WorldWideScience

Sample records for atlas overview week

  1. ATLAS overview week highlights

    CERN Multimedia

    D. Froidevaux

    2005-01-01

    A warm and early October afternoon saw the beginning of the 2005 ATLAS overview week, which took place Rue de La Montagne Sainte-Geneviève in the heart of the Quartier Latin in Paris. All visitors had been warned many times by the ATLAS management and the organisers that the premises would be the subject of strict security clearance because of the "plan Vigipirate", which remains at some level of alert in all public buildings across France. The public building in question is now part of the Ministère de La Recherche, but used to host one of the so-called French "Grandes Ecoles", called l'Ecole Polytechnique (in France there is only one Ecole Polytechnique, whereas there are two in Switzerland) until the end of the seventies, a little while after it opened its doors also to women. In fact, the setting chosen for this ATLAS overview week by our hosts from LPNHE Paris has turned out to be ideal and the security was never an ordeal. For those seeing Paris for the first time, there we...

  2. The ATLAS Glasgow Overview Week

    CERN Multimedia

    Richard Hawkings

    2007-01-01

    The ATLAS Overview Weeks always provide a good opportunity to see the status and progress throughout the experiment, and the July week at Glasgow University was no exception. The setting, amidst the traditional buildings of one of the UK's oldest universities, provided a nice counterpoint to all the cutting-edge research and technology being discussed. And despite predictions to the contrary, the weather at these northern latitudes was actually a great improvement on the previous few weeks in Geneva. The meeting sessions comprehensively covered the whole ATLAS project, from the subdetector and TDAQ systems and their commissioning, through to offline computing, analysis and physics. As a long-time ATLAS member who remembers plenary meetings in 1991 with 30 people drawing detector layouts on a whiteboard, the hardware and installation sessions were particularly impressive - to see how these dreams have been translated into 7000 tons of reality (and with attendant cabling, supports and services, which certainly...

  3. ATLAS Overview Week at Brookhaven

    CERN Multimedia

    Pilcher, J

    Over 200 ATLAS participants gathered at Brookhaven National Laboratory during the first week of June for our annual overview week. Some system communities arrived early and held meetings on Saturday and Sunday, and the detector interface group (DIG) and Technical Coordination also took advantage of the time to discuss issues of interest for all detector systems. Sunday was also marked by a workshop on the possibilities for heavy ion physics with ATLAS. Beginning on Monday, and for the rest of the week, sessions were held in common in the well equipped Berkner Hall auditorium complex. Laptop computers became the norm for presentations and a wireless network kept laptop owners well connected. Most lunches and dinners were held on the lawn outside Berkner Hall. The weather was very cooperative and it was an extremely pleasant setting. This picture shows most of the participants from a view on the roof of Berkner Hall. Technical Coordination and Integration issues started the reports on Monday and became a...

  4. The ATLAS Overview Week at Clermont-Ferrand, June 23-28, 2002

    CERN Multimedia

    Smith, K.

    Those of us who travelled on Saturday from CERN to the ATLAS Week in Clermont- Ferrand had an unusually long journey because of autoroute problems around Nantua, but arrived with a bang as a spectacular fireworks display lit up the local volcano in (simulated!) eruption. The Overview Week, which followed on from similarly successful Overview Weeks in Dubna and Brookhaven, was organised superbly by François Vazeille and members of the local ATLAS group, (who are more usually completely engrossed in construction of electronics etc. for the Tile Calorimeter). It began with an extremely warm welcome in more ways than one, since the temperature on Sunday reached a thirty-five year maximum of around thirty-seven degrees and made the initial sessions on Installation, DIG and some physics groups a bit hard on those of us from the cold Northern regions!! The local team had prepared a full agenda, both on the physics and on the social side, but allowed ample time for the informal discussions which are an essenti...

  5. The Physics session at the ATLAS overview week

    CERN Multimedia

    Takai, H.

    The Physics session at the ATLAS overview week at Clermont-Ferrand will be certainly remembered by the presentation of Blaise Pascal's historical experiment repeat. And why not? He is the local hero and by the looks of his primitive measurements it does take a lot of guts to explain his results on the basis of air columns. He was also lucky that he did not have to simulate his results on modern day computers but used the Pascaline. Certainly a man ahead of his time. Of course that wasn't all. Surrounded by a chain of (luckily) extinct volcanoes, rolling hills, and superb views, Clermont-Ferrand provided the perfect backdrop for the physics discussions. It was once more seen that the physics of ATLAS is diverse and that it is healthy and doing well. Many people contributed to the success of the session. Fabiola started the session precisely at 14:00 with a summary of the most recent activities from the physics coordination. Somehow what got stuck in my mind was the very positive statistics on how many prese...

  6. The ATLAS Overview Week in Freiburg, October 2004

    CERN Multimedia

    Smith, K.

    2004-01-01

    The first things that must be said are that the city of Freiburg is a very attractive location for such a meeting, encouraging a relaxed coming together of all sections of the ATLAS Community, and that the Week's activities were splendidly, (while unobtrusively), organised by our hosts, Karl Jakobs and Gregor Herten and their supporting team. The fine sunny weather contributed to our sense of well-being, of course, as did the quality of the local beer! (Some of our native English speaking colleagues were relieved to discover that what was described in restaurants and bars as 'Badisch' turned out, on the contrary, to be rather 'Good-ish' instead!!) The week began with pre-meetings of subgroups on Saturday and Sunday, and included lively discussions on how to commission the detector and on the nature and format of the ATLAS control room and its environs. These discussions were a clear indication of the optimism within the ATLAS community that physics is really beginning to appear on our horizon! During th...

  7. The last ATLAS overview week now available on Web Lectures

    CERN Multimedia

    Jeremy Herr

    2006-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project, WLAP, a collaboration between the University of Michigan and CERN, has developed a synchronized system for recording and publishing educational multimedia presentations, using the Web as medium. This year, the University of Michigan team has been asked to record and publish all ATLAS Plenary sessions, as well as a large number of Physics and Computing tutorials. A significant amount of this material has already been published and can be accessed via the links below. All lectures can be viewed on any major platform with any common internet browser, either via streaming or local download (for limited bandwidth). Please enjoy the lectures and send us a note at wlap@umich.edu to tell us what you think. The newly available WLAP items relating to ATLAS is the following: ATLAS Week Plenary, CERN, 2-3 October 2006 All previous WLAP lectures are also avilable on the web.

  8. Prague Overview Week, September 13th-20th, 2003

    CERN Multimedia

    Smith, K

    The week already began on Saturday for a number of system and sub-system meetings, but got into full swing on the Sunday, with a marathon session on how to tackle the challenging task of commissioning the full ATLAS spectrometer. The seeds of lots of ideas have already germinated and should begin to flower soon. Simulation studies of cosmic ray fluxes (and even early experimental measurements in Pit 1) have shown useful rates for the pre-beam phase of commissioning, and single beam measurements will also offer useful opportunities, in particular for trigger timing. Commissioning is clearly a topic which will continue to grow in importance during the next few years. On Monday we were welcomed by our Czech hosts to the first "official" session of the Overview Week, held in the Department of Mechanical Engineering of the Czech Technical University, (CTU), the oldest Technical University in Europe. ATLAS (Prague) includes groups from the CTU, the even longer established Charles University and the Czech Acad...

  9. Impressions from the ATLAS Overview Week in Stockholm

    CERN Document Server

    De Jong, P.; Gowdy, S.

    2006-01-01

    Paul de Jong: "What a very nice city Stockholm in the summer turned out to be! The architecture, the relaxed style of the city and its islands and bridges, the terraces with people out on the streets until late at night made this a special trip. We visited many cool and trendy places, unfortunately many of those places are probably now a lot less cool and trendy after visits of so many physicists in shorts and white socks in sandals. A big applause for the organizers for a fine meeting, and getting us into the Stockholm city hall and the superb Wasa museum. (left) The Golden room of Stockholm City Hall. (right) Muriel was not the only one in the room entertaining noble dreams during the reception in the Golden Room of the Stockholm City Hall... ATLAS is a monstrously complicated piece of apparatus. It will be very impressive when it is finished and works, but there are so many places where things can go wrong. If I must name a single highlight of the week: I found the technical coordination of t...

  10. B-physics overview in ATLAS

    CERN Document Server

    Derue, F

    2007-01-01

    An overview of the ATLAS B-physics trigger and offline performance studies are p resented. From the initial running at low luminosity at LHC, high-statistics B a nalyses will allow sensitive tests of possible new physics contributions by sear ching for additional CP violating effects and for anomalous rates of rare B-deca y channels. In the physics of the $B^{0}_{s}$ meson system the expected sensitiv ity to mass and width differences are compared to recent measurements done at th e Tevatron. There is also sensitivity to a weak mixing phase beyond the Standard Model expectation. ATLAS will also be able to access rare B decays using the high luminosity running.

  11. Overview of Exotic Physics at ATLAS

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2016-01-01

    Proceeding for the conference plenary talk at HEPMAD16, Madagascar on the topic of "Overview of Exotic Physics at ATLAS" (ATL-PHYS-SLIDE-2016-807 https://cds.cern.ch/record/2225222) Deadline: 16/12/2016 (could be postponed for some days later upon request as recently suggested by the conference organizer)

  12. Overview over opportunities for measuring new physics with ATLAS and CMS

    CERN Document Server

    Johansson, Per; The ATLAS collaboration

    2018-01-01

    This document gives of an overview over opportunities for measuring new physics with ATLAS and CMSD. Describing different signatures and searches, as angular distributions, different analysis techniques currently ongoing at ATLAS and CMS as well as future prospects.

  13. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S.

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: June ATLAS Plenary Meeting Tutorial on Physics EDM and Tools (June) Freiburg Overview Week Ketevi Assamagan's Tutorial on Analysis Tools Click here to browse WLAP for all ATLAS lectures.

  14. ATLAS looks forward to having beams!

    CERN Multimedia

    Hans von der Schmitt

    Lyn Evans, head of the LHC project at CERN, brought very good news: all problems are now solved or understood, and barring a disaster, the LHC should see beams in July 2008. The ATLAS overview week (8-12 October) showed impressively that the experiment is getting ready for beams on all fronts. Perhaps that is best seen in the recent runs with cosmic events, which are integrating all ATLAS subsystems. The integration milestone M4 ended just a month ago (see the article in the September issue of ATLAS e-news), exercising for one week the complete chain from detectors - trigger and data acquisition - reconstruction at Tier0 - shipment of data worldwide to Tier1s. Event displays and histograms, available both online and offline, were shown throughout the overview week and are proof that the entire chain is actually working. The integration milestones give an enormous boost to the experiment - next time during M5 end of October. During the week we learned about successes and remaining issues along this ent...

  15. Taking ATLAS to new heights

    CERN Document Server

    Abha Eli Phoboo, ATLAS experiment

    2013-01-01

    Earlier this month, 51 members of the ATLAS collaboration trekked up to the highest peak in the Atlas Mountains, Mt. Toubkal (4,167m), in North Africa.    The physicists were in Marrakech, Morocco, attending the ATLAS Overview Week (7 - 11 October), which was held for the first time on the African continent. Around 300 members of the collaboration met to discuss the status of the LS1 upgrades and plans for the next run of the LHC. Besides the trek, 42 ATLAS members explored the Saharan sand dunes of Morocco on camels.  Photos courtesy of Patrick Jussel.

  16. An integrated overview of metadata in ATLAS

    International Nuclear Information System (INIS)

    Gallas, E J; Malon, D; Hawkings, R J; Albrand, S; Torrence, E

    2010-01-01

    Metadata (data about data) arise in many contexts, from many diverse sources, and at many levels in ATLAS. Familiar examples include run-level, luminosity-block-level, and event-level metadata, and, related to processing and organization, dataset-level and file-level metadata, but these categories are neither exhaustive nor orthogonal. Some metadata are known a priori, in advance of data taking or simulation; other metadata are known only after processing, and occasionally, quite late (e.g., detector status or quality updates that may appear after initial reconstruction is complete). Metadata that may seem relevant only internally to the distributed computing infrastructure under ordinary conditions may become relevant to physics analysis under error conditions ('What can I discover about data I failed to process?'). This talk provides an overview of metadata and metadata handling in ATLAS, and describes ongoing work to deliver integrated metadata services in support of physics analysis.

  17. The University of Goettingen joins ATLAS - first impressions

    CERN Multimedia

    Arnulf Quadt

    This year the ATLAS Overview Week was being held in Glasgow from 9th to 13th July. The event was being organized by the Department of Physics and Astronomy at Glasgow University. For me this was a very special and important week. In October 2006, I took a position at the University of Goettingen (Germany) with the task to start-up a new particle physics institute. Goettingen is an old and distinguished university with a strong history in quantum mechanics (Max Born, Werner Heisenberg, ...) and subatomic physics (James Franck, ...). Such opportunities are rather rare and I was thrilled to take it. First of all, a new institute needs a project to work on. Having worked at HERA, LEP and the Tevatron before, it was now time to get involved in the LHC and so we submitted an expression of interest to ATLAS. This proposal was presented to ATLAS at the previous Overview Week in February and this time the Collaboration was called to decide about our admission. When I arrived in Glasgow I received a warm welcome in t...

  18. Overview of the Standard Model Measurements with the ATLAS Detector

    CERN Document Server

    Liu, Yanwen; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, such as the W boson mass, the weak-mixing angle or the strong coupling constant. In addition, the production cross-sections of a large variety of final states involving high energetic jets, photons as well as single and multi vector bosons are measured multi differentially at several center of mass energies. This allows to test perturbative QCD calculations to highest precision. In addition, these measurements allow also to test models beyond the SM, e.g. those leading to anomalous gauge couplings. In this talk, we give a broad overview of the Standard Model measurement campaign of the ATLAS collaboration, where selected topics will be discussed in more detail.

  19. An overview of the mechanical design of the Atlas pulsed power machine

    CERN Document Server

    Bowman, D W; Barr, G W; Bennett, G A; Cochrane, J C; Davis, H A; Davis, T O; Dorr, G; Gribble, R F; Griego, J R; Hood, M; Kimerly, H J; Martínez, A; McCuistian, B T; Miller, R B; Ney, S A; Nielsen, K; Pankuch, P; Parsons, W M; Potter, C; Ricketts, R L; Salazar, H R; Scudder, D W; Shapiro, C; Thompson, M C; Trainor, R J; Valdez, G A; Yonemoto, W; Kirbie, H C

    1999-01-01

    Atlas is a pulsed-power facility being designed at Los Alamos National Laboratory to perform high-energy density experiments in support of Science-Based Stockpile Stewardship and basic research programs. Atlas will consist of 24 individual maintenance units, each consisting of 4 240-kV Marx units. Maintenance units are contained in large oil tanks arrayed in a circle about a central target chamber. Total stored energy of the capacitor bank will be 23 MJ. Maintenance units will discharge through an output shorting switch into a vertical tri-plate transmission line, and from there into a transition area/collector inside a large vacuum chamber. An overview of mechanical design aspects of the Atlas machine is presented. These include maintenance unit design and design of the tri-plate transmission line and transition region. Findings from fabrication and testing of prototype systems are discussed. (2 refs).

  20. The ATLAS Experiment Laboratory - Overview

    International Nuclear Information System (INIS)

    Malecki, P.

    1999-01-01

    Full text: ATLAS Experiment Laboratory has been created by physicists and engineers preparing a research programme and detector for the LHC collider. This group is greatly supported by members of other Departments taking also part (often full time) in the ATLAS project. These are: J. Blocki, J. Godlewski, Z. Hajduk, P. Kapusta, B. Kisielewski, W. Ostrowicz, E. Richter-Was, and M. Turala. Our ATLAS Laboratory realizes its programme in very close collaboration with the Faculty of Physics and Nuclear Technology of the University of Mining and Metallurgy. ATLAS, A Toroidal LHC ApparatuS Collaboration groups about 1700 experimentalists from about 150 research institutes. This apparatus, a huge system of many detectors, which are technologically very advanced, is going to be ready by 2005. With the start of the 2 x 7 TeV LHC collider ATLAS and CMS (the sister experiment at LHC) will begin their fascinating research programme at beam energies and intensities which have never been exploited. (author)

  1. The ATLAS Women's Network: one year of activities

    CERN Multimedia

    Paula Eerola

    The idea for an ATLAS Women's Network was born during the ATLAS overview week in October 2005, when a few of us discussed our experiences and were pondering about what we could do. We felt that it was important to increase the visibility of women working in ATLAS in order to make a better and more effective use of the ATLAS human resources, that is, make sure that women are duly included at all levels. Furthermore, it is our belief that making ATLAS a better working environment for female collaborators and other female co-workers will benefit both us and the collaboration as a whole. On the individual level, all of us thought that we could benefit from peer support and experience sharing, and an ATLAS Women's Network could facilitate this by developing contacts between the ATLAS Women in ATLAS Institutes worldwide. Finally, we thought that it was important to increase the number of women studying physics and working in the field of physics research by identifying gender barriers in the career paths of women i...

  2. Overview of the front end electronics for the Atlas LAR calorimeter

    International Nuclear Information System (INIS)

    Rescia, S.

    1997-11-01

    Proposed experiments for the Large Hadron Collider (LHC) set new demands on calorimeter readout electronics. The very high energy and large luminosity of the collider call for a large number of high speed, large dynamic range readout channels which have to be carefully synchronized. The ATLAS liquid argon collaboration, after more than 5 years of R and D developments has now finalized the architecture of its front end and read-out electronics, which have been written down in its Technical Design Report (TDR). An overview is presented

  3. Overview of the ATLAS Insertable B-Layer (IBL) Project

    International Nuclear Information System (INIS)

    Røhne, O.

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector is the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine, in 2013–2014. The new detector, called the Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL has required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. The IBL presents several changes to the design of the present ATLAS Pixel Detector: two different and promising silicon sensor technologies, planar n-in-n and 3D, will be used for the IBL. A new read-out chip FE-I4 has been designed in 130 nm technology, the material budget is minimized by using new lightweight mechanical support materials and a CO 2 based cooling system has been developed. An overview of the IBL project, of the module design and the qualification for these sensor technologies with particular emphasis on irradiation and beam tests will be presented

  4. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  5. Overview of ATLAS PanDA Workload Management

    Science.gov (United States)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  6. Overview of ATLAS PanDA Workload Management

    International Nuclear Information System (INIS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G.A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  7. Overview of Measurements with Electroweak Gauge Bosons at the ATLAS Detector

    CERN Document Server

    Baldin, Evgenii; The ATLAS collaboration

    2017-01-01

    In this talk, we will give an overview of several recent measurements, performed at the ATLAS detector, which test the electroweak sector of the Standard Model to highest precision and allow for precision tests of perturbative QCD predictions. Cross section measurements of multi boson final states test the gauge structure of the Standard Model. Differential cross-section measurements of single vector bosons in the final state, also in association with jets, have been performed at all available center of mass energies and provide important information for advanced theoretical predictions as well as the parton density functions of the boson. These measurements build the basis for the first precision measurement of the W boson mass at the LHC.

  8. LUCID in ATLAS

    CERN Document Server

    Groth-Jensen, J; The ATLAS collaboration

    2009-01-01

    This talk is to be given at the workshop DIFF2010 : Diffractive and electromagnetic processes at the LHC , early January next year. The aim of the talk is to give a overview/status update of the LUCID detector in ATLAS. As such the presentation will be focused on the design and current layout of the detector - with emphasis on the hardware side. The first few slides will be used to give an overview of the location, design and layout LUCID with respect to ATLAS. Afterwards some hardware issues will be address and finally some results from first LHC data will be shown.

  9. The ATLAS Tier-0 Overview and operational experience

    CERN Document Server

    Elsing, M; Nairz, A; Negri, G

    2010-01-01

    Within the ATLAS hierarchical, multi-tier computing infrastructure, the Tier-0 centre at CERN is mainly responsible for prompt processing of the raw data coming from the online DAQ system, to archive the raw and derived data on tape, to register the data with the relevant catalogues and to distribute them to the associated Tier-1 centers. The Tier-0 is already fully functional. It has been successfully participating in all cosmic and commissioning data taking since May 2007, and was ramped up to its foreseen full size, performance and throughput for the cosmic (and short single-beam) run periods between July and October 2008. Data and work flows for collision data taking were exercised in several "Full Dress Rehearsals" (FDRs) in the course of 2008. The transition from an expert to a shifter-based system was successfully established in July 2008. This article will give an overview of the Tier-0 system, its data and work flows, and operations model. It will review the operational experience gained in cosmic, c...

  10. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Kagan, M; The ATLAS collaboration

    2014-01-01

    The first upgrade for the Pixel Detector will be a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. A production quality control test bench was setup in the ATLAS inner detector assembly clean room to verify and rate the performance of the detector elements before integration around the beam pipe. An overview of the IBL project, of the module design, the qualification for these sensor technologies, the integration quality control setups and recent results in the construction of this full scale new concept detector is discussed.

  11. Overview of the ATLAS Insertable B-Layer (IBL) Project

    Science.gov (United States)

    Kagan, M. A.

    2014-06-01

    The first upgrade for the Pixel Detector will be a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. A production quality control test bench was set up in the ATLAS inner detector assembly clean room to verify and rate the performance of the detector elements before integration around the beam-pipe. An overview of the IBL project, of the module design, the qualification for these sensor technologies, the integration quality control setups and recent results in the construction of this full scale new concept detector is discussed.

  12. ATLAS rewards industry

    CERN Document Server

    Maximilien Brice

    2006-01-01

    For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Picture 30 : representatives of the three award-wining companies after the ceremony

  13. Overview of the ATLAS distributed computing system

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment successfully uses a worldwide computing infrastructure to support the physics program during LHC Run 2. The grid workflow system PanDA routinely manages 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG and handled by the ATLAS data management system Rucio. To prepare for the ever growing LHC luminosity in future runs new developments are underway to even more efficiently use opportunistic resources such as HPCs and utilize new technologies. This presentation will review and explain the outline and the performance of the ATLAS distributed computing system and give an outlook to new workflow and data management ideas for the beginning of the LHC Run 3.

  14. Soft QCD at CMS and ATLAS

    CERN Document Server

    Starovoitov, Pavel; The ATLAS collaboration

    2018-01-01

    A short overview of the recent soft QCD results from the ATLAS and CMS collaborations is presented. The inelastic cross section measurement by CMS at 13 TeV is summarised. The contribution of the diffractive processes to the very forward photon spectra studied by ATLAS and LHCf is discussed. The ATLAS measurements of the exclusive two-photon production of the muon pairs is presented and compared to the previous ATLAS and CMS results.

  15. Computational and mathematical methods in brain atlasing.

    Science.gov (United States)

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  16. ATLAS Virtual Visits bringing the world into the ATLAS control room

    CERN Document Server

    AUTHOR|(CDS)2051192; The ATLAS collaboration; Yacoob, Sahal

    2016-01-01

    ATLAS Virtual Visits is a project initiated in 2011 for the Education & Outreach program of the ATLAS Experiment at CERN. Its goal is to promote public appreciation of the LHC physics program and particle physics, in general, through direct dialogue between ATLAS physicists and remote audiences. A Virtual Visit is an IP-based videoconference, coupled with a public webcast and video recording, between ATLAS physicists and remote locations around the world, that typically include high school or university classrooms, Masterclasses, science fairs, or other special events, usually hosted by collaboration members. Over the past two years, more than 10,000 people, from all of the world’s continents, have actively participated in ATLAS Virtual Visits, with many more enjoying the experience from the publicly available webcasts and recordings. We present an overview of our experience and discuss potential development for the future.

  17. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  18. The ATLAS Tier-0: Overview and operational experience

    International Nuclear Information System (INIS)

    Elsing, Markus; Goossens, Luc; Nairz, Armin; Negri, Guido

    2010-01-01

    Within the ATLAS hierarchical, multi-tier computing infrastructure, the Tier-0 centre at CERN is mainly responsible for prompt processing of the raw data coming from the online DAQ system, to archive the raw and derived data on tape, to register the data with the relevant catalogues and to distribute them to the associated Tier-1 centers. The Tier-0 is already fully functional. It has been successfully participating in all cosmic and commissioning data taking since May 2007, and was ramped up to its foreseen full size, performance and throughput for the cosmic (and short single-beam) run periods between July and October 2008. Data and work flows for collision data taking were exercised in several 'Full Dress Rehearsals' (FDRs) in the course of 2008. The transition from an expert to a shifter-based system was successfully established in July 2008. This article will give an overview of the Tier-0 system, its data and work flows, and operations model. It will review the operational experience gained in cosmic, commissioning, and FDR exercises during the past year. And it will give an outlook on planned developments and the evolution of the system towards first collision data taking expected now in late Autumn 2009.

  19. The ATLAS Tier-0: Overview and operational experience

    Science.gov (United States)

    Elsing, Markus; Goossens, Luc; Nairz, Armin; Negri, Guido

    2010-04-01

    Within the ATLAS hierarchical, multi-tier computing infrastructure, the Tier-0 centre at CERN is mainly responsible for prompt processing of the raw data coming from the online DAQ system, to archive the raw and derived data on tape, to register the data with the relevant catalogues and to distribute them to the associated Tier-1 centers. The Tier-0 is already fully functional. It has been successfully participating in all cosmic and commissioning data taking since May 2007, and was ramped up to its foreseen full size, performance and throughput for the cosmic (and short single-beam) run periods between July and October 2008. Data and work flows for collision data taking were exercised in several "Full Dress Rehearsals" (FDRs) in the course of 2008. The transition from an expert to a shifter-based system was successfully established in July 2008. This article will give an overview of the Tier-0 system, its data and work flows, and operations model. It will review the operational experience gained in cosmic, commissioning, and FDR exercises during the past year. And it will give an outlook on planned developments and the evolution of the system towards first collision data taking expected now in late Autumn 2009.

  20. The ATLAS Trigger System Commissioning and Performance

    CERN Document Server

    Hamilton, A

    2010-01-01

    The ATLAS trigger has been used very successfully to collect collision data during 2009 and 2010 LHC running at centre of mass energies of 900 GeV, 2.36 TeV, and 7 TeV. This paper presents the ongoing work to commission the ATLAS trigger with proton collisions, including an overview of the performance of the trigger based on extensive online running. We describe how the trigger has evolved with increasing LHC luminosity and give a brief overview of plans for forthcoming LHC running.

  1. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Barnes, Sarah Louise; The ATLAS collaboration

    2018-01-01

    Many forms of experimental evidence point to the existence of Dark Matter within the universe. As of yet, however, it's particle nature has not been discovered. Presented will be an overview of run-2 searches for Dark Matter at the ATLAS detector. The focus of the these studies are based on simplified signal models, moving away from the EFT based approach during run-1. An overview of such searches will be given, along with recent results and discussion as to the future of Dark Matter searches at ATLAS.

  2. An Overview of the ATLAS High Level Trigger Dataflow and Supervision

    CERN Document Server

    Wheeler, S; Baines, J T M; Bee, C P; Biglietti, M; Bogaerts, A; Boisvert, V; Bosman, M; Brandt, S; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Corso-Radu, A; Di Mattia, A; Díaz-Gómez, M; Dos Anjos, A; Drohan, J; Ellis, Nick; Elsing, M; Epp, B; Etienne, F; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kaczmarska, A; Karr, K M; Khomich, A; Konstantinidis, N P; Krasny, W; Li, W; Lowe, A; Luminari, L; Meessen, C; Mello, A G; Merino, G; Morettini, P; Moyse, E; Nairz, A; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Parodi, F; Pérez-Réale, V; Pinfold, J L; Pinto, P; Polesello, G; Qian, Z; Resconi, S; Rosati, S; Scannicchio, D A; Schiavi, C; Schörner-Sadenius, T; Segura, E; De Seixas, J M; Shears, T G; Sivoklokov, S Yu; Smizanska, M; Soluk, R A; Stanescu, C; Tapprogge, Stefan; Touchard, F; Vercesi, V; Watson, A; Wengler, T; Werner, P; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; RT 2003 13th IEEE-NPSS Real Time Conference

    2004-01-01

    The ATLAS High Level Trigger (HLT) system provides software-based event selection after the initial LVL1 hardware trigger. It is composed of two stages, the LVL2 trigger and the Event Filter (EF). The LVL2 trigger performs event selection with optimized algorithms using selected data guided by Region of Interest pointers provided by the LVL1 trigger. Those events selected by LVL2, are built into complete events, which are passed to the EF for a further stage of event selection and classification using off-line algorithms. Events surviving the EF selection are passed for off-line storage. The two stages of HLT are implemented on processor farms. The concept of distributing the selection process between LVL2 and EF is a key element in the architecture, which allows it to be flexible to changes (luminosity, detector knowledge, background conditions etc.) Although there are some differences in the requirements between these sub-systems there are many commonalities. An overview of the dataflow (event selection) an...

  3. New format for ATLAS e-news

    CERN Multimedia

    Pauline Gagnon

    ATLAS e-news got a new look! As of November 30, 2007, we have a new format for ATLAS e-news. Please go to: http://atlas-service-enews.web.cern.ch/atlas-service-enews/index.html . ATLAS e-news will now be published on a weekly basis. If you are not an ATLAS colaboration member but still want to know how the ATLAS experiment is doing, we will soon have a version of ATLAS e-news intended for the general public. Information will be sent out in due time.

  4. ATLAS TDAQ System Administration: an overview and evolution

    CERN Document Server

    LEE, CJ; The ATLAS collaboration; BOGDANCHIKOV, A; BRASOLIN, F; CONTESCU, AC; DARLEA, G-L; KOROL, A; SCANNICCHIO, DA; TWOMEY, M; VALSAN, ML

    2013-01-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is responsible for the online processing of live data streaming from the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The system processes the direct data readout from ~100 million channels on the detector through multiple trigger levels, selecting interesting events for analysis with a factor of $10^{7}$ reduction on the data rate with a latency of less than a few seconds. Most of the functionality is implemented on ~3000 servers composing the online farm. Due to the critical functionality of the system a sophisticated computing environment is maintained, covering the online farm and ATLAS control rooms, as well as a number of development and testing labs. The specificity of the system required the development of dedicated applications (e.g. ConfDB, BWM) for system configuration and maintenance; in parallel other Open Source tools (Puppet and Quattor) are used to centrally configure the operating systems. The health monitoring of the TDAQ s...

  5. ATLAS TDAQ System Administration: an overview and evolution

    CERN Document Server

    LEE, CJ; The ATLAS collaboration; BOGDANCHIKOV, A; BRASOLIN, F; CONTESCU, AC; DARLEA, GL; KOROL, A; SCANNICCHIO, DA; TWOMEY, M; VALSAN, ML

    2013-01-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is responsible for the online processing of live data streaming from the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The system processes the direct data readout from ~100 million channels on the detector through three trigger levels, selecting interesting events for analysis with a factor of 10^7 reduction on the data rate with a latency of less than a few seconds. Most of the functionality is implemented on ~3000 servers composing the online farm. Due to the critical functionality of the system a sophisticated computing environment is maintained, covering the online farm and ATLAS control rooms, as well as a number of development and testing labs. The specificity of the system required the development of dedicated applications (e.g. ConfDB, BWM) for system configuration and maintenance; in parallel other Open Source tools (Puppet and Quattor) are used to centrally configure the operating systems. The health monitoring of the TDAQ system h...

  6. ATLAS Metadata Task Force

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  7. ATLAS Review Office

    CERN Multimedia

    Szeless, B

    The ATLAS internal reviews, be it the mandatory Production Readiness Reviews, the now newly installed Production Advancement Reviews, or the more and more requested different Design Reviews, have become a part of our ATLAS culture over the past years. The Activity Systems Status Overviews are, for the time being, a one in time event and should be held for each system as soon as possible to have some meaning. There seems to a consensus that the reviews have become a useful project tool for the ATLAS management but even more so for the sub-systems themselves making achievements as well as possible shortcomings visible. One other recognized byproduct is the increasing cross talk between the systems, a very important ingredient to make profit all the systems from the large collective knowledge we dispose of in ATLAS. In the last two months, the first two PARs were organized for the MDT End Caps and the TRT Barrel Modules, both part of the US contribution to the ATLAS Project. Furthermore several different design...

  8. Overview of the Calorimeter Readout Upgrades

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2018-01-01

    The ATLAS and CMS calorimeter electronics will be upgraded for the HL-LHC data taking phase to cope with higher event pile-up and to allow improved trigger strategies. This presentations gives an overview of the ongoing developments for the CMS barrel calorimeters and the ATLAS LAr and Tile calorimeters.

  9. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  10. The ATLAS event filter

    CERN Document Server

    Beck, H P; Boissat, C; Davis, R; Duval, P Y; Etienne, F; Fede, E; Francis, D; Green, P; Hemmer, F; Jones, R; MacKinnon, J; Mapelli, Livio P; Meessen, C; Mommsen, R K; Mornacchi, Giuseppe; Nacasch, R; Negri, A; Pinfold, James L; Polesello, G; Qian, Z; Rafflin, C; Scannicchio, D A; Stanescu, C; Touchard, F; Vercesi, V

    1999-01-01

    An overview of the studies for the ATLAS Event Filter is given. The architecture and the high level design of the DAQ-1 prototype is presented. The current status if the prototypes is briefly given. Finally, future plans and milestones are given. (11 refs).

  11. Overview of the ATLAS Fast Tracker Project

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00025195; The ATLAS collaboration

    2016-01-01

    The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge for the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency for interesting events despite the increase in multiple collisions per bunch crossing. In order to increase the use of tracks within the High Level Trigger, the ATLAS experiment planned the installation of a hardware processor dedicated to tracking: the Fast TracKer processor. The Fast Tracker is designed to perform full scan track reconstruction of every event accepted by the ATLAS first level hardware trigger. To achieve this goal the system uses a parallel architecture, with algorithms designed to exploit the computing power of custom Associative Memory chips, and modern field programmable gate arrays. The processor will provide computing power to reconstruct tracks with transverse momentum greater than 1 GeV in the whole trackin...

