WorldWideScience

Sample records for atlas monitored drift

  1. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  2. Construction of monitored drift tube chambers for ATLAS end-cap muon spectrometer at IHEP (Protvino)

    CERN Document Server

    Bensinger, J; Borisov, A; Fakhrutdinov, R M; Goryatchev, S; Goryachev, V N; Gushchin, V; Hashemi, K S; Kojine, A; Kononov, A I; Larionov, A; Paramoshkina, E; Pilaev, A; Skvorodnev, N; Tchougouev, A; Wellenstein, H

    2002-01-01

    Trapezoidal-shaped Monitored Drift Tube (MDT) chambers will be used in end-caps of ATLAS muon spectrometer. Design and construction technology of such chambers in IHEP (Protvino) is presented. X-ray tomography results confirm desirable 20 mum precision of wire location in the chamber.

  3. Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    Bauer, F.; Kortner, O; Kroha, H; Manz, A; Mohrdieck, S; Richter, R; Zhuravlov, V

    2016-01-01

    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled.

  4. ATLAS Muon Drift Tube Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y [KEK, High Energy Accelerator Research Organisation, Tsukuba (Japan); Ball, B; Chapman, J W; Dai, T; Ferretti, C; Gregory, J [University of Michigan, Department of Physics, Ann Arbor, MI (United States); Beretta, M [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Boterenbrood, H; Jansweijer, P P M [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Brandenburg, G W; Fries, T; Costa, J Guimaraes da; Harder, S; Huth, J [Harvard University, Laboratory for Particle Physics and Cosmology, Cambridge, MA (United States); Ceradini, F [INFN Roma Tre and Universita Roma Tre, Dipartimento di Fisica, Roma (Italy); Hazen, E [Boston University, Physics Department, Boston, MA (United States); Kirsch, L E [Brandeis University, Department of Physics, Waltham, MA (United States); Koenig, A C [Radboud University Nijmegen/Nikhef, Dept. of Exp. High Energy Physics, Nijmegen (Netherlands); Lanza, A [INFN Pavia, Pavia (Italy); Mikenberg, G [Weizmann Institute of Science, Department of Particle Physics, Rehovot (Israel)], E-mail: brandenburg@physics.harvard.edu (and others)

    2008-09-15

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 {mu}m, which corresponds to a momentum accuracy of about 10% at p{sub T}= 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  5. ATLAS Muon Drift Tube Electronics

    CERN Document Server

    Arai, Y; Beretta, M; Boterenbrood, H; Brandenburg, G W; Ceradini, F; Chapman, J W; Dai, T; Ferretti, C; Fries, T; Gregory, J; Guimarães da Costa, J; Harder, S; Hazen, E; Huth, J; Jansweijer, P P M; Kirsch, L E; König, A C; Lanza, A; Mikenberg, G; Oliver, J; Posch, C; Richter, R; Riegler, W; Spiriti, E; Taylor, F E; Vermeulen, J; Wadsworth, B; Wijnen, T A M

    2008-01-01

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 microns, which corresponds to a momentum accuracy of about 10% at pT = 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  6. Upgrade of the ATLAS Monitored Drift Tube Frontend Electronics for the HL-LHC

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The ATLAS monitored drift tube (MDT) chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT system is capable of measuring the sagitta of muon tracks to an accuracy of 60 μm, which corresponds to a momentum accuracy of about 10% at pT=1 TeV. To cope with large amount of data and high event rate expected from the High-Luminosity LHC (HL-LHC) upgrade, ATLAS plans to use the MDT detector at the first-trigger level to improve the muon transverse momentum resolution and reduce the trigger rate. The new MDT trigger and readout system will have an output event rate of 1 MHz and a latency of 6 us at the first-level trigger. The signals from MDT tubes are first processed by an Amplifier/Shaper/Discriminator (ASD) ASIC, and the binary differential signals output by the ASDs are then router to the Time-to-Digital Converter (TDC) ASIC, where the arrival times of leading and trailing edges are digitized in a time bin of 0.78 ns which leads to an RMS timing error of 0.25 n...

  7. Development of a time-to-digital converter ASIC for the upgrade of the ATLAS Monitored Drift Tube detector

    Science.gov (United States)

    Wang, Jinhong; Liang, Yu; Xiao, Xiong; An, Qi; Chapman, John W.; Dai, Tiesheng; Zhou, Bing; Zhu, Junjie; Zhao, Lei

    2018-02-01

    The upgrade of the ATLAS muon spectrometer for the high-luminosity LHC requires new trigger and readout electronics for various elements of the detector. We present the design of a time-to-digital converter (TDC) ASIC prototype for the ATLAS Monitored Drift Tube (MDT) detector. The chip was fabricated in a GlobalFoundries 130 nm CMOS technology. Studies indicate that its timing and power dissipation characteristics meet the design specifications, with a timing bin variation of ±40 ps for all 48 TDC slices and a power dissipation of about 6.5 mW per slice.

  8. Fast track segment finding in the Monitored Drift Tubes of the ATLAS Muon Spectrometer using a Legendre transform algorithm

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS first-level muon trigger for High- Luminosity LHC foresees incorporating the precise tracking of the Monitored Drift Tubes in the current system based on Resistive Plate Chambers and Thin Gap Chambers to improve the accuracy in the transverse momentum measurement and control the single muon trigger rate by suppressing low quality fake triggers. The core of the MDT trigger algorithm is the segment identification and reconstruction which is performed per MDT chamber. The reconstructed segment positions and directions are then combined to extract the muon candidate’s transverse momentum. A fast pattern recognition segment finding algorithm, called the Legendre transform, is proposed to be used for the MDT trigger, implemented in a FPGA housed on a ATCA blade.

  9. A high-precision X-ray tomograph for quality control of the ATLAS Muon Monitored Drift Tube Chambers

    CERN Document Server

    Schuh, S; Banhidi, Z; Fabjan, Christian Wolfgang; Lampl, W; Marchesotti, M; Rangod, Stephane; Sbrissa, E; Smirnov, Y; Voss, Rüdiger; Woudstra, M; Zhuravlov, V

    2004-01-01

    A dedicated X-ray tomograph has been developed at CERN to control the required wire placement accuracy of better than 20mum of the 1200 Monitored Drift Tube Chambers which make up most of the precision chamber part of the ATLAS Muon Spectrometer. The tomograph allows the chamber wire positions to be measured with a 2mum statistical and 2mum systematic uncertainty over the full chamber cross-section of 2.2 multiplied by 0.6m**2. Consistent chamber production quality over the 4-year construction phase is ensured with a similar to 15% sampling rate. Measurements of about 70 of the 650 MDT chambers so far produced have been essential in assessing the validity and consistency of the various construction procedures.

  10. Modelling of the space-to-drift-time relationship of the ATLAS monitored drift-tube chambers in the presence of magnetic fields

    International Nuclear Information System (INIS)

    Dubbert, J.; Horvat, S.; Khartchenko, D.; Kortner, O.; Kotov, S.; Kroha, H.; Manz, A.; Nikolaev, K.; Rauscher, F.; Richter, R.; Staude, A.; Valderanis, Ch.

    2007-01-01

    The ATLAS muon spectrometer uses tracking chambers consisting of up to 5m long drift tubes filled with Ar:CO 2 (93:7) at 3bar. The chambers are run in a average toroidal magnetic field of 0.4T created by 8 air core coils. They provide a track-point accuracy of 40μm if the space-to-drift-time relationship r(t) is known with 20μm accuracy. The magnetic field B influences the electron drift inside the tubes: the maximum drift time t max =700ns increases by ∼70ns/T 2 B 2 . B varies by up to +/-0.4T along the tubes of the chambers mounted near the magnet coils which translates into a variation of t max of up to 45ns. The dependence of r(t) on B must be taken into account. Test-beam measurements show that the electron drift in case of B 0 can be modelled with the required accuracy by a Langevin equation with a friction term which is slightly non-linear in the drift velocity

  11. Fast track segment finding in the Monitored Drift Tubes (MDT) of the ATLAS Muon Spectrometer using a Legendre transform algorithm

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2018-01-01

    Many of the physics goals of ATLAS in the High Luminosity LHC era, including precision studies of the Higgs boson, require an unprescaled single muon trigger with a 20 GeV threshold. The selectivity of the current ATLAS first-level muon trigger is limited by the moderate spatial resolution of the muon trigger chambers. By incorporating the precise tracking of the MDT, the muon transverse momentum can be measured with an accuracy close to that of the offline reconstruction at the trigger level, sharpening the trigger turn-on curves and reducing the single muon trigger rate. A novel algorithm is proposed which reconstructs segments from MDT hits in an FPGA and find tracks within the tight latency constraints of the ATLAS first-level muon trigger. The algorithm represents MDT drift circles as curves in the Legendre space and returns one or more segment lines tangent to the maximum possible number of drift circles.  This algorithm is implemented without the need of resource and time consuming hit position calcul...

  12. Development of a highly selective muon trigger exploiting the high spatial resolution of monitored drift-tube chambers for the ATLAS experiment at the HL-LHC

    CERN Document Server

    Kortner, Oliver; The ATLAS collaboration

    2018-01-01

    The High-Luminosity LHC will provide the unique opportunity to explore the nature of physics beyond the Standard Model. Highly selective first level triggers are essential for the physics programme of the ATLAS experiment at the HL-LHC, where the instantaneous luminosity will exceed the LHC design instantaneous luminosity by almost an order of magnitude. The ATLAS first level muon trigger rate is dominated by low momentum muons, selected due to the moderate momentum resolution of the current system. This first level trigger limitation can be overcome by including data from the precision muon drift tube (MDT) chambers. This requires the fast continuous transfer of the MDT hits to the off-detector trigger logic and a fast track reconstruction algorithm performed in the trigger logic. The feasibility of this approach was studied with LHC collision data and simulated data. Two main options for the hardware implementation will be studied with demonstrators: an FPGA based option with an embedded ARM microprocessor ...

  13. Development of a Highly Selective Muon Trigger Exploiting the High Spatial Resolution of Monitored Drift-Tube Chambers for the ATLAS Experiment at the HL-LHC

    CERN Document Server

    Kortner, Oliver; The ATLAS collaboration

    2018-01-01

    The High-Luminosity LHC will provide the unique opportunity to explore the nature of physics beyond the Standard Model. Highly selective first level triggers are essential for the physics programme of the ATLAS experiment at the HL-LHC, where the instantaneous luminosity will exceed the LHC design instantaneous luminosity by almost an order of magnitude. The ATLAS first level muon trigger rate is dominated by low momentum muons, selected due to the moderate momentum resolution of the current system. This first level trigger limitation can be overcome by including data from the precision muon drift tube (MDT) chambers. This requires the fast continuous transfer of the MDT hits to the off-detector trigger logic and a fast track reconstruction algorithm performed in the trigger logic. The feasibility of this approach was studied with LHC collision data and simulated data. Two main options for the hardware implementation are currently studied with demonstrators, an FPGA based option with an embedded ARM microproc...

  14. Drift velocity monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented.

  15. ATLAS fast physics monitoring

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... laboration has set up a framework to automatically process the ... ing (FPM) is complementary to data quality monitoring as problems may ... the full power of the ATLAS software framework Athena [4] and the availability of the.

  16. Optimization and Calibration of the Drift-Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2067746

    2000-01-01

    The final phase of preparations for the ATLAS experiment at the future Large Hadron Collider (LHC) has begun. In the last decade the collaboration has carried out various test-beam experiments to study and optimize prototypes of all subdetectors under more and more realistic conditions. To enhance the detector-physical understanding, these hardware activities were complemented by detailed simulations. In parallel the development of reconstruction software has made important progress. The present work focusses on some advanced aspects of optimizing the Monitored Drift Tube Chambers (MDT) for operation as precision chambers in the Muon Spectrometer. It will be shown how this system has been tuned for maximum performance in order to meet the ambitious goals defined by the objectives of LHC particle physics. After defining the basic detector parameters, the tubes' capability of running in ATLAS's high-rate gamma radiation background was verified. Both tasks necessitated several years of gathering experience in mu...

  17. Twin-tubes: 3D tracking based on the ATLAS muon drift tubes

    International Nuclear Information System (INIS)

    Woudstra, M.; Bobbink, G.J.; Eldik, N. van; Graaf, H. van der; Kluit, P.; Koutsman, A.; Limper, M.; Linde, F.; Massaro, G.; Snuverink, J.; Vreeswijk, M.; Groenstege, H.; Koopstra, J.; Mos, S.; Rewiersma, P.; Timmermans, C.; Dijkema, J.

    2006-01-01

    The Monitored Drift Tubes (MDTs) of the ATLAS Muon Spectrometer have been paired to form so-called twin-tubes to measure the coordinate which runs along the wire direction. This modification endows the MDTs with full 3D track reconstruction using specially designed electronic boards. The performance of the twin-tubes has been measured for an equipped MDT chamber at the ATLAS Muon Cosmic Ray Test Stand at NIKHEF. The efficiency of a twin-tube has been determined to be 99.8%, and the measured resolution 17 cm per hit. By equipping one multilayer consisting of three layers and combining the measurements a resolution of 10 cm has been obtained

  18. Ageing studies for the ATLAS MDT muonchambers and development of a gas filter to prevent drift tube ageing

    International Nuclear Information System (INIS)

    Koenig, S.

    2008-01-01

    The muon spectrometer of the ATLAS detector, which is currently assembled at the LHC accelerator at CERN, uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 μm, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO 2 =93:7, which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing effects were observed. It was therefore decided to install gas filters in the gas distribution lines to remove volatile silicon compounds efficiently from the gas mixture. Finally a filter was designed that can adsorb up to 5.5 g of volatile silicon compounds, hereby reducing the impurities in the outlet gas mixture to less than 30 ppb. (orig.)

  19. Construction and test of high precision drift-tube (sMDT) chambers for the ATLAS muon spectrometer

    CERN Document Server

    Nowak, Sebastian; Kroha, Hubert; Schwegler, Philipp; Sforza, Federico

    2014-01-01

    For the upgrade of the ATLAS muon spectrometer in March 2014 new muon tracking chambers (sMDT) with drift-tubes of 15 mm diameter, half of the value of the standard ATLAS Monitored Drift-Tubes (MDT) chambers, and 10~$\\mu$m positioning accuracy of the sense wires have been constructed. The new chambers are designed to be fully compatible with the present ATLAS services but, with respect to the previously installed ATLAS MDT chambers, they are assembled in a more compact geometry and they deploy two additional tube layers that provide redundant rack information. The chambers are composed of 8 layers of in total 624 aluminium drift-tubes. The assembly of a chamber is completed within a week. A semi-automatized production line is used for the assembly of the drift-tubes prior to the chamber assembly. The production procedures and the quality control tests of the single components and of the complete chambers will be discussed. The wire position in the completed chambers have been measured by using a coordinate me...

  20. Ageing studies for the ATLAS MDT muonchambers and development of a gas filter to prevent drift tube ageing

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, S.

    2008-01-15

    The muon spectrometer of the ATLAS detector, which is currently assembled at the LHC accelerator at CERN, uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 {mu}m, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO{sub 2}=93:7, which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing effects were observed. It was therefore decided to install gas filters in the gas distribution lines to remove volatile silicon compounds efficiently from the gas mixture. Finally a filter was designed that can adsorb up to 5.5 g of volatile silicon compounds, hereby reducing the impurities in the outlet gas mixture to less than 30 ppb. (orig.)

  1. Ageing studies for the ATLAS MDT Muonchambers and development of a gas filter to prevent drift tube ageing

    CERN Document Server

    König, Stefan

    2008-01-01

    The muon spectrometer of the ATLAS detector at CERN uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 µm, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO2 (93:7), which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing ...

  2. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2011-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers. The differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest drift velocity monitoring results are discussed.

  3. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers because the drift velocity depends on it. Furthermore the differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest pressure monitoring results are discussed.

  4. ATLAS fast physics monitoring

    Indian Academy of Sciences (India)

    The ATLAS Collaboration has set up a framework to automatically process the rapidly growing dataset and produce performance and physics plots for the most interesting analyses. The system is designed to give fast feedback. The histograms are produced within hours of data reconstruction (2–3 days after data taking).

  5. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  6. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  7. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  8. The ATLAS Beam Conditions Monitor

    International Nuclear Information System (INIS)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz', M; Zavrtanik, M; Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P; Frais-Koelbl, H; Griesmayer, E; Niegl, M; Kagan, H; Tardif, D; Trischuk, W

    2008-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10 15 charged particles per cm 2 over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = ±184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware

  9. The ATLAS Beam Conditions Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz' , M; Zavrtanik, M [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P [CERN, Geneva (Switzerland); Frais-Koelbl, H; Griesmayer, E; Niegl, M [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H [Ohio State University, Columbus (United States); Tardif, D; Trischuk, W [University of Toronto, Toronto (Canada)], E-mail: william@physics.utoronto.ca

    2008-02-15

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10{sup 15} charged particles per cm{sup 2} over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = {+-}184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware.

  10. Drift-modeling and monitoring comparisons

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Hanna, S.R.

    1977-01-01

    Congress is looking into the conglomeration of nuclear reactors into energy centers of limited area. Drift from cooling towers can corrode and damage structures in the immediate vicinity of the towers, cause a public nuisance if located near parking lots or high-density traffic areas, and endanger local vegetation. The estimation of salt deposition has relied primarily on predictions from a variety of models, with very few direct measurements. One of the major efforts in our program is to evaluate the assumptions, limitations, and applicabilities of various analytical models for drift deposition prediction. Several drift deposition models are compared using a set of standard input conditions. The predicted maximum drift deposition differs by two orders of magnitude, and the downwind locations of the maximum differ by one order of magnitude. The discrepancies are attributed mainly to different assumptions in the models regarding the initial effective height of the droplets. Current programs in which drift characteristics at the tower mouth and drift deposition downwind of the tower are being measured are summarized. At the present time, drift deposition measurements, sufficiently comprehensive for model verifications, are unavailable. Hopefully, the Chalk Point Program will satisfy this need

  11. ATLAS job monitoring in the Dashboard Framework

    CERN Document Server

    Sargsyan, L; The ATLAS collaboration; Campana, S; Karavakis, E; Kokoszkiewicz, L; Saiz, P; Schovancova, J; Tuckett, D

    2012-01-01

    Monitoring of the large-scale data processing of the ATLAS experiment includes monitoring of production and user analysis jobs. The Experiment Dashboard provides a common job monitoring solution, which is shared by ATLAS and CMS experiments. This includes an accounting portal as well as real-time monitoring. Dashboard job monitoring for ATLAS combines information from PanDA job processing database, Production system database and monitoring information from jobs submitted through GANGA to Workload Management System (WMS) or local batch systems. Usage of Dashboard-based job monitoring applications will decrease load on the PanDA database and overcome scale limitations in PanDA monitoring caused by the short job rotation cycle in the PanDA database. Aggregation of the task/job metrics from different sources provides complete view of job processing activity in ATLAS scope.

  12. ATLAS job monitoring in the Dashboard Framework

    International Nuclear Information System (INIS)

    Andreeva, J; Campana, S; Karavakis, E; Kokoszkiewicz, L; Saiz, P; Tuckett, D; Sargsyan, L; Schovancova, J

    2012-01-01

    Monitoring of the large-scale data processing of the ATLAS experiment includes monitoring of production and user analysis jobs. The Experiment Dashboard provides a common job monitoring solution, which is shared by ATLAS and CMS experiments. This includes an accounting portal as well as real-time monitoring. Dashboard job monitoring for ATLAS combines information from the PanDA job processing database, Production system database and monitoring information from jobs submitted through GANGA to Workload Management System (WMS) or local batch systems. Usage of Dashboard-based job monitoring applications will decrease load on the PanDA database and overcome scale limitations in PanDA monitoring caused by the short job rotation cycle in the PanDA database. Aggregation of the task/job metrics from different sources provides complete view of job processing activity in ATLAS scope.

  13. Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    CERN Document Server

    Deile, M.; Horvat, S.; Kortner, O.; Kroha, H.; Manz, A.; Mohrdieck-Mock, S.; Rauscher, F.; Richter, Robert; Staude, A.; Stiller, W.

    2016-01-01

    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate.

  14. ATLAS Offline Data Quality Monitoring

    CERN Document Server

    Adelman, J; Boelaert, N; D'Onofrio, M; Frost, J A; Guyot, C; Hauschild, M; Hoecker, A; Leney, K J C; Lytken, E; Martinez-Perez, M; Masik, J; Nairz, A M; Onyisi, P U E; Roe, S; Schatzel, S; Schaetzel, S; Wilson, M G

    2010-01-01

    The ATLAS experiment at the Large Hadron Collider reads out 100 Million electronic channels at a rate of 200 Hz. Before the data are shipped to storage and analysis centres across the world, they have to be checked to be free from irregularities which render them scientifically useless. Data quality offline monitoring provides prompt feedback from full first-pass event reconstruction at the Tier-0 computing centre and can unveil problems in the detector hardware and in the data processing chain. Detector information and reconstructed proton-proton collision event characteristics are distilled into a few key histograms and numbers which are automatically compared with a reference. The results of the comparisons are saved as status flags in a database and are published together with the histograms on a web server. They are inspected by a 24/7 shift crew who can notify on-call experts in case of problems and in extreme cases signal data taking abort.

  15. ATLAS Fast Physics Monitoring: TADA

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00375930; The ATLAS collaboration; Elsing, Markus

    2017-01-01

    The ATLAS experiment at the LHC is recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data.TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0, the CERN Data Center. The system can monitor a large range of physics channels, offline data quality and physics performance quantities nearly final analysis level object calibrations. TADA output is available on a website accessible by the whole collaboration that gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combin...

  16. ATLAS fast physics monitoring: TADA

    Science.gov (United States)

    Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.

  17. ATLAS Fast Physics Monitoring: TADA

    CERN Document Server

    Elsing, Markus; The ATLAS collaboration; Sabato, Gabriele; Kamioka, Shusei; Nairz, Armin Michael; Moyse, Edward; Gumpert, Christian

    2016-01-01

    The ATLAS Experiment at the LHC is recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities nearly final analysis level object calibrations. TADA output is available on a website accessible by the whole collaboration that gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups...

  18. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...... on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0...

  19. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  20. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  1. Quality control results of the drift tubes for the ATLAS MDT-BIS chambers

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, T.A.; Gazis, E.N.; Katsoufis, E.; Maltezos, S.; Savva, P.; Tsipolitis, G.; Tzamariudaki, E.

    2006-01-01

    ATLAS (A Toroidal LHC ApparatuS) is a general purpose experiment, which will start its operation at the Large Hadron Collider (LHC) at CERN in 2007. The ATLAS detector is designed to study the products of proton-proton collisions at c.m.s. energies of up to 14 TeV. Three Greek Universities have taken the responsibility to construct 112 BIS-MDT (Barrel Inner Small) chambers using 29 000 drift tubes of 170 cm length and 3 cm diameter that have been quality tested before assembly. This work describes the Quality Assurance and Quality Control (QA Q C) procedures for the drift tubes, followed at the High Energy Physics Laboratory of the National Technical University of Athens, while emphasis is given on the obtained results for the above mentioned number of tubes

  2. Performance of the ATLAS Muon Drift-Tube Chambers at High Background Rates and in Magnetic Fields

    CERN Document Server

    INSPIRE-00213689; Horvat, S.; Legger, F.; Kortner, O.; Kroha, H.; Richter, R.; Valderanis, Ch.; Rauscher, F.; Staude, A.

    2016-01-01

    The ATLAS muon spectrometer uses drift-tube chambers for precision tracking. The performance of these chambers in the presence of magnetic field and high radiation fluxes is studied in this article using test-beam data recorded in the Gamma Irradiation Facility at CERN. The measurements are compared to detailed predictions provided by the Garfield drift-chamber simulation programme.

  3. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J.F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M D M; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Doan, T.K.O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M.A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L R; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J.C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.J.; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A M; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernández Jiménez, Y; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.Y.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez-Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.R.; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J A; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J.P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa Romero, D A; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Roda Dos Santos, D; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F.W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B M; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra Suay, L; Soukharev, A.; Spagnolo, S.; Spanó, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F J; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C.L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W.M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  4. The Quality Assurance_Quality Control of the Monitored Drift Tubes at the HEP Laboratory of the National Technical University of Athens

    CERN Document Server

    Alexopoulos, T; Dris, M; Filippas, A V; Fokitis, E; Gazis, E N; Katsoufis, E C; Maltezos, A; Maltezos, S; Papadopoulos, E; Papadopoulou, T D; Savva, Panagiota S; Stavropoulos, G D; Tsipolitis, G; Tzamariudaki, E

    2001-01-01

    The description of the Quality Assurance and Quality Control (QA_QC) procedures for the Monitored Drift Tubes (MDT's) followed at the HEP Laboratory of NTUA are presented and results of the tested tubes are given. The MDT's are the elements from which muon chambers for the ATLAS/LHC Muon Spectrometer are built..

  5. Monitoring of wood photodegradation by DRIFT-spectroscopy

    International Nuclear Information System (INIS)

    Faix, O.; Németh, K.

    1988-01-01

    Wood of locust (Robinia pseudoacacia) and poplar (Populus tremoloides) tree has been irradiated with 830 W/m 2 energy up to 60 hrs and extracted with water in order to simulate outdoor weathering. The progress of weathering was monitored by DRIFT spectroscopy. The spectra were baseline corrected and normalized. Spectral differences with regard to wood species, irradiation time, and water extraction were clearly seen. Very pronounced is the intensity decrease of the bands of aromatic skeletal vibrations at 1510 and 1600 cm −1 and the increase of the band at 17.4 cm −1 (C=O stretching). These changes can be quantified and described by exponential equations. The degradation products of weathering are of low molecular weight and can be eliminated from the wood surface by water extraction. The differences between the DRIFT and KBr-TR spectra as well as the quantitative results of the artifical weathering are discussed. (author) [de

  6. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  7. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  10. Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kroha, H., E-mail: kroha@mpp.mpg.de; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.

    2017-02-11

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.

  11. Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer

    Science.gov (United States)

    Kroha, H.; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.

    2017-02-01

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.

  12. Construction and Test of New Precision Drift-Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    INSPIRE-00218480

    2017-02-11

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 ?micons have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new R...

  13. High-rate irradiation of 15 mm muon drift tubes and development of an ATLAS compatible readout driver for micromegas detectors

    International Nuclear Information System (INIS)

    Zibell, Andre

    2014-01-01

    The upcoming luminosity upgrades of the LHC accelerator at CERN demand several upgrades to the detectors of the ATLAS muon spectrometer, mainly due to the proportionally increasing rate of uncorrelated background irradiation. This concerns also the ''Small Wheel'' tracking stations of the ATLAS muon spectrometer, where precise muon track reconstruction will no longer be assured when around 2020 the LHC luminosity is expected to reach values 2 to 5 times the design luminosity of 1 x 10 34 cm -2 s -1 , and when background hit rates will exceed 10 kHz/cm 2 . This, together with the need of an additional triggering station in this area with an angular resolution of 1 mrad, requires the construction of ''New Small Wheel'' detectors for a complete replacement during the long maintenance period in 2018 and 2019. As possible technology for these New Small Wheels, high-rate capable sMDT drift tubes have been investigated, based on the ATLAS 30 mm Monitored Drift Tube technology, but with a smaller diameter of 15 mm. In this work, a prototype sMDT chamber has been tested under the influence of high-rate irradiation with protons, neutrons and photons at the Munich tandem accelerator, simulating the conditions within a high luminosity LHC experiment. Tracking resolution and detection efficiency for minimum ionizing muons are presented as a function of irradiation rate. The experimental muon trigger geometry allows to distinguish between efficiency degradation due to deadtime effects and space charge in the detectors. Using modified readout electronics the analog pulse shape of the detector has been investigated for gain reduction and potential irregularities due to the high irradiation rates and ionization doses. This study shows that the sMDT detectors would fulfill all requirements for successful use in the ATLAS New Small Wheel endcap detector array, with an average spatial resolution of 140 μm and a track reconstruction efficiency

  14. High-rate irradiation of 15 mm muon drift tubes and development of an ATLAS compatible readout driver for micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zibell, Andre

    2014-06-06

    The upcoming luminosity upgrades of the LHC accelerator at CERN demand several upgrades to the detectors of the ATLAS muon spectrometer, mainly due to the proportionally increasing rate of uncorrelated background irradiation. This concerns also the ''Small Wheel'' tracking stations of the ATLAS muon spectrometer, where precise muon track reconstruction will no longer be assured when around 2020 the LHC luminosity is expected to reach values 2 to 5 times the design luminosity of 1 x 10{sup 34} cm{sup -2}s{sup -1}, and when background hit rates will exceed 10 kHz/cm{sup 2}. This, together with the need of an additional triggering station in this area with an angular resolution of 1 mrad, requires the construction of ''New Small Wheel'' detectors for a complete replacement during the long maintenance period in 2018 and 2019. As possible technology for these New Small Wheels, high-rate capable sMDT drift tubes have been investigated, based on the ATLAS 30 mm Monitored Drift Tube technology, but with a smaller diameter of 15 mm. In this work, a prototype sMDT chamber has been tested under the influence of high-rate irradiation with protons, neutrons and photons at the Munich tandem accelerator, simulating the conditions within a high luminosity LHC experiment. Tracking resolution and detection efficiency for minimum ionizing muons are presented as a function of irradiation rate. The experimental muon trigger geometry allows to distinguish between efficiency degradation due to deadtime effects and space charge in the detectors. Using modified readout electronics the analog pulse shape of the detector has been investigated for gain reduction and potential irregularities due to the high irradiation rates and ionization doses. This study shows that the sMDT detectors would fulfill all requirements for successful use in the ATLAS New Small Wheel endcap detector array, with an average spatial resolution of 140 μm and a track

  15. Trigger Menu-aware Monitoring for the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00441925; The ATLAS collaboration

    2017-01-01

    Changes in the trigger menu, the online algorithmic event-selection of the ATLAS experiment at the LHC, are followed by adjustments to the ATLAS trigger monitoring systems. During Run 1, and so far in Run 2, ATLAS has deployed monitoring updates with the installation of new software releases at Tier-0, the first level of the ATLAS computing grid. Having to wait for a new software release to be installed at Tier-0, in order to update ATLAS offline trigger monitoring configurations, results in a lag with respect to the modification of the trigger menu. We present the design and implementation of a `trigger menu-aware' monitoring system that aims to simplify the ATLAS operational workflows by allowing monitoring configuration changes to be made at the Tier-0 site by utilising an Oracle SQL database.

  16. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  17. High-rate irradiation of 15mm muon drift tubes and development of an ATLAS compatible readout driver for micromegas detectors

    CERN Document Server

    Zibell, Andre

    The upcoming luminosity upgrades of the LHC accelerator at CERN demand several upgrades to the detectors of the ATLAS muon spectrometer, mainly due to the proportionally increasing rate of uncorrelated background irradiation. This concerns also the "Small Wheel" tracking stations of the ATLAS muon spectrometer, where precise muon track reconstruction will no longer be assured when around 2020 the LHC luminosity is expected to reach values 2 to 5 times the design luminosity of $1 \\times 10^{34} \\text{cm}^{-2}\\text{s}^{-1}$, and when background hit rates will exceed 10 kHz/cm$^2$. This, together with the need of an additional triggering station in this area with an angular resolution of 1 mrad, requires the construction of "New Small Wheel" detectors for a complete replacement during the long maintenance period in 2018 and 2019. As possible technology for these New Small Wheels, high-rate capable sMDT drift tubes have been investigated, based on the ATLAS 30 mm Monitored Drift Tube technology, but with a smalle...

