rare kaon, muon, and pion decay

    Energy Technology Data Exchange (ETDEWEB)

    Littenberg, L.

    1998-12-01

    The author discusses the status of and prospects for the study of rare decays of kaons, muons, and pions. Studies of rare kaon decays are entering an interesting new phase wherein they can deliver important short-distance information. It should be possible to construct an alternative unitarity triangle to that determined in the B sector, and thus perform a critical check of the Standard Model by comparing the two. Rare muon decays are beginning to constrain supersymmetric models in a significant way, and future experiments should reach sensitivities which this kind of model must show effects, or become far less appealing.

  9. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    A deeper understanding of the situation is anticipated from a detailed experimental study of meson photoproduction from nuclei in exclusive reactions. In the energy regime above the (1232) resonance, the dominant double pion production channels are of particular interest. Double pion photoproduction from nuclei is ...

  10. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1986-01-01

    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  11. Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2016-01-01

    We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion {\\it transverse momentum distribution amplitude} (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asymptotic pQCD predictions and show that in the $Q^2 \\lesssim 10$ GeV$^2$ region there is essentially no sensitivity to the shape of the pion distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior for accessible $Q^2$.

  12. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure

  13. Pion production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Wolf, K.L.; Bock, R.; Brockmann, R.

    1984-01-01

    Experimental data for heavy ion pion production reactions are compared with the predictions of a number of versions of cascade models. Pion suppression effects observed in the experimental data are fit by introducing refinements into cascade theory. Impact parameter adjustment, off-shell effects on the potential and perturbations due to nuclear matter are considered

  14. Pion correlation from Skyrmion--anti-Skyrmion annihilation

    International Nuclear Information System (INIS)

    Lu, Y.; Amado, R.D.

    1995-01-01

    We study two pion correlations from Skyrmion and anti-Skyrmion collision, using the product ansatz and an approximate random grooming method for nucleon projection. The spatial-isospin coupling inherent in the Skyrme model, along with empirical averages, leads to correlations not only among pions of like charges but also among unlike charge types

  15. Evolution of the LAMPF high power pion production target mechanisms

    International Nuclear Information System (INIS)

    Wilson, M.T.; Thorn, L.L.; Lindquist, L.O.; Grisham, D.L.

    1977-01-01

    The Los Alamos Clinton P. Anderson Meson Physics Facility's (LAMPF's) beam contains 800 kW of power and passes through three pion production targets in series before being deposited into an isotope production section and beam dump. The first two targets are rotating graphite rings that are radiatively cooled. The third pion production target is a water-cooled graphite slug

  16. Processes involved in pion capture in hydrogen-containing molecules

    International Nuclear Information System (INIS)

    Horvath, D.

    1983-03-01

    A systematic analysis is presented of the possible elementary processes determining the fate of negative pions stopped in hydrogen-containing samples. Using a phenomenological description in comparison with the available experimental information on pion capture in hydrogen, it is shown that the formation and decay of pπ - atoms in compounds Zsub(m)Hsub(n) are determined mainly by the processes of Auger capture in a molecular orbit ZHπ - , transition from molecular to atomic orbit, transfer of pions to atoms Z in collisions pπ - +Z, and nuclear capture in collisions pπ - +H. The recent assumption of a considerable role of the processes of radiative atomic capture in bound hydrogen atoms, nuclear capture of pions by protons from the molecular state ZHπ - , or 'inner' transfer of the pion via tunnelling through the bond Z-H is not supported by the theory and contradicts the experimental data

  17. Neutral pion production measurements at SciBooNE

    International Nuclear Information System (INIS)

    Catala-Perez, J.

    2011-01-01

    Neutrino-induced neutral pion production is an important measurement for next generation neutrino oscillation experiments. Neutral current (NC) neutral pion production is a direct background for electron neutrino appearance experiments, while charged current (CC) neutral pion production affects experiments looking for muon neutrino disappearance. Located in the Booster Neutrino Beam at Fermilab, SciBooNE is a neutrino scattering experiment designed to accurately measure muon neutrino and anti-neutrino cross sections on carbon near 1 GeV neutrino energy. In this talk I will present recent SciBooNE results on neutral pion production, including the total cross section measurement for both channels relative to the CC inclusive cross section, the separation of the coherent and incoherent contributions to the NC channel, and details on neutral pion production kinematics.

  18. Pion-nucleus reactions in a microscopic transport model

    International Nuclear Information System (INIS)

    Engel, A.; Cassing, W.; Mosel, U.; Schaefer, M.; Wolf, G.

    1994-01-01

    We analyse pion-nucleus reactions in a microscopic transport model of the BUU type, which propagates nucleons, pions, deltas and N(1440) resonances explicitly in space and time. In particular we examine pion absorption and inelastic-scattering cross sections for pion kinetic energies T π =85-315 MeV and various target masses. In general, the mass dependence of the experimental data is well described for energies up to the Δ-resonance (∼160 MeV), while the absorption cross sections are somewhat overestimated for the higher energies. In addition we study the possible dynamical effects of delta and pion potentials in the medium on various observables as well as alternative models for the in-medium Δ-width. ((orig.))

  19. Effective pion--nucleon interaction in nuclear matter

    International Nuclear Information System (INIS)

    Celenza, L.S.; Liu, L.C.; Nutt, W.; Shakin, C.M.

    1976-01-01

    We discuss the modification of the interaction between a pion and a nucleon in the presence of an infinite medium of nucleons (nuclear matter). The theory presented here is covariant and is relevant to the calculation of the pion--nucleus optical potential. The specific effects considered are the modifications of the nucleon propagator due to the Pauli principle and the modification of the pion and nucleon propagators due to collisions with nucleons of the medium. We also discuss in detail the pion self-energy in the medium, paying close attention to off-shell effects. These latter effects are particularly important because of the rapid variation with energy of the fundamental pion--nucleon interaction. Numerical results are presented, the main feature being the appearance of a significant damping width for the (3, 3) resonance

  20. Double charge exchange of pions on nuclei

    International Nuclear Information System (INIS)

    Dzhibuti, R.I.; Kezerashvili, R.Y.

    1985-01-01

    An analysis is made of the results of experimental and theoretical studies during the last ten years of a unique process: double charge exchange of pions on nuclei. On the one hand, the commissioning of meson factories and the use of new and more accurate experimental methods have led to the accumulation of rich and reliable material for not only light but also medium and heavy nuclei. On the other hand, the development and application of new microscopic theoretical approaches have led to a deepening of our ideas about the mechanism of these exotic reactions at low, intermediate, and high energies. The currently existing methods of theoretical investigation and all possible reaction mechanisms are considered. Particular attention is devoted to double charge exchange of pions on the lightest nuclei, for the theoretical description of which it is possible to use the well-developed methods for investigating few-particle systems. The experimental investigations of double-isobar analog and nonanalog transitions in the reaction of double charge exchange are systematized

  1. Low energy pion-16O scattering

    International Nuclear Information System (INIS)

    Wafelbakker, C.K.

    1981-01-01

    In spite of some outward appearances, the modern microscopic theories of the pion-nucleus (πA) interaction are not fundamentally very different from each other. They can all be derived from the same source, multiple-scattering theory. They all treat the first-order optical potential in a comparatively detailed way and in all of them it is necessary to incorporate higher-order effects in general and pion-annihilation in particular phenomenologically. Basically the same physical features can be embodied in all of them. The presentation of the theoretical scheme underlying the present thesis is designed to stress this conceptual unity of current πA theory. In this thesis the methods developed by De Kam to incorporate Pauli- and binding-corrections to the impulse-approximation first-order optical potential for 4 He are extended to a more complicated nucleus, 16 O, for the first time. In concreto two situations are considered: π- 16 O scattering at energies below nucleon-knockout threshold (13.5 MeV) - 7 and 12 MeV - and at energies 40 and 49.7 MeV, above nucleon-knockout threshold but still well within the low-energy region. (Auth.)

  2. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  3. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  4. Joint resummation for pion wave function and pion transition form factor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hsiang-nan [Institute of Physics, Academia Sinica,Academia Rd., Taipei, Taiwan 115 (China); Department of Physics, National Cheng-Kung University,University Rd., Tainan, Taiwan 701 (China); Department of Physics, National Tsing-Hua University,Kuang-Fu Rd., Hsinchu, Taiwan 300 (China); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Rd, Qingdao, Shandong 266100 (China); Wang, Yu-Ming [Institut für Theoretische Teilchenphysik und Kosmologie RWTH Aachen,Physikzentrum Otto-Blumenthal-Straße, D-52056 Aachen (Germany); Physik Department T31, Technische Universität München,James-Franck-Straße, D-85748 Garching (Germany)

    2014-01-03

    We construct an evolution equation for the pion wave function in the k{sub T} factorization formalism, whose solution sums the mixed logarithm ln xln k{sub T} to all orders, with x (k{sub T}) being a parton momentum fraction (transverse momentum). This joint resummation induces strong suppression of the pion wave function in the small x and large b regions, b being the impact parameter conjugate to k{sub T}, and improves the applicability of perturbative QCD to hard exclusive processes. The above effect is similar to those from the conventional threshold resummation for the double logarithm ln{sup 2} x and the conventional k{sub T} resummation for ln{sup 2} k{sub T}. Combining the evolution equation for the hard kernel, we are able to organize all large logarithms in the γ{sup ∗}π{sup 0}→γ scattering, and to establish a scheme-independent k{sub T} factorization formula. It will be shown that the significance of next-to-leading-order contributions and saturation behaviors of this process at high energy differ from those under the conventional resummations. It implies that QCD logarithmic corrections to a process must be handled appropriately, before its data are used to extract a hadron wave function. Our predictions for the involved pion transition form factor, derived under the joint resummation and the input of a non-asymptotic pion wave function with the second Gegenbauer moment a{sub 2}=0.05, match reasonably well the CLEO, BaBar, and Belle data.

  5. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  6. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  7. Neutrinos from PIon Beam Line, nuPIL

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, J. B. [Imperial Coll., London; Pasternak, J. [Imperial Coll., London; Bross, A. [Fermilab; Liu, A. [Fermilab

    2016-05-05

    LBNF-DUNE (Long Baseline Neutrino Facilities - Deep Underground Neutrino Experiment) is a project based at Fermilab to study neutrino oscillations. The current baseline regarding the neutrino production considers the conventional approach: a high energy proton beam hits a target, producing pions that are collected by a horn and that decay in a decay pipe. An alternative solution, called nuPIL (neutrinos from a Pion beam Line) consists of using a beam line to guide the pions to clean the beam and to put instrumentation to monitor it. This paper presents the concept and the first preliminary results.

  8. Tensor polarization in pion-deuteron elastic scattering

    Science.gov (United States)

    Ungricht, E.; Freeman, W. S.; Geesaman, D. F.; Holt, R. J.; Specht, J. R.; Zeidman, B.; Stephenson, E. J.; Moses, J. D.; Farkhondeh, M.; Gilad, S.; Redwine, R. P.

    1985-03-01

    Angular distributions of the deuteron tensor polarization, t20, in π-d elastic scattering have been measured at pion energies of 180, 220, and 256 MeV. The experiment and analysis are described in detail. Theoretical calculations in which the effects of pion absorption on the elastic channel are small seem to reproduce the data. An excitation function was measured in order to search for a rap- id energy dependence of t20. No rapid angular or energy dependence was found near a pion energy of 134 MeV, where other experiments have suggested the existence of dibaryon resonances.

  9. Universal pion freeze-out in heavy-ion collisions

    CERN Document Server

    Adamova, D; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B C; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schükraft, Jürgen; Sedykh, S; Shimansky, S S; Slivova, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V; Schmitz, W

    2003-01-01

    Based on an evaluation of recent systematic data on two-pion interferometry and on measured particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of approximately 2.5 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and its value is constant at all currently available beam energies from AGS to RHIC.

  10. Soft pion theorem, asymptotic symmetry and new memory effect

    Science.gov (United States)

    Hamada, Yuta; Sugishita, Sotaro

    2017-11-01

    It is known that soft photon and graviton theorems can be regarded as the Ward-Takahashi identities of asymptotic symmetries. In this paper, we consider soft theorem for pions, i.e., Nambu-Goldstone bosons associated with a spontaneously broken axial symmetry. The soft pion theorem is written as the Ward-Takahashi identities of the S-matrix under asymptotic transformations. We investigate the asymptotic dynamics, and find that the conservation of charges generating the asymptotic transformations can be interpreted as a pion memory effect.

  11. Single pion production in neutrino-nucleon interactions

    Science.gov (United States)

    Kabirnezhad, M.

    2018-01-01

    This work represents an extension of the single pion production model proposed by Rein [Z. Phys. C 35, 43 (1987)., 10.1007/BF01561054]. The model consists of resonant pion production and nonresonant background contributions coming from three Born diagrams in the helicity basis. The new work includes lepton mass effects, and nonresonance interaction is described by five diagrams based on a nonlinear σ model. This work provides a full kinematic description of single pion production in the neutrino-nucleon interactions, including resonant and nonresonant interactions in the helicity basis, in order to study the interference effect.

  12. Forward pion-nucleon charge exchange reaction and Regge constraints

    International Nuclear Information System (INIS)

    Huang Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meibner, U.-G.

    2009-01-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude. (authors)

  13. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  14. Dimunon production by pions and protons

    International Nuclear Information System (INIS)

    Weinstein, R.

    1975-01-01

    Dimuon production is reported for the reaction π - + Fe → μ + + μ - + anything at 200 GeV and p + Fe → μ + + μ - anything at 240 GeV. The X/sub L/ identical with P/sub L//P/sub Beam/ and P/sub perpendicular/ dependences of psi production are parameterized and fitted. For X/sub L/ greater than or equal to 0.5, the ratio of the psi production cross section for pions in iron to that for protons is found to be 7.4 +- 2. For the intermediate mass region, 1.2 less than or equal to M less than or equal to 2.5 GeV, preliminary results are given for X/sub L/, P/sub perpendicular/ and M/sub mu mu/ dependences

  15. Systematics of pion double charge exchange

    International Nuclear Information System (INIS)

    Gilman, R.A.

    1985-10-01

    Differential cross sections have been measured for pion-induced double-charge-exchange (DCX) reactions leading to double-isobaric-analog states (DIAS) and low-lying nonanalog states in the residual nuclei. A description of the experimental details and data analysis is presented. The experimentally observed systematics of reactions leading to DIAS, to nonanalog ground states, and to low-lying 2 + states are described. Lowest-order optical-model calculations of DIAS DCX are compared to the data. Efforts to understand the anomalies by invoking additional reaction-mechanism amplitudes and a higher-order optical potential are described. Calculations of nonanalog DCX reactions leading to J/sup π/ = 0 + states were performed within a distorted-wave impulse-approximation framework. The sensitivities of these calculations to input parameters are discussed. 58 refs., 41 figs., 16 tabs

  16. Systematics of pion double charge exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, R.A.

    1985-10-01

    Differential cross sections have been measured for pion-induced double-charge-exchange (DCX) reactions leading to double-isobaric-analog states (DIAS) and low-lying nonanalog states in the residual nuclei. A description of the experimental details and data analysis is presented. The experimentally observed systematics of reactions leading to DIAS, to nonanalog ground states, and to low-lying 2 states are described. Lowest-order optical-model calculations of DIAS DCX are compared to the data. Efforts to understand the anomalies by invoking additional reaction-mechanism amplitudes and a higher-order optical potential are described. Calculations of nonanalog DCX reactions leading to J/sup / = 0 states were performed within a distorted-wave impulse-approximation framework. The sensitivities of these calculations to input parameters are discussed. 58 refs., 41 figs., 16 tabs.