  12. Glance Information System for ATLAS Management

    International Nuclear Information System (INIS)

    Grael, F F; Maidantchik, C; Évora, L H R A; Karam, K; Moraes, L O F; Cirilli, M; Nessi, M; Pommès, K

    2011-01-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  13. Glance Information System for ATLAS Management

    Science.gov (United States)

    Grael, F. F.; Maidantchik, C.; Évora, L. H. R. A.; Karam, K.; Moraes, L. O. F.; Cirilli, M.; Nessi, M.; Pommès, K.; ATLAS Collaboration

    2011-12-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  14. Software Validation in ATLAS

    International Nuclear Information System (INIS)

    Hodgkinson, Mark; Seuster, Rolf; Simmons, Brinick; Sherwood, Peter; Rousseau, David

    2012-01-01

    The ATLAS collaboration operates an extensive set of protocols to validate the quality of the offline software in a timely manner. This is essential in order to process the large amounts of data being collected by the ATLAS detector in 2011 without complications on the offline software side. We will discuss a number of different strategies used to validate the ATLAS offline software; running the ATLAS framework software, Athena, in a variety of configurations daily on each nightly build via the ATLAS Nightly System (ATN) and Run Time Tester (RTT) systems; the monitoring of these tests and checking the compilation of the software via distributed teams of rotating shifters; monitoring of and follow up on bug reports by the shifter teams and periodic software cleaning weeks to improve the quality of the offline software further.

  15. Overview of the ATLAS Fast Tracker Project

    CERN Document Server

    Ancu, Lucian Stefan; The ATLAS collaboration

    2016-01-01

    The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge for the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency for interesting events despite the increase in multiple collisions per bunch crossing. In order to increase the use of tracks within the High Level Trigger, the ATLAS experiment planned the installation of a hardware processor dedicated to tracking: the Fast TracKer processor. The Fast Tracker is designed to perform full scan track reconstruction of every event accepted by the ATLAS first level hardware trigger. To achieve this goal the system uses a parallel architecture, with algorithms designed to exploit the computing power of custom Associative Memory chips, and modern field programmable gate arrays. The processor will provide computing power to reconstruct tracks with transverse momentum greater than 1 GeV in the whol...

  16. Overview of ATLAS Heavy Flavor Measurements

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment presents four recent measurements in the field of B-Physics using data recorded at center of mass energy 8 TeV at the LHC. All are compared to contemporary models. These measurements involve differential cross sections for b-hadron pair production; prompt J/psi pair production differential cross sections; differential production cross sections for psi(2S) and X(3872), both observed in decays to J/psi pi+ pi-; and an angular analysis of Bd to K* mu+ mu- decays.

  17. Top Physics at Atlas

    CERN Document Server

    Romano, M; The ATLAS collaboration

    2013-01-01

    This talk is an overview of recent results on top-quark physics obtained by the ATLAS collaboration from the analysis of p-p collisions at 7 and 8 TeV at the Large Hadron Collider. Total and differential top pair cross section, single top cross section and mass measurements are presented.

  18. Recent Results from the ATLAS Experiment

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2015-01-01

    A selection of recent Run 1 ATLAS results and first preliminary results from Run 2 are shown. Overview plots on Higgs properties, top measurements and SUSY searches are presented as well as recent QCD and electroweak measurements.

  19. ATLAS production system

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Golubkov, Dmitry; Maeno, Tadashi; Mashinistov, Ruslan; Wenaus, Torre; Padolski, Siarhei

    2016-01-01

    The second generation of the ATLAS production system called ProdSys2 is a distributed workload manager which used by thousands of physicists to analyze the data remotely, with the volume of processed data is beyond the exabyte scale, across a more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criterias, such as input and output size, memory requirements and CPU consumption with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteering computers. Besides jobs definition Production System also includes flexible web user interface, which implements user-friendly environment for main ATLAS workflows, e.g. simple way of combining different data flows, and real-time monitoring, optimised for using with huge amount of information to present. We present an overview of the ATLAS Production System major components: job and task definition, workflow manager web user i...

  20. ATLAS rewards industry

    CERN Multimedia

    2006-01-01

    Showing excellence in mechanics, electronics and cryogenics, three industries are honoured for their contributions to the ATLAS experiment. Representatives of the three award-wining companies after the ceremony. For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Close interaction with CERN was a key factor in the selection of each rewarded company, in addition to the high-quality products they delivered to the experiment. Alu Menziken Industrie AG, of Switzerland, was honoured for the production of 380,000 aluminium tubes for the Monitored Drift Tube Chambers (MDT). As Giora Mikenberg, the Muon System Project Leader stressed, the aluminium tubes were delivered on time with an extraordinary quality and precision. Between October 2000 and Jan...

  1. Overview of ATLAS Heavy Flavor Measurements

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment presents four recent measurements in the field of B-Physics using data recorded at center of mass energy 8 TeV at the LHC. All are compared to contemporary models. These measurements involve differential cross sections for $b$-hadron pair production; prompt $J/\\psi$ pair production differential cross sections; differential production cross sections for $\\psi(2S)$ and $X(3872)$, both observed in decays to $J/\\psi \\pi^+ \\pi^-$; and an angular analysis of $B_d^0 \\rightarrow K^* \\mu^+ \\mu^-$ decays.

  2. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  3. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  4. Physics with Tau Lepton Final States in ATLAS

    Directory of Open Access Journals (Sweden)

    Pingel Almut M.

    2013-05-01

    Full Text Available The ATLAS detector records collisions from two high-energetic proton beams circulating in the LHC. An integral part of the ATLAS physics program are analyses with tau leptons in the final state. Here an overview is given over the studies done in ATLAS with hadronically-decaying final state tau leptons: Standard Model cross-section measurements of Z → ττ, W → τν and tt̅ → bb̅ e/μν τhadν; τ polarization measurements in W → τν decays; Higgs searches and various searches for physics beyond the Standard Model.

  5. The online muon identification of the ATLAS experiment at the LHC

    CERN Document Server

    Bernard, C; The ATLAS collaboration

    2014-01-01

    Identifying muons in the busy LHC environment is an important challenge for the ATLAS detector. This paper gives an overview of the ATLAS three-level muon trigger system, summarizing the online performance. In particular it discusses processing time and trigger rates as well as efficiency, resolution and other general performance figures.

  6. ATLAS: Applications experiences and further developments

    International Nuclear Information System (INIS)

    Beraha, D.; Pointner, W.; Voggenberger, T.

    1999-01-01

    An overview of the plant analyzer ATLAS is given, describing its configuration, the process models and the supplementary modules which enhance the functionality of ATLAS for a range of applications in reactor safety analysis. These modules include the Reliability Advisory System, which supports the user by information from probabilistic safety analysis, the Procedure Analysis for development and test of emergency operating procedures, and a diagnostic system for steam-generator tube rupture. The development of plant specific analysers for various power plants is described, and the user experience related. Finally, the intended further development directions are discussed, centering on a tracking simulator, the migration of the visualisation system to Windows NT, and the construction of the Analysis Center as a multimedia environment for the operation of ATLAS. (author)

  7. Overview of recent results from the ATLAS experiment

    CERN Document Server

    Grabowska-Bold, Iwona; The ATLAS collaboration

    2017-01-01

    The heavy-ion program in the ATLAS experiment at the LHC originated as an extensive program to probe and characterize the hot, dense matter created in relativistic lead-lead collisions. In recent years, the program has also broadened to a detailed study of collective behavior in smaller systems. In particular, the techniques used to study larger systems are also applied to proton-proton and proton-lead collisions over a wide range of particle multiplicities, to try and understand the early-time dynamics which lead to similar flow-like features in all of the systems. Another recent development is a program studying ultra-peripheral collisions, which provide gamma-gamma and photonuclear processes over a wide range of CM energy, to probe the nuclear wavefunction. This talk presents the most recent results from the ATLAS experiment based on Run 1 and Run 2 data, including measurements of collectivity over a wide range of collision systems, potential nPDF modifications — using electroweak bosons, inclusive jets,...

  8. Overview and performance of the ATLAS Level-1 Topological Trigger

    CERN Document Server

    Damp, Johannes Frederic; The ATLAS collaboration

    2018-01-01

    In 2017 the LHC provided proton-proton collisions to the ATLAS experiment with high luminosity (up to 2.06x10^34), placing stringent operational and physical requirements on the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency of less than 2.5 μs. An important role is played by its newly commissioned component: the L1 topological trigger (L1Topo). This innovative system consists of two blades designed in AdvancedTCA form factor, mounting four individual state-of-the-art processors, and providing high input bandwidth and low latency data processing. Up to 128 topological trigger algorithms can be implemented to select interesting events by applying kinematic and angular requirements on electromagnetic clusters, jets, muons and total energy. This results in a significantly...

  9. Searches for squarks and gluinos with ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00394440; The ATLAS collaboration

    2017-01-01

    One of the most versatile and attractive extensions to the successful yet incomplete Standard Model of particle physics is Supersymmetry - a theory the ATLAS experiment at the Large Hadron Collider is looking for in its recorded data. Due to the nature of proton-proton collisions, the recorded physics events are mainly produced via the strong force. This fact makes searches for the superpartners of the gluon and the quarks particularly promising. This document provides an overview of searches for squarks and gluinos using the ATLAS experiment and describes two of the major analyses in detail. The analysis strategies are outlined, the results discussed and interpreted. Finally, an outlook onto other searches for strongly produced Supersymmetry with ATLAS is given.

  10. Status of the ATLAS experiment at CERN

    International Nuclear Information System (INIS)

    Taylor, G.

    2000-01-01

    Full text: The ATLAS experiment, to operate at CERN's Large Hadron Collider (LHC), from 2005 is currently under construction. The Australian HEP Consortium is participating in the development and construction of the semi-conductor tracker (SCT) sub-system of ATLAS. Australian scientists play significant roles in many aspects of the SCT detector module development, including design, prototyping, measurement, beam tests and simulation. Production facilities for construction of two hundred high precision detector modules for the SCT Forward region are well advanced in Melbourne and Sydney laboratories. This talk will give an overview of ATLAS experiment goals and status. It will concentrate on the Australian contribution. The talk will conclude with an outline of the future schedule and plans

  11. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  12. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  13. Digital atlas of fetal brain MRI

    International Nuclear Information System (INIS)

    Chapman, Teresa; Weinberger, E.; Matesan, Manuela; Bulas, Dorothy I.

    2010-01-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  14. Event visualization in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211497; The ATLAS collaboration; Boudreau, Joseph; Konstantinidis, Nikolaos; Martyniuk, Alex; Moyse, Edward; Thomas, Juergen; Waugh, Ben; Yallup, David

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  15. Atlas Asse. Information about the Asse II mine (2009-2016); Atlas Asse. Informationen ueber die Schachtanlage Asse II (2009-2016)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-15

    The newly published ''Atlas Asse'' provides an overview of the challenges and tasks of the Asse decommissioning project. On about 140 pages you will find a selection of reports, graphics and reports, which have been published since 2009 with the first publication of the magazine ''Asse Einblicke''. The atlas also provides orientation for those who have so far dealt little or little with the complex topic. [German] Einen Ueberblick rund um die Herausforderungen und Aufgaben des Stilllegungsprojektes Asse liefert der neu herausgegebene Atlas Asse. Auf etwa 140 Seiten findet sich eine Auswahl von Reportagen, Grafiken und Berichten, die seit 2009 mit dem ersten Erscheinen des Magazins ''Asse Einblicke'' veroeffentlicht wurden. Der Atlas verschafft Orientierung auch fuer diejenigen, die sich bislang wenig oder kaum mit dem komplexen Thema beschaeftigt haben.

  16. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  17. ATLAS Potential for Beauty Physics Measurements

    International Nuclear Information System (INIS)

    Smizanska, M.

    2001-01-01

    The main focus of ATLAS b physics has traditionally been on the standard model. In the last few years also the aspects of new physics in B-decays has been addressed. Another new field of studies started recently is a beauty production. We give an overview of the older as well as more recent results. After an introduction outlining selected trigger and detector performance characteristics, we explain methods and goals of CP violation measurements in decay channels of B d 0 meson, physics of B s 0 system and of rare decays. Finally, the ATLAS program for beauty production measurements is presented. (author)

  18. Report from the June Trigger and Physics Week

    CERN Multimedia

    Chris Bee

    The week of June 4th saw the 5th ATLAS Trigger and Physics week at CERN. The meeting, bringing together people working in the trigger, data preparation, detector combined-performance and physics groups, aimed at focusing work and discussions on preparing ATLAS for first data-taking. The meeting started on Monday afternoon with a set of plenary presentations on topics ranging from software status and validation, the ATLAS analysis model and its implications for the computing model, and initial ideas for trigger menus for the expected LHC start-up luminosity of 1031cm-2s-1. There was also a report from Peter Jenni on the expected LHC start-up schedule. The participation exceeded the organisers' wildest dreams as the CERN Council Chamber (seating capacity 160) proved woefully inadequate to seat everyone. A packed Council Chamber for the opening plenary Tuesday was dedicated to parallel sessions of the trigger and combined performance groups. A great deal of progress was presented in all areas, notably on...

  19. Heavy ion measurements at ATLAS and CMS

    CERN Document Server

    Chapon, Emilien

    2018-01-01

    We present an overview of recent results from the ATLAS and CMS collaborations on heavy ion physics. Using data from proton-proton, proton-lead and lead-lead collisions at the LHC, these results help to shed light on the properties of nuclear matter.

  20. Digital atlas of fetal brain MRI.

    Science.gov (United States)

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  1. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    CERN Document Server

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  2. Highlights from the ATLAS experiment

    CERN Document Server

    Grabowska-Bold, Iwona; The ATLAS collaboration

    2018-01-01

    An overview of the heavy-ion results from the ATLAS experiment is given. It includes a discussion of measurements with non-UPC dimuons in Pb+Pb collisions, dijet asymmetry, charged-hadron Raa and flow harmonics in the Xe+Xe collisions, vn-pt correlations in Pb+Pb collisions, symmetric and asymmetric cumulants in small systems and many more.

  3. The ATLAS Analysis Architecture

    International Nuclear Information System (INIS)

    Cranmer, K.S.

    2008-01-01

    We present an overview of the ATLAS analysis architecture including the relevant aspects of the computing model and the major architectural aspects of the Athena framework. Emphasis will be given to the interplay between the analysis use cases and the technical aspects of the architecture including the design of the event data model, transient-persistent separation, data reduction strategies, analysis tools, and ROOT interoperability

  4. Beyond Standard Model searches in B decays with ATLAS

    CERN Document Server

    Turchikhin, Semen; The ATLAS collaboration

    2018-01-01

    The proceeding contribution presents recent results of the ATLAS experiment at the LHC on heavy flavour measurements sensitive to possible contributions of the new physics. Two measurements are overviewed: the angular analysis of $B^0\\to\\mu^+\\mu^- K^{*0}$ decay and measurement of relative width difference of the $B^0$-$\\bar{B}^0$ system. The first one uses a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by ATLAS at a centre of mass energy $\\sqrt{s} = 8$ TeV, and the second one benefits from the full ATLAS Run-1 dataset with additional 4.9 fb$^{-1}$ collected at $\\sqrt{s} = 7$ TeV.

  5. Syntactic Atlas of the Dutch Dialects

    NARCIS (Netherlands)

    Barbiers, Sjef; Bennis, Hans; Vogelaer, De Gunther; Devos, Magda; Ham, van der Margreet

    2005-01-01

    Available in a Dutch and English Edition, the Syntactic Atlas of the Dutch Dialects (SAND) provides a detailed overview of the surprisingly rich syntactic variation found in 267 dialects of Dutch at the beginning of the 21th century. 200 full color maps show the geographic distribution of more than

  6. ATLAS Award for Difficult Task

    CERN Multimedia

    2004-01-01

    Two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week. On 23 March the Russian company ORPE Technologiya and its subcontractor, RSP Khrunitchev, were jointly presented with an ATLAS Supplier Award. Since 1998, ORPE Technologiya has been actively involved in the development of the carbon-fibre reinforced plastic elements of the ATLAS Inner Detector barrel support structure. After three years of joint research and development, CERN and ORPE Technologiya launched the manufacturing contract. It had a tight delivery schedule and very demanding specifications in terms of mechanical tolerance and stability. The contract was successfully completed with the arrival of the last element of the structure at CERN on 8 January 2004. The delivery of this key component of the Inner Detector deserves an ATLAS Award given the difficulty of manufacturing the end-frames, which very few companies in the world would have been able to do at an ...

  7. Supersymmetry searches with ATLAS: overview and latest results

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. The ATLAS experiment searches for signs of supersymmetry in a large variety of signatures involving events with abnormal production of missing transverse momentum, jets, leptons, photons, third generation fermions, gauge bosons or massive long-lived particles. The talk presents the latest results obtained in these searches.

  8. Searches with boosted objects at ATLAS and CMS

    CERN Document Server

    Moran, Dermot Anthony

    2018-01-01

    An overview of searches for beyond the standard model physics using boosted objects is presented. The searches are based on proton-proton collision data collected with the ATLAS and CMS detectors at the LHC during the 2015 and 2016 running periods.

  9. The Latest from ATLAS

    CERN Multimedia

    2009-01-01

    Since November 2008, ATLAS has undertaken detailed maintenance, consolidation and repair work on the detector (see Bulletin of 20 July 2009). Today, the fraction of the detector that is operational has increased compared to last year: less than 1% of dead channels for most of the sub-systems. "We are going to start taking data this year with a detector which is even more efficient than it was last year," agrees ATLAS Spokesperson, Fabiola Gianotti. By mid-September the detector was fully closed again, and the cavern sealed. The magnet system has been operated at nominal current for extensive periods over recent months. Once the cavern was sealed, ATLAS began two weeks of combined running. Right now, subsystems are joining the run incrementally until the point where the whole detector is integrated and running as one. In the words of ATLAS Technical Coordinator, Marzio Nessi: "Now we really start physics." In parallel, the analysis ...

  10. Atlas Asse. Information about the Asse II mine (2009-2016)

    International Nuclear Information System (INIS)

    2016-11-01

    The newly published ''Atlas Asse'' provides an overview of the challenges and tasks of the Asse decommissioning project. On about 140 pages you will find a selection of reports, graphics and reports, which have been published since 2009 with the first publication of the magazine ''Asse Einblicke''. The atlas also provides orientation for those who have so far dealt little or little with the complex topic. [de

  11. Searches for Dark Matter in ATLAS

    CERN Document Server

    Alpigiani, Cristiano; The ATLAS collaboration

    2017-01-01

    Although the existence of Dark Matter (DM) is well established by many astronomical measurements, its nature still remains one of the unsolved puzzles of particles physics. The unprecedented energy reached by the Large Hadron Collider (LHC) at CERN has allowed exploration of previously unaccessible kinematic regimes in the search for new phenomena. An overview of most recent searches for dark matter with the ATLAS detector at LHC is presented and the interpretation of the results in terms of effective field theory and simplified models is discussed. The exclusion limits set by the ATLAS searches are compared to the constraints from direct dark matter detection experiments.

  12. Heavy ion results from ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00241915; The ATLAS collaboration

    2017-01-01

    These proceedings provide an overview of the new results obtained with the ATLAS Detector at the LHC, which are presented in the Quark Matter 2017 conference. These results are covered in twelve parallel talks, one flash talk and eleven posters, and they are grouped into five areas: initial state, jet quenching, quarkonium production, longitudinal flow dynamics, and collectivity in small systems.

  13. Energy-Atlas Bavaria. Route planner for your energy transformation; Energie-Atlas Bayern. Routenplaner fuer Ihre Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Michael [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany). Oekoenergie-Institut; Bock, Melanie; Bleckmann, Friederike [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany). Ref. 12 Kommunikation, internationale Zusammenarbeit

    2012-02-15

    The energy-atlas offers among others following contents: Overview about facilities for the production of renewable energies, favorable and less favorable sites for the production of renewable energies, foundations for the planning, contact persons and examples from practice, informations on technologies, fundings, and authorizations, tips for the correct proceeding in the application of renewable energies. (HSI)

  14. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  15. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00512833; The ATLAS collaboration

    2017-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  16. Readout and Trigger for the AFP Detector at the ATLAS Experiment

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2018-01-01

    AFP, the ATLAS Forward Proton consists of silicon detectors at 205 m and 217 m on each side of ATLAS. In 2016 two detectors in one side were installed. The FEI4 chips are read at 160 Mbps over the optical fibers. The DAQ system uses a FPGA board with Artix chip and a mezzanine card with RCE data processing module based on a Zynq chip with ARM processor running Linux. In this contribution we give an overview of the AFP detector with the commissioning steps taken to integrate with the ATLAS TDAQ. Furthermore first performance results are presented.

  17. The ATLAS experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Brouwer, G.; Buis, E.J.; Buskop, J.J.F.; Colijn, A.P.; Dankers, R.; Daum, C.; de Boer, R.; de Jong, P.; Ennes, P.; Gosselink, M.; Groenstege, H.; Hart, R.G.G.; Hartjes, F.; Hendriks, P.J.; Hessey, N.P.; Jansweijer, P.P.M.; Kieft, G.; Klok, P.F.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Liebig, W.; Limper, M.; Linde, F.; Luijckx, G.; Massaro, G.; Muijs, A.; Peeters, S.J.M.; Reichold, A.; Rewiersma, P.; Rijpstra, M.; Scholte, R.C.; Schuijlenburg, H.W.; Snuverink, J.; van der Graaf, H.; van der Kraaij, E.; van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vreeswijk, M.; Werneke, P.

    2008-01-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  18. ATLAS operations in the GridKa T1/T2 Cloud

    International Nuclear Information System (INIS)

    Duckeck, G; Serfon, C; Walker, R; Harenberg, T; Kalinin, S; Schultes, J; Kawamura, G; Leffhalm, K; Meyer, J; Nderitu, S; Olszewski, A; Petzold, A; Sundermann, J E

    2011-01-01

    The ATLAS GridKa cloud consists of the GridKa Tier1 centre and 12 Tier2 sites from five countries associated to it. Over the last years a well defined and tested operation model evolved. Several core cloud services need to be operated and closely monitored: distributed data management, involving data replication, deletion and consistency checks; support for ATLAS production activities, which includes Monte Carlo simulation, reprocessing and pilot factory operation; continuous checks of data availability and performance for user analysis; software installation and database setup. Of crucial importance is good communication between sites, operations team and ATLAS as well as efficient cloud level monitoring tools. The paper gives an overview of the operations model and ATLAS services within the cloud.

  19. Overview of the Higgs and Standard Model physics at ATLAS

    CERN Document Server

    Vazquez Schroeder, Tamara; The ATLAS collaboration

    2018-01-01

    This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.

  20. Prime wires for ATLAS

    CERN Multimedia

    2003-01-01

    In an award ceremony on 3 September, ATLAS honoured the French company Axon Cable for its special coaxial cables, which were purpose-built for the Liquid Argon calorimeter modules. Working for CERN since the 1970s, Axon' Cable received the ATLAS supplier award last week for its contribution to the liquid argon calorimeter cables of ATLAS (LAL/Orsay, France and University of Victoria, Canada), started in 1996. Its two sets of minicoaxial cables, called harnesses "A" and "B", are designed to function in the harsh conditions in the liquid argon (at 90 Kelvin or -183°C) and under extreme radiation (up to several Mrads). The cables are mainly used for the readout of the calorimeters, and are connected to the outside world by 114 signal feedthroughs with 1920 channels each. The signal from the detectors is transmitted directly without any amplification, which imposes tight restrictions on the impedance and on the signal propagation time of the cables. Peter Jenni, ATLAS spokesperson, gives the award for best s...

  1. ATLAS discovery potential of the Standard Model Higgs boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2009-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  2. ATLAS Discovery Potential of the Standard Model Higgs Boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2010-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  3. Performance of the ATLAS trigger system in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: Atlas Collaboration; and others

    2017-05-15

    During 2015 the ATLAS experiment recorded 3.8 fb{sup -1} of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton-proton collision data. (orig.)

  4. Performance of the ATLAS Trigger System in 2015

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikai, Takashi; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez Lopez, Jorge Andres; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, George; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-05-18

    During 2015 the ATLAS experiment recorded $3.8 \\mathrm{fb}^{-1}$ of proton--proton collision data at a centre-of-mass energy of $13 \\mathrm{TeV}$. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton--proton collision data.

  5. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A

    2013-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  6. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  7. Selected Results from the ATLAS Experiment on its 25th Anniversary

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2018-01-01

    The Lomonosov Conference and the ATLAS Collaboration celebrated their 25th anniversaries at a few week interval. This gave us the opportunity to present a brief history of ATLAS and to discuss some of its more important results.

  8. Real-time flavor tagging selection in ATLAS

    CERN Document Server

    Sahinsoy, M; The ATLAS collaboration

    2014-01-01

    In high-energy physics experiments, online selection is crucial to reject most uninteresting collisions; in particular, b-jet selections, part of the ATLAS trigger strategy, are meant to select final states with heavy-flavor content. This is the only option to select fully hadronic final states containing b-jets, and is important to reject QCD light jets and maintain affordable trigger rates without raising jet energy thresholds. ATLAS operated b-jet triggers in both 2011 and 2012 data-taking campaigns and is now working to improve the performance of tagging algorithms for Run2. An overview of the ATLAS b-jet trigger strategy and its performance on real data is presented in this contribution, along with future prospects. Data-driven techniques to extract the online b-tagging performance, a key ingredient for all analyses relying on such triggers, are also discussed and results presented.

  9. Real-time flavor tagging selection in ATLAS

    CERN Document Server

    Madaffari, D

    2016-01-01

    In high-energy physics experiments the online selection is crucial to reject the overwhelming uninteresting collisions. In particular the ATLAS experiment includes b-jet selections in its trigger, in order to select final states with significant heavy-flavor content. Dedicated selections are developed to timely identifying fully hadronic final states containing b-jets and maintaining affordable trigger rates. ATLAS successfully operated b-jet trigger selections during both 2011 and 2012 Large Hadron Collider data-taking campaigns. Work is on-going now to improve the performance of online tagging algorithms to be deployed in Run 2 in 2015. An overview of the Run 1 ATLAS b-jet trigger strategy along with future prospects is presented in this paper. Data-driven techniques to extract the online b-tagging performance, a key ingredient for all analysis relying on such triggers, are also discussed and preliminary results presented.

  10. Performance of the ATLAS Trigger System in 2010

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chislett, Rebecca Thalatta; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dieli, Michele Vincenzo; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heine, Kristin; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Øye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-03

    Proton-proton collisions at $\\sqrt{s}=7$ TeV and heavy ion collisions at $\\sqrt{s_{NN}}$=2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented

  11. ATLAS Detector Upgrade Prospects

    International Nuclear Information System (INIS)

    Dobre, M

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb −1 expected for LHC running by the end of 2018 to 3000 fb −1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV. (paper)

  12. ATLAS Forward Detectors: present and future

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2017-01-01

    In addition to the main central detectors, the ATLAS experiment has also four subdetectors situated in a forward region hundreds of meters far from the interaction point and dedicated to measure particles leaving under very small angles the ATLAS proton-proton impact point. Particularly, LUCID is dedicated to luminosity measurement while ALFA, ZDC and AFP are committed to forward physics studies. ALFA is devoted to the measurement of proton elastic scattering, ZDC is dedicated to detect proton and neutral particles travelling along the beam axis and AFP aims to measure momenta and angles of diffractively scattered protons. This presentation will give an overview on the detectors status, the results obtained during the RUN 2 period of data taking and the future plans for the next years.

  13. Commissioning of ATLAS

    CERN Document Server

    Thomas, J

    2008-01-01

    The status of the commissioning of the ATLAS experiment as of May 2008 is presented. The subdetector integration in recent milestone weeks is described, especially the cosmic commissioning in milestone week M6, focussing on combined running and track analysis of the muon detector and inner detector. The liquid argon and tile calorimeters have achieved near-full operation, and are integrated with the calorimeter trigger. The High-Level-Trigger infrastructure is installed and algorithms tested in technical runs. Problems with the inner detector cooling compressors are being fixed.

  14. First-year experience with the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Corso-Radu, A

    2010-01-01

    ATLAS is one of the four experiments in the Large Hadron Collider (LHC) at CERN, which has been put in operation this year. The challenging experimental environment and the extreme detector complexity required development of a highly scalable distributed monitoring framework, which is currently being used to monitor the quality of the data being taken as well as operational conditions of the hardware and software elements of the detector, trigger and data acquisition systems. At the moment the ATLAS Trigger/DAQ system is distributed over more than 1000 computers, which is about one third of the final ATLAS size. At every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles more than 4 million histograms updates coming from more than 4 thousands applications, executes 10 thousands advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. This note presents the overview of the online monitoring software framework, and describes the experience, which was gained during an extensive commissioning period as well as at the first phase of LHC beam in September 2008. Performance results, obtained on the current ATLAS DAQ system will also be presented, showing that the performance of the framework is adequate for the final ATLAS system.

  15. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  16. Real-time flavor tagging selection in ATLAS

    CERN Document Server

    Madaffari, D; The ATLAS collaboration

    2014-01-01

    In high-energy physics experiments on hadron colliders, online selection is crucial to reject most uninteresting collisions. In particular, the ATLAS experiment includes b-jet selections in its trigger strategy, in order to select final states with heavy-flavor content and enlarge its physics potentials. Dedicated selections are developed to quickly identify fully hadronic final states containing b-jets, while rejecting light QCD jets, and maintain affordable trigger rates without raising jet energy thresholds. ATLAS successfully operated b-jet trigger selections during both 2011 and 2012 data-taking campaigns and hard work is on-going now to improve the performance of tagging algorithms for coming Run2 in 2015. An overview of the ATLAS b-jet trigger strategy and its performance on real data is presented in this contribution, along with future prospects. Data-driven techniques to extract the online b-tagging performance, a key ingredient for all analyses relying on such triggers, are also discussed and result...

  17. The ATLAS PanDA Pilot in Operation

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Stradling, A; Caballero, J; Maeno, T; Wenaus, T

    2011-01-01

    The Production and Distributed Analysis system (PanDA) was designed to meet ATLAS requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its evolution.

  18. Recent test results on the ATLAS SCT detector

    International Nuclear Information System (INIS)

    Pernegger, H.

    2003-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT, which is currently under construction, will consist of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. After an overview of the SCT and the detector module layout, the paper will summarize recent test results obtained from silicon detector modules, which have been extensively tested before starting their large series production. The tests presented here cover electrical performance of individual modules, their performance after irradiation, as well as system tests in a multi-module setup

  19. Radiologic atlas of rheumatic diseases

    International Nuclear Information System (INIS)

    Dihlmann, W.

    1986-01-01

    This book is an ''atlas of rheumatic joint disease'' selected from 20 years of personal experience by the author. The author sets a goal of demonstrating the value of soft-tissue imaging in the diagnosis of early joint disease. This goal is achieved with high quality reproductions, many of which are presented in duplicate to illustrate bone and soft-tissue changes. The contents include an introductory overview of the ''Mosaic of Arthritis'' followed by sections on adult rheumatoid arthritis, seronegative spondyloarthropathies, classic collagen disease, enthesiopathies, and lastly a section on gout and psuedogout. The subject index is specific and indexes figures with boldface type. Each section is introduced by a brief outline or overview of the radiographic spectrum of the joint disorder to be illustrated

  20. Recent Improvements in the ATLAS PanDA Pilot

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Bejar, J Caballero; Maeno, T; Potekhin, M; Wenaus, T; Compostella, G; Contreras, C; Dos Santos, T

    2012-01-01

    The Production and Distributed Analysis system (PanDA) in the ATLAS experiment uses pilots to execute submitted jobs on the worker nodes. The pilots are designed to deal with different runtime conditions and failure scenarios, and support many storage systems. This talk will give a brief overview of the PanDA pilot system and will present major features and recent improvements including CernVM File System integration, the job retry mechanism, advanced job monitoring including JEM technology, and validation of new pilot code using the HammerCloud stress-testing system. PanDA is used for all ATLAS distributed production and is the primary system for distributed analysis. It is currently used at over 130 sites worldwide. We analyze the performance of the pilot system in processing LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its further evolution.

  1. The ATLAS Education and Outreach Group

    CERN Multimedia

    M. Barnett

    With the unprecedented scale and duration of ATLAS and the unique possibilities to make groundbreaking discoveries in physics, ATLAS has special opportunities to communicate the importance and role of our accomplishments. We want to participate in educating the next generation of scientific and other leaders in our society by involving students of many levels in our research. The Education and Outreach Group has focused on producing informational material of various sorts - like brochures, posters, a film, animations and a public website - to assist the members of the collaboration in their contacts with students, teachers and the general public. Another aim is to facilitate the teaching of particle physics and particularly the role of the ATLAS Experiment by providing ideas and educational material. The Education and Outreach Group meets every ATLAS week, with an attendance of between 25 and 40 people. The meetings have become an interesting forum for education and outreach projects and new ideas. The comi...

  2. Make way for the ATLAS magnet

    CERN Multimedia

    2007-01-01

    On 5 and 6 February, the first ATLAS End Cap Toroid magnet was transported to begin a two-month regime of cryogenic testing. The magnet is scheduled to be installed in the cavern the first week of June.

  3. The ATLAS Trigger: Recent Experience and Future Plans

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    This paper will give an overview of the ATLAS trigger design and its innovative features. It will describe the valuable experience gained in running the trigger reconstruction and event selection in the fastchanging environment of the detector commissioning during 2008. It will also include a description of the trigger selection menu and its 2009 deployment plan from first collisions to the nominal luminosity. ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system needs to efficiently reject a large rate of background events and still select potentially interesting ones with high efficiency. After a first level trigger implemented in custom electronics, the trigger event selection is made by the High Level Trigger (HLT) system, implemented in software. To reduce the processing time to manageable levels, the HLT uses seeded, step-wise and fast selection algorithms, aiming at the earliest possible rejection of background events. The ATLAS trigger event selection...

  4. Electroweak measurements with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The seminar presents an overview of the ATLAS electroweak physics programme. Recent measurements of di-boson and multi-boson production processes involving combinations of W, Z and isolated photons, associated with up to two jets, at 8 TeV proton-proton collisions are discussed. Inclusive, fiducial and differential production cross sections are presented, including vector-boson fusion and vector-boson scattering processes. These measurements allow to derive constraints on anomalous triple and quartic gauge couplings.

  5. Next generation PanDA pilot for ATLAS and other experiments

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Megino, F Barreiro; Llamas, R Medrano; Bejar, J Caballero; Hover, J; Maeno, T; Wenaus, T; Love, P; Walker, R

    2014-01-01

    The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and runs the experiment-specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a description of the experiment-specific plug-in classes. The performance of the pilot system in processing LHC data on the OSG, LCG and Nordugrid infrastructures used by ATLAS will also be presented. We will describe plans for future development on the time scale of the next few years.