  18. The drift velocity monitoring system of the CMS barrel muon chambers

    CERN Document Server

    Altenhoefer, Georg Friedrich; Heidemann, Carsten Andreas; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel Francois

    2017-01-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  19. The drift velocity monitoring system of the CMS barrel muon chambers

    Science.gov (United States)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  20. PMT response drift of ATLAS Tile Laser II calibration system: an introduction of a new method

    CERN Document Server

    Di Gregorio, Giulia

    2016-01-01

    In this article I describe the performance of the monitoring diodes of the Laser II system, a new system for run II used to calibrate the gain variation of PMTs in between two cesium scan. I also show a new method to measure the PMT drift response that it is compared to the method used up to now (Clermont-Ferrant) corrected with the Pisa method. The agreement between the two method is within 0.2%.

  1. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  2. The GNAM system in the ATLAS online monitoring framework

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, D. [INFN Cosenza and Dip. di Fisica, Universita della Calabria, ponte P. Bucci 31 C, 87036 Rende (Italy)], E-mail: daniela.salvatore@cern.ch; Adragna, P. [Queen Mary, University of London, London (United Kingdom); Bosman, M. [IFAE, Institut de Fisica de Altes Energies, UAB/Barcelona (Spain); Burckhart, D. [CERN, Geneva (Switzerland); Caprini, M. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Corso-Radu, A. [University of California Irvine, Irvine, California (United States); Costa, M.J. [CERN, Geneva (Switzerland); Della Pietra, M. [INFN Sezione diNapoli, Napoli (Italy); Dotti, A. [Universita and INFN Pisa, Pisa (Italy); Eschrich, I. [University of California Irvine, Irvine, California (United States); Ferrari, R. [INFN Sezione di Pavia, Pavia (Italy); Ferrer, M.L. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Gaudio, G. [INFN Sezione di Pavia, Pavia (Italy); Hadavand, H. [Southern Methodist University, Dallas (United States); Hauschild, M. [CERN, Geneva (Switzerland); Hillier, S. [University of Birmingham, Birmingham (United Kingdom); Kehoe, B. [Southern Methodist University, Dallas (United States); Kolos, S. [University of California Irvine, Irvine, California (United States); Kordas, K. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Mcpherson, R. [University of Victoria, Vancouver (Canada)] (and others)

    2007-10-15

    ATLAS [ATLAS Collaboration, 'ATLAS Technical Proposal', CERN/LHHCC/94-43, LHCC/P2, CERN, Geneva, Switzerland, 1994] is one of the four experiments under construction along the Large Hadron Collider (LHC) ring, which will produce interactions at a center of mass energy of 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS detectors at the various levels of the ATLAS data flow.

  3. The GNAM system in the ATLAS online monitoring framework

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, D. [INFN Cosenza and Dip. di Fisica, Universita della Calabria, ponte P. Bucci 31 C, 87036 Rende (Italy)], E-mail: daniela.salvatore@cern.ch; Adragna, P [Queen Mary, University of London, London (United Kingdom); Bosman, M [IFAE, Institut de Fisica de Altes Energies, UAB/Barcelona (Spain); Burckhart, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Corso-Radu, A [University of California Irvine, Irvine, California (United States); Costa, M J [CERN, Geneva (Switzerland); Della Pietra, M [INFN Sezione diNapoli, Napoli (Italy); Dotti, A [Universita and INFN Pisa, Pisa (Italy); Eschrich, I [University of California Irvine, Irvine, California (United States); Ferrari, R [INFN Sezione di Pavia, Pavia (Italy); Ferrer, M L [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Gaudio, G [INFN Sezione di Pavia, Pavia (Italy); Hadavand, H [Southern Methodist University, Dallas (United States); Hauschild, M [CERN, Geneva (Switzerland); Hillier, S [University of Birmingham, Birmingham (United Kingdom); Kehoe, B [Southern Methodist University, Dallas (United States); Kolos, S [University of California Irvine, Irvine, California (United States); Kordas, K [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Mcpherson, R [University of Victoria, Vancouver (Canada)

    2007-10-15

    ATLAS [ATLAS Collaboration, 'ATLAS Technical Proposal', CERN/LHHCC/94-43, LHCC/P2, CERN, Geneva, Switzerland, 1994] is one of the four experiments under construction along the Large Hadron Collider (LHC) ring, which will produce interactions at a center of mass energy of 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS detectors at the various levels of the ATLAS data flow.

  4. The GNAM system in the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Salvatore, D.; Adragna, P.; Bosman, M.; Burckhart, D.; Caprini, M.; Corso-Radu, A.; Costa, M.J.; Della Pietra, M.; Dotti, A.; Eschrich, I.; Ferrari, R.; Ferrer, M.L.; Gaudio, G.; Hadavand, H.; Hauschild, M.; Hillier, S.; Kehoe, B.; Kolos, S.; Kordas, K.; Mcpherson, R.

    2007-01-01

    ATLAS [ATLAS Collaboration, 'ATLAS Technical Proposal', CERN/LHHCC/94-43, LHCC/P2, CERN, Geneva, Switzerland, 1994] is one of the four experiments under construction along the Large Hadron Collider (LHC) ring, which will produce interactions at a center of mass energy of 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS detectors at the various levels of the ATLAS data flow

  5. LASER monitoring system for the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Viret, S.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) at CERN uses a scintillator-iron technique for its hadronic Tile Calorimeter (TileCal). Scintillating light is readout via 9852 photomultiplier tubes (PMTs). Calibration and monitoring of these PMTs are made using a LASER based system. Short light pulses are sent simultaneously into all the TileCal photomultiplier's tubes (PMTs) during ATLAS physics runs, thus providing essential information for ATLAS data quality and monitoring analyses. The experimental setup developed for this purpose is described as well as preliminary results obtained during ATLAS commissioning phase in 2008.

  6. ATLAS BigPanDA Monitoring

    CERN Document Server

    Padolski, Siarhei; The ATLAS collaboration; Klimentov, Alexei; Korchuganova, Tatiana

    2017-01-01

    BigPanDA monitoring is a web based application which provides various processing and representation of the Production and Distributed Analysis (PanDA) system objects states. Analyzing hundreds of millions of computation entities such as an event or a job BigPanDA monitoring builds different scale and levels of abstraction reports in real time mode. Provided information allows users to drill down into the reason of a concrete event failure or observe system bigger picture such as tracking the computation nucleus and satellites performance or the progress of whole production campaign. PanDA system was originally developed for the Atlas experiment and today effectively managing more than 2 million jobs per day distributed over 170 computing centers worldwide. BigPanDA is its core component commissioned in the middle of 2014 and now is the primary source of information for ATLAS users about state of their computations and the source of decision support information for shifters, operators and managers. In this wor...

  7. ATLAS BigPanDA Monitoring

    CERN Document Server

    Padolski, Siarhei; The ATLAS collaboration

    2017-01-01

    BigPanDA monitoring is a web-based application that provides various processing and representation of the Production and Distributed Analysis (PanDA) system objects states. Analysing hundreds of millions of computation entities such as an event or a job BigPanDA monitoring builds different scale and levels of abstraction reports in real time mode. Provided information allows users to drill down into the reason of a concrete event failure or observe system bigger picture such as tracking the computation nucleus and satellites performance or the progress of whole production campaign. PanDA system was originally developed for the Atlas experiment and today effectively managing more than 2 million jobs per day distributed over 170 computing centers worldwide. BigPanDA is its core component commissioned in the middle of 2014 and now is the primary source of information for ATLAS users about state of their computations and the source of decision support information for shifters, operators and managers. In this work...

  8. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  9. Study of the performance of ATLAS muon drift-tube chambers in magntic fields and at high irradiation rates

    Energy Technology Data Exchange (ETDEWEB)

    Valderanis, Chrysostomos

    2012-07-26

    The performance of ATLAS muon drift-tube (MDT) chambers has been studied in detail using high-energy muon beams. The measurements of the drift tube properties in magnetic fields showed that inelastic collisions of the drifting electrons with the CO{sub 2} molecules in the Ar:CO{sub 2} (93:7) gas mixture of the MDT chambers have to be taken into account in the simulation of the drift properties. Such inelastic collisions are now correctly treated by the Garfield simulation programme from version 9 providing an accurate description of the behaviour of the ATLAS muon drift tubes, in particular in the magnetic field. Measurements at the Gamma Irradiation Facility at CERN were performed to study the performance of the MDT chambers in the presence of high {gamma} ray background fluences. The chambers have a spatial resolution better than 40 {mu}m at the nominal background rates expected at the Large Hadron Collider design luminosity of 10{sup 34} cm{sup -2}s{sup -1} and a resolution better than 50 {mu}m for up to five times higher background rates. Efficient muon detection up to background counting rates of 500 kHz per tube corresponding to 35% occupancy was demonstrated.

  10. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Di Girolamo, A; Jezequel, S; Ueda, I; Wenaus, T

    2013-01-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources.\\\\ During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visua...

  11. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Di Girolamo, A; Jezequel, S; Ueda, I; Wenaus, T

    2014-01-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources.\\\\ During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visua...

  12. The ATLAS DDM Tracer monitoring framework

    International Nuclear Information System (INIS)

    Zang Dongsong; Garonne, Vincent; Barisits, Martin; Lassnig, Mario; Andrew Stewart, Graeme; Molfetas, Angelos; Beermann, Thomas

    2012-01-01

    The DDM Tracer monitoring framework is aimed to trace and monitor the ATLAS file operations on the Worldwide LHC Computing Grid. The volume of traces has increased significantly since the framework was put in production in 2009. Now there are about 5 million trace messages every day and peaks can be near 250Hz, with peak rates continuing to climb, which gives the current structure a big challenge. Analysis of large datasets based on on-demand queries to the relational database management system (RDBMS), i.e. Oracle, can be problematic, and have a significant effect on the database's performance. Consequently, We have investigated some new high availability technologies like messaging infrastructure, specifically ActiveMQ, and key-value stores. The advantages of key value store technology are that they are distributed and have high scalability; also their write performances are usually much better than RDBMS, all of which are very useful for the Tracer monitoring framework. Indexes and distributed counters have been also tested to improve query performance and provided almost real time results. In this paper, the design principles, architecture and main characteristics of Tracer monitoring framework will be described and examples of its usage will be presented.

  13. First-year experience with the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Corso-Radu, A

    2010-01-01

    ATLAS is one of the four experiments in the Large Hadron Collider (LHC) at CERN, which has been put in operation this year. The challenging experimental environment and the extreme detector complexity required development of a highly scalable distributed monitoring framework, which is currently being used to monitor the quality of the data being taken as well as operational conditions of the hardware and software elements of the detector, trigger and data acquisition systems. At the moment the ATLAS Trigger/DAQ system is distributed over more than 1000 computers, which is about one third of the final ATLAS size. At every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles more than 4 million histograms updates coming from more than 4 thousands applications, executes 10 thousands advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. This note presents the overview of the online monitoring software framework, and describes the experience, which was gained during an extensive commissioning period as well as at the first phase of LHC beam in September 2008. Performance results, obtained on the current ATLAS DAQ system will also be presented, showing that the performance of the framework is adequate for the final ATLAS system.

  14. Resolution and Efficiency of Monitored Drift-Tube Chambers with Final Read-out Electronics at High Background Rates

    CERN Document Server

    Dubbert, J; Kortner, O; Kroha, H; Manz, A; Mohrdieck-Möck, S; Rauscher, F; Richter, R; Staude, A; Stiller, W

    2003-01-01

    The performance of a monitored drift-tube chamber for ATLAS with the final read-out electronics was tested at the Gamma Irradiation facility at CERN under varyin photon irradiation rates of up to 990~Hz\\,cm$^{-2}$ which corresponds to 10 times the highest background rate expected in ATLAS. The signal pulse-height measurement of the final read-out electronics was used to perform time-slewing corrections. The corrections improve the average single-tube resolution from 106~$\\mu$m to 89~$\\mu$m at the nominal discriminator threshold of 44~mV without irradiation, and from 114~$\\mu$m to 89~$\\mu$m at the maximum nominal irradiation rate in ATLAS of 100~Hz\\,cm$^{-2}$. The reduction of the threshold from 44~mV to 34~mV and the time-slewing corrections lead to an average single-tube resolution of 82~$\\mu$m without photon background and of 89~$\\mu$m at 100~Hz\\,cm$^{-2}$. The measured muon detection efficiency agrees with the expectation for the final read-out electronics.

  15. Common accounting system for monitoring the ATLAS distributed computing resources

    International Nuclear Information System (INIS)

    Karavakis, E; Andreeva, J; Campana, S; Saiz, P; Gayazov, S; Jezequel, S; Sargsyan, L; Schovancova, J; Ueda, I

    2014-01-01

    This paper covers in detail a variety of accounting tools used to monitor the utilisation of the available computational and storage resources within the ATLAS Distributed Computing during the first three years of Large Hadron Collider data taking. The Experiment Dashboard provides a set of common accounting tools that combine monitoring information originating from many different information sources; either generic or ATLAS specific. This set of tools provides quality and scalable solutions that are flexible enough to support the constantly evolving requirements of the ATLAS user community.

  16. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  17. Trigger Menu-aware Monitoring for the ATLAS experiment

    Science.gov (United States)

    Hoad, Xanthe; ATLAS Collaboration

    2017-10-01

    We present a“trigger menu-aware” monitoring system designed for the Run-2 data-taking of the ATLAS experiment at the LHC. Unlike Run-1, where a change in the trigger menu had to be matched by the installation of a new software release at Tier-0, the new monitoring system aims to simplify the ATLAS operational workflows. This is achieved by integrating monitoring updates in a quick and flexible manner via an Oracle DB interface. We present the design and the implementation of the menu-aware monitoring, along with lessons from the operational experience of the new system with the 2016 collision data.

  18. The ATLAS DDM Tracer monitoring framework

    CERN Document Server

    ZANG, D; The ATLAS collaboration; BARISITS, M; LASSNIG, M; Andrew STEWART, G; MOLFETAS, A; BEERMANN, T

    2012-01-01

    The DDM Tracer Service is aimed to trace and monitor the atlas file operations on the Worldwide LHC Computing Grid. The volume of traces has increased significantly since the service started in 2009. Now there are about ~5 million trace messages every day and peaks of greater than 250Hz, with peak rates continuing to climb, which gives the current service structure a big challenge. Analysis of large datasets based on on-demand queries to the relational database management system (RDBMS), i.e. Oracle, can be problematic, and have a significant effect on the database's performance. Consequently, We have investigated some new high availability technologies like messaging infrastructure, specifically ActiveMQ, and key-value stores. The advantages of key value store technology are that they are distributed and have high scalability; also their write performances are usually much better than RDBMS, all of which are very useful for the Tracer service. Indexes and distributed counters have been also tested to improve...

  19. Data Quality Monitoring Display for ATLAS experiment

    CERN Document Server

    Ilchenko, Y; The ATLAS collaboration; Corso-Radu, A; Hadavand, H; Kolos, S; Slagle, K; Taffard, A

    2009-01-01

    The start of collisions at the LHC brings with it much excitement and many unknowns. It’s essential at this point in the experiment to be prepared with user-friendly tools to quickly and efficiently determine the quality of the data. Easy visualization of data for the shift crew and experts is one of the key factors in the data quality assessment process. The Data Quality Monitoring Display (DQMD) is a visualization tool for the automatic data quality assessment of the ATLAS experiment. It is the interface through which the shift crew and experts can validate the quality of the data being recorded or processed, be warned of problems related to data quality, and identify the origin of such problems. This tool allows great flexibility for visualization of results from automatic histogram checking through custom algorithms, the configuration used to run the algorithms, and histograms used for the check, with an overlay of reference histograms when applicable. The display also supports visualization of the resu...

  20. Sea Ice Drift Monitoring in the Bohai Sea Based on GF4 Satellite

    Science.gov (United States)

    Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.

    2018-04-01

    The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious ice packs in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea ice and sea ice in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea ice drift and calculate the speed and direction of sea ice drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea ice drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea ice drift and can be used for drift monitoring of sea ice in the Bohai Sea.

  1. World-wide online monitoring interface of the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Mineev, M; Hauser, R; Salnikov, A

    2014-01-01

    The ATLAS collaboration accounts for more than 3000 members located all over the world. The efficiency of the experiment can be improved allowing system experts not present on site to follow the ATLAS operations in real-time, spotting potential problems which otherwise may remain unattended for a non-negligible time. Taking into account the wide geographical spread of the ATLAS collaboration, the solution of this problem is to have all monitoring information with minimal access latency available world-wide. We have implemented a framework which defines a standard approach for retrieving arbitrary monitoring information from the ATLAS private network via HTTP. An information request is made by specifying one of the predefined URLs with some optional parameters refining data which has to be shipped back in XML format. The framework takes care of receiving, parsing and forwarding such requests to the appropriate plugins. The plugins retrieve the requested data and convert it to XML (or optionally to JSON) format...

  2. Event filter monitoring with the ATLAS tile calorimeter

    CERN Document Server

    Fiorini, L

    2008-01-01

    The ATLAS Tile Calorimeter detector is presently involved in an intense phase of subsystems integration and commissioning with muons of cosmic origin. Various monitoring programs have been developed at different levels of the data flow to tune the set-up of the detector running conditions and to provide a fast and reliable assessment of the data quality already during data taking. This paper focuses on the monitoring system integrated in the highest level of the ATLAS trigger system, the Event Filter, and its deployment during the Tile Calorimeter commissioning with cosmic ray muons. The key feature of Event Filter monitoring is the capability of performing detector and data quality control on complete physics events at the trigger level, hence before events are stored on disk. In ATLAS' online data flow, this is the only monitoring system capable of giving a comprehensive event quality feedback.

  3. Sentinel-1 provides ice drift observations for Copernicus Marine Environment Monitoring Service (CMEMS)

    DEFF Research Database (Denmark)

    Toudal Pedersen, Leif; Saldo, Roberto

    are matched every month in the processing system.The quality of the ice drift vectors are routinely verified against GPS locations of drift buoys and the RMS difference between the baseline product available through the Copernicus Marine Environment Monitoring Service data portal and GPS drifters is ~500......Sea ice drift information with an accuracy that allows also ice deformation (divergence, shear, vorticity) to be derived is being operationally generated in the Copernicus Marine Environment Monitoring Service (CMEMS).The method is based on 2-dimensional digital cross correlation where subsections......View project in 2007 when large volumes of ENVISAT ASAR images of the Polar regions became available during the International Polar Year. A dataset of daily ice drift vectors of the Polar Regions (North and South) is now available covering the time period from 2007 to the present time.In 2009 the processing...

  4. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    Science.gov (United States)

    Schovancová, J.; Campana, S.; Di Girolamo, A.; Jézéquel, S.; Ueda, I.; Wenaus, T.; Atlas Collaboration

    2014-06-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources. During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visualization bits across the different tools. A rich family of various filtering and searching options enhancing available user interfaces comes naturally with the data and visualization layer separation. With a variety of reliable monitoring data accessible through standardized interfaces, the possibility of automating actions under well defined conditions correlating multiple data sources has become feasible. In this contribution we discuss also about the automated exclusion of degraded resources and their automated recovery in various activities.

  5. Trigger Menu-aware Monitoring for the ATLAS experiment

    CERN Document Server

    Hoad, Xanthe; The ATLAS collaboration

    2016-01-01

    Changes in the trigger menu, the online algorithmic event-selection of the ATLAS experiment at the LHC in response to luminosity and detector changes are followed by adjustments in their monitoring system. This is done to ensure that the collected data is useful, and can be properly reconstructed at Tier-0, the first level of the computing grid. During Run 1, ATLAS deployed monitoring updates with the installation of new software releases at Tier-0. This created unnecessary overhead for developers and operators, and unavoidably led to different releases for the data-taking and the monitoring setup. We present a "trigger menu-aware" monitoring system designed for the ATLAS Run 2 data-taking. The new monitoring system aims to simplify the ATLAS operational workflows, and allows for easy and flexible monitoring configuration changes at the Tier-0 site via an Oracle DB interface. We present the design and the implementation of the menu-aware monitoring, along with lessons from the operational experience of the ne...

  6. ATLAS Offline Software Performance Monitoring and Optimization

    CERN Document Server

    Chauhan, N; Kittelmann, T; Langenberg, R; Mandrysch , R; Salzburger, A; Seuster, R; Ritsch, E; Stewart, G; van Eldik, N; Vitillo, R

    2014-01-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline Athena framework, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide optimisation. Code can be instrumented firstly using the PAPI tool, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles and instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event gives a good understanding of the whole algorithm level performance of ATLAS code. Further data can be obtained using pin, a dynamic binary instrumentation tool. Pintools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is...

  7. ATLAS Offline Software Performance Monitoring and Optimization

    CERN Document Server

    Chauhan, N; The ATLAS collaboration; Kittelmann, T; Langenberg, R; Mandrysch , R; Salzburger, A; Seuster, R; Ritsch, E; Stewart, G; van Eldik, N; Vitillo, R

    2013-01-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline Athena framework, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide optimisation. Code can be instrumented firstly using the PAPI tool, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles and instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event gives a good understanding of the whole algorithm level performance of ATLAS code. Further data can be obtained using pin, a dynamic binary instrumentation tool. Pintools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is...

  8. Elimination of Drifts in Long-Duration Monitoring for Apnea-Hypopnea of Human Respiration

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-10-01

    Full Text Available This paper reports a methodology to eliminate an uncertain baseline drift in respiratory monitoring using a thermal airflow sensor exposed in a high humidity environment. Human respiratory airflow usually contains a large amount of moisture (relative humidity, RH > 85%. Water vapors in breathing air condense gradually on the surface of the sensor so as to form a thin water film that leads to a significant sensor drift in long-duration respiratory monitoring. The water film is formed by a combination of condensation and evaporation, and therefore the behavior of the humidity drift is complicated. Fortunately, the exhale and inhale responses of the sensor exhibit distinguishing features that are different from the humidity drift. Using a wavelet analysis method, we removed the baseline drift of the sensor and successfully recovered the respiratory waveform. Finally, we extracted apnea-hypopnea events from the respiratory signals monitored in whole-night sleeps of patients and compared them with golden standard polysomnography (PSG results.

  9. Radiation Damage Monitoring in the ATLAS Pixel Detector

    CERN Document Server

    Seidel, S

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to integrated luminosity 5.6 fb$^{-1}$ is presented along with a comparison to the theoretical model.

  10. Rate Predictions and Trigger/DAQ Resource Monitoring in ATLAS

    CERN Document Server

    Schaefer, D M; The ATLAS collaboration

    2012-01-01

    Since starting in 2010, the Large Hadron Collider (LHC) has pro- duced collisions at an ever increasing rate. The ATLAS experiment successfully records the collision data with high eciency and excel- lent data quality. Events are selected using a three-level trigger system, where each level makes a more re ned selection. The level-1 trigger (L1) consists of a custom-designed hardware trigger which seeds two higher software based trigger levels. Over 300 triggers compose a trig- ger menu which selects physics signatures such as electrons, muons, particle jets, etc. Each trigger consumes computing resources of the ATLAS trigger system and oine storage. The LHC instantaneous luminosity conditions, desired physics goals of the collaboration, and the limits of the trigger infrastructure determine the composition of the ATLAS trigger menu. We describe a trigger monitoring frame- work for computing the costs of individual trigger algorithms such as data request rates and CPU consumption. This framework has been used...

  11. A liquid-nitrogen monitor for lithium-drifted germanium detectors

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1977-11-01

    An instrument has been developed that makes use of a load cell to monitor the liquid nitrogen in the Dewar flask of a lithium-drifted germaniun detector. The contents are recorded on a chart recorder, and an alarm is sounded when the previously set content has been reached. A signal switches off the high-voltage power supply 30 minutes after the alarm is triggered. The calibration of the load-cell monitor is described in an appendix [af

  12. ATLAS BigPanDA Monitoring and Its Evolution

    CERN Document Server

    Wenaus, Torre; The ATLAS collaboration; Korchuganova, Tatiana

    2016-01-01

    BigPanDA is the latest generation of the monitoring system for the Production and Distributed Analysis (PanDA) system. The BigPanDA monitor is a core component of PanDA and also serves the monitoring needs of the new ATLAS Production System Prodsys-2. BigPanDA has been developed to serve the growing computation needs of the ATLAS Experiment and the wider applications of PanDA beyond ATLAS. Through a system-wide job database, the BigPanDA monitor provides a comprehensive and coherent view of the tasks and jobs executed by the system, from high level summaries to detailed drill-down job diagnostics. The system has been in production and has remained in continuous development since mid 2014, today effectively managing more than 2 million jobs per day distributed over 150 computing centers worldwide. BigPanDA also delivers web-based analytics and system state views to groups of users including distributed computing systems operators, shifters, physicist end-users, computing managers and accounting services. Provi...

  13. Production facility for ATLAS new small wheel drift panels at JGU Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Duedder, Andreas; Lin, Tai-Hua; Schott, Matthias [Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    The ATLAS Phase-I Upgrade in 2018 includes the replacement of the ATLAS Muon Small Wheel by the so-called New Small Wheel (NSW). Large-scale Micromegas detectors will serve as tracking detectors in the NSW. Parts of these detectors will be constructed at the Johannes Gutenberg University Mainz (JGU). In order to fulfill the requirements of the envisioned detector performance, a high precision detector construction is crucial. Especially the surface planarity of the produced detector panels has to better than 30 μm over an area of 2 m{sup 2}. Methods for the quality control of the raw material and the constructed parts have been developed and implemented. This talk gives an overview of the production facility at JGU Mainz which is used during the mass production of NSW components in coming years.

  14. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Bazalová, Magdalena; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Havránek, Miroslav; Jahoda, M.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kus, V.; Kvasnička, J.; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Popule, Jiří; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Sluka, T.; Staroba, Pavel; Šťastný, Jan; Taševský, Marek; Tic, Tomáš; Tomášek, Lukáš; Tomášek, Michal; Valenta, Jan; Vrba, Václav

    2010-01-01

    Roč. 70, č. 3 (2010), s. 755-758 ISSN 1434-6044 R&D Projects: GA MŠk LC527; GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * LAr Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.248, year: 2010 http://arxiv.org/pdf/1002.4189

  15. Construction and Test of New Precision Drift-Tube Chambers for Upgrades of the ATLAS Muon Spectrometer in 2016/17

    CERN Document Server

    INSPIRE-00218480; Kortner, O.; Müller, F.; Nowak, S.; Schmidt-Sommerfeld, K.

    2016-01-01

    Small-diameter Muon Drift Tube (sMDT) chambers have been developed for the ATLAS muon detector upgrade. They possess an improved rate capability and a more compact design with respect to the existing chambers, which allows to equip detector regions uninstrument at present. The chamber assembly methods have been optimized for mass production, while the sense wire positioning accuracy is improved to below ten microns. The chambers will be ready for installation in the winter shutdown 2016/17 of the Large Hadron Collider. The design and construction of the new sMDT chambers for ATLAS will be discussed as well as measurements of their precision and performance.

  16. The ATLAS PanDA Monitoring System and its Evolution

    CERN Document Server

    Klimentov, A; The ATLAS collaboration; Potekhin, M; Wenaus, T

    2011-01-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on PanDA design in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Important to meeting these and other requirements is a comprehensive monitoring system. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. We decided to migrat...

  17. The ATLAS PanDA Monitoring System and its Evolution

    CERN Document Server

    Klimentov, A; The ATLAS collaboration; Potekhin, M; Wenaus, T

    2010-01-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on PanDA design in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Important to meeting these and other requirements is a comprehensive monitoring system. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. We decided to migrat...

  18. Monitoring the Radiation Damage of the ATLAS Pixel Detector

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2012-01-01

    The Pixel Detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5x10^{33} cm^{-2} s^{-1}, results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented.

  19. Monitoring the radiation damage of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Cooke, M.

    2013-01-01

    The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5×10 33 cm −2 s −1 , results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented

  20. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  1. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  2. Auto-associative Kernel Regression Model with Weighted Distance Metric for Instrument Drift Monitoring

    International Nuclear Information System (INIS)

    Shin, Ho Cheol; Park, Moon Ghu; You, Skin

    2006-01-01

    Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto associative kernel regression (AAKR) by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression

  3. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  4. Monitoring individual traffic flows within the ATLAS TDAQ network

    International Nuclear Information System (INIS)

    Sjoen, R; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A; Stancu, S; Ciobotaru, M

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  5. ATLAS Tier-2 monitoring system for the German cloud

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Joerg; Quadt, Arnulf; Weber, Pavel [II. Physikalisches Institut, Georg-August-Universitaet, Goettingen (Germany)

    2011-07-01

    The ATLAS tier centers in Germany provide their computing resources for the ATLAS experiment. The stable and sustainable operation of this so-called DE-cloud heavily relies on effective monitoring of the Tier-1 center GridKa and its associated Tier-2 centers. Central and local grid information services constantly collect and publish the status information from many computing resources and sites. The cloud monitoring system discussed in this presentation evaluates the information related to different cloud resources and provides a coherent and comprehensive view of the cloud. The main monitoring areas covered by the tool are data transfers, cloud software installation, site batch systems, Service Availability Monitoring (SAM). The cloud monitoring system consists of an Apache-based Python application, which retrieves the information and publishes it on the generated HTML web page. This results in an easy-to-use web interface for the limited number of sites in the cloud with fast and efficient access to the required information starting from a high level summary for the whole cloud to detailed diagnostics for the single site services. This approach provides the efficient identification of correlated site problems and simplifies the administration on both cloud and site level.

  6. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  7. The LUCID detector ATLAS luminosity monitor and its electronic system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00378808; The ATLAS collaboration

    2016-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  8. Improved ATLAS HammerCloud Monitoring for local Site Administration

    CERN Document Server

    Boehler, Michael; The ATLAS collaboration; Hoenig, Friedrich; Legger, Federica; Sciacca, Francesco Giovanni; Mancinelli, Valentina

    2015-01-01

    Every day hundreds of tests are run on the Worldwide LHC Computing Grid for the ATLAS, and CMS experiments in order to evaluate the performance and reliability of the different computing sites. All this activity is steered, controlled, and monitored by the HammerCloud testing infrastructure. Sites with failing functionality tests are auto-excluded from the ATLAS computing grid, therefore it is essential to provide a detailed and well organized web interface for the local site administrators such that they can easily spot and promptly solve site issues. Additional functionality has been developed to extract and visualize the most relevant information. The site administrators can now be pointed easily to major site issues which lead to site blacklisting as well as possible minor issues that are usually not conspicuous enough to warrant the blacklisting of a specific site, but can still cause undesired effects such as a non-negligible job failure rate. This paper summarizes the different developments and optimiz...