  17. The pion's pioneers

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In 1946, a band of intrepid physicists took a batch of a new kind of photographic emulsion up the Pic du Midi in the French Pyrenees to expose them to cosmic rays. After analysing the results at Bristol, C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini and C. F. Powell were able to announce early the following year that they had seen the long-awaited pi meson, or pion, postulated by Yukawa in 1935 as the carrier of the strong nuclear force. This landmark discovery quickly revitalized particle physics after all its wartime upheavals. At the end of July, the H. H. Wills Physics Laboratory at Bristol was the scene of an unusual and memorable international conference to mark the 40th anniversary of this discovery

  18. Double recharge of pions on a deuterium

    International Nuclear Information System (INIS)

    Nichitiu, F.; Falomkin, I.V.; Shcherbakov, Yu.A.

    1987-01-01

    Assumptions on the dibaryon nature of the existing narrow resonances below the threshold of the NΔ-state with masses 1935, 1965, 2015 MeV are considered. New proposals on construction of the particle systematics with a new particle (R-particle of mass 1025 MeV, J=1/2, T=3/2) are used to draw a conclusion that double charge exchange is possible on deuterium and helium-3 if dibaryons or new R-particles are born in the final state. Attention is paid to a possible decay of these particles through a weak channel. A search for double charge exchange of pions on hydrogen and deuterium using a laser-illuminated streamer chamber of high pressure is proposed

  19. In-medium pion valence distributions in a light-front model

    International Nuclear Information System (INIS)

    Melo, J.P.B.C. de; Tsushima, K.; Ahmed, I.

    2017-01-01

    Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  20. Pion and an improved static bag model

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J.F.; Johnson, K.

    1980-04-01

    Quark-model calculations involve an extended static object localized in space. We introduce new methods, involving momentum-space wave packets, which account for this localization. These methods have little effect on heavy states, whose sizes are large compared to their Compton size 1/m, but are very important for light particles such as the pion. In this treatment the pion's mass is naturally very small, and, in order to connect with a spontaneously broken chiral symmetry, we require that m/sub ..pi../ vanish when the light quarks are massless. Expanding about this limit (and also readjusting the fit to other hadrons), we obtain m/sub q/=(m-italic/sub u/+m/sub d/)/2=33 MeV. We calculate F/sub ..pi../ approx. = 145 MeV (using a normalization such that F/sub ..pi../ vertical-bar /sub exp/=93 MeV), F/sub K//F/sub ..pi../ approx. = 1, and various corrections to static properties of baryons. In addition we explore the relationship of our methods with chiral perturbation theory, deriving the formula m/sub ..pi../ /sup 2/=(m-italic/sub u/+m/sub d/) < ..pi..(p) vertical-bar q-bar(0)q(0) vertical-bar ..pi..(p) > in the appropriate approximation and commenting on the quark mass obtained from the nucleon's sigma term. Finally we discuss the bag model's use of the scalar density q-barq as an order parameter describing the separation of the spontaneously broken vacuum phase from the perturbative vacuum of the bag's interior.

  1. Energy Measurement of Hadrons with the CERN ATLAS Calorimeter

    CERN Document Server

    Speckmayer, Peter; Fabjan, Christian Wolfgang

    2008-01-01

    The ATLAS detector is a multi-purpose detector measuring the energy and direction of particles produced in proton-proton collisions at a center of mass energy of 14 TeV provided by the Large Hadron Collider at the European center of particle physics, CERN. The main aim of this thesis is to assess the precision of the present understanding of the interactions of hadrons with matter (as implemented in Monte Carlo (MC) simulations) to describe the response of the ATLAS calorimeter and to predict the correction necessary to measure the full energy of pions. The simulations are compared to testbeam data. The present description of the response of the ATLAS central calorimeter is able to predict the energy corrections, as verified by using testbeam data. For the Combined Testbeam 2004 (CTB) a full slice of the central region of the ATLAS detector including all sub-detectors has been installed in the H8 beam line of the CERN SPS accelerator. Pions and electrons with the energies ranging from 1 to 350 GeV have been m...

  2. Beam Spin Asymmetry Measurements for Two Pion Photoproduction at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark D. [Univ. of Glasgow, Scotland (United Kingdom)

    2015-09-01

    The overarching goal of this analysis, and many like it, is to develop our understanding of the strong force interactions within the nucleon by examining the nature of their excitation spectra. As the resonances of these spectra have very short lifetimes (tau = 1x10-23 s) and often have very similar masses, it is often impossible to directly observe resonances in the excitation spectra of nucleons. Polarization observables allow us to study the resonances by looking at how they affect the spin state of final state particles. The beam asymmetry is a polarization observable that allows us to detect the sensitivity of these resonances, and other transition mechanisms, to the electric vector orientation of incident photons. Presented in this thesis are first measurements of the beam asymmetries in the resonant region for the reaction channel pgamma p --> p π+ π-focusing on the intermediate mesonic states rho^0 and f^0, and the final state pions. The analysis used data from the g8b experiment undertaken at the Thomas Jefferson National Accelerator Facility (JLab), the first experiment at JLab to use a linearly polarized photon beam. Using the coherent Bremsstrahlung facility and the CLAS detector of Hall B at JLab allowed for many multi-channel reactions to be detected and the first measurements of many polarization observables including those presented here. A brief overview of the theoretical framework used to undertake this analysis is given, followed by a description of the experimental details of the facilities used, then a description of the calibration of the Bremsstrahlung tagging facility which the author undertook, and finally the analysis is presented and the resulting measurements.

  3. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  4. On the role of secondary pions in spallation targets

    CERN Document Server

    Mancusi, Davide; Colonna, Nicola; Boudard, Alain; Cortés-Giraldo, Miguel Antonio; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie; Lerendegui-Marco, Jorge; Massimi, Cristian; Vlachoudis, Vasilis

    2017-01-01

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20-GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

  5. The possibility for a pion polarizability measurement at COMPASS

    CERN Document Server

    Guskov, A

    2010-01-01

    The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z) + \\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with a $\\pi^{−}$ beam of 190 GeV. The obtained results are used for preparation of the new measurement.

  6. Deeply virtual compton scattering on a virtual pion target

    Energy Technology Data Exchange (ETDEWEB)

    Amrath, D.; Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lansberg, J.P. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique]|[Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik

    2008-07-15

    We study deeply virtual Compton scattering on a virtual pion that is emitted by a proton. Using a range of models for the generalized parton distributions of the pion, we evaluate the cross section, as well as the beam spin and beam charge asymmetries in the leading-twist approximation. Studying Compton scattering on the pion in suitable kinematics puts high demands on both beam energy and luminosity, and we find that the corresponding requirements will first be met after the energy upgrade at Jefferson Laboratory. As a by-product of our study, we construct a parameterization of pion generalized parton distributions that has a non-trivial interplay between the x and t dependence and is in good agreement with form factor data and lattice calculations. (orig.)

  7. Proceedings of the LAMPF workshop on pion double charge exchange

    International Nuclear Information System (INIS)

    Baer, H.W.; Leitch, M.J.

    1985-09-01

    Experimental and theoretical aspects of double-analog, nonanalog, and continuum pion double charge exchange in the 50- to 310-MeV energy range are covered. Separate abstracts were prepared for 22 papers in these proceedings

  8. Spin effects at fragmentation of polarized deuterons into cumulative pions

    International Nuclear Information System (INIS)

    Afanasiev, S.; Arkhipov, V.; Bondarev, V.; Isupov, A.; Khrenov, A.; Kirillov, D.; Ladygin, V.; Litvinenko, A.; Malakhov, A.; Pilipenko, Yu.; Reznikov, S.; Rukoyatkin, P.; Zolin, L.; Daito, I.; Horikawa, N.; Wakai, A.; Doushita, N.; Fukui, S.; Iwata, T.; Kondo, K.

    2002-01-01

    Tensor analyzing power T 20 of the reaction d-vectorA→π(0 deg.)X was measured in the fragmentation of 9 GeV deuterons into points with the momenta from 3.5 to 5.3 GeV/c at hydrogen, beryllium and carbon targets. This momentum range corresponds to region of cumulative pion production The values of T 20 are found to be small and consistent with positive values in contradiction with the Impulse Approximation calculations based on assuming a direct mechanism of pion production (NN→NNπ). New data on tensor Ayy analyzing power for pion production at the non-zero angle (θ π =135,180mr) with pion transverse momenta up to P t =0.8 GeV/c are presented. Ayy increases with rise of P t in the cumulative region

  9. Amplitude analysis of resonant production in three pions

    Energy Technology Data Exchange (ETDEWEB)

    Jackura, Andrew [Indiana Univ., Bloomington, IN (United States); Mikhasenko, Mikhail [Univ. of Bonn (Germany); Szczepaniak, Adam [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-29

    We present some results on the analysis of three pion resonances. The analyses are motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. We construct reaction amplitudes that satisfy fundamental $S$-matrix principles, which allows the use of models that have physical constraints to be used in fitting data. The models are motivated by the isobar model that satisfy unitarity constraints. The model consist of a Deck production amplitude with which final state interactions are constrained by unitarity. We employ the isobar model where two of the pions form a quasi-stable particle. The analysis is performed in the high-energy, single Regge limit. We specifically discuss the examples of the three pion $J^{PC}=2^{-+}$ resonance in the $\\rho\\pi$ and $f_2\\pi$ channels.

  10. Roy-Steiner-equation analysis of pion-nucleon scattering

    Science.gov (United States)

    Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.

    2017-03-01

    Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.

  11. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.

    1986-05-01

    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  12. The TRIUMF low energy pion spectrometer and channel

    International Nuclear Information System (INIS)

    Sobie, R.J.; Drake, T.E.; Barnett, B.M.; Erdman, K.L.; Gyles, W.; Johnson, R.R.; Roser, H.W.; Tacik, R.; Blackmore, E.W.; Gill, D.R.

    1983-08-01

    A low energy pion spectrometer has been developed for use with the TRIUMF M13 pion channel. The combined channel and spectrometer resolution is presently 1.1 MeV at T = 50 MeV. This is limited by the amount of gas and detector material in the spectrometer in addition to the inherent resolution of the channel. Improvements to both the spectrometer and channel are discussed

  13. Dosimetry and radiobiology of negative pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1978-01-01

    The depth dose distribution of pion beams has not been found superior to protons. Pion radiation quality at the plateau region is comparable to conventional low-LET radiations, and radiobiology results also indicate RBE values close to unity. In the pion stopping region, the radiation quality increases considerably. Radiobiology data for negative pions at the Bragg peak position clearly indicate the increase in RBE and the reduction in OER. Even at the Bragg peak position, compared to fast neutrons, the average LET of negative pions is lower. Pion radiobiology data have indicated lower RBE values and higher OER values compared to fast neutrons. The radiation quality of fast neutrons is in between that of carbon and neon ions at the peak region and that of neon ions at the plateau is lower than for fast neutrons. The mean LET value for helium ions, even at the distal end of the peak, is lower than for fast neutrons. Dose localization of heavy ions has been found to decrease slowly with increasing charge of the heavy ion. The intercellular contact that protects cells after exposure to low-LET radiations is not detected after exposure to heavy ions. Single and fractionated doses of heavy ions produce dose-response curves for heavy ions having reduced shoulders but similar slopes when compared to gamma rays. Fractionated treatments of heavy ions produce an enhanced effect in the peak region compared to the plateau region and could lead to a substantial gain in therapeutic ratio. The OER for protons was similar to that for x rays. The OER values for negative pions, helium ions, and carbon ions were larger, for neon ions similar, and for argon ions smaller when compared to fast neutrons.Negative pions, helium ions, and carbon ions may be very effective clinically because the radiation quality of these beams is similar to that of the mixed scheme of neutrons and x rays

  14. Power corrections to the asymptotics of the pion electromagnetic formfactor

    International Nuclear Information System (INIS)

    Gorsky, A.S.

    1984-01-01

    The first power correction to the pion electromagnetic form factor is derived. A few asymptotic wave functions corresponding to the different series of operators and matrix elements of four-particle operators in pion have been found. The large scale of the first power correction approximately 10 2 (GeV 2 )/Q 2 where Q 2 is the momentum transfer indicates that at low energies the whole series of power corrections seems to be taken into account

  15. Nuclear critical opalescence, a precursor to pion condensation

    International Nuclear Information System (INIS)

    Ericson, M.; Delorme, J.

    1978-03-01

    It is shown that pion condensation in nuclei, a long range phenomenon, has a precursor in the disordered phase, the local ordering of spins which becomes of infinite range at the critical point. A new physical effect arising from this short range order is predicted, namely the enhancement of the static nuclear pion field near the critical momentum. This phenomenon is strongly reminiscent of the critical opalescence observed in the scattering of neutrons by antiferromagnetic subtances

  16. The Onset of Quark-Hadron Duality in Pion Electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Tigran Navasardyan; Gary Adams; Abdellah Ahmidouch; Tatiana Angelescu; John Arrington; Razmik Asaturyan; O. Baker; Nawal Benmouna; Crystal Bertoncini; Henk Blok; Werner Boeglin; Peter Bosted; Herbert Breuer; Michael Christy; Simon Connell; Yonggang Cui; Mark Dalton; Samuel Danagoulian; Donal Day; T. Dodario; James Dunne; Dipangkar Dutta; Najib Elkhayari; Rolf Ent; Howard Fenker; Valera Frolov; Liping Gan; David Gaskell; Kawtar Hafidi; Wendy Hinton; Roy Holt; Tanja Horn; Garth Huber; Ed Hungerford; Xiaodong Jiang; Mark Jones; Kyungseon Joo; Narbe Kalantarians; James Kelly; Cynthia Keppel; Edward Kinney; V. Kubarovski; Ya Li; Yongguang Liang; Simona Malace; Pete Markowitz; Erin McGrath; Daniella Mckee; David Meekins; Hamlet Mkrtchyan; Brian Moziak; Gabriel Niculescu; Maria-Ioana Niculescu; Allena Opper; Tanya Ostapenko; Paul Reimer; Joerg Reinhold; Julie Roche; Stephen Rock; Elaine Schulte; Edwin Segbefia; C. Smith; G.R. Smith; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Maurizio Ungaro; Alicia Uzzle; Sandra Vidakovic; Anthony Villano; William Vulcan; Miao Wang; Glen Warren; Frank Wesselmann; Bogdan Wojtsekhowski; Stephen Wood; Chuncheng Xu; Lulin Yuan; Xiaochao Zheng; Hong Guo Zhu

    2006-08-29

    A large data set of charged-pion electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark-to- pion production mechanisms.