  6. IT Infrastructure Design and Implementation Considerations for the ATLAS TDAQ System

    CERN Document Server

    Dobson, M; The ATLAS collaboration; Caramarcu, C; Dumitru, I; Valsan, L; Darlea, G L; Bujor, F; Bogdanchikov, A G; Korol, A A; Zaytsev, A S; Ballestrero, S

    2013-01-01

    This paper gives a thorough overview of the ATLAS TDAQ SysAdmin group activities which deals with administration of the TDAQ computing environment supporting Front End detector hardware, Data Flow, Event Filter and other subsystems of the ATLAS detector operating on the LHC accelerator at CERN. The current installation consists of approximately 1500 netbooted nodes managed by more than 60 dedicated servers, a high performance centralized storage system, about 50 multi-screen user interface systems installed in the control rooms and various hardware and critical service monitoring machines. In the final configuration, the online computer farm will be capable of hosting tens of thousands applications running simultaneously. The ATLAS TDAQ computing environment is now serving more than 3000 users subdivided into approximately 300 categories in correspondence with their roles in the system. The access and role management system is custom built on top of an LDAP schema. The engineering infrastructure of the ATLAS ...

  7. Atlas of Wenchuan-Earthquake Geohazards : Analysis of co-seismic and post-seismic Geohazards in the area affected by the 2008 Wenchuan Earthquake

    NARCIS (Netherlands)

    Tang, Chuan; van Westen, C.J.

    2018-01-01

    This atlas provides basic information and overviews of the occurrence of co-seismic landslides, the subsequent rainstorm-induced debris flows, and the methods used for hazard and risk assessment in the Wenchuan-earthquake affected area. The atlas pages are illustrated with maps, photos and graphs,

  8. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  9. Run-2 ATLAS Trigger and Detector Performance

    CERN Document Server

    Winklmeier, Frank; The ATLAS collaboration

    2016-01-01

    The 2nd LHC run has started in June 2015 with a pp centre-of-mass collision energy of 13 TeV, and ATLAS has taken first data at this new energy. In this talk the improvements made to the ATLAS experiment during the 2-year shutdown 2013/2014 will be discussed, and first detector and trigger performance results from the Run-2 will be shown. In general, reconstruction algorithms of tracks, e/gamma, muons, taus, jets and flavour tag- ging have been improved for Run-2. The new reconstruction algorithms and their performance measured using the data taken in 2015 at sqrt(s)=13 TeV will be discussed. Reconstruction efficiency, isolation performance, transverse momentum resolution and momentum scales are measured in various regions of the detector and in momentum intervals enlarged with respect to those measured in the Run-1. This presentation will also give an overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown in order to deal with the increased trigger rates (fact...

  10. Searches for Exotic Physics with leptons with the ATLAS Detector

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    With the large sample of pp collisions recorded in the past year, ATLAS has taken full advantage of the opportunity to explore new territory at the TeV scale. In this seminar, an overview of searches for new exotic particles is presented, with a special emphasis on signatures with leptons.

  11. The ATLAS distributed analysis system

    International Nuclear Information System (INIS)

    Legger, F

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  12. The ATLAS distributed analysis system

    Science.gov (United States)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  13. First modules of ATLAS's great accordion

    CERN Multimedia

    2001-01-01

    The first CERN-built module of the barrel section of ATLAS's electromagnetic calorimeter has just been completed. This is the second in a series of 32 modules that will make up the final detector. These accordion-shaped structures will give precise measurements of the energy of particles produced in the LHC. The first CERN-built module of the barrel section of ATLAS's electromagnetic calorimeter nearing completion. Behind the module, from left to right: Ralf Huber, Andreas Bies and Jorgen Beck Hansen. In front of the module, from left to right: Philippe Lançon and Edward Wood. The builders of the ATLAS electromagnetic calorimeter are masters in the art of folding! To find out why, just take a look inside Hall 184, where the first CERN-built module of ATLAS's electromagnetic calorimeter has just been completed. It is the second in a long series, the first having been completed at the Saclay Laboratory of France's Commissariat à l'Energie Atomique just a few weeks ago. Thirty more remain...

  14. The ATLAS Data Acquisition and High Level Trigger system

    International Nuclear Information System (INIS)

    2016-01-01

    This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed.

  15. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  16. Next Generation PanDA Pilot for ATLAS and Other Experiments

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Caballero Bejar, J; De, K; Hover, J; Love, P; Maeno, T; Medrano Llamas, R; Walker, R; Wenaus, T

    2013-01-01

    The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and runs the experiment specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a description of the experiment specific plug-in classes. The performance of the pilot system in processing LHC data on the OSG, LCG and Nord...

  17. Next Generation PanDA Pilot for ATLAS and Other Experiments

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Caballero Bejar, J; De, K; Hover, J; Love, P; Maeno, T; Medrano Llamas, R; Walker, R; Wenaus, T

    2014-01-01

    The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and runs the experiment specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a description of the experiment specific plug-in classes. The performance of the pilot system in processing LHC data on the OSG, LCG and Nord...

  18. ATLAS FTK: Fast Track Trigger

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    An overview of the ATLAS Fast Tracker processor is presented, reporting the design of the system, its expected performance, and the integration status. The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge to the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency in interesting events, despite the increase in multiple p-p collisions per bunch crossing (pile-up). In order to increase the use of tracks within the High Level Trigger (HLT), the ATLAS experiment planned the installation of an hardware processor dedicated to tracking: the Fast TracKer (FTK) processor. The FTK is designed to perform full scan track reconstruction at every Level-1 accept. To achieve this goal, the FTK uses a fully parallel architecture, with algorithms designed to exploit the computing power of custom VLSI chips, the Associative Memory, as well as modern FPGAs. The FT...

  19. Atlas - a new pulsed power tool at Los Alamos

    CERN Document Server

    Scudder, D W; Ballard, E O; Barr, G W; Cochrane, J C; Davis, H A; Griego, J R; Hadden, E S; Hinckley, W B; Hosack, K W; Martínez, J E; Mills, D; Padilla, J N; Parker, J V; Parsons, W M; Reinovsky, R E; Stokes, J L; Thompson, M C; Tom, C Y; Wysocki, F J; Vigil, B N; Elizondo, J; Miller, R B; Anderson, H D; Campbell, T N; Owens, R S

    2001-01-01

    Summary form only given, as follows. The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. The paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et al. on machine performance and Ballard et al. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low- inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access incl...

  20. Review of the ATLAS experiment at the LHC (CERN)

    International Nuclear Information System (INIS)

    Taylor, G.

    1998-01-01

    Full text: This talk gives in overview of the physics program for the next generation high energy physics experiments at CERN's Large Hadron Collider (LHC). Emphasis will be on the ATLAS experiment and in particular on the Australian participation in that experiment. Australian physicists from Melbourne, Sydney and Wollongong are playing a significant role in the development, production, installation and operation of the ambitious Semiconductor Tracker (SCT) in the ATLAS' Inner Detector. The SCT, particularly important for the detection and measurement of high energy electrons, will be essential in the search for the Higgs Boson through electron decay channels (amongst other reactions). The design calls for a total detector surface area an order of magnitude larger than in current silicon detectors, in a harsh radiation environment. Prodigious data rates and high speed electronics add to the complications of this detector. The talk will review progress and describe the schedule for the completion of the SCT and ATLAS

  1. SUSY Searches at ATLAS

    CERN Document Server

    Mamuzic, Judita; The ATLAS collaboration

    2017-01-01

    Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.

  2. The ATLAS trigger: high-level trigger commissioning and operation during early data taking

    International Nuclear Information System (INIS)

    Goncalo, R

    2008-01-01

    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200 Hz. This paper gives an overview of the ATLAS High Level Trigger focusing on the system design and its innovative features. We then present the ATLAS trigger strategy for the initial phase of LHC exploitation. Finally, we report on the valuable experience acquired through in-situ commissioning of the system where simulated events were used to exercise the trigger chain. In particular we show critical quantities such as event processing times, measured in a large-scale HLT farm using a complex trigger menu

  3. Billedrummet som et levende atlas i verden

    DEFF Research Database (Denmark)

    Kjær, Michael

    2017-01-01

    The image as a living atlas in the world An introduction to George Didi-Huberman’s image theory project and curatorial practice This article delivers both an overview of the ongoing work of art historian Georges Didi-Huberman (b. 1953) and an attempt at analyzing the incarnational conception of i...... the darkness of our flesh from within as images – thereby developing our imagination and freeing us from the deadening total image that is fascism....

  4. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2017. In this paper an overview of the ongoing R\\&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

  5. System administration of ATLAS TDAQ computing environment

    Science.gov (United States)

    Adeel-Ur-Rehman, A.; Bujor, F.; Benes, J.; Caramarcu, C.; Dobson, M.; Dumitrescu, A.; Dumitru, I.; Leahu, M.; Valsan, L.; Oreshkin, A.; Popov, D.; Unel, G.; Zaytsev, A.

    2010-04-01

    This contribution gives a thorough overview of the ATLAS TDAQ SysAdmin group activities which deals with administration of the TDAQ computing environment supporting High Level Trigger, Event Filter and other subsystems of the ATLAS detector operating on LHC collider at CERN. The current installation consists of approximately 1500 netbooted nodes managed by more than 60 dedicated servers, about 40 multi-screen user interface machines installed in the control rooms and various hardware and service monitoring machines as well. In the final configuration, the online computer farm will be capable of hosting tens of thousands applications running simultaneously. The software distribution requirements are matched by the two level NFS based solution. Hardware and network monitoring systems of ATLAS TDAQ are based on NAGIOS and MySQL cluster behind it for accounting and storing the monitoring data collected, IPMI tools, CERN LANDB and the dedicated tools developed by the group, e.g. ConfdbUI. The user management schema deployed in TDAQ environment is founded on the authentication and role management system based on LDAP. External access to the ATLAS online computing facilities is provided by means of the gateways supplied with an accounting system as well. Current activities of the group include deployment of the centralized storage system, testing and validating hardware solutions for future use within the ATLAS TDAQ environment including new multi-core blade servers, developing GUI tools for user authentication and roles management, testing and validating 64-bit OS, and upgrading the existing TDAQ hardware components, authentication servers and the gateways.

  6. Recent results on Higgs measurements and searches in ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The excellent operation of the LHC, and a fast processing and analysis, has enabled ATLAS to produce many new results during the last months with similar or better sensitivity than the one reached during Run 1 of the LHC. The seminar will give an overview of the Standard Model Higgs boson measurements and of searches for non-standard scalar states or decay modes.

  7. Recent QCD results from ATLAS

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.

  8. Physics of ridge and hard processes in proton-lead and lead-lead collisions with ATLAS

    CERN Document Server

    Spousta, Martin; The ATLAS collaboration

    2018-01-01

    In this short report, we provide an overview of selected new results from the heavy-ion physics program of the ATLAS experiment with the emphasis on jet quenching, quarkonia suppression and long range azimuthal correlations.

  9. ATLAS Award for Difficult Task : two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week.

    CERN Multimedia

    2004-01-01

    From left to right, V. Riadovikov (IHEP Protvino), N. Voronkov (RSPKrunitchev), J. Margoulis (RSP Krunitchev), D. Froidevaux (CERN), A. Romashin (ORPE Technologiya), J. Callahan (CERN/Indiana University), A. Catinaccio (CERN) and O. Komissar (ORPE Technologiya), stand in front of the ATLAS inner detector barrel support structure, manufactured by ORPE Technologiya and RSP Krunitchev.

  10. Commissioning of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(CDS)2069446

    2008-01-01

    The status of the commissioning of the ATLAS experiment as of May 2008 is presented. The subdetector integration in recent milestone weeks is described, especially the cosmic commissioning in milestone week M6, focusing on simultaneous running and combined track analysis of the muon detector and inner detector. The liquid argon and tile calorimeters have achieved near-full operation, and are integrated with the calorimeter trigger. The High-Level-Trigger infrastructure is installed and algorithms tested in technical runs. Problems with the inner detector cooling compressors are being fixed.

  11. A Data Formatter for the ATLAS Fast Tracker

    CERN Document Server

    Olsen, J; The ATLAS collaboration; Liu, Ted; Okumura, Y; Penning, B

    2012-01-01

    The Fast TracKer (FTK) is an upgrade to the ATLAS level-2 trigger. The FTK system will reconstruct tracks using data from the inner Pixel and SCT silicon detector modules at trigger rates up to 100 kHz. We present an overview of the Data Formatter system, which is designed to remap, share and reformat the Pixel and SCT module data to match the geometry of the FTK trigger towers.

  12. Event displays and plots of latest results from ATLAS Higgs Search

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    On 4 July, 2012, the ATLAS experiment presented a preview of its updated results on the search for the Higgs Boson. The results were shown at a seminar held jointly at CERN and via video link at ICHEP 2012, the International Conference for High Energy Physics in Melbourne, Australia, where detailed analyses will be presented later this week. More information at http://atlas.cern

  13. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  14. 2001, the ATLAS Cryostat Odyssey

    CERN Multimedia

    2001-01-01

    After a journey of several thousand kilometres, over sea and land, by canal and highway, the cryogenics barrel of the ATLAS electromagnetic calorimeter finally arrived at CERN last week. Installed in Hall 180, the cryogenics barrel of the ATLAS electromagnetic calorimeter will be fitted out to take the central superconducting solenoid and the electromagnetic calorimeter. On Monday 2 July, different French police units and EDF officials were once again keeping careful watch around the hairpin bends of the road twisting down from the Col de la Faucille: a special load weighing 100 tonnes, 7 metres high, 5.8 metres wide and 7.2 metres long was being brought down into the Pays de Gex to the Meyrin site of CERN. This time the destination was the ATLAS experiment. A huge blue tarpaulin cover concealed the cryogenics barrel of the experiment's liquid argon electromagnetic calorimeter. The cryostat consists of a vacuum chamber, a cylinder that is 5.5 metres in diameter, 7 metres long, and a concentric cold chamber ...

  15. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different sub-detector combinations. In this contribution, we give an overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are m...

  16. Syntactische atlas van de Nederlandse dialecten : Deel 1: Pronomina, Congruentie en Vooropplaatsing

    NARCIS (Netherlands)

    Barbiers, Sjef; Bennis, Hans; Vogelaer, De Gunther; Devos, Magda; Ham, van der Margreet

    2005-01-01

    Available in a Dutch and English Edition, the Syntactic Atlas of the Dutch Dialects provides a detailed overview of the surprisingly rich syntactic variation found in 267 dialects of Dutch at the beginning of the 21th century. 200 full color maps show the geographic distribution of more than 100

  17. Overview of the Insertable B-Layer (IBL) Project of the ATLAS Experiment at the Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    Flick, Tobias

    2013-06-01

    The ATLAS experiment will upgrade its Pixel Detector with the installation of a new pixel layer in 2013/14. The new sub-detector, named Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new smaller diameter beam-pipe at a radius of 33 mm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed and are currently under investigation and production for the IBL. Furthermore, the physics performance should be improved through the reduction of pixel size whereas targeting for a low material budget, pushing for a new mechanical support using lightweight staves and a CO 2 -based cooling system. An overview of the IBL project, the results of beam tests on different sensor technologies, testing of pre-series staves made before going into production in order to qualify the assembly procedure, the loaded module electrical integrity, and the read-out chain will be presented. (authors)

  18. ATLAS end-caps 
on the move

    CERN Multimedia

    2007-01-01

    Two delicate and spectacular transport operations have been performed for ATLAS in recent weeks: the first end-cap tracker was installed in its final position, and one of the huge end-caps of the toroid magnet was moved to the top of the experiment’s shaft.

  19. ATLAS Calorimeter system: Run-2 performance, Phase-1 and Phase-2 upgrades

    CERN Document Server

    Starz, Steffen; The ATLAS collaboration

    2018-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon-lead sampling calorimeter (LAr) is employed as electromagnetic calorimeter and hadronic calorimeter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. ATLAS recorded 87 fb^{-1} of data at a center-of-mass energy of 13 TeV between 2015 and 2017. In order to achieve the level-1 acceptance rate of 100 kHz, certain adjustments have been performed. The calorimetry system performed accordingly to its design values and have played a crucial role in the ATLAS physics programme. This contribution will give an overview of the detector operation, monitoring and data quality, as well as the achieved performance, including the calibration and stability of the energy scale, noise level, response uniformity and time resolution of the ATLAS cal...

  20. Dark matter searches at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2015-01-01

    The large excess of Dark Matter observed in the Universe and its particle nature is one of the key problems yet to be solved in particle physics. Despite the extensive success of the Standard Model, it is not able to explain this excess, which instead might be due to yet unknown particles, such as Weakly Interacting Massive Particles, that could be produced at the Large Hadron Collider. This contribution will give an overview of different approaches to finding evidence for Dark Matter with the ATLAS experiment in $\\sqrt{s}=8~\\mathrm{TeV}$ Run-1 data.

  1. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00014247; The ATLAS collaboration; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea

    2017-01-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with detai...

  2. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  3. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  4. ATLAS Distributed Computing Experience and Performance During the LHC Run-2

    Science.gov (United States)

    Filipčič, A.; ATLAS Collaboration

    2017-10-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of the new model was demonstrated through the delivery of analysis datasets to users just one week after data taking, by completing the calibration loop, Tier-0 processing and train production steps promptly. The great flexibility of the new system also makes it possible to execute part of the Tier-0 processing on the grid when Tier-0 resources experience a backlog during high data-taking periods. The introduction of the data lifetime model, where each dataset is assigned a finite lifetime (with extensions possible for frequently accessed data), was made possible by Rucio. Thanks to this the storage crises experienced in Run-1 have not reappeared during Run-2. In addition, the distinction between Tier-1 and Tier-2 disk storage, now largely artificial given the quality of Tier-2 resources and their networking, has been removed through the introduction of dynamic ATLAS clouds that group the storage endpoint nucleus and its close-by execution satellite sites. All stable

  5. Top reconstruction and boosted top experimental overview

    CERN Document Server

    Skinnari, Louise

    2015-01-01

    An overview of techniques used to reconstruct resolved and boosted top quarks is presented. Techniques for resolved top quark reconstruction include kinematic likelihood fitters and pseudo- top reconstruction. Many tools and methods are available for the reconstruction of boosted top quarks, such as jet grooming techniques, jet substructure variables, and dedicated top taggers. Different techniques as used by ATLAS and CMS analyses are described and the performance of different variables and top taggers are shown.

  6. Prospects of diffractive physics with the ATLAS forward detectors

    CERN Document Server

    Lopez Paz, Ivan; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector provides measurements of the momentum and emission angle of very forward protons. This enables the observation and measurement of a range of processes where one or both protons remain intact. Such processes are associated with elastic and diffractive scattering. In this talk, we give on overview of the technical details of the AFP, its current status as well as its associated physics program.

  7. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    CERN Document Server

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  8. The ATLAS SCT: Commissioning experience and SLHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mitrevski, J. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States)], E-mail: Jovan.Mitrevski@cern.ch

    2009-06-01

    The ATLAS Semiconductor Tracker (SCT) has been installed, and fully connected to electrical, optical and cooling services. Commissioning has been performed both with calibration data and cosmic ray events. The cosmics were used to align the detector, measure the hit efficiency and set the timing. The SCT is now ready to take data when the LHC turns on this autumn. At the same time, it is clear that the present ATLAS tracker will need to be renewed for projected luminosity upgrade of the LHC, the SLHC. This is mainly driven by occupancy and radiation hardness issues. The new tracker will likely be entirely made of silicon, with the space of the present SCT largely taken up by detectors with much shorter strips. Several large-scale R and D projects on the sensors and module concepts for this upgrade are running, including sensor and module prototyping. We will report upon the commissioning experience from the SCT, use it to extract valuable lessons for future silicon tracker projects, and give an up-to-date overview of the status and results of the R and D efforts for the ATLAS tracker upgrade.

  9. The ATLAS SCT: Commissioning experience and SLHC upgrade

    International Nuclear Information System (INIS)

    Mitrevski, J.

    2009-01-01

    The ATLAS Semiconductor Tracker (SCT) has been installed, and fully connected to electrical, optical and cooling services. Commissioning has been performed both with calibration data and cosmic ray events. The cosmics were used to align the detector, measure the hit efficiency and set the timing. The SCT is now ready to take data when the LHC turns on this autumn. At the same time, it is clear that the present ATLAS tracker will need to be renewed for projected luminosity upgrade of the LHC, the SLHC. This is mainly driven by occupancy and radiation hardness issues. The new tracker will likely be entirely made of silicon, with the space of the present SCT largely taken up by detectors with much shorter strips. Several large-scale R and D projects on the sensors and module concepts for this upgrade are running, including sensor and module prototyping. We will report upon the commissioning experience from the SCT, use it to extract valuable lessons for future silicon tracker projects, and give an up-to-date overview of the status and results of the R and D efforts for the ATLAS tracker upgrade.

  10. ATLAS's inner detector installed in the heart of the experiment

    CERN Multimedia

    2006-01-01

    The ATLAS collaboration recently celebrated a major engineering milestone, namely the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Right: Engineers and technicians work to carefully align and install the inner detector in the centre of ATLAS.Left: The crane used in the carefully coordinated effort by the ATLAS collaboration to lower down the fragile inner detector 100 metres underground to its new home. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the two outer detectors (TRT and SCT) of the inner detector barrel (ID-barrel) were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from Building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Special measures were in place to minimize shock and vibration during transportati...

  11. Physics Capabilities of the ATLAS Experiment in Pb+Pb Collisions at the LHC

    CERN Document Server

    Derendarz, D; The ATLAS collaboration

    2010-01-01

    Relativistic heavy ion collisions at the LHC will uncover properties of hot and dense medium formed at collision energy thirty times larger than energy presently available at RHIC. ATLAS is one of three experiments participating in the heavy ion program at the LHC. A brief overview of variety of observables which will be measured by ATLAS to study soft and hard QCD phenomena in heavy ion environment is presented. In particular the detector will measure global observables like charged particle multiplicity, azimuthal anisotropy and energy flow. The detector provides also an excellent capability to probe the quark gluon plasma by measurement of high energy jets and photons as well as quarkonia states. Performance of a high granularity calorimeter, silicon tracking detector and muon spectrometer in heavy ion collisions is reported. A unique ATLAS potential to study Pb+Pb interactions is discussed.

  12. Recent recordings

    CERN Multimedia

    Steve Goldfarb

    The University of Michigan ATLAS Collaboratory Project would like to announce the publication of a number of recent web lectures concerning ATLAS and the LHC. Most recently, we produced a series of presentations made at the First ATLAS Physics Workshop of the Americas, held at SLAC in August. The complete set of lectures can be found here.There is a lot of outstanding material there, relevant to all of ATLAS, including detector summaries, trigger and physics talks, software and computing presentations, and an overview of operations. Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.Additional ATLAS material, including plenary lectures, workshops and tutorials, can be found via our portal athttp://www.wlap.org/atlasincluding: First ATLAS Physics Workshop of the Americas (Aug 2007) Glasgow Overview Week Plenary Sessions (Jul 2007) CTEQ Workshop: "Physics at ...

  13. An overview of the Atlas pulsed-power systems

    CERN Document Server

    Parsons, W M; Barr, G W; Bowman, D W; Cochrane, J C; Davis, H A; Elizondo, J M; Gribble, R F; Griego, J R; Hicks, R D; Hinckley, W B; Hosack, K W; Miller, R B; Nielsen, K E; Parker, J V; Ricketts, R L; Salazar, H R; Sánchez, P G; Scudder, D W; Thompson, M C; Trainor, R J; Valdez, G A; Vigil, B N; Waganaar, W J; Watt, R G; Wysocki, F J; Kirbie, H C

    1999-01-01

    Atlas is a facility designed and being constructed at Los Alamos National Laboratory (LANL) to perform high energy-density experiments in support of weapon-physics and basic-research programs. It is designed to be an international user facility, providing experimental opportunities to researchers from national laboratories and academic institutions. For hydrodynamic experiments, it will be capable of achieving pressures exceeding 10 Mbar in a several cm/sup 3/ volume. The 23-MJ capacitor bank will consist of 240-kV Marx modules arranged around a central target chamber. The Marx modules will be discharged through vertical triplate transmission lines to a parallel plate collector inside the target chamber. The capacitor bank is designed to deliver a peak current of 27 to 32 MA with a 4- to 5- mu s risetime. Predicted performance with a typical load is presented. Descriptions of the major subsystems are also presented, including data from subsystem performance tests. (6 refs).

  14. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  15. Real-time flavour tagging selection in ATLAS

    CERN Document Server

    Zivkovic, Lidija; The ATLAS collaboration

    2015-01-01

    In high-energy physics experiments, online selection is crucial to select interesting collisions from the large data volume. ATLAS b-jet triggers are designed to identify heavy-flavour content in real-time and provide the only option to efficiently record events with fully hadronic final states containing b-jets. In doing so, two different, but related, challenges are faced. The physics goal is to optimise as far as possible the rejection of light jets, while retaining a high efficiency on selecting b-jets and maintaining affordable trigger rates without raising jet energy thresholds. This maps into a challenging computing task, as tracks and their corresponding vertexes must be reconstructed and analysed for each jet above the desired threshold, regardless of the increasingly harsh pile-up conditions. We present an overview of the ATLAS strategy for online b-jet selection for the LHC Run 2, including the use of novel methods and sophisticated algorithms designed to face the above mentioned challenges. A firs...

  16. Real-time flavour tagging selection in ATLAS

    CERN Document Server

    \\v{Z}ivkovi{c}, Lidija; The ATLAS collaboration

    2015-01-01

    In high-energy physics experiments, online selection is crucial to select interesting collisions from the large data volume. ATLAS b-jet triggers are designed to identify heavy-flavour content in real-time and provide the only option to efficiently record events with fully hadronic final states containing b-jets. In doing so, two different, but related, challenges are faced. The physics goal is to optimise as far as possible the rejection of light jets, while retaining a high efficiency on selecting b-jets and maintaining affordable trigger rates without raising jet energy thresholds. This maps into a challenging computing task, as tracks and their corresponding vertices must be reconstructed and analysed for each jet above the desired threshold, regardless of the increasingly harsh pile-up conditions. We present an overview of the ATLAS strategy for online b-jet selection for the LHC Run 2, including the use of novel methods and sophisticated algorithms designed to face the above mentioned challenges. A firs...

  17. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  18. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    Science.gov (United States)

    Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration

    2017-10-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.

  19. CHALLENGES OF A MODERN ATLAS OF THE AGEING SOCIETY

    Directory of Open Access Journals (Sweden)

    S. Bleisch

    2016-06-01

    Full Text Available Atlases are collections of illustrated data, often maps, which give an overview - as well as some details - of one or several topic areas. We noted that this description serves well especially for traditional paper and digital atlases. However, in our today's world of entertainment it might give a somewhat dated impression. For the topic area 'Ageing Society' we aim to visualise age related data in an interactive digital way that supports not only the content but also engages the users, offers opportunities for different stakeholders and levels of interest, and is able to accommodate a range of data as well as future updates. A set of guiding principles for the development process addresses these challenges. First implementations show that following the principles is feasible but expensive in terms of time and attention to detail needed. For each selected topic, a story guides the users through the data and highlights interesting aspects. The user can interrupt the story at any time and explore the data further through interacting with the detailed data representations, and switch back to the story when needed. This allows different levels of access which in combination with the specifically designed navigation concept as well as through the adherence to user aware design principles are very promising for the future developments of the Atlas of the Ageing Society and potentially other atlas products.

  20. The Numerical Wind Atlas - the KAMM/WAsP Method

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H P; Rathmann, O; Mortensen, N G; Landberg, L

    2001-06-01

    The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis and Application Program, WAsP, to make local predictions of the wind resource is presented. It combines the advantages of meso-scale modeling - overview over a big region and use of global data bases - with the local prediction capacity of the small-scale model WAsP. Results are presented for Denmark, Ireland, Northern Portugal and Galicia, and the Faroe Islands. Wind atlas files were calculated from wind data simulated with the meso-scale model using model grids with a resolution of 2.5, 5, and 10 km. Using these wind atlas files in WAsP the local prediction of the mean wind does not depend on the grid resolution of the meso-scale model. The local predictions combining KAMM and WAsP are much better than simple interpolation of the wind simulated by KAMM. In addition an investigation was made on the dependence of wind atlas data on the size of WAsP-maps. It is recommended that a topographic map around a site should extend 10 km out from it. If there is a major roughness change like a coast line further away in a frequent wind direction this should be included at even greater distances, perhaps up to 20 km away.

  1. Muon Event Filter Software for the ATLAS Experiment at LHC

    CERN Document Server

    Biglietti, M; Assamagan, Ketevi A; Baines, J T M; Bee, C P; Bellomo, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde, P; Conde-Muíño, P; De Santo, A; De Seixas, J M; Di Mattia, A; Dos Anjos, A; Dosil, M; Díaz-Gómez, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pinfold, J L; Pinto, P; Primavera, M; Pérez-Réale, V; Qian, Z; Resconi, S; Rosati, S; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S; Sutton, M; Sánchez, C; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Ventura, A; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    At LHC the 40 MHz bunch crossing rate dictates a high selectivity of the ATLAS Trigger system, which has to keep the full physics potential of the experiment in spite of a limited storage capability. The level-1 trigger, implemented in a custom hardware, will reduce the initial rate to 75 kHz and is followed by the software based level-2 and Event Filter, usually referred as High Level Triggers (HLT), which further reduce the rate to about 100 Hz. In this paper an overview of the implementation of the offline muon recostruction algortihms MOORE (Muon Object Oriented REconstruction) and MuId (Muon Identification) as Event Filter in the ATLAS online framework is given. The MOORE algorithm performs the reconstruction inside the Muon Spectrometer providing a precise measurement of the muon track parameters outside the calorimeters; MuId combines the measurements of all ATLAS sub-detectors in order to identify muons and provides the best estimate of their momentum at the production vertex. In the HLT implementatio...

  2. A busy week for Arts@CERN

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    Last week, Semiconductor – the winners of the Collide@CERN Ars Electronica award for 2015 – and artists Francesco Mariotti and José­-Carlos Mariátegui visited CERN and met the scientists.   Ruth Jarman (left) and Joe Gerhardt (right) of Semiconductor with Peter Jenni, one of the scientists they met during their visit to ATLAS.   Just a few weeks ago, Ruth Jarman and Joe Gerhardt, two English artists collaborating under the name Semiconductor, were awarded the Collide@CERN Ars Electronica prize for 2015. Last week, they came on their first visit to CERN to meet the scientists and select their scientific partner in preparation for their residency. They will soon begin a two-month residency at CERN before going to Linz (Austria), where they will spend a month at the Ars Electronica Futurelab. During their residency, the artists aim to create a digital artwork elaborating on the n...

  3. Recent SUSY results in ATLAS

    CERN Document Server

    Mamuzic, Judita; The ATLAS collaboration

    2018-01-01

    Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and natu- ralness problem, gives a solution to the gauge couplings unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, R-parity violation models, and long lived particles are being studied at the LHC. An overview of most recent results in SUSY searches using Run 2 ATLAS data, at 13 TeV with 36.1 fb−1 of integrated luminosity, was presented.

  4. Searches with Boosted Objects at ATLAS and CMS

    CERN Document Server

    Behr, K; The ATLAS collaboration

    2014-01-01

    This talk presents an overview of searches for new physics in boosted final states conducted by the ATLAS and CMS experiments during Run-I of the LHC. An emphasis is put on techniques for the reconstruction and identification of both hadronic and leptonic decays of objects with large transverse momenta: Various substructure and grooming techniques as well as modified lepton isolation criteria are reviewed and their use in the most common algorithms for boosted top and boson tagging is discussed.

  5. Error detection, handling and recovery at the High Level Trigger of the ATLAS experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223972; The ATLAS collaboration

    2016-01-01

    The complexity of the ATLAS High Level Trigger (HLT) requires a robust system for error detection and handling during online data-taking; it also requires an offline system for the recovery of events where no trigger decision could be made online. The error detection and handling ensure smooth operation of the trigger system and provide debugging information necessary for offline analysis and diagnosis. In this presentation, we give an overview of the error detection, handling and recovery of problematic events at the HLT of ATLAS.

  6. Spring comes for ATLAS

    CERN Multimedia

    Butin, F.

    2004-01-01

    (First published in the CERN weekly bulletin 24/2004, 7 June 2004.) A short while ago the ATLAS cavern underwent a spring clean, marking the end of the installation of the detector's support structures and the cavern's general infrastructure. The list of infrastructure to be installed in the ATLAS cavern from September 2003 was long: a thousand tonnes of mechanical structures spread over 13 storeys, two lifts, two 65-tonne overhead travelling cranes 25 metres above cavern floor, with a telescopic boom and cradle to access the remaining 10 metres of the cavern, a ventilation system for the 55 000 cubic metre cavern, a drainage system, a standard sprinkler system and an innovative foam fire-extinguishing system, as well as the external cryogenic system for the superconducting magnets and the liquid argon calorimeters (comprising, amongst other things, two helium refrigeration units, a nitrogen refrigeration unit and 5 km of piping for gaseous or liquid helium and nitrogen), not to mention the handling eq...

  7. Production Performance of the ATLAS Semiconductor Tracker Readout System

    CERN Document Server

    Mitsou, V A

    2006-01-01

    The ATLAS Semiconductor Tracker (SCT) together with the pixel and the transition radiation detectors will form the tracking system of the ATLAS experiment at LHC. It will consist of 20000 single-sided silicon microstrip sensors assembled back-to-back into modules mounted on four concentric barrels and two end-cap detectors formed by nine disks each. The SCT module production and testing has finished while the macro-assembly is well under way. After an overview of the layout and the operating environment of the SCT, a description of the readout electronics design and operation requirements will be given. The quality control procedure and the DAQ software for assuring the electrical functionality of hybrids and modules will be discussed. The focus will be on the electrical performance results obtained during the assembly and testing of the end-cap SCT modules.