  9. Improved ATLAS HammerCloud Monitoring for local Site Administration

    CERN Document Server

    Boehler, Michael; The ATLAS collaboration; Hoenig, Friedrich; Legger, Federica

    2015-01-01

    Every day hundreds of tests are run on the Worldwide LHC Computing Grid for the ATLAS, CMS, and LHCb experiments in order to evaluate the performance and reliability of the different computing sites. All this activity is steered, controlled, and monitored by the HammerCloud testing infrastructure. Sites with failing functionality tests are auto-excluded from the ATLAS computing grid, therefore it is essential to provide a detailed and well organized web interface for the local site administrators such that they can easily spot and promptly solve site issues. Additional functionalities have been developed to extract and visualize the most relevant information. The site administrators can now be pointed easily to major site issues which lead to site blacklisting as well as possible minor issues that are usually not conspicuous enough to warrant the blacklisting of a specific site, but can still cause undesired effects such as a non-negligible job failure rate. This contribution summarizes the different developm...

  10. Electrical resistivity monitoring of the drift scale test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.

    1997-01-01

    Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Eight boreholes, containing a total of 140 ERT electrodes, were drilled above and below the Heated Drift (HD) to form vertical planes parallel to the drift. In addition, 4 boreholes, containing 60 electrodes, drilled from the Access Observation Drift (AOD) form vertical planes at right angles to the HD. Four ERT surveys, three before and one after heating began, were conducted during the first quarter of FY 98. Tomographic images of absolute electrical resistivity have been calculated using these data and are presented in this report. The report also presents the coordinates of the electrodes used for the ERT surveys. Future reports will include images of electrical resistivity change calculated using data collected before and during the heating episode. The changes to be recovered will then be used in combination with temperature maps of the region to calculate maps of saturation change around the HD

  11. Upgrades for Offline Data Quality Monitoring at ATLAS

    CERN Document Server

    Joergensen, M D; The ATLAS collaboration; Frost, J

    2013-01-01

    The ATLAS offline data quality monitoring infrastructure functioned successfully during the 2010-2012 run of the LHC. During the 2013-14 long shutdown, a large number of upgrades will be made in response to user needs and to take advantage of new technologies - for example, deploying richer web applications, improving dynamic visualization of data, streamlining configuration, and moving applications to a common messaging bus. Additionally consolidation and integration activities will occur. We will discuss lessons learned so far and the progress of the upgrade project, as well as associated improvements to the data reconstruction and processing chain.

  12. Monitoring individual traffic flows within the ATLAS TDAQ network

    CERN Document Server

    Sjoen, R; Ciobotaru, M; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities a...

  13. The ATLAS PanDA Monitoring System and its Evolution

    Science.gov (United States)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  14. The ATLAS PanDA Monitoring System and its Evolution

    International Nuclear Information System (INIS)

    Klimentov, A; Nevski, P; Wenaus, T; Potekhin, M

    2011-01-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  15. Integrated System for Performance Monitoring of ATLAS TDAQ Network

    CERN Document Server

    Savu, D; The ATLAS collaboration; Martin, B; Sjoen, R; Batraneanu, S; Stancu, S

    2010-01-01

    The ATLAS TDAQ Network consists of three separate networks spanning four levels of the experimental building. Over 200 edge switches and 5 multi-blade chassis routers are used to interconnect 2000 processors, adding up to more than 7000 high speed interfaces. In order to substantially speed-up ad-hoc and post mortem analysis, a scalable, yet flexible, integrated system for monitoring both network statistics and environmental conditions, processor parameters and data taking characteristics was required. For successful up-to-the-minute monitoring, information from many SNMP compliant devices, independent databases and custom APIs was gathered, stored and displayed in an optimal way. Easy navigation and compact aggregation of multiple data sources were the main requirements; characteristics not found in any of the tested products, either open-source or commercial. This paper describes how performance, scalability and display issues were addressed and what challenges the project faced during development and deplo...

  16. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.

    Science.gov (United States)

    Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J

    2018-01-01

    Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.

  17. Resolution and drift measurements on the Advanced Photon Source beam position monitors

    International Nuclear Information System (INIS)

    Chung, Y.; Kahana, E.

    1994-01-01

    The resolution and long-term drift of the Advanced Photon Source (APS) beam position monitor (BPM) electronics were measured using the charged particle beams in the ESRF storage ring with various beam current and configurations (single bunch, 8 and 16 equally spaced bunches, and 1/3-fill). The energy of the stored electrons was 6 GeV. The integrated BPM electronics system as used for this work is capable of measuring the beam position on a turn-by-turn basis, which can be accumulated for N turns (N = 2 n , n = 1, 2, ... , 11). Estimation of the BPM resolution apart from the low-frequency beam motion was made by measuring the standard deviation in the measured beam position with different Ns. The analysis of the results indicates a BPM resolution of 18/√ N [μm] for the APS storage ring, which is equivalent to 0.07 μm/√Hz. For the miniature insertion device BPM with 2.8 times higher sensitivity, the resolution will be 0.02 μm/√Hz. The long-term drift of the BPM electronics independent of the actual beam motion was measured at 2 μm/hr, which settled after approximately 1.5 hours. This drift can be attributed mainly to the temperature effect. Comparison of the results with the laboratory measurements shows good agreement. Implication of the BPM resolution limit on the proposed global and local beam position feedback systems for the APS storage ring will also be discussed

  18. Resolution and drift measurements on the advanced photon source beam position monitor

    International Nuclear Information System (INIS)

    Chung, Y.; Kahana, E.

    1995-01-01

    The resolution and long-term drift of the Advanced Photon Source (APS) beam position monitor (BPM) electronics were measured using the charged particle beams in the ESRF storage ring with various beam current and configurations (single bunch, 8 and 16 equally spaced bunches, and 1/3-fill). The energy of the stored electrons was 6 GeV. The integrated BPM electronics system as used for this work is capable of measuring the beam position on a turn-by-turn basis, which can be accumulated for N turns (N=2 n , n=1,2,...,11) . Estimation of the BPM resolution apart from the low-frequency beam motion was made by measuring the standard deviation in the measured beam position with different Ns. The analysis of the results indicates a BPM resolution of 18/√N [μm] for the APS storage ring, which is equivalent to 0.07 μm/√Hz. For the miniature insertion device BPM with 2.8 times higher sensitivity, the resolution will be 0.02 μm/√Hz. The long-term drift of the BPM electronics independent of the actual beam motion was measured at 2 μm/hr, which settled after approximately 1.5 hours. This drift can be attributed mainly to the temperature effect. Comparison of the results with the laboratory measurements shows good agreement. Implication of the BPM resolution limit on the proposed global and local beam position feedback systems for the APS storage ring will also be discussed. copyright 1995 American Institute of Physics

  19. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  20. Monitoring of computing resource utilization of the ATLAS experiment

    International Nuclear Information System (INIS)

    Rousseau, David; Vukotic, Ilija; Schaffer, RD; Dimitrov, Gancho; Aidel, Osman; Albrand, Solveig

    2012-01-01

    Due to the good performance of the LHC accelerator, the ATLAS experiment has seen higher than anticipated levels for both the event rate and the average number of interactions per bunch crossing. In order to respond to these changing requirements, the current and future usage of CPU, memory and disk resources has to be monitored, understood and acted upon. This requires data collection at a fairly fine level of granularity: the performance of each object written and each algorithm run, as well as a dozen per-job variables, are gathered for the different processing steps of Monte Carlo generation and simulation and the reconstruction of both data and Monte Carlo. We present a system to collect and visualize the data from both the online Tier-0 system and distributed grid production jobs. Around 40 GB of performance data are expected from up to 200k jobs per day, thus making performance optimization of the underlying Oracle database of utmost importance.

  1. The ATLAS Wide-Range Database & Application Monitoring

    CERN Document Server

    Vasileva, Petya Tsvetanova; The ATLAS collaboration

    2018-01-01

    In HEP experiments at LHC the database applications often become complex by reflecting the ever demanding requirements of the researchers. The ATLAS experiment has several Oracle DB clusters with over 216 database schemes each with its own set of database objects. To effectively monitor them, we designed a modern and portable application with exceptionally good characteristics. Some of them include: concise view of the most important DB metrics; top SQL statements based on CPU, executions, block reads, etc.; volume growth plots per schema and DB object type; database jobs section with signaling for problematic ones; in-depth analysis in case of contention on data or processes. This contribution describes also the technical aspects of the implementation. The project can be separated into three independent layers. The first layer consists in highly-optimized database objects hiding all complicated calculations. The second layer represents a server providing REST access to the underlying database backend. The th...

  2. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00075913; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  3. ATLAS MDT neutron sensitivity measurement and modeling

    International Nuclear Information System (INIS)

    Ahlen, S.; Hu, G.; Osborne, D.; Schulz, A.; Shank, J.; Xu, Q.; Zhou, B.

    2003-01-01

    The sensitivity of the ATLAS precision muon detector element, the Monitored Drift Tube (MDT), to fast neutrons has been measured using a 5.5 MeV Van de Graaff accelerator. The major mechanism of neutron-induced signals in the drift tubes is the elastic collisions between the neutrons and the gas nuclei. The recoil nuclei lose kinetic energy in the gas and produce the signals. By measuring the ATLAS drift tube neutron-induced signal rate and the total neutron flux, the MDT neutron signal sensitivities were determined for different drift gas mixtures and for different neutron beam energies. We also developed a sophisticated simulation model to calculate the neutron-induced signal rate and signal spectrum for ATLAS MDT operation configurations. The calculations agree with the measurements very well. This model can be used to calculate the neutron sensitivities for different gaseous detectors and for neutron energies above those available to this experiment

  4. Integrated monitoring of the ATLAS online computing farm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389536; The ATLAS collaboration; Brasolin, Franco; Fazio, Daniel; Gament, Costin-Eugen; Lee, Christopher; Scannicchio, Diana; Twomey, Matthew Shaun

    2017-01-01

    The online farm of the ATLAS experiment at the LHC, consisting of nearly 4100 PCs with various characteristics, provides configuration and control of the detector and performs the collection, processing, selection and conveyance of event data from the front-end electronics to mass storage. The status and health of every host must be constantly monitored to ensure the correct and reliable operation of the whole online system. This is the first line of defense, which should not only promptly provide alerts in case of failure but, whenever possible, warn of impending issues. The monitoring system should be able to check up to 100000 health parameters and provide alerts on a selected subset. In this paper we present the implementation and validation of our new monitoring and alerting system based on Icinga 2 and Ganglia. We describe how the load distribution and high availability features of Icinga 2 allowed us to have a centralised but scalable system, with a configuration model that allows full flexibility whil...

  5. Integrated monitoring of the ATLAS online computing farm

    CERN Document Server

    Ballestrero, Sergio; The ATLAS collaboration; Fazio, Daniel; Gament, Costin-Eugen; Lee, Christopher; Scannicchio, Diana; Twomey, Matthew Shaun

    2016-01-01

    The online farm of the ATLAS experiment at the LHC, consisting of nearly 4000 PCs with various characteristics, provides configuration and control of the detector and performs the collection, processing, selection and conveyance of event data from the front-end electronics to mass storage. The status and health of every host must be constantly monitored to ensure the correct and reliable operation of the whole online system. This is the first line of defense, which should not only promptly provide alerts in case of failure but, whenever possible, warn of impending issues. The monitoring system should be able to check up to 100000 health parameters and provide alerts on a selected subset. In this paper we present the implementation and validation of our new monitoring and alerting system based on Icinga 2 and Ganglia. We describe how the load distribution and high availability features of Icinga 2 allowed us to have a centralised but scalable system, with a configuration model that allows full flexibility whil...

  6. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P S; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will cause damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 and fluences of 1-MeV(Si) equivalent neutrons and thermal neutrons at several locations in ATLAS detector. In this paper measurements collected during two years of ATLAS data taking are presented and compared to predictions from radiation background simulations.

  7. Measurements of the drift velocity using a small gas chamber for monitoring of the CMS muon system

    CERN Document Server

    Frangenheim, J

    This diploma thesis presents measurements of the drift velocity of electrons in gas. A small gas detector (VDC1 ) is used. This chamber is intended for measurement and monitoring of the drift velocity in the gas of the muon chambers of the gas detector system in the barrel area of the CMS-detector2 at the European Research Center for Particle Physics CERN near Geneva. The drift velocity is, together with the drift time, a key parameter for measurements with drift chambers. The aim of this thesis is to perform test measurements to determine parameters of the chamber and also to estimate systematic errors. Beside the drift velocity, further parameters of the gas like the pressure and the temperature are measured and accounted for. For the further work with the VDCs, analysis software has been created which is used for the analysis of the measurements. Parallel to this work, necessary improvements, e.g. for the high voltage robustness, were also implemented and tested. In addition, studies and test measurements ...

  8. A study of gas mixtures for the ATLAS MDT

    International Nuclear Information System (INIS)

    Zhao, T.; He, L.

    1996-01-01

    Results of a gas study for the ATLAS Monitored Drift Tubes (MDT) are reported. The electron drift velocity, Lorentz angle and tube radius to drift time relations are calculated for selected gas mixtures by using the CERN drift chamber simulation code GARFIELD/MAGBOLTZ. The drift tube efficiency, gas gain, avalanche size and self-quenching streamer (SQS) mode fraction as functions of anode voltage are measured by using radioactive sources. Discussions of the results, including effects of nitrogen and water vapor, are presented

  9. Analysis of stresses on the 1st phase support of the monitoring drifts of the radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Hatala Jozef

    1999-09-01

    Full Text Available In the paper, the stability analysis of the radioactive waste repository monitoring drifts’ support by means of the numerical modelling - finite element method is described. The aim of this analysis was to judge to what extent the designed 1st phase support’s parameters correspond with the geomechanical conditions determined by the engineering-geological survey.

  10. Development of Beam Conditions Monitor for the ATLAS experiment

    CERN Document Server

    Dolenc Kittelmann, Irena; Mikuž, M

    2008-01-01

    If there is a failure in an element of the accelerator the resulting beam losses could cause damage to the inner tracking devices of the experiments. This thesis presents the work performed during the development phase of a protection system for the ATLAS experiment at the LHC. The Beam Conditions Monitor (BCM) system is a stand-alone system designed to detect early signs of beam instabilities and trigger a beam abort in case of beam failures. It consists of two detector stations positioned at z=±1.84m from the interaction point. Each station comprises four BCM detector modules installed symmetrically around the beam pipe with sensors located at r=55 mm. This structure will allow distinguishing between anomalous events (beam gas and beam halo interactions, beam instabilities) and normal events due to proton-proton interaction by measuring the time-of-flight as well as the signal pulse amplitude from detector modules on the timescale of nanoseconds. Additionally, the BCM system aims to provide a coarse instan...

  11. Operational SAR-based sea ice drift monitoring over the Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2012-07-01

    Full Text Available An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented.

  12. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept

    Science.gov (United States)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping

    2018-05-01

    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  13. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM concept

    Directory of Open Access Journals (Sweden)

    F. Ardhuin

    2018-05-01

    Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  14. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  15. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  16. Using Micromegas in ATLAS to Monitor the Luminosity

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    Five small prototype micromegas detectors were positioned in the ATLAS detector during LHC running at $\\sqrt{s} = 8\\, \\mathrm{TeV}$. A $9\\times 4.5\\, \\mathrm{cm^2}$ two-gap detector was placed in front of the electromagnetic calorimeter and four $9\\times 10\\, \\mathrm{cm^2}$ detectors on the ATLAS Small Wheels, the first station of the forward muon spectrometer. The one attached to the calorimeter was exposed to interaction rates of about $70\\,\\mathrm{kHz/cm^2}$ at ATLAS luminosity $\\mathcal{L}=5\\times 10^{33}\\,\\mathrm{cm^{-2}s^{-1}}$ two orders of magnitude higher than the rates in the Small Wheel. We compare the currents drawn by the detector installed in front of the electromagnetic calorimeter with the luminosity measurement in ATLAS experiment.

  17. Monitoring methods of drift chamber characteristics. Application to SPES III detection

    International Nuclear Information System (INIS)

    Kerboul, C.

    1984-05-01

    For the SPES III spectrometer at the Laboratoire National Saturne, a large detection system has been developed which consists of three drift chambers for localization of the particle trajectories. Performances of these detectors for high spatial resolution depend greatly on different parameters such as anode current, gas mixture, drift velocity, efficiency, etc. The present work summarizes a set of methods necessary to the control of these parameters, for achieving the high resolution essentiel for the nuclear physic at intermediate energy [fr

  18. Frameworks to monitor and predict resource usage in the ATLAS High Level Trigger

    CERN Document Server

    Martin, Tim; The ATLAS collaboration

    2016-01-01

    The ATLAS High Level Trigger Farm consists of around 30,000 CPU cores which filter events at up to 100 kHz input rate. A costing framework is built into the high level trigger, this enables detailed monitoring of the system and allows for data-driven predictions to be made utilising specialist datasets. This talk will present an overview of how ATLAS collects in-situ monitoring data on both CPU usage and dataflow over the data-acquisition network during the trigger execution, and how these data are processed to yield both low level monitoring of individual selection-algorithms and high level data on the overall performance of the farm. For development and prediction purposes, ATLAS uses a special `Enhanced Bias' event selection. This mechanism will be explained along with how is used to profile expected resource usage and output event-rate of new physics selections, before they are executed on the actual high level trigger farm.

  19. Frameworks to monitor and predict rates and resource usage in the ATLAS High Level Trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219969; The ATLAS collaboration

    2017-01-01

    The ATLAS High Level Trigger Farm consists of around 40,000 CPU cores which filter events at an input rate of up to 100 kHz. A costing framework is built into the high level trigger thus enabling detailed monitoring of the system and allowing for data-driven predictions to be made utilising specialist datasets. An overview is presented in to how ATLAS collects in-situ monitoring data on CPU usage during the trigger execution, and how these data are processed to yield both low level monitoring of individual selection-algorithms and high level data on the overall performance of the farm. For development and prediction purposes, ATLAS uses a special ‘Enhanced Bias’ event selection. This mechanism is explained along with how it is used to profile expected resource usage and output event rate of new physics selections, before they are executed on the actual high level trigger farm.

  20. FIELD INVESTIGATION OF THE DRIFT SHADOW

    International Nuclear Information System (INIS)

    G.W. Su; T.J. Kneafsey

    2006-01-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rock mass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming the existence of the drift shadow have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow--and the corresponding hydrological process at the Hazel-Atlas silica-sand mine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rock mass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content using a gravimetric technique, as well as analyzed for chemistry. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift

  1. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will causes damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 , displacement damage in silicon in terms of 1-MeV(Si) equivalent neutron fluence and fluence of thermal neutrons at several locations in ATLAS detector. In this paper design of the system, results of measurements and comparison of measured integrated doses and fluences with predictions from FLUKA simulation will be shown.

  2. Monitored Drift Tube (MDT) chambers for precise measurement of muon trajectories in the ATLAS muon spectrometer.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The basic detection component of the chamber is the cylindrical, aluminium, gas-filled MDT with its central tungsten rhenium wire. Each chamber is an assembly of two parallel multilayers of MDTs separated by a spacer frame. The chambers are pictured here in building 887 on the Prévessin site where they are being tested.

  3. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    CERN Document Server

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  4. ATLAS rewards industry

    CERN Multimedia

    2006-01-01

    Showing excellence in mechanics, electronics and cryogenics, three industries are honoured for their contributions to the ATLAS experiment. Representatives of the three award-wining companies after the ceremony. For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Close interaction with CERN was a key factor in the selection of each rewarded company, in addition to the high-quality products they delivered to the experiment. Alu Menziken Industrie AG, of Switzerland, was honoured for the production of 380,000 aluminium tubes for the Monitored Drift Tube Chambers (MDT). As Giora Mikenberg, the Muon System Project Leader stressed, the aluminium tubes were delivered on time with an extraordinary quality and precision. Between October 2000 and Jan...

  5. Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Winklmeier, F; The ATLAS collaboration

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  6. A System for Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Bartoldus, R; The ATLAS collaboration; Cogan, J; Salnikov, A; Strauss, E; Winklmeier, F

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  7. Experience with the custom-developed ATLAS Offline Trigger Monitoring Framework and Reprocessing Infrastructure

    CERN Document Server

    Bartsch, V

    2012-01-01

    After about two years of data taking with the ATLAS detector manifold experience with the custom-developed trigger monitoring and reprocessing infrastructure could be collected. The trigger monitoring can be roughly divided into online and offline monitoring. The online monitoring calculates and displays all rates at every level of the trigger and evaluates up to 3000 data quality histograms. The physics analysis relevant data quality information is being checked and recorded automatically. The offline trigger monitoring provides information depending of the physics motivated different trigger streams after a run has finished. Experts are checking the information being guided by the assessment of algorithms checking the current histograms with a reference. The experts are recording their assessment in a so-called data quality defects which are used to select data for physics analysis. In the first half of 2011 about three percent of all data had an intolerable defect resulting from the ATLAS trigger system. T...

  8. Field investigation of the drift shadow

    International Nuclear Information System (INIS)

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-01-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming its existence have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow and the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine Formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content and chemical constituents. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift. Tensiometers, electrical resistance probes, neutron probes, and ground

  9. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 9, Jul (2014), s. 1-39 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : missing-energy * data acquisition * ATLAS * CERN LHC Coll * monitoring performance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  10. Development of Fast High-Resolution Muon Drift-Tube Detectors for High Counting Rates

    CERN Document Server

    INSPIRE-00287945; Dubbert, J.; Horvat, S.; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Adomeit, S.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.; Zibell, A.

    2011-01-01

    Pressurized drift-tube chambers are e?cient detectors for high-precision tracking over large areas. The Monitored Drift-Tube (MDT) chambers of the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) reach a spatial resolution of 35 micons and almost 100% tracking e?ciency with 6 layers of 30 mm diameter drift tubes operated with Ar:CO2 (93:7) gas mixture at 3 bar and a gas gain of 20000. The ATLAS MDT chambers are designed to cope with background counting rates due to neutrons and gamma-rays of up to about 300 kHz per tube which will be exceeded for LHC luminosities larger than the design value of 10-34 per square cm and second. Decreasing the drift-tube diameter to 15 mm while keeping the other parameters, including the gas gain, unchanged reduces the maximum drift time from about 700 ns to 200 ns and the drift-tube occupancy by a factor of 7. New drift-tube chambers for the endcap regions of the ATLAS muon spectrometer have been designed. A prototype chamber consisting of 12 times 8 l...

  11. ATLAS EventIndex General Dataflow and Monitoring Infrastructure

    CERN Document Server

    Barberis, Dario; The ATLAS collaboration

    2016-01-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast datasets discovery, event-picking, crosschecks with other ATLAS systems and checks for event duplication. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome t...

  12. ATLAS EventIndex general dataflow and monitoring infrastructure

    CERN Document Server

    AUTHOR|(SzGeCERN)638886; The ATLAS collaboration; Barberis, Dario; Favareto, Andrea; Garcia Montoro, Carlos; Gonzalez de la Hoz, Santiago; Hrivnac, Julius; Prokoshin, Fedor; Salt, Jose; Sanchez, Javier; Toebbicke, Rainer; Yuan, Ruijun

    2017-01-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast dataset discovery, event-picking, crosschecks with other ATLAS systems and checks for event duplication. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome th...

  13. Monitoring and controlling ATLAS data management: The Rucio web user interface

    OpenAIRE

    Lassnig, Mario; Beermann, Thomas Alfons; Vigne, Ralph; Barisits, Martin-Stefan; Garonne, Vincent; Serfon, Cedric

    2015-01-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new data management system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for user-generated views. The interface follows three des...

  14. Control, Test and Monitoring Software Framework for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Achenbach, R; Aharrouche, M; Andrei, V; Åsman, B; Barnett, B M; Bauss, B; Bendel, M; Bohm, C; Booth, J R A; Bracinik, J; Brawn, I P; Charlton, D G; Childers, J T; Collins, N J; Curtis, C J; Davis, A O; Eckweiler, S; Eisenhandler, E F; Faulkner, P J W; Fleckner, J; Föhlisch, F; Gee, C N P; Gillman, A R; Goringer, C; Groll, M; Hadley, D R; Hanke, P; Hellman, S; Hidvegi, A; Hillier, S J; Johansen, M; Kluge, E E; Kühl, T; Landon, M; Lendermann, V; Lilley, J N; Mahboubi, K; Mahout, G; Meier, K; Middleton, R P; Moa, T; Morris, J D; Müller, F; Neusiedl, A; Ohm, C; Oltmann, B; Perera, V J O; Prieur, D P F; Qian, W; Rieke, S; Rühr, F; Sankey, D P C; Schäfer, U; Schmitt, K; Schultz-Coulon, H C; Silverstein, S; Sjölin, J; Staley, R J; Stamen, R; Stockton, M C; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Watkins, P M; Watson, A; Weber, P; Wessels, M; Wildt, M

    2008-01-01

    The ATLAS first-level calorimeter trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates and to measure total and missing ET in the ATLAS calorimeters. The complete trigger system consists of over 300 customdesignedVME modules of varying complexity. These modules are based around FPGAs or ASICs with many configurable parameters, both to initialize the system with correct calibrations and timings and to allow flexibility in the trigger algorithms. The control, testing and monitoring of these modules requires a comprehensive, but well-designed and modular, software framework, which we will describe in this paper.

  15. Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers

    CERN Document Server

    Levin, DS; The ATLAS collaboration; Dai, T; Diehl, EB; Ferretti, C; Hindes, JM; Zhou, B

    2009-01-01

    The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase.

  16. Predictive analytics tools to adjust and monitor performance metrics for the ATLAS Production System

    CERN Document Server

    Titov, Mikhail; The ATLAS collaboration

    2017-01-01

    Every scientific workflow involves an organizational part which purpose is to plan an analysis process thoroughly according to defined schedule, thus to keep work progress efficient. Having such information as an estimation of the processing time or possibility of system outage (abnormal behaviour) will improve the planning process, provide an assistance to monitor system performance and predict its next state. The ATLAS Production System is an automated scheduling system that is responsible for central production of Monte-Carlo data, highly specialized production for physics groups, as well as data pre-processing and analysis using such facilities as grid infrastructures, clouds and supercomputers. With its next generation (ProdSys2) the processing rate is around 2M tasks per year that is more than 365M jobs per year. ProdSys2 evolves to accommodate a growing number of users and new requirements from the ATLAS Collaboration, physics groups and individual users. ATLAS Distributed Computing in its current stat...

  17. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    CERN Document Server

    McKee, S; The ATLAS collaboration; Laurens, P; Severini, H; Wlodek, T; Wolff, S; Zurawski, J

    2012-01-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multidomain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit[8] at ATLAS sites in the United States. This software cr...

  18. A camac-based intelligent subsystem for ATLAS example application: cryogenic monitoring and control

    International Nuclear Information System (INIS)

    Pardo, R.; Kawarasaki, Y.; Wasniewski, K.

    1985-01-01

    A subunit of the CAMAC accelerator control system of ATLAS for monitoring and, eventually, controlling the cryogenic refrigeration and distribution facility is under development. This development is the first application of a philosophy of distributed intelligence which will be applied throughout the ATLAS control system. The control concept is that of an intelligent subunit of the existing ATLAS CAMAC control highway. A single board computer resides in an auxiliary crate controller which allows access to all devices within the crate. The local SBC can communicate to the host over the CAMAC highway via a protocol involving the use of memory in the SBC which can be accessed from the host in a DMA mode. This provides a mechanism for global communications, such as for alarm conditions, as well as allowing the cryogenic system to respond to the demands of the accelerator system

  19. CAMAC-based intelligent subsystem for ATLAS example application: cryogenic monitoring and control

    International Nuclear Information System (INIS)

    Pardo, R.; Kawarasaki, Y.; Wasniewski, K.

    1985-01-01

    A subunit of the CAMAC accelerator control system of ATLAS for monitoring and, eventually, controlling the cryogenic refrigeration and distribution facility is under development. This development is the first application of a philosophy of distributed intelligence which will be applied throughout the ATLAS control system. The control concept is that of an intelligent subunit of the existing ATLAS CAMAC control highway. A single board computer resides in an auxiliary crate controller which allows access to all devices within the crate. The local SBC can communicate to the host over the CAMAC highway via a protocol involving the use of memory in the SBC which can be accessed from the host in a DMA mode. This provides a mechanism for global communications, such as for alarm conditions, as well as allowing the cryogenic system to respond to the demands of the accelerator system

  20. Search for Higgs boson in the $WW^{(\\ast)}$ channel in ATLAS and drift time measurement in the liquid argon calorimeter in ATLAS

    CERN Document Server

    RUAN, Xifeng; Jin, S

    A Higgs search is performed in the W W → lνlν channel using the full 2011 data at a center-of-mass energy of sqrt(s) = 7 TeV and part of 2012 data at 8 TeV taken by the ATLAS experiment at the LHC. The corresponding integrated luminosity values are 4.7 fb−1 and 5.8 fb−1 , respectively. The cut based analysis is performed and several data-driven methods for background estimation are introduced. The jet veto survival probability method for top background estimation in 0-jet bin is proposed and used in the Higgs search. Another data-driven method to correct missingET shapes in the Drell- Yan process is also presented. In 2011, the standard model Higgs boson with the Higgs mass from 133 to 261 GeV is excluded at 95% CL, while the expected exclusion range is 127−234 GeV. In 2012, an excess of events over expected background is observed at mH = 125 GeV. Combining both samples, the minimum observed p0 value is 3 ×10−3 , corresponding to 2.8 standard deviations. The fitted signal strength at mH = 125 GeV...

  1. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  2. Monitoring of computing resource use of active software releases at ATLAS

    Science.gov (United States)

    Limosani, Antonio; ATLAS Collaboration

    2017-10-01

    The LHC is the world’s most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the TierO at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end-user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as “MemoryMonitor”, to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and displayed in plots generated using Python visualization libraries and collected into pre-formatted auto-generated Web pages, which allow the ATLAS developer community to track the performance of their algorithms. This information is however preferentially filtered to domain leaders and developers through the use of JIRA and via reports given at ATLAS software meetings. Finally, we take a glimpse of the future by reporting on the expected CPU and RAM usage in benchmark workflows associated with the High Luminosity LHC and anticipate the ways performance monitoring will evolve to understand and benchmark future workflows.

  3. Monitoring ATLAS L1 CTP data from P-BEAST

    CERN Document Server

    Roggel, Jens

    2017-01-01

    The ATLAS Level-1 Central Trigger Processor combines information from the calori-meters and the muon detectors and takes a decision to accept an event based on a list of selection criteria (trigger items). Busy signals from the detectors and generated dead time by the Central Trigger Processor prevents the buffers to become full. The visualisation of this data is useful to check the functionality of the system. My project during the CERN summer student programme was to develop an application, which produces plots of relevant Central Trigger Processor data and presents the results in an appropriate format for experts and users.

  4. Intelligent monitoring and fault diagnosis for ATLAS TDAQ: a complex event processing solution

    CERN Document Server

    Magnoni, Luca; Luppi, Eleonora

    Effective monitoring and analysis tools are fundamental in modern IT infrastructures to get insights on the overall system behavior and to deal promptly and effectively with failures. In recent years, Complex Event Processing (CEP) technologies have emerged as effective solutions for information processing from the most disparate fields: from wireless sensor networks to financial analysis. This thesis proposes an innovative approach to monitor and operate complex and distributed computing systems, in particular referring to the ATLAS Trigger and Data Acquisition (TDAQ) system currently in use at the European Organization for Nuclear Research (CERN). The result of this research, the AAL project, is currently used to provide ATLAS data acquisition operators with automated error detection and intelligent system analysis. The thesis begins by describing the TDAQ system and the controlling architecture, with a focus on the monitoring infrastructure and the expert system used for error detection and automated reco...