  17. Asymptotical behaviour of pion electromagnetic form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory

  18. The transverse spin structure of the pion at short distances

    International Nuclear Information System (INIS)

    Diehl, Markus; Szymanowski, Lech; Ecole Polytechnique, CNRS, Palaiseau; Paris-Sud Univ., CNRS, Orsay

    2010-03-01

    We study the form factors of the quark tensor currents in the pion at large squared momentum transfer Q 2 . It turns out that certain form factors can be evaluated using collinear factorization, whereas others receive important contributions from the end-point regions of the longitudinal quark momenta in the pion. We derive simple analytic expressions for the dominant terms at high Q 2 and illustrate them numerically. (orig.)

  19. A relativistic, meson exchange model of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Pearces, B.C.; Jennings, B.K.

    1990-06-01

    A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)

  20. The transverse spin structure of the pion at short distances

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus, E-mail: mdiehl@mail.desy.d [Deutsches Elektronen-Synchroton DESY, 22603 Hamburg (Germany); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Warsaw (Poland); Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Laboratoire de Physique Theorique, Universite Paris-Sud, CNRS, 91405 Orsay (France)

    2010-06-14

    We study the form factors of the quark tensor currents in the pion at large squared momentum transfer Q{sup 2}. It turns out that certain form factors can be evaluated using collinear factorization, whereas others receive important contributions from the end-point regions of the longitudinal quark momenta in the pion. We derive simple analytic expressions for the dominant terms at high Q{sup 2} and illustrate them numerically.

  1. The transverse spin structure of the pion at short distances

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Szymanowski, Lech [Soltan Inst. for Nuclear Studies, Warsaw (Poland); Ecole Polytechnique, CNRS, Palaiseau (France). Centre de Physique Theorique; Paris-Sud Univ., CNRS, Orsay (France). Lab. de Physique Theorique

    2010-03-15

    We study the form factors of the quark tensor currents in the pion at large squared momentum transfer Q{sup 2}. It turns out that certain form factors can be evaluated using collinear factorization, whereas others receive important contributions from the end-point regions of the longitudinal quark momenta in the pion. We derive simple analytic expressions for the dominant terms at high Q{sup 2} and illustrate them numerically. (orig.)

  2. Pion-nucleon vertex function with one nucleon off shell

    International Nuclear Information System (INIS)

    Mizutani, T.; Rochus, P.

    1979-01-01

    The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region

  3. Di-photon resonance and Dark Matter as heavy pions

    CERN Document Server

    Redi, Michele; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating $\\theta$-term of the new gauge theory reproducing the cosmological Dark Matter density as thermal relic.

  4. Di-photon resonance and Dark Matter as heavy pions

    International Nuclear Information System (INIS)

    Redi, Michele; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating θ-term of the new gauge theory reproducing the cosmological Dark Matter density as a thermal relic.

  5. Studies of diffraction with the ATLAS detector

    International Nuclear Information System (INIS)

    Trzebinski, Maciej

    2013-01-01

    The thesis is devoted to the study of diffractive physics with the ATLAS detector at the LHC. After a short introduction to diffractive physics including soft and hard diffraction, we discuss Jet-Gap-Jet production at the LHC which is particularly interesting for testing the Balitski Fadin Kuraev Lipatov QCD evolution equation. Using the signal selection requirements and a gap definition based on tracks reconstructed in the ATLAS Inner Detector, we observe a clear signal of Jet-Gap-Jet events in the data. Starting from the half-gap size of 0.8 the data cannot be properly described using only the Jet Monte Carlo sample without gaps. Furthermore, we demonstrated that DPE JGJ production, with both protons tagged in the AFP stations, should provide a significant test of the BFKL theory, once the 300 pb -1 of integrated luminosity is collected. In the last part of the thesis, we discussed the processes of Central Exclusive Jet and Exclusive π + π - production. After the data selection, the signal to background ratio is found to be of about 5/9 (1/13) for μ= 23 (46). For a collected integrated luminosity of 40(300) fb -1 (for pile-up of 23(46)) this measurement will deliver ten times better constraints on the theoretical models than the most recent ones. The additional measurement of exclusive pion production, relying on the use of the ALFA stations, allows to constrain further the exclusive models. We demonstrated that a data sample collected by the ALFA detectors should be sufficient to measure the cross section and to study various distributions, especially the invariant mass of the pion-pion system. (author) [fr

  6. Pion transverse charge density from timelike form factor data

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Miller, Mark Strikman, Christian Weiss

    2011-01-01

    The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.

  7. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  8. Study of ATLAS TRT performance with GRID and supercomputers.

    CERN Document Server

    Krasnopevtsev, Dimitriy; The ATLAS collaboration; Belyaev, Nikita; Mashinistov, Ruslan; Ryabinkin, Evgeny

    2015-01-01

    After the early success in discovering a new particle consistent with the long awaited Higgs boson, Large Hadron Collider experiments are ready for the precision measurements and further discoveries that will be made possible by much higher LHC collision rates from spring 2015. A proper understanding of the detectors performance at highoccupancy conditions is important for many on-going physics analyses. The ATLAS Transition Radiation Tracker (TRT) is one of these detectors. TRT is a large straw tube tracking system that is the outermost of the three subsystems of the ATLAS Inner Detector (ID). TRT contributes significantly to the resolution for high-pT tracks in the ID providing excellent particle identification capabilities and electron-pion separation. ATLAS experiment is using Worldwide LHC Computing Grid. WLCG is a global collaboration of computer centers and provides seamless access to computing resources which include data storage capacity, processing power, sensors, visualization tools and more. WLCG ...

  9. Study of ATLAS TRT performance with GRID and supercomputers.

    CERN Document Server

    Krasnopevtsev, Dimitriy; The ATLAS collaboration; Mashinistov, Ruslan; Belyaev, Nikita; Ryabinkin, Evgeny

    2015-01-01

    After the early success in discovering a new particle consistent with the long awaited Higgs boson, Large Hadron Collider experiments are ready for the precision measurements and further discoveries that will be made possible by much higher LHC collision rates from spring 2015. A proper understanding of the detectors performance at high occupancy conditions is important for many on-going physics analyses. The ATLAS Transition Radiation Tracker (TRT) is one of these detectors. TRT is a large straw tube tracking system that is the outermost of the three subsystems of the ATLAS Inner Detector (ID). TRT contributes significantly to the resolution for high-pT tracks in the ID providing excellent particle identification capabilities and electron-pion separation. ATLAS experiment is using Worldwide LHC Computing Grid. WLCG is a global collaboration of computer centers and provides seamless access to computing resources which include data storage capacity, processing power, sensors, visualisation tools and more. WLCG...

  10. The energy, transferred to secondary charged pions in pion-nucleon and pion-carbon interactions at momentum 40 GeV/s

    International Nuclear Information System (INIS)

    Boos, E.G.; Izbasarov, M.; Temiraliyev, T.; Samoilov, V.V.; Tursunov, R.A.

    2005-01-01

    Full text: The analysis has been undertaken for the energy ratio K π ± (partial coefficient of inelasticity) taken away by charged pions at laboratory coordinate system in pion-nucleon and pion-carbon interactions at momentum 40 GeV/s. It is shown that distribution of partial inelasticity coefficients for elementary act is more narrow than the same distribution for carbon nucleus. The mean number of charged mesons (n π ± t) grows with enlarging of partial inelasticity coefficient, being larger for interactions of π - -mesons with carbon nuclei in comparison with corresponding distribution in elementary act. The similar picture is observed for one-nucleon and multi-nucleon events selected from π - - C -interactions by the value of total electric charge of all secondary particles (except for the identified protons) and by the value of target mass

  11. Pion inelastic scattering, pion photoproduction and inelastic electron scattering on light nuclei

    International Nuclear Information System (INIS)

    Ehramzhyan, R.A.

    1985-01-01

    Partial transitions in pion photoproduction reaction on 6 Li, 10 B, 12 C nuclei are considered. Particular stress is paied to simultaneous analysis both of (γ, π) ad (e, e'), (π, π') reactions. Such analysis is concretely ixemplified with the use of both phenomenological and microscopic approaches. Microscopic analysis is shown to give correct representation of reaction mechanism (γ, π), (e, e') and (π, π') at intermediate energies. Spin-isospin dipole resonances in 1p-shell nuclei are considered. It is shown that nuclear system excitation spectrum gross-structure is a result of resonance configuration splitting

  12. Dynamical pion production via parametric resonance from disoriented chiral condensates

    Science.gov (United States)

    Hiro-Oka, Hideaki; Minakata, Hisakazu

    2000-04-01

    We discuss a dynamical mechanism of pion production from disoriented chiral condensates. It leads to an explosive production of pions via the parametric resonance mechanism, which is similar to the reheating mechanism in inflationary cosmology. Classically it is related with the instability in the solutions of the Mathieu equation and we explore the quantum aspects of the mechanism. We show that nonlinearities and back reactions can be ignorable for a sufficiently long time under the small amplitude approximations of background σ oscillations, which may be appropriate for the late stage of a nonequilibrium phase transition. It allows us to obtain an explicit quantum state of the produced pions and σ, the squeezed state of BCS type. Single particle distributions and two pion correlation functions are computed within these approximations. The results obtained illuminate the characteristic features of multipion states produced through the parametric amplification mechanism. In particular, two pion correlations of various charge combinations contain back-to-back correlations which cannot be masked by the identical particle interference effect. We suggest that the parametric resonance mechanism might be a cause of the long lasting amplification of low-momentum modes in linear sigma model simulations.

  13. Distortion of two-pion interferometry by multipion correlations

    International Nuclear Information System (INIS)

    Zhang, W.N.; Liu, Y.M.; Wang, S.; Liu, Q.J.; Jiang, J.; Keane, D.; Shao, Y.; Chu, S.Y.; Fung, S.Y.

    1993-01-01

    Multipion correlations arising from the symmetrization of the n-pion wave function affect the extracted information from two-pion correlation measurements. The influence of multipion correlations on a sample of like-pion pairs can be expressed as a multipion correlation factor, the distribution of which offers good sensitivity to the multipion correlation effect. Analyses of the multipion correlation factor for two Bevalac streamer chamber data samples of 2.1A GeV Ne+Pb and 1.8A GeV Ar+Pb collisions show that the multipion correlation effect in the former sample is greater than in the latter. This result mainly arises from the fact that the pion source for Ne projectiles is smaller than for Ar projectiles. The residual correlations in the reference sample are related to the multipion correlation factor in multipion events, which can be expressed as a residual correlation factor. The influence of multipion correlations on two-pion interferometry analyses arises from the ratio of the residual correlation factor to the multipion correlation factor

  14. Experimental study on pion capture by hydrogen bound in molecules

    International Nuclear Information System (INIS)

    Horvath, D.; Aniol, K.A.; Entezami, F.; Measday, D.F.; Noble, A.J.; Stanislaus, S.; Virtue, C.J.

    1988-08-01

    An experiment was performed at TRIUMF to study the formation of pionic hydrogen atoms and molecules in solids, particularly in groups of organic molecules of slightly different structure in order to help further clarify the problem. The nuclear capture of pions by hydrogen was measured using the charge exchange of stopped pions. The coincident photons emitted by the decaying π 0 mesons were detected by TRIUMF's two large NaI spectrometers. New experimental results were obtained for the capture probability of stopped π - mesons in the nuclei of hydrogen atoms, chemically bound in molecules of some simple hydrides, acid anhydrides, and sugar isomers. A linear relation was found between pion capture in hydrogen and melting point in sugar isomers. The pion capture probability in acid anhydrides is fairly well described by a simple atomic capture model in which the capture probability on the hydrogen dramatically increases as the hydrogen atom is separated from the strongly electronegative C 2 O 3 group. Both effects are consistent with a correlation between pion capture and electron density on hydrogen atoms. (Author) (38 refs., 4 tabs., 7 figs.)

  15. Gauge invariance and the electromagnetic current of composite pions

    International Nuclear Information System (INIS)

    The Global Color-symmetry Model of QCD is extended to deal with a background electromagnetic field, and the associated conserved current is identified for the finite size bar qq pion modes at tree level. A well-defined truncation issued that factorizes the bilocal pion field into a local field variable and a hadronic form factor having a ladder Bethe-Salpeter content. The associated pion charge form factor is formulated. These developments are used to provide an illustration of how an effective hadronic action containing form factors may be electromagnetically coupled in a gauge invariant way that is accountable to its field substructure. In particular, the Ward-Takahashi identity for the photon vertex appropriate to the localized pion fields is seen to contain the hadronic form factors. In this context, gauge invariance of the effective hadronic action also requires recognition of the fact that the free inverse propagator for the localized pion field gauge transforms due to the substructure field content that has been absorbed into it

  16. Sketching the pion's valence-quark generalised parton distribution

    Directory of Open Access Journals (Sweden)

    C. Mezrag

    2015-02-01

    Full Text Available In order to learn effectively from measurements of generalised parton distributions (GPDs, it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL truncation of QCD's Dyson–Schwinger equations and exemplified via the pion's valence dressed-quark GPD, Hπv(x,ξ,t. Our analysis focuses primarily on ξ=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting Hπv(x,ξ=±1,t with the pion's valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for Hπv(x,0,t, expressed as the Radon transform of a single amplitude. Therewith we obtain results for Hπv(x,0,t and the associated impact-parameter dependent distribution, qπv(x,|b→⊥|, which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ζ=2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.

  17. Chiral symmetry breaking and the pion quark structure

    International Nuclear Information System (INIS)

    Bernard, V.

    1986-01-01

    The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr

  18. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  19. Tridimensional Event Visualization for the ATLAS Calorimeter

    CERN Document Server

    Filho, L M A; The ATLAS collaboration; Vitillo, R; Martin, B

    2010-01-01

    The ATLAS detector has been commissioned with cosmic rays. For this commissioning phase, a bunch of software tools has been developed for supporting data analysis. Among ATLAS subdetectors, commissioning the calorimeter system demanded a considerable effort due to its segmentation into seven detection layers, which produces more than a hundred thousand readout channels. Tasks like performance evaluation of the calorimeter, calibration and noisy or dead channel detection benefit a lot from cosmic muon track visualization, which facilitates the identification of the activated cells in the calorimeter. The coherence of the reconstructed data can be visually checked and potential problems can be detected in a easier way. This work presents a 3-D visualization tool for the ATLAS calorimeter system, which provides a smooth integration with analyses currently performed by the ATLAS community. The tool structure and some applications with reconstructed data are presented. Due to its 3-D graphical interface, the propo...

  20. Physics objects for top quark physics in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00148070; The ATLAS collaboration

    2016-01-01

    Top quark physics measurements performed using data from the ATLAS detector at the LHC rely on efficient reconstruction and precise calibration of leptons, jets and missing transverse energy. A review of the techniques used to reconstruct such objects is given, with an emphasis on the uncertainties achieved for energy calibration and efficiency measurements, illustrated with the impact on key top quark physics results.

  1. Physics objects for top quark physics in ATLAS

    CERN Document Server

    Hawkings, Richard

    2016-01-01

    Top quark physics measurements performed using data from the ATLAS detector at the LHC rely on efficient reconstruction and precise calibration of leptons, jets and missing transverse energy. A review of the techniques used to reconstruct such objects is given, with an emphasis on the uncertainties achieved for energy calibration and efficiency measurements, illustrated with their impact on key top quark physics results.

  2. Study of the incident pion deflection in passing through atomic nucleus

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.; Pluta, J.

    1982-01-01

    Pion-xenon nucleus collision events at 3.5 GeV/c momentum are studied in which the incident pion is deflected only, without particle production; the deflection is accompanied by emission of nucleons. The multiplicity of the protons emitted is a measure of the nuclear matter layer thickness passed by the pion. It can be concluded that: a) a definite simple relation exists between the pion deflection angle and the thickness of the nuclear matter layer traversed by this pion; b) the deflection angle of the incident pion increases in a definite manner with increasing the thickness of the nuclear matter layer traversed by this pion; c) the average kinetic energy, average longitudinal momentum and average transverse momentum of the protons emitted do not depend on the pion deflection angle

  3. Site Calibration

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...... is detailed described in [1] and [2]. All parts of the sensors and the measurement system have been installed by DTU Wind Energy....

  4. Radiobiological work using a negative pion beam at the Rutherford Laboratory 1971-76

    International Nuclear Information System (INIS)

    Ellis, R.E.; Lindop, P.J.; Coggle, J.E.; Fraser, G.

    1976-08-01

    The subject is discussed in two sections: physics experiments (including, inter alia, dose measurement, LET distribution, radiation products of spallation); radiobiological studies (including separate reports as follows: review of experimental programme; some in vivo effects of negative pions in mice; survival and recovery of Hela cells in vitro; negative pion dose-response curves for frozen Hela cells; response of vicia faba to irradiation with negative pions; pion experiments with chromosome aberrations). (U.K.)

  5. Threshold pion production in NN→dπ and γN→Nπ

    International Nuclear Information System (INIS)

    Korkmaz, E.

    1993-01-01

    Specific threshold pion production studies are discussed. The NN→dπ results provide a concise description of the pion production amplitudes at threshold. The charged-pion γN→Nπ measurement should complement recent (and upcoming) neutral-pion experiments, providing a test of our understanding of the role of chiral symmetry in the strong interaction. (author) 5 tabs., 17 figs., 22 refs

  6. Pion-nucleon vertex function and the Chew-Low model

    International Nuclear Information System (INIS)

    Nutt, W.T.

    1977-01-01

    We provide an interpretation of the cutoff function used in the Chew-Low theory of pion-nucleon scattering. It is shown that this function may be related to the pion-pion interaction which is not explicitly considered in the Chew-Low approach. Using a previously developed model for the pion-nucleon vertex function, we then perform a ''parameter-free'' Chew-Low calculation which predicts the P 33 resonance quite well

  7. Measurement of the charged pion polarizability at COMPASS

    International Nuclear Information System (INIS)

    Nagel, Thiemo Christian Ingo

    2012-01-01

    The reaction π - +Z→π - +γ+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities α π and β π whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as α π =(1.9±0.7 stat. ±0.8 syst. ) x 10 -4 fm 3 from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of α π +β π =0.

  8. Pions as collective modes in the glueball condensate vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, T.H.; Zahed, I.

    1987-07-01

    The glueball condensate vacuum model is extended to incorporate the effects of light quarks. The resulting model exhibits spontaneous breaking of chiral SU(2)/sub f/ symmetry, and has a new kind of collective excitations, pions, which are distinct from the usual bag-model-type states. The dynamics of the pions are described by a sigma model, and the parameters and f/sub ..pi../ are calculated in terms of the radius R of the vacuum cells. The pion mass is related to and m/sub q/ via the usual partial conservation of axial-vector current relation. The model is extended to broken SU(3)/sub f/ using lowest-order chiral perturbation theory, and a mass formula for the eta' meson is obtained by including effects of the axial anomaly.

  9. Measurement of the charged pion polarizability at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Thiemo Christian Ingo

    2012-09-26

    The reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities {alpha}{sub {pi}} and {beta}{sub {pi}} whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as {alpha}{sub {pi}}=(1.9{+-}0.7{sub stat.}{+-}0.8{sub syst.}) x 10{sup -4} fm{sup 3} from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of {alpha}{sub {pi}}+{beta}{sub {pi}}=0.

  10. Pion-Skyrmion scattering: collective coordinates at work

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-06-01

    It is argued that the Skryme model, and more generally, the picture of the nucleon as a chiral soliton, can give a qualitatively correct picture of pion-nucleon scattering, considering both group-theoretic and more scheme-dependent results. The properties of the nucleon and its excited states in large-N quantum chromodynamics are discussed qualitatively. Then the pion-nucleon S-matrix is reduced. It is found that the model succeeds at the first level of calculation in producing many of the features of pion-nucleon scattering which are revealed by experiment, but that many aspects of the description need to be better understood, including the treatment of nonleading corrections near threshold and the inclusion of inelastic channels. 22 refs., 8 figs

  11. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  12. QCD-based pion distribution amplitudes confronting experimental data

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Mikhajlov, S.V.; Stefanis, N.G.

    2001-01-01

    We use QCD sum rules with nonlocal condensates to recalculate more accurately the moments and their confidence intervals of the twist-2 pion distribution amplitude including radiative corrections. We are thus able to construct an admissible set of pion distribution amplitudes which define a reliability region in the a 2 , a 4 plane of the Gegenbauer polynomial expansion coefficients. We emphasize that models like that of Chernyak and Zhitnitsky, as well as the asymptotic solution, are excluded from this set. We show that the determined a 2 , a 4 region strongly overlaps with that extracted from the CLEO data by Schmedding and Yakovlev and that this region is also not far from the results of the first direct measurement of the pion valence quark momentum distribution by the Fermilab E791 collaboration. Comparisons with recent lattice calculations and instanton-based models are briefly discussed

  13. Low-energy photo- and electroproduction for physical pions

    International Nuclear Information System (INIS)

    MacMullen, J.T.

    1979-02-01

    The background resonance Δ(1230), Nsup(*)(1520), Nsup(*)(1470) and Nsup(*)(1535)pion and axial-vector amplitudes are first calculated in the soft pion and on-shell configuration, respectively. Then a comparison is made with the usual soft pion theorems and on-shell low-energy expansions of current algebra as worked out in the previous paper. The agreement is good and we also deduce a nucleon dipole form factor axial-vector mass of msub(A)approximately equal to 1,23 GeV. Finally an approximate value for the non-strange current quark mass of m equal to 0,64 +- 1,11μ is extracted from the data

  14. Reggeon and pion contributions in exclusive diffractive processes at HERA

    International Nuclear Information System (INIS)

    Golec-Biernat, K.; Kwiecinski, J.; Szczurek, A.

    1997-01-01

    The contribution of subleading f 2 , ω, a 2 and ρ reggeons to the diffractive structure function F 2 D(3) (x P , β, Q 2 )are estimated. In addition we include the pion exchange which was recently found to be responsible for the violation of the Gottfried Sum Rule. The reggeon and pion contribution lead to a violation of the factorization of the diffractive structure function. The diffractive structure function is separated into the contributions with leading proton Δ (n) F 2 D /Δ (p) F 2 D as a function ox x P in the interval 10 -2 P -1 . The effect is due to the exchange of the isovector a 2 and ρ reggeons at smaller x P and the pion exchange at x P > 10 -2 . (author). 27 refs, 4 figs

  15. On pion-nucleus scattering, paper-I

    International Nuclear Information System (INIS)

    Begum, L.; Nahar, W.; Haque, Sangita; Rahman, S. Nasmin; Rahman, Md.A.

    2003-06-01

    The strong absorption model of Frahn and Venter is used to study the elastic scattering of pions at energies below and above the Delta resonance from a number of nuclei between 14 N and 152 Sm. A reasonable good fit is obtained in each case over the entire angular range except for a few cases of 65 and 80 MeV data where clearly the strong absorption conditions are not perfectly satisfied. The best fit parameters values of the model and their systematics are discussed. The inelastic scattering of pions is then studied. Pions leading to the lowest 2 + and 3 - collective states in some nuclei are analyzed. Again a good account of the inelastic scattering processes is possible without any readjustment of any elastic scattering parameters. The relevant deformation parameters are extracted. The proton and neutron matrix elements M p and M n are extracted from the proton and neutron deformation parameters β p and β n respectively. (author)

  16. Relativistic generalizations of simple pion-nucleon models

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1981-01-01

    A relativistic, partial wave N/D dispersion theory is developed for low energy pion-nucleon elastic scattering. The theory is simplified by treating crossing symmetry only to lowest order in the inverse nucleon mass. The coupling of elastic scattering to inelastic channels is included by taking the necessary inelasticity from experimental data. Three models are examined: pseudoscalar coupling of pions and nucleons, pseudovector coupling, and a model in which all intermediate antinucleons are projected out of the amplitude. The phase shifts in the dominant P 33 channel are quantitatively reproduced for P/sub lab/ 33 phase shifts. Thus a model of the pion-nucleon interaction which does not include antinucleon degrees of freedom is found to be unphysical

  17. PIGMI: a design report for Pion Generator for Medical Irradiations

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1981-09-01

    PIGMI (Pion Generator for Medical Irradiations) is an integrated linear accelerator (linac) system developed under the auspices of the National Cancer Institute for specific application to cancer treatment in a hospital environment. In its full configuration, PIGMI is a proton linac that is far smaller, less expensive, and more reliable than previous machines that produce pions. Subsets of PIGMI technology can be used with equal advantage to generate beams of other particles (such as neutrons, protons, or heavy ions) that may be of interest for radiotherapy, radioisotope production, or other applications. The dramatic performance and cost advantages of this new breed of acceleraor result from a number of improvements. In the low-energy portion of the machine, a new type of low-energy linac (the radio-frequency quadrupole[RFQ]) produces an exceptionally good quality beam, and uses a very simple 30-kV injector. In the second part of the machine (the drift-tube linac [DTL]), high accelerating gradients are now achievable with consequent reductions in machine length. Another new structure (the disk and washer [DAW]) will be used in the third and final section of the accelerator; this portion will also be relatively short and require few power amplifiers. The entire machine is designed for ease of operation and high reliability. The pion-production machine, discussed in this report, accelerates a 100-μA average proton-beam current to 650 MeV; use of an efficient pion-collection channel would result in an average pion flux of over 100 rad/min in a volume of about 1 l. Pion-channel design is not treated in this report. Accelerator construction cost is estimated at $10 million (1980 dollars); site preparation and treatment facility costs would bring the cost of a complete facility to an estimated $25 million

  18. Multiplicity fluctuations of pions and protons at SPS energy–An in ...

    Indian Academy of Sciences (India)

    We compute the factorial correlators to study the dynamical fluctuations of pions and a combination of pions and protons (compound multiplicity) in 32S–AgBr interactions at 200 A GeV. The study reveals that for both pion and compound multiplicity the correlated moments increase with the decrease in bin–bin separation , ...

  19. Threshold pion electroproduction at large momentum transfers; Threshold Pion-Elektroproduktion bei grossen Energieuebertraegen

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Andreas

    2008-02-15

    We consider pion electroproduction close to threshold for Q{sup 2} in the region 1-10 GeV{sup 2} on a nucleon target. The momentum transfer dependence of the S-wave multipoles at threshold, E{sub 0+} and L{sub 0+}, is calculated in the chiral limit using light-cone sum rules. Predictions for the cross sections in the threshold region are given taking into account P-wave contributions that, as we argue, are model independent to a large extent. The results are compared with the SLAC E136 data on the structure function F{sub 2}(W,Q{sup 2}) in the threshold region. (orig.)

  20. Study of the Production of Single Pions in Pion-proton Collisions near Threshold

    CERN Multimedia

    2002-01-01

    This experiment aims at a complete-kinematics measurement of the processes @p|-p @A @p|-@p|+n and @p|+p @A @p|+@p|+n in the region of incident momenta between 300 MeV/c and 460 MeV/c. It uses the Omicron Spectrometer with detectors placed in the magnetic field close to a 12 atm. hydrogen gas target. The apparatus has an acceptance of 4\\% for the processes to be studied. \\\\ \\\\ Their threshold is at 279 MeV/c and pion production in this region is interesting from the point of view of the determination of transformation properties of the chiral-symmetry-breaking part of the Lagrangian.

  1. Scaling study of the pion electroproduction cross sections and the pion form factor

    International Nuclear Information System (INIS)

    Tanja Horn; Xin Qian; John Arrington; Razmik Asaturyan; Fatiha Benmokthar; Werner Boeglin; Peter Bosted; Antje Bruell; Eric Christy; Eugene Chudakov; Ben Clasie; Mark Dalton; AJI Daniel; Donal Day; Dipangkar Dutta; Lamiaa El Fassi; Rolf Ent; Howard Fenker; J. Ferrer; Nadia Fomin; H. Gao; K Garrow; Dave Gaskell; C Gray; G. Huber; M. Jones; N Kalantarians; C. Keppel; K Kramer; Y Li; Y Liang; A. Lung; S Malace; P. Markowitz; A. Matsumura; D. Meekins; T Mertens; T Miyoshi; H. Mykrtchyan; R. Monson; T. Navasardyan; G. Niculescu; I. Niculescu; Y. Okayasu; A. Opper; C Perdrisat; V. Punjabi; A. Rauf; V. Rodriguez; D. Rohe; J Seely; E Segbefia; G. Smith; M. Sumihama; V. Tadevoyan; L Tang; V. Tvaskis; A. Villano; W. Vulcan; F. Wesselmann; S. Wood; L. Yuan; X. Zheng

    2007-01-01

    The 1 H(e,e(prime)π + )n cross section was measured for a range of four-momentum transfer up to Q 2 =3.91 GeV 2 at values of the invariant mass, W, above the resonance region. The Q 2 -dependence of the longitudinal component is consistent with the Q 2 -scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of Q 2 . Pion form factor results, while consistent with the Q 2 -scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at Q 2 =3.91 GeV 2

  2. Nonpartonic Effects in Pion Electroproduction in the Hermes Kinematical Region

    International Nuclear Information System (INIS)

    Uleshchenko, V.; Szczurek, A.

    2002-01-01

    The presentation is concerned with higher twist corrections of nonpartonic origin to semi-inclusive observables in the kinematical region relevant for the HERMES experiment. We demonstrate a strong impact of the VDM-like interaction and the exclusive production of ρ 0 meson on the extraction of the (anti)d - (anti)u asymmetry from charged pion DIS multiplicities. We also show that it is the exclusive- ρ 0 channel which accounts for the experimentally observed effect of the excess of charged over neutral pions produced at large z. (author)

  3. Neutral pion form factor measurement by the NA62 experiment

    Science.gov (United States)

    Zamkovsky, Michal; Ambrosino, F.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Baldini, W.; Balev, S.; Batley, J. R.; Behler, M.; Bifani, S.; Biino, C.; Bizzeti, A.; Blazek, T.; Bloch-Devaux, B.; Bocquet, G.; Bolotov, V.; Bucci, F.; Cabibbo, N.; Calvetti, M.; Cartiglia, N.; Ceccucci, A.; Cenci, P.; Cerri, C.; Cheshkov, C.; Chze, J. B.; Clemencic, M.; Collazuol, G.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; Cundy, D.; Dabrowski, A.; DAgostini, G.; Dalpiaz, P.; Damiani, C.; Danielsson, H.; De Beer, M.; Dellacasa, G.; Derr, J.; Dibon, H.; Di Filippo, D.; DiLella, L.; Doble, N.; Duk, V.; Engelfried, J.; Eppard, K.; Falaleev, V.; Fantechi, R.; Fidecaro, M.; Fiorini, L.; Fiorini, M.; Fonseca Martin, T.; Frabetti, P. L.; Fucci, A.; Gallorini, S.; Gatignon, L.; Gersabeck, E.; Gianoli, A.; Giudici, S.; Gonidec, A.; Goudzovski, E.; Goy Lopez, S.; Gushchin, E.; Hallgren, B.; Hita-Hochgesand, M.; Holder, M.; Hristov, P.; Iacopini, E.; Imbergamo, E.; Jeitler, M.; Kalmus, G.; Kekelidze, V.; Kleinknecht, K.; Koval, M.; Kozhuharov, V.; Kubischta, W.; Kurshetsov, V.; Lamanna, G.; Lazzeroni, C.; Lenti, M.; Leonardi, E.; Litov, L.; Lurkin, N.; Madigozhin, D.; Maier, A.; Mannelli, I.; Marchetto, F.; Marel, G.; Markytan, M.; Marouelli, P.; Martini, M.; Masetti, L.; Massarotti, P.; Mazzucato, E.; Michetti, A.; Mikulec, I.; Misheva, M.; Molokanova, N.; Monnier, E.; Moosbrugger, U.; Morales Morales, C.; Moulson, M.; Movchan, S.; Munday, D. J.; Napolitano, M.; Nappi, A.; Neuhofer, G.; Norton, A.; Numao, T.; Obraztsov, V.; Palladino, V.; Patel, M.; Pepe, M.; Peters, A.; Petrucci, F.; Petrucci, M. C.; Peyaud, B.; Piandani, R.; Piccini, M.; Pierazzini, G.; Polenkevich, I.; Popov, I.; Potrebenikov, Y.; Raggi, M.; Renk, B.; Retire, F.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Salamon, A.; Saracino, G.; Savri, M.; Scarpa, M.; Semenov, V.; Sergi, A.; Serra, M.; Shieh, M.; Shkarovskiy, S.; Slater, M. W.; Sozzi, M.; Spadaro, T.; Stoynev, S.; Swallow, E.; Szleper, M.; Valdata-Nappi, M.; Valente, P.; Vallage, B.; Velasco, M.; Veltri, M.; Venditti, S.; Wache, M.; Wahl, H.; Walker, A.; Wanke, R.; Widhalm, L.; Winhart, A.; Winston, R.; Wood, M. D.; Wotton, S. A.; Yushchenko, O.; Zinchenko, A.; Ziolkowski, M.

    2017-07-01

    The NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger for decays into electrons in 2007. The kaon beam represents a source of tagged neutral pion decays in vacuum. A measurement of the electromagnetic transition form factor slope of the neutral pion in the time-like region from ∼1 million fully reconstructed π 0 Dalitz decay is presented. The limits on dark photon production in π 0 decays from the earlier kaon experiment at CERN, NA48/2, are also reported.

  4. Pion production in nucleon-nucleon collisions at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Baru, Vadim [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Epelbaum, Evgeny [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Filin, Arseniy [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, D-53115 Bonn (Germany); Haidenbauer, Johann; Hanhart, Christoph [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Kudryavtsev, Alexander [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Lensky, Vadim [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Villazzano (Trento) (Italy); Meissner, Ulf G. [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2010-07-01

    With the advent of chiral perturbation theory, the low-energy effective field theory of QCD, high accuracy calculations for hadronic reactions with a controlled error estimation have become possible. We survey the recent developments in the reaction NN{yields}NN{pi} in chiral EFT. We argue that the counting scheme that acknowledges the large momentum transfer between the initial and the final nucleons allows for a consistent description of s- and p-wave pion production. The status of the theory for pion production in the isospin conserving case allows us to challenge charge symmetry breaking effects recently observed experimentally in pn{yields}d{pi}{sup 0}.

  5. Towards a dispersive determination of the pion transition form factor

    OpenAIRE

    Leupold Stefan; Hoferichter Martin; Kubis Bastian; Niecknig Franz; Schneider Sebastian P.

    2018-01-01

    We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.

  6. Exclusive measurements of neutral pion production at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Turriso, R. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Riggi, F.; Russo, G.; Turriso, R.; Bellia, G.; Migneco, E. [Catania Univ. (Italy). Ist. di Fisica; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; FInocchiaro, P.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Peghaire, A. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1995-12-31

    Neutral pion production has been studied in the {sup 36}Ar + {sup 27}Al reaction at 94 MeV/ nucleon with the aim to get a quantitative estimate of the impact parameter involved in the process. A near 4{pi} multidetector has been used to detect both gamma rays originating from the {pi}deg decay and associated charged particles. The charged particle multiplicity has been used in the present analysis as a global variable to extract the impact parameter scale. A comparison with Boltzmann-Nordheim-Vlasov (BNV) calculations, which take into account the effect of the pion reabsorption in the nuclear matter, has been performed. (author) 23 refs.

  7. Exclusive measurements of neutral pion production at intermediate energies

    International Nuclear Information System (INIS)

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Turriso, R.; Riggi, F.; Russo, G.; Turriso, R.; Bellia, G.; Migneco, E.; Peghaire, A.

    1995-01-01

    Neutral pion production has been studied in the 36 Ar + 27 Al reaction at 94 MeV/ nucleon with the aim to get a quantitative estimate of the impact parameter involved in the process. A near 4π multidetector has been used to detect both gamma rays originating from the πdeg decay and associated charged particles. The charged particle multiplicity has been used in the present analysis as a global variable to extract the impact parameter scale. A comparison with Boltzmann-Nordheim-Vlasov (BNV) calculations, which take into account the effect of the pion reabsorption in the nuclear matter, has been performed. (author)

  8. Capture and transfer of stopped pions in alcohols

    International Nuclear Information System (INIS)

    Harston, M.R.; Armstrong, D.S.; Measday, D.F.; Stanislaus, S.; Weber, P.; Horvath, D.

    1990-02-01

    The pion charge exchange probability in hydrogen for stopped π - has been measured for a series of alcohols. The relative atomic capture probabilities for hydrogen in different chemical environments as well as for the other molecular constituents were extracted from the data using a phenomenological approach. The results allow the prediction of the charge exchange probability in other molecules of similar chemical structure. The charge exchange probability in deuterated methanols was measured and compared to the prediction of our model. A comprehensive picture is obtained if pion transfer from hydrogen to deuterium is included

  9. Evidence for delta-hole components from pion reactions

    International Nuclear Information System (INIS)

    Morris, C.L.

    1982-01-01

    Some anomalies observed in pion-induced reactions have been qualitatively explained with a model which includes Δ 3 3 admixtures in low lying nuclear states. Semi-quantitative analysis of these effects indicates the amplitudes for the Δ 3 3 admixtures necessary to explain these effects are on the order of a few percent. Although a more rigorous theoretical treatment of this problem is necessary, it appears that pion-induced reactions may provide a tool with which the spectroscopy of these Δ 3 3 -admixtures can be studied

  10. Generalized parton distributions for the pion in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M.; Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation). Kafedra Teoreticheskoj Fiziki; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2005-05-01

    Generalized parton distributions provide a unified parameterization of hadron structure and allow one to combine information from many different observables. Lattice QCD calculations already provide important input to determine these distributions and hold the promise to become even more important in the future. To this end, a reliable extrapolation of lattice calculations to the physical quark and pion masses is needed. We present an analysis for the moments of generalized parton distributions of the pion in one-loop order of chiral perturbation theory. (orig.)

  11. Generalized parton distributions for the pion in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchroton DESY, D-22603 Hamburg (Germany); Manashov, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany) and Department of Theoretical Physics, Sankt-Petersburg State University, St. Petersburg (Russian Federation)]. E-mail: alexander.manashov@physik.uni-regensburg.de; Schaefer, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2005-08-25

    Generalized parton distributions provide a unified parameterization of hadron structure and allow one to combine information from many different observables. Lattice QCD calculations already provide important input to determine these distributions and hold the promise to become even more important in the future. To this end, a reliable extrapolation of lattice calculations to the physical quark and pion masses is needed. We present an analysis for the moments of generalized parton distributions of the pion in one-loop order of chiral perturbation theory.

  12. Towards a dispersive determination of the pion transition form factor

    Directory of Open Access Journals (Sweden)

    Leupold Stefan

    2018-01-01

    Full Text Available We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.

  13. Measurement of the Charged Pion Electromagnetic Form Factor

    International Nuclear Information System (INIS)

    J. Volmer; David Abbott; H. Anklin; Chris Armstrong; John Arrington; K. Assamagan; Steven Avery; Oliver K. Baker; Henk Blok; C. Bochna; Ed Brash; Herbert Breuer; Nicholas Chant; Jim Dunne; Tom Eden; Rolf Ent; David Gaskell; Ron Gilman; Kenneth Gustafsson; Wendy Hinton; Garth Huber; Hal Jackson; Mark K. Jones; Cynthia Keppel; P.H. Kim; Wooyoung Kim; Andi Klein; Doug Koltenuk; Meme Liang; George Lolos; Allison Lung; David Mack; D. McKee; David Meekins; Joseph Mitchell; H. Mkrtchian; B. Mueller; Gabriel Niculescu; Ioana Niculescu; D. Pitz; D. Potterveld; Liming Qin; Juerg Reinhold; I.K. Shin; Stepan Stepanyan; V. Tadevosian; L.G. Tang; R.L.J. van der Meer; K. Vansyoc; D. Van Westrum; Bill Vulcan; Stephen Wood; Chen Yan; W.X. Zhao; Beni Zihlmann

    2001-01-01

    Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data

  14. SUSY (ATLAS)

    CERN Document Server

    Sopczak, Andre; The ATLAS collaboration

    2017-01-01

    During the data-taking period at LHC (Run-II), several searches for supersymmetric particles were performed. The results from searches by the ATLAS collaborations are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.

  15. SUSY (ATLAS)

    CERN Document Server

    Sopczak, Andre; The ATLAS collaboration

    2017-01-01

    During the LHC Run-II data-taking period, several searches for supersymmetric particles were performed by the ATLAS collaboration. The results from these searches are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.

  16. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  17. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  18. Longitudinal Lelectroproduction of Charged Pions on Hydrogen, Deuterium, and Helium 3

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, David [Oregon State Univ., Corvallis, OR (United States)

    2001-03-22

    Conventional pictures of nuclear interactions, in which the pion mediates the long/medium range part of the nuclear force, predict an enhancement of the virtual pion cloud in nuclei relative to that in the free nucleon. Jefferson Lab Experiment E91003 measured charged pion electroproduction from Hydrogen, Deuterium, and Helium-3. The longitudinal cross section, which in the limit of pole dominance can be viewed as the quasifree knockout of a virtual pion, was extracted via a Rosenbluth separation. The longitudinal cross sections from Deuterium and Helium-3 were compared to Hydrogen to look for signatures of the nuclear pions.

  19. Measurement of the pion form factor at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Mack, D.J. [CEBAF, Newport News, VA (United States)

    1994-04-01

    One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.

  20. Resonance production and decay in pion induced collisions with HADES

    Directory of Open Access Journals (Sweden)

    Scozzi Federico

    2017-01-01

    Full Text Available The main goal of the High Acceptance Di-Electron experiment (HADES at GSI is the study of hadronic matter in the 1-3.5 GeV/nucleon incident energy range. HADES results on e+ e− production in proton-nucleus reactions and in nucleus-nucleus collisions demonstrate a strong enhancement of the dilepton yield relative to a reference spectrum obtained from elementary nucleon-nucleon reactions. These observations point to a strong modification of the in-medium ρ spectral function driven by the coupling of the ρ to baryon-resonance hole states. However, to scrutinize this conjecture, a precise study of the role of the ρ meson in electromagnetic baryon-resonance transitions in the time-like region is mandatory. In order to perform this study, HADES has started a dedicated pion-nucleon programme. For the first time a combined measurement of hadronic and dielectron final states have been performed in π−-N reactions at four different pion beam momenta (0.656, 0.69, 0.748 and 0.8 GeV/c. First results on exclusive channels with one pion π−-p and two pions (nπ+π−, pπ−π0 in the final state, which are currently analysed within the partial wave analysis (PWA framework of the Bonn-Gatchina group, are discussed. Finally first results for the dielectron analysis will be shown.

  1. Information on pion-nucleus optical potentials from elastic scattering

    International Nuclear Information System (INIS)

    Friedman, E.

    1983-02-01

    Data on the elastic scattering of pions by nuclei between 20 and 230 MeV is analyzed in an almost model-independent fashion. The real part of the potential, which is described by a bias-free Fourier-Bessel series, is found to have the typical Kisslinger or Laplacian-like shape between 30 and 80 MeV

  2. Dynamical pions and kaons in the glueball condensate vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, T.H.; Klabuar, D.; Zahed, I.

    1987-07-01

    The model for pions as collective modes in the glueball condensate vacuum is extended to incorporate time-independent fields and massive quarks. The quark mass dependence of and f/sub K/ is calculated without resorting to chiral perturbation theory. Alternative schemes for introducing time dependence are discussed and our model is compared to potential-type models.

  3. Muon identification and pion rejection in the 4th concept

    Indian Academy of Sciences (India)

    The dual-solenoid magnetic field allows the reconstruction and precision momentum measurement of muons down to a few GeV (just the energy loss in the 10-int calorimeter and the coil) and the dual-readout calorimeter provides a new, unique and powerful separation of muons from pions. We use test beam data for the ...

  4. Massive pions, anomalies and baryons in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, O. [Departament de Fisica and IFAE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Panico, G., E-mail: panico@phys.ethz.c [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Wulzer, A. [Institut de Theorie des Phenomenes Physiques, EPFL, CH-1015 Lausanne (Switzerland)

    2011-03-01

    We consider a holographic model of QCD, obtained by a very simple modification of the original construction, which describes at the same time the pion mass, the QCD anomalies and the baryons as topological solitons. We study in detail its phenomenological implications in both the mesonic and baryonic sectors and compare with the observations.

  5. On the QCD effective action for pions and vector mesons

    International Nuclear Information System (INIS)

    Golterman, M.F.L.; Hari Dass, N.D.

    1985-01-01

    The effective action for pions and ρ, A 1 and ω vector mesons is discussed with the generating functional for QCD as a starting point and including the anomalous terms that orginate from the axial anomaly. The effective action is coupled to the weak-electromagnetic sector of the standard model and its experimental consequences are discussed. (orig.)

  6. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  7. Subthreshold Production of Neutral Pions in Heavy Ion Collisions

    CERN Multimedia

    2002-01-01

    The pion production below the threshold at 290 MeV/u (corresponding to the minimum beam velocity at which pions can be produced in nucleon-nucleon collisions) is sensitive to coherent effects in the momentum distribution of the nucleons in the internuclear collision region. Such collective or coherent effects would manifest themselves in an enhancement of the observed cross section with respect to a prediction on the basis of model momentum distributions, e.g. from the Fermi gas model. \\\\ \\\\ With neutral pions such experiments can be extended to rather low energies and rather small cross sections (in the sub-@mb range) due to the fact that the @p|0's leave the composite nuclear system undisturbed by the Coulomb forces and that their decay $\\gamma$ rays can be detected with high efficiency also at very low pion momentum. In our experiments using |1|2C~ions of 60, 74 and 84~MeV/u and |1|80 of 84~MeV/u we were able to clearly sep from background from different sources. The large efficiency of the annular lead gl...

  8. Pion linac as an energy-tagged ν source

    Directory of Open Access Journals (Sweden)

    T. Goldman

    2008-12-01

    Full Text Available The energy spectrum and flux of neutrinos from a linear pion accelerator are calculated analytically under the assumption of a uniform accelerating gradient. The energy of a neutrino from this source reacting in a detector can be determined from timing and event position information.

  9. Critique of a pion exchange model for interquark forces

    International Nuclear Information System (INIS)

    Isgur, N.

    1999-01-01

    The author describes four serious defects of a widely discuss pion exchange model for interquark forces: it doesn't solve the ''spin-orbit problem'' as advertised, it fails to describe the internal structure of baryon resonances, it leads to disastrous conclusions when extended to mesons, and it is not reasonably connected to the physics of heavy-light systems

  10. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  11. Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R; Valderrama, M Pavon; Arriola, E Ruiz

    2007-06-14

    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.

  12. Neutral pion photoproduction on the proton at threshold

    International Nuclear Information System (INIS)

    Mazzucato, Eddy

    1987-01-01

    A precise determination of the neutral pion photoproduction amplitude on the proton at threshold has been obtained from differential cross-section measurements in the energy region close to threshold (145-173 MeV). The experiment was carried out at the Saclay Linac by using a monochromatic photon beam obtained by in-flight positron annihilation. The photon tagging system allowed a precise energy determination of the incoming beam with a resolution of about 1 MeV. The signature of a good event consisted in the observation of the neutral pion decay gammas in lead glass Cerenkov counters, in coincidence with the recoil proton detected in an active target made of plastic scintillators. The good energy resolution achieved on the energy of the recoil protons provided a precise determination of the differential cross-section. The analysis of the data in terms of multipoles gives a value for the threshold amplitude which is much smaller than the existing value extracted from higher energy experiments performed with untagged photon beams. The total cross-section in the high energy region is, however, in fairly good agreement with old measurements. The experimental value of the electric dipole agrees with several calculations based on dispersion relations. Yet, our measurement cannot be reproduced by the low-energy theorems extrapolated to the physical pion mass. This significant discrepancy exhibits clearly the importance of dispersive contributions in the case of neutral pion photoproduction at threshold. (author) [fr

  13. Delta: the first pion nucleon resonance - its discovery and applications

    International Nuclear Information System (INIS)

    Nagle, D.E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described

  14. Muon identification and pion rejection in the 4th concept

    Indian Academy of Sciences (India)

    Abstract. We describe a completely new way to reconstruct and identify muons with high efficiency and very high pion rejection in the 4th concept detector. The dual-solenoid magnetic field allows the reconstruction and precision momentum measurement of muons down to a few GeV (just the energy loss in the 10-λint ...

  15. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2017-01-01

    The LUCID detector is the main luminosity provider of the ATLAS experiment and the only one able to provide a reliable luminosity determination in all beam configurations, luminosity ranges and at bunch-crossing level. LUCID was entirely redesigned in preparation for Run II: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV and with 25 ns bunch-spacing. An innovative calibration system based on radioactive 207Bi sources deposited on the quartz window of the readout photomultipliers was implemented, resulting in the ability to control the detectors long time stability at few percent level. A description of the detector and its readout electronics will be given as well as preliminary results on the ATLAS luminosity measurement and related systematic uncertainties.

  16. The new European wind atlas

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib; Ejsing Jørgensen, Hans

    2014-01-01

    Today a number of well-established models and methodologies exist for estimating resources and design parameters, and in many cases they work well. This is true if good local data are available for calibrating the models or for verification. But the wind energy community is still hampered by many...... European Wind Atlas” aiming at reducing overall uncertainties in determining wind conditions; standing on three legs: A data bank from a series of intensive measuring campaigns; a thorough examination and redesign of the model chain from global, mesoscale to microscale models and creation of the wind atlas...... database. Although the project participants will come from the 27 member states it is envisioned that the project will be opened for global participation through test benches for model development and sharing of data – climatologically as well as experimental. Experiences from national wind atlases...

  17. Total cross sections for pion charge exchange on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, J.

    2006-04-28

    This work describes the measurement of total SCX cross sections employing a new 4{pi} scintillation counter to perform transmission measurements in the incident pion energy range from about 38 to 250 MeV. A small 4{pi} detector box consisting of thin plastic scintillators has been constructed. The transmission technique, which was used, relates the number of transmitted charged pions to that of incident beam pions and this way effectively counts events with neutral products. The incoming negative pions were counted by three beam defining counters before they hit a target of very well known size and chemical composition. The target was placed in the box detector which was not sensitive to the neutral particles resulting from the SCX. The total cross section for emerging neutral particles was derived from the comparison of the numbers of the incoming and transmitted charged particles. The total SCX cross section on hydrogen was derived from the transmissions of a CH{sub 2} target, a carbon target and an empty target. For a detailed offline analysis all TDC, QDC and FADC information was recorded in an event by event mode for each triggered beam event. Various corrections had to be applied to the data, such as random correction, the detection of neutrals in the detector, Dalitz decay, pion decay and the radiative pion capture. This measurement covers, as the only experiment, the whole {delta}-resonance and the sp-interference region in one single experimental setup and improves the available data base for the SCX reaction. It is shown that the description of the SCX cross sections is improved if the s-wave amplitudes, that have been fixed essentially by elastic pion-nucleon scattering data, is reduced by (4{+-}1.5)%. The exact value depends on the SCX literature data included and on the parameters of the {delta}{sup 0} Breit-Wigner resonance describing the p{sub 33}-waves. This shows that p-wave as well as s-wave effects should be considered in studies of isospin

  18. Total cross sections for pion charge exchange on the proton

    International Nuclear Information System (INIS)

    Breitschopf, J.

    2006-01-01

    This work describes the measurement of total SCX cross sections employing a new 4π scintillation counter to perform transmission measurements in the incident pion energy range from about 38 to 250 MeV. A small 4π detector box consisting of thin plastic scintillators has been constructed. The transmission technique, which was used, relates the number of transmitted charged pions to that of incident beam pions and this way effectively counts events with neutral products. The incoming negative pions were counted by three beam defining counters before they hit a target of very well known size and chemical composition. The target was placed in the box detector which was not sensitive to the neutral particles resulting from the SCX. The total cross section for emerging neutral particles was derived from the comparison of the numbers of the incoming and transmitted charged particles. The total SCX cross section on hydrogen was derived from the transmissions of a CH 2 target, a carbon target and an empty target. For a detailed offline analysis all TDC, QDC and FADC information was recorded in an event by event mode for each triggered beam event. Various corrections had to be applied to the data, such as random correction, the detection of neutrals in the detector, Dalitz decay, pion decay and the radiative pion capture. This measurement covers, as the only experiment, the whole Δ-resonance and the sp-interference region in one single experimental setup and improves the available data base for the SCX reaction. It is shown that the description of the SCX cross sections is improved if the s-wave amplitudes, that have been fixed essentially by elastic pion-nucleon scattering data, is reduced by (4±1.5)%. The exact value depends on the SCX literature data included and on the parameters of the Δ 0 Breit-Wigner resonance describing the p 33 -waves. This shows that p-wave as well as s-wave effects should be considered in studies of isospin symmetry breaking. Interestingly

  19. Pion scattering to 8- stretched states in 60Ni

    International Nuclear Information System (INIS)

    Clausen, B.L.

    1988-03-01

    Using the Energetic Pion Channel and Spectrometer at the Los Alamos Meson Physics Facility, differential cross sections for pion scattering were measured for ten previously known J/sup π/ = 8/sup /minus// stretched states in 60 Ni. A possible new pure isoscalar stretched state was also found. The data were taken near the /DELTA//sub 3,3/-resonance using 162 MeV incident pions and scattering angles of 65/degree/, 80/degree/, and 90/degree/ for π + and 65/degree/ and 80/degree/ for π/sup /minus//. The analysis of the 60 Ni data found that the use of Woods-Saxon wave functions in the theoretical calculations gave much better agreement with data than the use of the usual harmonic oscillator wave functions. The WS theory gave better predictions of: the angle at which the π/sup /minus// and π + angular distributions are maximum, the ratios of π/sup /minus// to π + cross sections for pure isovector states (which were much larger than unity), and the absolute size of the cross sections for all states (so that the normalization factor necessary to arrive at agreement of theory with data was closer to unity). The theoretical calculations used the distorted wave impulse approximation, including new methods for unbound states. The sensitivities of the calculations to input parameters were investigated. This analysis using WS wave functions was extended to five other nuclei ( 12 C, 14 C, 16 O, 28 Si, and 54 Fe) on which both pion scattering and electron scattering have been done. A significant improvement in arriving at a normalization factor close to unity was found when WS wave functions were consistently used for analyzing both pion and electron inelastic scattering data. 101 refs., 26 figs., 13 tabs

  20. ATLAS Recordings

    CERN Multimedia

    Steven Goldfarb; Mitch McLachlan; Homer A. Neal

    Web Archives of ATLAS Plenary Sessions, Workshops, Meetings, and Tutorials from 2005 until this past month are available via the University of Michigan portal here. Most recent additions include the Trigger-Aware Analysis Tutorial by Monika Wielers on March 23 and the ROOT Workshop held at CERN on March 26-27.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal.Feedback WelcomeOur group is making arrangements now to record plenary sessions, tutorials, and other important ATLAS events for 2007. Your suggestions for potential recording, as well as your feedback on existing archives is always welcome. Please contact us at wlap@umich.edu. Thank you.Enjoy the Lectures!

  1. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  2. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  3. Distributed processing and analysis of ATLAS experimental data

    CERN Document Server

    Barberis, D; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is taking data steadily since Autumn 2009, and collected so far over 5 fb-1 of data (several petabytes of raw and reconstructed data per year of data-taking). Data are calibrated, reconstructed, distributed and analysed at over 100 different sites using the World-wide LHC Computing Grid and the tools produced by the ATLAS Distributed Computing project. In addition to event data, ATLAS produces a wealth of information on detector status, luminosity, calibrations, alignments, and data processing conditions. This information is stored in relational databases, online and offline, and made transparently available to analysers of ATLAS data world-wide through an infrastructure consisting of distributed database replicas and web servers that exploit caching technologies. This paper reports on the experience of using this distributed computing infrastructure with real data and in real time, on the evolution of the computing model driven by this experience, and on the system performance during the...

  4. Distributed processing and analysis of ATLAS experimental data

    CERN Document Server

    Barberis, D; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is taking data steadily since Autumn 2009, collecting close to 1 fb-1 of data (several petabytes of raw and reconstructed data per year of data-taking). Data are calibrated, reconstructed, distributed and analysed at over 100 different sites using the World-wide LHC Computing Grid and the tools produced by the ATLAS Distributed Computing project. In addition to event data, ATLAS produces a wealth of information on detector status, luminosity, calibrations, alignments, and data processing conditions. This information is stored in relational databases, online and offline, and made transparently available to analysers of ATLAS data world-wide through an infrastructure consisting of distributed database replicas and web servers that exploit caching technologies. This paper reports on the experience of using this distributed computing infrastructure with real data and in real time, on the evolution of the computing model driven by this experience, and on the system performance during the first...

  5. Cosmic Ray Muons Timing in the ATLAS Detector

    International Nuclear Information System (INIS)

    Meirose, Bernhard

    2009-01-01

    In this talk I discuss the use of calorimeter timing both for detector commissioning and in searches for new physics. In particular I present real and simulated cosmic ray muons data (2007) results for the ATLAS Tile Calorimeter system. The analysis shows that several detector errors such as imperfect calibrations can be uncovered. I also demonstrate the use of ATLAS Tile Calorimeter's excellent timing resolution in suppressing cosmic ray fake missing transverse energy (E T ) in searches for supersymmetry.

  6. The ATLAS Liquid Argon Calorimeters: integration, installation and commissioning

    International Nuclear Information System (INIS)

    Tikhonov, Yu.

    2008-01-01

    The ATLAS liquid argon calorimeter system consists of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters positioned in three cryostats. Since May 2006 the LAr barrel calorimeter records regular calibration runs and takes cosmic muon data together with tile hadronic calorimeter in the ATLAS cavern. The cosmic runs with end-cap calorimeters started in April 2007. First results of these combined runs are presented

  7. Large-angle production of charged pions with incident pion beams on nuclear targets

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/...

  8. Study of the Two-pion Photoproduction on the Deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Lewis P. [Univ. of South Carolina, Columbia, SC (United States)

    2012-12-01

    Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the primary challenges in strong interaction physics. This interaction is governed by Quantum Chromodynamics (QCD), which is a theory for understanding the dynamics of strong. QCD displays the asymptotic freedom of hadrons at very short distances and also the confinement of quarks and gluons inside hadrons. However, solutions of this QCD theory in the non-perturbative domain of the interaction are extremely difficult to achieve, mainly because confinement happens on the hadronic scale on which the coupling constant is large and prevents any perturbative approach. Thus leaving us with strategies such as lattice QCD or formulating QCD sum rules to get around this problem. In exclusive hadron production the yN interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be investigated through the transition amplitudes to the N and Delta resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through meson photoproduction. To gain more detailed insight into this interaction, we look to probe the baryon structure of the nucleon and the photo-excited resonance decays through photon scattering off a deuteron producing two pions in the final state. This photoproduction process off the deuteron will be used to investigate known baryon resonances in the two pion channel. The two pion final state will be investigated for unraveling new information into the photo-coupling strengths. We want to explore final state interactions, search for properties of known resonances, and to explore the possibility of seeing missing states that are predicted by quark models but have not yet been found experimentally. Using the CEBAF Large

  9. Study of the Two Pion Photoproduction on Deuterium

    Science.gov (United States)

    Gauss, Lewis P. Graham, Jr.

    Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the primary challenges in strong inter-action physics. This interaction is governed by Quantum Chromodynamics (QCD), which is a theory for understanding the dynamics of strong. QCD displays the asymptotic freedom of hadrons at very short distances and also the confinement of quarks and gluons inside hadrons. However, solutions of this QCD theory in the non-perturbative domain of the interaction are extremely difficult to achieve, mainly because confinement happens on the hadronic scale on which the coupling constant is large and prevents any perturbative approach. Thus leaving us with strategies such as lattice QCD or formulating QCD sum rules to get around this problem. In exclusive hadron production the γN interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be investigated through the transition amplitudes to the N and Δ resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through meson photoproduction. To gain more detailed insight into this interaction, we look to probe the baryon structure of the nucleon and the photo-excited resonance decays through photon scattering off a deuteron producing two pions in the final state. This photoproduction process off the deuteron will be used to investigate known baryon resonances in the two pion channel. The two pion final state will be investigated for unraveling new information into the photo-coupling strengths. We want to explore final state interactions, search for properties of known resonances, and to explore the possibility of seeing missing states that are predicted by quark models but have not yet been found experimentally. Using the CEBAF Large Acceptance

  10. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the LHC collisions. To reconstruct trajectories of charged particles produced in these collisions, ATLAS tracking system is equipped with silicon planar sensors and drift‐tube based detectors. They constitute the ATLAS Inner Detector. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determine accurately its almost 36000 degrees of freedom. Thus the demanded precision for the alignment of the silicon sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Then the raw data with the hits information of the triggered tracks is stored in a calibration stream. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of ...

  11. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  12. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  13. Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products.

    Science.gov (United States)

    Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan

    2015-01-01

    Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm(3) water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in

  14. Experimental study of the effect of hadron shower leakage on the energy response and resolution of ATLAS hadron barrel prototype calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Rumyantsev, V.S.; Bogush, A.A.; Karapetyan, G.; Nessi, M.

    1996-01-01

    The hadronic shower longitudinal and lateral leakages and their effect on the pion response and energy resolution of ATLAS iron-scintillator barrel hadron prototype calorimeter have been investigated. The results are based on 100 GeV pion beam data at incidence angle Θ=10 deg. The fraction of the energy leaking out at the back of this calorimeter amounts to 1.8 % and agrees with the one for a conventional iron-scintillator calorimeter. Unexpected behaviour of the energy resolution as a function of leakage is observed: 6 % lateral leakage leads to 18 % improving of energy resolution in compare with the showers without leakage. 22 refs., 13 figs., 4 tabs

  15. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  17. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Polarization transfer in weak pion production off the nucleon

    Science.gov (United States)

    Graczyk, Krzysztof M.; Kowal, Beata E.

    2018-01-01

    Polarization transfer (PT) observables in the single pion production induced by the charged current interaction of the neutrino with the nucleon are examined. The polarization components of the final nucleon and the charged lepton are calculated within two models for the pion production. The predictions are made for neutrino energy of the order of 1 GeV as well as for the T2K energy distribution. It is demonstrated that the PT observables, the degree of polarization and the polarization components of outgoing fermions, are sensitive to assumptions about the nonresonant background model. In particular it is shown that the normal components of the polarization of the outgoing nucleon and the lepton are determined by the interference between the resonant (RES) and nonresonant (NB) amplitudes. Moreover, the sign of the normal component of the polarization of the charged lepton is fixed by the relative sign between the RES and the NB amplitudes.

  19. Experiments on the nuclear interactions of pions and electrons

    International Nuclear Information System (INIS)

    Minehart, R.C.; Ziock, K.O.H.

    1990-06-01

    This paper discusses: π + + d → 2p; Pion Absorption in 3 He; Pion Absorption in 4 He; Evidence for narrow structure in the analyzing power of the 3 He (rvec p, d)X reaction; Coherent η-Meson Production in the Reaction π- + 3 He → η + t; Search for heavy neutrinos; The search for fractionally charged particles; Search for the rare decay, μ + → e + + γ; A Precise Measurement of the π + → π 0 e + ν Decay Rate; Transverse and Longitudinal Response Functions for Several Nuclei near Q 2 = 1 (GeV/c) 2 ; The Q 2 -dependence of the 4 He (e, e'p) coincidence cross section at the quasielastic peak; The Response Function R LT in the reaction 16 O(e, e' p); and Absorption of anti-protons in heavy nuclei

  20. Effective Lagrangian Approach to pion photoproduction from the nucleon

    International Nuclear Information System (INIS)

    Fernandez-Ramirez, C.; Moya de Guerra, E.; Udias, J.M.

    2006-01-01

    We present a pion photoproduction model on the free nucleon based on an Effective Lagrangian Approach (ELA) which includes the nucleon resonances (Δ(1232), N(1440), N(1520), N(1535), Δ(1620), N(1650), and Δ(1700)), in addition to Born and vector meson exchange terms. The model incorporates a new theoretical treatment of spin-3/2 resonances, first introduced by Pascalutsa, avoiding pathologies present in previous models. Other main features of the model are chiral symmetry, gauge invariance, and crossing symmetry. We use the model combined with modern optimization techniques to assess the parameters of the nucleon resonances on the basis of world data on electromagnetic multipoles. We present results for electromagnetic multipoles, differential cross-sections, asymmetries, and total cross-sections for all one pion photoproduction processes on free nucleons. We find overall agreement with data from threshold up to 1 GeV in laboratory frame

  1. Pion Electroproduction form Helium 3, Deuterium, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Stephen Milton [Hampton Univ., Hampton, VA (United States)

    2002-05-01

    A series of measurements for pion electroproduction from helium-3, deuterium, and hydrogen were completed at the Thomas Jefferson National Accelerator Facility by the NucPi Collaboration. E91003 began taking data in February 1998 and was completed in April 1998. The longitudinal and transverse parts of the differential cross section were extracted, by means of a Rosenbluth type separation, in the direction parallel to the virtual photon, at Q 2 = 0.4 GeV 2 , for W = 1.15 and W = 1.6 GeV. The mass dependence of the longitudinal cross section should provide insight into the surprising apparent absence of any significant cross section enhancement due to excess pions in the nuclear medium.

  2. Pion form factor in QCD at intermediate momentum transfers

    Science.gov (United States)

    Braun, V. M.; Khodjamirian, A.; Maul, M.

    2000-04-01

    We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation: [∫du/uφπ(u)]/[∫du/uφasπ(u)]=1.1+/-0.1 at the scale of 1 GeV. Special attention is paid to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end-point) contribution and power-suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual PQCD result turns out to be of the order of 30% for Q2~1 GeV2.

  3. Goldstone pion and other mesons using a scalar confining interaction

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1994-01-01

    A covariant wave equation for q bar q interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks (π,ρ, and low lying excited states) and heavy quarks (ρ c , J/Ψ, and low lying excited states) are presented and discussed

  4. Quark mass functions and pion structure in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Institute Superior Tecnico; Gross, Franz L. [JLAB; Pena, Maria Teresa [CFTP, Institute Superior Tecnico; Stadler, Alfred [University of Evora

    2014-03-01

    We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.

  5. Single- and double-charge exchange at low pion energies

    International Nuclear Information System (INIS)

    Baer, H.W.

    1991-01-01

    A review is given of pion single- and double-charge exchange reactions at incident energies of 25 to 65 MeV leading to isobaric analog states, and in the case of double-charge exchange leading to the ground state of the residual nucleus. The crucial role of the higher nuclear transparency at low pion energies for the analysis of the data in terms of single and double scattering is demonstrated. The large effects on double-charge exchange produced by the spatial correlations in nuclear wave functions are evident. The data on 1f 7/2 nuclei at 35 MeV are used to establish the general validity of a shell-model-based two-amplitude model for these transitions. Recent measurements of the energy dependence between 25 and 65 MeV of double-charge exchange cross sections at forward angles are presented and discussed. 33 refs., 19 figs

  6. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Michael Joseph [Univ. of Colorado, Boulder, CO (United States)

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  7. Quark condensate effects on charmonium-pion scattering

    Indian Academy of Sciences (India)

    F S NAVARRA and M NIELSEN. Instituto de Fısica, Universidade de S˜ao Paulo, C.P. 66318, 05389-970 S˜ao Paulo, Brazil .... terms on the theoretical side and taking the limit p1µ —0 in the residue of the pion pole, one obtains for the contribution of .... The solid line gives the total J ψπ dissociation cross-section. Finally, we ...

  8. Coherent pion photoproduction from deuterium at intermediate energies

    International Nuclear Information System (INIS)

    Osland, P.; Rej, A.K.

    1975-12-01

    The coherent photoproduction of neutral pions on deuterons is studied at energies around the (3,3) resonance and discuss the effects of the Fermi motion, rescattering and kinematical approximations. The results are very dependent upon what kinematical approximations one adopts for the impulse approximation term, which dominates up to very large angles. Allowing for this uncertainty in the kinematics, our results are in good agreement with the most recent experimental data

  9. The development of the clinical pion program at TRIUMF

    International Nuclear Information System (INIS)

    Goodman, G.B.; Dixon, P.; Flores, A.; Harrison, R.W.; Lam, G.K.Y.; Ludgate, C.M.

    1985-01-01

    The authors have been treating brain and pelvic cancers with pions at TRIUMF since May, 1982. Studies focussed on dose optimization strategies, evolution of techniques, assessment of normal tissue and tumour responses and patient accruals. This presentation illustrates innovations using MRI and PET scanning in brain tumours and endoscopic photography and biopsy for bowel cancer. Results are presented to December, 1984 for 32 glioblastoma multiforme and 35 incurable pelvic cancer using a spot-san mode. Growth delay and survival curves is presented

  10. Pion form factor at intermediate momentum transfer in QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Smilga, A.V.

    1982-01-01

    A general method is proposed for the QCD based calculation of form factors at intermediate Q 2 and of the partial widths of the low-lying meson resonances. The basic idea is to use QCD sum rules for the vertex functions. With this method, the pion form factor at 0.5 2 2 is calculated. The results are in good agreement with experiment

  11. Nuclear compression effects on pion production in nuclear collisions

    International Nuclear Information System (INIS)

    Sano, M.; Gyulassy, M.; Wakai, M.; Kitazoe, Y.

    1985-01-01

    We show that the method of analyzing the pion excitation function proposed by Stock et al. may determine only a part of the nuclear matter equation of state. With the addition of missing kinetic energy terms the implied high density nuclear equation of state would be much stiffer than expected from conventional theory. A stiff equation of state would also follow if shock dynamics with early chemical freeze out were valid. (orig.)

  12. Relativistic description of directly interacting pions and nucleons

    International Nuclear Information System (INIS)

    Heller, L.

    1976-01-01

    The expected magnitudes of the leading relativistic effects on an off-energy-shell T matrix element are estimated using the Bakamjian--Thomas formulation of relativistic potential theory. For pion-nucleon scattering at medium energy, the two largest corrections are expected to result from the use of relativistic relative momenta rather than nonrelativistic values. The importance of additional terms depends upon the detailed behavior of the T matrix

  13. Determination of the pion-nucleon coupling constant

    International Nuclear Information System (INIS)

    Samaranayake, V.K.

    1977-06-01

    Forward dispersion relations are used to determine the pion-nucleon coupling constant and S-wave scattering lengths using a least squares fit with additional parameters introduced to take account of the uncertainties in the calculation of dispersion integrals. The values obtained are: f 2 = (78.0+- 2.1).10 -3 , a 1 -a 3 = (272.4+- 12.3).10 -3 , a 1 +2a 3 = (15.1+-10.4).10 -3

  14. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  15. Two-pion correlations in heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl→2π/sup +-/+X and Ne+NaF→2π - +X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions

  16. Pion transition form factor in k{sub T} factorization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hsiang-nan [Academica Sinica, Taipei, Taiwan (China). Inst. of Physics; Tsing-Hua Univ., Hsinchu, Taiwan (China). Dept. of Phyiscs; National Cheng-Kung Univ., Tainan, Taiwan (China). Dept. of Physics; National Cheng-Chi Univ, Taipei, Taiwan (China). Inst. of Applied Physics; Mishima, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-07-15

    It has been pointed out that the recent BaBar data on the {pi}{gamma}{sup *} {yields} {gamma} transition form factor F{sub {pi}}{sub {gamma}}(Q{sup 2}) at low (high) momentum transfer squared Q{sup 2} indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k{sub T} factorization theorem: the increase of the measured Q{sup 2}FF{sub {pi}}{sub {gamma}}(Q{sup 2}) for Q{sup 2} > 10 GeV{sup 2} is explained by convoluting a k{sub T} dependent hard kernel with a flat pion distribution amplitude, k{sub T} being a parton transverse momentum. The low Q{sup 2} data are accommodated by including the resummation of {alpha}{sub s} ln{sup 2}x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q{sup 2}. (orig.)

  17. Two-pion correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl..-->..2..pi../sup +-/+X and Ne+NaF..-->..2..pi../sup -/+X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions.

  18. Precision determination of the lifetime of the neutral pion

    CERN Multimedia

    2002-01-01

    The experiment aims at a determination of the lifetime of the neutral pion with an accuracy of 1\\%, as against at present 5\\% for the best measurement by the indirect, Primakoff method, and 18\\% by a direct measurement. \\\\\\\\2 gold foils with different separations are traversed by the extracted proton beam to the High Intensity Area. Positive particles of 160 GeV/c momentum from this target are transported by the H6 beam to the North Area. The electron component is separated from heavier particles by synchrotron losses in the bending magnets, and is further identified by a lead glass Cerenkov counter, in coincidence with scintillation counters (Fig. 1).\\\\\\\\ The electron flux from the double foil target depends on the distance between the foils, since for small separations the neutral pions will have to decay before electrons can be materialised by the decay $\\gamma$ rays.\\\\\\\\ The average momentum of neutral pions from a 400 GeV pN reaction, giving a 160 GeV/c electron, is about 250 GeV/c, and the corresponding...

  19. Kinematic aspects of pion-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Weiss, D.L.; Ernst, D.J.

    1982-01-01

    The inclusion of relativistic kinematics in the theory of elastic scattering of pions from nuclei is examined. The investigation is performed in the context of the first order impulse approximation which incorporates the following features: (1) Relative momentum are defined according to relativistic theories consistent with time reversal invariance. (2) The two-nucleon interaction is a new, multichannel, separable potential model consistent with the most recent data derived from a recent nonpotential model of Ernst and Johnson. (3) The recoil of the pion-nucleon interacting pair and its resultant nonlocality are included. (4) The Fermi integral is treated by an optimal factorization approximation. It is shown how a careful definition of an intrinsic target density leads to an unambiguous method for including the recoil of the target. The target recoil corrections are found to be large for elastic scattering from 4 He and not negligible for scattering from 12 C. Relativistic potential theory kinematics, kinematics which result from covariant reduction approaches, and kinematics which result from replacing masses by energies in nonrelativistic formulas are compared. The relativistic potential theory kinematics and covariant reduction kinematics are shown to produce different elastic scattering at all pion energies examined (T/sub π/<300 MeV). Simple extensions of nonrelativistic kinematics are found to be reasonable approximations to relativistic potential theory

  20. Dressed Quark Mass Dependence of Pion and Kaon Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Y.; Bentz, W.; Cloet, I. C.

    2015-02-04

    The structure of hadrons is described well by the Nambu-Jona-Lasinio (NJL) model, which is a chiral effective quark theory of QCD. In this work we explore the electromagnetic structure of the pion and kaon using the three-flavor NJL model in the proper-time regularization scheme, including effects of the pion cloud at the quark level. In the calculation there is only one free parameter, which we take as the dressed light quark (u and d) mass. In the regime where the dressed light quark mass is approximately 0.25 GeV we find that the calculated values of the kaon decay constant, current quark masses, and quark condensates are consistent with experiment- and QCD-based analyses. We also investigate the dressed light quark mass dependence of the pion and kaon electromagnetic form factors, where comparison with empirical data and QCD predictions also favors a dressed light quark mass near 0.25 GeV.

  1. Coulomb effects on pions produced in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.

    1981-11-01

    Double differential cross sections for the production of ..pi../sup +/ and ..pi../sup -/ near the velocity of the incident beam for pion lab angles less than 40 degrees are presented. The experimental apparatus and the techniques are discussed. Beams of /sup 20/Ne with E/A from 80 to 655 MeV and /sup 40/Ar with E/A = 535 MeV incident on Be, C, NaF, KC1, Cu, and U targets were used. A sharp peak in the ..pi../sup -/ spectrum and a depression in the ..pi../sup +/ spectrum were observed at zero degrees near the incident beam velocity. The effect is explained in terms of Coulomb interactions between the pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffman and an effective projectile fragment charge are made. The relationship between these data and previously measured pion production and projectile fragmentation data is discussed. The data are also compared to some theoretical models. A simple expression is given for the differential cross section as a function of the projectile mass, target mass, and beam energy.

  2. Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, Joshua R. [North Carolina State Univ., Raleigh, NC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Univ. of North Carolina, Chapel Hill, NC (United States); Sato Gonzalez, Nobuo; Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ji, Chueng-Ryong [North Carolina State Univ., Raleigh, NC (United States)

    2016-03-01

    We examine the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and the $\\bar{d}-\\bar{u}$ flavor asymmetry in the proton. A detailed $\\chi^2$ analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of $4 \\times 10^{-4} \\lesssim x_\\pi \\lesssim 0.05$ at a scale of $Q^2$=10 GeV$^2$. Based on the fit results, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.

  3. Inclusive charged and neutral pion photoproduction at 20 GeV

    International Nuclear Information System (INIS)

    Rickman O'Dell, V.

    1987-05-01

    The inclusive charged and neutral pion distributions from the interactions of 20 GeV photons on protons have been measured. The assumptions and analysis done to obtain these distributions are described, and the pion distributions are found to agree with general predictions of the quark-parton model. The quark-quark fusion model and the recombination model were compared to the inclusive pion distributions assuming the photon could be approximated by a superposition of rho and omega vector meson states - an assumption prompted by the Vector Meson Dominance Model of photon structure. Quark models applied to the difference in the charged pion cross sections are examined. The inclusive charge structure of the photoproduced charged pions and that of electroproduced and hadroproduced charged pions were compared

  4. Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197AU

    International Nuclear Information System (INIS)

    Turzo, K.; Begemann-Blaich, M.L.; Auger, G.

    2003-12-01

    Low-energy π + (E π 12 C+ 197 Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximately isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E p >or ≤ 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R ∼ 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the statistical multifragmentation model are in good agreement with the experimental data. (orig.)

  5. ATLAS Recordings

    CERN Multimedia

    Jeremy Herr; Homer A. Neal; Mitch McLachlan

    The University of Michigan Web Archives for the 2006 ATLAS Week Plenary Sessions, as well as the first of 2007, are now online. In addition, there are a wide variety of Software and Physics Tutorial sessions, recorded over the past couple years, to chose from. All ATLAS-specific archives are accessible here.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal. Shaping Collaboration 2006The Michigan group is happy to announce a complete set of recordings from the Shaping Collaboration conference held last December at the CICG in Geneva.The event hosted a mix of Collaborative Tool experts and LHC Users, and featured presentations by the CERN Deputy Director General, Prof. Jos Engelen, the President of Internet2, and chief developers from VRVS/EVO, WLAP, and other tools...

  6. Single pion and several pions production in π+p interactions at 1.6 GeV/c

    International Nuclear Information System (INIS)

    Jabiol, M.A.

    1966-01-01

    The production of ρ + , N 33 * , and η 0 was observed in π + p interactions at 1.6 GeV/c. In the reactions where one pion is created, the comparison between the experimental distribution of the ρ + and the N 33 * with the predictions of the peripheral model modified by absorption effects permits the conclusion that the contribution of this model is important, but that other effects such as interferences between ρ + and N 33 * are not negligible. In the reactions where several pions are created, the branching ratios of some decay modes of η0 are evaluated and the associated production of η 0 and N 33 * is observed. (author) [fr

  7. Scattering of low-energy pions by p-shell nuclei

    International Nuclear Information System (INIS)

    Khankhasaev, M.Kh.

    1987-01-01

    Low-energy pion-carbon scattering (up to 50 MeV) is analysed in the framework of the unitary approach based on the method of evolution in the coupling constant. It is shown that at pion energy ∼ 50 MeV the differential cross section arises as a result of the strong interference between the pure potential scattering and absorption channels. In this energy region the scattering data are very sensitive to the dynamics of the pion-nucleus interaction

  8. Azimuthal dependence of pion source radii in Pb + Au collisions at 158 A GeV

    CERN Document Server

    AUTHOR|(CDS)2073202; Andronic, A; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Dubitzky, W; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kalisky, M; Kniege, S; Kushpil, V; Maas, A; Marin, A; Milosevic, J; Miskowiec, D; Ortega, R; Panebratsev, Yu A; Petchenova, O; Petracek, V; Ploskon, M; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schuchmann, S; Schükraft, J; Sedykh, S; Shimansky, S; Soualah, R; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2008-01-01

    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.

  9. Pion absorption in nuclei: The (. pi. /sup + -/,p) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, C.S.

    1987-05-01

    Reported here is the first experiment to measure the excitation of discrete final states following the (..pi../sup -/,p) reaction. The Energetic Pion Channel and Spectrometer (EPICS) at the Los Alamos National Laboratory and the High Resolution Pion Channel and Spectrometer (..pi..M1-SUSI) at the Swiss Institute for Nuclear Physics were used for this high resolution study of (..pi../sup + -/,p) reactions. An average energy resolution of 500 KeV and 700 KeV was achieved at EPICS and ..pi..M1-SUSI respectively. At EPICS these reactions were measured at T/sub ..pi../ = 120 MeV and theta/sub lab/ = 25/sup 0/ on /sup 24/Mg, /sup 27/Al, /sup 40/Ca and /sup 58/Ni; /sup 12/C(..pi../sup -/,p) was measured at T/sub ..pi../ = 145 MeV. At ..pi..M1-SUSI these reactions were measured at T/sub ..pi../ = 90 MeV and at theta/sub lab/ = 20/sup 0/ on /sup 23/Na and /sup 24/Mg. The measurement includes both the differential cross sections and continuum up to an excitation energy of 40 MeV. In /sup 23/Na, /sup 24/Mg, and /sup 27/Al there are peaks in the low excitation region. The shape of the continuum in an excitation energy range of 10 to 40 MeV was found to be independent of pion charge and target mass. The magnitude of proton yield from all the targets at T/sub ..pi../ = 120 MeV is more than twenty four times larger for ..pi../sup +/ than for ..pi../sup -/. Also, the cross sections for both reactions on /sup 24/Mg is slightly enhanced compared to other nuclei. At T/sub ..pi../ = 90 MeV the ratio of the proton yield for ..pi../sup +/ to ..pi../sup -/ absorption drops down to fourteen. This high ratio and its energy dependence supports the idea of a two nucleon pion absorption model. Pion absorption in the context of both the reaction mechanism and nuclear structure is discussed. 99 refs., 64 figs., 11 tabs.

  10. Electron track reconstruction in the ATLAS experiment

    CERN Document Server

    Tadel, Matevž; Clark, Allan

    2001-01-01

    Before entering the hardware production phase of a HEP experiment, the detector elements that have been chosen during the planning process need to be thoroughly tested. At the LHC, silicon detectors will operate in a high-rate environment which requires low-noise electronics with a shaping time of $25 s$. A prototype silicon-strip half-module equipped with the analogue read-out chip SCTA128-HC was put in a $200GeV$ pion beam. An analysis of the collected data is presented. The tested module was found to conform to the SCT-modules specification for the ATLAS experiment. Electron reconstruction in the ATLAS detector is compromised by the large amount of material in the tracking volume, which leads to frequent emissions of hard bremsstrahlung photons. This affects the measurement of the transverse projections of track parameters in the inner detector as well as the measurement of energy and azimuthal angle in the EM calorimeter for $p_T<20GeV$. Reconstruction and electron identification efficiencies are...

  11. Performance of the ATLAS Hadronic Endcap Calorimeter and the Physics of Electroweak Top Quark Production at ATLAS

    CERN Document Server

    O'Neil, D C

    2000-01-01

    The Large Hadron Collider (LHC) and the ATLAS experiment are currently under construction with first collisions expected in 2005. The performance of detector components built to the final ATLAS design specifications are evaluated in particle beams. In addition, detailed simulations are performed to estimate the sensitivity of the ATLAS experiment to various physical processes. This thesis is divided into two parts, with contributions to each of these types of performance studies. First, an analysis of the performance of the Hadronic Endcap Calorimeter (HEC) yields a pion energy resolution of s/E=78+/-2%/Eo( GeV) ⊕5.0+/-0.3% and an intrinsic electromagnetic to hadronic response ratio (e/h) of 1.6 +/- 0.1. Second, simulation studies have been performed to estimate the sensitivity of ATLAS to the measurement of Vtb and the polarization of the top quark from electroweak top production. Estimates from three independent channels yield statistical precisions of 0.5%, 2.2% and 2.8% after three years of low luminosi...

  12. Experiments on the nuclear interactions of pions. Progress report, December 1, 1980-November 30, 1981

    International Nuclear Information System (INIS)

    Minehart, R.C.; Ziock, K.O.H.

    1981-01-01

    Progress is reviewed in these research areas: π-d elastic scattering; π-elastic and quasi-free scattering from helium isotopes; pion charge exchange in 3 He; pion absorption in 3 He and 4 He; quasi-free pion scattering; π → μ + ν experiment; study of the π 0 → 2e decay; measurement of the π - - π 0 mass difference; design of a low energy pion spectrometer; π + d → p + p in the energy range 60 to 200 MeV

  13. FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Fermilab; Pasternak, Jaroslaw [Rutherford; Bross, Alan [Fermilab; Liu, Ao [Fermilab; Appleby, Robert [Cockcroft Inst. Accel. Sci. Tech.; Tygier, Sam [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented.

  14. A phenomenological determination of the pion-nucleon scattering lengths from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2005-01-01

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon scattering length, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order (alpha)**2 log(alpha) in the limit of a short-range hadronic interaction. We infer a charged pion-proton scattering length of 0.0870(5) in units of inverse pion mass, which gives for the charged pion-proton-neutron coupling, through the GMO relation, a value of 14.04(17).

  15. Coupled channel theory of pion--deuteron reaction applied to threshold scattering

    International Nuclear Information System (INIS)

    Mizutani, T.; Koltun, D.S.

    1977-01-01

    Scattering and absorption of pions by a nuclear target are treated together in a coupled channel theory. The theory is developed explicitly for the problem of pion scattering and absorption by a deuteron. The equations are presented in terms of the integral equations of three-body scattering theory. The method is then applied in an approximate from to calculate the contribution of pion absorption to the scattering length for pion--deuteron scattering. The sensitivity of the calculated results to the model assumptions and approximations is investigated

  16. Decay-pion spectroscopy of light hypernuclei in the electroproduction

    International Nuclear Information System (INIS)

    Esser, Anselm

    2014-01-01

    At the Mainz Microtron, λ-hypernuclei can be produced in (e,e'K + )-reactions. By detecting the produced kaon in the KAOS spectrometer, reactions in which hyperons have been produced are tagged. The spectroscopy of charged pions, originating in weak two-body decays of light hypernuclei, allows the measurement of the binding energy of the hyperon in the nucleus with high precision. Besides the direct production of hypernuclei, they can also be produced by the fragmentation of a highly excited continuum state. This allows to study different types of hypernuclei in one experiment. High-resolution magnetic spectrometers are available for the spectroscopy of the decay-pions. To determine the ground-state mass of the hypernucleus it is crucial that the hyperfragment is stopped inside the target before it decays. Based on the known cross section of the elementary kaon photoproduction, a calculation of the expected event rate has been performed. A Monte Carlo simulation has been developed, which includes the the fragmentation and the stopping of the hyperfragments inside the target. It uses a statistical breakup model for the simulation of the fragmentation. This approach allows to predict the count rate of decay-pions from 4 λ H-hypernuclei. In a pioneering experiment, performed in 2011, for the first time hadrons could be detected with the KAOS spectrometer at a scattering angle of 0 in coincidence with pions. It became apparent that, due to the high background rate of positrons in KAOS, the clean identification of hypernuclei was impossible in the original set-up. Based on these findings, the KAOS spectrometer was modified to function as a dedicated kaon-tagger. To achieve this, an absorber made of lead was placed inside the spectrometer to stop positrons by producing electromagnetic showers. The effect of such an absorber was studied in a beam test. A simulation based on Geant4 was developed to optimise the set-up of absorber and detectors, and to predict the impact

  17. Jet energy calibration at the LHC

    CERN Document Server

    INSPIRE-00053381

    2015-01-01

    Jets are one of the most prominent physics signatures of high energy proton proton (p-p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiple p-p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo. Large samples of dijet, Z+jets, and photon+jet e...

  18. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  19. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  20. Jet Mass Reconstruction with the ATLAS Detector in Run 2

    CERN Document Server

    Jansky, Roland; The ATLAS collaboration

    2016-01-01

    The details of the ATLAS jet mass reconstruction and calibration are presented. In particular, the jet mass scale is calibrated using Monte Carlo simulation for large-radius groomed jets. Corresponding uncert