  8. FTK: The hardware Fast TracKer of the ATLAS experiment at CERN

    Directory of Open Access Journals (Sweden)

    Maznas Ioannis

    2017-01-01

    Full Text Available In the ever increasing pile-up environment of the Large Hadron Collider, trigger systems of the experiments must use more sophisticated techniques in order to increase purity of signal physics processes with respect to background processes. The Fast TracKer (FTK is a track finding system implemented in custom hardware that is designed to deliver full-scan tracks with pT above 1 GeV to the ATLAS trigger system for every Level-1 (L1 accept (at a maximum rate of 100 kHz. To accomplish this, FTK is a highly parallel system which is currently being installed in ATLAS. It will first provide the trigger system with tracks in the central region of the ATLAS detector, and next year it is expected that it will cover the whole detector. The system is based on pattern matching between hits coming from the silicon trackers of the ATLAS detector and one billion simulated patterns stored in specially designed ASIC Associative Memory chips. This document will provide an overview of the FTK system architecture, its design and information about its expected performance.

  9. QCD Results from ATLAS and CMS

    CERN Document Server

    Leyton, M; The ATLAS collaboration

    2014-01-01

    The ATLAS and CMS collaborations have performed a wide range of studies of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-­QCD measurements include studies of the underlying event, double parton interactions and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high­-order QCD predictions and provide input for the determination of parton density functions. Measurements of isolated, inclusive and di­-photon cross sections for high-pT photons test various theoretical predictions and further constrain PDFs. An overview of these results is given.


  10. Boosted top production in ATLAS and CMS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237277; The ATLAS collaboration

    2017-01-01

    An overview of the boosted top production analyses using data collected by the ATLAS and CMS experiments at $\\sqrt{s}=$' 8 TeV and 13 TeV of proton-proton collisions at the LHC is presented. These analyses use techniques for the reconstruction of boosted objects to measure the production of top quarks at high transverse momenta. The measurements are optimized for the different final states and for different ranges of the transverse momenta of the particles involved, improving on measurements with traditional objects reconstruction based on the combination of resolved objects.

  11. The ATLAS Fast Tracker and Tracking at the High-Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236423; The ATLAS collaboration

    2016-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. These procedings describe the electronics system used for the FTK’s massive parallelization. An overview of the installation, commissioning and running of the system is given. The ATLAS upgrades planned to enable tracking at the High Luminosity LHC are also discussed.

  12. Trigger Algorithms and Electronics for the ATLAS Muon NSW Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW), comprising MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), will upgrade the ATLAS muon system for a high background environment. Particularly, the NSW trigger will reduce the rate of fake triggers coming from background tracks in the endcap. We will present an overview of the FPGA-based trigger processor for NSW and trigger algorithms for sTGC and Micromegas detector sub systems. In additional, we will present development of NSW trigger electronics, in particular, the sTGC Trigger Data Serializer (TDS) ASIC, sTGC Pad Trigger board, the sTGC data packet router and L1 Data Driver Card. Finally, we will detail the challenges of meeting the low latency requirements of the trigger system and coping with the high background rates of the HL-LHC.

  13. The operational performance of the ATLAS trigger and data acquisition system and its possible evolution

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The first part of this presentation will give an overview of the operational performance of the DAQ system during 2011 and the first months of data taking in 2012. It will describe how the flexibility inherent in the design of the system has be exploited to meet the changing needs of ATLAS data taking and in some cases push performance beyond the original design performance specification. The experience accumulated in the ATLAS DAQ/HLT system operation during these years stimulated also interest to explore possible evolutions, despite the success of the current design. One attractive direction is to merge three systems - the se...

  14. Phase-I trigger readout electronics upgrade of the ATLAS Liquid-Argon Calorimeters

    International Nuclear Information System (INIS)

    Mori, T.

    2016-01-01

    This article gives an overview of the Phase-I Upgrade of the ATLAS LAr Calorimeter Trigger Readout. The design of custom developed hardware for fast real-time data processing and transfer is presented. Performance results from the prototype boards operated in the demonstrator system, first measurements of noise behavior and responses on the test pulses to the demonstrator system are shown.

  15. Top pair production in association with a vector gauge boson in ATLAS

    CERN Document Server

    Sjoelin, Joergen; The ATLAS collaboration

    2017-01-01

    An overview of the latest results for top pair production in association with a vector gauge boson in the ATLAS detector at LHC is presented. The results involving $Z$ and $W$ bosons are recorded at $\\sqrt{13}$ TeV collision energy, while the results involving photons are recorded at $\\sqrt{7}$ TeV and $\\sqrt{8}$ TeV collision energy.

  16. Etnografický atlas Čech, Moravy a Slezska: Stav a perspektivy výzkumu

    Czech Academy of Sciences Publication Activity Database

    Woitsch, Jiří

    2012-01-01

    Roč. 99, č. 1 (2012), s. 67-83 ISSN 0009-0794 R&D Projects: GA ČR(CZ) GAP410/11/1287 Keywords : Ethnological atlas of Bohemia * Moravia and Silesia * ethnocartography * methodology * research overview * geographic information system (GIS) * vernacular architecture Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 0.094, year: 2012

  17. Overview of SUSY results from the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Federico Brazzale Simone

    2014-04-01

    Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.

  18. Ethnographical atlas of Bohemia, Moravia and Silesia in the new millennium: using historical sources and gis

    Czech Academy of Sciences Publication Activity Database

    Woitsch, Jiří

    2012-01-01

    Roč. 57, č. 1 (2012), s. 41-53 ISSN 1216-9803 R&D Projects: GA ČR(CZ) GAP410/11/1287 Keywords : Ethnological atlas of Bohemia, Moravia and Silesia * geographic information system (GIS) * ethnocartography * methodology * research overview * Jewish settlements Subject RIV: AC - Archeology, Anthropology, Ethnology

  19. Conditions and configuration metadata for the ATLAS experiment

    International Nuclear Information System (INIS)

    Gallas, E J; Pachal, K E; Tseng, J C L; Albrand, S; Fulachier, J; Lambert, F; Zhang, Q

    2012-01-01

    In the ATLAS experiment, a system called COMA (Conditions/Configuration Metadata for ATLAS), has been developed to make globally important run-level metadata more readily accessible. It is based on a relational database storing directly extracted, refined, reduced, and derived information from system-specific database sources as well as information from non-database sources. This information facilitates a variety of unique dynamic interfaces and provides information to enhance the functionality of other systems. This presentation will give an overview of the components of the COMA system, enumerate its diverse data sources, and give examples of some of the interfaces it facilitates. We list important principles behind COMA schema and interface design, and how features of these principles create coherence and eliminate redundancy among the components of the overall system. In addition, we elucidate how interface logging data has been used to refine COMA content and improve the value and performance of end-user reports and browsers.

  20. Conditions and configuration metadata for the ATLAS experiment

    CERN Document Server

    Gallas, E J; Albrand, S; Fulachier, J; Lambert, F; Pachal, K E; Tseng, J C L; Zhang, Q

    2012-01-01

    In the ATLAS experiment, a system called COMA (Conditions/Configuration Metadata for ATLAS), has been developed to make globally important run-level metadata more readily accessible. It is based on a relational database storing directly extracted, refined, reduced, and derived information from system-specific database sources as well as information from non-database sources. This information facilitates a variety of unique dynamic interfaces and provides information to enhance the functionality of other systems. This presentation will give an overview of the components of the COMA system, enumerate its diverse data sources, and give examples of some of the interfaces it facilitates. We list important principles behind COMA schema and interface design, and how features of these principles create coherence and eliminate redundancy among the components of the overall system. In addition, we elucidate how interface logging data has been used to refine COMA content and improve the value and performance of end-user...

  1. Frameworks to monitor and predict resource usage in the ATLAS High Level Trigger

    CERN Document Server

    Martin, Tim; The ATLAS collaboration

    2016-01-01

    The ATLAS High Level Trigger Farm consists of around 30,000 CPU cores which filter events at up to 100 kHz input rate. A costing framework is built into the high level trigger, this enables detailed monitoring of the system and allows for data-driven predictions to be made utilising specialist datasets. This talk will present an overview of how ATLAS collects in-situ monitoring data on both CPU usage and dataflow over the data-acquisition network during the trigger execution, and how these data are processed to yield both low level monitoring of individual selection-algorithms and high level data on the overall performance of the farm. For development and prediction purposes, ATLAS uses a special `Enhanced Bias' event selection. This mechanism will be explained along with how is used to profile expected resource usage and output event-rate of new physics selections, before they are executed on the actual high level trigger farm.

  2. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    Directory of Open Access Journals (Sweden)

    Megino Fernando Barreiro

    2016-01-01

    The PanDA (Production and Distributed Analysis system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS, up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  3. Utility of collecting metadata to manage a large scale conditions database in ATLAS

    CERN Document Server

    Gallas, EJ; The ATLAS collaboration; Borodin, M; Formica, A

    2014-01-01

    The ATLAS Conditions Database, based on the LCG Conditions Database infrastructure, contains a wide variety of information needed in online data taking and offline analysis. The total volume of ATLAS conditions data is in the multi-Terabyte range. Internally, the active data is divided into 65 separate schemas (each with hundreds of underlying tables) according to overall data taking type, detector subsystem, and whether the data is used offline or strictly online. While each schema has a common infrastructure, each schema's data is entirely independent of other schemas, except at the highest level, where sets of conditions from each subsystem are tagged globally for ATLAS event data reconstruction and reprocessing. The partitioned nature of the conditions infrastructure works well for most purposes, but metadata about each schema is problematic to collect in global tools from such a system because it is only accessible via LCG tools schema by schema. This makes it difficult to get an overview of all schemas,...

  4. Large scale and performance tests of the ATLAS online software

    International Nuclear Information System (INIS)

    Alexandrov; Kotov, V.; Mineev, M.; Roumiantsev, V.; Wolters, H.; Amorim, A.; Pedro, L.; Ribeiro, A.; Badescu, E.; Caprini, M.; Burckhart-Chromek, D.; Dobson, M.; Jones, R.; Kazarov, A.; Kolos, S.; Liko, D.; Lucio, L.; Mapelli, L.; Nassiakou, M.; Schweiger, D.; Soloviev, I.; Hart, R.; Ryabov, Y.; Moneta, L.

    2001-01-01

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system. It encompasses the functionality needed to configure, control and monitor the DAQ. Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal. Regular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system. Feedback is received and returned into the development process. Studies of the system behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size. Large scale and performance test of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software. Of particular interest were the run control state transitions in various configurations of the run control hierarchy. For the purpose of the tests, the software from other Trigger/DAQ sub-systems has been emulated. The author presents a brief overview of the online system structure, its components and the large scale integration tests and their results

  5. Recent QCD results from ATLAS at the LHC

    CERN Document Server

    Keoshkerian, H; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event, vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high p_T photons test various theoretical predictions and constrain parton density functions. An overview of these results is given.



  6. Search for hidden Higgs decay in ATLAS detector

    International Nuclear Information System (INIS)

    Gabrielli, A.

    2013-01-01

    In this paper, a brief overview of the search for the Higgs boson in Hidden Valley models is given. Hidden Valley models predict Higgs decays to neutral particles, which can be also long lived with decay paths comparable to the LHC detectors dimensions. Decay final states consist of collimated leptons (Lepton Jets). Results are presented of a search for Higgs decays to long lived particles in the ATLAS detector at the LHC, based on 1.92 fb −1 data collected during 2011 at a 7TeV center-of-mass energy.

  7. REAL-TIME FLAVOUR TAGGING SELECTION IN ATLAS

    CERN Document Server

    Bokan, Petar; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment includes a well-developed trigger system that allows a selection of events which are thought to be of interest, while achieving a high overall rejection against less interesting processes. An important part of the online event selection is the ability to distinguish between jets arising from heavy-flavour quarks (b- and c-jets) and light jets (jets from u-, d-, s- and gluon jets) in real-time. This is essential for many physics analysis that include processes with large jet multiplicity and b-quarks in the final state. Many changes were implemented to the ATLAS online b-jet selection for the Run-2 of the LHC. An overview of the b-jet trigger strategy and performance during 2015 data taking is presented. The ability to use complex offline Multivariate (MV2) b-tagging algorithms directly at High Level Trigger (HLT) was tested in this period. Details on online tagging algorithms are given together with the plans on how to adapt to the new high-luminosity and increased pileup conditions by ex...

  8. Epidemiological and virological situation update of the 2010/2011 influenza season in the WHO European Region (Week 40/2010 to Week 03/2011)

    NARCIS (Netherlands)

    Mott, J.A.; Pereyaslov, D.; Jorgensen, P.; Brown, C.S.; Martirosyan, L.; Meerhoff, T.

    2011-01-01

    This overview of influenza data from the WHO European Region from weeks 40/2010 through week 3/2011 has been submitted for consideration during the WHO Northern Hemisphere Vaccine Strain Selection Meeting, to be held on 14-17 February, 2011, in Geneva. The 2010/2011 influenza season arrived 8-10

  9. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Kagan, M; The ATLAS collaboration

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector will be the construction of a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. 32 \

  10. Development of Nuclear Plant Specific Analysis Simulators with ATLAS

    International Nuclear Information System (INIS)

    Jakubowski, Z.; Draeger, P.; Horche, W.; Pointner, W.

    2006-01-01

    The simulation software ATLAS, based on the best-estimate code ATHLET, has been developed by the GRS for a range of applications in the field of nuclear plant safety analysis. Through application of versatile simulation tools and graphical interfaces the user should be able to analyse with ATLAS all essential accident scenarios. Detailed analysis simulators for several German and Russian NPPs are being constructed on the basis of ATLAS. An overview of the ATLAS is presented in the paper, describing its configuration, functions performed by main components and relationships among them. A significant part of any power plant simulator are the balance-of-plant (BOP) models, not only because all the plant transients and non-LOCA accidents can be initiated by operation of BOP systems, but also because the response of the plant to transients or accidents is strongly influenced by the automatic operation of BOP systems. Modelling aspects of BOP systems are shown in detail, also the interface between the process model and BOP systems. Special emphasis has been put on the BOP model builder based on the methodology developed in the GRS. The BOP modeler called GCSM-Generator is an object oriented tool which runs on the online expert system G2. It is equipped with utilities to edit the BOP models, to verification them and to generate a GCSM code, specific for the ATLAS. The communication system of ATLAS presents graphically the results of the simulation and allows interactively influencing the execution of the simulation process (malfunctions, manual control). Displays for communications with simulated processes and presentation of calculations results are also presented. In the framework of the verification of simulation models different tools are used e.g. the PC-codes MATHCAD for the calculation and documentation, ATLET-Input-Graphic for control of geometry data and the expert system G2 for development of BOP-Models. The validation procedure and selected analyses results

  11. Frameworks to monitor and predict rates and resource usage in the ATLAS High Level Trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219969; The ATLAS collaboration

    2017-01-01

    The ATLAS High Level Trigger Farm consists of around 40,000 CPU cores which filter events at an input rate of up to 100 kHz. A costing framework is built into the high level trigger thus enabling detailed monitoring of the system and allowing for data-driven predictions to be made utilising specialist datasets. An overview is presented in to how ATLAS collects in-situ monitoring data on CPU usage during the trigger execution, and how these data are processed to yield both low level monitoring of individual selection-algorithms and high level data on the overall performance of the farm. For development and prediction purposes, ATLAS uses a special ‘Enhanced Bias’ event selection. This mechanism is explained along with how it is used to profile expected resource usage and output event rate of new physics selections, before they are executed on the actual high level trigger farm.

  12. From the CERN web: LHCb, ATLAS, ILC and more

    CERN Multimedia

    2015-01-01

    This new section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...     LHCb sees small deviations from the lepton universality 1 September – LHCb collaboration The LHCb experiment at CERN has made the first measurement at a hadron collider of B meson decays that have already shown small deviations from the predictions of the Standard Model in earlier studies at an electron-positron collider. Continue to read…     The figure shows the density of allowed supersymmetric models before and after the ATLAS Run 1 searches. The missing points have been ruled out by the LHC data. The x-axis shows the mass of the supersymmetric dark matter particle, while the y-axis shows the predicted density of those particles in the universe.     ATLAS is narrowing down the theoretical candidates for dark matter 25 August – ATLAS collab...

  13. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  14. De-squeeze the beams: the TOTEM and ATLAS/ALFA experiments

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    A special week-long proton–proton run with larger beam sizes at the interaction point is intended to probe the p-p elastic scattering regime at small angles.   Nicola Turini, deputy spokesperson for TOTEM, in front of one of the experiment’s ‘Roman Pot’ detectors in the LHC tunnel. (Photo: Maximilien Brice/CERN) Usually, the motto of the LHC is “maximum luminosity”. But for a few days per year, the LHC ignores its motto to run at very low luminosity for the forward experiments. This week, the LHC will provide the TOTEM and ATLAS/ALFA experiments with data for a broad physics programme. The TOTEM experiment at Point 5 and the ATLAS/ALFA experiment at Point 1 study the elastic scattering of protons, which are not observable in normal operation runs. In the elastic scattering process, the two protons survive their encounter intact and only change directions by exchanging momentum. To allow this special run, the operators play with the so-c...

  15. Advances in ATLAS@Home towards a major ATLAS computing resource

    CERN Document Server

    Cameron, David; The ATLAS collaboration

    2018-01-01

    The volunteer computing project ATLAS@Home has been providing a stable computing resource for the ATLAS experiment since 2013. It has recently undergone some significant developments and as a result has become one of the largest resources contributing to ATLAS computing, by expanding its scope beyond traditional volunteers and into exploitation of idle computing power in ATLAS data centres. Removing the need for virtualization on Linux and instead using container technology has made the entry barrier significantly lower data centre participation and in this paper, we describe the implementation and results of this change. We also present other recent changes and improvements in the project. In early 2017 the ATLAS@Home project was merged into a combined LHC@Home platform, providing a unified gateway to all CERN-related volunteer computing projects. The ATLAS Event Service shifts data processing from file-level to event-level and we describe how ATLAS@Home was incorporated into this new paradigm. The finishing...

  16. Commissioning and first data with the ATLAS silicon microstrip tracker

    International Nuclear Information System (INIS)

    Rohne, Ole Myren

    2010-01-01

    The ATLAS experiment at the CERN large hadron collider (LHC) has started taking data this autumn with the inauguration of the LHC. The semiconductor tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has recently been installed inside the ATLAS experimental hall. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analysed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has been performed. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The current status of the SCT will be reviewed, including results from the latest data-taking periods in autumn 2008, and from the detector alignment. We will report on the commissioning of the detector, including overviews on services, connectivity and observed problems. Particular emphasis will also be placed on the SCT data taken in the latest running period with the entire ATLAS detector participating. The SCT commissioning and running experience will then be used to extract valuable lessons for future silicon strip detector projects.

  17. Recent recordings

    CERN Multimedia

    Steven Goldfarb

    The University of Michigan ATLAS Collaboratory Project is happy to announce the publication of a number of recent web lectures, including the full Plenary Session from the ATLAS Overview Week, held at CERN in October. Archives from that event are located here and directly on the Indico agenda. Click on the pictures below to access more information. Latest NewsAs announced in the Collaborative Tool Workshop, held on Tuesday of the Overview Week, future events in the Michigan Archives will be available for viewing with a Flash Player plug-in (right image above), as well as the usual Real Player plug-in. This additional option, made possible by our usage of the Lecture Object and standard formats for storing all media and metadata, allows the viewer to choose her/his preferred environment. As always, viewing of the lectures is supported on all major platforms and browsers and there is also the option to download lectures for remote viewing with limited or no network bandwidth.ATLAS 2007 ArchivesAdditional...

  18. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  19. Production facility for ATLAS new small wheel drift panels at JGU Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Duedder, Andreas; Lin, Tai-Hua; Schott, Matthias [Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    The ATLAS Phase-I Upgrade in 2018 includes the replacement of the ATLAS Muon Small Wheel by the so-called New Small Wheel (NSW). Large-scale Micromegas detectors will serve as tracking detectors in the NSW. Parts of these detectors will be constructed at the Johannes Gutenberg University Mainz (JGU). In order to fulfill the requirements of the envisioned detector performance, a high precision detector construction is crucial. Especially the surface planarity of the produced detector panels has to better than 30 μm over an area of 2 m{sup 2}. Methods for the quality control of the raw material and the constructed parts have been developed and implemented. This talk gives an overview of the production facility at JGU Mainz which is used during the mass production of NSW components in coming years.

  20. Geneva University: Searches for Exotic Physics with leptons with the ATLAS detector

    CERN Multimedia

    Université de Genève

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 30 November  2011 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE at 17.00 hrs – Stückelberg Auditorium Searches for Exotic Physics with leptons with the ATLAS detector Dr Dominique Fortin, TRIUMF, Vancouver, Canada With the large 5 fb-1 sample of pp collisions recorded in 2011, ATLAS has taken full advantage of the opportunity to explore new territory at the TeV scale. In this seminar, an overview of searches for new exotic particles is presented, with a special emphasis on signatures with leptons. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : Mrs Gabriella Pasztor

  1. The ATLAS Fast Tracker Processing Units - input and output data preparation

    CERN Document Server

    Bolz, Arthur; Adelman, Jahred; Anderson, John Thomas; Armbruster, Aaron James; Asbah, Nedaa; Blair, Robert; Brost, Elizabeth; Drake, Gary; Gkaitatzis, Stamatios; Iizawa, Tomoya; Ilic, Nikolina; Jiang, Zihao; Kawaguchi, Yoshimasa; Kimura, Naoki; Kordas, Kostantinos; Sotiropoulou, Calliope Louisa; Love, Jeremy; Mitani, Takashi; Nikolaidis, Spyridon; Okumura, Yasuyuki; Proudfoot, James; Thayil, Steffie Ann; Tompkins, Lauren; Wang, Rui; Watari, Ryutaro; Webster, Jordan S; Yorita, Kohei; Zhang, Jinlong

    2017-01-01

    The ATLAS Fast TracKer(FTK) is a custom hardware system for fast, associative memory based track reconstruction. It will provide tracking information within the full acceptance of the inner tracking detectors to the high level trigger at a rate of up to 100 kHz. %, thus allowing for a refined and more efficient event selection at the trigger level. At the first stage of the FTK the Data Formatter subsystem clusters inner detector hits and organizes them into 64 $\\eta$-$\\phi$ trigger regions. At the last stage, the FTK to Level-2 Interface Cards repackage track records and send them to the high level trigger computing farm. This report aims to give an overview over the functionality of the two systems, their hardware implementation in the Advanced Telecommunications Computing Architecture standard, and the status of their integration into ATLAS.

  2. The ATLAS Fast Tracker Processing Units - input and output data preparation

    CERN Document Server

    Bolz, Arthur; Adelman, Jahred; Anderson, John Thomas; Armbruster, Aaron James; Asbah, Nedaa; Blair, Robert; Brost, Elizabeth; Drake, Gary; Gkaitatzis, Stamatios; Iizawa, Tomoya; Ilic, Nikolina; Jiang, Zihao; Kawaguchi, Yoshimasa; Kimura, Naoki; Kordas, Kostantinos; Sotiropoulou, Calliope Louisa; Love, Jeremy; Mitani, Takashi; Nikolaidis, Spyridon; Okumura, Yasuyuki; Proudfoot, James; Thayil, Steffie Ann; Tompkins, Lauren; Wang, Rui; Watari, Ryutaro; Webster, Jordan S; Yorita, Kohei; Zhang, Jinlong

    2016-01-01

    The ATLAS Fast TracKer(FTK) is a custom hardware system for fast, associative memory based track reconstruction. It will provide tracking information within the full acceptance of the inner tracking detectors to the high level trigger at a rate of up to 100 kHz. %, thus allowing for a refined and more efficient event selection at the trigger level. At the first stage of the FTK the Data Formatter subsystem clusters inner detector hits and organizes them into 64 $\\eta$-$\\phi$ trigger regions. At the last stage, the FTK to Level-2 Interface Cards repackage track records and send them to the high level trigger computing farm. This report aims to give an overview over the functionality of the two systems, their hardware implementation in the Advanced Telecommunications Computing Architecture standard, and the status of their integration into ATLAS.

  3. The effect of morphometric atlas selection on multi-atlas-based automatic brachial plexus segmentation

    International Nuclear Information System (INIS)

    Van de Velde, Joris; Wouters, Johan; Vercauteren, Tom; De Gersem, Werner; Achten, Eric; De Neve, Wilfried; Van Hoof, Tom

    2015-01-01

    The present study aimed to measure the effect of a morphometric atlas selection strategy on the accuracy of multi-atlas-based BP autosegmentation using the commercially available software package ADMIRE® and to determine the optimal number of selected atlases to use. Autosegmentation accuracy was measured by comparing all generated automatic BP segmentations with anatomically validated gold standard segmentations that were developed using cadavers. Twelve cadaver computed tomography (CT) atlases were included in the study. One atlas was selected as a patient in ADMIRE®, and multi-atlas-based BP autosegmentation was first performed with a group of morphometrically preselected atlases. In this group, the atlases were selected on the basis of similarity in the shoulder protraction position with the patient. The number of selected atlases used started at two and increased up to eight. Subsequently, a group of randomly chosen, non-selected atlases were taken. In this second group, every possible combination of 2 to 8 random atlases was used for multi-atlas-based BP autosegmentation. For both groups, the average Dice similarity coefficient (DSC), Jaccard index (JI) and Inclusion index (INI) were calculated, measuring the similarity of the generated automatic BP segmentations and the gold standard segmentation. Similarity indices of both groups were compared using an independent sample t-test, and the optimal number of selected atlases was investigated using an equivalence trial. For each number of atlases, average similarity indices of the morphometrically selected atlas group were significantly higher than the random group (p < 0,05). In this study, the highest similarity indices were achieved using multi-atlas autosegmentation with 6 selected atlases (average DSC = 0,598; average JI = 0,434; average INI = 0,733). Morphometric atlas selection on the basis of the protraction position of the patient significantly improves multi-atlas-based BP autosegmentation accuracy

  4. Utility of collecting metadata to manage a large scale conditions database in ATLAS

    International Nuclear Information System (INIS)

    Gallas, E J; Albrand, S; Borodin, M; Formica, A

    2014-01-01

    The ATLAS Conditions Database, based on the LCG Conditions Database infrastructure, contains a wide variety of information needed in online data taking and offline analysis. The total volume of ATLAS conditions data is in the multi-Terabyte range. Internally, the active data is divided into 65 separate schemas (each with hundreds of underlying tables) according to overall data taking type, detector subsystem, and whether the data is used offline or strictly online. While each schema has a common infrastructure, each schema's data is entirely independent of other schemas, except at the highest level, where sets of conditions from each subsystem are tagged globally for ATLAS event data reconstruction and reprocessing. The partitioned nature of the conditions infrastructure works well for most purposes, but metadata about each schema is problematic to collect in global tools from such a system because it is only accessible via LCG tools schema by schema. This makes it difficult to get an overview of all schemas, collect interesting and useful descriptive and structural metadata for the overall system, and connect it with other ATLAS systems. This type of global information is needed for time critical data preparation tasks for data processing and has become more critical as the system has grown in size and diversity. Therefore, a new system has been developed to collect metadata for the management of the ATLAS Conditions Database. The structure and implementation of this metadata repository will be described. In addition, we will report its usage since its inception during LHC Run 1, how it has been exploited in the process of conditions data evolution during LSI (the current LHC long shutdown) in preparation for Run 2, and long term plans to incorporate more of its information into future ATLAS Conditions Database tools and the overall ATLAS information infrastructure.

  5. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  6. Implementation and Performance of the ATLAS Jet Trigger

    CERN Document Server

    Klemetti, M; The ATLAS collaboration

    2009-01-01

    The ATLAS jet trigger is prepared to cover a variety of physics topics, ranging from QCD studies to searches for SUSY particles. In this paper we will present the challenges of the jet trigger, describing the implementation and the expected performance. In particular, we will review the current physics signatures, the expected rates, efficiencies and timing measurements as obtained from MC studies. Comparisons of the performance obtained with the two different granularities at LVL2 and different EF algorithms will be shown. An overview of teh implications of the trigger performance in the physics studies that include jet signatures will be shown.

  7. CERN Open Days 2013, Point 1 - ATLAS: ATLAS Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: The ATLAS Experiment at CERN is one of the largest and most complex scientific endeavours ever assembled. The detector, located at collision point 1 of the LHC, is designed to explore the fundamental components of nature and to study the forces that shape our universe. The past year’s discovery of a Higgs boson is one of the most important scientific achievements of our time, yet this is only one of many key goals of ATLAS. During a brief break in their journey, some of the 3000-member ATLAS collaboration will be taking time to share the excitement of this exploration with you. On surface no restricted access  The exhibit at Point 1 will give visitors a chance to meet these modern-day explorers and to learn from them how answers to the most fundamental questions of mankind are being sought. Activities will include a visit to the ATLAS detector, located 80m below ground; watching the prize-winning ATLAS movie in the ATLAS cinema; seeing real particle tracks in a cloud chamber and discussi...

  8. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Pohl, D-L; The ATLAS collaboration

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector will be the construction of a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. 32 FEs with sensors are glued to a light weight carbon-carbon structure which incorporates a titanium cooling tube for a CO2 cooling system. In total th...

  9. FIIND: Ferret Interactive Integrated Neurodevelopment Atlas

    Directory of Open Access Journals (Sweden)

    Roberto Toro

    2018-03-01

    Full Text Available The first days after birth in ferrets provide a privileged view of the development of a complex mammalian brain. Unlike mice, ferrets develop a rich pattern of deep neocortical folds and cortico- cortical connections. Unlike humans and other primates, whose brains are well differentiated and folded at birth, ferrets are born with a very immature and completely smooth neocortex: folds, neocortical regionalisation and cortico-cortical connectivity develop in ferrets during the first postnatal days. After a period of fast neocortical expansion, during which brain volume increases by up to a factor of 4 in 2 weeks, the ferret brain reaches its adult volume at about 6 weeks of age. Ferrets could thus become a major animal model to investigate the neurobiological correlates of the phenomena observed in human neuroimaging. Many of these phenomena, such as the relationship between brain folding, cortico-cortical connectivity and neocortical regionalisation cannot be investigated in mice, but could be investigated in ferrets. Our aim is to provide the research community with a detailed description of the development of a complex brain, necessary to better understand the nature of human neuroimaging data, create models of brain development, or analyse the relationship between multiple spatial scales. We have already started a project to constitute an open, collaborative atlas of ferret brain development, integrating multi-modal and multi-scale data. We have acquired data for 28 ferrets (4 animals per time point from P0 to adults, using high-resolution MRI and diffusion tensor imaging (DTI. We have developed an open-source pipeline to segment and produce – online – 3D reconstructions of brain MRI data. We propose to process the brains of 16 of our specimens (from P0 to P16 using high-throughput 3D histology, staining for cytoarchitectonic landmarks, neuronal progenitors and neurogenesis. This would allow us to relate the MRI data that we have already

  10. MRI of bone and soft tissue tumors and tumorlike lesions. Differential diagnosis and atlas

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.P. [Rochester Univ., NY (United States). School of Medicine and Dentistry

    2008-07-01

    The book is devided into three main sections: the introduction presents a detailed overview of magnetic resonance imaging (MRI) of muscoskeletal tumors and tumorlike lesions and includes multiple tables regarding teh WHO classification of bone and soft tissue tumors, their relative frequencies and pertinent immunohistochemical and genetic data. The second part contains 20 tables of differential diagnosis of lesions based on anatomic locations and/or specific MRI features. Pertinent radiographic and CT findings and key clinical data are summarized. The third part contains 77 Atlas chapters organized into a routine format that enables the efficient acquisition of specific information regarding each lesion. For the majority of the Atlas chapters multiple MRI images are provided to demonstrate the range of imaging findings and locations associated with the lesions.

  11. CMS and ATLAS honour their suppliers

    CERN Multimedia

    2001-01-01

    In order to motivate the hundreds of companies building their detectors, the CMS and ATLAS collaborations have recently been handing out awards of excellence to their top suppliers. At its second ceremony of this kind, CMS honoured four of its suppliers, while ATLAS for the first time paid tribute to two of its contractors. The atmosphere in the Council Chamber was festive rather than formal at the start of CMS week on Monday 5 March. Before embarking upon a long series of seminars and presentations, the Collaboration held its second awards ceremony to honour its top suppliers. By paying tribute to the exceptional efforts of certain suppliers, the Collaboration's aim is to motivate all the firms, some 500 in total, taking part in the experiment's construction. The CMS Awards panel thus singles out contractors who have not only provided full satisfaction in terms of compliance with specifications, quality and deadlines, but have in addition provided original solutions to delicate problems. Four firms came away...

  12. ATLAS's superconducting solenoid takes up position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid was moved to its final destination on 16 January. It has taken up position opposite the ATLAS liquid argon barrel cryostat, which will house the electromagnetic calorimeter. All that remains to do now is to slide it into the insulation vacuum, this will be done in the next few weeks. Built by Toshiba, under responsibility of KEK in Japan, the central solenoid is 2.4 metres in diameter, 5.3 metres long and weighs 5.5 tonnes. "It will provide an axial magnetic field of 2 Tesla that will deflect particles inside the inner detector," as Roger Ruber, on-site project coordinator, explains. The inner detector, which consists of three sub-detectors, will be installed inside the solenoid later. The solenoid during one of the transport operations. Securely attached to the overhead travelling crane, the solenoid is situated in front of the opening to the liquid argon calorimeter, it will be inserted soon.

  13. ATLAS Distributed Computing in LHC Run2

    International Nuclear Information System (INIS)

    Campana, Simone

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run-2. An increase in both the data rate and the computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (Prodsys-2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward a flexible computing model. A flexible computing utilization exploring the use of opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model; the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover, a new data management strategy, based on a defined lifetime for each dataset, has been defined to better manage the lifecycle of the data. In this note, an overview of an operational experience of the new system and its evolution is presented. (paper)

  14. Inner Detector Track Reconstruction and Alignment at the ATLAS Experiment

    CERN Document Server

    Danninger, Matthias; The ATLAS collaboration

    2017-01-01

    The Inner Detector of the ATLAS experiment at the LHC is responsible for reconstructing the trajectories of charged particles (‘tracks’) with high efficiency and accuracy. It consists of three subdetectors, each using a different technology to provide measurements points. An overview of the use of each of these subdetectors in track reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking will be summarised. Of crucial importance for optimal tracking performance is precise knowledge of the relative positions of the detector elements. ATLAS uses a sophisticated, highly granular software alignment procedure to determine and correct for the positions of the sensors, including time-dependent effects appearing within single data runs. This alignment procedure will be discussed in detail, and its effect on Inner Detector tracking for LHC Run 2 proton-proton collision data highlighted.