  5. Interplay between the Lorentz Angle drift and residual mean biases in the IBL of the ATLAS detector

    CERN Document Server

    Verschuuren, Pim Jordi

    2018-01-01

    Dedicated studies on the performance of the Inner Detector are conducted to ensure an optimal track reconstruction of the particles created by the proton-proton collisions in the ATLAS detector at the LHC. In 2015 the insertable B-Layer was added to the Inner Detector as the new layer closest to the beam pipe. This extra addition was placed in 2014 during Long Shutdown 1 and was necessary because of the expected decrease in B-tagging efficiency and vertexing precision associated with the revision of the luminosity profile evolution at the LHC. The initial Pixel detector, the 3 most inner layers of the ID excluding the IBL, were build for a luminosity of 10^{34}cm^{−2}s^{−1} while the expected luminosity for Run-2 was higher[1]. The new IBL would help to preserve the tracking performance needed in the new high luminosity regions that we are approaching. This paper describes a study of the IBL Lorentz Angle, residual mean biases and possible correlation between these two to improve the tracking performance...

  6. Monitoring geo-biodiversity interactions of a restored inland drift-sand cell in Nieuw Bergen (Li)

    Science.gov (United States)

    Jungerius, Pieter Dirk; van den Ancker, Hanneke; Arts, Andries; Borkent, Ido; Ketner-Oostra, Rita; Ketner, Pieter

    2013-04-01

    In 2002, a research was carried out by Jungerius, van den Ancker, Ketner-Oostra and Evers to see if it was possible to restore active inland drift-sand areas in National Park De Maasduinen in Nieuw Bergen, Limburg. The active drift-sand had completely disappeared from the area by nitrogen-rich precipitation. It was decided to try and restore the activity depicted on the first aerial photographs in 1933, if soil profile development and Natura 2000 species allowed this. The areas stabilized since then were overgrown, dominantly by the invasive moss Campylopus introflexus, a species introduced to the Netherlands by tanks during World War II. Areas colonized by Natura 2000 lichens were spared as centres for re-colonization. The research gave insight in the elongated geomorphological cell-structure of the original drift-sands and the rate of soil development after stabilisation. In 2005, the first active drift-sand cell was restored by increasing the erodibility of the terrain, by mechanically removing the sod and up to 5 cm thick soil formed since 1933, and increasing the erosivity of the wind by removing trees, mainly in the upwind direction. In 2008 a second cell was restored, and a third one in 2011. A monitoring programme was set up for the first cell to improve our understanding of stabilization and geodiversity-biodiversity interactions in drift-sand areas. Lines of erosion pins were monitored at regular intervals for a five year period. Aerial photographs made in 2005 and 2008 showed the pattern of stabilization of the moving sand. The poster will present the results of these experiments. In 2012, five years after the restoration, the active drift-sand cell was stable again and had turned into an open dry grassland, almost completely dominated by the Natura 2000 species Corynephorus canescens. Unfortunately several of the areas that were spared as centres for re-colonization of Natura 2000 lichens lay in the sand transport zone and had acted as sandtraps, and

  7. Monitoring of Computing Resource Use of Active Software Releases in ATLAS

    CERN Document Server

    Limosani, Antonio; The ATLAS collaboration

    2016-01-01

    The LHC is the world's most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the Tier0 at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as "MemoryMonitor", to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and displayed...

  8. ATLAS EventIndex General Dataflow and Monitoring Infrastructure

    CERN Document Server

    Fernandez Casani, Alvaro; The ATLAS collaboration

    2016-01-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast access. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome the performance shortcomings detected during production peaks; an object storage approach is instea...

  9. Upgrade and integration of the configuration and monitoring tools for the ATLAS Online farm

    CERN Document Server

    Ballestrero, S; The ATLAS collaboration; Darlea, G L; Dumitru, I; Scannicchio, DA; Twomey, M S; Valsan, M L; Zaytsev, A

    2012-01-01

    The ATLAS Online farm is a non-homogeneous cluster of nearly 3000 PCs which run the data acquisition, trigger and control of the ATLAS detector. The systems are configured and monitored by a combination of open-source tools, such as Quattor and Nagios, and tools developed in-house, such as ConfDB. We report on the ongoing introduction of new provisioning and configuration tools, Puppet and ConfDB v2 which are more flexible and allow automation for previously uncovered needs, and on the upgrade and integration of the monitoring and alerting tools, including the interfacing of these with the TDAQ Shifter Assistant software and their integration with configuration tools. We discuss the selection of the tools and the assessment of their functionality and performance, and how they enabled the introduction of virtualization for selected services.

  10. Monitoring the tracking performance of the ATLAS trigger for electrons in Z->ee decays

    CERN Document Server

    Langford, Jonathon

    2016-01-01

    This project was carried out to develop an algorithm which monitors the performance of the tracking system in the ATLAS trigger. The algorithm uses tag and probe methods to measure the efficiency of the tracking for electrons by looking at Z → ee candidates. Once this method is validated, the ultimate goal is to implement the algorithm into the High-Level-Trigger (HLT) of ATLAS whilst online. The advantage of this technique over traditional offline monitoring is continuous feedback during data taking and higher available statistics. In this report the results of an offline analysis are presented, showing electron tracking efficiencies between 96% and 99% across almost all regions of the inner detector (run 306278).

  11. Upgrade and integration of the configuration and monitoring tools for the ATLAS Online farm

    International Nuclear Information System (INIS)

    Ballestrero, S; Darlea, G–L; Twomey, M S; Brasolin, F; Dumitru, I; Valsan, M L; Scannicchio, D A; Zaytsev, A

    2012-01-01

    The ATLAS Online farm is a non-homogeneous cluster of nearly 3000 systems which run the data acquisition, trigger and control of the ATLAS detector. The systems are configured and monitored by a combination of open-source tools, such as Quattor and Nagios, and tools developed in-house, such as ConfDB. We report on the ongoing introduction of new provisioning and configuration tools, Puppet and ConfDB v2, which are more flexible and allow automation for previously uncovered needs, and on the upgrade and integration of the monitoring and alerting tools, including the interfacing of these with the TDAQ Shifter Assistant software and their integration with configuration tools. We discuss the selection of the tools and the assessment of their functionality and performance, and how they enabled the introduction of virtualization for selected services.

  12. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    CERN Document Server

    Kazarov, A; The ATLAS collaboration; Magnoni, L

    2011-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for filtering and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The huge flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This require strong competence and experience in understanding and discovering problems and root causes, and often the meaningful in...

  13. The AAL project: Automated monitoring and intelligent AnaLysis for the ATLAS data taking infrastructure

    CERN Document Server

    Magnoni, L; The ATLAS collaboration; Kazarov, A

    2011-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for filtering and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The huge flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This require strong competence and experience in understanding and discovering problems and root causes, and often the meaningful in...

  14. Intensive irradiation studies, monitoring and commissioning data analysis on the ATLAS MDT chambers

    CERN Document Server

    AUTHOR|(CDS)2071390; Susinno, Giancarlo

    2007-01-01

    The ATLAS MDT chambers have been extensively studied, starting from irradiation test to commissioning activities. First, a detailed description of high rate and high background tests is given. These tests have been carried out on a small ATLAS-like MDT chamber, by the Cosenza and Roma TRE groups. The precision tracking chambers of the muon spectrometer, in fact, have to operate for more than 10 years in the harsh LHC background, due mainly to low energy neutrons and photons. Aging effects, such as the deterioration of the tube themselves can appear and difficulties in pattern recognition and tracking may occur. Moreover an upgrade to Super-LHC is foreseen. Then, there is an accurate description of the MDTGnam package, the official software for the on-line monitoring of MDT performances. When dealing with a complex apparatus, such as the ATLAS experiment, an on-line monitoring system is a fundamental tool. The GNAM project, developed by Cosenza, Pavia, Pisa and Napoli groups, is a monitoring framework to be us...

  15. Monitoring of computing resource use of active software releases at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219183; The ATLAS collaboration

    2017-01-01

    The LHC is the world’s most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the TierO at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end-user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as “MemoryMonitor”, to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and dis...

  16. Commissioning and first operation of the pCVD diamond ATLAS Beam Conditions Monitor

    CERN Document Server

    Dobos, D

    2009-01-01

    The main aim of the ATLAS Beam Conditions Monitor is to protect the ATLAS Inner Detector silicon trackers from high radiation doses caused by LHC beam incidents, e.g. magnet failures. The BCM uses in total 16 1x1 cm2 500 μm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors. They are arranged in 8 positions around the ATLAS LHC interaction point. Time difference measurements with sub nanosecond resolution are performed to distinguish between particles from a collision and spray particles from a beam incident. An abundance of the latter leads the BCM to provoke an abort of the LHC beam. A FPGA based readout system with a sampling rate of 2.56 GHz performs the online data analysis and interfaces the results to ATLAS and the beam abort system. The BCM diamond sensors, the detector modules and their readout system are described. Results of the operation with the first LHC beams are reported and results of commissioning and timing measurements (e.g. with cosmic muons) in preparation for first ...

  17. Application of the ATLAS DAQ and Monitoring System for MDT and RPC Commissioning

    CERN Document Server

    Pasqualucci, E

    2007-01-01

    The ATLAS DAQ and monitoring software are currently commonly used to test detectors during the commissioning phase. In this paper, their usage in MDT and RPC commissioning is described, both at the surface pre-commissioning and commissioning stations and in the ATLAS pit. Two main components are heavily used for detector tests. The ROD Crate DAQ software is based on the ATLAS Readout application. Based on the plug-in mechanism, it provides a complete environment to interface any kind of detector or trigger electronics to the ATLAS DAQ system. All the possible flavours of this application are used to test and run the MDT and RPC detectors at the pre-commissioning and commissioning sites. Ad-hoc plug-ins have been developed to implement data readout via VME, both with ROD prototypes and emulating final electronics to read out data with temporary solutions, and to provide trigger distribution and busy management in a multi-crate environment. Data driven event building functionality is also used to combine data f...

  18. Computing shifts to monitor ATLAS distributed computing infrastructure and operations

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068610; The ATLAS collaboration; Barberis, Dario; Crepe-Renaudin, Sabine Chrystel; De, Kaushik; Fassi, Farida; Stradling, Alden; Svatos, Michal; Vartapetian, Armen; Wolters, Helmut

    2017-01-01

    The ATLAS Distributed Computing (ADC) group established a new Computing Run Coordinator (CRC) shift at the start of LHC Run 2 in 2015. The main goal was to rely on a person with a good overview of the ADC activities to ease the ADC experts’ workload. The CRC shifter keeps track of ADC tasks related to their fields of expertise and responsibility. At the same time, the shifter maintains a global view of the day-to-day operations of the ADC system. During Run 1, this task was accomplished by a person of the expert team called the ADC Manager on Duty (AMOD), a position that was removed during the shutdown period due to the reduced number and availability of ADC experts foreseen for Run 2. The CRC position was proposed to cover some of the AMODs former functions, while allowing more people involved in computing to participate. In this way, CRC shifters help with the training of future ADC experts. The CRC shifters coordinate daily ADC shift operations, including tracking open issues, reporting, and representing...

  19. Computing shifts to monitor ATLAS distributed computing infrastructure and operations

    CERN Document Server

    Adam Bourdarios, Claire; The ATLAS collaboration

    2016-01-01

    The ATLAS Distributed Computing (ADC) group established a new Computing Run Coordinator (CRC) shift at the start of LHC Run2 in 2015. The main goal was to rely on a person with a good overview of the ADC activities to ease the ADC experts' workload. The CRC shifter keeps track of ADC tasks related to their fields of expertise and responsibility. At the same time, the shifter maintains a global view of the day-to-day operations of the ADC system. During Run1, this task was accomplished by the ADC Manager on Duty (AMOD), a position that was removed during the shutdown period due to the reduced number and availability of ADC experts foreseen for Run2. The CRC position was proposed to cover some of the AMOD’s former functions, while allowing more people involved in computing to participate. In this way, CRC shifters help train future ADC experts. The CRC shifters coordinate daily ADC shift operations, including tracking open issues, reporting, and representing ADC in relevant meetings. The CRC also facilitates ...

  20. On-line data analysis and monitoring for H1 drift chambers

    Science.gov (United States)

    Düllmann, Dirk

    1992-05-01

    The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Task of this system are: - analysis of event data including on-line track search, - on-line calibration from normal events and testpulse events, - control of the high voltage and monitoring of settings and currents, - monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, differnt VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks.

  1. Dashboard Task Monitor for Managing ATLAS User Analysis on the Grid

    Science.gov (United States)

    Sargsyan, L.; Andreeva, J.; Jha, M.; Karavakis, E.; Kokoszkiewicz, L.; Saiz, P.; Schovancova, J.; Tuckett, D.; Atlas Collaboration

    2014-06-01

    The organization of the distributed user analysis on the Worldwide LHC Computing Grid (WLCG) infrastructure is one of the most challenging tasks among the computing activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the operating system and Grid environment. This contribution describes the functionality of the application and its implementation details, in particular authentication, authorization and audit of the management operations.

  2. Dashboard task monitor for managing ATLAS user analysis on the grid

    International Nuclear Information System (INIS)

    Sargsyan, L; Andreeva, J; Karavakis, E; Saiz, P; Tuckett, D; Jha, M; Kokoszkiewicz, L; Schovancova, J

    2014-01-01

    The organization of the distributed user analysis on the Worldwide LHC Computing Grid (WLCG) infrastructure is one of the most challenging tasks among the computing activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the operating system and Grid environment. This contribution describes the functionality of the application and its implementation details, in particular authentication, authorization and audit of the management operations.

  3. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Mikuz, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)], E-mail: Marko.Mikuz@ijs.si; Cindro, V.; Dolenc, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Frais-Koelbl, H. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Gorisek, A. [CERN, Geneva (Switzerland); Griesmayer, E. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H. [Ohio State University, Columbus (United States); Kramberger, G.; Mandic, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Niegl, M. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Pernegger, H. [CERN, Geneva (Switzerland); Trischuk, W. [University of Toronto, Toronto (Canada); Weilhammer, P. [CERN, Geneva (Switzerland); Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z={+-}183.8cm and r{approx}55mm ({eta}{approx}4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14{+-}2.

  4. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    International Nuclear Information System (INIS)

    Mikuz, M.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Gorisek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandic, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r∼55mm (η∼4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2

  5. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  6. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Gang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electrons and photons. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton–proton luminosity recorded by ATLAS at a centre-of-mass energy of 7–8 TeV had calorimeter data quality suitable for physics analysis.

  7. Glance traceability – Web system for equipment traceability and radiation monitoring for the ATLAS experiment

    CERN Document Server

    Ramos de Azevedo Evora, L H; Pommes, K; Galvão, K K; Maidantchik, C

    2010-01-01

    During the operation, maintenance, and dismantling periods of the ATLAS Experiment, the traceability of all detector equipment must be guaranteed for logistic and safety matters. The running of the Large Hadron Collider will expose the ATLAS detector to radiation. Therefore, CERN must follow specific regulations from both the French and Swiss authorities for equipment removal, transport, repair, and disposal. GLANCE Traceability, implemented in C++ and Java/Java3D, has been developed to fulfill the requirements. The system registers and associates each equipment part to either a functional position in the detector or a zone outside the underground area through a 3D graphical user interface. Radiation control of the equipment is performed using a radiation monitor connected to the system: the local background gets stored and the threshold is automatically calculated. The system classifies the equipment as non radioactive if its radiation dose does not exceed that limit value. History for both location traceabi...

  8. On-line data analysis and monitoring for H1 drift chambers

    International Nuclear Information System (INIS)

    Duellmann, D.

    1992-01-01

    The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Tasks of this system are: Analysis of event data including on-line track search; on-line calibration from normal events and testpulse events; control of the high voltage and monitoring of settings and currents; monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, different VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks. (orig.)

  9. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    International Nuclear Information System (INIS)

    McKee, Shawn; Lake, Andrew; Laurens, Philippe; Severini, Horst; Wlodek, Tomasz; Wolff, Stephen; Zurawski, Jason

    2012-01-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  10. The next generation of the ATLAS PanDA Monitoring System

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Klimentov, A; Love, P; Potekhin, M; Wenaus, T

    2014-01-01

    For many years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, with up to 1M completed jobs/day in 2013. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. Outside of ATLAS, the PanDA system is also being used in projects like AMS, LSST and a few others. It currently undergoes a significant redesign, both of the core server components responsible for workload management, brokerage and data access, and of the monitoring part, which is critically important for efficient execution of the workflow in a way that’s transparent to the user and also provides an effective set of tools for operational support. The new generation of the PanDA Monitoring Service is designed based on a proven, scalable, industry-standard Web Fr...

  11. Southwest Washington littoral drift restoration—Beach and nearshore morphological monitoring

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Ruggiero, Peter; Kaminsky, George M.

    2012-01-01

    A morphological monitoring program has documented the placement and initial dispersal of beach nourishment material (280,000 m3) placed between the Mouth of the Columbia River (MCR) North Jetty and North Head, at the southern end of the Long Beach Peninsula in southwestern Washington State. A total of 21 topographic surveys and 8 nearshore bathymetric surveys were performed between July 11, 2010, and November 4, 2011. During placement, southerly alongshore transport resulted in movement of nourishment material to the south towards the MCR North Jetty. Moderate wave conditions (significant wave height around 4 m) following the completion of the nourishment resulted in cross-shore sediment transport, with most of the nourishment material transported into the nearshore bars. The nourishment acted as a buffer to the more severe erosion, including dune overtopping and retreat, that was observed at the northern end of the study area throughout the winter. One year after placement of the nourishment, onshore transport and beach recovery were most pronounced within the permit area and to the south toward the MCR North Jetty. This suggests that there is some long-term benefit of the nourishment for reducing erosion rates locally, although the enhanced recovery also could be due to natural gradients in alongshore transport causing net movement of the sediment from north to south. Measurements made during the morphological monitoring program documented the seasonal movement and decay of nearshore sand bars. Low-energy conditions in late summer resulted in onshore bar migration early in the monitoring program. Moderate wave conditions in the autumn resulted in offshore movement of the middle bar and continued onshore migration of the outer bar. High-energy wave conditions early in the winter resulted in strong cross-shore transport and creation of a 3-bar system along portions of the coast. More southerly wave events occurred later in the winter and early spring and coincided

  12. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    International Nuclear Information System (INIS)

    Sivolella, A; Maidantchik, C; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal) is one of the ATLAS sub-detectors. The read-out is performed by about 10,000 PhotoMultiplier Tubes (PMTs). The signal of each PMT is digitized by an electronic channel. The Monitoring and Calibration Web System (MCWS) supports the data quality analysis of the electronic channels. This application was developed to assess the detector status and verify its performance. It can provide to the user the list of TileCal known problematic channels, that is stored in the ATLAS condition database (COOL DB). The bad channels list guides the data quality validator in identifying new problematic channels and is used in data reconstruction and the system allows to update the channels list directly in the COOL database. MCWS can generate summary results, such as eta-phi plots and comparative tables of the masked channels percentage. Regularly, during the LHC (Large Hadron Collider) shutdown a maintenance of the detector equipments is performed. When a channel is repaired, its calibration constants stored in the COOL database have to be updated. Additionally MCWS system manages the update of these calibration constants values in the COOL database. The MCWS has been used by the Tile community since 2008, during the commissioning phase, and was upgraded to comply with ATLAS operation specifications. Among its future developments, it is foreseen an integration of MCWS with the TileCal control Web system (DCS) in order to identify high voltage problems automatically.

  13. Development of noSQL data storage for the ATLAS PanDA Monitoring System

    International Nuclear Information System (INIS)

    Potekhin, M

    2012-01-01

    For several years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, typically exceeding 500k completed jobs/day by June 2011. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. These challenges are being met with a R and D effort aimed at implementing a scalable and efficient monitoring data storage based on a noSQL solution (Cassandra). We present our motivations for using this technology, as well as data design and the techniques used for efficient indexing of the data. We also discuss the hardware requirements as they were determined by testing with actual data and realistic loads.

  14. Event-Driven Messaging for Offline Data Quality Monitoring at ATLAS

    CERN Document Server

    Onyisi, Peter; The ATLAS collaboration

    2015-01-01

    During LHC Run 1, the information flow through the offline data quality monitoring in ATLAS relied heavily on chains of processes polling each other's outputs for handshaking purposes. This resulted in a fragile architecture with many possible points of failure and an inability to monitor the overall state of the distributed system. We report on the status of a project undertaken during the LHC shutdown to replace the ad hoc synchronization methods with a uniform message queue system. This enables the use of standard protocols to connect processes on multiple hosts; reliable transmission of messages between possibly unreliable programs; easy monitoring of the information flow; and the removal of inefficient polling-based communication.

  15. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    Science.gov (United States)

    Burghgrave, Blake; ATLAS Collaboration

    2017-10-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database updates can be performed through a custom-made web interface.

  16. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    Burghgrave, Blake; The ATLAS collaboration

    2016-01-01

    We present an overview of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database during a brief calibration loop between when a run ends and bulk processing begins. Bulk processed data is reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and MC production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database upd...

  17. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354209; The ATLAS collaboration

    2017-01-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline D...

  18. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    International Nuclear Information System (INIS)

    Kazarov, A; Miotto, G Lehmann; Magnoni, L

    2012-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker

  19. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    Science.gov (United States)

    Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-06-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker

  20. Using drift nets to capture early life stages and monitor spawning of the yangtze river chinese sturgeon (Acipenser sinensis)

    Science.gov (United States)

    Wei, Q.W.; Kynard, B.; Yang, D.G.; Chen, X.H.; Du, H.; Shen, L.; Zhang, H.

    2009-01-01

    A sampling system for capturing sturgeon eggs using a D-shaped bottom anchored drift net was used to capture early life stages (ELS) of Chinese sturgeon, Acipenser sinensis, and monitor annual spawning success at Yichang on the Yangtze River, 1996-2004, before and just after the Three Gorges Dam began operation. Captured were 96 875 ELS (early life stages: eggs, yolk-sac larvae = eleuthero embryos, and larvae); most were eggs and only 2477 were yolk-sac larvae. Most ELS were captured in the main river channel and inside the bend at the Yichang spawning reach. Yolk-sac larvae were captured for a maximum of 3 days after hatching began, indicating quick dispersal downstream. The back-calculated day of egg fertilization over the eight years indicated a maximum spawning window of 23 days (20 October-10 November). Spawning in all years was restricted temporally, occurred mostly at night and during one or two spawning periods, each lasting several days. The brief temporal spawning window may reduce egg predation by opportunistic predators by flooding the river bottom with millions of eggs. During 1996-2002, the percentage of fertilized eggs in an annual 20-egg sample was between 63.5 to 94.1%; however, in 2003 the percentage fertilized was only 23.8%. This sudden decline may be related to the altered environmental conditions at Yichang caused by operation of the Three Gorges Dam. Further studies are needed to monitor spawning and changes in egg fertilization in this threatened population. ?? 2009 Blackwell Verlag GmbH.

  1. Daily dose monitoring with atlas-based auto-segmentation on diagnostic quality CT for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen; Vassil, Andrew; Xia, Ping [Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, Ohio 44106 (United States); Zhong, Yahua [Department of Radiation Oncology, Zhongnan Hospital, Wuhan 430071 (China)

    2013-11-15

    Purpose: To evaluate the feasibility of daily dose monitoring using a patient specific atlas-based autosegmentation method on diagnostic quality verification images.Methods: Seven patients, who were treated for prostate cancer with intensity modulated radiotherapy under daily imaging guidance of a CT-on-rails system, were selected for this study. The prostate, rectum, and bladder were manually contoured on the first six and last seven sets of daily verification images. For each patient, three patient specific atlases were constructed using manual contours from planning CT alone (1-image atlas), planning CT plus first three verification CTs (4-image atlas), and planning CT plus first six verification CTs (7-image atlas). These atlases were subsequently applied to the last seven verification image sets of the same patient to generate the auto-contours. Daily dose was calculated by applying the original treatment plans to the daily beam isocenters. The autocontours and manual contours were compared geometrically using the dice similarity coefficient (DSC), and dosimetrically using the dose to 99% of the prostate CTV (D99) and the D5 of rectum and bladder.Results: The DSC of the autocontours obtained with the 4-image atlases were 87.0%± 3.3%, 84.7%± 8.6%, and 93.6%± 4.3% for the prostate, rectum, and bladder, respectively. These indices were higher than those from the 1-image atlases (p < 0.01) and comparable to those from the 7-image atlases (p > 0.05). Daily prostate D99 of the autocontours was comparable to those of the manual contours (p= 0.55). For the bladder and rectum, the daily D5 were 95.5%± 5.9% and 99.1%± 2.6% of the planned D5 for the autocontours compared to 95.3%± 6.7% (p= 0.58) and 99.8%± 2.3% (p < 0.01) for the manual contours.Conclusions: With patient specific 4-image atlases, atlas-based autosegmentation can adequately facilitate daily dose monitoring for prostate cancer.

  2. Construction and test of sMDT chambers for the ATLAS muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Eric; Schmidt-Sommerfeld, Korbinian; Kortner, Oliver; Kroha, Hubert [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    In the ATLAS muon spectrometer, Monitored Drift Tube chambers (MDTs) are used for precise tracking measurements. In order to increase the geometric acceptance and rate capability, new chambers have been designed and are under construction to be installed in ATLAS during the winter shutdown of 2016/17 of the LHC. The new chambers have a drift tube diameter of 15 mm (compared to 30 mm of the other MDTs) and are therefore called sMDT chambers. This presentation reports on the progress of chamber construction and on the results of quality assurance tests.

  3. Simulations of the x-ray imaging capabilities of the silicon drift detectors (SDD) for the LOFT wide-field monitor

    DEFF Research Database (Denmark)

    Evangelista, Y.; Campana, R.; Del Monte, E.

    2012-01-01

    Detector (LAD), carrying an unprecedented effective area of 10 m^2, is complemented by a coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the sky potentially accessible to the LAD, to provide the history and context for the sources observed by LAD and to trigger its observations...... on their most interesting and extreme states. In this paper we present detailed simulations of the imaging capabilities of the Silicon Drift Detectors developed for the LOFT Wide Field Monitor detection plane. The simulations explore a large parameter space for both the detector design and the environmental...

  4. Monitoring and controlling ATLAS data management: The Rucio web user interface

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Barisits, Martin-Stefan; Serfon, Cedric; Vigne, Ralph; Garonne, Vincent

    2015-01-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for user-generated views. The interface follows three design principles. First, the collection and storage of data from internal and external systems is asynchronous to reduce latency. This includes the use of technologies like ActiveMQ or Nagios. Second, analysis of the data into information is done massively parallel due to its volume, using a combined approach with an Oracle database and Hadoop MapReduce. Third, sharing of the information does not distinguish between human or programmatic access, making it easy to access selective parts of the information both in constrained frontends like ...

  5. Monitoring and controlling ATLAS data management: The Rucio web user interface

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vigne, Ralph; Barisits, Martin-Stefan; Garonne, Vincent; Serfon, Cedric

    2015-01-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new data management system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for user-generated views. The interface follows three design principles. First, the collection and storage of data from internal and external systems is asynchronous to reduce latency. This includes the use of technologies like ActiveMQ or Nagios. Second, analysis of the data into information is done massively parallel due to its volume, using a combined approach with an Oracle database and Hadoop MapReduce. Third, sharing of the information does not distinguish between human or programmatic access, making it easy to access selective parts of the information both in constrained...

  6. Advanced Visualization System for Monitoring the ATLAS TDAQ Network in real-time

    CERN Document Server

    Batraneanu, S M; The ATLAS collaboration; Martin, B; Savu, D O; Stancu, S N; Leahu, L

    2012-01-01

    The trigger and data acquisition (TDAQ) system of the ATLAS experiment at CERN comprises approximately 2500 servers interconnected by three separate Ethernet networks, totaling 250 switches. Due to its real-time nature, there are additional requirements in comparison to conventional networks in terms of speed and performance. A comprehensive monitoring framework has been developed for expert use. However, non experts may experience difficulties in using it and interpreting data. Moreover, specific performance issues, such as single component saturation or unbalanced workload, need to be spotted with ease, in real-time, and understood in the context of the full system view. We addressed these issues by developing an innovative visualization system where the users benefit from the advantages of 3D graphics to visualize the large monitoring parameter space associated with our system. This has been done by developing a hierarchical model of the complete system onto which we overlaid geographical, logical and real...

  7. Daily dose monitoring with atlas-based auto-segmentation on diagnostic quality CT for prostate cancer

    International Nuclear Information System (INIS)

    Li, Wen; Vassil, Andrew; Xia, Ping; Zhong, Yahua

    2013-01-01

    Purpose: To evaluate the feasibility of daily dose monitoring using a patient specific atlas-based autosegmentation method on diagnostic quality verification images.Methods: Seven patients, who were treated for prostate cancer with intensity modulated radiotherapy under daily imaging guidance of a CT-on-rails system, were selected for this study. The prostate, rectum, and bladder were manually contoured on the first six and last seven sets of daily verification images. For each patient, three patient specific atlases were constructed using manual contours from planning CT alone (1-image atlas), planning CT plus first three verification CTs (4-image atlas), and planning CT plus first six verification CTs (7-image atlas). These atlases were subsequently applied to the last seven verification image sets of the same patient to generate the auto-contours. Daily dose was calculated by applying the original treatment plans to the daily beam isocenters. The autocontours and manual contours were compared geometrically using the dice similarity coefficient (DSC), and dosimetrically using the dose to 99% of the prostate CTV (D99) and the D5 of rectum and bladder.Results: The DSC of the autocontours obtained with the 4-image atlases were 87.0%± 3.3%, 84.7%± 8.6%, and 93.6%± 4.3% for the prostate, rectum, and bladder, respectively. These indices were higher than those from the 1-image atlases (p 0.05). Daily prostate D99 of the autocontours was comparable to those of the manual contours (p= 0.55). For the bladder and rectum, the daily D5 were 95.5%± 5.9% and 99.1%± 2.6% of the planned D5 for the autocontours compared to 95.3%± 6.7% (p= 0.58) and 99.8%± 2.3% (p < 0.01) for the manual contours.Conclusions: With patient specific 4-image atlases, atlas-based autosegmentation can adequately facilitate daily dose monitoring for prostate cancer

  8. LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

    CERN Document Server

    Sbrizzi, A

    2007-01-01

    The LUCID (LUminosity Cherenkov Integrating Detector) apparatus is composed by two symmetric arms deployed at about 17 m from the ATLAS interaction point. The purpose of this detector, which will be installed in january 2008, is to monitor the luminosity delivered by the LHC machine to the ATLAS experiment. An absolute luminosity calibration is needed and it will be provided by a Roman Pot type detector with the two arms placed at about 240 m from the interaction point. Each arm of the LUCID detector is based on an aluminum vessel containing 20 Cherenkov tubes, 15 mm diameter and 1500 mm length, filled with C4F10 radiator gas at 1.5 bar. The Cherenkov light generated by charged particles above the threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. The challenging aspect of this detector is its readout in an environment characterized by the high dose of radiation (about 0.7 Mrad/year at 10^33cm^2 s^-1) it must withstand. In order to fulfill these radiation hardness requirem...