  15. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  16. Commissioning of b-tagging in the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    Lapoire, C.

    2010-09-01

    The Standard Model of particle physics predicts the existence of the Higgs boson, which preferentially decays to b quark pairs at low mass. The identification of jets stemming from such quarks in the ATLAS detector, placed at the LHC, is thus one of the keys to modern particle physics. In this document, an overview of the b-tagging methods used in ATLAS as well as the optimization of a specific algorithm, JetProb, are presented. The preparation to the measurement of these algorithms efficiency in data is also developed. Finally, after the first data taking at 900 GeV and then at the record energy of 7 TeV in 2009-2010, the first results on charged track studies and b-tagging commissioning were obtained and are gathered together here. Comparison with simulation shows a good agreement and the first b-jet and top events candidates are studied. (author)

  17. A tough truck for ATLAS

    CERN Multimedia

    2003-01-01

    One of the mobile support structures that will be used to manoeuvre and assemble components of the ATLAS detector in its cavern was put through its paces at the end of July and passed its load tests with flying colours. The tests, which involved the surveyors taking measurements to detect any load-induced mechanical deformations, were carried out in Building 191. "The "truck" has been subjected to static tests with loads of up to 1250 tonnes and can carry and transport on air cushions a nominal load of up to 1000 tonnes at a top speed of 30 cm per minute," explains project leader Tommi Nyman. "It took two weeks to assemble the truck's components, the last of which arrived at CERN on 24 June. It then took a further 20 days to load the truck up for the test." The 8.5 metre-high truck will be used for final assembly of some of the ATLAS components, including the calorimeters, in cavern UX15. This powerful device is the result of a collaboration between CERN and the Henryk Niewodniczanski Institute of Nuclear ...

  18. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  19. ATLAS Operations: Experience and Evolution in the Data Taking Era

    CERN Document Server

    Ueda, I; The ATLAS collaboration; Goossens, L; Stewart, G; Jezequel, S; Nairz, A; Negri, G; Campana, S; Di Girolamo, A

    2011-01-01

    This paper summarises the operational experience and improvements of the ATLAS hierarchical multi-tier computing infrastructure in the past year leading to taking and processing of the first collisions in 2009 and 2010. Special focus will be given to Tier-0 which is responsible, among other things, for a prompt processing of the raw data coming from the online DAQ system and is thus critical part of the chain. We will give an overview of the Tier-0 architecture, and improvements based on the operational experience. Emphasis will be put on the new developments, namely the Task Management System opening Tier-0 to expert users and Web 2.0 monitoring and management suite. We then overview the achieved performances with the distributed computing system, discuss observed data access patterns over the grid and describe how we used this information to improve analysis rates.

  20. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  1. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  2. 17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

  3. Multi-threaded ATLAS Simulation on Intel Knights Landing Processors

    CERN Document Server

    Farrell, Steven; The ATLAS collaboration; Calafiura, Paolo; Leggett, Charles

    2016-01-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), will be delivered to its users in two phases with the first phase online now and the second phase expected in mid-2016. Cori Phase 2 will be based on the KNL architecture and will contain over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a great use-case for the KNL architecture and supercomputers like Cori. Simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this presentation we will give an overview of the ATLAS simulation application with details on its multi-thr...

  4. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  5. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web

  6. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  7. Top quark polarization in t-channel single top-quark events with the ATLAS detector

    CERN Document Server

    Chitishvili, Mariam

    2017-01-01

    This summary presents the measurement of the top‐quark polarization in t-channel single top quarks with the ATLAS detector at the LHC. Monte Carlo simulated events are used. Selected events contain one lepton, large missing transverse momentum and exactly two jets, with one of them identified as b-jet. Selection cuts are used to identify the t-channel topology at reconstruction level. The polarization is measured, from an asymmetry in an angular distribution, at parton level by correcting the reconstructed angular distribution for detector effects. This project provides an overview on how a "standard" physics analysis is performed within ATLAS. The analysis is performed in ROOT. Simulation data is reconstructed to perform an unfolded measurement of a given property of a fundamental particle within the Standard Model. Finally results are compared with theoretical predictions.

  8. ATLAS-AWS

    International Nuclear Information System (INIS)

    Gehrcke, Jan-Philip; Stonjek, Stefan; Kluth, Stefan

    2010-01-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  9. Event visualisation in ATLAS: current software technologies, future prospects and trends

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration; Moyse, Edward

    2016-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here a brief history of event displays is presented, with an overview of the different event display tools used today in HEP experiments in general, and in the LHC experiments in particular. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Future development plans and improvements in the ATLAS event display packages will also be discussed,...

  10. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    Burghgrave, Blake; The ATLAS collaboration

    2016-01-01

    We present an overview of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database during a brief calibration loop between when a run ends and bulk processing begins. Bulk processed data is reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and MC production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database upd...

  11. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354209; The ATLAS collaboration

    2017-01-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline D...

  12. The Future of Distributed Computing Systems in ATLAS: Boldly Venturing Beyond Grids

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2018-01-01

    The Production and Distributed Analysis system (PanDA) for the ATLAS experiment at the Large Hadron Collider has seen big changes over the past couple of years to accommodate new types of distributed computing resources: clouds, HPCs, volunteer computers and other external resources. While PanDA was originally designed for fairly homogeneous resources available through the Worldwide LHC Computing Grid, the new resources are heterogeneous, at diverse scales and with diverse interfaces. Up to a fifth of the resources available to ATLAS are of such new types and require special techniques for integration into PanDA. In this talk, we present the nature and scale of these resources. We provide an overview of the various challenges faced, spanning infrastructure, software distribution, workload requirements, scaling requirements, workflow management, data management, network provisioning, and associated software and computing facilities. We describe the strategies for integrating these heterogeneous resources into ...

  13. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  14. Dear ATLAS colleagues,

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  15. Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.

    Science.gov (United States)

    Zikic, D; Glocker, B; Criminisi, A

    2014-12-01

    We propose a method for multi-atlas label propagation (MALP) based on encoding the individual atlases by randomized classification forests. Most current approaches perform a non-linear registration between all atlases and the target image, followed by a sophisticated fusion scheme. While these approaches can achieve high accuracy, in general they do so at high computational cost. This might negatively affect the scalability to large databases and experimentation. To tackle this issue, we propose to use a small and deep classification forest to encode each atlas individually in reference to an aligned probabilistic atlas, resulting in an Atlas Forest (AF). Our classifier-based encoding differs from current MALP approaches, which represent each point in the atlas either directly as a single image/label value pair, or by a set of corresponding patches. At test time, each AF produces one probabilistic label estimate, and their fusion is done by averaging. Our scheme performs only one registration per target image, achieves good results with a simple fusion scheme, and allows for efficient experimentation. In contrast to standard forest schemes, in which each tree would be trained on all atlases, our approach retains the advantages of the standard MALP framework. The target-specific selection of atlases remains possible, and incorporation of new scans is straightforward without retraining. The evaluation on four different databases shows accuracy within the range of the state of the art at a significantly lower running time. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression.

    Science.gov (United States)

    Serag, Ahmed; Aljabar, Paul; Ball, Gareth; Counsell, Serena J; Boardman, James P; Rutherford, Mary A; Edwards, A David; Hajnal, Joseph V; Rueckert, Daniel

    2012-02-01

    Medical imaging has shown that, during early development, the brain undergoes more changes in size, shape and appearance than at any other time in life. A better understanding of brain development requires a spatio-temporal atlas that characterizes the dynamic changes during this period. In this paper we present an approach for constructing a 4D atlas of the developing brain, between 28 and 44 weeks post-menstrual age at time of scan, using T1 and T2 weighted MR images from 204 premature neonates. The method used for the creation of the average 4D atlas utilizes non-rigid registration between all pairs of images to eliminate bias in the atlas toward any of the original images. In addition, kernel regression is used to produce age-dependent anatomical templates. A novelty in our approach is the use of a time-varying kernel width, to overcome the variations in the distribution of subjects at different ages. This leads to an atlas that retains a consistent level of detail at every time-point. Comparisons between the resulting atlas and atlases constructed using affine and non-rigid registration are presented. The resulting 4D atlas has greater anatomic definition than currently available 4D atlases created using various affine and non-rigid registration approaches, an important factor in improving registrations between the atlas and individual subjects. Also, the resulting 4D atlas can serve as a good representative of the population of interest as it reflects both global and local changes. The atlas is publicly available at www.brain-development.org. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The ATLAS Trigger System: Ready for Run II

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2015-01-01

    The ATLAS trigger system has been used successfully for data collection in the 2009-2013 Run 1 operation cycle of the CERN Large Hadron Collider (LHC) at center-of-mass energies of up to 8 TeV. With the restart of the LHC for the new Run 2 data-taking period at 13 TeV, the trigger rates are expected to rise by approximately a factor of 5. The trigger system consists of a hardware-based first level (L1) and a software-based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of ~ 1kHz. This presentation will give an overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown period in order to deal with the increased trigger rates while efficiently selecting the physics processes of interest. These upgrades include changes to the L1 calorimeter trigger, the introduction of a new L1 topological trigger module, improvements in the L1 muon system, and the merging of the previously two-level HLT ...

  18. Spatially adapted augmentation of age-specific atlas-based segmentation using patch-based priors

    Science.gov (United States)

    Liu, Mengyuan; Seshamani, Sharmishtaa; Harrylock, Lisa; Kitsch, Averi; Miller, Steven; Chau, Van; Poskitt, Kenneth; Rousseau, Francois; Studholme, Colin

    2014-03-01

    One of the most common approaches to MRI brain tissue segmentation is to employ an atlas prior to initialize an Expectation- Maximization (EM) image labeling scheme using a statistical model of MRI intensities. This prior is commonly derived from a set of manually segmented training data from the population of interest. However, in cases where subject anatomy varies significantly from the prior anatomical average model (for example in the case where extreme developmental abnormalities or brain injuries occur), the prior tissue map does not provide adequate information about the observed MRI intensities to ensure the EM algorithm converges to an anatomically accurate labeling of the MRI. In this paper, we present a novel approach for automatic segmentation of such cases. This approach augments the atlas-based EM segmentation by exploring methods to build a hybrid tissue segmentation scheme that seeks to learn where an atlas prior fails (due to inadequate representation of anatomical variation in the statistical atlas) and utilize an alternative prior derived from a patch driven search of the atlas data. We describe a framework for incorporating this patch-based augmentation of EM (PBAEM) into a 4D age-specific atlas-based segmentation of developing brain anatomy. The proposed approach was evaluated on a set of MRI brain scans of premature neonates with ages ranging from 27.29 to 46.43 gestational weeks (GWs). Results indicated superior performance compared to the conventional atlas-based segmentation method, providing improved segmentation accuracy for gray matter, white matter, ventricles and sulcal CSF regions.

  19. ATLAS Operations: Experience and Evolution in the Data Taking Era

    International Nuclear Information System (INIS)

    Ueda, I

    2011-01-01

    This paper summarises the operational experience and improvements of the ATLAS hierarchical multi-tier computing infrastructure in the past year leading to taking and processing of the first collisions in 2009 and 2010. Special focus will be given to the Tier-0 which is responsible, among other things, for a prompt processing of the raw data coming from the online DAQ system and is thus a critical part of the chain. We will give an overview of the Tier-0 architecture, and improvements based on the operational experience. Emphasis will be put on the new developments, namely the Task Management System opening Tier-0 to expert users and Web 2.0 monitoring and management suite. We then overview the achieved performances with the distributed computing system, discuss observed data access patterns over the grid and describe how we used this information to improve analysis rates.

  20. Overview of the vector-like quark searches with the LHC data collected by the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00359999; The ATLAS collaboration

    2016-01-01

    In 2012 the discovery of the Higgs boson by the ATLAS and CMS collaborations set a milestone in particle physics by finding the missing piece of the Standard Model. Nonetheless some questions are still open: the origin of the mass of the neutrino and finding the missing candidate for dark matter are some examples. One of the main issues with the Standard Model is the hierarchy problem which appears when trying to go to high energy scales at which the theory cannot accommodate corrections large enough to explain the observed nature. Vector-like quarks appear naturally in some non-supersymmetric models which try to find a solution for this issue. The different searches for vector-like quarks within the ATLAS Collaboration using data collected at a centre-of-mass energy of 8 and 13~TeV with integrated luminosities of $20.3\\rm{~fb^{-1}}$ (8~TeV) and $3.2\\rm{~fb^{-1}}$ and $14.7\\rm{~fb^{-1}}$ (13~TeV) are discussed.

  1. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    Science.gov (United States)

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Experience with ATLAS MySQL PanDA database service

    International Nuclear Information System (INIS)

    Smirnov, Y; Wlodek, T; Hover, J; Smith, J; Wenaus, T; Yu, D; De, K; Ozturk, N

    2010-01-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  3. Experience with ATLAS MySQL PanDA database service

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Y; Wlodek, T; Hover, J; Smith, J; Wenaus, T; Yu, D [Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); De, K; Ozturk, N [Department of Physics, University of Texas at Arlington, Arlington, TX, 76019 (United States)

    2010-04-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  4. Robust methods to create ex vivo minimum deformation atlases for brain mapping.

    Science.gov (United States)

    Janke, Andrew L; Ullmann, Jeremy F P

    2015-02-01

    Highly detailed ex vivo 3D atlases of average structure are of critical importance to neuroscience and its current push to understanding the global microstructure of the brain. Multiple single slice histology sections can no longer provide sufficient detail of inter-slice microstructure and lack out of plane resolution. Two ex vivo methods have emerged that can create such detailed models. High-field micro MRI with the addition of contrast media has allowed intact whole brain microstructure imaging with an isotropic resolution of 15 μm in mouse. Blockface imaging has similarly evolved to a point where it is now possible to image an entire brain in a rigorous fashion with an out of plane resolution of 10 μm. Despite the destruction of the tissue as part of this process it allows a reconstructed model that is free from cutting artifacts. Both of these methods have been utilised to create minimum deformation atlases that are representative of the respective populations. The MDA atlases allow us unprecedented insight into the commonality and differences in microstructure in cortical structures in specific taxa. In this paper we provide an overview of how to create such MDA models from ex vivo data. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  6. C3PO - A dynamic data placement agent for ATLAS distributed data management

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00346910; The ATLAS collaboration; Lassnig, Mario; Barisits, Martin-Stefan; Serfon, Cedric; Garonne, Vincent

    2017-01-01

    This paper introduces a new dynamic data placement agent for the ATLAS distributed data management system. This agent is designed to pre-place potentially popular data to make it more widely available. It therefore incorporates information from a variety of sources. Those include input datasets and sites workload information from the ATLAS workload management system, network metrics from different sources like FTS and PerfSonar, historical popularity data collected through a tracer mechanism and more. With this data it decides if, when and where to place new replicas that then can be used by the WMS to distribute the workload more evenly over available computing resources and then ultimately reduce job waiting times. This paper gives an overview of the architecture and the final implementation of this new agent. The paper also includes an evaluation of the placement algorithm by comparing the transfer times and the new replica usage.

  7. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  8. Report to users of Atlas

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1996-06-01

    This report contains the following topics: Status of the ATLAS Accelerator; Highlights of Recent Research at ATLAS; Program Advisory Committee; ATLAS User Group Executive Committee; FMA Information Available On The World Wide Web; Conference on Nuclear Structure at the Limits; and Workshop on Experiments with Gammasphere at ATLAS

  9. A memorable week

    CERN Multimedia

    2012-01-01

    This has been a memorable week for CERN, starting with the award of a Special Fundamental Physics Prize and ending with the handover of the CERN Council Presidency from Michel Spiro to Agnieszka Zalewska. In between, the LHC team demonstrated its expertise with a successful pilot run with 25 nanosecond bunch spacing, a new application for Associate Membership was received, and we had good news on the budget.   The award of the Fundamental Physics Prize, and the manner in which it was divided between ATLAS, CMS and the LHC, is fitting recognition of the efforts of the thousands of people who have contributed over many years to the success of our flagship scientific endeavour. In making the award, the Milner Foundation aims to raise the profile of fundamental physics and its value to society. The Fundamental Physics Prize comes hot on the heels of the European Physical Society’s first Edison Volta Prize, which Sergio Bertolucci, Steve Myers and I were honoured to accept on behalf of t...

  10. Two-stage atlas subset selection in multi-atlas based image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-06-15

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  11. Two-stage atlas subset selection in multi-atlas based image segmentation.

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2015-06-01

    Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas

  12. Two-stage atlas subset selection in multi-atlas based image segmentation

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2015-01-01

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  13. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood.

    Science.gov (United States)

    Blesa, Manuel; Serag, Ahmed; Wilkinson, Alastair G; Anblagan, Devasuda; Telford, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Macnaught, Gillian; Semple, Scott I; Bastin, Mark E; Boardman, James P

    2016-01-01

    Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39(+5) weeks, range 37(+2)-41(+6)). An adult brain atlas (SRI24/TZO) was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33) constructed using the Symmetric Group Normalization (SyGN) method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modeling brain growth during development.

  14. Parcellation of the healthy neonatal brain into 107 regions using atlas propagation through intermediate time points in childhood

    Directory of Open Access Journals (Sweden)

    Manuel eBlesa Cabez

    2016-05-01

    Full Text Available Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39+5 weeks, range 37+2-41+6. An adult brain atlas (SRI24/TZO was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database, with the final atlas (Edinburgh Neonatal Atlas, ENA33 constructed using the Symmetric Group Normalization method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modelling brain growth during development.

  15. ATLAS experimental equipment. November 1983 workshop and present status

    International Nuclear Information System (INIS)

    1984-01-01

    The latest workshop was held in November 1983 with the purpose of presenting an overview of the experimental stations planned for ATLAS, describing the current status of each individual apparatus, soliciting final input on devices of the first phase (i.e. on those that will be ready when beams from ATLAS become available in late Spring of 1985), and discussing and collecting new ideas on equipment for the second phase. There were short presentations on the status of the various projects followed by informal discussions. The presentations mainly concentrated on new equipment for target area III, but included some descriptions of current apparatus in target area II that might also be of interest for experiments with the higher-energy beams available in area III. The meeting was well attended with approx. 50 scientists, approximately half of them from institutions outside Argonne. The present proceedings summarize the presentations and discussions of this one-day meeting. In addition we take the opportunity to include information about developments since this meeting and an update of the current status of the various experimental stations. We would like to emphasize again that outside-user input is extremely welcome

  16. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  17. Commissioning of the ATLAS High Level Trigger with single beam and cosmic rays

    International Nuclear Information System (INIS)

    Di Mattia, A

    2010-01-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system is responsible for making the online selection of interesting collision events. At the LHC design luminosity of 10 34 cm -2 s -1 it will need to achieve a rejection factor of the order of 10 -7 against random proton-proton interactions, while selecting with high efficiency events that are needed for physics analyses. After a first processing level using custom electronics based on FPGAs and ASICs, the trigger selection is made by software running on two processor farms, containing a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a 'stress test' of the system and some initial calibration data. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. After giving an overview of the trigger design and its innovative features, this paper focuses on the experience gained from operating the ATLAS trigger with single LHC beams and cosmic-rays.

  18. Performance and scalability of the back-end sub-system in the ATLAS DAQ/EF prototype

    CERN Document Server

    Alexandrov, I N; Badescu, E; Burckhart, Doris; Caprini, M; Cohen, L; Duval, P Y; Hart, R; Jones, R; Kazarov, A; Kolos, S; Kotov, V; Laugier, D; Mapelli, Livio P; Moneta, L; Qian, Z; Radu, A A; Ribeiro, C A; Roumiantsev, V; Ryabov, Yu; Schweiger, D; Soloviev, I V

    2000-01-01

    The DAQ group of the future ATLAS experiment has developed a prototype system based on the trigger/DAQ architecture described in the ATLAS Technical Proposal to support studies of the full system functionality, architecture as well as available hardware and software technologies. One sub-system of this prototype is the back- end which encompasses the software needed to configure, control and monitor the DAQ, but excludes the processing and transportation of physics data. The back-end consists of a number of components including run control, configuration databases and message reporting system. The software has been developed using standard, external software technologies such as OO databases and CORBA. It has been ported to several C++ compilers and operating systems including Solaris, Linux, WNT and LynxOS. This paper gives an overview of the back-end software, its performance, scalability and current status. (17 refs).

  19. ATLAS Distributed Computing

    CERN Document Server

    Schovancova, J; The ATLAS collaboration

    2011-01-01

    The poster details the different aspects of the ATLAS Distributed Computing experience after the first year of LHC data taking. We describe the performance of the ATLAS distributed computing system and the lessons learned during the 2010 run, pointing out parts of the system which were in a good shape, and also spotting areas which required improvements. Improvements ranged from hardware upgrade on the ATLAS Tier-0 computing pools to improve data distribution rates, tuning of FTS channels between CERN and Tier-1s, and studying data access patterns for Grid analysis to improve the global processing rate. We show recent software development driven by operational needs with emphasis on data management and job execution in the ATLAS production system.

  20. ATLAS FTK a - very complex - custom super computer

    International Nuclear Information System (INIS)

    Kimura, N

    2016-01-01

    In the LHC environment for high interaction pile-up, advanced techniques of analysing the data in real time are required in order to maximize the rate of physics processes of interest with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at the hardware level that is designed to deliver full-scan tracks with p T above 1 GeV to the ATLAS trigger system for events passing the Level-1 accept (at a maximum rate of 100 kHz). In order to achieve this performance, a highly parallel system was designed and currently it is being commissioned within in ATLAS. Starting in 2016 it will provide tracks for the trigger system in a region covering the central part of the ATLAS detector, and will be extended to the full detector coverage. The system relies on matching hits coming from the silicon tracking detectors against one billion patterns stored in custom ASIC chips (Associative memory chip - AM06). In a first stage, coarse resolution hits are matched against the patterns and the accepted hits undergo track fitting implemented in FPGAs. Tracks with p T > 1GeV are delivered to the High Level Trigger within about 100 ps. Resolution of the tracks coming from FTK is close to the offline tracking and it will allow for reliable detection of primary and secondary vertexes at trigger level and improved trigger performance for b-jets and tau leptons. This contribution will give an overview of the FTK system and present the status of commissioning of the system. Additionally, the expected FTK performance will be briefly described. (paper)

  1. Mapa mondi (Catalan Atlas of 1375), Majorcan cartographic school, and 14th century Asia

    Science.gov (United States)

    Lišèák, Vladimír

    2018-05-01

    This paper deals with the Mapa mondi drawn and written in about 1375. It is my starting study about this important map of the medieval period in the Catalan language and the finest work to come from the Majorcan cartographic school of the fourteenth century. The aim of this paper is to give a general overview of the publication with some details on descriptions of the portion of Asia, and in more details as regards China. This map is known also as the Catalan Atlas, because it is composed of several tables sketching out the world known at that time, from the Atlantic Coast of Europe to the Pacific Coast of East Asia. The main sources for the eastern parts of the world were travelogues of Marco Polo, John Mandeville, and Odoric of Pordenone. The presumable author of the Catalan Atlas, Cresques Abra-ham (1325-1387), a Jewish cartographer from Palma, was "master of mappæ mundi and compasses" to Peter IV (III), the King of Aragon. He worked on the atlas with his son Jehudà, who after the Aragonese persecutions of 1391, converted to Christianity. The atlas contained the latest information on Africa, Asia, and China and was considered to be the most complete picture of geographical knowledge as it stood in the later Middle Ages. The translations of original texts and interpretations, based on facsimiles of original source and on secondary sources until 2016, will be a part of this paper.

  2. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    Science.gov (United States)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  3. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Iodice, Mauro; The ATLAS collaboration

    2015-01-01

    The Micromegas (MICRO MEsh GAseous Structure) have been proven along the years to be reliable detectors with excellent space resolution and high rate capability. Large area Micromegas will be employed for the first time in high-energy physics for the Muon Spectrometer upgrade of the ATLAS experiment at CERN LHC. A total surface of about 150 m$^2$ of the forward regions of the Muon Spectrometer will be equipped with 8 layers of Micromegas modules. Each module covers a surface from 2 to 3 m$^2$ for a total active area of 1200 m$^2$. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the 2018/19 shutdown. The breakthroughs and developments of this type of Micro Pattern Gas Detector will be reviewed, along with the path towards the construction of the modules, which will take place in several production sites starting in 2015. An overview of the detector performances obtained in the rec...

  4. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Iodice, M; The ATLAS collaboration

    2014-01-01

    The Micromegas (MICRO MEsh GAseous Structure) chambers have been proven along the years to be reliable detectors with excellent space resolution and high rate capability. Large area Micromegas will be employed for the first time in high-energy physics for the Muon Spectrometer upgrade of the ATLAS experiment at CERN LHC. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer will be equipped with 8 layers of Micromegas modules. Each module covers a surface from 2 to 3 m2 for a total active area of 1200 m2. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the 2018/19 shutdown. The principles of operation and recent developments of this type of Micro Pattern Gas Detector will be reviewed, along with our plans towards the construction of the modules, which will take place in several production sites. An overview of the detector performances obtained in the re...

  5. ATLAS Open Data project

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The current ATLAS model of Open Access to recorded and simulated data offers the opportunity to access datasets with a focus on education, training and outreach. This mandate supports the creation of platforms, projects, software, and educational products used all over the planet. We describe the overall status of ATLAS Open Data (http://opendata.atlas.cern) activities, from core ATLAS activities and releases to individual and group efforts, as well as educational programs, and final web or software-based (and hard-copy) products that have been produced or are under development. The relatively large number and heterogeneous use cases currently documented is driving an upcoming release of more data and resources for the ATLAS Community and anyone interested to explore the world of experimental particle physics and the computer sciences through data analysis.

  6. C3PO - A Dynamic Data Placement Agent for ATLAS Distributed Data Management

    CERN Document Server

    Beermann, Thomas; The ATLAS collaboration; Barisits, Martin-Stefan; Serfon, Cedric; Garonne, Vincent

    2016-01-01

    This contribution introduces a new dynamic data placement agent for the ATLAS distributed data management system. This agent is designed to pre-place potentially popular data to make it more widely available. It uses data from a variety of sources. Those include input datasets and sites workload information from the ATLAS workload management system, network metrics from different sources like FTS and PerfSonar, historical popularity data collected through a tracer mechanism and more. With this data it decides if, when and where to place new replicas that then can be used by the WMS to distribute the workload more evenly over available computing resources and then ultimately reduce job waiting times. The new replicas are created with a short lifetime that gets extended, when the data is accessed and therefore the system behaves like a big cache. This paper gives an overview of the architecture and the final implementation of this new agent. The paper also includes an evaluation of different placement algorithm...

  7. R&D Studies of the ATLAS LAr Calorimeter Readout Electronics for super-LHC

    CERN Document Server

    Chen, H

    2010-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors, total about 180,000 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. A luminosity upgrade (x10) of the LHC will occur ~2017, the current readout electronics will have to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr collaboration is developing: front-end analog and mixed-signal ASIC design, radiation resistance optical-links in SOS, high-speed back-end processing units based on FPGA architectures and power supply d...

  8. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, A; The ATLAS collaboration; Klimentov, A; Senchenko, A

    2012-01-01

    The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  9. Cartea de Colorat a Experimentului ATLAS - ATLAS Experiment Colouring Book in Romanian

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Language: Romanian - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration. Limba: Română - Cartea de Colorat a Experimentului ATLAS este o carte educativă gratuită, ideală pentru copiii cu vârsta cuprinsă între 5-9 ani. Scopul său este de a introduce copii în domeniul fizicii de înaltă energie, precum și activitatea desfășurată de colaborarea ATLAS.

  10. An Open-Source Label Atlas Correction Tool and Preliminary Results on Huntingtons Disease Whole-Brain MRI Atlases.

    Science.gov (United States)

    Forbes, Jessica L; Kim, Regina E Y; Paulsen, Jane S; Johnson, Hans J

    2016-01-01

    The creation of high-quality medical imaging reference atlas datasets with consistent dense anatomical region labels is a challenging task. Reference atlases have many uses in medical image applications and are essential components of atlas-based segmentation tools commonly used for producing personalized anatomical measurements for individual subjects. The process of manual identification of anatomical regions by experts is regarded as a so-called gold standard; however, it is usually impractical because of the labor-intensive costs. Further, as the number of regions of interest increases, these manually created atlases often contain many small inconsistently labeled or disconnected regions that need to be identified and corrected. This project proposes an efficient process to drastically reduce the time necessary for manual revision in order to improve atlas label quality. We introduce the LabelAtlasEditor tool, a SimpleITK-based open-source label atlas correction tool distributed within the image visualization software 3D Slicer. LabelAtlasEditor incorporates several 3D Slicer widgets into one consistent interface and provides label-specific correction tools, allowing for rapid identification, navigation, and modification of the small, disconnected erroneous labels within an atlas. The technical details for the implementation and performance of LabelAtlasEditor are demonstrated using an application of improving a set of 20 Huntingtons Disease-specific multi-modal brain atlases. Additionally, we present the advantages and limitations of automatic atlas correction. After the correction of atlas inconsistencies and small, disconnected regions, the number of unidentified voxels for each dataset was reduced on average by 68.48%.

  11. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, Alexey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  12. Functional testing of the ATLAS SCT barrels

    International Nuclear Information System (INIS)

    Phillips, Peter W.

    2007-01-01

    The ATLAS SCT (semiconductor tracker) comprises 2112 barrel modules mounted on four concentric barrels of length 1.6m and up to 1m diameter, and 1976 endcap modules supported by a series of nine wheels at each end of the barrel region, giving a total silicon area of 60m 2 . The assembly of modules onto each of the four barrel structures has recently been completed. In addition to functional tests made during the assembly process, each completed barrel was operated in its entirety. In the case of the largest barrel, with an active silicon area of approximately 10m 2 , this corresponds to more than one million instrumented channels. This paper documents the electrical performance of the four individual SCT barrels. An overview of the readout chain is also given

  13. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  14. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  15. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    International Nuclear Information System (INIS)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O; Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6 LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ( 252 Cf and 241 AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  16. An FPGA based demonstrator for a topological processor in the future ATLAS L1-Calo trigger “GOLD”

    CERN Document Server

    Ebling, A; Büscher, V; Degele, R; Ji, W; Meyer, C; Moritz, S; Schäfer, U; Simioni, E; Tapprogge, S; Wenzel, V

    2012-01-01

    Abstract: The existing ATLAS trigger consists of three levels. The level 1 (L1) is an FPGAs based custom designed trigger, while the second and third levels are software based. The LHC machine plans to bring the beam energy to the maximum value of 7 TeV and to increase the luminosity in the coming years. The current L1 trigger system is therefore seriously challenged. To cope with the resulting higher event rate, as part of the ATLAS trigger upgrade, a new electronics module is foreseen to be added in the ATLAS Level-1 Calorimeter Trigger electronics chain: the Topological Processor (TP). Such a processor needs fast optical I/O and large aggregate bandwidth to use the information on trigger object position in space (e.g. jets in the calorimeters or muons measured in the muon detectors) to improve the purity of the L1 triggers streams by applying topological cuts within the L1 latency budget. In this paper, an overview of the adopted technological solutions and the R&D activities on the demonstrator for th...

  17. Construction and test of high precision drift-tube (sMDT) chambers for the ATLAS muon spectrometer

    CERN Document Server

    Nowak, Sebastian; Kroha, Hubert; Schwegler, Philipp; Sforza, Federico

    2014-01-01

    For the upgrade of the ATLAS muon spectrometer in March 2014 new muon tracking chambers (sMDT) with drift-tubes of 15 mm diameter, half of the value of the standard ATLAS Monitored Drift-Tubes (MDT) chambers, and 10~$\\mu$m positioning accuracy of the sense wires have been constructed. The new chambers are designed to be fully compatible with the present ATLAS services but, with respect to the previously installed ATLAS MDT chambers, they are assembled in a more compact geometry and they deploy two additional tube layers that provide redundant rack information. The chambers are composed of 8 layers of in total 624 aluminium drift-tubes. The assembly of a chamber is completed within a week. A semi-automatized production line is used for the assembly of the drift-tubes prior to the chamber assembly. The production procedures and the quality control tests of the single components and of the complete chambers will be discussed. The wire position in the completed chambers have been measured by using a coordinate me...

  18. ATLAS@Home looks for CERN volunteers

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    ATLAS@Home is a CERN volunteer computing project that runs simulated ATLAS events. As the project ramps up, the project team is looking for CERN volunteers to test the system before planning a bigger promotion for the public.   The ATLAS@home outreach website. ATLAS@Home is a large-scale research project that runs ATLAS experiment simulation software inside virtual machines hosted by volunteer computers. “People from all over the world offer up their computers’ idle time to run simulation programmes to help physicists extract information from the large amount of data collected by the detector,” explains Claire Adam Bourdarios of the ATLAS@Home project. “The ATLAS@Home project aims to extrapolate the Standard Model at a higher energy and explore what new physics may look like. Everything we’re currently running is preparation for next year's run.” ATLAS@Home became an official BOINC (Berkeley Open Infrastructure for Network ...

  19. Implementation of the ATLAS trigger within the ATLAS Multi­Threaded Software Framework AthenaMT

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2016-01-01

    We present an implementation of the ATLAS High Level Trigger that provides parallel execution of trigger algorithms within the ATLAS multi­threaded software framework, AthenaMT. This development will enable the ATLAS High Level Trigger to meet future challenges due to the evolution of computing hardware and upgrades of the Large Hadron Collider, LHC, and ATLAS Detector. During the LHC data­taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further, to up to 7.5 times the design value, in 2026 following LHC and ATLAS upgrades. This includes an upgrade of the ATLAS trigger architecture that will result in an increase in the High Level Trigger input rate by a factor of 4 to 10 compared to the current maximum rate of 100 kHz. The current ATLAS multiprocess framework, AthenaMP, manages a number of processes that process events independently, executing algorithms sequentially in each process. AthenaMT will provide a fully multi­threaded env...

  20. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1997-03-01

    This report covers the following topics: (1) status of the ATLAS accelerator; (2) progress in R and D towards a proposal for a National ISOL Facility; (3) highlights of recent research at ATLAS; (4) the move of gammasphere from LBNL to ANL; (5) Accelerator Target Development laboratory; (6) Program Advisory Committee; (7) ATLAS User Group Executive Committee; and (8) ATLAS user handbook available in the World Wide Web. A brief summary is given for each topic

  1. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Energy Technology Data Exchange (ETDEWEB)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O [Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J, E-mail: scallon@lps.umontreal.ca [Institute of Experimental and Applied Physics of the CTU in Prague, Horska 3a/22, CZ-12800 Praha2 - Albertov (Czech Republic)

    2011-01-15

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of {sup 6}LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ({sup 252}Cf and {sup 241}AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  2. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Science.gov (United States)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  3. Large R jet reconstruction and calibration at 13 TeV with the ATLAS detector

    CERN Document Server

    Taenzer, Joe; The ATLAS collaboration

    2017-01-01

    Large-R jets are used by many ATLAS analyses working in boosted regimes. ATLAS Large-R jets are reconstructed from locally callibrated calorimeter topoclusters with the Anti-k_{t} algorithm with radius parameter R=1.0, and then groomed to remove pile-up with the trimming algorithm with f_{cut} 0.05 and subjet radius R=0.2. Monte Carlo based energy and mass calibrations correct the reconstructed jet energy and mass to truth, followed by in-situ calibrations using a number of different techniques. Large-R jets can also be reconstructed using small-R jets as constituents, instead of topoclusters, a technique called jet reclustering, or from track calo clusters (TCCs), which are constituents constructed using both tracking and calorimeter information. An overview of large-R jet reconstruction will be presented here, along with selected results from the jet mass calibrations, both Monte Carlo based an insitu, from jet reclustering, and from track calo clusters.

  4. ATLAS Colouring Book

    CERN Multimedia

    Anthony, Katarina

    2016-01-01

    The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  5. Evolution of the Trigger and Data Acquisition System for the ATLAS experiment

    CERN Document Server

    Negri, A; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data at unprecedented energy and rates. The TDAQ is composed of three levels which reduces the event rate from the design bunch-crossing rate of 40 MHz to an average event recording rate of about 200 Hz. The first part of this paper gives an overview of the operational performance of the DAQ system during 2011 and the first months of data taking in 2012. It describes how the flexibility inherent in the design of the system has be exploited to meet the changing needs of ATLAS data taking and in some cases push performance beyond the original design performance specification. The experience accumulated in the TDAQ system operation during these years stimulated also interest to explore possible evolutions, despite the success of the current design. One attractive direction is to merge three systems - the second trigger level (L2), ...

  6. SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is first roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit

  7. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  8. ATLAS MPGD production status

    CERN Document Server

    Schioppa, Marco; The ATLAS collaboration

    2018-01-01

    Micromegas (MICRO MEsh GAseous Structure) chambers are Micro-Pattern Gaseous Detectors designed to provide a high spatial resolution and reasonable good time resolution in highly irradiated environments. In 2007 an ambitious long-term R\\&D activity was started in the context of the ATLAS experiment, at CERN: the Muon ATLAS Micromegas Activity (MAMMA). After years of tests on prototypes and technology breakthroughs, Micromegas chambers were chosen as tracking detectors for an upgrade of the ATLAS Muon Spectrometer. These novel detectors will be installed in 2020 at the end of the second long shutdown of the Large Hadron Collider, and will serve mainly as precision detectors in the innermost part of the forward ATLAS Muon Spectrometer. Four different types of Micromegas modules, eight layers each, up to $3 m^2$ area (of unprecedented size), will cover a surface of $150 m^2$ for a total active area of about $1200 m^2$. With this upgrade the ATLAS muon system will maintain the full acceptance of its excellent...

  9. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  10. Future ATLAS Higgs Studies

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC will prove a challenging environment to work in, with for example $=200$ expected. It will however also provide great opportunities for advancing studies of the Higgs boson. The ATLAS detector will be upgraded, and Higgs prospects analyses have been performed to assess the reach of ATLAS Higgs studies in the HL-LHC era. These analyses are presented, as are Run-2 ATLAS di-Higgs analyses for comparison.

  11. Baby brain atlases.

    Science.gov (United States)

    Oishi, Kenichi; Chang, Linda; Huang, Hao

    2018-04-03

    The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed. Copyright © 2018. Published by Elsevier Inc.

  12. Commissioning of the ATLAS High Level Trigger with single beam and cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Di Mattia, A, E-mail: dimattia@mail.cern.c [Michigan State University - Department of Physics and Astronomy 3218 Biomedical Physical Science - East Lansing, MI 48824-2320 (United States)

    2010-04-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system is responsible for making the online selection of interesting collision events. At the LHC design luminosity of 10{sup 34} cm{sup -2}s{sup -1} it will need to achieve a rejection factor of the order of 10{sup -7} against random proton-proton interactions, while selecting with high efficiency events that are needed for physics analyses. After a first processing level using custom electronics based on FPGAs and ASICs, the trigger selection is made by software running on two processor farms, containing a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a 'stress test' of the system and some initial calibration data. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. After giving an overview of the trigger design and its innovative features, this paper focuses on the experience gained from operating the ATLAS trigger with single LHC beams and cosmic-rays.

  13. Atlas of Radiographic Features of Osteoarthritis of the Ankle and Hindfoot

    Science.gov (United States)

    Kraus, Virginia Byers; Kilfoil, Terrence M; Hash, Thomas W.; McDaniel, Gary; Renner, Jordan B; Carrino, John A.; Adams, Samuel

    2015-01-01

    Objective To develop a radiographic atlas of osteoarthritis (OA) for use as a template and guide for standardized scoring of radiographic features of OA of the ankle and hindfoot joints. Method Under Institutional Review Board approval, ankle and hindfoot images were selected from a cohort study and from among cases that underwent ankle radiography during a 6-month period at Duke University Medical Center. Missing OA pathology was obtained through supplementation of cases with the assistance of a foot and ankle specialist in Orthopaedic surgery and a musculoskeletal radiologist. Images were obtained and reviewed without patient identifying information. Images went through multiple rounds of review and final images were selected by consensus of the study team. For intra-rater and inter-rater reliability, the kappa statistic was calculated for two readings by 3 musculoskeletal radiologists, a minimum of two weeks apart, of ankle and hindfoot radiographs from 30 anonymized subjects. Results The atlas demonstrates individual radiographic features (osteophyte and joint space narrowing) and Kellgren Lawrence grade for all aspects of the talocrural (ankle joint proper) and talocalcaneal (subtalar) joints. Reliability of scoring based on the atlas was quite good to excellent for most features indicated. Additional examples of ankle joint findings are illustrated including sclerosis, os trigonum, subchondral cysts and talar tilt. Conclusions It is anticipated that this atlas will assist with standardization of scoring of ankle and hindfoot OA by basic and clinical OA researchers. PMID:26318654

  14. Atlas of radiographic features of osteoarthritis of the ankle and hindfoot.

    Science.gov (United States)

    Kraus, V B; Kilfoil, T M; Hash, T W; McDaniel, G; Renner, J B; Carrino, J A; Adams, S

    2015-12-01

    To develop a radiographic atlas of osteoarthritis (OA) for use as a template and guide for standardized scoring of radiographic features of OA of the ankle and hindfoot joints. Under Institutional Review Board approval, ankle and hindfoot images were selected from a cohort study and from among cases that underwent ankle radiography during a 6-month period at Duke University Medical Center. Missing OA pathology was obtained through supplementation of cases with the assistance of a foot and ankle specialist in Orthopaedic surgery and a musculoskeletal radiologist. Images were obtained and reviewed without patient identifying information. Images went through multiple rounds of review and final images were selected by consensus of the study team. For intra-rater and inter-rater reliability, the kappa statistic was calculated for two readings by three musculoskeletal radiologists, a minimum of two weeks apart, of ankle and hindfoot radiographs from 30 anonymized subjects. The atlas demonstrates individual radiographic features (osteophyte and joint space narrowing (JSN)) and Kellgren-Lawrence grade for all aspects of the talocrural (ankle joint proper) and talocalcaneal (subtalar) joints. Reliability of scoring based on the atlas was quite good to excellent for most features indicated. Additional examples of ankle joint findings are illustrated including sclerosis, os trigonum, subchondral cysts and talar tilt. It is anticipated that this atlas will assist with standardization of scoring of ankle and hindfoot OA by basic and clinical OA researchers. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. High precision laser control of the ATLAS tile-calorimeter module mass production at JINR

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, Yu.; Flyagin, V.; Khubua, D.; Lomakin, Yu.; Lyablin, M.; Rusakovich, N.; Shabalin, D.; Topilin, N.; Nessi, M.

    2001-01-01

    We present a short description of our last few years experience in the quality control of the ATLAS hadron barrel tile-calorimeter module mass production at JINR. A Laser Measurement System (LMS) proposed and realized in Dubna guarantees a high-precision module assembly. The non-planarity of module size surfaces (1.9x5.6 m) controlled area is well within the required ±0.6 mm tolerance for each of JINR assembled modules. The module assembly technique achieved with the LMS system allows us to deliver to CERN one module every 2 weeks. This laser-based measurement system could be used in future for the control measurement of other large-scale units during the ATLAS assembly

  16. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  17. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  18. O Livro de Colorir da Experiência ATLAS - ATLAS Experiment Colouring Book in Portuguese

    CERN Multimedia

    Anthony, Katarina

    2017-01-01

    Language: Portuguese - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration. Língua: Português - O Livro de Colorir da Experiência ATLAS é um livro educacional gratuito para descarregar, ideal para crianças dos 5 aos 9 anos de idade. Este livro procura introduzir as crianças ao estudo da Física de Alta-Energia, bem como ao trabalho desenvolvido pela Colaboração ATLAS.

  19. Maľovanka Experiment ATLAS - ATLAS Experiment Colouring Book in Slovak

    CERN Multimedia

    Anthony, Katarina

    2017-01-01

    Language: Slovak - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  20. ATLAS Deneyi Boyama Kitabı - ATLAS Experiment Colouring Book in Turkish

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Language: Turkish - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  1. AGIS: The ATLAS Grid Information System

    Science.gov (United States)

    Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration

    2014-06-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  2. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet.

    Science.gov (United States)

    Nowinski, Wieslaw L; Belov, Dmitry

    2003-09-01

    The article introduces an atlas-assisted method and a tool called the Cerefy Neuroradiology Atlas (CNA), available over the Internet for neuroradiology and human brain mapping. The CNA contains an enhanced, extended, and fully segmented and labeled electronic version of the Talairach-Tournoux brain atlas, including parcelated gyri and Brodmann's areas. To our best knowledge, this is the first online, publicly available application with the Talairach-Tournoux atlas. The process of atlas-assisted neuroimage analysis is done in five steps: image data loading, Talairach landmark setting, atlas normalization, image data exploration and analysis, and result saving. Neuroimage analysis is supported by a near-real-time, atlas-to-data warping based on the Talairach transformation. The CNA runs on multiple platforms; is able to process simultaneously multiple anatomical and functional data sets; and provides functions for a rapid atlas-to-data registration, interactive structure labeling and annotating, and mensuration. It is also empowered with several unique features, including interactive atlas warping facilitating fine tuning of atlas-to-data fit, navigation on the triplanar formed by the image data and the atlas, multiple-images-in-one display with interactive atlas-anatomy-function blending, multiple label display, and saving of labeled and annotated image data. The CNA is useful for fast atlas-assisted analysis of neuroimage data sets. It increases accuracy and reduces time in localization analysis of activation regions; facilitates to communicate the information on the interpreted scans from the neuroradiologist to other clinicians and medical students; increases the neuroradiologist's confidence in terms of anatomy and spatial relationships; and serves as a user-friendly, public domain tool for neuroeducation. At present, more than 700 users from five continents have subscribed to the CNA.

  3. Preparing a new book on ATLAS

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    A book about the ATLAS project and the ATLAS collaboration is going to be published and available for sale in mid 2008. The book is intended to be a symbol of appreciation for all the people from ATLAS institutes, triggering fond memories through photos, interviews, short commentaries and anecdotes about the daily life and milestones encountered while designing, constructing and completing ATLAS. We would like to give you the opportunity to collaborate with this project in two different ways: Firstly, please send us the best anecdotes related to ATLAS that you remember. To submit anecdotes, send an email to Claudia.Marcelloni@cern.ch. Secondly, you are invited to participate in our PHOTO COMPETITION. Please send the best photos you have of ATLAS attached with a description, the location, and date taken. The categories are: Milestones in the process of designing and building the detector, People at work and Important gatherings. To submit photos you should go to the CDS page and select ATLAS Photo Competi...

  4. ATLAS B-physics potential

    International Nuclear Information System (INIS)

    Smizanska, M.

    2001-01-01

    Studies since 1993 have demonstrated the ability of ATLAS to pursue a wide B physics program. This document presents the latest performance studies with special stress on lepton identification. B-decays containing several leptons in ATLAS statistically dominate the high-precision measurements. We present new results on physics simulations of CP violation measurements in the B s 0 → J/Ψphi decay and on a novel ATLAS programme on beauty production in central proton-proton collisions of LHC

  5. Engineering design evaluation of Atlas tile-calorimeter

    International Nuclear Information System (INIS)

    Hill, N.; Guarino, V.; Proudfoot, J.; Stanek, R.; Price, L.; Petereit, E.

    1994-01-01

    In an effort to familiarize themselves with the work that has been done to date on the design of the Tile Cal hadron calorimeter for Atlas, the authors have undertaken a thorough examination of the current designs. They concentrated on the work that has been done by the IHEP Group at Protvino, and in particular the work presented at the last Atlas Week. They constructed six different finite element models as they have learned more about the system. These models were meant to be rough models only and do not represent actual construction in all cases. In some cases, shortcuts were taken in an attempt to set boundary conditions and to reduce the size of the problem to accommodate software limitations, while still providing enough information to further the understanding of the design. After reviewing the analysis and thinking about the construction, the authors have some suggested modifications, which are presented in this paper. It is clear that the work done at both CERN and Protvino has been impressive and thorough. The authors have tried to evaluate and understand both the CERN baseline design and the suggested design option from Protvino

  6. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    Science.gov (United States)

    Burghgrave, Blake; ATLAS Collaboration

    2017-10-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database updates can be performed through a custom-made web interface.

  7. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  8. TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

    CERN Document Server

    Choi, Kyungeon; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  9. Tracking and Vertexing with the ATLAS Inner Detector in the LHC Run2 and Beyond

    CERN Document Server

    Swift, Stewart Patrick; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  10. Recent developments in the area of SoftQCD and Diffractive Physics at the ATLAS Experiment

    CERN Document Server

    Astalos, Robert; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration released several new measurements in the area of SoftQCD and diffractive physics, ranging from the exclusive production of dimuons, over the total pp cross section measurement to studies of correlated hadron production. An overview of these most recent developments will be given in this talk: The total inelastic proton-proton cross section and the diffractive part of the inelastic cross section has been measured at 8 and 13 TeV in special data sets taken with low beam currents and using forward scintillators. More precise measurements of the total pp cross section and the elastic and inelastic contributions have been extracted from measurements of the differential elastic cross section using the optical theorem. In the absence of forward proton tagging, exclusive processes can be distinguished in the central part of the ATLAS detector exploiting the large rapidity gap in the central region and the absence of charged particles reconstructed in the inner tracking detector. This strategy ...

  11. ATLAS Facility Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loop-type. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations in detail

  12. TU-CD-BRA-05: Atlas Selection for Multi-Atlas-Based Image Segmentation Using Surrogate Modeling

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: The growing size and heterogeneity in training atlas necessitates sophisticated schemes to identify only the most relevant atlases for the specific multi-atlas-based image segmentation problem. This study aims to develop a model to infer the inaccessible oracle geometric relevance metric from surrogate image similarity metrics, and based on such model, provide guidance to atlas selection in multi-atlas-based image segmentation. Methods: We relate the oracle geometric relevance metric in label space to the surrogate metric in image space, by a monotonically non-decreasing function with additive random perturbations. Subsequently, a surrogate’s ability to prognosticate the oracle order for atlas subset selection is quantified probabilistically. Finally, important insights and guidance are provided for the design of fusion set size, balancing the competing demands to include the most relevant atlases and to exclude the most irrelevant ones. A systematic solution is derived based on an optimization framework. Model verification and performance assessment is performed based on clinical prostate MR images. Results: The proposed surrogate model was exemplified by a linear map with normally distributed perturbation, and verified with several commonly-used surrogates, including MSD, NCC and (N)MI. The derived behaviors of different surrogates in atlas selection and their corresponding performance in ultimate label estimate were validated. The performance of NCC and (N)MI was similarly superior to MSD, with a 10% higher atlas selection probability and a segmentation performance increase in DSC by 0.10 with the first and third quartiles of (0.83, 0.89), compared to (0.81, 0.89). The derived optimal fusion set size, valued at 7/8/8/7 for MSD/NCC/MI/NMI, agreed well with the appropriate range [4, 9] from empirical observation. Conclusion: This work has developed an efficacious probabilistic model to characterize the image-based surrogate metric on atlas selection

  13. Status of the present ATLAS RPC system and overview towards HL-LHC

    CERN Document Server

    Alberghi, Gian Luigi; The ATLAS collaboration

    2018-01-01

    The RPC system covers the barrel region of the ATLAS muon spectrometer in the pseudo-rapidity range of |eta|<1.05 with six independent detector layers, and solely provides the L1 trigger signal and the track coordinate in the non-bending plane of the muon candidates. The system has been designed to operate up to the nominal LHC luminosity (1e34cm-2s-1) which has been already exceeded thanks to the excellent performance of the collider. The experience in operating the present RPC system, up to the maximum instantaneous luminosity of 2.05 x 1e34 cm-2 s-1 reached in 2017, is reported. The performance of the system, in the severe background and pileup conditions of the last data taking period, is presented together with the improved tools implemented in order to have an effective monitoring of the detector status. The plans to successfully operate the present system during the HL-LHC phase are also introduced.

  14. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    Directory of Open Access Journals (Sweden)

    Kishan Andre Liyanage

    Full Text Available Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap to 1 (complete overlap. For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  15. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    Energy Technology Data Exchange (ETDEWEB)

    Vandelli, Wainer, E-mail: wainer.vandelli@cern.c

    2010-04-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  16. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    International Nuclear Information System (INIS)

    Vandelli, Wainer

    2010-01-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  17. Brief retrospection on Hungarian school atlases

    Science.gov (United States)

    Klinghammer, István; Jesús Reyes Nuñez, José

    2018-05-01

    The first part of this article is dedicated to the history of Hungarian school atlases to the end of the 1st World War. Although the first maps included in a Hungarian textbook were probably made in 1751, the publication of atlases for schools is dated almost 50 years later, when professor Ézsáiás Budai created his "New School Atlas for elementary pupils" in 1800. This was followed by a long period of 90 years, when the school atlases were mostly translations and adaptations of foreign atlases, the majority of which were made in German-speaking countries. In those years, a school atlas made by a Hungarian astronomer, Antal Vállas, should be highlighted as a prominent independent piece of work. In 1890, a talented cartographer, Manó Kogutowicz founded the Hungarian Geographical Institute, which was the institution responsible for producing school atlases for the different types of schools in Hungary. The professional quality of the school atlases published by his institute was also recognized beyond the Hungarian borders by prizes won in international exhibitions. Kogutowicz laid the foundations of the current Hungarian school cartography: this statement is confirmed in the second part of this article, when three of his school atlases are presented in more detail to give examples of how the pupils were introduced to the basic cartographic and astronomic concepts as well as how different innovative solutions were used on the maps.

  18. ATLAS Maintenance and Operation management system

    CERN Document Server

    Copy, B

    2007-01-01

    The maintenance and operation of the ATLAS detector will involve thousands of contributors from 170 physics institutes. Planning and coordinating the action of ATLAS members, ensuring their expertise is properly leveraged and that no parts of the detector are understaffed or overstaffed will be a challenging task. The ATLAS Maintenance and Operation application (referred to as Operation Task Planner inside the ATLAS experiment) offers a fluent web based interface that combines the flexibility and comfort of a desktop application, intuitive data visualization and navigation techniques, with a lightweight service oriented architecture. We will review the application, its usage within the ATLAS experiment, its underlying design and implementation.

  19. Taus at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Demers, Sarah M. [Yale Univ., New Haven, CT (United States). Dept. of Physics

    2017-12-06

    The grant "Taus at ATLAS" supported the group of Sarah Demers at Yale University over a period of 8.5 months, bridging the time between her Early Career Award and her inclusion on Yale's grant cycle within the Department of Energy's Office of Science. The work supported the functioning of the ATLAS Experiment at CERN's Large Hadron Collider and the analysis of ATLAS data. The work included searching for the Higgs Boson in a particular mode of its production (with a W or Z boson) and decay (to a pair of tau leptons.) This was part of a broad program of characterizing the Higgs boson as we try to understand this recently discovered particle, and whether or not it matches our expectations within the current standard model of particle physics. In addition, group members worked with simulation to understand the physics reach of planned upgrades to the ATLAS experiment. Supported group members include postdoctoral researcher Lotte Thomsen and graduate student Mariel Pettee.

  20. AGIS: The ATLAS Grid Information System

    OpenAIRE

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configurat...

  1. ATLAS B-physics potential

    CERN Document Server

    Smizanska, M

    2001-01-01

    Studies since 1993 have demonstrated the ability of ATLAS to pursue a wide B physics program. This document presents the latest performance studies with special stress on lepton identification. B-decays containing several leptons in ATLAS statistically dominate the high- precision measurements. We present new results on physics simulations of CP violation measurements in the B/sub s//sup 0/ to J/ psi phi decay and on a novel ATLAS programme on beauty production in central proton-proton collisions at the LHC. (7 refs).

  2. ATLAS. LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In Greek mythology, Atlas was a Titan who had to hold up the heavens with his hands as a punishment for having taken part in a revolt against the Olympians. For LHC, the ATLAS detector will also have an onerous physics burden to bear, but this is seen as a golden opportunity rather than a punishment. The major physics goal of CERN's LHC proton-proton collider is the quest for the long-awaited£higgs' mechanism which drives the spontaneous symmetry breaking of the electroweak Standard Model picture. The large ATLAS collaboration proposes a large general-purpose detector to exploit the full discovery potential of LHC's proton collisions. LHC will provide proton-proton collision luminosities at the aweinspiring level of 1034 cm2 s~1, with initial running in at 1033. The ATLAS philosophy is to handle as many signatures as possible at all luminosity levels, with the initial running providing more complex possibilities. The ATLAS concept was first presented as a Letter of Intent to the LHC Committee in November 1992. Following initial presentations at the Evian meeting (Towards the LHC Experimental Programme') in March of that year, two ideas for generalpurpose detectors, the ASCOT and EAGLE schemes, merged, with Friedrich Dydak (MPI Munich) and Peter Jenni (CERN) as ATLAS cospokesmen. Since the initial Letter of Intent presentation, the ATLAS design has been optimized and developed, guided by physics performance studies and the LHC-oriented detector R&D programme (April/May, page 3). The overall detector concept is characterized by an inner superconducting solenoid (for inner tracking) and large superconducting air-core toroids outside the calorimetry. This solution avoids constraining the calorimetry while providing a high resolution, large acceptance and robust detector. The outer magnet will extend over a length of 26 metres, with an outer diameter of almost 20 metres. The total weight of the detector is 7,000 tonnes. Fitted with its end

  3. The ATLAS inner detector semiconductor tracker (Si and GaAs strips): review of the 1995 beam tests at the CERN SPS H8 beamline

    International Nuclear Information System (INIS)

    Moorhead, G.F.

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author)

  4. ATLAS Grid Workflow Performance Optimization

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment grid workflow system manages routinely 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG. At this scale small improvements in the software and computing performance and workflows can lead to significant resource usage gains. ATLAS is reviewing together with CERN IT experts several typical simulation and data processing workloads for potential performance improvements in terms of memory and CPU usage, disk and network I/O. All ATLAS production and analysis grid jobs are instrumented to collect many performance metrics for detailed statistical studies using modern data analytics tools like ElasticSearch and Kibana. This presentation will review and explain the performance gains of several ATLAS simulation and data processing workflows and present analytics studies of the ATLAS grid workflows.

  5. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica in the Moroccan Middle Atlas Forests

    Directory of Open Access Journals (Sweden)

    Jesús Julio Camarero

    2011-09-01

    Full Text Available An understanding of the interactions between climate change and forest structure on tree growth are needed for decision making in forest conservation and management. In this paper, we investigated the relative contribution of tree features and stand structure on Atlas cedar (Cedrus atlantica radial growth in forests that have experienced heavy grazing and logging in the past. Dendrochronological methods were applied to quantify patterns in basal-area increment and drought sensitivity of Atlas cedar in the Middle Atlas, northern Morocco. We estimated the tree-to-tree competition intensity and quantified the structure in Atlas cedar stands with contrasting tree density, age, and decline symptoms. The relative contribution of tree age and size and stand structure to Atlas cedar growth decline was estimated by variance partitioning using partial-redundancy analyses. Recurrent drought events and temperature increases have been identified from local climate records since the 1970s. We detected consistent growth declines and increased drought sensitivity in Atlas cedar across all sites since the early 1980s. Specifically, we determined that previous growth rates and tree age were the strongest tree features, while Quercus rotundifolia basal area was the strongest stand structure measure related to Atlas cedar decline. As a result, we suggest that Atlas cedar forests that have experienced severe drought in combination with grazing and logging may be in the process of shifting dominance toward more drought-tolerant species such as Q. rotundifolia.

  6. Integrating Networking into ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2018-01-01

    Networking is foundational to the ATLAS distributed infrastructure and there are many ongoing activities related to networking both within and outside of ATLAS. We will report on the progress in a number of areas exploring ATLAS's use of networking and our ability to monitor the network, analyze metrics from the network, and tune and optimize application and end-host parameters to make the most effective use of the network. Specific topics will include work on Open vSwitch for production systems, network analytics, FTS testing and tuning, and network problem alerting and alarming.

  7. ATLAS End-cap Part II

    CERN Multimedia

    2007-01-01

    The epic journey of the ATLAS magnets is drawing to an end. On Thursday 12 July, the second end-cap of the ATLAS toroid magnet was lowered into the cavern of the experiment with the same degree of precision as the first (see Bulletin No. 26/2007). This spectacular descent of the 240-tonne component, is one of the last transport to be completed for ATLAS.

  8. ATLAS experiment : mapping the secrets of the universe

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    This 4 page color brochure describes ATLAS and the LHC, the ATLAS inner detector, calorimeters, muon spectrometer, magnet system, a short definition of the terms "particles," "dark matter," "mass," "antimatter." It also explains the ATLAS collaboration and provides the ATLAS website address with some images of the detector and the ATLAS collaboration at work.

  9. The Soil Atlas of Africa: raising awareness and educate to the importance of soil

    Science.gov (United States)

    Dewitte, Olivier; Jones, Arwyn; Bosco, Claudio; Spaargaren, Otto; Montanarella, Luca

    2010-05-01

    The richness of African soil resources need to be protected for future generations. A number of threats are affecting the functioning of African soils, not only for the purpose of agricultural production, but also for other important environmental services that soil delivers to all of us. This is of particular importance once we know that many health-related problems in Africa are indirectly related to the services of soils. To raise the awareness of the general public, policy makers and other scientists to the importance of soil in Africa, the Joint Research Centre of the European Commission is to produce the first ever Soil Atlas of Africa. This is in collaboration with the African Union Commission, the Food and Agriculture Organization of the United Nations (FAO), the Africa Soil Science Society, ISRIC - World Soil Information and scientists from both Europe and Africa. The Atlas compiles existing information on different soil types as easily understandable maps (both at regional and continental scale) covering the African continent. The Soil Atlas of Africa intends to produce derived maps at continental scale with descriptive text (e.g. vulnerability to desertification, soil nutrient status, carbon stocks and sequestration potential, irrigable areas and water resources) as well as specific maps to illustrate threats such as soil erosion for instance. For each regional overview, large scale examples of soil maps and derived products are presented too. The Atlas will be published as a hardcover book containing 174 A3 pages, which will allow soils maps to be displayed at the A2 scale. Both French and English versions of the Atlas will be edited. The Atlas will be sold at a low cost and will be for free for educational purpose (Schools and Universities). A digital version on CD and eventually freely downloadable on internet will also be available. Together with the publication of the Atlas, associated datasets on soil characteristics for Africa will be made

  10. Mindboggle: Automated brain labeling with multiple atlases

    International Nuclear Information System (INIS)

    Klein, Arno; Mensh, Brett; Ghosh, Satrajit; Tourville, Jason; Hirsch, Joy

    2005-01-01

    To make inferences about brain structures or activity across multiple individuals, one first needs to determine the structural correspondences across their image data. We have recently developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels to cortical structures and activity in human brain MRI data. Label assignment is based on structural correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set of labels manually assigned to a single brain image. In the present work, we study the influence of using variable numbers of individual atlases to nonlinearly label human brain image data. Each brain image voxel of each of 20 human subjects is assigned a label by each of the remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence rating based on the number of atlases that assigned that label. The automatically assigned labels for each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a database of atlases), Mindboggle labels a subject by each atlas in a database independently. When Mindboggle labels a human subject's brain image with at least four atlases, the resulting label agreement with coregistered manual labels is significantly higher than when only a single atlas is used. Different numbers of atlases provide significantly higher label agreements for individual brain regions. Increasing the number of reference brains used to automatically label a human subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle software can provide confidence measures for labels based on probabilistic assignment of labels and could be applied to large databases of brain images

  11. The ATLAS Semiconductor Tracker: operations and performance

    CERN Document Server

    Pani, P; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at 2 the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, 4 high radiation environment. The SCT is part of the inner tracking system of the ATLAS 6 experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. We find 99.3% of the 8 SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to 10 the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation and performance 12 of the detector including an overview of the issues encountered. The observables employed to monitor online and offline the 14 quality and the performance of the data acquired by the SCT will be described and discussed.

  12. The ATLAS level-1 trigger: Status of the system and first results from cosmic-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Aielli, G [Universita degli Studi di Roma ' Tor Vergata' and INFN Roma II, Rome (Italy); Andrei, V; Achenbach, R [Kirchhoff-Institut fuer Physik, University of Heidelberg, D-69120 Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London E1 4NS (United Kingdom); Aloisio, A; Alviggi, M G [Universita degli Studi di Napoli ' Federico II' and INFN Napoli (Italy); Antonelli, S [INFN Bologna and Universita degli Studi di Bologna (Italy); Ask, S [CERN, PH Department (Switzerland); Barnett, B M [CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Bauss, B [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Bellagamba, L [INFN Bologna and Universita degli Studi di Bologna (Italy); Ben Ami, S [Technion Israel Institute of Technology (Israel); Bendel, M [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Benhammou, Y [Tel Aviv University (Israel); Berge, D. [CERN, PH Department (Switzerland)], E-mail: David.Berge@cern.ch; Bianco, M [Universita degli Studi di Lecce and INFN Lecce (Italy); Biglietti, M G [Universita degli Studi di Napoli ' Federico II' and INFN Napoli (Italy); Bohm, C [Fysikum, University of Stockholm, SE-10691 Stockholm (Sweden); Booth, J R.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Boscherini, D [INFN Bologna and Universita degli Studi di Bologna (Italy)

    2007-10-21

    The ATLAS detector at CERN's Large Hadron Collider (LHC) will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity of 10{sup 34}cm{sup -2}s{sup -1} there are on average 23 collisions per bunch crossing. A three-level trigger system will select potentially interesting events in order to reduce the readout rate to about 200 Hz. The first trigger level is implemented in custom-built electronics and makes an initial fast selection based on detector data of coarse granularity. It has to reduce the rate by a factor of 10{sup 4} to less than 100 kHz. The other two consecutive trigger levels are in software and run on PC farms. We present an overview of the first-level trigger system and report on the current installation status. Moreover, we show analysis results of cosmic-ray data recorded in situ at the ATLAS experimental site with final or close-to-final hardware.

  13. The ATLAS level-1 trigger: Status of the system and first results from cosmic-ray data

    International Nuclear Information System (INIS)

    Aielli, G.; Andrei, V.; Achenbach, R.; Adragna, P.; Aloisio, A.; Alviggi, M.G.; Antonelli, S.; Ask, S.; Barnett, B.M.; Bauss, B.; Bellagamba, L.; Ben Ami, S.; Bendel, M.; Benhammou, Y.; Berge, D.; Bianco, M.; Biglietti, M.G.; Bohm, C.; Booth, J.R.A.; Boscherini, D.

    2007-01-01

    The ATLAS detector at CERN's Large Hadron Collider (LHC) will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity of 10 34 cm -2 s -1 there are on average 23 collisions per bunch crossing. A three-level trigger system will select potentially interesting events in order to reduce the readout rate to about 200 Hz. The first trigger level is implemented in custom-built electronics and makes an initial fast selection based on detector data of coarse granularity. It has to reduce the rate by a factor of 10 4 to less than 100 kHz. The other two consecutive trigger levels are in software and run on PC farms. We present an overview of the first-level trigger system and report on the current installation status. Moreover, we show analysis results of cosmic-ray data recorded in situ at the ATLAS experimental site with final or close-to-final hardware

  14. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    Science.gov (United States)

    Barreiro Megino, Fernando; Caballero Bejar, Jose; De, Kaushik; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Petrosyan, Artem; Wenaus, Torre

    2016-02-01

    After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  15. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  16. ATLAS & Google - The Data Ocean Project

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2018-01-01

    With the LHC High Luminosity upgrade the workload and data management systems are facing new major challenges. To address those challenges ATLAS and Google agreed to cooperate on a project to connect Google Cloud Storage and Compute Engine to the ATLAS computing environment. The idea is to allow ATLAS to explore the use of different computing models, to allow ATLAS user analysis to benefit from the Google infrastructure, and to give Google real science use cases to improve their cloud platform. Making the output of a distributed analysis from the grid quickly available to the analyst is a difficult problem. Redirecting the analysis output to Google Cloud Storage can provide an alternative, faster solution for the analyst. First, Google's Cloud Storage will be connected to the ATLAS Data Management System Rucio. The second part aims to let jobs run on Google Compute Engine, accessing data from either ATLAS storage or Google Cloud Storage. The third part involves Google implementing a global redirection between...

  17. The ATLAS hadronic tau trigger

    International Nuclear Information System (INIS)

    Shamim, Mansoora

    2012-01-01

    The extensive tau physics programs of the ATLAS experiment relies heavily on trigger to select hadronic decays of tau lepton. Such a trigger is implemented in ATLAS to efficiently collect signal events, while keeping the rate of multi-jet background within the allowed bandwidth. This contribution summarizes the performance of the ATLAS hadronic tau trigger system during 2011 data taking period and improvements implemented for the 2012 data collection.

  18. ATLAS OF EUROPEAN VALUES

    NARCIS (Netherlands)

    M Ed Uwe Krause

    2008-01-01

    Uwe Krause: Atlas of Eurpean Values De Atlas of European Values is een samenwerkingsproject met bijbehorende website van de Universiteit van Tilburg en Fontys Lerarenopleiding in Tilburg, waarbij de wetenschappelijke data van de European Values Study (EVS) voor het onderwijs toegankelijk worden

  19. ATLAS brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  20. ATLAS brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  1. ATLAS brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  2. ATLAS brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  3. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  4. The Hatfield SCT lunar atlas photographic atlas for Meade, Celestron, and other SCT telescopes

    CERN Document Server

    2014-01-01

    In a major publishing event for lunar observers, the justly famous Hatfield atlas is updated in even more usable form. This version of Hatfield’s classic atlas solves the problem of mirror images, making identification of left-right reversed imaged lunar features both quick and easy. SCT and Maksutov telescopes – which of course include the best-selling models from Meade and Celestron – reverse the visual image left to right. Thus it is extremely difficult to identify lunar features at the eyepiece of one of the instruments using a conventional Moon atlas, as the human brain does not cope well when trying to compare the real thing with a map that is a mirror image of it. Now this issue has at last been solved.   In this atlas the Moon’s surface is shown at various sun angles, and inset keys show the effects of optical librations. Smaller non-mirrored reference images are also included to make it simple to compare the mirrored SCT plates and maps with those that appear in other atlases. This edition s...

  5. Last piece of the puzzle for ATLAS

    CERN Multimedia

    Clare Ryan

    At around 15.40 on Friday 29th February the ATLAS collaboration cracked open the champagne as the second of the small wheels was lowered into the cavern. Each of ATLAS' small wheels are 9.3 metres in diameter and weigh 100 tonnes including the massive shielding elements. They are the final parts of ATLAS' muon spectrometer. The first piece of ATLAS was installed in 2003 and since then many detector elements have journeyed down the 100 metre shaft into the ATLAS underground cavern. This last piece completes this gigantic puzzle.

  6. The Trigger Processor and Trigger Processor Algorithms for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Lazovich, Tomo; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW) is an upgrade to the ATLAS muon endcap detectors that will be installed during the next long shutdown of the LHC. Comprising both MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), this system will drastically improve the performance of the muon system in a high cavern background environment. The NSW trigger, in particular, will significantly reduce the rate of fake triggers coming from track segments in the endcap not originating from the interaction point. We will present an overview of the trigger, the proposed sTGC and MM trigger algorithms, and the hardware implementation of the trigger. In particular, we will discuss both the heart of the trigger, an ATCA system with FPGA-based trigger processors (using the same hardware platform for both MM and sTGC triggers), as well as the full trigger electronics chain, including dedicated cards for transmission of data via GBT optical links. Finally, we will detail the challenges of ensuring that the trigger electronics can ...

  7. NATIONAL ATLAS OF THE ARCTIC

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2018-01-01

    Full Text Available The National Atlas of the Arctic is a set of spatio-temporal information about the geographic, ecological, economic, historical-ethnographic, cultural, and social features of theArcticcompiled as a cartographic model of the territory. The Atlas is intended for use in a wide range of scientific, management, economic, defense, educational, and public activities. The state policy of theRussian Federationin the Arctic for the period until 2020 and beyond, states that the Arctic is of strategic importance forRussiain the 21st century. A detailed description of all sections of the Atlas is given. The Atlas can be used as an information-reference and educational resource or as a gift edition.

  8. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, C; The ATLAS collaboration

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. It is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic final state and the state-of-the-art of the b-jet trigger performance estimation are presented in this contribution.

  9. Performance and operation experience of the Atlas Semiconductor Tracker

    CERN Document Server

    Liang, Zhijun

    2014-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in the high luminosity, high radiation environment of the Large Hadron Collider at CERN. Well also report on the few im- provements of the SCT foreseen for the high energy run of the LHC. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruc- tion and invariant mass determination. We will report on the operation and performance of the detector including an overview of the issues encountered. We observe a significant increase in leakage currents from bulk damage due to non-ionizing radiation and make comparisons with the predictions.

  10. EnviroAtlas Proximity to Parks Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This EnviroAtlas dataset shows...

  11. Development, deployment and operations of ATLAS databases

    International Nuclear Information System (INIS)

    Vaniachine, A. V.; von der Schmitt, J. G.

    2008-01-01

    In preparation for ATLAS data taking, a coordinated shift from development towards operations has occurred in ATLAS database activities. In addition to development and commissioning activities in databases, ATLAS is active in the development and deployment (in collaboration with the WLCG 3D project) of the tools that allow the worldwide distribution and installation of databases and related datasets, as well as the actual operation of this system on ATLAS multi-grid infrastructure. We describe development and commissioning of major ATLAS database applications for online and offline. We present the first scalability test results and ramp-up schedule over the initial LHC years of operations towards the nominal year of ATLAS running, when the database storage volumes are expected to reach 6.1 TB for the Tag DB and 1.0 TB for the Conditions DB. ATLAS database applications require robust operational infrastructure for data replication between online and offline at Tier-0, and for the distribution of the offline data to Tier-1 and Tier-2 computing centers. We describe ATLAS experience with Oracle Streams and other technologies for coordinated replication of databases in the framework of the WLCG 3D services

  12. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  13. The Cerefy registered clinical brain atlas on CD-ROM. Based on the classic Talairach-Tournoux and Schaltenbrand-Wahren brain atlases. 2. ed.

    International Nuclear Information System (INIS)

    Nowinski, W.L.; Thirunavuukarasuu, A.

    2001-01-01

    This remarkable CD-ROM provides enhanced and extended versions of three world-famous Thieme atlases, (Schaltenbrand and Wahren's Atlas for Stereotaxy of the Human Brain, Talairach and Tournoux's Co-Planar Stereotaxis Atlas of the Human Brain and Referentially Oriented Cerebral MRI Anatomy). It contains the electronic atlases as well as an easy navigation system to facilitate searching for and displaying more than 525 anatomical structures. Revolutionizing the field of brain anatomy, the authors have segmented, labeled, and cross referenced all the information contained in the books, and created contours for all three atlases. The Cerefy registered Clinical Brain Atlas now allows you to electronically navigate these atlases simultaneously on axial, coronal, and sagittal planes, and enjoy the ability to: 1. Access 210 high-quality, fully segmented, and labeled atlas images with corresponding contours, 2. Display and manipulate spatially co-registered atlases, 3. Dynamically label images with structure names and descriptions, and then highlight selected structures in the atlas image, 4. Image zoom in five different levels, mensurate, search, set triplanar, get coordinates, save, and print, 5. Access on-line help, glossary, and supportive atlas materials. (orig.)

  14. ATLAS brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter. Français

  15. A Slice of ATLAS

    CERN Document Server

    2004-01-01

    An entire section of the ATLAS detector is being assembled at Prévessin. Since May the components have been tested using a beam from the SPS, giving the ATLAS team valuable experience of operating the detector as well as an opportunity to debug the system.

  16. A thermosiphon for ATLAS

    CERN Multimedia

    Rosaria Marraffino

    2013-01-01

    A new thermosiphon cooling system, designed for the ATLAS silicon detectors by CERN’s EN-CV team in collaboration with the experiment, will replace the current system in the next LHC run in 2015. Using the basic properties of density difference and making gravity do the hard work, the thermosiphon promises to be a very reliable solution that will ensure the long-term stability of the whole system.   Former compressor-based cooling system of the ATLAS inner detectors. The system is currently being replaced by the innovative thermosiphon. (Photo courtesy of Olivier Crespo-Lopez). Reliability is the major issue for the present cooling system of the ATLAS silicon detectors. The system was designed 13 years ago using a compressor-based cooling cycle. “The current cooling system uses oil-free compressors to avoid fluid pollution in the delicate parts of the silicon detectors,” says Michele Battistin, EN-CV-PJ section leader and project leader of the ATLAS thermosiphon....

  17. The High-Resolution IRAS Galaxy Atlas

    Science.gov (United States)

    Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.; Oliversen, R. (Technical Monitor)

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg is less than b is less than 4.7 deg), along with the molecular clouds in Orion, rho Oph, and Taurus-Auriga, has been produced at 60 and 100 microns from IRAS data. The atlas consists of resolution-enhanced co-added images with 1 min - 2 min resolution and co-added images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the Dominion Radio Astrophysical Observatory H(sub I) line/21 cm continuum and FCRAO CO (1-0) Galactic plane surveys, which both have similar (approx. 1 min) resolution to the IRAS atlas, provides a powerful tool for studying the interstellar medium, star formation, and large-scale structure in our Galaxy. This paper documents the production and characteristics of the atlas.

  18. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  19. The geosystems of complex geographical atlases

    Directory of Open Access Journals (Sweden)

    Jovanović Jasmina

    2012-01-01

    Full Text Available Complex geographical atlases represent geosystems of different hierarchical rank, complexity and diversity, scale and connection. They represent a set of large number of different pieces of information about geospace. Also, they contain systematized, correlative and in the apparent form represented pieces of information about space. The degree of information revealed in the atlas is precisely explained by its content structure and the form of presentation. The quality of atlas depends on the method of visualization of data and the quality of geodata. Cartographic visualization represents cognitive process. The analysis converts geospatial data into knowledge. A complex geographical atlas represents information complex of spatial - temporal coordinated database on geosystems of different complexity and territorial scope. Each geographical atlas defines a concrete geosystem. Systemic organization (structural and contextual determines its complexity and concreteness. In complex atlases, the attributes of geosystems are modeled and pieces of information are given in systematized, graphically unique form. The atlas can be considered as a database. In composing a database, semantic analysis of data is important. The result of semantic modeling is expressed in structuring of data information, in emphasizing logic connections between phenomena and processes and in defining their classes according to the degree of similarity. Accordingly, the efficiency of research of needed pieces of information in the process of the database use is enabled. An atlas map has a special power to integrate sets of geodata and present information contents in user - friendly and understandable visual and tactile way using its visual ability. Composing an atlas by systemic cartography requires the pieces of information on concrete - defined geosystems of different hierarchical level, the application of scientific methods and making of adequate number of analytical, synthetic

  20. The ATLAS distributed analysis system

    OpenAIRE

    Legger, F.

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During...

  1. ATLAS brochure (Catalan version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  2. ATLAS Brochure (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  3. ATLAS brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  4. ATLAS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  5. ATLAS Brochure (english version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  6. ATLAS Brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  7. ATLAS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  8. TU-AB-202-10: How Effective Are Current Atlas Selection Methods for Atlas-Based Auto-Contouring in Radiotherapy Planning?

    Energy Technology Data Exchange (ETDEWEB)

    Peressutti, D; Schipaanboord, B; Kadir, T; Gooding, M [Mirada Medical Limited, Science and Medical Technology, Oxford (United Kingdom); Soest, J van; Lustberg, T; Elmpt, W van; Dekker, A [Maastricht University Medical Centre, Department of Radiation Oncology MAASTRO - GROW School for Oncology Developmental Biology, Maastricht (Netherlands)

    2016-06-15

    Purpose: To investigate the effectiveness of atlas selection methods for improving atlas-based auto-contouring in radiotherapy planning. Methods: 275 H&N clinically delineated cases were employed as an atlas database from which atlases would be selected. A further 40 previously contoured cases were used as test patients against which atlas selection could be performed and evaluated. 26 variations of selection methods proposed in the literature and used in commercial systems were investigated. Atlas selection methods comprised either global or local image similarity measures, computed after rigid or deformable registration, combined with direct atlas search or with an intermediate template image. Workflow Box (Mirada-Medical, Oxford, UK) was used for all auto-contouring. Results on brain, brainstem, parotids and spinal cord were compared to random selection, a fixed set of 10 “good” atlases, and optimal selection by an “oracle” with knowledge of the ground truth. The Dice score and the average ranking with respect to the “oracle” were employed to assess the performance of the top 10 atlases selected by each method. Results: The fixed set of “good” atlases outperformed all of the atlas-patient image similarity-based selection methods (mean Dice 0.715 c.f. 0.603 to 0.677). In general, methods based on exhaustive comparison of local similarity measures showed better average Dice scores (0.658 to 0.677) compared to the use of either template image (0.655 to 0.672) or global similarity measures (0.603 to 0.666). The performance of image-based selection methods was found to be only slightly better than a random (0.645). Dice scores given relate to the left parotid, but similar results patterns were observed for all organs. Conclusion: Intuitively, atlas selection based on the patient CT is expected to improve auto-contouring performance. However, it was found that published approaches performed marginally better than random and use of a fixed set of

  9. Report to users of ATLAS, January 1998

    International Nuclear Information System (INIS)

    Ahmad, I.; Hofman, D.

    1998-01-01

    This report is aimed at informing users about the operating schedule, user policies, and recent changes in research capabilities. It covers the following subjects: (1) status of the Argonne Tandem-Linac Accelerator System (ATLAS) accelerator; (2) the move of Gammasphere from LBNL to ANL; (3) commissioning of the CPT mass spectrometer at ATLAS; (4) highlights of recent research at ATLAS; (5) Program Advisory Committee; and (6) ATLAS User Group Executive Committee

  10. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  11. ATLAS construction status

    International Nuclear Information System (INIS)

    Jenni, P.

    2006-01-01

    The ATLAS detector is being constructed at the LHC, in view of a data-taking startup in 2007. This report concentrates on the progress and the technical challenges of the detector construction, and summarizes the status of the work as of August 2004. The project is on track to allow the highly motivated ATLAS Collaboration to enter into a new exploratory domain of high-energy physics in 2007. (author)

  12. An Introduction to ATLAS Pixel Detector DAQ and Calibration Software Based on a Year's Work at CERN for the Upgrade from 8 to 13 TeV

    CERN Document Server

    AUTHOR|(CDS)2094561

    An overview is presented of the ATLAS pixel detector Data Acquisition (DAQ) system obtained by the author during a year-long opportunity to work on calibration software for the 2015-16 Layer‑2 upgrade. It is hoped the document will function more generally as an easy entry point for future work on ATLAS pixel detector calibration systems. To begin with, the overall place of ATLAS pixel DAQ within the CERN Large Hadron Collider (LHC), the purpose of the Layer-2 upgrade and the fundamentals of pixel calibration are outlined. This is followed by a brief look at the high level structure and key features of the calibration software. The paper concludes by discussing some difficulties encountered in the upgrade project and how these led to unforeseen alternative enhancements, such as development of calibration “simulation” software allowing the soundness of the ongoing upgrade work to be verified while not all of the actual readout hardware was available for the most comprehensive testing.

  13. The ATLAS project: The effects of a constructionist digital laboratory project on undergraduate laboratory performance.

    Science.gov (United States)

    Shoepe, Todd C; Cavedon, Dana K; Derian, Joseph M; Levy, Celine S; Morales, Amy

    2015-01-01

    Anatomical education is a dynamic field where developments in the implementation of constructive, situated-learning show promise in improving student achievement. The purpose of this study was to examine the effectiveness of an individualized, technology heavy project in promoting student performance in a combined anatomy and physiology laboratory course. Mixed-methods research was used to compare two cohorts of anatomy laboratories separated by the adoption of a new laboratory atlas project, which were defined as preceding (PRE) and following the adoption of the Anatomical Teaching and Learning Assessment Study (ATLAS; POST). The ATLAS project required the creation of a student-generated, photographic atlas via acquisition of specimen images taken with tablet technology and digital microscope cameras throughout the semester. Images were transferred to laptops, digitally labeled and photo edited weekly, and compiled into a digital book using Internet publishing freeware for final project submission. An analysis of covariance confirmed that student final examination scores were improved (P project (PRE, n = 75; POST, n = 90; means ± SE; 74.9 ± 0.9 versus 78.1 ± 0.8, respectively) after controlling for cumulative student grade point average. Analysis of questionnaires collected (n = 68) from the post group suggested students identified with atlas objectives, appreciated the comprehensive value in final examination preparation, and the constructionism involved, but recommended alterations in assignment logistics and the format of the final version. Constructionist, comprehensive term-projects utilizing student-preferred technologies could be used to improve performance toward student learning outcomes. © 2014 American Association of Anatomists.

  14. ATLAS cloud R and D

    International Nuclear Information System (INIS)

    Panitkin, Sergey; Bejar, Jose Caballero; Hover, John; Zaytsev, Alexander; Megino, Fernando Barreiro; Girolamo, Alessandro Di; Kucharczyk, Katarzyna; Llamas, Ramon Medrano; Benjamin, Doug; Gable, Ian; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Hendrix, Val; Love, Peter; Ohman, Henrik; Walker, Rodney

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R and D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R and D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R and D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R and D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  15. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  16. The Next Generation ATLAS Production System

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; Golubkov, Dmitry; Klimentov, Alexei; Maeno, Tadashi; Mashinistov, Ruslan; Vaniachine, Alexandre

    2015-01-01

    The ATLAS experiment at LHC data processing and simulation grows continuously, as more data and more use cases emerge. For data processing the ATLAS experiment adopted the data transformation approach, where software applications transform the input data into outputs. In the ATLAS production system, each data transformation is represented by a task, a collection of many jobs, dynamically submitted by the ATLAS workload management system (PanDA/JEDI) and executed on the Grid, clouds and supercomputers. Patterns in ATLAS data transformation workflows composed of many tasks provided a scalable production system framework for template definitions of the many-tasks workflows. User interface and system logic of these workflows are being implemented in the Database Engine for Tasks (DEFT). Such development required using modern computing technologies and approaches. We report technical details of this development: database implementation, server logic and Web user interface technologies.

  17. Real-time flavour tagging selection in ATLAS

    CERN Document Server

    Varni, Carlo; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment includes a well-developed trigger system that allows a selection of events which are thought to be of interest, while achieving a high overall rejection against less interesting processes. An important part of the online event selection is the ability to distinguish between jets arising from heavy-flavour quarks (b- and c-jets) and light jets (jets from u-, d-, s- and gluon jets) in real-time. This is essential for many physics analysis that include processes with large jet multiplicity and b-quarks in the final state. An overview of the b-jet triggers with a description of the application and performance of the offline Multivariate (MV2) b-tagging algorithms at High Level Trigger (HLT) in Run 2 will be presented. During 2016 b-jet trigger menu and algorithms were adapted to use The Fast Tracker (FTK) system which will be commissioned in 2017. We will show initial expected performance of newly designed triggers and compare it with the existing HLT chains.

  18. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models and describe analysis strategies and limits on the production of such long-lived particles. A first estimation of the Hidden Valley trigger rates has been evaluated with 6 pb-1 of data collected at ATLAS during the data taking of 2010.

  19. The ATLAS detector simulation application

    International Nuclear Information System (INIS)

    Rimoldi, A.

    2007-01-01

    The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the test productions since 2004. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004-2005) and cosmic ray studies (2006)

  20. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  1. Distributed Data Analysis in the ATLAS Experiment: Challenges and Solutions

    International Nuclear Information System (INIS)

    Elmsheuser, Johannes; Van der Ster, Daniel

    2012-01-01

    The ATLAS experiment at the LHC at CERN is recording and simulating several 10's of PetaBytes of data per year. To analyse these data the ATLAS experiment has developed and operates a mature and stable distributed analysis (DA) service on the Worldwide LHC Computing Grid. The service is actively used: more than 1400 users have submitted jobs in the year 2011 and a total of more 1 million jobs run every week. Users are provided with a suite of tools to submit Athena, ROOT or generic jobs to the Grid, and the PanDA workload management system is responsible for their execution. The reliability of the DA service is high but steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. This paper will review the state of the DA tools and services, summarize the past year of distributed analysis activity, and present the directions for future improvements to the system.

  2. R-Hadron Search at ATLAS

    DEFF Research Database (Denmark)

    Heisterkamp, Simon Johann Franz

    In this thesis I motivate and present a search for long lived massive R-hadrons using the data collected by the ATLAS detector in 2011. Both ionisation- and time-of-ight-based methods are described. Since no signal was found, a lower limit on the mass of such particles is set. The analysis was also...... published by the ATLAS collboration in Phys.Lett.B. titled `Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV'....

  3. ATLAS Thesis Awards 2015

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on Thursday 25 February. The winners also presented their work in front of members of the ATLAS Collaboration. Winners: Javier Montejo Berlingen, Barcelona (Spain), Ruth Pöttgen, Mainz (Germany), Nils Ruthmann, Freiburg (Germany), and Steven Schramm, Toronto (Canada).

  4. Design optimisation of the ATLAS Barrel Toroid structure - the warm structure

    International Nuclear Information System (INIS)

    Daeel, A.; Desvard, J-P.; Pabot, Y.; Sun, Z.; Hille, H. van; Vedrine, P.

    2001-01-01

    The magnetic bending of muon tracks for the ATLAS Muon Spectrometer is provided by the large air-core toroid magnets. The Barrel Toroid structure, named the warm structure, is an open structure inside which the muon chambers are installed. The physics performance of the muon spectrometer imposes stringent requirements on the design of the warm structure. It should support the muon chambers with required precision and stability, the deformation of the structure must be minimised. At the same time, the quantities of the materials used in the structure must also be minimised. Through extensive structural analyses, the design optimisation has been achieved to fit with the physics requirements. This paper gives an overview on the design considerations of the warm structure

  5. Differential Top and Diboson Cross-Section Measurements with the ATLAS detector

    CERN Document Server

    Mochizuki, Kazuya; The ATLAS collaboration

    2017-01-01

    Measurements of the differential production cross-sections of the production of pairs of electroweak gauge bosons as well as top-quark pairs at the LHC provide stringent tests of advanced perturbative QCD calculations. In addition, these processes constitute a dominant background for many searches for signs of beyond Standard Model physics processes and are directly sensitive to anomalous couplings. The ATLAS collaboration has performed detailed measurements of those differential cross sections in various final states at centre-of-mass energies of 8 and 13 TeV. In this talk, the most recent results are presented and compared to predictions at NLO (and NNLO) in pQCD, highlighting observed differences and providing an overview of required improvements on the underlying physics modeling.

  6. Renewable Energy Atlas of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. [Environmental Science Division; Hlava, K. [Environmental Science Division; Greenwood, H. [Environmentall Science Division; Carr, A. [Environmental Science Division

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  8. Commissioning of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Golling, Tobias

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented

  9. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  10. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gurriana, L.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Hollander, D.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manhaes de Andrade Filho, L.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Miller, M.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Ribeiro, N.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Tunnell, C.D.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.

  11. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  12. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias

    2008-01-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and mana......The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed...... and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed...

  13. Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.

    Science.gov (United States)

    Cooper, Robert J; Caffini, Matteo; Dubb, Jay; Fang, Qianqian; Custo, Anna; Tsuzuki, Daisuke; Fischl, Bruce; Wells, William; Dan, Ippeita; Boas, David A

    2012-09-01

    We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated cortical activations when using a registered atlas is due to a combination of imperfect registration, anatomical differences between atlas and subject anatomies and the localization error associated with diffuse optical image reconstruction. When using a subject-specific MRI, any localization error is due to diffuse optical image reconstruction only. In this study we determine that using a registered anatomical brain atlas results in an average localization error of approximately 18 mm in Euclidean space. The corresponding error when the subject's own MRI is employed is 9.1 mm. In general, the cost of using atlas-guided DOT in place of subject-specific MRI-guided DOT is a doubling of the localization error. Our results show that despite this increase in error, reasonable anatomical localization is achievable even in cases where the subject-specific anatomy is unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Atlas C++ Coding Standard Specification

    CERN Document Server

    Albrand, S; Barberis, D; Bosman, M; Jones, B; Stavrianakou, M; Arnault, C; Candlin, D; Candlin, R; Franck, E; Hansl-Kozanecka, Traudl; Malon, D; Qian, S; Quarrie, D; Schaffer, R D

    2001-01-01

    This document defines the ATLAS C++ coding standard, that should be adhered to when writing C++ code. It has been adapted from the original "PST Coding Standard" document (http://pst.cern.ch/HandBookWorkBook/Handbook/Programming/programming.html) CERN-UCO/1999/207. The "ATLAS standard" comprises modifications, further justification and examples for some of the rules in the original PST document. All changes were discussed in the ATLAS Offline Software Quality Control Group and feedback from the collaboration was taken into account in the "current" version.

  15. Hidden Valley Searches at ATLAS

    CERN Document Server

    Ventura, D; The ATLAS collaboration

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models.

  16. Networks in ATLAS

    Science.gov (United States)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  17. Upgrades of the ATLAS trigger system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221618; The ATLAS collaboration

    2018-01-01

    In coming years the LHC is expected to undergo upgrades to increase both the energy of proton-proton collisions and the instantaneous luminosity. In order to cope with these more challenging LHC conditions, upgrades of the ATLAS trigger system will be required. This talk will focus on some of the key aspects of these upgrades. Firstly, the upgrade period between 2019-2021 will see an increase in instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$. Upgrades to the Level 1 trigger system during this time will include improvements for both the muon and calorimeter triggers. These include the upgrade of the first-level Endcap Muon trigger, the calorimeter trigger electronics and the addition of new calorimeter feature extractor hardware, such as the Global Feature Extractor (gFEX). An overview will be given on the design and development status the aforementioned systems, along with the latest testing and validation results. \\\\ By 2026, the High Luminosity LHC will be able to deliver 14 TeV collisions ...

  18. EnviroAtlas Near Road Tree Buffer Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This EnviroAtlas dataset...

  19. 28 May 2010 - Representatives of the Netherlands School of Public Administration guided in the ATLAS visitor centre by ATLAS Collaboration Member and NIKHEF G. Bobbink and ATLAS Magnet Project Leader H.ten Kate.

    CERN Document Server

    Maximilien Brice

    2010-01-01

    28 May 2010 - Representatives of the Netherlands School of Public Administration guided in the ATLAS visitor centre by ATLAS Collaboration Member and NIKHEF G. Bobbink and ATLAS Magnet Project Leader H.ten Kate.

  20. ATLAS DataFlow Infrastructure recent results from ATLAS cosmic and first-beam data-taking

    CERN Document Server

    Vandelli, W

    2010-01-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented testbed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its fle...

  1. Analytics Platform for ATLAS Computing Services

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration; Bryant, Lincoln

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning tools like Spark, Jupyter, R, S...

  2. ATLAS Cloud Computing R&D project

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2013-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  3. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  4. The ATLAS Planar Pixel Sensor R and D project

    International Nuclear Information System (INIS)

    Beimforde, M.

    2011-01-01

    Within the R and D project on Planar Pixel Sensor Technology for the ATLAS inner detector upgrade, the use of planar pixel sensors for highest fluences as well as large area silicon detectors is investigated. The main research goals are optimizing the signal size after irradiations, reducing the inactive sensor edges, adjusting the readout electronics to the radiation induced decrease of the signal sizes, and reducing the production costs. Planar n-in-p sensors have been irradiated with neutrons and protons up to fluences of 2x10 16 n eq /cm 2 and 1x10 16 n eq /cm 2 , respectively, to study the collected charge as a function of the irradiation dose received. Furthermore comparisons of irradiated standard 300μm and thin 140μm sensors will be presented showing an increase of signal sizes after irradiation in thin sensors. Tuning studies of the present ATLAS front end electronics show possibilities to decrease the discriminator threshold of the present FE-I3 read out chips to less than 1500 electrons. In the present pixel detector upgrade scenarios a flat stave design for the innermost layers requires reduced inactive areas at the sensor edges to ensure low geometric inefficiencies. Investigations towards achieving slim edges presented here show possibilities to reduce the width of the inactive area to less than 500μm. Furthermore, a brief overview of present simulation activities within the Planar Pixel R and D project is given.

  5. The ATLAS Level-1 Calorimeter Trigger

    International Nuclear Information System (INIS)

    Achenbach, R; Andrei, V; Adragna, P; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P; Asman, B; Bohm, C; Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S; Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, τ leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 μs, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern

  6. The ATLAS Level-1 Calorimeter Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, R; Andrei, V [Kirchhoff-Institut fuer Physik, University of Heidelberg, D-69120 Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London E1 4NS (United Kingdom); Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Asman, B; Bohm, C [Fysikum, Stockholm University, SE-106 91 Stockholm (Sweden); Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)], E-mail: e.eisenhandler@qmul.ac.uk (and others)

    2008-03-15

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, {tau} leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 {mu}s, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.

  7. Atlas of Yellowstone

    Science.gov (United States)

    Pierce, Kenneth L.; Marcus, A. W.; Meachan, J. E.; Rodman, A. W.; Steingisser, A. Y.; Allan, Stuart; West, Ross

    2012-01-01

    Established in 1872, Yellowstone National Park was the world’s first national park. In a fitting tribute to this diverse and beautiful region, the Atlas of Yellowstone is a compelling visual guide to this unique national park and its surrounding area. Ranging from art to wolves, from American Indians to the Yellowstone Volcano, and from geysers to population, each page explains something new about the dynamic forces shaping Yellowstone. Equal parts reference and travel guide, the Atlas of Yellowstone is an unsurpassed resource.

  8. ATLAS Facility and Instrumentation Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik

    2009-06-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating looptype. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations which are specific to the simulation of 50% DVI line break accident of the APR1400 for supporting the 50 th OECD/NEA International Standard Problem Exercise (ISP-50)

  9. A histology-based atlas of the C57BL/6J mouse brain deformably registered to in vivo MRI for localized radiation and surgical targeting

    International Nuclear Information System (INIS)

    Purger, David; McNutt, Todd; Wong, John; Ford, Eric; Achanta, Pragathi; Quinones-Hinojosa, Alfredo

    2009-01-01

    The C57BL/6J laboratory mouse is commonly used in neurobiological research. Digital atlases of the C57BL/6J brain have been used for visualization, genetic phenotyping and morphometry, but currently lack the ability to accurately calculate deviations between individual mice. We developed a fully three-dimensional digital atlas of the C57BL/6J brain based on the histology atlas of Paxinos and Franklin (2001 The Mouse Brain in Stereotaxic Coordinates 2nd edn (San Diego, CA: Academic)). The atlas uses triangular meshes to represent the various structures. The atlas structures can be overlaid and deformed to individual mouse MR images. For this study, we selected 18 structures from the histological atlas. Average atlases can be created for any group of mice of interest by calculating the mean three-dimensional positions of corresponding individual mesh vertices. As a validation of the atlas' accuracy, we performed deformable registration of the lateral ventricles to 13 MR brain scans of mice in three age groups: 5, 8 and 9 weeks old. Lateral ventricle structures from individual mice were compared to the corresponding average structures and the original histology structures. We found that the average structures created using our method more accurately represent individual anatomy than histology-based atlases alone, with mean vertex deviations of 0.044 mm versus 0.082 mm for the left lateral ventricle and 0.045 mm versus 0.068 mm for the right lateral ventricle. Our atlas representation gives direct spatial deviations for structures of interest. Our results indicate that MR-deformable histology-based atlases represent an accurate method to obtain accurate morphometric measurements of a population of mice, and that this method may be applied to phenotyping experiments in the future as well as precision targeting of surgical procedures or radiation treatment.

  10. A histology-based atlas of the C57BL/6J mouse brain deformably registered to in vivo MRI for localized radiation and surgical targeting

    Science.gov (United States)

    Purger, David; McNutt, Todd; Achanta, Pragathi; Quiñones-Hinojosa, Alfredo; Wong, John; Ford, Eric

    2009-12-01

    The C57BL/6J laboratory mouse is commonly used in neurobiological research. Digital atlases of the C57BL/6J brain have been used for visualization, genetic phenotyping and morphometry, but currently lack the ability to accurately calculate deviations between individual mice. We developed a fully three-dimensional digital atlas of the C57BL/6J brain based on the histology atlas of Paxinos and Franklin (2001 The Mouse Brain in Stereotaxic Coordinates 2nd edn (San Diego, CA: Academic)). The atlas uses triangular meshes to represent the various structures. The atlas structures can be overlaid and deformed to individual mouse MR images. For this study, we selected 18 structures from the histological atlas. Average atlases can be created for any group of mice of interest by calculating the mean three-dimensional positions of corresponding individual mesh vertices. As a validation of the atlas' accuracy, we performed deformable registration of the lateral ventricles to 13 MR brain scans of mice in three age groups: 5, 8 and 9 weeks old. Lateral ventricle structures from individual mice were compared to the corresponding average structures and the original histology structures. We found that the average structures created using our method more accurately represent individual anatomy than histology-based atlases alone, with mean vertex deviations of 0.044 mm versus 0.082 mm for the left lateral ventricle and 0.045 mm versus 0.068 mm for the right lateral ventricle. Our atlas representation gives direct spatial deviations for structures of interest. Our results indicate that MR-deformable histology-based atlases represent an accurate method to obtain accurate morphometric measurements of a population of mice, and that this method may be applied to phenotyping experiments in the future as well as precision targeting of surgical procedures or radiation treatment.

  11. Report to users of ATLAS, December 1995

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-12-01

    This report covers the following: status of ATLAS accelerator; highlights of recent research at ATLAS; research related concept for an Advanced Exotic Beam Facility on ATLAS; program advisory committee; and ATLAS user group executive committee. Research highlights are given for the following: APEX progress report; transport efficiency of the Argonne Fragment Mass Analyzer; collective motion in light polonium isotopes; angular correlation measurements for 12 C(g.s.) + 12 C(3-,9.64MeV) inelastic scattering; and the AYE-ball (Argonne-Yale-European gamma spectrometer) used to study the structure of nuclei far from stability

  12. The forward Detectors of the ATLAS experiment

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2017-01-01

    In this poster, a review of the ATLAS forward detectors operating in the 2015-2016 data taking is given. This includes a description of LUCID, the preferred ATLAS luminosity provider; of the ALFA detector, aimed to measure elastically scattered protons at small angle for the total proton-proton cross section measurement; of the ATLAS Forward Proton project AFP, which was partially installed and took the first data in 2015, and of the Zero Degree Calorimeter ZDC built for the ATLAS Heavy Ions physics program. The near future plans for these detectors will also be addressed.