  9. The monitoring system of the ATLAS muon spectrometer read out driver

    CERN Document Server

    Capasso, Luciano

    My PhD work focuses upon the Read Out Driver (ROD) of the ATLAS Muon Spectrometer. The ROD is a VME64x board, designed around two Xilinx Virtex-II FPGAs and an ARM7 microcontroller and it is located off-detector, in a counting room of the ATLAS cavern at the CERN. The readout data of the ATLAS’ RPC Muon spectrometer are collected by the front-end electronics and transferred via optical fibres to the ROD boards in the counting room. The ROD arranges all the data fragments of a sector of the spectrometer in a unique event. This is made by the Event Builder Logic, a cluster of Finite State Machines that parses the fragments, checks their syntax and builds an event containing all the sector data. In the presentation I will describe the Builder Monitor, developed by me in order to analyze the Event Builder timing performance. It is designed around a 32-bit soft-core microprocessor, embedded in the same FPGA hosting the Builder logic. This approach makes it possible to track the algorithm execution in the field. ...

  10. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    CERN Document Server

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  11. Integration of the monitoring and offline analysis systems of the ATLAS hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Maidantchik, Carmen; Balabram, Luiz Eduardo; Gomes, Andressa Sivollela; Ferreira, Fernando G.; Marroquim, Fernando [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: During the ATLAS detector operation, collaborators perform innumerous analysis related to the calibration in order to acquire detailed information about the hadronic calorimeter (TileCal) equipment. Through the analysis, it is possible to detect faults that would affect data acquisition, which are of physics interest. Some defects examples are: saturation of reading channels, problems in the acquired signal digitization and high signal-to-noise ratio (SNR). Since the commissioning period, members of the collaboration between CERN and UFRJ developed Web systems to support the hard task of monitoring the TileCal equipment. The Tile Commissioning Web System (TCWS) integrates different applications, each one presenting part of the commissioning process. The Web Interface for Shifters (WIS) displays the most recent calibration runs and assists the monitoring of the modules operation. The TileComm Analysis (TCA) allows access to histograms that represents the status of modules and corresponding channels functioning. The Timeline provides the history of the calibration rounds and the state of all modules in chronological order. The Data Quality Monitoring (DQM) contains the status of the histograms, modules and channels. The E-log stores and displays all reports about calibrations. Web Monitoring and Calibration System (MCWS) allows the visualization of the most recent channel status of each module. DCS (Detector Control System) Web System monitors the operation of modules power supply. After the ATLAS operation has started the number of equipment calibrations increased significantly, which has prompted the development of a system that would display all previous information through a centralized way. The Dashboard allows the collaborator to easily access the latest runs or to search for specific ones. After selecting a run, it is possible to check the status of each barrel module through a schematic figure, to view the 10 latest status of a certain module, and

  12. Integration of the monitoring and offline analysis systems of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Maidantchik, Carmen; Balabram, Luiz Eduardo; Gomes, Andressa Sivollela; Ferreira, Fernando G.; Marroquim, Fernando

    2011-01-01

    Full text: During the ATLAS detector operation, collaborators perform innumerous analysis related to the calibration in order to acquire detailed information about the hadronic calorimeter (TileCal) equipment. Through the analysis, it is possible to detect faults that would affect data acquisition, which are of physics interest. Some defects examples are: saturation of reading channels, problems in the acquired signal digitization and high signal-to-noise ratio (SNR). Since the commissioning period, members of the collaboration between CERN and UFRJ developed Web systems to support the hard task of monitoring the TileCal equipment. The Tile Commissioning Web System (TCWS) integrates different applications, each one presenting part of the commissioning process. The Web Interface for Shifters (WIS) displays the most recent calibration runs and assists the monitoring of the modules operation. The TileComm Analysis (TCA) allows access to histograms that represents the status of modules and corresponding channels functioning. The Timeline provides the history of the calibration rounds and the state of all modules in chronological order. The Data Quality Monitoring (DQM) contains the status of the histograms, modules and channels. The E-log stores and displays all reports about calibrations. Web Monitoring and Calibration System (MCWS) allows the visualization of the most recent channel status of each module. DCS (Detector Control System) Web System monitors the operation of modules power supply. After the ATLAS operation has started the number of equipment calibrations increased significantly, which has prompted the development of a system that would display all previous information through a centralized way. The Dashboard allows the collaborator to easily access the latest runs or to search for specific ones. After selecting a run, it is possible to check the status of each barrel module through a schematic figure, to view the 10 latest status of a certain module, and

  13. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    CERN Document Server

    McKee, S; The ATLAS collaboration; Laurens, P; Severini, H; Wlodek, T; Wolff, S; Zurawski, J

    2012-01-01

    We will present our motivations for deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States and describe our experience in using it. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. USATLAS has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  14. Development of a monitoring tool to validate trigger level analysis in the ATLAS experiment

    CERN Document Server

    Hahn, Artur

    2014-01-01

    This report summarizes my thirteen week summer student project at CERN from June 30th until September 26th of 2014. My task was to contribute to a monitoring tool for the ATLAS experiment, comparing jets reconstructed by the trigger to fully offline reconstructed and saved events by creating a set of insightful histograms to be used during run 2 of the Large Hadron Collider, planned to start in early 2015. The motivation behind this project is to validate the use of data taken solely from the high level trigger for analysis purposes. Once the code generating the plots was completed, it was tested on data collected during run 1 up to the year 2012 and Monte Carlo simulated events with center-of-mass energies ps = 8TeV and ps = 14TeV.

  15. ATLAS trigger operations: Monitoring with “Xmon” rate prediction system

    CERN Document Server

    Aukerman, Andrew Todd; The ATLAS collaboration

    2017-01-01

    We present the operations and online monitoring with the “Xmon” rate prediction system for the trigger system at the ATLAS Experiment. A two-level trigger system reduces the LHC’s bunch-crossing rate, 40 MHz at design capacity, to an average recording rate of about 1 kHz, while maintaining a high efficiency of selecting events of interest. The Xmon system uses the luminosity value to predict trigger rates that are, in turn, compared with incoming rates. The predictions rely on past runs to parameterize the luminosity dependency of the event rate for a trigger algorithm. Some examples are given to illustrate the performance of the tool during recent operations.

  16. Construction and test of a full-scale prototype of an ATLAS muon spectrometer tracking chamber

    International Nuclear Information System (INIS)

    Biscossa, A.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Fraternali, M.; Freddi, A.; Iuvino, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rimoldi, A.; Vercellati, F.; Vercesi, V.; Bagnaia, P.; Bini, C.; Capradossi, G.; Ciapetti, G.; Creti, P.; De Zorzi, G.; Iannone, M.; Lacava, F.; Mattei, A.; Nisati, L.; Oberson, P.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Zullo, A.; Daly, C.H.; Davisson, R.; Guldenmann, H.; Lubatti, H.J.; Zhao, T.

    1999-01-01

    We have built a full scale prototype of the precision tracking chambers (Monitored Drift Tubes, MDT) for the muon spectrometer of the Atlas Experiment at the LHC collider. This article describes in detail the procedures used in constructing the drift tubes and in assembling the chamber. It presents data showing that the required mechanical precision has been achieved as well as test beam results displaying the over all chamber performance. The article presents data demonstrating the derivation of the space-time relation of the drift tubes by the autocalibration procedure using real data from the tracks crossing the chamber. Autocalibration is the procedure which must be used during run time

  17. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    International Nuclear Information System (INIS)

    Simard, Olivier

    2015-01-01

    The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb −1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis

  18. The monitoring and calibration Web system of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Maidantchik, Carmen; Gomes, Andressa Andrea Sivollela; Marroquim, Fernando

    2011-01-01

    Full text: The scintillator tiles hadronic calorimeter (TileCal) of the ATLAS detector measures the energy of resultant particles in a collision. The calorimetry system was designed to absorb the energy of the particles that crosses the detector and is composed by three barrels, each one equally divided into 64 modules. The ionizing particles that cross the tiles induce the production of light, which intensity is proportional to the energy deposited by the fragment. The produced light propagates through the tiles towards the edges, where it is absorbed and displaced until reaching the photomultiplier tubes (PMTs), also known as electronic reading channels. Each module combines till 45 PMTs. For each run, the reconstruction process starts with a data analysis that can comprises different levels of information granularity till arriving to the PMTs level. Following this phase, the Data Quality Monitoring Framework (DQMF) system automatically generates quality indicators associated to the channels. Depending on the configuration that is registered in the DQMF, the channel status can be automatically defined as good, affected or bad. The status of each module is defined by the percentage of existing good, affected or bad channels. At this point, the analysis of modules allows the identification of the ones that are problematic by the examination of graphics that are automatically generated during the data reconstruction stage. Then, an analysis of a module performance by a time period that encompasses different types of runs is performed. In this last step, the list of problematic channels can be modified through the insertion or exclusion of PTMs, as in the case when a channel is substituted. Additionally, during the whole calorimeter operation, it is fundamental to identify the electronic channels that are active, dead (nor working), noisy and the ones that presents saturation in the signal digitalisation process. The Monitoring and Calibration Web System (MCWS) was

  19. The monitoring and calibration Web system of the ATLAS hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Maidantchik, Carmen; Gomes, Andressa Andrea Sivollela; Marroquim, Fernando [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: The scintillator tiles hadronic calorimeter (TileCal) of the ATLAS detector measures the energy of resultant particles in a collision. The calorimetry system was designed to absorb the energy of the particles that crosses the detector and is composed by three barrels, each one equally divided into 64 modules. The ionizing particles that cross the tiles induce the production of light, which intensity is proportional to the energy deposited by the fragment. The produced light propagates through the tiles towards the edges, where it is absorbed and displaced until reaching the photomultiplier tubes (PMTs), also known as electronic reading channels. Each module combines till 45 PMTs. For each run, the reconstruction process starts with a data analysis that can comprises different levels of information granularity till arriving to the PMTs level. Following this phase, the Data Quality Monitoring Framework (DQMF) system automatically generates quality indicators associated to the channels. Depending on the configuration that is registered in the DQMF, the channel status can be automatically defined as good, affected or bad. The status of each module is defined by the percentage of existing good, affected or bad channels. At this point, the analysis of modules allows the identification of the ones that are problematic by the examination of graphics that are automatically generated during the data reconstruction stage. Then, an analysis of a module performance by a time period that encompasses different types of runs is performed. In this last step, the list of problematic channels can be modified through the insertion or exclusion of PTMs, as in the case when a channel is substituted. Additionally, during the whole calorimeter operation, it is fundamental to identify the electronic channels that are active, dead (nor working), noisy and the ones that presents saturation in the signal digitalisation process. The Monitoring and Calibration Web System (MCWS) was

  20. Stokes drift

    Science.gov (United States)

    van den Bremer, T. S.; Breivik, Ø.

    2017-12-01

    During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections. This article is part of the theme issue 'Nonlinear water waves'.

  1. Development of noSQL data storage for the ATLAS PanDA Monitoring System

    International Nuclear Information System (INIS)

    Ito, H; Potekhin, M; Wenaus, T

    2012-01-01

    For several years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, typically exceeding 500k completed jobs/day by June 2011. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. These challenges are being met with an R and D effort aimed at implementing a scalable and efficient monitoring data storage based on a noSQL solution (Cassandra). We present our motivations for using this technology, as well as data design and the techniques used for efficient indexing of the data. We also discuss the hardware requirements as they were determined by testing with actual data and realistic rate of queries. In conclusion, we present our experience with operating a Cassandra cluster over an extended period of time and with data load adequate for planned application.

  2. Development of noSQL data storage for the ATLAS PanDA Monitoring System

    Science.gov (United States)

    Ito, H.; Potekhin, M.; Wenaus, T.

    2012-12-01

    For several years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, typically exceeding 500k completed jobs/day by June 2011. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. These challenges are being met with an R&D effort aimed at implementing a scalable and efficient monitoring data storage based on a noSQL solution (Cassandra). We present our motivations for using this technology, as well as data design and the techniques used for efficient indexing of the data. We also discuss the hardware requirements as they were determined by testing with actual data and realistic rate of queries. In conclusion, we present our experience with operating a Cassandra cluster over an extended period of time and with data load adequate for planned application.

  3. Reducing Pesticide Drift

    Science.gov (United States)

    Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.

  4. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Ferrari, A.

    2002-01-01

    The design and construction of the large drift chamber of the KLOE experiment is presented. The track reconstruction is described, together with the calibration method and the monitoring systems. The stability of operation and the performance are studied with samples of e + e - , K S K L and K + K - events

  5. A Muon Trigger with high pT-resolution for Phase-II of the LHC Upgrade, based on the ATLAS Muon Drift Tube Chambers

    CERN Document Server

    Nowak, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Muon Trigger in the ATLAS end-cap region is based on Thin Gap Chambers (TGC) which have an excellent time resolution but a moderate spatial resolution. The Muon Trigger efficiency curves show that for a transverse momentum ($p_{t}$) threshold of 20 GeVc$^{-1}$ the trigger rate is mainly dominated by muons with a $p_{t}$ between 10 GeVc$^{-1}$ and 20 GeVc$^{-1}$. To cope with the expected Muon Trigger rate at HL-LHC luminosities, we propose to include the precision tracking chambers (MDT) in the Muon Trigger. According to a potential study based on ATLAS data and assuming the HL-LHC scenario, this leads to a dramatical reduction of the Muon Trigger rate below the nominal threshold. As the already existing MDT chamber read-out chain is not capable of reading out the MDT fast enough to be used for the Muon Trigger, an additional fast read-out (FRO) chain with moderate spatial resolution but low latency is necessary. To conduct fast track reconstruction and muon $p_{t}$ determination with the data acqui...

  6. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  7. MDT-ASD, CMOS front-end for ATLAS MDT

    CERN Document Server

    Posch, C; Oliver, J

    2007-01-01

    This document serves as the main reference and user`s manual for the read-out chip of the Monitored Drift Tubes in the ATLAS Muon Spectrometer. The eight-channel front-end ASIC is referred to as MDT-ASD. The document contains the requirements and complete specifications, a detailed description of the design with characteristics of all sub-circuits and building blocks, a comprehensive section on functionality and performance test results, and a complete bibliography.

  8. Monitoring and controlling ATLAS data management: The Rucio web user interface

    Science.gov (United States)

    Lassnig, M.; Beermann, T.; Vigne, R.; Barisits, M.; Garonne, V.; Serfon, C.

    2015-12-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new data management system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for usergenerated views. The interface follows three design principles. First, the collection and storage of data from internal and external systems is asynchronous to reduce latency. This includes the use of technologies like ActiveMQ or Nagios. Second, analysis of the data into information is done massively parallel due to its volume, using a combined approach with an Oracle database and Hadoop MapReduce. Third, sharing of the information does not distinguish between human or programmatic access, making it easy to access selective parts of the information both in constrained frontends like web-browsers as well as remote services. This contribution will detail the reasons for these principles and the design choices taken. Additionally, the implementation, the interactions with external systems, and an evaluation of the system in production, both from a technological and user perspective, conclude this contribution.

  9. ATLAS Trigger Monitoring and Operation in Proton Proton Collisions at 900 GeV

    CERN Document Server

    zur Nedden, M; The ATLAS collaboration

    2010-01-01

    The trigger of the ATLAS-experiment is build as a three level system. The first level is realized in hardware while the higher levels (HLT) are pure software implemented triggers based on large PC farms. According to the LHC bunch crossing frequency of 40 MHz and the expectation of up to 23 interactions per bunch crossing at design luminosity, the trigger system must be able to deal with an input rate of 1 GHz whereas the maximum storage rate is 200 Hz. This complex data acquisition and trigger system requires a reliable and redundant diagnostic and monitoring system. This is inevitable for a successful commissioning and stable running of the whole experiment. The main aspects of trigger monitoring are the rate measurements at each step of the trigger decision at each level, the determination of the quality of the physics objects candidates to be selected at trigger level (as candidates for electrons, muons, taus, gammas, jets, b-jets and missing energy) and the supervision of the system's behavior during the...

  10. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    Science.gov (United States)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  11. Computer controlled drifting of Si(Li) detectors

    International Nuclear Information System (INIS)

    Landis, D.A.; Wong, Y.K.; Walton, J.T.; Goulding, F.S.

    1989-01-01

    A relatively inexpensive computer-controlled system for performing the drift process used in fabricating Si(Li) detectors is described. The system employs a small computer to monitor the leakage current, applied voltage and temperature on eight individual drift stations. The associated computer program initializes the drift process, monitors the drift progress and then terminates the drift when an operator set drift time has elapsed. The improved control of the drift with this system has been well demonstrated over the past three years in the fabrication of a variety of Si(Li) detectors. A few representative system responses to detector behavior during the drift process are described

  12. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O

    2015-01-01

    The ATLAS experiment is designed to study the proton-proton ($pp$) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region $|\\eta|< 3.2$, as well as for hadronic calorimetry in the range $1.5 < |\\eta| < 4.9$. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5~K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and t...

  13. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η|< 3.2, as well as for hadronic calorimetry in the range 1.5<|η|<4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed for the coverage at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5K. The approximately 200K cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigg...

  14. Streamlined calibrations of the ATLAS precision muon chambers for initial LHC running

    Energy Technology Data Exchange (ETDEWEB)

    Amram, N. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv (Israel); Ball, R. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); Benhammou, Y.; Ben Moshe, M. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv (Israel); Dai, T.; Diehl, E.B. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); Dubbert, J. [Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, Muenchen (Germany); Etzion, E., E-mail: erez@cern.ch [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv (Israel); Ferretti, C.; Gregory, J. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); Haider, S. [CERN, CH-1211 Geneva 23 (Switzerland); Hindes, J.; Levin, D.S.; Manilow, E.; Thun, R.; Wilson, A.; Weaverdyck, C.; Wu, Y.; Yang, H.; Zhou, B. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); and others

    2012-04-11

    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p=3% at 100 GeV and 10% at 1 TeV. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.

  15. Streamlined Calibrations of the ATLAS Precision Muon Chambers for Initial LHC Running

    CERN Document Server

    Amram, N; Benhammou, Y; Moshe, M Ben; Dai, T; Diehl, E B; Dubbert, J; Etzion, E; Ferretti, C; Gregory, J; Haider, S; Hindes, J; Levin, D S; Thun, R; Wilson, A; Weaverdyck, C; Wu, Y; Yang, H; Zhou, B; Zimmermann, S

    2012-01-01

    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p = 3% and 10% at 100 GeV and 1 TeV momentum respectively. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 Chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.

  16. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    CERN Document Server

    Sanchez, Arturo; The ATLAS collaboration

    2015-01-01

    We explore the potentialities of current web applications to create online interfaces that allow the visualization, interaction and real physics cut-based analysis and monitoring of processes trough a web browser. The project consists in the initial development of web-based and cloud computing services to allow students and researches to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte-Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based $H \\rightarrow ZZ \\rightarrow llqq$ analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  17. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    CERN Document Server

    Pineda, A S

    2015-01-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  18. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    CERN Document Server

    Sanchez, Arturo; The ATLAS collaboration

    2015-01-01

    We explore the potentialities of current web applications to create online interfaces that allow the visualization, interaction and real physics cut-based analysis and monitoring of processes trough a web browser. The project consists in the initial development of web-based and cloud computing services to allow students and researches to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte-Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H->ZZ->llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online; this presentation describes the tests and plans and future upgrades.

  19. Using the expected detection delay to assess the performance of different multivariate statistical process monitoring methods for multiplicative and drift faults.

    Science.gov (United States)

    Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Peng, Kaixiang

    2017-03-01

    Using the expected detection delay (EDD) index to measure the performance of multivariate statistical process monitoring (MSPM) methods for constant additive faults have been recently developed. This paper, based on a statistical investigation of the T 2 - and Q-test statistics, extends the EDD index to the multiplicative and drift fault cases. As well, it is used to assess the performance of common MSPM methods that adopt these two test statistics. Based on how to use the measurement space, these methods can be divided into two groups, those which consider the complete measurement space, for example, principal component analysis-based methods, and those which only consider some subspace that reflects changes in key performance indicators, such as partial least squares-based methods. Furthermore, a generic form for them to use T 2 - and Q-test statistics are given. With the extended EDD index, the performance of these methods to detect drift and multiplicative faults is assessed using both numerical simulations and the Tennessee Eastman process. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A First-Level Muon Trigger Based on the ATLAS Muon Drift Tube Chambers With High Momentum Resolution for LHC Phase II

    CERN Document Server

    Richter, R; The ATLAS collaboration; Ott, S; Kortner, O; Fras, M; Gabrielyan, V; Danielyan, V; Fink, D; Nowak, S; Schwegler, P; Abovyan, S

    2014-01-01

    The Level-1 (L1) trigger for muons with high transverse momentum (pT) in ATLAS is based on chambers with excellent time resolution, able to identify muons coming from a particular beam crossing. These trigger chambers also provide a fast pT-measurement of the muons, the accuracy of the measurement being limited by the moderate spatial resolution of the chambers along the deflecting direction of the magnetic field (eta-coordinate). The higher luminosity foreseen for Phase-II puts stringent limits on the L1 trigger rates, and a way to control these rates would be to improve the spatial resolution of the triggering system, drastically sharpening the turn-on curve of the L1 trigger. To do this, the precision tracking chambers (MDT) can be used in the L1 trigger, provided the corresponding trigger latency is increased as foreseen. The trigger rate reduction is accomplished by strongly decreasing the rate of triggers from muons with pT lower than a predefined threshold (typically 20 GeV), which would otherwise trig...

  1. Inline monitoring of adsorption of Butane Isomers with near infrared spectroscopy: Drift Correction in time based experiments

    NARCIS (Netherlands)

    Ferreira, A.; Boelens, H.F.M.; Westerhuis, J.A.

    2005-01-01

    Near-infrared (NIR) spectroscopy is used to monitor online a large variety of processes. Hydrocarbons with their strong NIR spectral signature are good candidate analytes. For this work, the sorption data are measured in a manometric setup coupled with online NIR spectroscopy, to monitor the bulk

  2. Optimization of drift gases for accuracy in pressurized drift tubes

    CERN Document Server

    Kirchner, J J; Dinner, A R; Fidkowski, K J; Wyatt, J H

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the $E \\propto \\frac{1}{r}$ field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given.

  3. Optimization of drift gases for accuracy in pressurized drift tubes

    International Nuclear Information System (INIS)

    Kirchner, J.J.; Becker, U.J.; Dinner, R.B.; Fidkowski, K.J.; Wyatt, J.H.

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the E∝1/r field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given

  4. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  5. An automated meta-monitoring mobile application and front-end interface for the ATLAS computing model

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Gen; Quadt, Arnulf [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    Efficient administration of computing centres requires advanced tools for the monitoring and front-end interface of the infrastructure. Providing the large-scale distributed systems as a global grid infrastructure, like the Worldwide LHC Computing Grid (WLCG) and ATLAS computing, is offering many existing web pages and information sources indicating the status of the services, systems and user jobs at grid sites. A meta-monitoring mobile application which automatically collects the information could give every administrator a sophisticated and flexible interface of the infrastructure. We describe such a solution; the MadFace mobile application developed at Goettingen. It is a HappyFace compatible mobile application which has a user-friendly interface. It also becomes very feasible to automatically investigate the status and problem from different sources and provides access of the administration roles for non-experts.

  6. Characterizing, managing and monitoring the networks for the ATLAS data acquisition system

    CERN Document Server

    AUTHOR|(CDS)2068860

    2007-01-01

    Particle physics studies the constituents of matter and the interactions between them. Many of the elementary particles do not exist under normal circumstances in nature. However, they can be created and detected during energetic collisions of other particles, as is done in particle accelerators. The Large Hadron Collider (LHC) being built at CERN will be the world's largest circular particle accelerator, colliding protons at energies of 14 TeV. Only a very small fraction of the interactions will give raise to interesting phenomena. The collisions produced inside the accelerator are studied using particle detectors. ATLAS is one of the detectors built around the LHC accelerator ring. During its operation, it will generate a data stream of 64 Terabytes/s. A Trigger and Data Acquisition System (TDAQ) is connected to ATLAS -- its function is to acquire digitized data from the detector and apply trigger algorithms to identify the interesting events. Achieving this requires the power of over 2000 computers plus an...

  7. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  8. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  9. Software Validation in ATLAS

    International Nuclear Information System (INIS)

    Hodgkinson, Mark; Seuster, Rolf; Simmons, Brinick; Sherwood, Peter; Rousseau, David

    2012-01-01

    The ATLAS collaboration operates an extensive set of protocols to validate the quality of the offline software in a timely manner. This is essential in order to process the large amounts of data being collected by the ATLAS detector in 2011 without complications on the offline software side. We will discuss a number of different strategies used to validate the ATLAS offline software; running the ATLAS framework software, Athena, in a variety of configurations daily on each nightly build via the ATLAS Nightly System (ATN) and Run Time Tester (RTT) systems; the monitoring of these tests and checking the compilation of the software via distributed teams of rotating shifters; monitoring of and follow up on bug reports by the shifter teams and periodic software cleaning weeks to improve the quality of the offline software further.

  10. The ATLAS TRT electronics

    OpenAIRE

    Çetin, Serkant Ali; ATLAS Collaboration

    2008-01-01

    The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This...

  11. Upgrades of the ATLAS Muon Spectrometer with sMDT Chambers

    CERN Document Server

    Ferretti, Claudio; The ATLAS collaboration

    2015-01-01

    With half the drift-tube diameter of the Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer and otherwise unchanged operating parameters, small-diameter Muon Drift Tube (sMDT) chambers provide an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit. The chamber assembly time has been reduced by a factor of seven to one working day and the sense wire positioning accuracy improved by a factor of two to better than ten microns. Two sMDT chambers have been installed in ATLAS in 2014 to improve the momentum resolution in the barrel part of the spectrometer. The construction of additional twelve chambers covering the feet regions of the ATLAS detector has started. It will be followed by the replacement of the MDT chambers at the ends of the barrel inner layer by sMDTs improving the Performance at the high expected background rates and providing space for additional RPC trigger chambers.

  12. Upgrades of the ATLAS Muon Spectrometer with sMDT Chambers

    CERN Document Server

    Ferretti, C

    2016-01-01

    With half the drift-tube diameter of the Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer and otherwise unchanged operating parameters, small-diameter Muon Drift Tube (sMDT) chambers provide an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit. The chamber assembly time has been reduced by a factor of seven to one working day and the sense wire positioning accuracy improved by a factor of two to better than ten microns. Two sMDT chambers have been installed in ATLAS in 2014 to improve the momentum resolution in the barrel part of the spectrometer. The construction of an additional twelve chambers covering the feet regions of the ATLAS detector has started. It will be followed by the replacement of the MDT chambers at the ends of the barrel inner layer by sMDTs improving the Performance at the high expected background rates and providing space for additional RPC trigger chambers.

  13. Studies of Read-Out Electronics and Trigger for Muon Drift Tube Detectors at High Luminosities

    CERN Document Server

    Nowak, Sebastian

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. For precise measurements of the properties of the Higgs-Boson and searches for new phenomena beyond the Standard Model, the LHC luminosity of $L=10^{34}cm^{-2}s^{-1}$ is planned to be increased by a factor of ten leading to the High Luminosity LHC (HL-LHC). In order to cope with the higher background and data rates, the LHC experiments need to be upgraded. In this thesis, studies for the upgrade of the ATLAS Muon Spectrometer are presented with respect to the read-out electronics of the Monitored Drift Tube (MDT) and the small-diameter Muon Drift Tube (sMDT) chambers and the Level-1 muon trigger. Due to the reduced tube diameter of sMDT chambers, background occupancy and space charge effects are suppressed by an order of magnitude compar...

  14. Cosmic ray runs acquired with ATLAS muon stations

    CERN Multimedia

    Cerutti, F.

    Starting in the fall 2005 several cosmic ray runs have been acquired in the ATLAS pit with six muon stations. These were three large outer and three large middle chambers of the feet sector (sector 13) that have been readout in the ATLAS cavern. In the first data taking period the trigger was based on two large scintillators (~300x30 cm2) positioned in sector 13 just below the large chambers. In this first run the precision chambers (the Monitored Drift Tubes) were operated in a close to final configuration. Typical trigger rates with this setup were of the order of 1 Hz. Several data sets of 10k events were acquired with final electronics up to the muon ROD and analysed with ATHENA-based software. These data allowed the first checks of the functionality and efficiency of the MDT stations in the ATLAS pit and the first measurement of the FE electronics noise in the ATLAS environment. A few event were also collected in a combined run with the TILE barrel calorimeter. An event display of a cosmic ray a...

  15. Predictive analytics tools to adjust and monitor performance metrics for the ATLAS Production System

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2017-01-01

    Having information such as an estimation of the processing time or possibility of system outage (abnormal behaviour) helps to assist to monitor system performance and to predict its next state. The current cyber-infrastructure presents computing conditions in which contention for resources among high-priority data analysis happens routinely, that might lead to significant workload and data handling interruptions. The lack of the possibility to monitor and to predict the behaviour of the analysis process (its duration) and system’s state itself caused to focus on design of the built-in situational awareness analytic tools.

  16. Dike/Drift Interactions

    Energy Technology Data Exchange (ETDEWEB)

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  17. Dike/Drift Interactions

    International Nuclear Information System (INIS)

    Gaffiney, E.

    2004-01-01

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1)

  18. The Drift Burst Hypothesis

    OpenAIRE

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    2016-01-01

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the...

  19. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  20. Monitoring the Resistive Plate Chambers in the Muon Spectrometer of ATLAS.

    CERN Document Server

    Al-Qahtani, Shaikha

    2017-01-01

    A software was developed to monitor the resistive plate chambers. The purpose of the program is to detect any weak or dead chambers and locate them for repair. The first use of the program was able to spot several chambers with problems to be investigated.

  1. Dike/Drift Interactions

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Gaffney

    2003-10-08

    This report documents the model of events associated with a potential intrusion of magma from a volcanic dike into a drift or drifts in the Yucca Mountain Nuclear Waste Repository. The following topics are included in this report: (1) A discussion of dike propagation, which provides the basis for describing the path that a representative dike, or swarm of dikes, would follow during an event. (2) A discussion of magma flow, which evaluates the interaction at the junction of the propagating dike with the drift and the movement of magmatic products into and down drifts and, potentially, through a drift to the surface by way of access drift or a secondary dike opened up along the drift. (3) A discussion of gas flow and conductive cooling of a magma-filled drift, describing how an adjacent drift that has not been intersected by a dike could be affected by post-intrusion phenomena. Note that a gas flow analysis is also addressed in ''Igneous Intrusion Impacts on Waste Form and Waste Packages'' (BSC 2003 [DIRS 161810]), and those results are consistent with the results presented in this report.