  13. Trigger Menu-aware Monitoring for the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00441925; The ATLAS collaboration

    2017-01-01

    Changes in the trigger menu, the online algorithmic event-selection of the ATLAS experiment at the LHC, are followed by adjustments to the ATLAS trigger monitoring systems. During Run 1, and so far in Run 2, ATLAS has deployed monitoring updates with the installation of new software releases at Tier-0, the first level of the ATLAS computing grid. Having to wait for a new software release to be installed at Tier-0, in order to update ATLAS offline trigger monitoring configurations, results in a lag with respect to the modification of the trigger menu. We present the design and implementation of a `trigger menu-aware' monitoring system that aims to simplify the ATLAS operational workflows by allowing monitoring configuration changes to be made at the Tier-0 site by utilising an Oracle SQL database.

  14. Das Ausmalbuch zum ATLAS-Experiment

    CERN Multimedia

    Anthony, Katarina

    2017-01-01

    Deutsche Fassung - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  15. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  16. The ATLAS Distributed Data Management project: Past and Future

    CERN Document Server

    Garonne, V; The ATLAS collaboration; Lassnig, M; Molfetas, A; Barisits, M; Beermann, T; Nairz, A; Goossens, L; Barreiro Megino, F; Serfon, C; Oleynik, D; Petrosyan, A

    2012-01-01

    ATLAS has recorded almost 8PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 90PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All this data is managed by the ATLAS Distributed Data Management system, called Don Quijote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs, and to help ATLAS physicists get access to this data. In this paper, we describe new and improved DQ2 services, and the experience of data management operation in ATLAS computing, showing how these services enable the management of petabyte scale computing operations. We also present the concepts of the new version of the ATLAS Distributed Data Management (DDM) system, Rucio.

  17. The ATLAS Distributed Data Management project: Past and Future

    International Nuclear Information System (INIS)

    Garonne, Vincent; Stewart, Graeme A; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Beermann, Thomas; Nairz, Armin; Goossens, Luc; Barreiro Megino, Fernando; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem

    2012-01-01

    ATLAS has recorded more than 8 petabyte(PB) of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 90PB are currently stored in the Worldwide LHC Computing Grid by ATLAS. All these data are managed by the ATLAS Distributed Data Management system, called Don Quijote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs, and to help ATLAS physicists get access to these data. In this paper, we describe new and improved DQ2 services, and the experience of data management operation in ATLAS computing, showing how these services enable the management of PB scale computing operations. We also present the concepts of the new version of the ATLAS Distributed Data Management (DDM) system, Rucio.

  18. The ATLAS Distributed Data Management project: Past and Future

    Science.gov (United States)

    Garonne, Vincent; Stewart, Graeme A.; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Beermann, Thomas; Nairz, Armin; Goossens, Luc; Barreiro Megino, Fernando; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem

    2012-12-01

    ATLAS has recorded more than 8 petabyte(PB) of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 90PB are currently stored in the Worldwide LHC Computing Grid by ATLAS. All these data are managed by the ATLAS Distributed Data Management system, called Don Quijote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs, and to help ATLAS physicists get access to these data. In this paper, we describe new and improved DQ2 services, and the experience of data management operation in ATLAS computing, showing how these services enable the management of PB scale computing operations. We also present the concepts of the new version of the ATLAS Distributed Data Management (DDM) system, Rucio.

  19. Cassini Tour Atlas Automated Generation

    Science.gov (United States)

    Grazier, Kevin R.; Roumeliotis, Chris; Lange, Robert D.

    2011-01-01

    During the Cassini spacecraft s cruise phase and nominal mission, the Cassini Science Planning Team developed and maintained an online database of geometric and timing information called the Cassini Tour Atlas. The Tour Atlas consisted of several hundreds of megabytes of EVENTS mission planning software outputs, tables, plots, and images used by mission scientists for observation planning. Each time the nominal mission trajectory was altered or tweaked, a new Tour Atlas had to be regenerated manually. In the early phases of Cassini s Equinox Mission planning, an a priori estimate suggested that mission tour designers would develop approximately 30 candidate tours within a short period of time. So that Cassini scientists could properly analyze the science opportunities in each candidate tour quickly and thoroughly so that the optimal series of orbits for science return could be selected, a separate Tour Atlas was required for each trajectory. The task of manually generating the number of trajectory analyses in the allotted time would have been impossible, so the entire task was automated using code written in five different programming languages. This software automates the generation of the Cassini Tour Atlas database. It performs with one UNIX command what previously took a day or two of human labor.

  20. Dedication of the massive ATLAS art mural painted by Josef Kristofoletti directly above the cavern of the ATLAS Experiment at CERN

    CERN Multimedia

    Claudia Marcelloni, Michael Barnett

    2010-01-01

    Ceremony to celebrate the massive mural of the ATLAS detector at CERN painted by artist Josef Kristofoletti. The mural is located at the ATLAS Experiment site, and it shows on two perpendicular walls the detector with a collision event superimposed. The event on the large wall shows a simulation of an event that would be recorded in ATLAS if a Higgs boson was produced. The cavern of the ATLAS Experiment with the detector is 100 meters directly below the mural. The height of the mural is about 12 meters (40 feet). The actual ATLAS detector is more than twice as big.

  1. ProstAtlas: A digital morphologic atlas of the prostate

    International Nuclear Information System (INIS)

    Betrouni, N.; Iancu, A.; Puech, P.; Mordon, S.; Makni, N.

    2012-01-01

    Computer-aided medical interventions and medical robotics for prostate cancer have known an increasing interest and research activity. However before the routine deployment of these procedures in clinical practice becomes a reality, in vivo and in silico validations must be undertaken. In this study, we developed a digital morphologic atlas of the prostate. We were interested by the gland, the peripheral zone and the central gland. Starting from an image base collected from 30 selected patients, a mean shape and most important deformations for each structure were deduced using principal component analysis. The usefulness of this atlas was highlighted in two applications: image simulation and physical phantom design

  2. ATLAS Distributed Computing: Its Central Services core

    CERN Document Server

    Lee, Christopher Jon; The ATLAS collaboration

    2018-01-01

    The ATLAS Distributed Computing (ADC) Project is responsible for the off-line processing of data produced by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It facilitates data and workload management for ATLAS computing on the Worldwide LHC Computing Grid (WLCG). ADC Central Services operations (CSops)is a vital part of ADC, responsible for the deployment and configuration of services needed by ATLAS computing and operation of those services on CERN IT infrastructure, providing knowledge of CERN IT services to ATLAS service managers and developers, and supporting them in case of issues. Currently this entails the management of thirty seven different OpenStack projects, with more than five thousand cores allocated for these virtual machines, as well as overseeing the distribution of twenty nine petabytes of storage space in EOS for ATLAS. As the LHC begins to get ready for the next long shut-down, which will bring in many new upgrades to allow for more data to be captured by the on-line syste...

  3. The performance of the ATLAS missing transverse momentum high-level trigger in 2015 pp collisions at $13$ TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00534627

    The performance of the ATLAS missing transverse momentum (${E_\\text{T}^\\text{miss}}$) high-level trigger during 2015 operation is presented. In 2015, the Large Hadron Collider operated at a higher centre-of-mass energy and shorter bunch spacing ($\\sqrt{s} = 13$ TeV and $25$ ns, respectively) than in previous operation. In future operation, the Large Hadron Collider will operate at even higher instantaneous luminosity ($\\mathcal{O}(10^{34} \\text{ cm$^{-2}$ s$^{-1}$}$) and produce a higher average number of interactions per bunch crossing, $\\langle \\mu \\rangle$. These operating conditions will pose significant challenges to the ${E_\\text{T}^\\text{miss}}$ trigger efficiency and rate. An overview of the new algorithms implemented to address these challenges, and of the existing algorithms is given. An integrated luminosity of $1.4 \\text{ fb$^{-1}$}$ with $\\langle \\mu \\rangle = 14$ was collected from pp collisions of the Large Hadron Collider by the ATLAS detector during October and November 2015 and was used to s...

  4. Argonne Tandem Linac Accelerator System (ATLAS)

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a national user facility at Argonne National Laboratory in Argonne, Illinois. The ATLAS facility is a leading facility for nuclear structure research in the...

  5. Bone age assessment in Hispanic children: digital hand atlas compared with the Greulich and Pyle (G&P) atlas

    Science.gov (United States)

    Fernandez, James Reza; Zhang, Aifeng; Vachon, Linda; Tsao, Sinchai

    2008-03-01

    Bone age assessment is most commonly performed with the use of the Greulich and Pyle (G&P) book atlas, which was developed in the 1950s. The population of theUnited States is not as homogenous as the Caucasian population in the Greulich and Pyle in the 1950s, especially in the Los Angeles, California area. A digital hand atlas (DHA) based on 1,390 hand images of children of different racial backgrounds (Caucasian, African American, Hispanic, and Asian) aged 0-18 years was collected from Children's Hospital Los Angeles. Statistical analysis discovered significant discrepancies exist between Hispanic and the G&P atlas standard. To validate the usage of DHA as a clinical standard, diagnostic radiologists performed reads on Hispanic pediatric hand and wrist computed radiography images using either the G&P pediatric radiographic atlas or the Children's Hospital Los Angeles Digital Hand Atlas (DHA) as reference. The order in which the atlas is used (G&P followed by DHA or vice versa) for each image was prepared before actual reading begins. Statistical analysis of the results was then performed to determine if a discrepancy exists between the two readings.

  6. Advances in service and operations for ATLAS data management

    International Nuclear Information System (INIS)

    Stewart, Graeme A; Garonne, Vincent; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Calvet, Ivan; Beermann, Thomas; Megino, Fernando Barreiro; Campana, Simone; Zhang, Donal; Tykhonov, Andrii; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem

    2012-01-01

    ATLAS has recorded almost 5PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 70PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All of this data is managed by the ATLAS Distributed Data Management system, called Don Quixote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs and to help ATLAS physicists get access to this data. In this paper we describe new and improved DQ2 services: popularity; space monitoring and accounting; exclusion service; cleaning agents; deletion agents. We describe the experience of data management operation in ATLAS computing, showing how these services enable management of petabyte scale computing operations. We illustrate the coupling of data management services to other parts of the ATLAS computing infrastructure, in particular showing how feedback from the distributed analysis system in ATLAS has enabled dynamic placement of the most popular data, helping users and groups to analyse the increasing data volumes on the grid.

  7. Advances in service and operations for ATLAS data management

    Science.gov (United States)

    Stewart, Graeme A.; Garonne, Vincent; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Zhang, Donal; Calvet, Ivan; Beermann, Thomas; Barreiro Megino, Fernando; Tykhonov, Andrii; Campana, Simone; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem; ATLAS Collaboration

    2012-06-01

    ATLAS has recorded almost 5PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 70PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All of this data is managed by the ATLAS Distributed Data Management system, called Don Quixote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs and to help ATLAS physicists get access to this data. In this paper we describe new and improved DQ2 services: popularity; space monitoring and accounting; exclusion service; cleaning agents; deletion agents. We describe the experience of data management operation in ATLAS computing, showing how these services enable management of petabyte scale computing operations. We illustrate the coupling of data management services to other parts of the ATLAS computing infrastructure, in particular showing how feedback from the distributed analysis system in ATLAS has enabled dynamic placement of the most popular data, helping users and groups to analyse the increasing data volumes on the grid.

  8. Budker INP in ATLAS

    CERN Multimedia

    2001-01-01

    The Novosibirsk group has proposed a new design for the ATLAS liquid argon electromagnetic end-cap calorimeter with a constant thickness of absorber plates. This design has signifi- cant advantages compared to one in the Technical Proposal and it has been accepted by the ATLAS Collaboration. The Novosibirsk group is responsible for the fabrication of the precision aluminium structure for the e.m.end-cap calorimeter.

  9. Custom-made power for ATLAS

    CERN Multimedia

    2005-01-01

    A small team of engineers and technicians has recently finished the design of power supplies specially tailored to working in the demanding environment of the ATLAS Tile Calorimeter. Mass production of the units has now begun. The ATLAS Tile Calorimeter power supply development team (left to right): Ivan Hruska (holding brick), Francisca Calheiros, Bohuslav Palan, Jiri Palacky and Zdenek Kotek. Power supplies are an important component of any particle detector. In ATLAS, as in the other experiments at the Large Hadron Collider, it is not easy to use standard, 'off the shelf' power supplies; they must survive radiation, tolerate magnetic fields, and satisfy limited space and water-cooling constraints. For the ATLAS Tile Calorimeter, these constraints all proved challenging for the engineers designing the power supplies. The aim was to produce a universal power module in terms of input/output voltage, delivered power and cooling, for general use in a radiation environment. The result is a distributed low-vo...

  10. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  11. ATLAS: Now under new management

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    On 1 March, the ATLAS Collaboration welcomed a new spokesperson, Dave Charlton (University of Birmingham), and two new deputy spokespersons, Thorsten Wengler (CERN) and Beate Heinemann (University of California, Berkeley and LBNL). The Bulletin takes a look at what’s in store for one of the world’s largest scientific collaborations.   ATLAS members at the 2010 collaboration meeting in Copenhagen. Image: Rune Johansen and Troels Petersen. ATLAS spokesperson Dave Charlton has seen the collaboration through countless milestones: from construction to start-up to the 4 July 2012 announcement, he’s been an integral part of the team. Now, after twelve years with the collaboration, Dave is moving into the main office for the next two years. “2012 was a landmark year for ATLAS,” says Dave. “We spent a lot of time in the limelight and, in many ways, all eyes are still on us. But with the shutdown now under way, our focus is ...

  12. ATLAS recognises its best suppliers

    CERN Multimedia

    Jenni, P

    The ATLAS Collaboration has recently rewarded two of its suppliers in the construction of very major detector components, fabricated in Japan. The ATLAS Supplier Award in recognition of excellent supplier performance was attributed on 2nd September 2002 during a ceremony in Hall 180 to Kawasaki Heavy Industries, while Toshiba Corporation received the award two months before at their headquarters in Japan. The ATLAS experiment will become a reality thanks to a large international collaboration partnership. The industrial suppliers for the components all over the world play a major role in the construction of this gigantic jigsaw for the LHC. And sometimes they perform so well, that their work deserves specially to be recognised. This is the case for Kawasaki Heavy Industries and Toshiba Corporation, producers of the Liquid Argon Barrel Cryostat and of the Superconducting Central Solenoid, respectively. With these awards, the ATLAS Collaboration wants to congratulate Kawasaki and Toshiba for fulfilling the hi...

  13. ATLAS Software Installation on Supercomputers

    CERN Document Server

    Undrus, Alexander; The ATLAS collaboration

    2018-01-01

    PowerPC and high performance computers (HPC) are important resources for computing in the ATLAS experiment. The future LHC data processing will require more resources than Grid computing, currently using approximately 100,000 cores at well over 100 sites, can provide. Supercomputers are extremely powerful as they use resources of hundreds of thousands CPUs joined together. However their architectures have different instruction sets. ATLAS binary software distributions for x86 chipsets do not fit these architectures, as emulation of these chipsets results in huge performance loss. This presentation describes the methodology of ATLAS software installation from source code on supercomputers. The installation procedure includes downloading the ATLAS code base as well as the source of about 50 external packages, such as ROOT and Geant4, followed by compilation, and rigorous unit and integration testing. The presentation reports the application of this procedure at Titan HPC and Summit PowerPC at Oak Ridge Computin...

  14. Non-collision backgrounds in ATLAS

    CERN Document Server

    Gibson, S M; The ATLAS collaboration

    2012-01-01

    The proton-proton collision events recorded by the ATLAS experiment are on top of a background that is due to both collision debris and non-collision components. The latter comprises of three types: beam-induced backgrounds, cosmic particles and detector noise. We present studies that focus on the first two of these. We give a detailed description of beam-related and cosmic backgrounds based on the full 2011 ATLAS data set, and present their rates throughout the whole data-taking period. Studies of correlations between tertiary proton halo and muon backgrounds, as well as, residual pressure and resulting beam-gas events seen in beam-condition monitors will be presented. Results of simulations based on the LHC geometry and its parameters will be presented. They help to better understand the features of beam-induced backgrounds in each ATLAS sub-detector. The studies of beam-induced backgrounds in ATLAS reveal their characteristics and serve as a basis for designing rejection tools that can be applied in physic...

  15. Fabiola Gianotti, the newly elected Spokesperson of ATLAS

    CERN Multimedia

    2008-01-01

    On 11 July Fabiola Gianotti was elected by the ATLAS Collaboration as its future Spokesperson. Her term of office will start on 1 March 2009 and will last for two years. She will take over from Peter Jenni who has been ATLAS Spokesperson since its formalization in 1992. Three distinguished physicists stood as candidates for this election: Fabiola Gianotti (CERN), Marzio Nessi (CERN), and Leonardo Rossi (INFN Genova, Italy). The nomination process started on 30 October 2007, with a general email sent to the ATLAS collaboration calling for nominations, and closed on 25 January 2008. Any ATLAS physicist could nominate a candidate, and 24 nominees were proposed before the ATLAS search committee narrowed them to the final three. After the voting process, which concluded the ATLAS general meeting in Bern, the Collaboration Board greeted the result with warm applause.

  16. Analyzing repeated data collected by mobile phones and frequent text messages. An example of Low back pain measured weekly for 18 weeks

    DEFF Research Database (Denmark)

    Axén, Iben; Bodin, Lennart; Kongsted, Alice

    2012-01-01

    to recovery? This question was answered using survival analysis, illustrated in Kaplan-Meier curves, Proportional Hazard regression analyses and spline regression analyses. 4: How is the repeatedly measured data associated with baseline (predictor) variables? This question was answered using generalized...... involves some challenges. Vital issues to consider are the within-subject correlation, the between measurement occasion correlation and the presence of missing values. The overall aim of this commentary is to describe different methods of analyzing repeated data. It is meant to give an overview...... for the clinical researcher in order for complex outcome measures to be interpreted in a clinically meaningful way. METHODS: A model data set was formed using data from two clinical studies, where patients with low back pain were followed with weekly text messages for 18 weeks. Different research questions...

  17. Special people visit the ATLAS cavern

    CERN Multimedia

    Muriel

    ATLAS has been host to many important visitors lately. Here are a selected few: Professor Stephen Hawking visits the ATLAS cavern On Tuesday 26 September 2006 the ATLAS Collaboration was honoured by a very special visit to the detector in the underground cavern. We were pleased to guide Professor Stephen Hawking, the famous cosmologist holding the post of Lucasian Professor of Mathematics at Cambridge University (position held by Isaac Newton in the 17th century), on a tour of the ATLAS pit and the LHC tunnel. The visit was accompanied by a few colleagues from the CERN Theory group, and was only possible thanks to the professional assistance of Olga Beltramello and Bernard Lebegue, who had also taken care of all the necessary preparatory work in the cavern. Professor Hawking was very keen to check for himself the status of the detector installation, and he admired, in particular, the spectacular TGC big wheel on side C. (left) Stephen Hawking in the ATLAS cavern side-C (right) and in the LHC tunnel...

  18. Soft QCD at the CMS and ATLAS experiments

    CERN Document Server

    Veres, Gabor

    2016-01-01

    A short overview of some of the recent results on soft QCD processes at the LHC will be presented from the ATLAS and CMS experiments. The discussion will proceed starting from the most inclusive to the more differential and rare phenomena. New results include total inelastic cross section measurements; studies of minimum bias collisions (charged particle $\\eta$ and $p_T$ distributions and two-particle correlations in high-multiplicity events); features of the underlying event (multiplicity and $\\Sigma p_T$ distributions in the presence of a high-$p_T$ track, jet, Z boson or $t\\overline{t}$ pair); minijets characterizing the transition between the soft and hard QCD regimes; dijets with a rapidity gap (as a signature of color-singlet exchange); M\\uller-Navelet dijets and their angular decorrelations (as an attempt to search for signs of the BFKL evolution and deviations from DGLAP); and finally, Double Parton Scattering (DPS) studies using various final states (4-jet events, $\\gamma$ + 3 jets, 2 b-jets and 2 je...

  19. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data...... repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been...... underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...

  20. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  1. A practical workflow for making anatomical atlases for biological research.

    Science.gov (United States)

    Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles

    2012-01-01

    The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.

  2. Progress in the construction of the B0 model of the ATLAS Barrel Toroid magnet

    CERN Document Server

    Acerbi, E; Ambrosio, G; Baccaglioni, G; Broggi, F; Rossi, L; Sorbi, M; Volpini, G

    2000-01-01

    The ATLAS Barrel Toroid air-core magnet (BT) will be composed by 8 superconducting coils, each one 25 m long and 5 m wide. In order to validate the technologies and manufacturing processes, a smaller model (9 m long) of one BT coil, named B0, is now under construction. This paper presents a general overview of the B0 project status, with special regard to the components for which the LASA Lab. is responsible: (a) the aluminium-clad NbTi conductor; (b) the double coils winding and impregnation; (c) the components of the cryostat (vacuum chamber, thermal shield and suspension rod). (6 refs).

  3. Performance of the ATLAS Muon Trigger in Run 2

    CERN Document Server

    Morgenstern, Marcus; The ATLAS collaboration

    2018-01-01

    Events containing muons in the final state are an important signature for many analyses being carried out at the Large Hadron Collider (LHC), including both standard model measurements and searches for new physics. To be able to study such events, it is required to have an efficient and well-understood muon trigger. The ATLAS muon trigger consists of a hardware based system (Level 1), as well as a software based reconstruction (High Level Trigger). Due to high luminosity and pile up conditions in Run 2, several improvements have been implemented to keep the trigger rate low while still maintaining a high efficiency. Some examples of recent improvements include requiring coincidence hits between different layers of the muon spectrometer, improvements for handling overlapping muons, and optimised muon isolation. We will present an overview of how we trigger on muons, recent improvements, and the performance of the muon trigger in Run 2 data.

  4. Report from the ATLAS Architecture TaskForce

    CERN Document Server

    Haywood, S

    1999-01-01

    In this report, the activities and conclusions of the ATLAS Architecture TaskForce (ATF) are summarised. A key part of the ATF's work has been the first attempt at a design of the global architecture for the ATLAS Offline Software. This is contained in this document and an auxillary report and should lead to a realisation of the ATLAS Framework.

  5. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Rosendahl, P L; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon microstrip detector part of the ATLAS experiment at the CERN Large Hadron Collider (LHC). Together with the rest for the ATLAS Inner Detector (ID) it provides vital precision tracking information of charged particles. In this paper the performance and operational status of the SCT in the last two years of ATLAS data taking are reviewed.

  6. EnviroAtlas - Cleveland, OH - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Cleveland, OH EnviroAtlas community. The block groups are from the US Census Bureau and are included/excluded...

  7. ATLAS DAQ/HLT rack DCS

    International Nuclear Information System (INIS)

    Ermoline, Yuri; Burckhart, Helfried; Francis, David; Wickens, Frederick J.

    2007-01-01

    The ATLAS Detector Control System (DCS) group provides a set of standard tools, used by subsystems to implement their local control systems. The ATLAS Data Acquisition and High Level Trigger (DAQ/HLT) rack DCS provides monitoring of the environmental parameters (air temperatures, humidity, etc.). The DAQ/HLT racks are located in the underground counting room (20 racks) and in the surface building (100 racks). The rack DCS is based on standard ATLAS tools and integrated into overall operation of the experiment. The implementation is based on the commercial control package and additional components, developed by CERN Joint Controls Project Framework. The prototype implementation and measurements are presented

  8. Early Run 2 Hard QCD Results from the ATLAS Collaboration

    Directory of Open Access Journals (Sweden)

    Orlando Nicola

    2016-01-01

    Full Text Available We provide an overview of hard QCD results based on data collected with the ATLAS detector in proton-proton collision at √s = 13 TeV at the Large Hadron Collider. The production of high transverse momentum jets, photons and photon-pairs were studied; the inclusive jet cross section is found to agree well with the prediction of perturbative QCD calculations performed at next-to-leading accuracy. The production cross sections for W and Z bosons in their e and μ decays was measured; in general, agreement is found with the expectation of next-to-next-to leading order QCD calculations and interesting sensitivities to the proton structure functions are already observed. The top production cross sections were measured in different top decay channels and found to agree with the state of the art QCD predictions.

  9. Volunteer computing experience with ATLAS@Home

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068610; The ATLAS collaboration; Bianchi, Riccardo-Maria; Cameron, David; Filipčič, Andrej; Lançon, Eric; Wu, Wenjing

    2016-01-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers’ resources make up a sizeable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one task to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  10. Volunteer Computing Experience with ATLAS@Home

    CERN Document Server

    Cameron, David; The ATLAS collaboration; Bourdarios, Claire; Lan\\c con, Eric

    2016-01-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers' resources make up a sizable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one job to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  11. Volunteer Computing Experience with ATLAS@Home

    Science.gov (United States)

    Adam-Bourdarios, C.; Bianchi, R.; Cameron, D.; Filipčič, A.; Isacchini, G.; Lançon, E.; Wu, W.; ATLAS Collaboration

    2017-10-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers’ resources make up a sizeable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one task to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  12. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias

    by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the LHC Computing Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous...

  13. A word from the Spokesperson

    CERN Multimedia

    Jenni, P

    Dear Colleagues, It is a great pleasure to open the first ATLAS eNews. Many exciting things happen across the detector construction sites all over the ATLAS world and at CERN, as well as for the preparation of the computing and the physics analysis. With the ATLAS eNews we hope that progress, highlights, special events, and challenges can be shared informally and quickly within the full Collaboration. The ATLAS eNews are a challenge in itself. Of course we have no time to write articles, fighting with construction schedules and daily technical problems! But here we are... with a great idea for the benefit of all of us in ATLAS. Let's make it a success! Pippa Wells will be the chief editor of the ATLAS eNews, and I thank her warmly for setting up an attractive frame to make it easy to contribute news. As we have seen at the last Overview Week in sunny BNL, there is no doubt that more and more our common dreams of a very powerful LHC detector are becoming a reality, even though there are still plenty of hur...

  14. Morphometric Atlas Selection for Automatic Brachial Plexus Segmentation

    International Nuclear Information System (INIS)

    Van de Velde, Joris; Wouters, Johan; Vercauteren, Tom; De Gersem, Werner; Duprez, Fréderic; De Neve, Wilfried; Van Hoof, Tom

    2015-01-01

    Purpose: The purpose of this study was to determine the effects of atlas selection based on different morphometric parameters, on the accuracy of automatic brachial plexus (BP) segmentation for radiation therapy planning. The segmentation accuracy was measured by comparing all of the generated automatic segmentations with anatomically validated gold standard atlases developed using cadavers. Methods and Materials: Twelve cadaver computed tomography (CT) atlases (3 males, 9 females; mean age: 73 years) were included in the study. One atlas was selected to serve as a patient, and the other 11 atlases were registered separately onto this “patient” using deformable image registration. This procedure was repeated for every atlas as a patient. Next, the Dice and Jaccard similarity indices and inclusion index were calculated for every registered BP with the original gold standard BP. In parallel, differences in several morphometric parameters that may influence the BP segmentation accuracy were measured for the different atlases. Specific brachial plexus-related CT-visible bony points were used to define the morphometric parameters. Subsequently, correlations between the similarity indices and morphometric parameters were calculated. Results: A clear negative correlation between difference in protraction-retraction distance and the similarity indices was observed (mean Pearson correlation coefficient = −0.546). All of the other investigated Pearson correlation coefficients were weak. Conclusions: Differences in the shoulder protraction-retraction position between the atlas and the patient during planning CT influence the BP autosegmentation accuracy. A greater difference in the protraction-retraction distance between the atlas and the patient reduces the accuracy of the BP automatic segmentation result

  15. The social atlas of women from ethnic minorities

    NARCIS (Netherlands)

    Saskia Keuzenkamp; Ans Merens

    2006-01-01

    Original title: Sociale atlas van vrouwen uit etnische minderheden. The Social atlas of women from ethnic minorities (Sociale atlas van vrouwen uit etnische minderheden) offers a look in breadth and depth at the social position and participation of these women. The themes covered

  16. A digital atlas of the dog brain.

    Directory of Open Access Journals (Sweden)

    Ritobrato Datta

    Full Text Available There is a long history and a growing interest in the canine as a subject of study in neuroscience research and in translational neurology. In the last few years, anatomical and functional magnetic resonance imaging (MRI studies of awake and anesthetized dogs have been reported. Such efforts can be enhanced by a population atlas of canine brain anatomy to implement group analyses. Here we present a canine brain atlas derived as the diffeomorphic average of a population of fifteen mesaticephalic dogs. The atlas includes: 1 A brain template derived from in-vivo, T1-weighted imaging at 1 mm isotropic resolution at 3 Tesla (with and without the soft tissues of the head; 2 A co-registered, high-resolution (0.33 mm isotropic template created from imaging of ex-vivo brains at 7 Tesla; 3 A surface representation of the gray matter/white matter boundary of the high-resolution atlas (including labeling of gyral and sulcal features. The properties of the atlas are considered in relation to historical nomenclature and the evolutionary taxonomy of the Canini tribe. The atlas is available for download (https://cfn.upenn.edu/aguirre/wiki/public:data_plosone_2012_datta.

  17. EnviroAtlas - Durham, NC - Demo (Parent)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Durham, NC EnviroAtlas Area. The block groups are from the US Census Bureau and are included/excluded based on...

  18. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, A; The ATLAS collaboration; Klimentov, A; Oleynik, D; Petrosyan, A

    2014-01-01

    In this paper we describe ATLAS Grid Information System (AGIS), the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services.

  19. AGIS: The ATLAS Grid Information System

    OpenAIRE

    Anisenkov, A; Di Girolamo, A; Klimentov, A; Oleynik, D; Petrosyan, A

    2013-01-01

    In this paper we describe ATLAS Grid Information System (AGIS), the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services.

  20. EnviroAtlas - Phoenix, AZ - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Phoenix, AZ EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  1. EnviroAtlas - Fresno, CA - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Fresno, CA EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  2. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  3. Picturing diversity in the ATLAS collaboration

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2017-01-01

    With over 3000 members from 178 institutes, the ATLAS Collaboration is naturally diverse. However, capturing this diversity through pictures can be a challenge. Photography is a powerful tool, allowing us to reveal the faces behind a story and give the public the unique opportunity to understand and appreciate the human aspects of ATLAS's scientific research. The role of photographs in portraying the diversity of the ATLAS Collaboration and on various communication platforms will be described. Their impact will be examined, with focus on engagement of new audiences.

  4. ATLAS recognises its best suppliers

    CERN Multimedia

    2002-01-01

    The ATLAS Collaboration has recently rewarded two of its suppliers in the construction of very major detector components, fabricated in Japan. The ATLAS Supplier Award in recognition of excellent supplier performance has just been attributed to Kawasaki Heavy Industries, while Toshiba Corporation received the award two months ago at their headquarters in Japan.

  5. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  6. ATLAS Job Transforms

    CERN Document Server

    Stewart, G A; The ATLAS collaboration; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2013-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to `transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is mini...

  7. ATLAS Job Transforms

    CERN Document Server

    Stewart, G A; The ATLAS collaboration; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2013-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to 'transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is mini...

  8. ATLAS Upgrade Plans

    CERN Document Server

    Hopkins, W; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010-2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000/fb by around 2035 for ATLAS and CMS. In parallel, the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new...

  9. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  10. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  11. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N G; Landberg, L; Rathmann, O; Nielsen, M N [Risoe National Lab., Roskilde (Denmark); Nielsen, P [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  12. The Offshore New European Wind Atlas

    Science.gov (United States)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  13. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bagolini, A; Boscardin, M; Giacomini, G; Zorzi, N; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given

  14. Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Andrea Coccaro

    2015-12-01

    Full Text Available The nature of dark matter (DM is one of the most intriguing questions in particle physics. DM can be postulated to be part of a hidden sector whose interactions with the visible matter are not completely decoupled. The discovery of a fundamental scalar particle compatible with the Higgs boson predicted by the Standard Model paves the way for looking for DM with novel methods. An overview of the searches looking for a hidden sector in exotic Higgs decays and for invisible decays of the Higgs boson within the ATLAS experiment is presented. Prospects for searches with Large Hadron Collider data at a center-of-mass energy of 13 TeV are summarized.

  15. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). In the talk the current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. We will report on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk damage due to non-ionising radiation. The main emphasis will be given to the tracking performance of the SCT and the data quality during the >2 ye...

  16. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices of the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of $4088$ silicon detector modules for a total of 6.3 million channels. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel ($4$ cylinders) and two end-cap systems (9 disks on each). The current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. The operation of the detector including an overview of the main issues encountered is reported. The main emphasis is be given to the tracking performance of the SCT and the data quality during the $>2$ years of data taking of proton-proton collision data at $7$ TeV (and short periods of heavy ion collisions). The SCT has been fully operational throughout a...

  17. A Lego version of ATLAS

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    There's nothing very unusual about a small child making simple objects out of Lego. But wouldn't you be surprised to learn that one six-year old has just made a life-like model of the ATLAS detector?   Bastian with his Lego ATLAS detector. © Photo provided by Kai Nicklas, Bastian's father. It all began a month ago when the boy's father was watching a video about the construction of the ATLAS detector on the Internet. He hadn't noticed that his son was watching it over his shoulder. The small boy was fascinated by what he was seeing on the computer screen and his first reaction was to exclaim: "Wow! That's a terrific machine! I think the people who built it must be really clever." The detector must have really fired his imagination because, after asking his father a few questions, he decided to make a Lego model of it. Look at the photo and you will see how closely the model he produced resembles the actual ATLAS detector. Is the little boy in question, Bastia...

  18. The ATLAS semiconductor tracker (SCT)

    International Nuclear Information System (INIS)

    Jackson, J.N.

    2005-01-01

    The ATLAS detector (CERN,LHCC,94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10 34 cm -2 s -1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN,LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN,LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed

  19. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  20. 16 December 2011 - Israeli Minister of Industry, Trade and Labour S.Simhon visiting ATLAS undeground area, ATLAS visitor centre and LHC tunnel with Senior Physicist G. Mikenberg. ATLAS Collaboration Former Spokesperson is also present.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Israeli minister of industry, trade and labour, Shalom Simhon, was welcomed in the ATLAS visitor centre before he toured the ATLAS underground experimental area, where he could see the ATLAS detector. He also had a chance to see the LHC tunnel and the CERN Control Centre.