  2. Dike/Drift Interactions

    International Nuclear Information System (INIS)

    E.S. Gaffney

    2003-01-01

    This report documents the model of events associated with a potential intrusion of magma from a volcanic dike into a drift or drifts in the Yucca Mountain Nuclear Waste Repository. The following topics are included in this report: (1) A discussion of dike propagation, which provides the basis for describing the path that a representative dike, or swarm of dikes, would follow during an event. (2) A discussion of magma flow, which evaluates the interaction at the junction of the propagating dike with the drift and the movement of magmatic products into and down drifts and, potentially, through a drift to the surface by way of access drift or a secondary dike opened up along the drift. (3) A discussion of gas flow and conductive cooling of a magma-filled drift, describing how an adjacent drift that has not been intersected by a dike could be affected by post-intrusion phenomena. Note that a gas flow analysis is also addressed in ''Igneous Intrusion Impacts on Waste Form and Waste Packages'' (BSC 2003 [DIRS 161810]), and those results are consistent with the results presented in this report

  3. Monitoring and optimization of ATLAS Tier 2 center GoeGrid

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219638; Quadt, Arnulf; Yahyapour, Ramin

    The demand on computational and storage resources is growing along with the amount of information that needs to be processed and preserved. In order to ease the provisioning of the digital services to the growing number of consumers, more and more distributed computing systems and platforms are actively developed and employed. The building block of the distributed computing infrastructure are single computing centers, similar to the Worldwide LHC Computing Grid, Tier 2 centre GoeGrid. The main motivation of this thesis was the optimization of GoeGrid performance by efficient monitoring. The goal has been achieved by means of the GoeGrid monitoring information analysis. The data analysis approach was based on the adaptive-network-based fuzzy inference system (ANFIS) and machine learning algorithm such as Linear Support Vector Machine (SVM). The main object of the research was the digital service, since availability, reliability and serviceability of the computing platform can be measured according to the const...

  4. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dwayne C. Kicker

    2001-09-28

    A statistical description of the probable block sizes formed by fractures around the emplacement drifts has been developed for each of the lithologic units of the repository host horizon. A range of drift orientations with the drift azimuth varied in 15{sup o} increments has been considered in the static analysis. For the quasi-static seismic analysis, and the time-dependent and thermal effects analysis, two drift orientations have been considered: a drift azimuth of 105{sup o} and the current emplacement drift azimuth of 75{sup o}. The change in drift profile resulting from progressive deterioration of the emplacement drifts has been assessed both with and without backfill. Drift profiles have been determined for four different time increments, including static (i.e., upon excavation), 200 years, 2,000 years, and 10,000 years. The effect of seismic events on rock fall has been analyzed. Block size distributions and drift profiles have been determined for three seismic levels, including a 1,000-year event, a 5,000-year event, and a 10,000-year event. Data developed in this modeling and analysis activity have been entered into the TDMS (DTN: MO0109RDDAAMRR.003). The following conclusions have resulted from this drift degradation analysis: (1) The available fracture data are suitable for supporting a detailed key block analysis of the repository host horizon rock mass. The available data from the north-south Main Drift and the east-west Cross Drift provide a sufficient representative fracture sample of the repository emplacement drift horizon. However, the Tptpln fracture data are only available from a relatively small section of the Cross Drift, resulting in a smaller fracture sample size compared to the other lithologic units. This results in a lower degree of confidence that the key block data based on the Tptpln data set is actually representative of the overall Tptpln key block population. (2) The seismic effect on the rock fall size distribution for all events

  5. HappyFace as a monitoring tool for the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367045; Yahyapour, Ramin

    The importance of monitoring on HEP grid computing systems is growing due to a significant increase in their complexity. Computer scientists and administrators have been studying and building effective ways to gather information on and clarify a status of each local grid infrastructure. The HappyFace project aims at making the above-mentioned workflow possible. It aggregates, processes and stores the informa- tion and the status of different HEP monitoring resources into the common database of HappyFace. The system displays the information and the status through a single interface. However, this model of HappyFace relied on the monitoring resources which are al- ways under development in the HEP experiments. Consequently, HappyFace needed to have direct access methods to the grid application and grid service layers in the dif- ferent HEP grid systems. To cope with this issue, we use a reliable HEP software repos- itory, the CernVM File System. We propose a new implementation and an architecture of HappyFace, ...

  6. Clean industrial room for drift tube assembling

    International Nuclear Information System (INIS)

    Glonti, G.L.; Gongadze, A.L.; Evtukhovich, P.G.

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volume (∼ 190 m 3 ), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2%). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer. (author)

  7. Clean Industrial Room for Drift Tube Assembling

    CERN Document Server

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  8. An electrodeless drift chamber

    International Nuclear Information System (INIS)

    Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.

    1982-01-01

    We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)

  9. Modeling concept drift

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.

    2015-01-01

    An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic ...... data set from a Spanish bank....

  10. Online precision gas evaluation of the ATLAS Muon Spectrometer during LHC Run1

    CERN Document Server

    AUTHOR|(CDS)2092735; The ATLAS collaboration

    2016-01-01

    The ATLAS Muon Spectrometer, a six story structure embedded in a toroidal magnetic field, is constructed of nearly 1200 Monitored Drift Tube chambers (MDTs) containing 354,000 aluminum drift tubes. The operating gas is 93% Ar + 7% CO${_2}$ with a small amount of water vapor at a pressure of 3 bar. The momentum resolution required for ATLAS physics demands that MDT gas quality and the associated gas dependent calibrations be determined with a rapid feedback cycle. During the LHC Run1, more than 2 billion liters of gas flowed through the detector at a rate 100,000 l/hr. Online evaluation of MDT gas in real time and the associated contribution to the determination of the time-to-space functions was conducted by the dedicated Gas Monitor Chamber (GMC). We report on the operation and results of the GMC over the first three years of LHC running. During this period, the GMC has operated with a nearly 100% duty cycle, providing hourly measurements of the MDT drift times with 1 ns precision, corresponding to minute ch...

  11. Integrating Networking into ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2018-01-01

    Networking is foundational to the ATLAS distributed infrastructure and there are many ongoing activities related to networking both within and outside of ATLAS. We will report on the progress in a number of areas exploring ATLAS's use of networking and our ability to monitor the network, analyze metrics from the network, and tune and optimize application and end-host parameters to make the most effective use of the network. Specific topics will include work on Open vSwitch for production systems, network analytics, FTS testing and tuning, and network problem alerting and alarming.

  12. Time dependent drift Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1982-04-01

    The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)

  13. A Web-based Solution to Visualize Operational Monitoring Data in the Trigger and Data Acquisition System of the ATLAS Experiment at the LHC

    CERN Document Server

    Avolio, Giuseppe; The ATLAS collaboration; Lehmann Miotto, Giovanna; Soloviev, Igor

    2016-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider (LHC) at CERN is composed of a large number of distributed hardware and software components (about 3000 machines and more than 25000 applications) which, in a coordinated manner, provide the data-taking functionality of the overall system. During data taking runs, a huge flow of operational data is produced in order to constantly monitor the system and allow proper detection of anomalies or misbehaviors. In the ATLAS TDAQ system, operational data are archived and made available to applications by the P-Beast (Persistent Back-End for the Atlas Information System of TDAQ) service, implementing a custom time-series database. The possibility to efficiently visualize both real-time and historical operational data is a great asset for the online identification of problems and for any post-mortem analysis. This paper will present a web-based solution developed to achieve such a goal: the solution leverages the flexibili...

  14. A web-based solution to visualize operational monitoring data in the Trigger and Data Acquisition system of the ATLAS experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00210941; The ATLAS collaboration; D'Ascanio, Matteo; Lehmann-Miotto, Giovanna; Soloviev, Igor

    2017-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider at CERN is composed of a large number of distributed hardware and software components (about 3000 computers and more than 25000 applications) which, in a coordinated manner, provide the data-taking functionality of the overall system. During data taking runs, a huge flow of operational data is produced in order to constantly monitor the system and allow proper detection of anomalies or misbehaviours. In the ATLAS trigger and data acquisition system, operational data are archived and made available to applications by the P-BEAST (Persistent Back-End for the Atlas Information System of TDAQ) service, implementing a custom time-series database. The possibility to efficiently visualize both realtime and historical operational data is a great asset facilitating both online identification of problems and post-mortem analysis. This paper will present a web-based solution developed to achieve such a goal: the solution le...

  15. Abstraction of Drift Seepage

    International Nuclear Information System (INIS)

    J.T. Birkholzer

    2004-01-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport

  16. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  17. ATLAS Forward Proton Detector - Offline Data Quality Monitoring, Time of Flight Efficiency and Internal Alignment

    CERN Document Server

    Hohmann, Marcel

    2017-01-01

    The ATLAS Forward proton Detector (AFP) aims to study diffractive events where protons are scattered at an angle of the order of several microradians from the beamlines.The AFP consists of four stations, two near stations located 205m either side of the ATLAS interaction point (IP1) and two far stations located 217m either side of IP1 (Figure 1). Each station consists of a Roman Pot containing a Silicon tracker (SiT) with the far stations having an additional Time of Flight (ToF) detector. The AFP is still commissioning with the full 2+2 configuration, that is two stations on each side of ATLAS, having only recently been installed during the winter 2016/2017 technical shutdown. There is still significant work to be done on data quality before physics analysis can begin.

  18. Collisional drift fluids and drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1995-05-01

    The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effect of which is extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter is important as concerns charge separation and resulting electric fields which are possibly related to the L-H transition. Energy conservation is crucial for the stability behaviour; it will be discussed via an example. New collisional multispecies drift-fluid equations were derived by a new method which yields in a transparent way conservation of energy and total angular momentum, and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The method is based primarily on a Lagrangian for dissipationless fluids in drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. Their relation to the ideal equations imply, however, also a relation to the ideal Lagrangian of which one can take advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T ν (x)=const. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theories; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. Linear instability is investigated via energy considerations and the implications of taking ohmic resistivity into account are discussed. (orig./WL)

  19. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  20. Prevention measures for avoiding unexpected drifting of marine component in recovery equipment of significant metals from sea water. Positioning and monitoring system for marine component and improvement of its positioning accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Masao; Kasai, Noboru; Seko, Noriaki; Hasegawa, Shin; Takeda, Hayato; Katakai, Akio; Sugo, Takanobu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawabata, Yukiya [Ebara Reseach Co., Ltd., Fujisawa, Kanagawa (Japan); Onuma, Kenji [Mitsubishi Materials Corp., Tokyo (Japan)

    2001-11-01

    Positioning and monitoring system for marine component in recovery equipment of significant metals from seawater with adsorbent was designed and assembled to avoid unexpected drifting accident. This system which was set on float part of the marine component obtains the positioning data from GPS satellites and sends them to Takasaki and Mutsu establishments through satellite communication. In both establishments, the position data were shown in computer displays. As characteristic test for 20 days in the real sea, 262 data were obtained every 2 hours. The twice of the distance root mean square (2DRMS) was 223.7 m. To improve this performance, three new functions were added to the present firmware. There are to raise positioning resolutions in longitude and latitude from 0.001 to 0.00001 degree, to remove the reflection of GPS signal from sea surface, and to average remaining three positioning data after maximum and minimum data were omitted from continuous five positioning data. The improved system shows the 2DRMS positioning of 15.5 m. This performance is enough to prevent marine component from its drifting accident. (author)

  1. Drift Scale THM Model

    International Nuclear Information System (INIS)

    Rutqvist, J.

    2004-01-01

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because a sufficient amount of water must be available within a

  2. Upgrades Of The ATLAS Muon Spectrometer With sMDT Chambers

    CERN Document Server

    Ferretti, Claudio; The ATLAS collaboration

    2015-01-01

    The Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer demonstrated that they provide very precise and robust tracking over large areas. Goals of ATLAS muon detector upgrades are to increase the acceptance for precision muon momentum measurement and triggering and to improve the rate capability of the muon chambers in the high-background regions when the LHC luminosity increases. Small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages with the MDTs, but have more than ten times higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, reducing cost and construction time considerably and improving the sense wire positioning accuracy to better than ten microns. Two sMDT chambers have been installed in 2014 to improve the mom...

  3. Intrafractional baseline drift during free breathing breast cancer radiation therapy.

    Science.gov (United States)

    Jensen, Christer Andre; Acosta Roa, Ana María; Lund, Jo-Åsmund; Frengen, Jomar

    2017-06-01

    Intrafraction motion in breast cancer radiation therapy (BCRT) has not yet been thoroughly described in the literature. It has been observed that baseline drift occurs as part of the intrafraction motion. This study aims to measure baseline drift and its incidence in free-breathing BCRT patients using an in-house developed laser system for tracking the position of the sternum. Baseline drift was monitored in 20 right-sided breast cancer patients receiving free breathing 3D-conformal RT by using an in-house developed laser system which measures one-dimensional distance in the AP direction. A total of 357 patient respiratory traces from treatment sessions were logged and analysed. Baseline drift was compared to patient positioning error measured from in-field portal imaging. The mean overall baseline drift at end of treatment sessions was -1.3 mm for the patient population. Relatively small baseline drift was observed during the first fraction; however it was clearly detected already at the second fraction. Over 90% of the baseline drift occurs during the first 3 min of each treatment session. The baseline drift rate for the population was -0.5 ± 0.2 mm/min in the posterior direction the first minute after localization. Only 4% of the treatment sessions had a 5 mm or larger baseline drift at 5 min, all towards the posterior direction. Mean baseline drift in the posterior direction in free breathing BCRT was observed in 18 of 20 patients over all treatment sessions. This study shows that there is a substantial baseline drift in free breathing BCRT patients. No clear baseline drift was observed during the first treatment session; however, baseline drift was markedly present at the rest of the sessions. Intrafraction motion due to baseline drift should be accounted for in margin calculations.

  4. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  5. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  6. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  7. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  8. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  9. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the fundamental arbitrage-free property is preserved......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  10. ATLAS-AWS

    International Nuclear Information System (INIS)

    Gehrcke, Jan-Philip; Stonjek, Stefan; Kluth, Stefan

    2010-01-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  11. Recreating the top quark: Commissioning and monitoring of the ATLAS Inner Detector and search for New Physics with heavy particles

    CERN Document Server

    Tonoyan, Arshak

    The ATLAS (A Toroidal Lhc ApparatuS) experiment is one of the two general purpose experiments at the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The LHC is a proton-proton and ion-ion collider built in a 27 km long circular tunnel 100 meter below the surface of the Earth. The maximum energy at which LHC is capable to collide protons is 14 TeV in the center of mass frame, but currently it is being operated at half of its maximum energy, i.e. at 7 TeV. The first collisions at the LHC took place in November 2009. Before that the LHC detectors, including ATLAS (which was already built and installed in 2007) were commissioned using muons produced from the interaction of cosmic rays with the Earth atmosphere. The Inner Detector is one of components of ATLAS detector, which is responsible for tracking of charged particles. It consists of three independent but complementary sub-detectors, which are built using different types of charged particle detecting concepts. This thesis...

  12. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  13. Tapping with intentional drift

    NARCIS (Netherlands)

    Vardy, A.N.; Daffertshofer, A.; Beek, P.J.

    2009-01-01

    When tapping a desired frequency, subjects tend to drift away from this target frequency. This compromises the estimate of the correlation between inter-tap intervals (ITIs) as predicted by the two-level model of Wing and Kristofferson which consists of an internal timer ('clock') and motor delays.

  14. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  15. Argus drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, M; Nagovizin, V; Hasemann, H; Michel, E; Schmidt-Parzefall, W; Wurth, R; Kim, P

    1983-11-15

    The ARGUS detector came into operation at the DORIS-II e/sup +/s/sup -/ storage ring at the end of 1982. Its two meter long drift chamber contains 5940 sense and 24588 field wires organized in uniform 18x18.8 mm/sup 2/ drift cells filling the whole volume. These cells form 36 layers, 18 of which provide stereo views. Each sense wire is equipped with a single hit TDC and ADC for coordinate and dE/dx measurements. The chamber is operated with propane to improve momentum and dE/dx resolution. The drift chamber design and initial performance are presented. With a very crude space-time relation approximation and without all the necessary corrections applied a spatial resolution of about 200 ..mu..m was obtained for half of the drift cell volume. Further corrections should improve this result. An intrinsic dE/dx resolution of 4.2% and an actual resolution of 5% were obtained for cosmic muons and also for Bhabha scattered electrons. An actual dE/dx resolution of 5.6% was obtained for pions from e/sup +/e/sup -/ annihilation data with almost no track selection. A relativistic rise of 30% was observed in good agreement with theory. The long-term stability is still to be investigated.

  16. Inland drift sand landscapes

    NARCIS (Netherlands)

    Fanta, J.; Siepel, H.

    2010-01-01

    Man has had a complex relationship with inland drift sands through the ages. For some centuries these landscapes were seen as a threat to society, especially agriculture and housing. At present we conserve these landscapes as important Natura 2000 priority habitats. In this book you may find these

  17. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  18. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  19. Dike Propagation Near Drifts

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M and O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M and O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report

  20. Monitoring Of The Middle Atmosphere: Grille Spectrometer Experiment Results On Board SPACELAB 1 And Scientific Program Of ATLAS 1 Mission

    Science.gov (United States)

    Papineau, N.; Camy-Peyret, C.; Ackerman, Marcel E.

    1989-10-01

    Measurements of atmospheric trace gases have been performed during the first Spacelab mission on board the Space Shuttle. The principle of the observations is infrared absorption spectroscopy using the solar occultation technique. Infrared absorption spectra of NO, CO, CO2, NO2, N20, CH4 and H2O have been recorded using the Grille spectrometer developped by ONERA and IASB. From the observed spectra, vertical profiles for these molecules have been derived. The present paper summarizes the main results and compares them with computed vertical profiles from a zonally averaged model of the middle atmosphere. The scientific objectives of the second mission, Atlas 1, planned for 1990 are also presented.

  1. The Atlas Experiment On-Line Monitoring And Filtering As An Example Of Real-Time Application

    Directory of Open Access Journals (Sweden)

    K. Korcyl

    2008-01-01

    Full Text Available The ATLAS detector, recording LHC particles’ interactions, produces events with rate of40 MHz and size of 1.6 MB. The processes with new and interesting physics phenomena arevery rare, thus an efficient on-line filtering system (trigger is necessary. The asynchronouspart of that system relays on few thousands of computing nodes running the filtering software.Applying refined filtering criteria results in increase of processing times what may lead tolack of processing resources installed on CERN site. We propose extension to this part ofthe system based on submission of the real-time filtering tasks into the Grid.

  2. Optimization of the ATLAS (s)MDT readout electronics for high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Kortner, Oliver; Kroha, Hubert; Nowak, Sebastian; Schmidt-Sommerfeld, Korbinian [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)

    2016-07-01

    In the ATLAS muon spectrometer, Monitored Drift Tube (MDT) chambers are used for precise muon track measurement. For the high background rates expected at HL-LHC, which are mainly due to neutrons and photons produced by interactions of the proton collision products in the detector and shielding, new small-diameter muon drift tube (sMDT)-chambers with half the drift tube diameter of the MDT-chambers and ten times higher rate capability have been developed. The standard MDT readout electronics uses bipolar shaping in front of a discriminator. This shaping leads to an undershoot of same charge but opposite polarity following each pulse. With count rates also the probability of having the subsequent pulse in this undershoot increases, which leads to losses in efficiency and spatial resolution. In order to decrease this effect, discrete prototype electronics including Baseline Restoration has been developed. Results of their tests and data taken with them during muon beamtime measurements at CERN's Gamma Irradiation Facility will be presented. which causes a deterioration of signal pulses by preceding background hits, leading to losses in muon efficiency and drift tube spatial resolution. In order to mitigate these so-called signal pile-up effects, new readout electronics with active baseline restoration (BLR) is under development. Discrete prototype electronics with BLR functionality has been tested in laboratory measurements and in the Gamma Irradiation Facility at CERN under high γ-irradiation rates. Results of the measurements are presented.

  3. Style drift in private equity

    NARCIS (Netherlands)

    Cumming, D.; Fleming, G.; Schwienbacher, A.

    2009-01-01

    We introduce the concept of style drift to private equity investment. We present theory and evidence pertaining to style drifts in terms of a fund manager's stated focus on particular stages of entrepreneurial development. We develop a model that derives conditions under which style drifts are less

  4. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  5. Gamma sensitivity of pressurized drift tubes

    International Nuclear Information System (INIS)

    Baranov, S.A.; Bojko, I.R.; Shelkov, G.A.; Ignatenko, M.A.

    1995-01-01

    Using a set of commonly used radioactive sources, the efficiency of pressurized drift tubes for gammas with energy from 5.9 keV up to 1.3 MeV has been measured. The tube was made of aluminium and filled with Ar, 15%CO 2 and 2.5%iC 4 H 10 gas mixture at 3 atm. The measured efficiency is compared with the results of the calculations in the frame of our simple model as well as with that of the Monte Carlo simulation using GEANT code. The results of our calculations are in agreement with experimental data, while GEANT simulation tends to give lower efficiency in the energy range of 200 keV γ <1300 keV. The average efficiency of the tube in the field of ATLAS gamma background is about 0.45%. 8 refs., 7 figs., 1 tab

  6. Does insecticide drift adversely affect grasshoppers (Orthoptera: Saltatoria) in field margins? A case study combining laboratory acute toxicity testing with field monitoring data.

    Science.gov (United States)

    Bundschuh, Rebecca; Schmitz, Juliane; Bundschuh, Mirco; Brühl, Carsten Albrecht

    2012-08-01

    The current terrestrial risk assessment of insecticides regarding nontarget arthropods considers exclusively beneficial organisms, whereas herbivorous insects, such as grasshoppers, are ignored. However, grasshoppers living in field margins or meadows adjacent to crops may potentially be exposed to insecticides due to contact with or ingestion of contaminated food. Therefore, the present study assessed effects of five active ingredients of insecticides (dimethoate, pirimicarb, imidacloprid, lambda-cyhalothrin, and deltamethrin) on the survival of Chorthippus sp. grasshopper nymphs by considering two routes of exposure (contact and oral). The experiments were accompanied by monitoring field margins that neighbored cereals, vineyards, and orchards. Grasslands were used as reference sites. The laboratory toxicity tests revealed a sensitivity of grasshoppers with regard to the insecticides tested in the present study similar to that of the standard test species used in arthropod risk assessments. In the field monitoring program, increasing grasshopper densities were detected with increasing field margin width next to cereals and vineyards, but densities remained low over the whole range of field margins from 0.5 to 20 m next to orchards. Grasshopper densities equivalent to those of grassland sites were only observed in field margins exceeding 9 m in width, except for field margins next to orchards. These results may indicate that current insecticide risk assessments are insufficiently protective for grasshoppers in field margins. Copyright © 2012 SETAC.

  7. Diogene pictorial drift chamber

    International Nuclear Information System (INIS)

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive)

  8. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  9. Negative Drift in Populations

    DEFF Research Database (Denmark)

    Lehre, Per Kristian

    2011-01-01

    An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms......, to be derived from simple conditions on the one-step behaviour of their variation operators and selection mechanisms....

  10. Model based monitoring functions for safer and more efficient operation of remotely operated plants; Modellbaserade oevervakningsfunktioner foer saekrare och effektivare drift av fjaerrstyrda anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Thomas; Raaberg, Martin [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-12-01

    The increasing demands on profitability lead to an increase in the demands on production units. These demands include an increase in production capacity, in efficiency and a decrease in production costs. To accommodate these demands the tendency is to connect several production units to control and monitor them in one central control room. This generates a huge demand on the operators. They should understand a large amount of different plants. They should understand how the plants act in several operation points and in addition understand how they operate together. This results in the fact that the monitoring and maintenance personnel are not able to have full knowledge about the processes in all these plants. The implementation of a simple device oriented, model based monitoring function will help the personnel in the decision making in process related issues. This report describes methods to easily include process knowledge in the I-C-system. Emanating from known physical facts about the functionality of the devices and use them to combine process values into functions that will describe the status of the device alarms can be created. These alarms are activated if the functionality deviates from the normal operating procedure in specific ways. The primary target group is the plant owners of district heating plants, but the process industry in general is faced with the same problems. The work includes three parts; an investigative part, a compiling part and a describing part. The investigative part involves investigating theories, the normal level of instrumentation and discussions with operators to confirm the alarms and the appropriate actions. The compiling part involves to in the best way mace use of the normal level of instrumentation to achieve the operator's goals with respect to valid alarms. These goals are attained through adapting the existing theory in the area. The describing part includes the presentation of the equations and relations involved

  11. ATLAS production system

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Golubkov, Dmitry; Maeno, Tadashi; Mashinistov, Ruslan; Wenaus, Torre; Padolski, Siarhei

    2016-01-01

    The second generation of the ATLAS production system called ProdSys2 is a distributed workload manager which used by thousands of physicists to analyze the data remotely, with the volume of processed data is beyond the exabyte scale, across a more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criterias, such as input and output size, memory requirements and CPU consumption with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteering computers. Besides jobs definition Production System also includes flexible web user interface, which implements user-friendly environment for main ATLAS workflows, e.g. simple way of combining different data flows, and real-time monitoring, optimised for using with huge amount of information to present. We present an overview of the ATLAS Production System major components: job and task definition, workflow manager web user i...

  12. Event visualization in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211497; The ATLAS collaboration; Boudreau, Joseph; Konstantinidis, Nikolaos; Martyniuk, Alex; Moyse, Edward; Thomas, Juergen; Waugh, Ben; Yallup, David

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  13. Consistent guiding center drift theories

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-04-01

    Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)

  14. Laboratory Course on Drift Chambers

    International Nuclear Information System (INIS)

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-01-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas

  15. Original monitoring of desert dust in African air masses transported over the Mediterranean Sea by quasi-Lagrangian drifting balloons and sounding balloons during the summer 2013 ChArMEx field campaign

    Science.gov (United States)

    Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.

    2017-12-01

    This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the

  16. Online precision gas evaluation of the ATLAS Muon Spectrometer during LHC RUN1

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The ATLAS Muon Spectrometer, a six story structure embedded in a toroidal magnetic field, is constructed of nearly 1200 Monitored Drift Tube chambers (MDTs) containing 354,000 aluminum drift tubes. The operating gas is 93% Ar + 7% CO2 with a small amount of water vapor at a pressure of 3 bar. The momentum resolution required for the LHC physics (dp/p = 2% at 100 GeV) demands that MDT gas gas quality and the associated gas dependent calibrations be determined with a rapid feedback cycle. During the LHC Run 1 more than 2 billion liters of gas flowed through the detector at a rate 100,000 l/hr. Online evauation of MDT gas in real time and the associated contribution to the determination of the time-to-space functions was conducted by the dedicated Gas Monitor Chamber. We report on the operation and results of the GMC over the first three years of LHC running. During this period, the GMC has operated with a nearly 100% duty cycle, providing hourly measurements of the MDT drift times with 1 ns precision, correspon...

  17. On-chamber readout system for the ATLAS MDT Muon Spectrometer

    CERN Document Server

    Chapman, J; Ball, R; Brandenburg, G; Hazen, E; Oliver, J; Posch, C

    2004-01-01

    The ATLAS MDT Muon Spectrometer is a system of approximately 380,000 pressurized cylindrical drift tubes of 3 cm diameter and up to 6 meters in length. These Monitored Drift Tubes (MDTs) are precision- glued to form super-layers, which in turn are assembled into precision chambers of up to 432 tubes each. Each chamber is equipped with a set of mezzanine cards containing analog and digital readout circuitry sufficient to read out 24 MDTs per card. Up to 18 of these cards are connected to an on-chamber DAQ element referred to as a Chamber Service Module, or CSM. The CSM multiplexes data from the mezzanine cards and outputs this data on an optical fiber which is received by the off-chamber DAQ system. Thus, the chamber forms a highly self-contained unit with DC power in and a single optical fiber out. The Monitored Drift Tubes, due to their length, require a terminating resistor at their far end to prevent reflections. The readout system has been designed so that thermal noise from this resistor remains the domi...

  18. Study of the Higgs boson discovery potential in the process $pp \\to H/A \\to \\mu^+\\mu^-/\\tau^+\\tau^-$ with the ATLAS detector

    CERN Document Server

    Dedes, Georgios

    2008-01-01

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of the Min- imal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A → τ + τ − → e/μ + X and H/A → μ+ μ− has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of elec- troweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measure- ment independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer s...

  19. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  20. Drifting black aurorae?

    International Nuclear Information System (INIS)

    Schoute-Vanneck, H.; Scourfield, M.W.J.; Nielsen, E.

    1990-01-01

    Characteristics of eastward drifting forms, previously described in the literature as black aurorae, have been identified in low-light level TV camera data. The TV field of view was within the field of view of STARE and that of an all-sky camera. On the basis of these observations the authors propose that these auroral forms are a manifestation of folds or waves on the borders of auroral bands propagating along the dark regions between neighboring auroral bands. Conditions under which the folds or waves occur are compatible with their formation by the Kelvin-Helmholtz electrostatic instability

  1. ABSTRACTION OF DRIFT SEEPAGE

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS MandO 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS MandO 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing

  2. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  3. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  4. Influence of detergents on water drift in cooling towers

    Science.gov (United States)

    Vitkovicova, Rut

    An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  5. Influence of detergents on water drift in cooling towers

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2017-01-01

    Full Text Available An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  6. Electronics for proportional drift tubes

    International Nuclear Information System (INIS)

    Fremont, G.; Friend, B.; Mess, K.H.; Schmidt-Parzefall, W.; Tarle, J.C.; Verweij, H.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Geske, K.; Riege, H.; Schuett, J.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Semenov, Y.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration)

    1980-01-01

    An electronic system for the read-out of a large number of proportional drift tubes (16,000) has been designed. This system measures deposited charge and drift-time of the charge of a particle traversing a proportional drift tube. A second event can be accepted during the read-out of the system. Up to 40 typical events can be collected and buffered before a data transfer to a computer is necessary. (orig.)

  7. Certification and commissioning of barrel stations for the ATLAS muon spectrometer

    CERN Document Server

    Zimmermann, S

    2006-01-01

    The muon spectrometer of the ATLAS experiment, which is scheduled to commence data taking at the Large Hadron Collider, LHC at CERN in 2007, comprises more than a thousand muon stations, which have the double purpose of triggering on high-p/sub t/ muon tracks as well as providing precise trajectory reconstruction. While monitored drift tube chambers are used for track reconstruction in all of the muon spectrometer except for a region close to the beam pipe in forward direction, two different technologies are used for triggering, resistive plate chambers in the barrel region and thin gap chambers in the end-caps. Both have in common that the ATLAS geometry allows only limited accessibility after chambers are installed in the detector. A thorough testing and certification prior to installation is therefore crucial. This paper reviews the test procedure at CERN for barrel chambers of type BO and BM, i.e. of stations for which a drift chamber is coupled with one or two resistive plate chambers. The final certific...

  8. The Geodiversity in Drift Sand Landscapes of The Netherlands

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    metres high. They are common near villages. They originated through sand blown from fallow agricultural fields and local overgrazing. They vary in age from prehistoric to modern time and are now mostly planted with forests. Third are the linear drift sand areas with one to three metre high ridges that align old roads and originated through dust whirled up by horses and carriages over many centuries. They also occurs within drift sands of the first system. In the re-stabilization of reactivated drift sands, differences in geodiversity on a still more detailed scale are important (Ancker, Jungerius et al. 2013). Even a small change in slope can cause primary dunes to develop and stop wind erosion. Gradually the geodiversity aspects are recognized as relevant for the management of active and fossil drift sands, and also is becoming a management issue in itself. An important future research issue is the completion of the Drift Sand Atlas, a project that describes the geodiversity aspects of all drift sand areas of The Netherlands. This project has been retarded by lack of means. Knowledge of the geodiversity also is important for correct sampling of C14 and luminescence data. Other future research includes the processes that caused the formation of 'randwallen' (rim walls), rates of water and wind erosion and soil formation and links between flora, fauna and Natura 2000 species. References

  9. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  10. An investigation of frequency scanning interferometery for the alignment of the ATLAS semiconductor tracker

    CERN Document Server

    Coe, P A

    2001-01-01

    The relative alignment of the silicon detector modules of the ATLAS semiconductor tracker will need remote monitoring during operation, within a high radiation environment. A geodetic grid of distance measurement fibre-coupled interferometers will monitor changes in the shape of the support structure. Eight hundred fibre-coupled grid line interferometers (GLIs) will be compared simultaneously to a stable, evacuated reference interferometer using Frequency Scanning Interferometry (FSI). The GLIs, (from 70 mm to 1400mm long, with pW level return signals) must be measured to a precision of 1 micron, to reconstruct the grid shape, in three dimensions, to a precision of 10 microns. In this work two important limitations were overcome: 1. Inflated errors due to relative interferometer drift were significantly reduced using two lasers scanned in opposite directions. 2. The fine tuning range was effectively extended by linking the phase information in two 30 GHz fine tuning subscans, separated by a 3.5 THz coarse tun...

  11. Optimisation of the Read-out Electronics of Muon Drift-Tube Chambers for Very High Background Rates at HL-LHC and Future Colliders

    CERN Document Server

    Nowak, Sebastian; Gadow, Philipp; Ecker, Katharina; Fink, David; Fras, Markus; Kortner, Oliver; Kroha, Hubert; Müller, Felix; Richter, Robert; Schmid, Clemens; Schmidt-Sommerfeld, Korbinian; Zhao, Yazhou

    2016-01-01

    In the ATLAS Muon Spectrometer, Monitored Drift Tube (MDT) chambers and sMDT chambers with half of the tube diameter of the MDTs are used for precision muon track reconstruction. The sMDT chambers are designed for operation at high counting rates due to neutron and gamma background irradiation expected for the HL-LHC and future hadron colliders. The existing MDT read-out electronics uses bipolar signal shaping which causes an undershoot of opposite polarity and same charge after a signal pulse. At high counting rates and short electronics dead time used for the sMDTs, signal pulses pile up on the undershoot of preceding background pulses leading to a reduction of the signal amplitude and a jitter in the drift time measurement and, therefore, to a degradation of drift tube efficiency and spatial resolution. In order to further increase the rate capability of sMDT tubes, baseline restoration can be used in the read-out electronics to suppress the pile-up effects. A discrete bipolar shaping circuit with baseline...

  12. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  13. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  14. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  15. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  16. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  17. Irradiation aging of the electronics of the ATLAS Transition Radiation Tracker

    CERN Document Server

    ATLAS TRT Collaboration; The ATLAS collaboration

    2018-01-01

    Talk for a workshop on April 23, 2018 about Radiation effects at the LHC experiments and impact on operation and performance. Plots show the threshold drift over 2 years as is seen in the TRT and ATLAS, showing saturation of threshold drift after run 1. Other slides are studies done in 2013/2014 showing the effects of a Co-60 source on the thresholds, showing threshold drift effects at 30 kRad (effective dose in ATLAS after Run 1) and beyond. The take away from these slides is that the radiation effects saturate and stabilize after around 30 kRads

  18. Measurement of Spray Drift with a Specifically Designed Lidar System.

    Science.gov (United States)

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  19. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  20. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  1. GEOINFORMATION AND CARTOGRAPHIC SUPPORT FOR MONITORING NATURAL AND TECHNOGENIC PROCESSES BASED ON ATLAS MAPPING IN THE SAKHALIN REGION

    Directory of Open Access Journals (Sweden)

    V. A. Melkiy

    2017-01-01

    Full Text Available The increasing anthropogenic impact often leads to emergence and development of negative processes on the lands, thereby reducing their economic value. Land of the Sakhalin Region located on the border of the Eurasian continent and the Pacific ocean, where interaction between geospheric shells is intense and therefore, exposed to a variety of active natural processes characteristic of such zones. Among the many processes that take place here very actively, one can be name seismic, volcanic, abrasion, morpholithodynamic, monsoon atmospheric circulation and several others. Active geothermal processes, combined with abundant moisture lead to changes in the biosphere (the gigantism of plants. It is therefore important to conduct periodic monitoring to assess the state of the environment, the pace of development and definition of processes speed.The operative regional land monitoring is possible only on the basis of data of Earth remote sensing with the regular updating of thematic maps using GIS technologies.The Sakhalin State University has been performing the analysis of the peculiarities of naturalclimatic conditions of the region, affecting the method of conducting monitoring of lands, as well as the interpretation of its results. When conducting scientific research the methods of geoinformation mapping, spatial analysis, thematic interpretation were used etc.As a result technology of integrated regional land monitoring in the Sakhalin has been developed and implemented on the Station of satellite data reception by Sakhalin State University, allowing one to receive, store, analyze, and provide map information on the assessment of the condition of lands, taking into account the specific natural conditions of the territory.The article presents a technological scheme of integrated regional monitoring of the land, reveals the content of databases on processes that change the state of the land and evidence-based period of space observations for them

  2. The high-precision x-ray tomograph for quality control of the ATLAS MDT muon spectrometer

    CERN Document Server

    Drakoulakos, D G; Maugain, J M; Rohrbach, F; Sedykh, Yu

    1997-01-01

    For the Large Hadron Collider (LHC) of the next millennium, a large general-purpose high-energy physics experiment, the ATLAS project, is being designed by a world-wide collaboration. One of its detectors, the ATLAS muon tracking detector, the MDT project, is on the scale of a very large industrial project: the design, the construction and assembly of twelve hundred large muon drift chambers are aimed at producing an exceptional quality in terms of accuracy, material reliability, assembly, and monitoring. This detector, based on the concept of very high mechanical precision required by the physics goals, will use tomography as a quality control platform. An X-ray tomograph prototype, monitored by a set of interferometers, has been developed at CERN to provide high-quality control of the MDT chambers which will be built in the collaborating institutes of the ATLAS project. First results have been obtained on MDT prototypes showing the validity of the X-ray tomograph approach for mechanical control of the detec...

  3. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  4. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  5. Networks in ATLAS

    Science.gov (United States)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  6. Longevity of Emplacement Drift Ground Support Materials

    International Nuclear Information System (INIS)

    D.H.Tang

    2001-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4

  7. Monitoring the South Atlantic Anomaly Using ATSR

    Science.gov (United States)

    Casadio, Stefano; Arino, Olivier; Serpe, Danilo

    2010-12-01

    Space mission planning needs to quantify the risks arising from exposure to high doses of radiation, as to both the effects on human health and the impact on instrumental efficiency. Constant monitoring of the South Atlantic Anomaly (SAA) is therefore required as it is a major cause of radiation flux increase. In order to address this need, the time evolution of the particle induced noise of the SWIR channels of the Along Track Scanning Radiometer (ATSR) instrument series is analysed in the 1991-2009 time window. The data considered in this work are the night-time SWIR hot spots generated by energetic particles hitting the ATSR detectors when satellites pass through the SAA region. To avoid misinterpretation of results, hot spots due to wildfires (individuated from the ATSR World Fire Atlas products) have been removed. The location and area of the SAA are inferred by fitting a two-dimensional, elliptical Gaussian equation to the SWIR (1.6 μm) night- time hot spots detected over the SAA region. The location of the SAA is found to drift westwards with an average drift rate of about 0.35 deg/yr and northward with an average drift rate of about 0.12 deg/yr. These results are in very good agreement with latest works. Irregularities are found where the speed of the drift changes and the SAA moves eastward and southward, especially in the late 1991 and 2002-2003 time windows. These drift anomalies are attributed to geomagnetic jerks. Results indicate that, as expected, the strength and the area of the SAA are anti-correlated with the sun-spot numbers (SSN) and the 11.7 cm Solar Flux (SF).

  8. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    International Nuclear Information System (INIS)

    N.T. Raczka

    1998-01-01

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  9. Autocalibration of high precision drift tubes

    International Nuclear Information System (INIS)

    Bacci, C.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Gauzzi, P.; Lacava, F.; Nisati, A.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Cambiaghi, M.; Casellotti, G.; Conta, C.; Fraternali, M.; Lanza, A.; Livan, M.; Polesello, G.; Rimoldi, A.; Vercesi, V.

    1997-01-01

    We present the results on MDT (monitored drift tubes) autocalibration studies obtained from the analysis of the data collected in Summer 1995 on the H8B Muon Test Beam. In particular we studied the possibility of autocalibration of the MDT using four or three layers of tubes, and we compared the calibration obtained using a precise external tracker with the output of the autocalibration procedure. Results show the feasibility of autocalibration with four and three tubes and the good accuracy of the autocalibration procedure. (orig.)

  10. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  11. Drift chamber data readout system

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Lokhonyai, L.

    1980-01-01

    An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)

  12. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  13. On nonlinear periodic drift waves

    International Nuclear Information System (INIS)

    Kauschke, U.; Schlueter, H.

    1990-09-01

    Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)

  14. The OPAL vertex drift chamber

    International Nuclear Information System (INIS)

    Carter, J.R.; Elcombe, P.A.; Hill, J.C.; Roach, C.M.; Armitage, J.C.; Carnegie, R.K.; Estabrooks, P.; Hemingway, R.; Karlen, D.; McPherson, A.; Pinfold, J.; Roney, J.M.; Routenburg, P.; Waterhouse, J.; Hargrove, C.K.; Klem, D.; Oakham, F.G.; Carter, A.A.; Jones, R.W.L.; Lasota, M.M.B.; Lloyd, S.L.; Pritchard, T.W.; Wyatt, T.R.

    1990-01-01

    A high precision vertex drift chamber has been installed in the OPAL experiment at LEP. The design of the chamber and the associated readout electronics is described. The performance of the system has been studied using cosmic ray muons and the results of these studies are presented. A space resolution of 50 μm in the drift direction is obtained using the OPAL central detector gas mixture at 4 bar. (orig.)

  15. High-Rate Performance of Muon Drift Tube Detectors

    CERN Document Server

    Schwegler, Philipp

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. In parallel with the first LHC run from 2009 to 2012, which culminated in the discovery of the last missing particle of the Standard Model of particle physics, the Higgs boson, planning of upgrades of the LHC for higher instantaneous luminosities (HL-LHC) is already progressing. The high instantaneous luminosity of the LHC puts high demands on the detectors with respect to radiation hardness and rate capability which are further increased with the luminosity upgrade. In this thesis, the limitations of the Muon Drift Tube (MDT) chambers of the ATLAS Muon Spectrometer at the high background counting rates at the LHC and performance of new small diameter muon drift tube (sMDT) detectors at the even higher background rates at HL-LHC are stud...

  16. Generalized drift-flux correlation

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.

    1991-01-01

    A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve

  17. From One Pixel to One Earth: Building a Living Atlas in the Cloud to Analyze and Monitor Global Patterns

    Science.gov (United States)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Franco, E.; Keisler, R.; Kelton, T.; Kontgis, C.; Mathis, M.; Raleigh, D.; Rudelis, X.; Skillman, S.; Warren, M. S.; Longbotham, N.

    2016-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Historical, multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes per year of high-resolution imagery with daily global coverage. Cloud computing and storage, combined with recent advances in machine learning and open software, are enabling understanding of the world at an unprecedented scale and detail. We have assembled all available satellite imagery from the USGS Landsat, NASA MODIS, and ESA Sentinel programs, as well as commercial PlanetScope and RapidEye imagery, and have analyzed over 2.8 quadrillion multispectral pixels. We leveraged the commercial cloud to generate a tiled, spatio-temporal mosaic of the Earth for fast iteration and development of new algorithms combining analysis techniques from remote sensing, machine learning, and scalable compute infrastructure. Our data platform enables processing at petabytes per day rates using multi-source data to produce calibrated, georeferenced imagery stacks at desired points in time and space that can be used for pixel level or global scale analysis. We demonstrate our data platform capability by using the European Space Agency's (ESA) published 2006 and 2009 GlobCover 20+ category label maps to train and test a Land Cover Land Use (LCLU) classifier, and generate current self-consistent LCLU maps in Brazil. We train a standard classifier on 2006 GlobCover categories using temporal imagery stacks, and we validate our results on co-registered 2009 Globcover LCLU maps and 2009 imagery. We then extend the derived LCLU model to current imagery stacks to generate an updated, in-season label map. Changes in LCLU labels can now be seamlessly monitored for a given location across the years in order to track, for example, cropland expansion, forest growth, and urban developments. An example of change

  18. Construction and Test of Muon Drift Tube Chambers for High Counting Rates

    CERN Document Server

    Schwegler, Philipp; Dubbert, Jörg

    2010-01-01

    Since the start of operation of the Large Hadron Collider (LHC) at CERN on 20 November 2009, the instantaneous luminosity is steadily increasing. The muon spectrometer of the ATLAS detector at the LHC is instrumented with trigger and precision tracking chambers in a toroidal magnetic field. Monitored Drift-Tube (MDT) chambers are employed as precision tracking chambers, complemented by Cathode Strip Chambers (CSC) in the very forward region where the background counting rate due to neutrons and γ's produced in shielding material and detector components is too high for the MDT chambers. After several upgrades of the CERN accelerator system over the coming decade, the instantaneous luminosity is expected to be raised to about five times the LHC design luminosity. This necessitates replacement of the muon chambers in the regions with the highest background radiation rates in the so-called Small Wheels, which constitute the innermost layers of the muon spectrometer end-caps, by new detectors with higher rate cap...

  19. Using the Hadoop/MapReduce approach for monitoring the CERN storage system and improving the ATLAS computing model

    CERN Document Server

    Russo, Stefano Alberto; Lamanna, M

    The processing of huge amounts of data, an already fundamental task for the research in the elementary particle physics field, is becoming more and more important also for companies operating in the Information Technology (IT) industry. In this context, if conventional approaches are adopted several problems arise, starting from the congestion of the communication channels. In the IT sector, one of the approaches designed to minimize this congestion on is to exploit the data locality, or in other words, to bring the computation as closer as possible to where the data resides. The most common implementation of this concept is the Hadoop/MapReduce framework. In this thesis work I evaluate the usage of Hadoop/MapReduce in two areas: a standard one similar to typical IT analyses, and an innovative one related to high energy physics analyses. The first consists in monitoring the history of the storage cluster which stores the data generated by the LHC experiments, the second in the physics analysis of the latter, ...

  20. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures

    CERN Document Server

    Andronic, A

    2003-01-01

    We present pulse height measurements in drift chambers operated with Xe,CO2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and Fe55 pulse height measurements using monitor detectors.

  1. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures

    International Nuclear Information System (INIS)

    Andronic, A.; Appelshaeuser, H.; Blume, C.; Braun-Munzinger, P.; Bucher, D.; Busch, O.; Ramirez, A.C.A. Castillo; Catanescu, V.; Ciobanu, M.; Daues, H.; Devismes, A.; Emschermann, D.; Fateev, O.; Garabatos, C.; Herrmann, N.; Ivanov, M.; Mahmoud, T.; Peitzmann, T.; Petracek, V.; Petrovici, M.; Reygers, K.; Sann, H.; Santo, R.; Schicker, R.; Sedykh, S.; Shimansky, S.; Simon, R.S.; Smykov, L.; Soltveit, H.K.; Stachel, J.; Stelzer, H.; Tsiledakis, G.; Vulpescu, B.; Wessels, J.P.; Windelband, B.; Winkelmann, O.; Xu, C.; Zaudtke, O.; Zanevsky, Yu.; Yurevich, V.

    2003-01-01

    We present pulse height measurements in drift chambers operated with Xe,CO 2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF 6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and 55 Fe pulse height measurements using monitor detectors

  2. Characteristic parameters of drift chambers calculation

    International Nuclear Information System (INIS)

    Duran, I.; Martinez-Laso, L.

    1989-01-01

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs

  3. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  4. In-Drift Microbial Communities

    International Nuclear Information System (INIS)

    Jolley, D.

    2000-01-01

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses

  5. Development and characterisation of new high-rate muon drift tube detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Bernhard

    2012-07-25

    With the increase of the LHC luminosity above the design value and the higher background counting rates, detectors in the ATLAS muon spectrometer have to be replaced because the limits of the radiation tolerance will be exceeded. Therefore drift tube chambers with 15 mm tube diameter were developed. The required construction accuracy was verified and the limits of the resolution and efficiency were determined in a muon beam and under gamma irradiation and compared to model expectations.

  6. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  7. ATLAS DQ2 Deletion Service

    International Nuclear Information System (INIS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  8. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  9. Predicting public sector accountability : From agency drift to forum drift

    NARCIS (Netherlands)

    Schillemans, Thomas|info:eu-repo/dai/nl/229913881; Busuioc, Madalina

    2015-01-01

    Principal-agent theory has been the dominant theory at the heart of public sector accountability research. The notion of the potentially drifting agent-such as independent public agencies, opaque transnational institutions, or recalcitrant street-level bureaucrats-has been the guiding paradigm in

  10. ATLAS DAQ/HLT rack DCS

    International Nuclear Information System (INIS)

    Ermoline, Yuri; Burckhart, Helfried; Francis, David; Wickens, Frederick J.

    2007-01-01

    The ATLAS Detector Control System (DCS) group provides a set of standard tools, used by subsystems to implement their local control systems. The ATLAS Data Acquisition and High Level Trigger (DAQ/HLT) rack DCS provides monitoring of the environmental parameters (air temperatures, humidity, etc.). The DAQ/HLT racks are located in the underground counting room (20 racks) and in the surface building (100 racks). The rack DCS is based on standard ATLAS tools and integrated into overall operation of the experiment. The implementation is based on the commercial control package and additional components, developed by CERN Joint Controls Project Framework. The prototype implementation and measurements are presented

  11. Collisional drift fluid equations and implications for drift waves

    International Nuclear Information System (INIS)

    Pfirsch, Dieter; Correa-Restrepo, Dario

    1996-01-01

    The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effects of which are extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter law is important in relation to charge separation and the resulting electric fields, which are possibly related to the L-H transition. Energy conservation is crucial to the stability behaviour, it will be discussed by means of an example. New collisional multi-species drift-fluid equations were derived by a new method which yields, in a transparent way, conservation of energy and total angular momentum and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The only restriction involved is the validity of the drift approximation; in particular, there are no assumptions restricting the geometry of the system. The method is based primarily on a Lagrangian for dissipationless fluids in the drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. However, their relation to the ideal equations also implies a relation to the ideal Lagrangian, which can be used to advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T v (x) = constant. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theory; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. (author)

  12. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Heller, C; The ATLAS collaboration

    2011-01-01

    ATLAS is one of the multipurpose experiments that records the products of the LHC proton-proton and heavy ion collisions. In order to reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built using two different technologies, silicon planar sensors (pixel and microstrips) and drift-tube based detectors. Together they constitute the ATLAS Inner Detector, which is embedded in a 2 T axial field. Efficiently reconstructing tracks from charged particles traversing the detector, and precisely measure their momenta is of crucial importance for physics analyses. In order to achieve its scientific goals, an alignment of the ATLAS Inner Detector is required to accurately determine its more than 700,000 degrees of freedom. The goal of the alignment is set such that the limited knowledge of the sensor locations should not deteriorate the resolution of track parameters by more than 20% with respect to the intrinsic tracker resolution. The implementation of t...

  13. Longevity of Emplacement Drift Ground Support Materials, Rev. 01

    International Nuclear Information System (INIS)

    David H. Tang

    2000-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. The Development Plan (DP) for this analysis is given in Longevity of Emplacement Drift Ground Support Materials (CRWMS M and O 1999a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999b), and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and crushed rock ballast. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts; (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period; (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment; (4) Evaluate factors affecting longevity of cement grouts for fully grouted rock bolt system. Provide updated information on cement grout mix design for fully grouted rock bolt system; and (5) Evaluate longevity of materials for the emplacement drift invert

  14. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  15. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  16. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  17. Job satisfaction and preference drift.

    NARCIS (Netherlands)

    Maassen van den Brink, H.; Groot, W.J.N.

    1999-01-01

    Most empirical studies do not find that higher wages lead to more job satisfaction. In this paper we argue that the insignificant effect of wages on job satisfaction is due to preference drift. We adapt the standard ordered response model to allow for preference shifts. The empirical results support

  18. Simple Methods for Scanner Drift Normalization Validated for Automatic Segmentation of Knee Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dam, Erik Bjørnager

    2018-01-01

    Scanner drift is a well-known magnetic resonance imaging (MRI) artifact characterized by gradual signal degradation and scan intensity changes over time. In addition, hardware and software updates may imply abrupt changes in signal. The combined effects are particularly challenging for automatic...... image analysis methods used in longitudinal studies. The implication is increased measurement variation and a risk of bias in the estimations (e.g. in the volume change for a structure). We proposed two quite different approaches for scanner drift normalization and demonstrated the performance...... for segmentation of knee MRI using the fully automatic KneeIQ framework. The validation included a total of 1975 scans from both high-field and low-field MRI. The results demonstrated that the pre-processing method denoted Atlas Affine Normalization significantly removed scanner drift effects and ensured...

  19. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.

  20. Performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Aleksa, M.

    1999-09-01

    ATLAS is a general-purpose experiment for the future large hadron collider (LHC) at CERN. Its Muon Spectrometer will require ∼5500 m 2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5 m to 15 m length, embedded in a magnetic field of ∼0.5 T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼1200 drift chambers. The LHC physics discovery range indicates the need for a momentum resolution of ∼10 % for muons with a transverse momentum of p T =1 TeV/c. Following a detailed engineering optimisation of the magnetic-field strength versus the chamber resolution, the ATLAS collaboration opted for a drift-chamber system with very high spatial resolution, σ 2 93/7). Measurements performed in a high-background environment - similar to the ATLAS operational environment - gave us a complete understanding of the individual effects which deteriorate the spatial resolution at high rates. Four effects responsible for a resolution deterioration have been identified: two electronics effects which depend on the count rate of a tube (baseline shift and baseline fluctuations), and two space-charge effects that depend on the local count rate (gain drop and field fluctuations). The understanding of these effects had a major impact on the choice of the drift gas and the front-end electronics. The strong dependence of the drift velocity on the drift field is one major disadvantage of the baseline gas. In this work the full set of effects which lead to systematic errors to the track-position measurement in one tube (e.g. variations of the background rate) was investigated and quantified for realistic LHC operating conditions. For the biggest effects analytical corrections are presented. Finally, the muon-system performance was investigated and a calibration method for the absolute mass scale developed. By means of simulation it was shown that the energy

  1. Automating ATLAS Computing Operations using the Site Status Board

    CERN Document Server

    Andreeva, J; The ATLAS collaboration; Campana, S; Di Girolamo, A; Espinal Curull, X; Gayazov, S; Magradze, E; Nowotka, MM; Rinaldi, L; Saiz, P; Schovancova, J; Stewart, GA; Wright, M

    2012-01-01

    The automation of operations is essential to reduce manpower costs and improve the reliability of the system. The Site Status Board (SSB) is a framework which allows Virtual Organizations to monitor their computing activities at distributed sites and to evaluate site performance. The ATLAS experiment intensively uses SSB for the distributed computing shifts, for estimating data processing and data transfer efficiencies at a particular site, and for implementing automatic exclusion of sites from computing activities, in case of potential problems. ATLAS SSB provides a real-time aggregated monitoring view and keeps the history of the monitoring metrics. Based on this history, usability of a site from the perspective of ATLAS is calculated. The presentation will describe how SSB is integrated in the ATLAS operations and computing infrastructure and will cover implementation details of the ATLAS SSB sensors and alarm system, based on the information in SSB. It will demonstrate the positive impact of the use of SS...

  2. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  3. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  4. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  5. A Pascalian lateral drift sensor

    International Nuclear Information System (INIS)

    Jansen, H.

    2016-01-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  6. A Pascalian lateral drift sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H., E-mail: hendrik.jansen@desy.de

    2016-09-21

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  7. High-rate performance of muon drift tube detectors

    International Nuclear Information System (INIS)

    Schwegler, Philipp

    2014-01-01

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. In parallel with the first LHC run from 2009 to 2012, which culminated in the discovery of the last missing particle of the Standard Model of particle physics, the Higgs boson, planning of upgrades of the LHC for higher instantaneous luminosities (HL-LHC) is already progressing. The high instantaneous luminosity of the LHC puts high demands on the detectors with respect to radiation hardness and rate capability which are further increased with the luminosity upgrade. In this thesis, the limitations of the Muon Drift Tube (MDT) chambers of the ATLAS Muon Spectrometer at the high background counting rates at the LHC and performance of new small diameter muon drift tube (sMDT) detectors at the even higher background rates at HL-LHC are studied. The resolution and efficiency of sMDT chambers at high γ-ray and proton irradiation rates well beyond the ones expected at HL-LHC have been measured and the irradiation effects understood using detailed simulations. The sMDT chambers offer an about an order of magnitude better rate capability and are an ideal replacement for the MDT chambers because of compatibility of services and read-out. The limitations of the sMDT chambers are now in the read-out electronics, taken from the MDT chambers, to which improvements for even higher rate capability are proposed.

  8. MPS II drift chamber system

    International Nuclear Information System (INIS)

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed

  9. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  10. Yucca Mountain drift scale test progress report

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  11. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  12. Validation Tools for ATLAS Muon Spectrometer Commissioning

    International Nuclear Information System (INIS)

    Benekos, N.Chr.; Dedes, G.; Laporte, J.F.; Nicolaidou, R.; Ouraou, A.

    2008-01-01

    The ATLAS Muon Spectrometer (MS), currently being installed at CERN, is designed to measure final state muons of 14 TeV proton-proton interactions at the Large Hadron Collider (LHC) with a good momentum resolution of 2-3% at 10-100 GeV/c and 10% at 1 TeV, taking into account the high level background enviroment, the inhomogeneous magnetic field, and the large size of the apparatus (24 m diameter by 44 m length). The MS layout of the ATLAS detector is made of a large toroidal magnet, arrays of high-pressure drift tubes for precise tracking and dedicated fast detectors for the first-level trigger, and is organized in eight Large and eight Small sectors. All the detectors of the barrel toroid have been installed and the commissioning has started with cosmic rays. In order to validate the MS performance using cosmic events, a Muon Commissioning Validation package has been developed and its results are presented in this paper. Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern

  13. Advanced Alignment of the ATLAS Inner Detector

    CERN Document Server

    Stahlman, JM; The ATLAS collaboration

    2012-01-01

    The primary goal of the ATLAS Inner Detector (ID) is to measure the trajectories of charged particles in the high particle density environment of the Large Hadron Collider (LHC) collisions. This is achieved using a combination of different technologies, including silicon pixels, silicon microstrips, and gaseous drift-tubes, all immersed in a 2 Tesla magnetic field. With over one million alignable degrees of freedom, it is crucial that an accurate model of the detector positions be produced using an automated and robust algorithm in order to achieve good tracking performance. This has been accomplished using a variety of alignment techniques resulting in near optimal hit and momentum resolutions.

  14. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Butti, P; The ATLAS collaboration

    2014-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, planar silicon modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments and deformations of the active detector elements deteriorate the track reconstruction resolution and lead to systematic biases on the measured track parameters. The alignment procedures exploits various advanced tools and techniques in order to determine for module positions and correct for deformations. For the LHC Run II, the system is being upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  15. Calibration of the ATLAS Transition Radiation Tracker

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    The Transition Radiation Tracker (TRT) is the outermost charged particle tracking device of the ATLAS Inner Detector. The TRT has about 300,000 straws, each of which is a proportional drift tube with a diameter of 4 mm. For a precise measurement of the trajectory of a charged particle (track), the relation between the measured time of the start of the signal and the distance of closest approach between the track and the anode wire needs to be calibrated. In this note, we present the calibration of the TRT detector during the first year of 7 TeV collision data-taking.

  16. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  17. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    Science.gov (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  18. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  19. Measurement of the positron-drift time relation of a high-pressure drift chamber

    International Nuclear Information System (INIS)

    Pruefert, W.

    1989-04-01

    As a test of its performance, the measurement of the drift time versus drift distance relation of a high pressure drift chamber using cosmic rays is described. Two multiwire proportional chambers, mounted above and below the detector, are used to define the track of the cosmic particle in the drift chamber. The drift chamber is read out by FADCs (Flash Analog to Digital Converter), and the drift time is determined from the FADC signals by the DOS- (Difference Of Samples) method. The measured drift time versus drift distance relation showed good agreement with the relation, which is expected from the spatial dependence of the electric field and the dependence of the drift velocity on this field. (orig.) [de

  20. Pulse shape simulation for drift chambers with long drift paths

    International Nuclear Information System (INIS)

    Mayer, H.J.

    1987-01-01

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution. (orig.)

  1. Pulse shape simulation for drift chambers with long drift paths

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H J

    1987-09-15

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution.

  2. Drift effects on the galactic cosmic ray modulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurenza, M.; Storini, M. [INAF/IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Vecchio, A. [Istituto Nazionale di Geofisica e Vulcanologia-Sede di Cosenza, I-87036 Rende (CS) (Italy); Carbone, V., E-mail: monica.laurenza@iaps.inaf.it [Dipartimento di Fisica, Università della Calabria, I-87036 Rende (CS) (Italy)

    2014-02-01

    Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effects on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.

  3. Metocean input data for drift models applications: Loustic study

    International Nuclear Information System (INIS)

    Michon, P.; Bossart, C.; Cabioc'h, M.

    1995-01-01

    Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts

  4. Drift waves in a stellarator

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Sedlak, J.E.; Similon, P.L.; Rosenbluth, M.N.; Ross, D.W.

    1982-11-01

    We investigate the eigenmode structure of drift waves in a straight stellarator using the ballooning mode formalism. The electrons are assumed to be adiabatic and the ions constitute a cold, magnetized fluid. The effective potential has an overall parabolic envelope but is modulated strongly by helical ripples along B. We have found two classes of solutions: those that are strongly localized in local helical wells, and those that are weakly localized and have broad spatial extent. The weakly localized modes decay spatially due to the existence of Mathieu resonances between the periods of the eigenfunction and the effective potential

  5. Kinetic theory of drift waves

    International Nuclear Information System (INIS)

    Vlad, G.

    1988-01-01

    The linear stability of the electrostatic drift waves in slab geometry has been studied analytically and numerically. The effects of magnetic field with shear, of the finite Larmor radius, of an electron streaming, of a temperature gradient and of collisions have been retained. The analytical solution has been obtained using the matched asymptotic expansion technique, and an expression for the critical streaming parameter has been derived. Finally, assuming that the transport in the Reversed Field Pinches is dominated by this instability, a scaling law for the temperature in such machine is derived

  6. Experimental work on drift chambers

    International Nuclear Information System (INIS)

    Alcaraz, J.; Duran, I.; Gonzalez, E.; Martinez-Laso, L.; Olmos, P.

    1989-01-01

    An experimental work made on drift chambers is described in two chapters. In the firt chapter we present the description of the experimental installation used, as well as some details on the data adquisition systems and the characteristics on three ways used for calibration proposes (cosmic muons, β radiation and test beam using SPS at CERN facilities). The second chapter describes the defferent prototypes studied. The experimental set up and the analysis are given. Some results are discussed. The magnetic field effect is also studied. (Author)

  7. Drift vortices in continuous media

    International Nuclear Information System (INIS)

    Chernousenko, V.M.; Chernenko, I.V.; Chernyshenko, S.V.

    1989-01-01

    The work is devoted to investigation into the problems of large-scale cortex drift and generation in continuous media based on the solution of notably non-linear differential equations. Using the capability of the modern computer technique it is possible to consider a series of cases with regard to medium viscosity and its inhomogeneity and with regard to three-dimensional vortex nature. Based on the solutions obtained the large-scale steady-state vortex generation processes are considered. The results can be used when studying non-linear phenomena in plasma and processes of substance and energy transfer in non-equilibrium media. 16 refs.; 5 figs

  8. Operation and calibration of the Silicon Drift Detectors of the ALICE experiment during the 2008 cosmic ray data taking period

    CERN Document Server

    Alessandro, B; Bala, R; Batigne, G; Beolè, S; Biolcati, E; Bock Garcia, N; Bruna, E; Cerello, P; Coli, S; Corrales Morales, Y; Costa, F; Crescio, E; De Remigis, P; Di Liberto, S; Falchieri, D; Feofilov, G; Ferrarese, W; Gandolfi, E; Garcia, C; Gaudichet, L; Giraudo, G; Giubellino, P; Humanic, T J; Igolkin, S; Idzik, M; Kiprich, S K; Kisiel, A; Kolozhvari, A; Kotov, I; Kral, J; Kushpil, S; Kushpil, V; Lea, R; Lisa, M A; Martinez, M I; Marzari Chiesa, A; Masera, M; Masetti, M; Mazza, G; Mazzoni, M A; Meddi, F; Montano Zetina, L M; Monteno, M; Nilsen, B S; Nouais, D; Padilla Cabal, F; Petrácek, V; Poghosyan, M G; Prino, F; Ramello, L; Rashevsky, A; Riccati, L; Rivetti, A S; Senyukov, S; Siciliano, M; Sitta, M; Subieta Vasquez, M A; Sumbera, M L; Toscano, L; Tosello, F; Truesdale, D; Urciuoli, G M; Vacchi, A; Vallero, S; Werbrouck, A; Zampa, G; Zinovjev, G

    2010-01-01

    The calibration and performance of the Silicon Drift Detector of the ALICE experiment during the 2008 cosmic ray run will be presented. In particular the procedures to monitor the running parameters (baselines, noise, drift speed) are detailed. Other relevant parameters (SOP delay, time-zero, charge calibration) were also determined.

  9. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  10. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  11. The ATLAS beam pick-up based timing system

    International Nuclear Information System (INIS)

    Ohm, C.; Pauly, T.

    2010-01-01

    The ATLAS BPTX stations are composed of electrostatic button pick-up detectors, located 175 m away along the beam pipe on both sides of ATLAS. The pick-ups are installed as a part of the LHC beam instrumentation and used by ATLAS for timing purposes. The usage of the BPTX signals in ATLAS is twofold: they are used both in the trigger system and for LHC beam monitoring. The BPTX signals are discriminated with a constant-fraction discriminator to provide a Level-1 trigger when a bunch passes through ATLAS. Furthermore, the BPTX detectors are used by a stand-alone monitoring system for the LHC bunches and timing signals. The BPTX monitoring system measures the phase between collisions and clock with a precision better than 100 ps in order to guarantee a stable phase relationship for optimal signal sampling in the sub-detector front-end electronics. In addition to monitoring this phase, the properties of the individual bunches are measured and the structure of the beams is determined. On September 10, 2008, the first LHC beams reached the ATLAS experiment. During this period with beam, the ATLAS BPTX system was used extensively to time in the read-out of the sub-detectors. In this paper, we present the performance of the BPTX system and its measurements of the first LHC beams.

  12. Drift-time measurement electronics

    International Nuclear Information System (INIS)

    Pernicka, M.

    1978-01-01

    The aim of the construction was to improve the time resolution without using the facility of time stretching, to have a fast read-out possibility, and to be still cheaper in price in comparison to other systems. A possibility was thus foreseen for using the firm Fairchild. These integrated circuits (IC) have, for example, a propagation delay of 0.75 ns for a gate. One can expect therefore less time jitter and less time difference between the different inputs. Furthermore this IC offers a greater flexibility and therefore the number of ICs decreases and distances become smaller. Working with clock frequencies up to 166.6 MHz is easily possible without running into timing problems. On the other hand, to make full use of the advantages of this IC, it was necessary to build the print as a multilayer. The only risk could be in the use of a completely new product. A further aim was to build for this system a second type of drift-time module with a short time range for measuring drift time and pulse length in rotated multiwire proportional chambers. A brief outline of the specifications of the different modules is given in table 1. (Auth.)

  13. The large cylindrical drift chamber of TASSO

    International Nuclear Information System (INIS)

    Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.

    1980-03-01

    We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)

  14. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  15. Electron injection in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A.; Vacchi, A.

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs

  16. Cooling tower drift: comprehensive case study

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Ulanski, S.L.

    1979-01-01

    A comprehensive experiment to study drift from mechanical drift cooling towers was conducted during June 1978 at the PG and E Pittsburg Power Plant. The data from this study will be used for validation of drift deposition models. Preliminary results show the effects of tower geometry and orientation with respect to the wind and to single- or two-tower operation. The effect of decreasing relative humidity during a test run can also be seen

  17. Advances in service and operations for ATLAS data management

    International Nuclear Information System (INIS)

    Stewart, Graeme A; Garonne, Vincent; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Calvet, Ivan; Beermann, Thomas; Megino, Fernando Barreiro; Campana, Simone; Zhang, Donal; Tykhonov, Andrii; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem

    2012-01-01

    ATLAS has recorded almost 5PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 70PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All of this data is managed by the ATLAS Distributed Data Management system, called Don Quixote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs and to help ATLAS physicists get access to this data. In this paper we describe new and improved DQ2 services: popularity; space monitoring and accounting; exclusion service; cleaning agents; deletion agents. We describe the experience of data management operation in ATLAS computing, showing how these services enable management of petabyte scale computing operations. We illustrate the coupling of data management services to other parts of the ATLAS computing infrastructure, in particular showing how feedback from the distributed analysis system in ATLAS has enabled dynamic placement of the most popular data, helping users and groups to analyse the increasing data volumes on the grid.

  18. Advances in service and operations for ATLAS data management

    Science.gov (United States)

    Stewart, Graeme A.; Garonne, Vincent; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Zhang, Donal; Calvet, Ivan; Beermann, Thomas; Barreiro Megino, Fernando; Tykhonov, Andrii; Campana, Simone; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem; ATLAS Collaboration

    2012-06-01

    ATLAS has recorded almost 5PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 70PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All of this data is managed by the ATLAS Distributed Data Management system, called Don Quixote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs and to help ATLAS physicists get access to this data. In this paper we describe new and improved DQ2 services: popularity; space monitoring and accounting; exclusion service; cleaning agents; deletion agents. We describe the experience of data management operation in ATLAS computing, showing how these services enable management of petabyte scale computing operations. We illustrate the coupling of data management services to other parts of the ATLAS computing infrastructure, in particular showing how feedback from the distributed analysis system in ATLAS has enabled dynamic placement of the most popular data, helping users and groups to analyse the increasing data volumes on the grid.

  19. The ATLAS Detector Control System

    International Nuclear Information System (INIS)

    Lantzsch, K; Braun, H; Hirschbuehl, D; Kersten, S; Arfaoui, S; Franz, S; Gutzwiller, O; Schlenker, S; Tsarouchas, C A; Mindur, B; Hartert, J; Zimmermann, S; Talyshev, A; Oliveira Damazio, D; Poblaguev, A; Martin, T; Thompson, P D; Caforio, D; Sbarra, C; Hoffmann, D

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  20. The ATLAS Detector Control System

    Science.gov (United States)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  1. Track-Based Alignment of the Inner Detector of ATLAS

    Directory of Open Access Journals (Sweden)

    Ovcharova Ana

    2012-06-01

    Full Text Available ATLAS is a multipurpose experiment at the LHC. The tracking system of ATLAS, embedded in a 2 T solenoidal field, is composed of different technologies: silicon planar sensors (pixel and microstrips and drift-tubes. The procedure used to align the ATLAS tracker and the results of the alignment using data recorded during 2010 and 2011 using LHC proton-proton collision runs at 7 TeV are presented. Validation of the alignment is performed by measuring the alignment observables as well as many other physics observables, notably resonance invariant masses in a wide mass range (KS, J/Ψ and Z. The E/p distributions for electrons from Z → ee and W → ev are also extensively used. The results indicate that, after the alignment with real data, the attained precision of the alignment constants is approximately 5 μm. The systematic errors due to the alignment that may affect physics results are under study.

  2. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web

  3. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  4. The ATLAS online High Level Trigger framework experience reusing offline software components in the ATLAS trigger

    CERN Document Server

    Wiedenmann, W

    2009-01-01

    Event selection in the Atlas High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The Atlas High Level Trigger (HLT) framework based on the Gaudi and Atlas Athena frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of Atlas, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking peri...

  5. Construction update and drift velocity calibration for the CLAS drift chamber system

    International Nuclear Information System (INIS)

    Mestayer, M.D.; Barbosa, F.J.; Bonneau, P.; Burtin, E.; Christo, S.; Doolittle, G.; Dytman, S.A.; Gilfoyle, G.P.; Hyde-Wright, C.E.; Klein, A.; Kossov, M.V.; Kuhn, S.E.; Magahiz, R.; Miskimen, R.A.; Murphy, L.Y.; O'Meara, J.E.; Pyron, T.D.; Qin, L.; Raue, B.A.; Schumacher, R.A.; Tuzel, W.; Weinstein, L.B.; Yegneswaran, A.

    1995-01-01

    We briefly describe the drift chamber system for the CLAS detector at CEBAF, concentrating on the method which will be used to calibrate the drift velocity function. We identify key features of the function which should apply to any small-cell drift chamber geometry in which the cathode and anode surfaces are wires. Using these ideas, we describe a simple method to compensate for variations in the drift velocity function due to environmental changes. (orig.)

  6. Construction update and drift velocity calibration for the CLAS drift chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Mestayer, M.D. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Barbosa, F.J. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Bonneau, P. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Burtin, E. [University of South Carolina, Columbia, SC (United States); Christo, S. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Doolittle, G. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Dytman, S.A. [University of Pittsburg, Pittsburg, PA (United States); Gilfoyle, G.P. [University of Richmond, Richmond, VA (United States); Hyde-Wright, C.E. [Old Dominion University, Norfolk, VA (United States); Klein, A. [Old Dominion University, Norfolk, VA (United States); Kossov, M.V. [Christopher Newport University, Newport News, VA (United States); Kuhn, S.E. [Old Dominion University, Norfolk, VA (United States); Magahiz, R. [Carnegie-Mellon Univ., Pittsburgh, PA (United States); Miskimen, R.A. [University of Massachussetts, Amherst, MA (United States); Murphy, L.Y. [CE Saclay, Gif sur Yvette (France); O`Meara, J.E. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Pyron, T.D. [Old Dominion University, Norfolk, VA (United States); Qin, L. [Old Dominion University, Norfolk, VA (United States); Raue, B.A. [Old Dominion University, Norfolk, VA (United States); Schumacher, R.A. [Carnegie-Mellon Univ., Pittsburgh, PA (United States); Tuzel, W. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Weinstein, L.B. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Yegneswaran, A. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1995-12-11

    We briefly describe the drift chamber system for the CLAS detector at CEBAF, concentrating on the method which will be used to calibrate the drift velocity function. We identify key features of the function which should apply to any small-cell drift chamber geometry in which the cathode and anode surfaces are wires. Using these ideas, we describe a simple method to compensate for variations in the drift velocity function due to environmental changes. (orig.).

  7. Electron drift time in silicon drift detectors: A technique for high precision measurement of electron drift mobility

    International Nuclear Information System (INIS)

    Castoldi, A.; Rehak, P.

    1995-01-01

    This paper presents a precise absolute measurement of the drift velocity and mobility of electrons in high resistivity silicon at room temperature. The electron velocity is obtained from the differential measurement of the drift time of an electron cloud in a silicon drift detector. The main features of the transport scheme of this class of detectors are: the high uniformity of the electron motion, the transport of the signal electrons entirely contained in the high-purity bulk, the low noise timing due to the very small anode capacitance (typical value 100 fF), and the possibility to measure different drift distances, up to the wafer diameter, in the same semiconductor sample. These features make the silicon drift detector an optimal device for high precision measurements of carrier drift properties. The electron drift velocity and mobility in a 10 kΩ cm NTD n-type silicon wafer have been measured as a function of the electric field in the range of possible operation of a typical drift detector (167--633 V/cm). The electron ohmic mobility is found to be 1394 cm 2 /V s. The measurement precision is better than 1%. copyright 1995 American Institute of Physics

  8. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  9. ERCP atlas

    International Nuclear Information System (INIS)

    Pott, G.; Schrameyer, B.

    1989-01-01

    Endoscopic-retrograde cholangio-pancreatography is a diagnostic tool that has become a routine method also in medical centres other than those specializing in the field of gastroenterology. It is estimated that there are about 1000 hospitals in the Federal Republic of Germany applying cholangio-pancreatography as a diagnostic method. Frequently, data interpretation is difficult, because imaging of subsequently detected lesions is found to have been insufficiently differential, or incomplete. The experienced examiner, who knows the pathological processes involved and hence to be expected, will perform the ERCP examination in a specific manner, i.e. purposefully. The ERCP atlas now presents a selection of typical, frequently found conditions, and of rarely encountered lesions. The material has been chosen from a total of 15 000 retrograde cholangio-pancreatographies. The introductory text is relatively short, as it is not so much intended to enhance experienced readers' skill in endoscopic diagnostics, - there is other literature for this purpose -, but rather as a brief survey for less experienced readers. (orig./MG) With 280 figs [de

  10. Autoresonant control of drift waves

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Rasmussen, Jens Juul; Naulin, Volker

    2017-01-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined...... on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear...... waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes....

  11. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  12. Drift effects in CANDU reactors

    International Nuclear Information System (INIS)

    Koclas, J.; Roy, R.; Marleau, G.

    1993-01-01

    The diffusion equation is an approximation to the transport equation which relies on the validity of Fick's law. Since this law is not explicitly integrated in the transport equation it can only be derived approximately using homogenization theories. However, such homogenization theories state that when the cell is not symmetric Fick's law breaks down due to the presence of an additional term to the neutron current, called the drift term. In fact, this term can be interpreted as a transport correction to Fick's law which tends to increase the neutron current in a direction opposite to that specified by the flux gradient. In this paper, we investigate how the presence of asymmetric liquid zone controllers will modify the flux distribution inside a CANDU core. 5 refs., 2 figs., 1 tab

  13. Validation of the AGDISP model for predicting airborne atrazine spray drift: a South African ground application case study

    CSIR Research Space (South Africa)

    Nsibande, SA

    2015-06-01

    Full Text Available Air dispersion software models for evaluating pesticide spray drift during application have been developed that can potentially serve as a cheaper convenient alternative to field monitoring campaigns. Such models require validation against field...

  14. Development of a Concept for the Muon Trigger of the ATLAS Detector at the HL-LHC

    CERN Document Server

    Gadow, Paul Philipp

    Highly selective first level triggers are essential to exploit the full physics potential of the ATLAS experiment at the High Luminosity-Large Hadron Collider, where the instantaneous luminosity will exceed the LHC Run 1 instantaneous luminosity by almost an order of magnitude. The ATLAS experiment plans to increase the rate of the first trigger level to 1 MHz at 6 µs latency. The momentum resolution of the existing first level muon trigger is limited by the moderate position resolution of the trigger chambers. Including the data of the precision Monitored Drift Tube (MDT) chambers in the first level muon trigger decision will increase the selectivity of the first level muon trigger substantially. Run 1 LHC data with a centre-of-mass energy of $\\sqrt{s} = 8\\, \\textrm{TeV}$ and a bunch spacing of 25 ns was used to study the achievable selectivity of a muon trigger making use of the MDT data. It could be shown that it is not necessary to fully reconstruct the muon trajectory. The position and direction informa...

  15. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  16. TBV 361 RESOLUTION ANALYSIS: EMPLACEMENT DRIFT ORIENTATION

    International Nuclear Information System (INIS)

    Lin, M.; Kicker, D.C.; Sellers, M.D.

    1999-01-01

    The purpose of this To Be Verified/To Be Determined (TBX) resolution analysis is to release ''To Be Verified'' (TBV)-361 related to the emplacement drift orientation. The system design criterion in ''Subsurface Facility System Description Document'' (CRWMS M andO 1998a, p.9) specifies that the emplacement drift orientation relative to the dominant joint orientations should be at least 30 degrees. The specific objectives for this analysis include the following: (1) Collect and evaluate key block data developed for the repository host horizon rock mass. (2) Assess the dominant joint orientations based on available fracture data. (3) Document the maximum block size as a function of drift orientation. (4) Assess the applicability of the drift orientation/joint orientation offset criterion in the ''Subsurface Facility System Description Document'' (CRWMS M andO 1998a, p.9). (5) Consider the effects of seepage on drift orientation. (6) Verify that the viability assessment (VA) drift orientation complies with the drift orientation/joint orientation offset criterion, or provide justifications and make recommendations for modifying the VA emplacement drift layout. In addition to providing direct support to the System Description Document (SDD), the release of TBV-361 will provide support to the Repository Subsurface Design Department. The results from this activity may also provide data and information needs to support the MGR Requirements Department, the MGR Safety Assurance Department, and the Performance Assessment Organization

  17. Silicon drift detectors, present and future prospects

    Science.gov (United States)

    Takahashi, J.; Bellwied, R.; Beuttenmuller, R.; Caines, H.; Chen, W.; Dyke, H.; Hoffmann, G. W.; Humanic, T.; Kotov, I.; Kuczewski, P.; Leonhardt, W.; Li, Z.; Lynn, D.; Minor, R.; Munhoz, M.; Ott, G.; Pandey, S. U.; Schambach, J.; Soja, R.; Sugarbaker, E.; Willson, R. M.

    2001-04-01

    Silicon drift detectors provide unambiguous two-dimensional position information for charged particle detection with a single detector layer. A large area silicon drift detector was developed for the inner tracking detector of the STAR experiment at RHIC. In this paper, we discuss the lessons learned and the future prospects of this technology.

  18. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  19. Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect.

    Science.gov (United States)

    Sumner, Seirian; Lucas, Eric; Barker, Jessie; Isaac, Nick

    2007-01-23

    Kin-selection theory underlies our basic understanding of social evolution [1, 2]. Nest drifting in eusocial insects (where workers move between nests) presents a challenge to this paradigm, since a worker should remain as a helper on her natal colony, rather than visit other colonies to which she is less closely related. Here we reveal nest drifting as a strategy by which workers may maximize their indirect fitness by helping on several related nests, preferring those where the marginal return from their help is greatest. By using a novel monitoring technique, radio frequency identification (RFID) tagging, we provide the first accurate estimate of drifting in a eusocial insect: 56% of females drifted in a natural population of the eusocial paper wasp Polistes canadensis, exceeding previous records of drifting in natural populations by more than 30-fold. We demonstrate that drifting cannot be explained through social parasitism, queen succession, mistakes in nest identity, or methodological bias. Instead, workers appear to gain indirect fitness benefits by helping on several related colonies in a viscous population structure. The potential importance of this strategy as a component of the kin-selected benefits for a social insect worker has previously been overlooked because of methodological difficulties in quantifying and studying drifting.

  20. Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2013-10-01

    Full Text Available Previous studies showed that conventional coherent backscatter radar measurements of the Doppler velocity of the so-called 150 km echoes can provide an alternative way of estimating ionospheric vertical plasma drifts during daytime hours (Kudeki and Fawcett, 1993; Chau and Woodman, 2004. Using observations made by a small, low-power 30 MHz coherent backscatter radar located in the equatorial site of São Luís (2.59° S, 44.21° W; −2.35° dip lat, we were able to detect and monitor the occurrence of 150 km echoes in the Brazilian sector. Using these measurements we estimated the local time variation of daytime vertical ionospheric drifts in the eastern American sector. Here, we present a few interesting cases of 150 km-echoes observations made by the São Luís radar and estimates of the diurnal variation of vertical drifts. These cases exemplify the variability of the vertical drifts in the Brazilian sector. Using same-day 150 km-echoes measurements made at the Jicamarca Radio Observatory in Peru, we also demonstrate the variability of the equatorial vertical drifts across the American sector. In addition to first estimates of the absolute vertical plasma drifts in the eastern American (Brazilian sector, we also present observations of abnormal drifts detected by the São Luís radar associated with the 2009 major sudden stratospheric warming event.

  1. Role of drifts in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Decker, R.B.

    1988-01-01

    The role played by shock-associated drifts during the diffusive acceleration of charged particles at collisionless MHD shocks is evaluated. In the rest frame of the shock, the total energy gained by a particle is shown to result from two coupled acceleration mechanisms, the usual first-order Fermi mechanism and the drift mechanism. When averaged over a distribution of particles, the ratio of the drift-associated energy gain to the total energy is found to be independent of the total energy at a given theta1 (the angle between the shock normal and the unperturbed upstream magnetic field) in agreement with theoretical predictions. No evidence is found for drift-associated deceleration, suggesting that drifts always augment acceleration. 35 references

  2. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.

    2002-10-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  3. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.; Matsuoka, K.; Nakajima, N.; Itoh, S.-I.; Neilson, G.H.; Zarnstorff, M.C.; Rewoldt, G.

    2003-01-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  4. Ground Control for Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Y. Sun

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c)

  5. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  6. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  7. ATLAS TRT Barrel in Test Beam

    CERN Multimedia

    Luehring, F

    In July, the TRT group made a highly successful test of 6 Barrel TRT modules in the ATLAS H8 testbeam. Over 3000 TRT straw tubes (4 mm diameter gas drift tubes) were instrumented and found to operate well. The prototype represents 1/16 of the ATLAS TRT barrel and was assembled from TRT modules produced as spares. This was the largest scale test of the TRT to this date and the measured detector performance was as good as or better than what was expected in all cases. The 2004 TRT testbeam setup before final cabling was attached. The readout chain and central DAQ system used in the TRT testbeam is a final prototype for the ATLAS experiment. The TRT electronics used to read out the data were: The Amplifier/Shaper/Discriminator with Baseline Restoration (ASDBLR) chip is the front-end analog chip that shapes and discriminates the electronic pulses generated by the TRT straws. The Digital Time Measurement Read Out Chip (DTMROC) measures the time of the pulse relative to the beam crossing time. The TRT-ROD ...

  8. Study of the Higgs boson discovery potential in the process pp→H/A→μ+μ-/τ+τ- with the ATLAS detector

    International Nuclear Information System (INIS)

    Dedes, Georgios

    2008-01-01

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of theMinimal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A→τ + τ - →e/μ+X and H/A→μ + μ - has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of electroweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measurement independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer simulation, an essential ingredient for data analysis. In addition, dedicated programs for the monitoring of the quality of the data collected by the muon spectrometer have been developed and tested with data from cosmic ray muons. High-quality cosmic ray muon data have been used for the calibration of the MDT-chambers. A new calibration method, called analytical autocalibration, has been tested. The proposed method achieved the required accuracy of 20 μm in the determination of the space-to-drift-time relationship of the drift tubes of the MDT chambers with only 2000 muon tracks per chamber. Reliable muon detector simulation and calibration are essential for the study of the MSSM Higgs boson decays H/A→τ + τ - →e/μ+X and H/A→μ + μ - and of the corresponding background processes. The signal selection and background rejection requirements have been optimized for maximum signal significance. The following results have been obtained for different assumptions on the

  9. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  10. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  11. Future ATLAS Higgs Studies

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC will prove a challenging environment to work in, with for example $=200$ expected. It will however also provide great opportunities for advancing studies of the Higgs boson. The ATLAS detector will be upgraded, and Higgs prospects analyses have been performed to assess the reach of ATLAS Higgs studies in the HL-LHC era. These analyses are presented, as are Run-2 ATLAS di-Higgs analyses for comparison.

  12. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; Berghaus, Frank; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  13. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  14. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  15. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Berghaus, Frank; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  17. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2018-01-01

    After the long shut-down, the LHC Run2 has started with new running conditions with respect to Run1: in particular the centre of mass energy has reached 13 TeV and the bunch-spacing is now 25 ns. In order to cope with these changes, the ATLAS luminosity monitor LUCID and its electronics have been completely rebuilt. This note describes the new detector and electronics, the new luminosity algorithms and the new calibration systems, with a brief review of the first results about the stability of the measurement and evaluation of systematic uncertainties for the 2015 data-taking.

  18. Seepage into drifts with mechanical degradation

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu

    2002-01-01

    Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the potential nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will potentially be emplaced are subject to degradation in the form of rockfall from the drift ceiling induced by stress relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates for various drift-degradation scenarios and for different values of percolation flux for the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units. Seepage calculations are conducted by (1) defining a heterogeneous permeability model on the drift scale that is consistent with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage on detailed degraded-drift profiles, which were obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation, and (2) the degradation-induced increase in seepage above the threshold is influenced more by the shape of the cavity created by rockfall than the rockfall volume

  19. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  20. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  1. Consolidation of cloud computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Cordeiro, Cristovao; Hover, John; Kouba, Tomas; Love, Peter; Mcnab, Andrew; Schovancova, Jaroslava; Sobie, Randall; Giordano, Domenico

    2017-01-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in resp...

  2. Consolidation of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Cordeiro, Cristovao; Di Girolamo, Alessandro; Hover, John; Kouba, Tomas; Love, Peter; Mcnab, Andrew; Schovancova, Jaroslava; Sobie, Randall

    2016-01-01

    Throughout the first year of LHC Run 2, ATLAS Cloud Computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS Cloud Computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vac resources, streamlined usage of the High Level Trigger cloud for simulation and reconstruction, extreme scaling on Amazon EC2, and procurement of commercial cloud capacity in Europe. Building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems. ...

  3. Consolidation of cloud computing in ATLAS

    Science.gov (United States)

    Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration

    2017-10-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.

  4. Deploying the ATLAS Metadata Interface (AMI) on the cloud with Jenkins

    Science.gov (United States)

    Lambert, F.; Odier, J.; Fulachier, J.; ATLAS Collaboration

    2017-10-01

    The ATLAS Metadata Interface (AMI) is a mature application of more than 15 years of existence. Mainly used by the ATLAS experiment at CERN, it consists of a very generic tool ecosystem for metadata aggregation and cataloguing. AMI is used by the ATLAS production system, therefore the service must guarantee a high level of availability. We describe our monitoring and administration systems, and the Jenkins-based strategy used to dynamically test and deploy cloud OpenStack nodes on demand.

  5. Deploying the ATLAS Metadata Interface (AMI) on the cloud with Jenkins.

    CERN Document Server

    AUTHOR|(SzGeCERN)637120; The ATLAS collaboration; Odier, Jerome; Fulachier, Jerome

    2017-01-01

    The ATLAS Metadata Interface (AMI) is a mature application of more than 15 years of existence. Mainly used by the ATLAS experiment at CERN, it consists of a very generic tool ecosystem for metadata aggregation and cataloguing. AMI is used by the ATLAS production system, therefore the service must guarantee a high level of availability. We describe our monitoring and administration systems, and the Jenkins-based strategy used to dynamically test and deploy cloud OpenStack nodes on demand.

  6. Unintended Positional Drift and Its Potential Solutions

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2013-01-01

    many users unintentionally move forward while walking in place. We refer to this phenomenon accidental movement as Unintended Positional Drift. The poster presents evidence of the phenomenon's existence and subsequently discusses different design solutions which potentially could circumvent the problem....

  7. CROSS DRIFT ALCOVE/NICHE UTILITIES ANALYSIS

    International Nuclear Information System (INIS)

    S. Goodin

    1999-01-01

    The purpose of this analysis is to provide the design basis and general arrangement requirements of the non-potable water, waste water, compressed air and ventilation (post excavation) utilities required in support of the Cross Drift alcoves and niches

  8. Travelling fronts in stochastic Stokes’ drifts

    KAUST Repository

    Blanchet, Adrien; Dolbeault, Jean; Kowalczyk, Michał

    2008-01-01

    By analytical methods we study the large time properties of the solution of a simple one-dimensional model of stochastic Stokes' drift. Semi-explicit formulae allow us to characterize the behaviour of the solutions and compute global quantities

  9. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Science.gov (United States)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  10. Report to users of Atlas

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1996-06-01

    This report contains the following topics: Status of the ATLAS Accelerator; Highlights of Recent Research at ATLAS; Program Advisory Committee; ATLAS User Group Executive Committee; FMA Information Available On The World Wide Web; Conference on Nuclear Structure at the Limits; and Workshop on Experiments with Gammasphere at ATLAS

  11. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects

  12. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  13. Ponderomotive modification of drift tearing modes

    International Nuclear Information System (INIS)

    Urquijo, G.; Singh, R.; Sen, A.

    1997-01-01

    The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)

  14. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1980-01-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to toroidal coupling effects such as ion delB drifts, is shown to be destabilized by electron Landau damping for typical tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein--Berk-type) branch is found to remain stable and experience enhanced shear damping

  15. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  16. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  17. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  18. ATLAS Brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  19. ATLAS brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  20. ATLAS brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  1. ATLAS brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  2. ATLAS brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  3. ATLAS Thesis Awards 2015

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on Thursday 25 February. The winners also presented their work in front of members of the ATLAS Collaboration. Winners: Javier Montejo Berlingen, Barcelona (Spain), Ruth Pöttgen, Mainz (Germany), Nils Ruthmann, Freiburg (Germany), and Steven Schramm, Toronto (Canada).

  4. ATLAS OF EUROPEAN VALUES

    NARCIS (Netherlands)

    M Ed Uwe Krause

    2008-01-01

    Uwe Krause: Atlas of Eurpean Values De Atlas of European Values is een samenwerkingsproject met bijbehorende website van de Universiteit van Tilburg en Fontys Lerarenopleiding in Tilburg, waarbij de wetenschappelijke data van de European Values Study (EVS) voor het onderwijs toegankelijk worden

  5. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  6. ATLAS Colouring Book

    CERN Multimedia

    Anthony, Katarina

    2016-01-01

    The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  7. ATLAS brochure (Catalan version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  8. ATLAS Brochure (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  9. ATLAS brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  10. ATLAS brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter. Français

  11. ATLAS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  12. ATLAS Brochure (english version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  13. ATLAS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  14. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  15. A Slice of ATLAS

    CERN Document Server

    2004-01-01

    An entire section of the ATLAS detector is being assembled at Prévessin. Since May the components have been tested using a beam from the SPS, giving the ATLAS team valuable experience of operating the detector as well as an opportunity to debug the system.

  16. ATLAS rewards industry

    CERN Document Server

    Maximilien Brice

    2006-01-01

    For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Picture 30 : representatives of the three award-wining companies after the ceremony

  17. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi,