WorldWideScience

Sample records for atlas level-1 calorimeter

  1. ATLAS LEVEL-1 CALORIMETER AND TOPOLOGICAL TRIGGER

    CERN Document Server

    Weber, Sebastian Mario; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz with a latency of less than 2.5 μs. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In this talk, we will discuss the improved performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. As the LHC exceeds its design luminosity, it is becoming even more critical to reduce event rates while preserving physics. A new feature of the ATLAS Run 2 trigger system is the Level-1 Topolog...

  2. The ATLAS Level-1 Calorimeter Trigger Architecture

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Watkins, P M; Watson, A T; Achenbach, R; Hanke, P; Kluge, E E; Meier, K; Meshkov, P; Nix, O; Penno, K; Schmitt, K; Ay, Cc; Bauss, B; Dahlhoff, A; Jakobs, K; Mahboubi, K; Schäfer, U; Trefzger, T M; Eisenhandler, E F; Landon, M; Moyse, E; Thomas, J; Apostoglou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Perera, V J O; Qian, W; Bohm, C; Hellman, S; Hidvégi, A; Silverstein, S; RT 2003 13th IEEE-NPSS Real Time Conference

    2004-01-01

    The architecture of the ATLAS Level-1 Calorimeter Trigger system (L1Calo) is presented. Common approaches have been adopted for data distribution, result merging, readout, and slow control across the three different subsystems. A significant amount of common hardware is utilized, yielding substantial savings in cost, spares, and development effort. A custom, high-density backplane has been developed with data paths suitable for both the em/tt cluster processor (CP) and jet/energy-summation processor (JEP) subsystems. Common modules also provide interfaces to VME, CANbus and the LHC Timing, Trigger and Control system (TTC). A common data merger module (CMM) uses FPGAs with multiple configurations for summing electron/photon and tau/hadron cluster multiplicities, jet multiplicities, or total and missing transverse energy. The CMM performs both crate- and system-level merging. A common, FPGA-based readout driver (ROD) is used by all of the subsystems to send input, intermediate and output data to the data acquis...

  3. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, F.

    2007-12-19

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  4. Digital Filter Performance for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Response (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger will be presented, before describing ...

  5. Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, elec- tron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Re- sponse (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless, this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger is presented, before descr...

  6. ATLAS Level-1 Calorimeter Trigger Upgrade for Phase-I

    CERN Document Server

    Qian, W; The ATLAS collaboration

    2012-01-01

    The ATLAS Level-1 Trigger requires several upgrades to maintain physics sensitivity as the LHC luminosity is raised. One of the most challenging is the electron trigger, with a major development planned for installation in 2018. New on-detector electronics will be installed to digitize electromagnetic calorimetry signals, providing trigger access to shower profile information. The trigger processing will be ATCA-based, with each multi-FPGA module processing ~1 Tbit/s of calorimeter digits within the current 2.5 microseconds Level-1 Trigger latency limit. This paper will address the system architecture and design, and give the status of a current technology demonstrator.

  7. First data with the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Achenbach, R; Aharrouche, M; Andrei, V; Åsman, B; Barnett, BM; Bauss, B; Bendel, M; Bohm, C; Booth, JRA; Bracinik, J; Brawn, IP; Charlton, DG; Childers, JT; Collins, NC; Curtis, CJ; Davis, AO; Eckweiler, S; Eisenhandler, E F; Faulkner, PJW; Fleckner, J; Föhlisch, F; Gee, CNP; Gillman, AR; Goeringer, C; Groll, M; Hadley, DR; Hanke, P; Hellman, S; Hidvegi, A; Hillier, SJ; Johansen, M; Kluge, E-E; Kühl, T; Landon, M; Lendermann, V; Lilley, JN; Mahboubi, K; Mahout, G; Meier, K; Middleton, RP; Moa, T; Morris, JD; Müller, F; Neusiedl, A; Ohm, C; Oltmann, B; Perera, VJO; Prieur, D; Qian, W; Rieke, S; Rühr, F; Sankey, DPC; Schäfer, U; Schmitt, K; Schultz-Coulon, H-C; Seidler, P; Silverstein, S; Sjölin, J; Staley, RJ; Stamen, R; Stockton, MC; Tan, CLA; Tapprogge, S; Thomas, JP; Thompson, PD; Watkins, PM; Watson, A; Weber, P; Wessels, M; Wildt, M

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger is one of the main elements of the first stage of event selection for the ATLAS experiment at the LHC. The input stage consists of a mixed analogue/digital component taking trigger sums from the ATLAS calorimeters. The trigger logic is performed in a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of physics objects, and energy sums. The final system consists of over 300 custom-built VME modules, of several different types. The installation at ATLAS of these modules, and the necessary infrastructure, was completed at the end of 2007. The system has since undergone intensive testing, both in standalone mode, and in conjunction with the whole of the ATLAS detector in combined running. The final steps of commissioning, and experience with running the full-scale system...

  8. Upgrade of the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Wessels, M; The ATLAS collaboration

    2014-01-01

    The Level-1 Calorimeter Trigger (L1Calo) of the ATLAS experiment has been operating well since the start of LHC data taking, and played a major role in the Higgs boson discovery. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. The initial upgrade phase in 2013-14 includes substantial improvements to the analogue and digital signal processing to allow more sophisticated digital filters for energy and timing measurement, as well as compensate for pile-up and baseline shifting effects. Two existing digital algorithm processor subsystems will receive substantial hardware and firmware upgrades to increase the real-time data path bandwidth, allowing topological information to be transmitted and processed at Level-1. An entirely new subsystem, the Level-1 Topological Processor, will receive real-time data from both the upgraded L1Calo and Level-1 Muon Trigger to perform trigger algorithms based on entire event topolo...

  9. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  10. Precision Synchronization of the ATLAS Level-1 Calorimeter Trigger with Collision Data in 2010 and 2011

    CERN Document Server

    Lang, V; The ATLAS collaboration

    2012-01-01

    The ATLAS Level-1 Calorimeter trigger (L1Calo) selects LHC collision events based on the identification of high pT-objects like electrons, jets and taus as well as the determination of total and missing ET in the Tile and Liquid Argon Calorimeters. Operating at 40MHz LHC bunch-crossing frequency, the hardware based L1Calo system processes 7168 so-called Trigger Tower (TT) signals from the calorimeters. Synchronizing these TT signals as well as maintaining and refining the L1Calo synchronization are important measures to ensure a stable and reliable functioning of the ATLAS trigger system, including high Level-1 trigger efficiencies. The fit method for L1Calo precision synchronization emulates the analogue calorimeter signal shape on digitized TT pulses to derive the required synchronization settings. Systematic tests have shown the validity of the method within a statistical and systematical accuracy of +-3 ns, well within the required precision for bunch-crossing identification and Level-1 energy measurement...

  11. Test-beam results from the ATLAS level-1 calorimeter trigger demonstrator

    CERN Document Server

    Bohm, C; Bright-Thomas, P G; Connors, A; Edwards, J; Eisenhandler, Eric F; Ellis, Nick; Engström, M; Farthouat, Philippe; Garvey, J; Gee, C N P; Gillman, A R; Hanke, P; Hatley, R; Hellman, S; Hillier, S J; Kluge, E E; Landon, M; Maddox, A J; Pentney, J M; Perera, V J O; Pfeiffer, U; Schuler, G A; Schumacher, C; Shah, T P; Silverstein, S; Staley, R J; Watkins, P M; Watson, A T; Wunsch, M

    1998-01-01

    The ATLAS level-1 calorimeter trigger will utilise a number of advanced technologies, many of which have already been successfully demonstrated. To evaluate the different technologies associated with the important areas of $9 high-speed data transport a large demonstrator system has been designed and operated during the last two years, using signals from prototype calorimeters in the ATLAS test-beam. Using this system, inter-crate data transmission and $9 reception have been demonstrated at over 1.4 Gbyte/s, with individual links running at up to 1.6 Gbaud. Operating with 160 Mbit/s signals across a transmission-line backplane, custom transceiver ASICs have achieved inter-module data $9 fanout at peak rates above 800 Mbyte/s. With the addition of further modules, the system was extended to emulate a vertical slice through the ATLAS level-1 calorimeter trigger. We present here the results from these tests, including $9 measurements of bit-error rates across different data paths. (12 refs).

  12. Operation and performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC

    CERN Document Server

    Whalen, Kate; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz with a latency of less than 2.5 μs. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In this talk, we will discuss the improved performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. As the LHC exceeds its design luminosity, it is becoming even more critical to reduce event rates while preserving physics. A new feature of the ATLAS trigger system for Run 2 is the Level-1 Top...

  13. The data path of the ATLAS level-1 calorimeter trigger preprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, George Victor

    2010-10-27

    The PreProcessor of the ATLAS Level-1 Calorimeter Trigger provides digital values of transverse energy in real-time to the subsequent object-finding processors. The input comprises more than 7000 analogue signals of reduced granularity from the calorimeters of the ATLAS detector. The Level-1 trigger decision must be verified. For this, the PreProcessor transmits copies of the real-time digital data to the Data Acquisition (DAQ) system. In addition, the PreProcessor system provides a standard VMEbus interface to the computing infrastructure of the experiment, on which configuration data is loaded and control or monitoring data are read out. A dedicated system that ensures both the transfer of event data to storage in ATLAS and the data transfer over the VME was implemented on the 124 modules of the PreProcessor system in the form of a ''Readout Manager''. The ''Field Programmable Gate Array'' (FPGA) is located on each module. The rst part of this work describes the algorithms developed to meet the functionality of the Readout Manager. The second part deals with the tests that were carried out to ensure the proper functionality of the modules before they were installed at CERN in the ATLAS cavern. (orig.)

  14. gFEX, the ATLAS Calorimeter Level-1 Real Time Processor

    CERN Document Server

    AUTHOR|(SzGeCERN)759889; The ATLAS collaboration; Begel, Michael; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Wu, Weihao

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Vertex Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 276 optical fibers with the data transferred at the 40 MHz Large Hadron Collider (LHC) clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor Field-Programmable Gate Array (FPGAs), monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA ...

  15. gFEX, the ATLAS Calorimeter Level 1 Real Time Processor

    CERN Document Server

    Tang, Shaochun; The ATLAS collaboration

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor FPGAs, monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA has been designed for testing and verification. The performance ...

  16. ATLAS Level-1 Calorimeter Trigger Subsystem Tests of a Prototype Cluster Processor Module

    CERN Document Server

    Garvey, J; Apostologlou, P; Ay, C; Barnett, B M; Bauss, B; Brawn, I P; Bohm, C; Dahlhoff, A; Davis, A O; Edwards, J; Eisenhandler, E F; Gee, C N P; Gillman, A R; Hanke, P; Hellman, S; Hidévgi, A; Hillier, S J; Jakobs, K; Kluge, E E; Landon, M; Mahboubi, K; Mahout, G; Meier, K; Meshkov, P; Moye, T H; Mills, D; Moyse, E; Nix, O; Penno, K; Perera, V J O; Qian, W; Schmitt, K; Schäfer, U; Silverstein, S; Staley, R J; Thomas, J; Trefzger, T M; Watkins, P M; Watson, A; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The Level-1 Calorimeter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce trigger multiplicity and Region-of-Interest (RoI) information. The trigger will also provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purposes by using Readout Driver (ROD) Modules. The CP Modules (CPM) are designed to find isolated electron/photon and hadron/tau clusters in overlapping windows of trigger towers. Each pipelined CPM processes 8-bit data from a total of 128 trigger towers at each LHC crossing. Four full-specification prototypes of CPMs have been built and results of complete tests on individual boards will be presented. These modules were then integrated with other modules to build an ATLAS Level-1 Calorimeter Trigger subsystem test bench. Realtime data were exchanged between modules, and time-slice readout data were tagged and transferr...

  17. Operation and Performance of the ATLAS Level-1 Calorimeter and Topological Triggers in Run 2

    CERN Document Server

    Weber, Sebastian Mario; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz within a latency of less than $2.5$ $\\mu\\text{s}$. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In these proceedings, we discuss improved features and performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. A new dynamic pedestal correction algorithm reduces pile-up effects and the use of variable thresholds and isolation criteria for electromagnetic objects allows for opt...

  18. Production Test Rig for the ATLAS Level-1 Calorimeter Trigger Digital Processors

    CERN Document Server

    Mahout, Gilles; Andrei, V; Bauss, B; Barnett, B M; Bohm, C; Booth, J R A; Brawn, I P; Charlton, D G; Curtis, C J; Davis, A O; Edwards, J; Eisenhandler, E F; Faulkner, P J W; Föhlisch, F; Gee, C N P; Geweniger, C; Gillman, A R; Hanke, P; Hellman, S; Hidvégi, A; Hillier, S J; Kluge, E E; Landon, M; Mahboubi, K; Meier, K; Perera, V J O; Qian, W; Rieke, S; Rühr, F; Sankey, D P C; Staley, R J; Schäfer, U; Schmitt, K; Schultz-Coulon, H C; Silverstein, S; Stamen, R; Tapprogge, S; Thomas, J P; Trefzger, T; Typaldos, D; Watkins, P M; Watson, A; Weber, P; Woerling, E E

    2007-01-01

    The Level-1 Calorimeter Trigger is a digital pipelined system, reducing the 40 MHz bunch-crossing rate down to 75 kHz. It consists of a Preprocessor, a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce electron/photon, tau, and jet trigger multiplicities, total and missing transverse energies, and Region-of-Interest (RoI) information. Data are read out to the data acquisition (DAQ) system to monitor the trigger by using readout driver modules (ROD). A dedicated backplane has been designed to cope with the demanding requirements of the CP and JEP sub-systems. A number of pre-production boards were manufactured in order to fully populate a crate and test the robustness of the design on a large scale. Dedicated test modules to emulate digitised calorimeter signals have been used. All modules, cables and backplanes on test are final versions for use at the LHC. This test rig represents up to one third of the Level-1 ...

  19. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  20. An R&D programme on alternative technologies for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Appelquist, G; Bohm, C; Engström, M; Hellman, S; Holmgren, S O; Johansson, E; Yamdagni, N; Zhao, X; Sundblad, R; Ödmark, A; Bodo, P; Elderstig, H; Hentzell, H; Lindgren, S; Tober, M; Johansson, H; Svensson, C; Yuan, J R; Mohktari, M; Ellis, Nick

    1995-01-16

    This note describes a first-level calorimeter trigger processor designed to take advantage of new possibilities that arise as a consequence of modern design techniques and components such as optical interconnections, application specific integrated circuits (ASICs) and multi-chip modules (MCMs). The design is homogeneous down to the trigger cell level. This means that no boundary effects occur due to the system partitioning. The construction presented relies mainly on two different types of highly complex ASICs for processing and an MCM for opto-electrical conversion of input data. The trigger processor performs electron/photon identification, jet detection and missing ET calculations for the central first-level trigger and region of interest (RoI) selection for the second-level trigger. Exploring the possibilities given by advanced technologies leads to a first-level trigger architecture with advantages over more traditional designs, allowing, for example, higher precision calculations. Remaining degrees of ...

  1. A compact pre-processor system for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Pfeiffer, U

    1999-01-01

    This thesis describ es the researc h whose aim is to dev elop a compact Pre-Pro cessor system for the A TLAS Lev el-1 Calorimeter T rigger. Con tributions to the p erformance and the arc hitecture of the Pre-Pro cessor w ere made. A demonstrator Multi-Chip Mo dule (PPrD- MCM) w as dev elop ed and assem bled whic h p erforms most of the prepro cessing of four analogue trigger-to w er signals. The prepro cessing includes digitisation to 8-bit precision, iden ti cation of the corresp onding bunc h-crossing in time (BCID), calibration of the transv erse energy , readout of ra w trigger data, and high-sp eed serial data transmission to the trigger pro cessors. The demonstrator Multi-Chip Mo dule has a size of 15.9 cm 2 and it consists of 9 dies. The MCM w as designed with a smallest feature size of 100 m and it w as fabricated in a laminated MCM-L pro cess o ered b yW urth Elektronik. A Flip-Chip in terconnection ASIC (Finco) w as dev elop ed for the PPrD-MCM and fabricated in a 0.8 m BiCMOS- pro cess o ered b ...

  2. The ATLAS LAr Calorimeter Level 1 Trigger Signal pre-Processing System: Installation, Commissioning and Calibration Results.

    CERN Document Server

    Boulahouache, C; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The calorimeter information is a key ingredient in the first level (L1) trigger decision to reduce the 40 MHz p-p bunch crossing rate to few 100 kHz of accepted events waiting to be readout in full precision, in the system pipelines. This presentation covers the LAr calorimeter electronics used to prepare signals for the L1 trigger. After exiting the cryostat, part of the current signal, at the front end, is directly split off the main readout path and summed with neighbouring channels forming trigger towers which are transmitted in analog form over 50 to 70 meters to the counting room. There, the signals are calibrated, reordered and futher summed for fast digitization using the L1 trigger hardware. Many factors like calorimeter capacitances and pulse shapes have to be taken into accoun...

  3. The Development of Global Feature eXtractor (gFEX) – the ATLAS Calorimeter Level 1 Trigger for ATLAS at High Luminosity LHC

    CERN Document Server

    Tang, Shaochun; The ATLAS collaboration; Chen, Hucheng; Chen, Kai

    2017-01-01

    As part of ATLAS Phase-I Upgrade, the gFEX is designed to help maintain the ATLAS Level-1 trigger acceptance rate with the increasing LHC luminosity. The gFEX identifies patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the 40MHz LHC bunch crossing rate. The prototype v1 and v2 were designed and fully tested in 2015 and 2016 respectively. A pre-production gFEX board has been manufactured, which is an ATCA module consisting of three UltraScale+ FPGAs and one ZYNQ UltraScale+, and 35 MiniPODs are implemented in an ATCA module. This board receives coarse-granularity (0.2x0.2) information from the entire ATLAS calorimeters on up to 300 optical fibers and 96 links to the L1Topo at the speed up to 12.8 Gb/s.

  4. Development of the jet Feature EXtractor (jFEX) for the ATLAS Level 1 Calorimeter Trigger Upgrade at the LHC

    CERN Document Server

    Bauss, Bruno; The ATLAS collaboration; Buescher, Volker

    2017-01-01

    To cope with the enhanced luminosity delivered by the Large Hadron Collider from 2021 onwards, the ATLAS experiment has planned several upgrades. The first level trigger based on calorimeter data will be upgraded to exploit fine-granularity readout using a new system of Feature EXtractors (FEXs, FPGA-based trigger boards), each optimized to trigger on different physics objects. This contribution is focused on the jet FEX. The main challenges of such a board are the input bandwidth of up to 3.1 Tbps, dense routing of high-speed signals and power consumption. The design, PCB simulations and results of integrated tests of a prototype are shown in this document.

  5. Progress on the Level-1 Calorimeter Trigger

    CERN Multimedia

    Eric Eisenhandler

    The Level-1 Calorimeter Trigger (L1Calo) has recently passed a number of major hurdles. The various electronic modules that make up the trigger are either in full production or are about to be, and preparations in the ATLAS pit are well advanced. L1Calo has three main subsystems. The PreProcessor converts analogue calorimeter signals to digital, associates the rather broad trigger pulses with the correct proton-proton bunch crossing, and does a final calibration in transverse energy before sending digital data streams to the two algorithmic trigger processors. The Cluster Processor identifies and counts electrons, photons and taus, and the Jet/Energy-sum Processor looks for jets and also sums missing and total transverse energy. Readout drivers allow the performance of the trigger to be monitored online and offline, and also send region-of-interest information to the Level-2 Trigger. The PreProcessor (Heidelberg) is the L1Calo subsystem with the largest number of electronic modules (124), and most of its fu...

  6. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  7. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  8. Search for a High Mass Higgs Boson in the Channel H - ZZ - llbb and digital filtering for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Hadley, David Richard; Thompson, Paul

    The Standard Model of particle physics predicts the existence of a new massive state: the Higgs Boson. The discovery or exclusion of this particle is one of the main goals of the ATLAS experiment. One of the greatest experimental challenges at the LHC is to achieve efficient triggering. The ATLAS rst level calorimeter trigger uses reduced granularity information from the calorimeters to search for high ET e, y,t and jets as well as identifying high Emiss T and total ET events. A Finite Impulse Response (FIR) lter combined with a peak nder is applied to identify signals, determine their correct bunch-crossing and improve the energy measurement. A study to determine the optimum lter coecients is presented. The performance of these lters is investigated with commissioning data and cross-checks of the calibration with initial beam data are shown. In this thesis a study of the search sensitivity in the channel H - ZZ - llbb is presented. This channel can contribute to the Higgs search in the high mass region tha...

  9. The ATLAS Level-1 Central Trigger

    CERN Document Server

    Stockton, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 trigger system is responsible for reducing the anticipated LHC collision rate from 40 MHz to less than 100 kHz. The custom-built electronics of the ATLAS Level-1 Central Trigger receives inputs from the ATLAS Level-1 Triggers and the LHC. The Level-1 calorimeter triggers are based on coarse detector information to identify high-ET jets, electrons/photons and hadrons, along with missing and total energy. In addition there are dedicated muon and forward detectors, providing triggers for different energy thresholds. The Level-1 Central Trigger combines these trigger inputs to form a Level-1 accept. This, along with trigger summary information, is then passed onto the higher levels of the trigger. From the LHC itself the Level-1 Central Trigger passes the bunch clock to all ATLAS sub-detectors. We present how the rigger information, along with dead-time rates, are monitored and logged by the online system for physics analysis, data quality assurance and operational debugging. Also presented are ...

  10. The ATLAS Level-1 Topological Trigger Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371751; The ATLAS collaboration

    2016-01-01

    The LHC will collide protons in the ATLAS detector with increasing luminosity through 2016, placing stringent operational and physical requirements to the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency smaller than 2.5 μs. It consists of a calorimeter trigger, muon trigger and a central trigger processor. During the LHC shutdown after the Run 1 finished in 2013, the Level-1 trigger system was upgraded including hardware, firmware and software updates. In particular, new electronics modules were introduced in the real-time data processing path: the Topological Processor System (L1Topo). It consists of a single AdvancedCTA shelf equipped with two Level-1 topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which...

  11. Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. It is 500 times faster than full simulation in the calorimeter system. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of mach...

  12. The new ATLAS Fast Calorimeter Simulation

    Science.gov (United States)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  13. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2017-01-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  14. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  15. ATLAS Level-1 Topological Trigger

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-pT leptons, including H->tau tau and J/Psi->mu mu. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize...

  16. The ATLAS level-1 Central Trigger

    CERN Document Server

    Spiwoks, R; Berge, D; Caracinha, D; Ellis, Nick; Farthouat, P; Gällnö, P; Haas, S; Klofver, P; Krasznahorkay, A; Messina, A; Ohm, C; Pauly, T; Perantoni, M; Pessoa Lima Junior, H; Schuler, G; De Seixas, J M; Wengler, T; PH-EP

    2007-01-01

    The ATLAS Level-1 Central Trigger consists of the Muon-to-Central-Trigger-Processor Interface (MUCTPI), the Central Trigger Processor (CTP), and the Timing, Trigger and Control (TTC) partitions of the sub-detectors. The MUCTPI connects the output of the muon trigger system to the CTP. At every bunch crossing it receives information on muon candidates from each of the 208 muon trigger sectors and calculates the total multiplicity for each of six pT thresholds. The CTP combines information from the calorimeter trigger and the MUCTPI and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). The MUCTPI and the CTP provide trigger summary information to the Level-2 trigger and to the data acquisition (DAQ) for every event selected at the Level-1. They further provide accumulated and, for the CTP, bunch-by-bunch counter data for monitoring of the trigger, detector and beam conditions. The TTC partitions send timing, trigger and control signals from the CTP to the...

  17. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  18. Upgrading the Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    The tremendous need for simulated samples now and even more so in the future, encourage the development of fast simulation techniques. The Fast Calorimeter Simulation is a faster though less accurate alternative to the full calorimeter simulation with Geant4. It is based on parametrizing the longitudunal and lateral energy deposits of single particles in the ATLAS calorimeter. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. The parametrizations are expanded to cover very high energies and very forward detector regions, to increase the applicability of the tool. A prototype of this upgraded Fast Calorimeter Simulation has been developed and first validations with single particles show substantial improvements over the previous version.

  19. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  20. Upgrading the ATLAS fast calorimeter simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00032940; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATL...

  1. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  2. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  3. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  4. Results from ATLAS Calorimeter Combined Test Beam

    CERN Document Server

    Tarrade, F

    2007-01-01

    Beam tests of combinations of ATLAS calorimeters have been performed both for the barrel and end cap parts. During a combined test beam in summer 2004 a slice of the ATLAS barrel detector - including all detector sub systems from the inner tracker, the calorimetry to the muon system - was exposed to particle beams (electrons, pions, photons, muons) with different energies (1GeV to 350GeV). The aim was to study the combined performance of the different detector sub systems in ATLAS-like conditions. We will present the electronics calibration scheme of the electromagnetic calorimeter and its implementation. The following studies on the combined testbeam data have been performed and will be presented: performance of the electromagnetic calorimetry down to very low energies (> GeV), photon reconstruction including converted photons and position measurements using the very precise ATLAS tracker and the electromagnetic calorimeter. These measurements have been compared to Monte Carlo simulations showing the good de...

  5. ATLAS - End-Cap calorimeter

    CERN Multimedia

    CERN Audiovisual Unit

    2006-01-01

    The End-cap calorimeter was moved with the help of the rails and this calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  6. Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    CERN Document Server

    Kreis, B.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.; Apanasevich, L.; Zhang, J.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Foudas, C.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J.B.; Strebler, T.; Zabi, A.; Barbieri, R.; Cali, I.A.; Innocenti, G.M.; Lee, Y.J.; Roland, C.; Wyslouch, B.; Guilbaud, M.; Li, W.; Northup, M.; Tran, B.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2016-01-21

    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.

  7. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  8. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414625; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for the ATLAS Phase-0 upgrade program (2013-2014) was the activation of the TileCal outermost D-layer signal for assisting the Level-1 Muon Trigger at 1.0<|η|<1.3. This report describes the Tile-Muon Trigger within the TileCal upgrade activities, focusing on the new on-detector electronics such as the Tile Muon Digitizer Board (TMDB) providing (receive and digitize) the signal from eight TileCal modules to three Level-1 muon end-cap sector logic blocks.

  9. The ATLAS Level-1 Central Trigger Processor (CTP)

    CERN Document Server

    Spiwoks, Ralf; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS Level-1 Central Trigger Processor (CTP) combines information from calorimeter and muon trigger processors and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). In addition to the event-selection decision, the CTP also provides trigger summary information to the Level-2 trigger and the data acquisition system. It further provides accumulated and bunch-by-bunch scaler data for monitoring of the trigger, detector and beam conditions. The CTP is presented and results are shown from tests with the calorimeter adn muon trigger processors connected to detectors in a particle beam, as well as from stand-alone full-system tests in the laboratory which were used to validate the CTP.

  10. Commissioning of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Gibson, A; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter (LAr) is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The LAr calorimeter has been installed in the ATLAS cavern and filled with liquid argon since 2006. The electronic calibration of the readout system, a critical system for precision measurements, has been continuously exercised in the commissioning phase, resulting in a fully commissioned calorimeter with its readout and a small number of problematic channels. A total of only 0.02% of the read out channels are dead beyond repair and 0.4% need special treatment for calibration. Throughout the last two years a large amount of calibration data has been collected. Cosmic muon data, first triggered via specially developed trigger boards on the LVL1 output of the Tile calorimeter and later with the standard ATLAS LVL1 calorimeter trigger, have been recorded at various stages of commissio...

  11. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an

  12. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  13. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  14. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  15. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  16. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  17. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  18. The ATLAS Tile Calorimeter performance at LHC

    CERN Document Server

    Cuciuc, M; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the readout system exploiting different signal sources: laser light, charge injection and a radioactive source. The calorimeter performance and its stability has been evaluated with the rich sample of collision data in 2011 but also with calibration data, random triggered data, cosmic muons and splash events. Results on the absolute energy scale calibration precision, on the energy and timing uniformity, on the time resolution and on the synchronization precision are presented...

  19. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's last radial layer can assist in muon tagging using Level-1 muon trigger. It can help in the rejection of fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for Phase-0 upgrade ATLAS program (2013-2014) was the activation of the TileCal third layer signal for assisting the muon trigger at 1.0<|η|<1.3 (Tile-Muon Trigger). This report describes the Tile-Muon Trigger at TileCal upgrade activities, focusing on the new on-detector electronics such as Tile Muon Digitizer Board (TMDB) to provide (receive and digitize) the signal from eight TileCal modules to three Level-1 muon endcap sector logic blocks.

  20. The CMS Level-1 Calorimeter Trigger for LHC Run II

    Science.gov (United States)

    Sinthuprasith, Tutanon

    2017-01-01

    The phase-1 upgrades of the CMS Level-1 calorimeter trigger have been completed. The Level-1 trigger has been fully commissioned and it will be used by CMS to collect data starting from the 2016 data run. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Design, which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Intelligent, more complex, and innovative algorithms are now the core of the first decision layer of CMS: the upgraded trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger processors for pT assignment, pile up subtraction, and isolation requirements for electrons, and taus. The performance of the TMT design and the latency measurements and the algorithm performance which has been measured using data is also presented here.

  1. The CMS Level-1 Calorimeter Trigger for LHC Run II

    CERN Document Server

    Zabi, Alexandre; Cadamuro, Luca; Davignon, Olivier; Romanteau, Thierry; Strebler, Thomas; Cepeda, Maria Luisa; Sauvan, Jean-baptiste; Wardle, Nicholas; Aggleton, Robin Cameron; Ball, Fionn Amhairghen; Brooke, James John; Newbold, David; Paramesvaran, Sudarshan; Smith, D; Taylor, Joseph Ross; Fountas, Konstantinos; Baber, Mark David John; Bundock, Aaron; Breeze, Shane Davy; Citron, Matthew; Elwood, Adam Christopher; Hall, Geoffrey; Iles, Gregory Michiel; Laner Ogilvy, Christian; Penning, Bjorn; Rose, A; Shtipliyski, Antoni; Tapper, Alexander; Durkin, Timothy John; Harder, Kristian; Harper, Sam; Shepherd-Themistocleous, Claire; Thea, Alessandro; Williams, Thomas Stephen; Dasu, Sridhara Rao; Dodd, Laura Margaret; Klabbers, Pamela Renee; Levine, Aaron; Ojalvo, Isabel Rose; Ruggles, Tyler Henry; Smith, Nicholas Charles; Smith, Wesley; Svetek, Ales; Forbes, R; Tikalsky, Jesra Lilah; Vicente, Marcelo

    2017-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was completed in two stages, with the first running in 2015 for proton and Heavy Ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Large Hadron Collider (LHC) Run II. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger p...

  2. ATLAS - End-Cap calorimeter lowered in to the cavern

    CERN Multimedia

    2006-01-01

    The End-cap calorimeter was lowered into the ATLAS cavern at POINT1. This calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  3. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  4. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. The new ATLAS Fast Calorimeter Simulation (FastCaloSim) is an improved parametrisation compared to the one used in the LHC Run-1. It provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The new FastCaloSim incorporates developments in geometry and physics lists of the last five years and benefit...

  5. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00176100; The ATLAS collaboration

    2016-01-01

    The physics and performance studies of the ATLAS detector at the Large Hadron Collider re- quire a large number of simulated events. A GEANT4 based detailed simulation of the ATLAS calorimeter systems is highly CPU intensive and such resolution is often unnecessary. To reduce the calorimeter simulation time by a few orders of magnitude, fast simulation tools have been developed. The Fast Calorimeter Simulation (FastCaloSim) provides a parameterised simulation of the particle energy response at the calorimeter read-out cell level. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: it incorporates developments in geometry and physics lists during the last five years and benefits from the knowledge acquired from the Run 1 data. The algorithm uses machine learning techniques to improve the parameterisations and to optimise the amount of information to be stored in the...

  6. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  7. Calibration Systems of the ATLAS Tile Calorimeter

    CERN Document Server

    Lundberg, O

    2013-01-01

    TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. A multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. This calibration system is based on signal generation from different sources: a Cs radioactive source, laser light, charge injection and minimum bias events produced in proton-proton collisions. A brief description of the different TileCal calibration systems is given and the latest results on their performance in terms of calibration factors, linearity and stability are presented.

  8. Calibration systems of the ATLAS Tile Calorimeter

    CERN Document Server

    Lundberg, O; The ATLAS collaboration

    2012-01-01

    TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from the over 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. A multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. This calibration system is based on signal generation from different sources: a Cs radioactive source, laser light, charge injection and minimum bias events produced in proton-proton collisions. This talk presents a brief description of the different TileCal calibration systems and presents the latest results on their performance in terms of calibration factors...

  9. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2014-01-01

    This presentation summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2024. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  10. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2013-01-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  11. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  12. Upgrading the ATLAS Tile Calorimeter Electronics

    Directory of Open Access Journals (Sweden)

    Carrió Fernando

    2013-11-01

    Full Text Available This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  13. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  14. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  15. The New ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing the CPU requirements when detailed detector simulations are not needed. During Run-1 of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitisation and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of...

  16. Fast Shower Simulation in the ATLAS Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Barberio, E.; /Melbourne U.; Boudreau, J.; /Pittsburgh U.; Butler, B.; /SLAC; Cheung, S.L.; /Toronto U.; Dell' Acqua, A.; /CERN; Di Simone, A.; /CERN; Ehrenfeld, W.; /Hamburg U. /DESY; Gallas, M.V.; /CERN; Glazov, A.; /DESY; Marshall, Z.; /Caltech /Nevis Labs, Columbia U.; Mueller, J.; /Pittsburgh U.; Placakyte, R.; /DESY; Rimoldi, A.; /Pavia U. /INFN, Pavia; Savard, P.; /Toronto U.; Tsulaia, V.; /Pittsburgh U.; Waugh, A.; /Sydney U.; Young, C.C.; /SLAC

    2011-11-08

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterization is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to {approx} 1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper.

  17. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  18. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00383643; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  19. The Topological Processor for the future ATLAS Level-1 Trigger

    CERN Document Server

    Kahra, C; The ATLAS collaboration

    2014-01-01

    ATLAS is an experiment on the Large Hadron Collider (LHC), located at the European Organization for Nuclear Research (CERN) in Switzerland. By 2015 the LHC instantaneous luminosity will be increased from $10^{34}$ up to $3\\cdot 10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events that contain interesting physics events. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than $2.5 \\mu \\mathrm{s}$. It is composed of the Calorimeter Trigger, the Muon Trigger and the Central Trigger Processor (CTP). In 2014, there will be a new electronics module: the Topological Processor (L1Topo). The L1Topo will make it possible, for the first time, to use detailed information from subdetectors in a single Level-1 module. This allows the determi...

  20. The ATLAS Level-1 Central Trigger System in operation

    Science.gov (United States)

    Pauly, Thilo; ATLAS Collaboration

    2010-04-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking. It receives the 40 MHz bunch clock from the LHC machine and distributes it to all sub-detectors. It initiates the detector read-out by forming the Level-1 Accept decision, which is based on information from the calorimeter and muon trigger processors, plus a variety of additional trigger inputs from detectors in the forward regions. The L1CT also provides trigger-summary information to the data acquisition and the Level-2 trigger systems for use in higher levels of the selection process, in offline analysis, and for monitoring. In this paper we give an overview of the operational framework of the L1CT with particular emphasis on cross-system aspects. The software framework allows a consistent configuration with respect to the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are monitored coherently on all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow to efficiently display the relevant information in the control room in a way useful for shifters and experts. We present the overall performance during cosmic-ray data taking with the full ATLAS detector and the experience with first beam in the LHC.

  1. The ATLAS Level-1 Topological Trigger performance in Run 2

    Science.gov (United States)

    Riu, Imma; ATLAS Collaboration

    2017-10-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compared with the hardware response. An overview of the Level-1 Topological trigger system design, commissioning process and impact on several event selections are illustrated.

  2. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  3. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  4. The ATLAS Level-1 Topological Trigger performance in Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00120419; The ATLAS collaboration

    2017-01-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compar...

  5. Topology in the future ATLAS Level-1 Trigger

    CERN Document Server

    Kahra, C; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment examines the decays of high energetic particles produced in proton-proton collisions at the Large Hadron Collider (LHC). Resuming operation at the beginning of 2015 for Run 2 the LHC will work with an increased center-of-mass energy of $13-14 \\mathrm{TeV}$, which will result in an unprecedented luminosity. The first trigger level (Level-1) of the ATLAS trigger system, based on custom-made electronic modules, needs to be upgraded to control the increased trigger rate, while keeping good efficiency for interesting physics events. In Run 1 the Level-1 trigger decisions were mostly based only on multiplicities of trigger objects (such as electrons / photons, jets, hadrons, muons above energy/momentum thresholds) observed in the calorimeters and the muon spectrometer. As part of the Level-1 upgrade a new trigger module, the topological processor (L1Topo) will be included into the trigger chain. It is intended to evaluate the spatial correlations of trigger objects and to perform more complex k...

  6. The ATLAS Level-1 Central Trigger System 012

    CERN Document Server

    Borrego-Amaral, P; Farthouat, Philippe; Gällnö, P; Haller, J; Maeno, T; Pauly, T; Schuler, G; Spiwoks, R; Torga-Teixeira, R; Wengler, T; Pessoa-Lima, H; De Seixas, J M

    2004-01-01

    The central part of the ATLAS Level-1 trigger system consists of the Central Trigger Processor (CTP), the Local Trigger Processors (LTPs), the Timing, Trigger and Control (TTC) system, and the Read-out Driver Busy (ROD_BUSY) modules. The CTP combines information from calorimeter and muon trigger processors, as well as from other sources and makes the final Level-1 Accept decision (L1A) on the basis of lists of selection criteria, implemented as a trigger menu. Timing and trigger signals are fanned out to about 40 LTPs which inject them into the sub-detector TTC partitions. The LTPs also support stand-alone running and can generate all necessary signals from memory. The TTC partitions fan out the timing and trigger signals to the sub-detector front-end electronics. The ROD_BUSY modules receive busy signals from the front-end electronics and send them to the CTP (via an LTP) to throttle the generation of L1As. An overview of the ATLAS Level-1 Central trigger system will be presented, with emphasis on the design...

  7. gFEX, the ATLAS Calorimeter Global Feature Extractor

    CERN Document Server

    Takai, Helio; The ATLAS collaboration; Chen, Hucheng

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be implemented as a fast reconfigurable processor based on four large FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure FPGAs, monitor board health, and interface to external signals. Although the board is being designed specifically for the ATLAS experiment, it is sufficiently generic that it could be used for fast data processing at other HEP or NP experiments. We will present the design of the gFEX board and discuss how it is being...

  8. CMS Level-1 Upgrade Calorimeter Trigger Prototype Development

    CERN Document Server

    Klabbers, Pamela Renee

    2013-01-01

    As the LHC increases luminosity and energy, it will become increasingly difficult to select interesting physics events and remain within the readout bandwidth limitations. An upgrade to the CMS Calorimeter Trigger implementing more complex algorithms is proposed. It utilizes AMC cards with Xilinx FPGAs running in micro-TCA crate with card interconnections via crate backplanes and optical links operating at up to 10 Gbps. Prototype cards with Virtex-6 and Virtex-7 FPGAs have been built and software frameworks for operation and monitoring developed. The physics goals, hardware architectures, and software will be described in this talk. More details can be found in a separate poster at this conference.

  9. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  10. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  11. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  12. Tile/hadronic Calorimeter design viewed from ATLAS

    CERN Document Server

    Santoni, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. In the barrel part of ATLAS, together with the electromagnetic barrel calorimeter, TileCal provides precise measurements of hadrons, jets, taus and the missing transverse energy. To understand the detail of the response of the detector, 11% of the 192 calorimeter modules were exposed to test beams of electrons, muons, and hadrons. Results were also obtained in the experimental hall using random triggers, calibration data and data from muons, isolated pions, and inclusive p-p events. This talk gives an overview of the TileCal performance.

  13. The ATLAS Level-1 Central Trigger

    CERN Document Server

    Stockton, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Level-1 trigger system is responsible for reducing the anticipated LHC collision rate from 40 MHz to less than 100 kHz. This Level-1 selection identifies, jet, tau/hadron, electron/photon and muon candidates, with additional triggers for missing and total energy. These inputs are used by the Level-1 Central Trigger to form a Level-1 Accept decision. This decision, along with summary information, is then passed into the higher levels of the trigger system and sub-detectors, which also receive the clock from the Level-1 Central trigger. The performance of the Central Trigger during the first collisions will be shown. This includes details of how the trigger information, along with dead-time rates, are monitored and logged by the online system for physics analysis, data quality assurance and operational debugging. Also presented are the software tools used to efficiently display the relevant information in the control room in a way useful for shifters and experts.

  14. Moving one of the ATLAS end-cap calorimeters

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the end-cap calorimeters for the ATLAS experiment is moved using a set of rails. This calorimeter will measure the energy of particles that are produced close to the axis of the beam when two protons collide. It is kept cool inside a cryostat to allow the detector to work at maximum efficiency.

  15. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  16. Simulation of hadronic showers in the ATLAS liquid argon calorimeters

    CERN Document Server

    Kiryunin, A E; Strízenec, P; Kish, J; Loch, P; Mazini, R

    2002-01-01

    Results of Geant4 based simulations of the response of the ATLAS hadronic end-cap calorimeter to charged pions are presented. The first results of hadronic simulations with Geant4 for the ATLAS forward calorimeter are shown as well. Predictions of Geant4 and Geant3 on energy response and resolution for charged pions are compared. Where it is possible, the comparison with experimental results of beam tests is done. (6 refs).

  17. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  18. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  19. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  20. The ATLAS Level-1 Topological Trigger Design and Operation in Run-2

    CERN Document Server

    Igonkina, Olga; The ATLAS collaboration

    2018-01-01

    The ATLAS Level-1 Trigger system performs initial event selection using data from calorimeters and the muon spectrometer to reduce the LHC collision event rate down to about 100 kHz. Trigger decisions from the different sub-systems are combined in the Central Trigger Processor for the final Level-1 decision. A new FPGAs-based AdvancedTCA sub-system was introduced to calculate in real time complex kinematic observables: the Topological Processor System. It was installed during the shutdown and commissioning started in 2015 and continued during 2016. The design and operation of the Level-1 Topological Trigger in Run-2 will be illustrated.

  1. Simulation and validation of the ATLAS Tile Calorimeter at LHC

    CERN Document Server

    Artamonov, A; The ATLAS collaboration

    2013-01-01

    --Simulation and validation of the ATLAS Tile Calorimeter at LHC TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitized every 25 ns before being transferred to off-detector data-acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Detector non-uniformities and imperfections are also represented. Detailed validation has shown that the simulated detector response characteristics have been successfully integrated and...

  2. Important ATLAS Forward Calorimeter Milestone Reached

    CERN Document Server

    Loch, P.

    The ATLAS Forward Calorimeter working group has reached an important milestone in the production of their detectors. The mechanical assembly of the first electromagnetic module (FCal1C) has been completed at the University of Arizona on February 25, 2002, only ten days after the originally scheduled date. The photo shows the University of Arizona FCal group in the clean room, together with the assembled FCal1C module. The module consists of a stack of 18 round copper plates, each about one inch thick. Each plate is about 90 cm in diameter, and has 12260 precision-drilled holes in it, to accommodate the tube/rod electrode assembly. The machining of the plates, which was done at the Science Technology Center (STC) at Carleton University, Ottawa, Canada, required high precision to allow for easy insertion of the electrode copper tube. The plates have been carefully cleaned at the University of Arizona, to remove any machining residue and metal flakes. This process alone took about eleven weeks. Exactly 122...

  3. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  4. Simulation and validation of the ATLAS Tile Calorimeter response

    CERN Document Server

    Karpov, S N; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. The improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  5. The Phase-1 Upgrade of the ATLAS First Level Calorimeter Trigger

    CERN Document Server

    Schwienhorst, Reinhard; The ATLAS collaboration

    2015-01-01

    The ATLAS level-1 calorimeter trigger pursues a series of upgrades in order to face the challenges posed by the upcoming increase of the LHC beam energy and luminosity. The hardware built during the Phase-1 upgrade will be installed in 2018. The calorimeter data will be available with a tenfold increase of granularity which allows to employ more sophisticated identification algorithms. To cope with this increase of input data, an entirely new custom electronics processing system will be built exploiting the technological advances in the design of complex PCBs, powerful FPGAs, new crate technologies and high speed optical interconnects.

  6. The Phase-1 Upgrade of the ATLAS First Level Calorimeter Trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00050408

    2016-01-01

    The ATLAS level-1 calorimeter trigger pursues a series of upgrades in order to face the challenges posed by the upcoming increase of the LHC luminosity. The hardware built during the Phase-1 upgrade will be installed in 2018. The calorimeter data will be available with a tenfold increase of granularity which allows to employ more sophisticated identification algorithms. To cope with this increase of input data, an entirely new custom electronics processing system will be built exploiting the technological advances in the design of complex PCBs, powerful FPGAs, new crate technologies and high speed optical interconnects.

  7. The Phase-1 upgrade of the ATLAS first level calorimeter trigger

    Science.gov (United States)

    Schwienhorst, R.

    2016-01-01

    The ATLAS level-1 calorimeter trigger pursues a series of upgrades in order to face the challenges posed by the upcoming increase of the LHC luminosity. The hardware built during the Phase-1 upgrade will be installed in 2018. The calorimeter data will be available with a tenfold increase of granularity which allows to employ more sophisticated identification algorithms. To cope with this increase of input data, an entirely new custom electronics processing system will be built exploiting the technological advances in the design of complex PCBs, powerful FPGAs and high speed optical interconnects.

  8. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  9. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    Science.gov (United States)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance

  10. The upgrade of the ATLAS first-level calorimeter trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00227035; The ATLAS collaboration

    2016-01-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Toward forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This article reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  11. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  12. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  13. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  14. The ATLAS liquid argon calorimeters Read Out Driver (ROD) system

    CERN Document Server

    Henry-Coüannier, F

    2000-01-01

    The electronic Readout chain for the Liquid Argon calorimeters of the ATLAS detector is briefly presented. Special attention is given to the Read Out Drivers (ROD) which will receive the triggered data from approximately 200,000 calorimeter cells at a 100 kHz event rate. In the ROD boards the energy will be computed for each cell from discrete samples of the waveform using optimal filtering algorithms running in fast digital signal processors. The monitoring of the calorimeter data will also be performed at the ROD level. Performances expected in ATLAS which have been evaluated from simulation studies are presented. A demonstrator system currently under construction is described and performances of the Processing Units (DSP daughter boards) are presented. 4 Refs.

  15. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    CERN Document Server

    Chen, H; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is one of the two general-purpose detectors designed to study proton-proton collisions (14 TeV in the center of mass) produced at the Large Hadron Collider (LHC) and to explore the full physics potential of the LHC machine at CERN. The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS (and its LAr Calorimeters) has been operating and collecting p-p collisions at LHC since 2009. The on-detector electronics (front-end) part of the current readout electronics of the calorimeters measures the ionization current signals by means of preamplifiers, shapers and digitizers and then transfers the data to the off-detector electronics (back-end) for further elaboration, via optical links. Only the data selected by the level-1 calorimeter trigger system are transferred, achieving a bandwidth reduction to 1.6 Gbps. The analog trigger sum sig...

  16. ATLAS Liquid Argon Calorimeter at dawn of LHC Run-2

    CERN Document Server

    Camincher, Clement; The ATLAS collaboration

    2015-01-01

    At the start of the LHC Run-2 here is an overview of the Liquid Argon Calorimeter of ATLAS. It is described the main modifications done during the long shutdown (2013-2015). The first LAr-related results with 2015 data are also highlighted. Finally a short description present the foreseen Phase-I upgrade of the L1 Calo trigger.

  17. ATLAS level-1 jet trigger rates and study of the ATLAS discovery potential of the neutral MSSM Higgs bosons in b-jet decay channels

    CERN Document Server

    Mahboubi, Kambiz

    2001-01-01

    The response of the ATLAS calorimeters to electrons, photons and hadrons, in terms of the longitudinal and lateral shower development, is parameterized using the GEANT package and a detailed detector description (DICE). The parameterizations are implemented in the ATLAS Level-1 (LVL1) Calorimeter Trigger fast simulation package which, based on an average detector geometry, simulates the complete chain of the LVL1 calorimeter trigger system. In addition, pile-up effects due to multiple primary interactions are implemented taking into account the shape and time history of the trigger signals. An interface to the fast physics simulation package (ATLFAST) is also developed in order to perform ATLAS physics analysis, including the LVL1 trigger effects, in a consistent way. The simulation tools, the details of the parameterization and the interface are described. The LVL1 jet trigger thresholds corresponding to the current trigger menus are determined within the framework of the fast simulation, and the LVL1 jet tr...

  18. The ATLAS Tile Calorimeter performance at the LHC

    CERN Document Server

    Calkins, R; The ATLAS collaboration

    2011-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photo-multipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the readout system exploiting different signal sources: laser light, charge injection and a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demo...

  19. Upgrade of the PreProcessor System for the ATLAS LVL1 Calorimeter Trigger

    CERN Document Server

    Khomich, A; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based pipelined system designed to identify high-pT objects in the ATLAS calorimeters within a fixed latency of 2.5us. It consists of three subsystems: the PreProcessor which conditions and digitizes analogue signals and two digital processors. The majority of the PreProcessor's tasks are performed on a dense Multi-Chip Module(MCM) consisting of FADCs, a time-adjustment and digital processing ASICs, and LVDS serializers designed and implemented in ten years old technologies. An MCM substitute, based on today's components (dual channel FADCs and FPGA), is being developed to profit from state-of-the-art electronics and to enhance the flexibility of the digital processing. Development and first test results are presented.

  20. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  1. ATLAS Tile Calorimeter: simulation and validation of the response

    CERN Document Server

    Faltova, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  2. ATLAS LAr Calorimeter Trigger Electronics Phase-1 Upgrade

    CERN Document Server

    Aad, Georges; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for a shut-down period of 2019-2020, referred to as the Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will...

  3. ATLAS LAr Calorimeter Performance in LHC Run-2

    CERN Document Server

    Yatsenko, Elena; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm−2 s−1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. In the first LHC run a total luminosity of 27 fb−1 has been collected at center-of-mass energies of 7-8 TeV between year of 2010 to 2012. Following a period of detector consolidation during a long shutdown, Run-2 started with approximately 3.9 fb-1 and 35.6 fb-1 of data at a center-of-mass energy of 13 TeV recorded in 2015 and 2016, respectively. In order to realize the level-1 acceptance rate of 100 kHz in Run-2 data taking, number of read-out samples for the energy and the time measurement has been modified from five to four with keeping the expected performance. The well calibrated and highly granular Liquid Ar...

  4. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    CERN Document Server

    Boumediene, D

    2015-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated to the calorimeter, there is a composite device that allows to monitor and/or equalize the signals at various stages of their formation. This device is based on signal generation from different sources: radioactive, Laser, charge injection and minimum bias events produced in proton-proton collisions. Recent performances of these systems as well TileCal calibration stability are presented.

  5. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated to the calorimeter, there is a composite device that allows to monitor and/or equalize the signals at various stages of their formation. This device is based on signal generation from different sources: radioactive, LASER, charge injection and minimum bias events produced in proton-proton collisions. Recent performances of these systems are presented.

  6. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  7. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    CERN Document Server

    Boumediene, D; The ATLAS collaboration

    2014-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  8. Physics performances with the new ATLAS Level-1 Topological trigger in Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414333; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger system aims at reducing the 40 MHz proton-proton collision event rate to a manageable event storage rate of 1 kHz, preserving events valuable for physics analysis. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system, with an output rate of 100 kHz and decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. During the last upgrade, a new electronics element was introduced to Level-1: The Topological Processor System. It will make it possible to use detailed realtime information from the Level-1 calorimeter and muon triggers, processed in individual state of the art FPGA processors to determine angles between jets and/or leptons and calculate kinematic variables based on lists of selected/sorted objects. More than one hundred VHDL algorithms are producing trigger outputs to be incorporated into the central trigger processor. This information will be essential to improve background reject...

  9. Testbeam Studies of Production Modules of the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bednar, P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gorini, B; Grenier, P; Gris, P; Gruwé, M; Guarino, V; Guicheney, C; Sen-Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Le Compte, T; Lefèvre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lupi, A; Maidantchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Némécek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L-P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Ünel, G; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\\,\\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5\\,\\% for 91~measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of {1.4\\,\\%} for the modules and projective angles studied. The respon...

  10. The Energy Response of the ATLAS Calorimeter System

    CERN Document Server

    Schlager, G; Carli, T; Fabjan, Christian Wolfgang; Henriques, A

    2006-01-01

    The Large Hadron Collider (LHC) currently under construction at the European Organization for Nuclear Research (CERN) in Geneva will collide two proton beams with a center-of-mass energy of 14 TeV. At this high energy frontier a new chapter of particle physics will be opened. The ATLAS experiment is a general-purpose LHC detector for proton-proton collisions. The electromagnetic liquid argon-lead sampling calorimeter (LAr Calorimeter) is designed to measure the energy and position of electrons and photons with high precision and the hadronic scintillator-iron sampling calorimeter (TileCal) complements the measurement of the energy and direction of jets. Both calorimeters are installed in the ATLAS experimental cavern and are presently being commissioned. To be able to start the commissioning of the TileCal in an early phase, even before the final electronic readout system was available, a mobile data acquisition system (MobiDAQ) was developed in the context of this PhD-thesis. It is capable of reading up to e...

  11. The ATLAS Tile Hadronic Calorimeter performance at the LHC

    CERN Document Server

    Francavilla, P; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identi cation and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical bers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read-out system exploiting di erent signal sources: laser light, charge injection, a radioactive source and the signal produced by minimum bias events. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and most importantly the large sample of pp collision events. Results are discussed that demonstrate how the calorimeter is operated, how is monitored and what performance has been obtai...

  12. The ATLAS Tile Hadronic Calorimeter performance at the LHC

    CERN Document Server

    Francavilla, P; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read-out system exploiting different signal sources: laser light, charge injection, a radioactive source and the signal produced by minimum bias events. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and most importantly the large sample of pp collision events. Results are discussed that demostrate how the calorimeter is operated, how is monitored and what performance has been ob...

  13. The new Level-1 Topological Trigger for the ATLAS experiment at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00047907; The ATLAS collaboration

    2017-01-01

    At the CERN Large Hadron Collider, the world’s most powerful particle accelerator, the ATLAS experiment records high-energy proton collision to investigate the properties of fundamental particles. These collisions take place at a 40 MHz, and the ATLAS trigger system selects the interesting ones, reducing the rate to 1 kHz, allowing for their storage and subsequent offline analysis. The ATLAS trigger system is organized in two levels, with increasing degree of details and of accuracy. The first level trigger reduces the event rate to 100 kHz with a decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. A new component of the first-level trigger was introduced in 2015: the Topological Processor (L1Topo). It allows to use detailed real-time information from the Level-1 calorimeter and muon systems, to compute advanced kinematic quantities using state of the art FPGA processors, and to select interesting events based on several com...

  14. The ATLAS Level-1 Muon Topological Trigger Information for Run 2 of the LHC

    Science.gov (United States)

    Artz, S.; Bauss, B.; Boterenbrood, H.; Buescher, V.; Cerqueira, A. S.; Degele, R.; Dhaliwal, S.; Ellis, N.; Farthouat, P.; Galster, G.; Ghibaudi, M.; Glatzer, J.; Haas, S.; Igonkina, O.; Jakobi, K.; Jansweijer, P.; Kahra, C.; Kaluza, A.; Kaneda, M.; Marzin, A.; Ohm, C.; Silva Oliveira, M. V.; Pauly, T.; Poettgen, R.; Reiss, A.; Schaefer, U.; Schaeffer, J.; Schipper, J. D.; Schmieden, K.; Schreuder, F.; Simioni, E.; Simon, M.; Spiwoks, R.; Stelzer, J.; Tapprogge, S.; Vermeulen, J.; Vogel, A.; Zinser, M.

    2015-02-01

    For the next run of the LHC, the ATLAS Level-1 trigger system will include topological information on trigger objects from the calorimeters and muon detectors. In order to supply coarse grained muon topological information, the existing MUCTPI (Muon-to-Central-Trigger-Processor Interface) system has been upgraded. The MIOCT (Muon Octant) module firmware has been then modified to extract, encode and send topological information through the existing MUCTPI electrical trigger outputs. The topological information from the muon detectors will be sent to the Level-1 Topological Trigger Processor (L1Topo) through the MUCTPI-to-Level-1-Topological-Processor (MuCTPiToTopo) interface. Examples of physics searches involving muons are: search for Lepton Flavour Violation, Bs-physics, Beyond the Standard Model (BSM) physics and others. This paper describes the modifications to the MUCTPI and its integration with the full trigger chain.

  15. The ATLAS Level-1 Muon Topological Trigger Information for Run 2 of the LHC

    CERN Document Server

    Silva Oliveira, Marcos Vinicius; The ATLAS collaboration; Bauss, Bruno; Boterenbrood, Hendrik; Buescher, Volker; Cerqueira, Augusto Santiago; Degele, Reinold; Dhaliwal, Saminder; Ellis, Nicolas; Farthouat, Philippe; Galster, Gorm Aske Gram; Ghibaudi, Marco; Glatzer, Julian Maximilian Volker; Haas, Stefan; Igonkina, Olga; Jakobi, Katharina Bianca; Jansweijer, Peter Paul Maarten; Kahra, Christian; Kaluza, Adam; Kaneda, Michiru; Marzin, Antoine; Ohm, Christian; Pauly, Thilo; Poettgen, Ruth; Reiss, Andreas; Schaefer, Uli; Schaeffer, Jan; Schipper, Jan David; Schmieden, Kristof; Schreuder, Frans Philip; Simioni, Eduard; Spiwoks, Ralf; Stelzer, Harald Joerg; Tapprogge, Stefan; Vermeulen, Jos; Vogel, Alexander; Zinser, Markus

    2015-01-01

    For the next run of the LHC, the ATLAS Level-1 trigger system will include topological information on trigger objects from the calorimeters and muon detectors. In order to supply coarse grained muon topological information, the existing MUCTPI (Muon-to-Central-Trigger-Processor Interface) system has been upgraded. The MIOCT (Muon Octant) module firmware has been then modified in order to extract, encode and send topological information through the existing MUCTPI electrical trigger outputs. The topological information from the muon detectors will be sent to the Level-1 Topological Trigger Processor (L1Topo) through the MUCTPI-to-Level-1-Topological-Processor (MuCTPiToTopo) interface. Examples of topological algorithms involving muons are: search for Lepton Flavour Violation, Bs-physics, Beyond the Standard Model (BSM) physics and others. This paper describes the modifications to the MUCTPI and its integration with the full trigger chain.

  16. Energy Measurement of Hadrons with the CERN ATLAS Calorimeter

    CERN Document Server

    Speckmayer, Peter; Fabjan, Christian Wolfgang

    2008-01-01

    The ATLAS detector is a multi-purpose detector measuring the energy and direction of particles produced in proton-proton collisions at a center of mass energy of 14 TeV provided by the Large Hadron Collider at the European center of particle physics, CERN. The main aim of this thesis is to assess the precision of the present understanding of the interactions of hadrons with matter (as implemented in Monte Carlo (MC) simulations) to describe the response of the ATLAS calorimeter and to predict the correction necessary to measure the full energy of pions. The simulations are compared to testbeam data. The present description of the response of the ATLAS central calorimeter is able to predict the energy corrections, as verified by using testbeam data. For the Combined Testbeam 2004 (CTB) a full slice of the central region of the ATLAS detector including all sub-detectors has been installed in the H8 beam line of the CERN SPS accelerator. Pions and electrons with the energies ranging from 1 to 350 GeV have been m...

  17. The ATLAS Liquid Argon Calorimeters At The Dawn Of LHC Run-2

    CERN Document Server

    Camincher, Clement; The ATLAS collaboration

    2015-01-01

    The Liquid Argon Calorimeters are key sub-detectors of ATLAS. They are essential to detect and measure the properties of electrons, photons and are also crucial for jets and missing transverse energy measurements. During the LHC shutdown in 2013-2014, the hardware and the software have been optimized to improve their reliability. The first collisions allows to assess the performance of the detector in the LHC Run-2 real conditions. In view of the next LHC Run in 2020, an upgrade of the level-1 trigger system is also under test. A status at the restart of the LHC Run-2 is presented in this document.

  18. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00424300; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  19. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    Science.gov (United States)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  20. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gurriana, L.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Hollander, D.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manhaes de Andrade Filho, L.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Miller, M.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Ribeiro, N.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Tunnell, C.D.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.

  1. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    CERN Document Server

    Efthymiopoulos, I

    2001-01-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs. (3 refs).

  2. Response Uniformity of the ATLAS Liquid Argon Electromagnetic Calorimeter

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Wingerter-Seez, I; Zitoun, R; Lanni, F; Lü, L; Ma, H; Rajagopalan, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Gao, Y; Stroynowsk, R; Aleksa, M; Carli, T; Fassnacht, P; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Malek, F; Martin, P; Viret, S; Leltchouk, M; Parsons, J A; Simion, S; Barreiro, F; Del Peso, J; Labarga, L; Oliver, C; Rodier, S; Barrillon, P; Benchouk, C; Djama, F; Hubaut, F; Monnier, E; Pralavorio, P; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandell, L; Mazzanti, M; Tartarelli, F; Kotov, K; Maslennikov, A; Pospelov, G; Tikhonov, Yu; Bourdarios, C; Fayard, L; Fournier, D; Iconomidou-Fayard, L; Kado, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Dekhissi, B; Derkaoui, J; EL Kharrim, A; Maaroufi, F; Cleland, W; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, Ph; Ghazlane, H; Cherkaoui El Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindlingy, J; Lund-Jensen, B

    2007-01-01

    The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.

  3. Performance and Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Starovoitov, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumental for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibr...

  4. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  5. ATLAS Tile Calorimeter time calibration, monitoring and performance

    Science.gov (United States)

    Davidek, T.; ATLAS Collaboration

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons is presented.

  6. ATLAS Tile Calorimeter: simulation and validation of the response

    CERN Document Server

    Davidek, T; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central secti1 on of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  7. The Phase-I Upgrade of the ATLAS First Level Calorimeter Trigge

    CERN Document Server

    Hristova, Ivana Radoslavova

    2014-01-01

    The level-1 calorimeter trigger (L1Calo) of the ATLAS experiment has been operating effectively since the start of LHC data taking, and has played a major role in the discovery of the Higgs boson. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. An initial upgrade (Pre-Phase- I) is scheduled to be ready for the start of the second LHC run in 2015, and a further more substantial upgrade (Phase-I) is planned to be installed during the LHC shutdown expected in 2018. The calorimeter trigger aims to identify electrons, photons, taus and hadronic jets. It also determines total and missing transverse energy and can further analyse the event topology using a dedicated system incorporating information from both calorimeter and muon triggers. This paper also presents the Phase-I hardware trigger developments which exploit a tenfold increase in the available calorimeter data granularity when compared to that of the curren...

  8. The Phase-1 Upgrade of the ATLAS First Level Calorimeter Trigger

    CERN Document Server

    Hristova, I; The ATLAS collaboration

    2014-01-01

    The level-1 calorimeter trigger (L1Calo) of the ATLAS experiment has been operating effectively since the start of LHC data taking, and has played a major role in the discovery of the Higgs boson. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. An initial upgrade (Phase-0) is scheduled to be ready for the start of the second LHC run in 2015, and a further more substantial upgrade (Phase-1) is planned to be installed during the LHC shutdown expected in 2018. The calorimeter trigger aims to identify electrons, photons, taus and hadronic jets. It also determines total and missing transverse energy and can further analyse the event topology using a dedicated system incorporating information from both calorimeter and muon triggers. This paper presents the Phase-1 hardware trigger developments which exploit a tenf old increase in the available calorimeter data granularity when compared to that of the current system....

  9. The Phase-I Upgrade of the ATLAS First Level Calorimeter Trigger

    CERN Document Server

    Hristova, I; The ATLAS collaboration

    2014-01-01

    The level-1 calorimeter trigger (L1Calo) of the ATLAS experiment has been operating effectively since the start of LHC data taking, and has played a major role in the discovery of the Higgs boson. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. An initial upgrade (Pre-Phase-I) is scheduled to be ready for the start of the second LHC run in 2015, and a further more substantial upgrade (Phase-1) is planned to be installed during the LHC shutdown expected in 2018. The calorimeter trigger aims to identify electrons, photons, taus and hadronic jets. It also determines total and missing transverse energy and can further analyse the event topology using a dedicated system incorporating information from both calorimeter and muon triggers. This paper presents the Phase-1 hardware trigger developments which exploit a tenfold increase in the available calorimeter data granularity when compared to that of the current syst...

  10. SIGNAL RECONSTRUCTION PERFORMANCE OF THE ATLAS HADRONIC TILE CALORIMETER

    CERN Document Server

    Do Amaral Coutinho, Y; The ATLAS collaboration

    2013-01-01

    "The Tile Calorimeter for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are readout by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front-end electronics allows to read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read-out system is responsible for reconstructing the data in real-time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The main component of the read-out system is the Digital Signal Processor (DSP) which, using an Optimal Filtering reconstruction algorithm, allows to compute for each channel the signal amplitude, time and quality factor at the required high rate. Currently the ATLAS detector and the LHC are undergoing an upgrade program tha...

  11. The ATLAS Level-1 Trigger System with 13TeV nominal LHC collisions

    CERN Document Server

    Helary, Louis; The ATLAS collaboration

    2017-01-01

    The Level-1 (L1) Trigger system of the ATLAS experiment at CERN's Large Hadron Collider (LHC) plays a key role in the ATLAS detector data-taking. It is a hardware system that selects in real time events containing physics-motivated signatures. Selection is purely based on calorimetry energy depositions and hits in the muon chambers consistent with muon candidates. The L1 Trigger system has been upgraded to cope with the more challenging run-II LHC beam conditions, including increased centre-of-mass energy, increased instantaneous luminosity and higher levels of pileup. This talk summarises the improvements, commissioning and performance of the L1 ATLAS Trigger for the LHC run-II data period. The acceptance of muon triggers has been improved by increasing the hermiticity of the muon spectrometer. New strategies to obtain a better muon trigger signal purity were designed for certain geometrically difficult transition regions by using the ATLAS hadronic calorimeter. Algorithms to reduce noise spikes in muon trig...

  12. Upgrade of the ATLAS Level-1 trigger with an FPGA based Topological Processor

    CERN Document Server

    Caputo, R; The ATLAS collaboration; Buescher, V; Degele, R; Kiese, P; Maldaner, S; Reiss, A; Schaefer, U; Simioni, E; Tapprogge, S; Urrejola, P

    2013-01-01

    The ATLAS experiment is located at the European Centre for Nuclear Research (CERN) in Switzerland. It is designed to measure decay properties of high energetic particles produced in the protons collisions at the Large Hadron Collider (LHC). The LHC has a proton collision at a frequency of 40 MHz, and thus requires a trigger system to efficiently select events down to a manageable event storage rate of about 400Hz. Event triggering is therefore one of the extraordinary challenges faced by the ATLAS detector. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5$\\mu$s. It is primarily composed of the Calorimeter Trigger, Muon Trigger, the Central Trigger Processor (CTP). Due to the increase in the LHC instantaneous luminosity up to 3$\\times$10$^{34}$ cm$^{−2}$ s$^{−1}$ from 2015 onwards, a new element will be included in the Level-1 Trigger scheme: the Topological Processor (L1Topo). The L1Topo receives data in a dedicate...

  13. The Topological Processor for the future ATLAS Level-1 Trigger: from design to commissioning

    CERN Document Server

    Simioni, E; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is located at the European Centre for Nuclear Research (CERN) in Switzerland. It is designed to measure decay properties of highly energetic particles produced in the protons collisions at the Large Hadron Collider (LHC). The LHC has a beam collision frequency of 40 MHz, and thus requires a trigger system to efficiently select events, thereby reducing the storage rate to a manageable level of about 400 Hz. Event triggering is therefore one of the extraordinary challenges faced by the ATLAS detector. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5 s. It is primarily composed of the Calorimeter Trigger, Muon Trigger, the Central Trigger Processor (CTP). Due to the increase in the LHC instantaneous luminosity up 3 x 10^34/cm2 s from 2015 onwards, a new element will be included in the Level-1 Trigger scheme: the Topological Processor (L1Topo). The L1Topo receives data in a specialized format from the ...

  14. ATLAS Tile Calorimeter performance for the phase II upgrade

    CERN Document Server

    Sellapillay, Kevissen

    2017-01-01

    The first part of the internship is focused on trying to assess the performance of the upgraded geometry of the ATLAS Tile Calorimeter. To do this, we use Monte Carlo generated samples for the upgraded geometry and from the current geometry, then we derive the pT response and resolution. The second part of the study is an analysis of the sensitivity of the two different geometries to a new heavy boson that would decay into a top quark pair $Z^{\\prime} \\rightarrow t\\bar{t}$.

  15. ATLAS tile hadronic calorimeter signal reconstruction and performance.

    CERN Document Server

    Nguyen, D; The ATLAS collaboration

    2014-01-01

    We present the signal reconstruction and performance of ATLAS tile hadronic calorimeter (TileCal) using proton-proton collision data. The signal reconstruction algorithms, optimal filter and match filter, are discussed together with their signal reconstruction performances. We demonstrate the effects of increasing LHC pile-up conditions on noise description and signal reconstruction. Furthermore, the average energy deposited in a TileCal cell and the TileCal response to single isolated charged particles are presented. Finally, we discuss the TileCal upgrade plans during LHC shutdowns.

  16. The Phase-1 Upgrade of the ATLAS First Level Calorimeter Trigger

    CERN Document Server

    Andrei, George Victor; The ATLAS collaboration

    2017-01-01

    The ATLAS Level-1 calorimeter trigger is planning a series of upgrades in order to face the challenges posed by the upcoming increase of the LHC luminosity. The hardware built for the Phase-1 upgrade will be installed during the long shutdown of the LHC starting in 2019, with the aim of being fully commissioned before the restart in 2021. The upgrade will benefit from new front end electronics for parts of the calorimeter which provide the trigger system with digital data with a tenfold increase in granularity. This makes possible the use of more complex algorithms than currently used and while maintaining low trigger thresholds under much harsher collision conditions. Of principal significance among these harsher conditions will be the increased number interactions per bunch crossing, known as pile-up. The Level-1 calorimeter system upgrade consists of an active and a passive system for digital data distribution and three different Feature EXtraction systems (FEXs) which run complex algorithms to identify el...

  17. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    CERN Document Server

    Aubert, Bernard; Alexa, C; Astesan, F; Augé, E; Aulchenko, V M; Ballansat, J; Barreiro, F; Barrillon, P; Battistoni, G; Bazan, A; Beaugiraud, B; Beck-Hansen, J; Belhorma, B; Belorgey, J; Belymam, A; Ben-Mansour, A; Benchekroun, D; Benchouk, C; Bernard, R; Bertoli, W; Boniface, J; Bonivento, W; Bourdarios, C; Bremer, J; Breton, D; Bán, J; Camard, A; Canton, B; Carminati, L; Cartiglia, N; Cavalli, D; Chalifour, M; Chekhtman, A; Chen, H; Cherkaoui, R; Chevalley, J L; Chollet, F; Citterio, M; Clark, A; Cleland, W; Clément, C; Colas, Jacques; Collot, J; Costa, G; Cros, P; Cunitz, H; de Saintignon, P; Del Peso, J; Delebecque, P; Delmastro, M; Di Ciaccio, Lucia; Dinkespiler, B; Djama, F; Dodd, J; Driouichi, C; Dumont-Dayot, N; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Egdemir, J; El-Kacimi, M; El-Mouahhidi, Y; Engelmann, R; Ernwein, J; Falleau, I; Fanti, M; Farrell, J; Fassnacht, P; Ferrari, A; Fichet, S; Fournier, D; Gallin-Martel, M L; Gara, A; García, G; Gaumer, O; Ghazlane, H; Ghez, P; Gianotti, F; Girard, C; Gordon, H; Gouanère, M; Guilhem, G; Hackenburg, B; Hakimi, M; Hassani, S; Henry-Coüannier, F; Hervás, L; Hinz, L; Hoffman, A; Hoffman, J; Hostachy, J Y; Hoummada, A; Hubaut, F; Idrissi, A; Imbault, D; Jacquier, Y; Jérémie, A; Jevaud, M; Jézéquel, S; Kambara, H; Karst, P; Kazanin, V; Kierstead, J A; Kolachev, G M; Kordas, K; de La Taille, C; Labarga, L; Lacour, D; Lafaye, R; Laforge, B; Lanni, F; Le Coroller, A; Le Dortz, O; Le Maner, C; Le Van-Suu, A; Le Flour, T; Leite, M; Leltchouk, M; Lesueur, J; Lissauer, D; Lund-Jensen, B; Lundqvist, J M; Ma, H; Macé, G; Makowiecki, D S; Malychev, V; Mandelli, L; Mansoulié, B; Marin, C P; Martin, D; Martin, L; Martin, O; Martin, P; Maslennikov, A L; Massol, N; Mazzanti, M; McCarthy, R; McDonald, J; Megner, L; Merkel, B; Mirea, A; Moneta, L; Monnier, E; Moynot, M; Muraz, J F; Nagy, E; Negroni, S; Neukermans, L; Nicod, D; Nikolic-Audit, I; Noppe, J M; Ohlsson-Malek, F; Olivier, C; Orsini, F; Pailler, P; Parrour, G; Parsons, J A; Pearce, M; Perini, L; Perrodo, P; Perrot, G; Pétroff, P; Poggioli, Luc; Pospelov, G E; Pralavorio, Pascal; Prast, J; Przysiezniak, H; Puzo, P; Radeka, V; Rahm, David Charles; Rajagopalan, S; Raymond, M; Renardy, J F; Repetti, B; Rescia, S; Resconi, S; Riccadona, X; Richer, J P; Rijssenbeek, M; Rodier, S; Rossel, F; Rousseau, D; Rydström, S; Saboumazrag, S; Sauvage, D; Sauvage, G; Schilly, P; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seman, M; Serin, L; Shousharo, A; Simion, S; Sippach, W; Snopkov, R; Steffens, J; Stroynowski, R; Stumer, I; Taguet, J P; Takai, H; Talyshev, A A; Tartarelli, F; Teiger, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tocut, V; Tóth, J; Veillet, J J; Vossebeld, Joost Herman; Vuillemin, V; Wielers, M; Willis, W J; Wingerter-Seez, I; Ye, J; Yip, K; Zerwas, D; Zitoun, R; Zolnierowski, Y

    2003-01-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11+-0.07. An energy resolution of better than 9.5% GeV^1/2/sqrt{E} (sampling term) has been obtained with electron beams of up to 245GeV. The uniformity of the response to electrons in an area of Delta_eta x Delta_phi = 1.2 x 0.075 has been measured to be better than 0.8%.

  18. Investigations of Calorimeter Clustering in ATLAS using Machine Learning

    CERN Document Server

    AUTHOR|(CDS)2153685

    The Large Hadron Collider (LHC) at CERN is designed to search for new physics by colliding protons with a center-of-mass energy of 13 TeV. The ATLAS detector is a multipurpose particle detector built to record these proton-proton collisions. In order to improve sensitivity to new physics at the LHC, luminosity increases are planned for 2018 and beyond. With this greater luminosity comes an increase in the number of simultaneous proton-proton collisions per bunch crossing (pile-up). This extra pile- up has adverse effects on algorithms for clustering the ATLAS detector's calorimeter cells. These adverse effects stem from overlapping energy deposits originating from distinct particles and could lead to diffculties in accurately reconstructing events. Machine learning algorithms provide a new tool that has potential to clustering per- formance. Recent developments in computer science have given rise to new set of machine learning algorithms that, in many circumstances, out-perform more conven- tional algorithms....

  19. The ATLAS tile calorimeter ROD injector and multiplexer board

    Energy Technology Data Exchange (ETDEWEB)

    Valero, A., E-mail: alberto.valero@cern.c [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Castillo, V.; Ferrer, A. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Gonzalez, V. [Departamento de Ingenieria electronica, Universidad de Valencia, Burjassot, 46100 Valencia (Spain); Hernandez, Y.; Higon, E. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Sanchis, E. [Departamento de Ingenieria electronica, Universidad de Valencia, Burjassot, 46100 Valencia (Spain); Solans, C. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Torres, J. [Departamento de Ingenieria electronica, Universidad de Valencia, Burjassot, 46100 Valencia (Spain); Valls, J.A. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain)

    2011-02-11

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  20. The Phase II Upgrade of the ATLAS Calorimeter

    CERN Document Server

    Tartarelli, Giuseppe Francesco; The ATLAS collaboration

    2017-01-01

    This presentation will show the status of the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC). For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 1034 cm−2 s−1 and the average pile-up up to 200 interactions per bunch crossing. The Liquid Argon (LAr) calorimeter electronics will need to be replaced to cope with these challenging conditions: the expected radiation doses will indeed exceed the qualification range of the current readout system, and the upgraded trigger system will require much longer data storage in the electronics (up to 60 us), that the current system cannot sustain. The status of the R&D of the low-power ASICs (pre-amplifier, shaper, ADC, serializer and transmitters) and of the readout electronics design will be discussed. Moreover, a High Granularity Timing Detector (HGTD) is proposed to be added in front of the LAr calorimeters in the end-cap region (2.4 <|eta|< 4.2) for pile-up mitigation a...

  1. The ATLAS Barrel Level-1 Muon Trigger Processor Performances

    CERN Document Server

    Bocci, V; Ciapetti, G; De Pedis, D; Di Girolamo, A; Di Mattia, A; Gennari, E; Luci, C; Nisati, A; Pasqualucci, E; Pastore, F; Petrolo, E; Spila, F; Vari,, R; Veneziano, S; Zanelli, L; Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Simone, A; Di Stante, L; Salamon, A; Santonico, R; Aloisio, A; Alviggi, M G; Canale, V; Carlino, G; Conventi, F; De Asmundis, R; Della Pietra, M; Delle Volpe, D; Iengo, P; Izzo, V; Migliaccio, A; Patricelli, S; Sekhniaidze, G; Brambilla, Elena; Cataldi, G; Gorini, E; Grancagnolo, F; Perrino, R; Primavera, M; Spagnolo, S; Aprodo, V; Bartos, D; Buda, S; Constantin, S; Dogaru, M; Magureanu, C; Pectu, M; Prodan, L; Rusu, A; Uroseviteanu, C

    2005-01-01

    The ATLAS level-1 muon trigger will select events with high transverse momentum and tag them to the correct machine bunch-crossing number with high efficiency. Three stations of dedicated fast detectors provide a coarse pT measurement, with tracking capability on bending and non-bending pro jections. In the Barrel region, hits from doublets of Resistive Plate Chambers are processed by custom ASIC, the Coincidence Matrices, which performs almost all the functionalities required by the trigger algorithm and the readout. In this paper we present the performance of the level-1 trigger system studied on a cosmic test stand at CERN, concerning studies on expected trigger rates and efficiencies.

  2. A first-level calorimeter trigger for the ATLAS experiment

    CERN Document Server

    Perera, V.; Gee, N; Gillman, A R; Hatley, R; Leake, J W; Quinton, S; Shah, T P; Eisenhandler, Eric F; Landon, M; Brawn, I P; Carney, R E; Garvey, J; Staley, R J; Watson, A T; Ellis, Nick

    1995-01-01

    In the RD27 collaboration the authors have carried out system studies on the implementation of the first level calorimeter trigger processor system for the ATLAS experiment to be mounted at the Large Hadron Collider (LHC) at CERN. A demonstrator trigger system operated successfully with the RD3 and RD33 calorimeters at the full 40 MHz LHC bunch crossing (BC) rate. The prototype application-specific integrated circuits (ASICs) in this system each processed data from only a single trigger cell and its environment, which would lead to an extremely large system for ATLAS. Using eight-bit parallel data even the use of ASICs, processing multiple trigger cells would demand unacceptably large numbers of input pins and module connections. Initial studies of this I/O problem produced a solution based on asynchronous transmission of zero-suppressed and BC-tagged data on 160 Mbit/s serial links. This approach appeared to be feasible but would have introduced additional latency of about 20 BCs. Further studies have led to...

  3. The CMS Level-1 Calorimeter Trigger for the LHC Run II

    Science.gov (United States)

    Zabi, A.; Beaudette, F.; Cadamuro, L.; Davignon, O.; Romanteau, T.; Strebler, T.; Cepeda, M.; Sauvan, J. B.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Taylor, J.; Foudas, C.; Baber, M.; Bundock, A.; Breeze, S.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Shtipliyski, A.; Tapper, A.; Ojalvo, I.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2017-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was performed in two stages, with the first running in 2015 for proton and heavy ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Run II of the Large Hadron Collider (LHC). The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the μTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Sophisticated and innovative algorithms are now the core of the first decision layer of the experiment. The system has been able to adapt to the outstanding performance of the LHC, which ran with an instantaneous luminosity well above design. The performance of the system for single physics objects are presented along with the optimizations foreseen to maintain the thresholds for the harsher conditions expected during the LHC Run II and Run III periods.

  4. Upgrade of the ATLAS Level-1 trigger with an FPGA based Topological Processor

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) in 2015 will collide proton beams with increased luminosity from $10^{34}$ up to $3 \\times 10^{34}cm^{-2}s^{-1}$. ATLAS is an LHC experiment designed to measure decay properties of high energetic particles produced in the protons collisions. The higher luminosity places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events with valuable physics meaning. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than 2.5$\\mu s$. It is composed of the Calorimeter Trigger (L1Calo), the Muon Trigger (L1Muon) and the Central Trigger Processor (CTP). In 2014, there will be a new electronics element in the chain: the Topological Processor System (L1Topo system). The L1Topo system consist of a single AdvancedTCA shelf equipped with three L1Topo processor blades. It w...

  5. Upgrade of the ATLAS Level-1 Trigger with event topology information

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration; Bauss, B; Büscher, V; Jakobi, K; Kaluza, A; Kahra, C; Reiss, A; Schäffer, J; Schulte, A; Simon, M; Tapprogge, S; Vogel, A; Zinser, M; Palka, M

    2015-01-01

    The Large Hadron Collider (LHC) in 2015 will collide proton beams with increased luminosity from \\unit{10^{34}} up to \\unit{3 \\times 10^{34}cm^{-2}s^{-1}}. ATLAS is an LHC experiment designed to measure decay properties of high energetic particles produced in the protons collisions. The higher luminosity places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events with valuable physics meaning. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than 2.5$\\mu s$. It is composed of the Calorimeter Trigger (L1Calo), the Muon Trigger (L1Muon) and the Central Trigger Processor (CTP). In 2014, there will be a new electronics element in the chain: the Topological Processor System (L1Topo system).\\\\ The L1Topo system consist of a single AdvancedTCA shelf equipped with three L1Topo processor ...

  6. The contribution to the the calibration of LAr calorimeters at the ATLAS Experiment

    CERN Document Server

    Pecsy, Martin; Strizenec, Pavol

    The presented thesis brings various contributions to the testing and validation of the ATLAS detector calorimeter calibration. Since the ATLAS calorimeter is non-compensating, the sophisticated software calibration of the calorimeter response is needed. One of the ATLAS official calibration methods is the local hadron calibration. This method is based on detailed simulations providing information about the true deposited energy in calorimeter. Such calibration consists of several independent steps, starting with the basic electromagnetic scale signal calibration and proceeding to the particle energy calibration. Calibration starts from the topological clusters reconstruction and calibration at EM scale. These clusters are classified as EM or hadronic and the hadronic ones receive weights to correct for the invisible energy deposits of hadrons. To get the final reconstructed energy the out-of-cluster and dead material corrections are applied in next steps. The tests of calorimeter response with the first real ...

  7. Test system for the production of the ATLAS Tile Calorimeter front- end electronics

    CERN Document Server

    Calvet, D

    2004-01-01

    The Atlas hadronic Tile Calorimeter front-end electronics is fully included in the so-called "super-drawers". The 256 super-drawers needed for the entire calorimeter are assembled and extensively tested in Clermont-Ferrand before being sent to CERN to be inserted in the calorimeter modules. A mobile system has been developed to perform a complete test of the super-drawers during their insertion.

  8. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    Science.gov (United States)

    Glatzer, Julian

    2015-12-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of two with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the factor of two increase in the number of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to three different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis on the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition system. Trigger and dead-time rates are monitored coherently at all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow for efficient display of the relevant information in the control room in a way useful for shifters and experts. The design of the framework aims at reliability, flexibility, and robustness of the system and takes into account the operational experience gained during Run 1. The Level-1 Central Trigger was successfully operated with high efficiency during the cosmic-ray, beam-splash and first Run 2 data taking with the full ATLAS detector.

  9. The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lapin, V; LeCompte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, a L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Rusakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability.

  10. ATLAS Tile Calorimeter extended barrel side C, assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  11. ATLAS Tile Calorimeter extended barrel Side A assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  12. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the

  13. Beam tests of a prototype level-1 calorimeter trigger for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brawn, I.P. (The University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Carney, R.E. (The University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Dickow, U. (CERN, 1211 Geneva 23 (Switzerland)); Eisenhandler, E. (Queen Mary and Westfield College, University of London, London, E1 4NS (United Kingdom)); Ellis, N. (CERN, 1211 Geneva 23 (Switzerland)); Garvey, J. (The University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Gee, C.N.P. (Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)); Gillman, A.R. (Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)); Hatley, R. (Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)); Landon, M. (Queen Mary and Westfield College, University of London, London, E1 4NS (United Kingdom)); Perera, V. (Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)); Quinton, S. (Rutherford Appleton Laboratory, Chilton

    1994-10-01

    Beam tests of a first-prototype electromagnetic calorimeter trigger processor for LHC experiments are described. The synchronous, pipelined, digital processor built with ASICs, was successfully operated at the full LHC bunch-crossing frequency of 40 MHz. Real data signals were obtained from a liquid argon electromagnetic calorimeter. The measured performance of the electron/photon trigger algorithm is compared with Monte Carlo simulations. ((orig.))

  14. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  15. The evolution and performance of the ATLAS calorimeter-based triggers in 2011 and 2012

    CERN Document Server

    Hristova, I; The ATLAS collaboration

    2012-01-01

    In 2011 the ATLAS detector at the LHC collected approximately 5fb-1 of proton-proton collision data at a centre of mass energy of 7TeV. During the data-taking period the LHC conditions changed significantly, with the instantaneous luminosity increasing by a factor of 15 and the average number of interactions per bunch crossing (“pile up”) reaching 20. In early 2012 the LHC running conditions rapidly evolved to produce record instantaneous luminosities and pile-up. The efficient performance of the ATLAS trigger has therefore been vital to maintain the recorded data rate within its limits while minimising the loss of signal events. The ATLAS trigger is hardware based at Level-1 and uses software algorithms running on a farm of commercial processors in the Level-2 and Event Filter levels of the Higher Level Trigger (HLT). A large fraction of the ATLAS physics programme is covered by the calorimeter-based triggers, which can select events with candidate electrons, photons, jets, taus or those with large missi...

  16. Noise dependence with pile-up in the ATLAS Tile Calorimeter. Pile-up noise studies in the ATLAS TileCal calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Araque, J.P. [ATLAS Tile Calorimeter System, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Departamento de Fisica da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-07-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions, which are difficult to distinguish from the interesting one, will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described. (author)

  17. Energy reconstruction and calibration algorithms for the ATLAS electromagnetic calorimeter

    CERN Document Server

    Delmastro, M

    2003-01-01

    The work of this thesis is devoted to the study, development and optimization of the algorithms of energy reconstruction and calibration for the electromagnetic calorimeter (EMC) of the ATLAS experiment, presently under installation and commissioning at the CERN Large Hadron Collider in Geneva (Switzerland). A deep study of the electrical characteristics of the detector and of the signals formation and propagation is conduced: an electrical model of the detector is developed and analyzed through simulations; a hardware model (mock-up) of a group of the EMC readout cells has been built, allowing the direct collection and properties study of the signals emerging from the EMC cells. We analyze the existing multiple-sampled signal reconstruction strategy, showing the need of an improvement in order to reach the advertised performances of the detector. The optimal filtering reconstruction technique is studied and implemented, taking into account the differences between the ionization and calibration waveforms as e...

  18. Status of the ATLAS tile hadronic calorimeter production

    CERN Document Server

    Henriques, A

    2002-01-01

    The status of the construction of the ATLAS TILECAL hadron calorimeter is reported. The various aspects of the construction started at the end of 1998: mechanics, optics, instrumentation, certification and final integration will be presented. At present 80% of the 3 cylinders: 1 barrel and 2 extended barrels is fully instrumented and stored at CERN. Various quality control steps are done during the components production and during the modules instrumentation. An evaluation of the modules uniformity extracted during the final certification using a radioactive /sup 137/Cs source is shown. The status of the electronics production and the modules performance extracted during the calibration with particle beams are described in other talks of this conference presented by M. Varanda, F. Martin and S. Nemecek. (2 refs).

  19. Consolidation and upgrades of the ATLAS Tile Calorimeter

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    This is a presentation of the status of the ATLAS Tile Calorimeter during the EYETS and before starting 2017 data-taking. Updates on the upgrade of the readout system such as doubling the RODs output links and the number of processing units (PUs) are being worked on at the moment as well as items concerning the maintenance of the detector which involves issues such as cooling leaks and consolidation of the Low Voltage Power Supplies, which are being replaced if necessary. Other updates include works on the Tile calibration, in particular on the Cesium system. In addition, the whole Tile readout electronics is being replaced for Phase-II and it is being tested in Test Beam area.

  20. Calibration and signal reconstruction in the ATLAS Tile Hadronic calorimeter

    CERN Document Server

    Febbraro, R; The ATLAS collaboration

    2011-01-01

    Tilecal is the central hadronic calorimeter of the ATLAS detector which is one of the four experiment installed at the Large Hadron Collider (LHC) collider at CERN. In order to calibrate the full read-out path in the TileCal are present different calibration systems. As the final digital signal is the result of successive conversions the signal needs to be calibrated at each stage. The full calibration process relies on three subsystems: the Charge Injection System (CIS), the Laser System, and the Cesium. Once the digital signal is calibrated, it needs to reconstructed in order to determine the amplitude and the time of the deposited energy. In TileCal the Optimal Filter (OF) algorithm is used for this purpose; in particular the signal is reconstructed in the Read-Out Drivers (ROD) using the Digital Signal processor (DSP).

  1. Cryogenic Tests of the Atlas Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, A; Passardi, Giorgio

    2006-01-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature...

  2. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are monitored coherently at...

  3. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different sub-detector combinations. In this contribution, we give an overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are m...

  4. Real Time Energy Reconstruction in the ATLAS Hadronic Calorimeter and ATLAS sensitivity to Extra Dimension Models

    CERN Document Server

    Salvachua, Belen; Ros, Eduardo

    This work has been fulfilled within the ATLAS collaboration. I present here two studies, both related with the ATLAS detector and its operation. The ATLAS detector is described in chapter 1 whereas chapter 2 shows an introduction to the ATLAS tile calorimeter and the TileCal Read-Out Drivers (ROD) where the first part of the thesis is developed. In chapter 3 I present the study and the implementation of the Optimal Filtering algorithm in the TileCal Read-Out Drivers. The ROD provides the energy and the arrival time of the digital signal that is generated in the tile calorimeter. These parameters are reconstructed online using the Optimal Filtering algorithm, the RODs also provide a quality factor of the reconstruction. This information is sent to the standard ATLAS acquisition data flow with a specific data format defined in this thesis. Chapter 4 contains a short introduction to the Standard Model, presents its problems and describes other theories like Supersymmetry, Little Higgs or Extra Dimension models t...

  5. Performance of the ATLAS LAr Calorimeter with Cosmic Muons and LHC Single Beam Data

    CERN Document Server

    MANGEARD, PS

    2009-01-01

    The Liquid Argon (LAr) calorimeter is a key detector component in the ATLAS experiment at the LHC, designed to provide precision measurements of electrons, photons, jets and missing transverse energy. The LAr calorimeter has been installed in the ATLAS cavern and filled with liquid argon since 2006. Cosmic muon data, first triggered via specially developed trigger boards on the LVL1 output of the Tile calorimeter and later with the standard ATLAS LVL1 calorimeter trigger, have been recorded at various stages of commissioning. In Sept 2008, with the first single beams circulating in the LHC ring and a near full readout of the calorimeter, events resulting from beam-gas interactions and beam-collimator splash were recorded. We present here the calorimeter performance study based on these cosmic muon and LHC beam events. With the reconstructed muon minimum ionizing signal in the calorimeter, the uniformity of the barrel electromagnetic calorimeter can be checked. The timing alignment as measured from the data ca...

  6. Muon Identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 Trigger Purposes

    CERN Document Server

    Ruiz-Martinez, A

    2008-01-01

    The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online algorithms on the incoming raw data. Although the main purpose of TileCal is to measure the energy and direction of the hadronic jets, taking advantage of its projective segmentation soft muons not triggered at Level-1 (with pT<5 GeV) can be recovered. A TileCal standalone muon identification algorithm is presented and i...

  7. GEANT Simulation of the ATLAS Zero Degree Calorimeter

    Science.gov (United States)

    Bryant, Joseph

    2017-09-01

    The University of Illinois at Urbana-Champaign (UIUC) in collaboration with the ATLAS group at CERN is developing an improved Zero Degree Calorimeter (ZDC) to replace the current ZDC in the ATLAS experiment. The prototype ZDC is a four module detector each made up of 11 alternating layers of tungsten and a liquid active region filled with quantum dots as wavelength shifter and mineral oil solution. When neutrons from the beam collide with the ZDC, the charged hadrons that result from the particle showers produce Cherenkov radiation. This Cherenkov radiation is absorbed and reemitted in a longer wavelength. The re-emitted light is then re-absorbed by second stage wavelength shifters inside hollow quartz rods. The radiation reemitted in the quartz rods is read out through silicon photomultipliers. As a part of ongoing changes to the LHC, the space available between beam pipes is being reduced from 100 mm to 60 mm. Due to this space restriction's effect on the width of the ZDC, there are concerns about the detector's ability to measure the full transverse profile of the particle showers it is designed to contain. The paper will present the results of computer simulations and analysis that were carried out to study the ZDC performance with reduced detector width.

  8. Calibration of the ATLAS electromagnetic calorimeter using calibration hits

    CERN Document Server

    Banfi, D; Mandelli, L

    2007-01-01

    In the present note a method to determine the electron energy from the energies measured in an electron cluster is discussed. The method is based on a detailed Monte-Carlo simulation (labeled \\textit{Calibration Hits}) of electrons in the ATLAS detector in which also the energies deposited in the passive and dead materials are recorded. It allows also to compute the different contributions (energy deposited in front, in and behind the Accordion) to the total electron energy. To better understand the various contributions to the energy reconstruction three rounds of simulations have been performed: electrons hitting the middle cell centre, electrons spread uniformly over a cell in absence of magnetic field and electrons spread uniformly over a cell in presence of magnetic field. The method is applied to the Barrel calorimeter and to electrons. Its extension to the End Caps and to photons does not pose problems. In the operative ATLAS conditions an energy resolution sampling term varying from 9.9$\\%$ at $\\eta$=...

  9. Physics performances with the new ATLAS Level-1 Topological trigger in the LHC High-Luminosity Era

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414333; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger system aim at reducing the 40 MHz protons collision event rate to a manageable event storage rate of 1 kHz, preserving events with valuable physics meaning. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system, with an output rate of 100 kHz and decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. During the last upgrade, a new electronics element was introduced to Level-1: L1Topo, the Topological Processor System. It will make it possible to use detailed realtime information from the Level-1 calorimeter and muon triggers, processed in individual state of the art FPGA processors to determine angles between jets and/or leptons and calculate kinematic variables based on lists of selected/sorted objects. Over hundred VHDL algorithms are producing trigger outputs to be incorporated into the central trigger processor. Such information will be essential to improve background rejection and ...

  10. The Topological Processor for the future ATLAS Level-1 Trigger: from design to commissioning

    CERN Document Server

    Simioni, E; The ATLAS collaboration

    2014-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) is designed to measure decay properties of high energetic particles produced in the proton-proton collisions. During its first run, the LHC collided proton bunches at a frequency of 20 MHz, and therefore the detector required a Trigger system to efficiently select events down to a manageable event storage rate of about 400 Hz. By 2015 the LHC instantaneous luminosity will be increased up to 3$\\times$$10^{34}cm^{-2}s^{-1}$: this represent an unprecedented challenge faced by the ATLAS Trigger system. To cope with the higher event rate and efficiently select relevant events from physics point of view, a new element will be included in the Level-1 Trigger scheme after 2015: the Topological Processor (L1Topo).\\\\ The L1Topo system, currently developed at CERN, will consist initially of an ATCA crate and two L1Topo modules. A high density opto-electroconverter (AVAGO miniPOD) drives up to 1.6 Tb/s of data from the calorimeter and muon detectors into two high end ...

  11. The Topological Processor for the future ATLAS Level-1 Trigger: from design to commissioning

    CERN Document Server

    INSPIRE-00226165

    2014-01-01

    The ATLAS detector at LHC will require a Trigger system to efficiently select events down to a manageable event storage rate of about 400 Hz. By 2015 the LHC instantaneous luminosity will be increased up to 3 x 10^34 cm-2s-1, this represents an unprecedented challenge faced by the ATLAS Trigger system. To cope with the higher event rate and efficiently select relevant events from a physics point of view, a new element will be included in the Level-1 Trigger scheme after 2015: the Topological Processor (L1Topo). The L1Topo system, currently developed at CERN, will consist initially of an ATCA crate and two L1Topo modules. A high density opto-electroconverter (AVAGO miniPOD) drives up to 1.6 Tb/s of data from the calorimeter and muon detectors into two high-end FPGA (Virtex7-690), to be processed in about 200 ns. The design has been optimized to guarantee excellent signal in- tegrity of the high-speed links and low latency data transmission on the Real Time Data Path (RTDP). The L1Topo receives data in a standa...

  12. Installation and Commissioning of the CMS Level-1 Calorimeter Trigger Upgrade

    CERN Document Server

    AUTHOR|(CDS)2071552; Aggleton, Robin Cameron; Baber, Mark David John; Barbieri, Richard Alexander; Belknap, Donald Austin; Berryhill, Jeffrey; Brooke, James John; Bundock, Aaron; Cali, Ivan Amos; Cepeda, Maria Luisa; Dasgupta, Sudeshna; da Silva, J.C; Dasu, Sridhara Rao; Durkin, Timothy John; Fobes, Robert William; Ghabrous Larrea, Carlos; Gorski, Thomas; Grimes, Mark; Guilbaud, Maxime; Guo, Z; Hall, Geoffrey; Harder, Kristian; Harper, Sam; Iles, Gregory Michiel; Innocenti, Gian Michele; Ives, Sarah Joanne; Jones, John; Kreis, Benjamin Jonah; Lee, Y; Li, W; Lucas, Christopher; Lucas, Robyn Elizabeth; Marrouche, Jad; Newbold, David; Northup, Michael; Oljavo, I; Paramesvaran, Sudarshan; Rivera, Ryan Allen; Roland, Christof; Rose, A; Sankey, D; Smith, Wesley; Svetek, Ales; Tapper, Alexander; Thea, Alessandro; Tikalsky, Jesra Lilah; Uplegger, Lorenzo; Vicente, Marcelo; Williams, Thomas Stephen; Wyslouch, Boleslaw

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment is currently installing upgrades to their Calorimeter Trigger for LHC Run 2 to ensure that the trigger thresholds can stay low, and physics data collection will not be compromised. The electronics will be upgraded in two stages. Stage-1 for 2015 will upgrade some electronics and links from copper to optical in the existing calorimeter trigger so that the algorithms can be improved and we do not lose valuable data before stage-2 can be fully installed by 2016. Stage-2 will fully replace the calorimeter trigger at CMS with a micro-TCA and optical link system. It requires that the updates to the calorimeter back-ends, the source of the trigger primitives, be completed. The new systemâ??s boards will utilize Xilinx Virtex-7 FPGAs and have hundreds of high-speed links operating at up to 10 Gbps to maximize data throughput. The integration, commissioning, and installation of stage-1 in 2015 will be described, as well as the integration and parallel installation of th...

  13. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  14. Construction, assembly and testing of the ATLAS hadronic end-cap calorimeter

    CERN Document Server

    Gingrich, D M; Pinfold, J L; Soukup, J; Axen, D; Cojocaru, C; Oakham, G; O'Neill, M; Vincter, M G; Aleksa, M; Bremer, J; Chalifour, M; Fabre, C; Fassnacht, P; Gonidec, A; Pailler, P; Vandoni, G; Cheplakov, A; Datskov, V; Drobin, V; Fedorov, A; Golubykh, S; Javadov, N; Kalinnikov, V; Kakurin, S; Kazarinov, M; Kukhtin, V; Ladygin, E; Lazarev, A; Neganov, A; Pisarev, I; Rousakovitch, N; Serochkin, E; Shilov, S N; Shalyugin, A N; Usov, Yu; Bán, J; Bruncko, D; Kladiva, E; Stavina, P; Strízenec, P; Heldmann, M; Hohlfeld, M; Jakobs, K; Köpke, L; Marschalkowski, E; Meder, D; Othegraven, R; Schäfer, U; Schroff, D; Secker, H; Thomas, J; Walkowiak, W; Zeitnitz, C; Azuelos, Georges; Delsart, P-A; Leroy, C; Mazini, R; Mehdiyev, R; Akimov, A; Blagov, M; Komar, A; Snesarev, A; Speransky, M N; Sulin, V; Yakimenko, M; Aderholz, M; Barillari, T; Brettel, H; Cwienk, W; Fent, J; Fischer, A; Habring, J; Huber, J; Karev, A; Kiryunin, A E; Kurchaninov, L; Laskus, H; Menke, S; Mooshofer, P; Oberlack, H; Salihagic, D; Schacht, P; Schmücker, H; Stenzel, H; Striegel, D; Tribanek, W; Zimmer, J; Chen, T; Ping, J; Qi, M; Falou, A; Mace, G; Chekulaev, S V; Denisov, S; Levitsky, M; Minaenko, A; Mitrofanov, G Ya; Moiseev, A; Pleskatch, A; Sytnik, V V; Zakamsky, L; Benoit, P; Hoyle, K W; Honma, A; Losty, M J; Maharaj, R; Oram, C J; Pattyn, E W; Rosvick, M; Sbarra, C; Wellisch, H P; Wielers, M; Birney, P S; Dobbs, M; Fincke-Keeler, M; Fortin, D; Hodges, T A; Ince, T; Kanaya, N; Keeler, R K; Langstaf, R; Lefebvre, M; McPherson, R A; O'Neil, D C; Seuster, R; Forbush, D; Mockett, P; Toevs, F; Braun, H M

    2007-01-01

    The construction and assembly of the four wheels of the ATLAS hadronic end-cap calorimeter and their insertion into the two end-cap cryostats are described. The results of the qualification tests prior to installation of the two cryostats in the ATLAS experimental cavern are reviewed.

  15. Improving jet substructure in ATLAS using unified track and calorimeter information

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2017-01-01

    Jet substructure techniques play a critical role in ATLAS in searches for new physics, are increasingly important in measurements of the Standard Model, and are being utilized in the trigger. To date, ATLAS has mostly focused on the use of calorimeter-based jet substructure, which works well for jets initiated by particles with low to moderate boost, but which lacks the angular resolution needed to resolve the desired substructure in the highly-boosted regime. We will present a novel approach designed to mitigate the calorimeter angular resolution limitations, thus providing superior performance to prior methods. Similar to previous methods, the superior angular resolution of the tracker is combined with information from the calorimeters. However, the new method is fundamentally different, as it correlates low-level objects as tracks and individual energy deposits in the calorimeter, before running any jet finding algorithms. The resulting objects are used as inputs to jet reconstruction, and in turn result i...

  16. The ATLAS Forward Calorimeter C Modules at CERN

    CERN Multimedia

    Loch, P.

    All three modules of the ATLAS Forward Calorimeter (FCal) for the Liquid Argon Endcap C Cryostat arrived at CERN in July 2002. The modules, which were shipped from Tucson, Arizona, USA (electromagnetic FCal1C), Toronto, Canada (first hadronic FCal2C), and Ottawa, Canada (second hadronic FCal3C), were then cabled in CERN's North Area clean room. Several thousand so-called interconnect boards were mounted on the modules to connect groups of four, six, or nine electrodes in FCal1C, FCal2C and FCal3C, respectively, to one cold signal cable. Great care was taken during this process to avoid electrical shorts in the electrodes. More or less constant testing for shorts and of the connectivity between the interconnect boards and the electrodes, followed by immediate repairs, assured that all three modules were without any electrical problems by the beginning of November 2002. At that time the modules were moved to the H6C cryostat at the end of the H6 beam line in the North Area, and cooled down for the first time to...

  17. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  18. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00366625; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of $8 \\times 10^{33} \\text{cm}^{-2}\\text{s}^{-1}$. During the next run, peak luminosities of $1.5 \\times 10^{34} \\text{cm}^{-2}\\text{s}^{-1}$ and even higher are expected at a 25ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminos...

  19. ATLAS Liquid Argon Calorimeters Operation and Data Quality During the 2016 Proton Run

    CERN Document Server

    Pascuzzi, Vincent; The ATLAS collaboration

    2017-01-01

    ATLAS operated with high efficiency during the 2016 pp data-taking period with 25ns bunch spacing at ⎷s = 13 TeV, recording approximately 34 fb-1 of good physics data. The Liquid Argon (LAr) Calorimeters contributed to to this effort by providing a high data quality efficiency. This poster highlights the overall status, operations, data quality and performance of the LAr Calorimeters in 2016.

  20. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  1. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  2. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  3. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  4. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0......The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...

  5. Noise dependence with pile-up in the ATLAS Tile calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment and comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. Under these challenging conditions not only the energy from an interesting event will be measured but also a component coming from other collisions. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described.

  6. Installation and Commissioning of the ATLAS Liquid Argon Calorimeter Read-Out Electronics

    OpenAIRE

    Perrot, G

    2008-01-01

    The cryostats of the ATLAS LAr calorimeter system are installed in the ATLAS cavern since several years. Following this, an effort to install and commission the front-end and back-end read-out electronics as well as the timing, trigger and control electronics (infrastructure, crates, and boards) has been ongoing and is finished now, in time for the cavern closure. Following cautious procedures and with continuous testing-campaigns of the electronics at each step of the installation advancemen...

  7. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  8. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  9. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation, and LHC relative luminosity measurement.

    CERN Document Server

    Arfaoui, Samir; Monnier, E

    2011-01-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In oder to do so,it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity ...

  10. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Gang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electrons and photons. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton–proton luminosity recorded by ATLAS at a centre-of-mass energy of 7–8 TeV had calorimeter data quality suitable for physics analysis.

  11. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; Garberson, F; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Rozas, A Juste; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Hanninger, G Nunes; Nunnemann, T; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Barrera, C Oropeza; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Codina, E Perez; García-Estañ, M T Pérez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Saleem, M; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2017-01-01

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

  12. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Academia Sinica, Taipei (China). Inst. of Physics; Collaboration: ATLAS Collaboration; and others

    2017-07-15

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS. (orig.)

  13. Frozen-shower simulation of electromagnetic showers in the ATLAS forward calorimeter

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2016-01-01

    Accurate simulation of calorimeter response for high energy electromagnetic particles is essential for the LHC experiments. Detailed simulation of the electromagnetic showers using Geant4 is however very CPU intensive and various fast simulation methods were proposed instead. The frozen shower simulation substitutes the full propagation of the showers for energies below 1~GeV by showers taken from a pre-simulated library. The method is used for production of the main ATLAS Monte Carlo samples, greatly improving the production time. The frozen showers describe shower shapes, sampling fraction, sampling and noise-related fluctuations very well, while description of the constant term, related to calorimeter non-uniformity, requires a careful choice of the shower library binning. A new method is proposed to tune the binning variables, using multivariate techniques. The method is tested and optimized for the description of the ATLAS forward calorimeter.

  14. Optical Links for ATLAS Liquid Argon Calorimeter Front-end Electronics Readout

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2011-01-01

    We present optical data links for the ATLAS liquid argon calorimeter. The current status of the VCSEL failures, the up-to-date results in searching for the failure cause, experiences gained in the searching process, possible backup plans for the optical transmitters and the lessons learned are also discussed.

  15. Characterization of the 10-stages R5900 Hamamatsu photomultipliers for the hadronic ATLAS calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Montarou, G.; Bouhemaid, N.; Grenier, Ph.; Crouau, M.; Muanza, G.S.; Poirot, S.; Vazeille, F. [Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire; Gil Botella, I.; Hoz, S.G. de la [Valencia Univ., Burjassot (Spain) Inst. de Fisica Corpuscular

    1997-12-31

    The measurements carried out, at Clermont on the R5900 Hamamatsu photomultipliers for the ATLAS hadronic calorimeter are summarised. The TILECAL specifications are given. Amplification measurements, dark current measurements, linearity, magnetic sensitivity and the voltage divider optimisation are presented. (K.A.).

  16. Noise dependency with pile-up in the ATLAS Tile Calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions which are difficult to distinguish from the interesting one will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects noise under different circumstances are described.

  17. The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    CERN Document Server

    INSPIRE-00305555

    2016-10-12

    This article describes the Laser calibration system of the Atlas hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.

  18. The ATLAS Tile Calorimeter performance at LHC in pp collisions at 7 TeV

    CERN Document Server

    Bertolucci, F; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the % hadronic calorimeter of the ATLAS % experiment, is a key detector component % to detect hadrons, jets and taus and to % measure the missing transverse energy. % Due to the very good muon signal to noise % ratio it assists the muon % spectrometer in the identification and reconstruction % of muons. ewline %%%% TileCal is built of steel and % scintillating tiles coupled to optical fibers % and read out by photomultipliers. The calorimeter % is equipped with systems that allow to % monitor and to calibrate each stage of the % read-out system exploiting different signal % sources: laser light, charge injection and a radioactive % source. It also uses the Minimum Bias % current integrated over thousands % of LHC collisions to monitor the response % stability and the LHC luminosity.\\ %%%%% The performance of the calorimeter has % been measured and monitored using % calibration data, random triggered data, cosmic % muons, splash events and more importantly...

  19. The ATLAS Tile Calorimeter performance at LHC in pp collisions at 7 TeV

    CERN Document Server

    Bertolucci, F; The ATLAS collaboration

    2011-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the muon spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read-out system exploiting different signal sources: laser light, charge injection and a radioactive source. It also uses the minimus bias current integrated over thousands of LHC collisions to monitor the response stability and the LHC luminosity. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and more importantly LHC collision events. The results presented assess the absol...

  20. Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of $5 * 10^{34} cm^{-2} s ^{-1} $, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allo...

  1. Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219286; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter channels at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented.

  2. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    Horn, Philipp; The ATLAS collaboration

    2017-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40-80 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. The design of the readout chain and the status of the R&D of the components will be presented.

  3. Arrival of the last cryostat for the ATLAS LAr calorimeter at CERN

    CERN Multimedia

    Aleksa, M; Oberlack, H

    On Wednesday, 4th June the last cryostat for the ATLAS LAr calorimeter (end-cap A) arrived at CERN and was immediately unloaded from the truck in building 180 (see Figures 1 and 2), where the integration of the LAr calorimeters into their cryostats takes place. The transport from the Italian company SIMIC, where both end-cap calorimeters have been produced took longer than expected due to delays because of the G8 summit. Thanks to the great effort by the CERN Host State office and the French-German steering group that supplies the end-cap cryostat as an in-kind contribution to the LAr collaboration, an exceptional convoy was finally available and the cryostat could make its way to CERN. Fig.1 (left): Truck with the end-cap cryostat. Fig.2 (right): Unloading the cryostat in bldg. 180. Each end-cap cryostat will contain an electromagnetic calorimeter wheel, two wheels of a hadronic calorimeter, and a forward calorimeter. The design of the cryostat as a double vessel structure made of Aluminum fulfills t...

  4. Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Vallier, Alexis; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for shut-down period of 2018-2019, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be tr...

  5. Phase - I Trigger Readout Electronics upgrade for the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Dinkespiler, Bernard; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for shut-down period of 2018-2019, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be tr...

  6. Towards a Level-1 tracking trigger for the ATLAS experiment

    CERN Document Server

    Cerri, A; The ATLAS collaboration

    2014-01-01

    The future plans for the LHC accelerator allow, through a schedule of phased upgrades, an increase in the average instantaneous luminosity by a factor 5 with respect to the original design luminosity. The ATLAS experiment at the LHC will be able to maximise the physics potential from this higher luminosity only if the detector, trigger and DAQ infrastructure are adapted to handle the sustained increase in particle production rates. In this paper the changes expected to be required to the ATLAS detectors and trigger system to fulfill the requirement for working in such high luminosity scenario are described. The increased number of interactions per bunch crossing will result in higher occupancy in the detectors and increased rates at each level of the trigger system. The trigger selection will improve the selectivity partly from increased granularity for the sub detectors and the consequent higher resolution. One of the largest challenges will be the provision of tracking information at the first trigger level...

  7. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2014-01-01

    Plans for a physics-driven upgrade of the LHC foresee staged increases of the accelerator's average instantaneous luminosity, of up to a factor of five compared to the original design. In order to cope with the sustained luminosity increase, and the resulting higher detector occupancy and particle interaction rates, the ATLAS experiment is planning phased upgrades of the trigger system and of the DAQ infrastructure. In the new conditions, maintaining an adequate signal acceptance for electro-weak processes will pose unprecedented challenges, as the default solution to cope with the higher rates would be to increase thresholds on the transverse momenta of physics objects (leptons, jets, etc). Therefore the possibility to apply fast processing at the first trigger level in order to use tracking information as early as possible in the trigger selection represents a most appealing opportunity, which can preserve the ATLAS trigger's selectivity without reducing its flexibility. Studies to explore the feasibility o...

  8. A ROOT Tool for 3D Event Visualization in ATLAS Calorimeters

    CERN Document Server

    Manhaes de Andrade, L

    2007-01-01

    The ATLAS (A Toroidal LHC ApparatuS) detector is being tested with cosmic rays before LHC (Large Hadron Collider) starts its full operation by the midle of the year 2008. For the ongoing commissioning phase, it is necessary to develop specific tools that can perform efficient cosmic ray data analysis. An important issue for final analysis is to provide a way to visualize cosmic muon tracks and the corresponding activated cells in the detector, so that one can check visually the coherence of the reconstructed data and seek for potential problems. This work presents a 3D visualization tool for cosmic muon track visualization based on activated cells in the highly segmented ATLAS calorimeter system. This tool was developed in the ROOT framework, which allows a smooth integration between specifics analyses from ATLAS community and the visualization tool. This tool uses the ROOT embedded geometry package to create the ATLAS calorimeter, cell by cell, and provides routines to fill calorimeter cells with the reconst...

  9. Development of the detector control system for the ATLAS Level-1 trigger and measurement of the single top production cross section

    CERN Document Server

    Curtis, Christopher J

    This thesis discusses the development of the Detector Control System (DCS) for the ATLAS Level-1 Trigger. Microcontroller code has been developed to read out slow controls data from the Level-1 Calorimeter Trigger modules into the wider DCS. Back-end software has been developed for archiving this data. A Finite State Machine (FSM) has also been developed to offer remote access to the L1 Trigger hardware from the ATLAS Control Room. This Thesis also discusses the discovery potential for electroweak single top production during early running. Using Monte Carlo data some of the major systematics are discussed. A potential upper limit on the production cross section is calculated to be 45.2 pb. If the Standard Model prediction is assumed, a measured signal could potentially have a significance of up to 2.23¾ using 200 pb−1 of data.

  10. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J.F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M D M; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Doan, T.K.O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M.A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L R; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J.C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.J.; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A M; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernández Jiménez, Y; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.Y.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez-Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.R.; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J A; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J.P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa Romero, D A; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Roda Dos Santos, D; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F.W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B M; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra Suay, L; Soukharev, A.; Spagnolo, S.; Spanó, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F J; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C.L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W.M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  11. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  12. The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with the other calorimeters it is designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. It also assists in the muon identification.  A summary of the upgrades and performance results for TileCal using pp collisions from the initial LHC Run II at 13 TeV will be presented. For the high luminosity era a major upgrade of the TileCal electronics is planned, and the ongoing developments for on- and off-detector systems, together with expected performance characteristics and recent beam tests of prototypes, will be described.

  13. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal...

  14. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configuring it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  15. Light Distribution in the E3 and E4 Scintillation Counters of the ATLAS Tile Calorimeter

    CERN Document Server

    Hsu, Catherine

    2013-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment is an important component of the ATLAS calorimetry because they play a crucial role in the search for new particles. The E3 and E4 are crack scintillators of TileCal that extend into the gap region between the EM barrel and EM endcaps. They thus sample the energy of the EM showers produced by particles interacting with the dead material in the EM calorimeters and with the inner detector cables. This project focuses on the study of the light collection uniformity in the E3 and E4 scintillating tiles using low energy electrons as the ionising particles. It is important to have uniform light response in the tiles because it would ensure a good energy resolution for the dead region. However, many factors affect the uniform light collection within the scintillating tiles.

  16. Test Beam Studies for the ATLAS Tile Calorimeter Upgrade Readout Electronics

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2018-01-01

    The High Luminosity Large Hadron Collider is expected to deliver 3-4/ab of p-p collisions with around 200 collisions per proton bunch crossing starting in 2026, and the readout electronics of the ATLAS Tile Calorimeter need to be upgraded to deal with the high rate of data taking as well as the large pileup conditions. The proposed digitizer/shaper cards were tested in 2016-7 in the North Area at CERN using the beam from the SPS to produce high energy pions, electrons, muons, and kaons. This presentation summarizes the setup for particle identification and study of the ATLAS Tile Calorimeter data taking in preparation for the production of main boards and digitizer/shaper boards for the photo-multiplier tubes. The fully assembled and tested mini-drawers will start to be installed after the LHC long shutdown in December 2023. The pulse shape, uniformity, and timing precision of the upgrade system are demonstrated.

  17. Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance

    CERN Document Server

    Usai, G; The ATLAS collaboration

    2010-01-01

    TileCal, the central hadronic section of the ATLAS Calorimeter, is a sampling calorimeter made of steel and scintillating tiles. The TileCal front-end electronics read out about 10000 photo-multipliers at 40MHz measuring energies ranging from $simeq 30~MeV$ to $simeq 2~TeV$. The read-out system is designed to provide the ATLAS High Level Trigger with reconstructed PMT signals within the time budget allowed by the First Level Trigger maximun trigger rate of 75 KHz. The signal amplitude, time and a reconstruction quality factor are obtained for each PMT using Optimal Filtering techniques implemented in the Digital Signal Processors (DSP). After a short overview of the Tile Cal read out system we will discuss the implementation of Optimal Filtering algorithms highlighting the constraints imposed by the use of DSPs. We will report on the validation of the DSP algorithm and present the performances as measured in calibration and collision events.

  18. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5x10ˆ34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will a...

  19. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS cover-ing the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronic is based on the Advanced Telecommunications Computing Architecture (ATCA) standard and is equipped with high performance optical connectors. The system is designed to operate in a high radiation environmen...

  20. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals...

  1. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). . The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. ...

  2. Using Boosted Decision Trees to look for displaced Jets in the ATLAS Calorimeter

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    A boosted decision tree is used to identify unique jets in a recently released conference note describing a search for long lived particles decaying to hadrons in the ATLAS Calorimeter. Neutral Long lived particles decaying to hadrons are “typical” signatures in a lot of models including Hidden Valley models, Higgs Portal Models, Baryogenesis, Stealth SUSY, etc. Long lived neutral particles that decay in the calorimeter leave behind an object that looks like a regular Standard Model jet, with subtle differences. For example, the later in the calorimeter it decays, the less energy will be deposited in the early layers of the calorimeter. Because the jet does not originate at the interaction point, it will likely be more narrow as reconstructed by the standard Anti-kT jet reconstruction algorithm used by ATLAS. To separate the jets due to neutral long lived decays from the standard model jets we used a boosted decision tree with thirteen variables as inputs. We used the information from the boosted decision...

  3. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and transmitted to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronics are based on the Advanced Telecommunications Computing Architecture (ATCA) standard and are equipped with high performance optical connectors. The system is designed to operate in a high radiation envi...

  4. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    CERN Document Server

    Chen, H

    2012-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group. The new front-end readout electronics will send data continuously at each bunch crossing through high speed...

  5. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00127668; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 1034cm2s1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow ...

  6. Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters

    CERN Document Server

    Leroy, C; Golikov, V; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Minashkin, V F; Shalyugin, A N

    1999-01-01

    Various readout chain components of the ATLAS liquid argon calorimeters have been exposed to high neutron fluences and $gamma$-doses at the irradiation test facility of the IBR-2 reactor of JINR, Dubna. Results of the capacitance and impedance measurements of coaxial cables are presented. Results of peeling tests of PC board samples (kapton and copper strips) as a measure of the bonding agent irradiation hardness are also reported.

  7. Read-out and calibration of a tile calorimeter for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained. 33 refs, 21 figs, 4 tabs.

  8. Simulation and Validation of the ATLAS Level-1 Topological Trigger

    CERN Document Server

    Bakker, Pepijn Johannes; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has recently commissioned a new component of its first-level trigger: the L1 topological trigger. This system, using state-of-the-art FPGA processors, makes it possible to reject events by applying topological requirements, such as kinematic criteria involving clusters, jets, muons, and total transverse energy. The data recorded using the L1Topological trigger demonstrates that this innovative trigger strategy allows for an improved rejection rate without efficiency loss. This improvement has been shown for several relevant physics processes leading to low-$p_T$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, an accurate simulation of the L1Topological trigger is used to validate and optimize the performance of this trigger. To reach such an accuracy, this simulation must take into account the fact that the firmware algorithms are executed on a FPGA architecture, while the simulation is executed on a floating point architecture.

  9. Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron collider (HL-LHC) will have a peak luminosity of 5x10^34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow th...

  10. Calibration and Performance of the ATLAS Tile Calorimeter During the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMT). The TileCal is regularly monitored and calibrated by several di erent calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadroni...

  11. Status of the Atlas Calorimeters: their performance after two years of LHC operation and plans for future upgrades

    CERN Document Server

    Solans, CA; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Its calorimeter system measures the energy and direction of final state particles with pseudo rapidity $|eta| < 4.9$. Accurate identification and measurement of the characteristics of electromagnetic objects (electrons/photons) are performed by liquid argon (LAr)-lead sampling calorimeters in the region $|eta| < 3.2$, using an innovative accordion geometry that provides a fast, uniform azimuthal response without gaps. The hadronic calorimeters measure the properties of hadrons, jets, and tau leptons, and also contribute to the measurement of the missing transverse energy and identification of muons. This is done in the region $|eta| < 1.7$ with a scintillator-steel sampling calorimeter, and in the region $1.4 < |eta| < 3.2$ with a copper-LAr sampling calorimeter. The coverage is extended to $|eta| < 4.9$ by an integrated forward calorimeter (FCal...

  12. Performance of the ATLAS forward calorimeter and search for the invisible Higgs via vector boson fusion at ATLAS

    CERN Document Server

    Schram, Malachi

    2008-01-01

    The ATLAS detector will examine proton-proton collisions at 14 TeV provided by CERN's Large Hadron Collider (LHC). ATLAS is a general purpose detector with tracking, calorime- try and a large muon system. The calorimeter system provides hermetic coverage of a large fraction of the solid angle of the detector. In the region close to the beam line, the calorimeter components are the FCal detectors which provide additional rj coverage im- proving the jet tagging efficiency and the missing energy resolution. The performance of the FCal calorimeter for both electrons and hadrons is one of the major topics of this thesis. The measured electromagnetic response for the FCal 1 module was 12.14±0.06 ADC/GeV which is in good agreement with the predicted value of 12 ADC/GeV from IE the simulation which will be used to provide the initial electromagnetic response for the FCal modules during the early stages of ATLAS data taking. The hadronic per- formance was investigated using two calibration schemes: flat weights and t...

  13. MC simulation of the ATLAS hadronic calorimeter performance

    CERN Document Server

    Varanda, M J

    2002-01-01

    Several MC studies of the tile hadronic calorimeter (Tilecal) using GEANT3 and GEANT4 have been done after tuning the code with data from tests with high energy particle beams at CERN. The comparison between the two codes started with the study of the simulation of the electromagnetic interactions and results are presented. A preliminary study of the evaluation of the simulation of the hadronic interactions is also presented. (3 refs).

  14. ATLAS Liquid Argon Endcap Calorimeter R and D for sLHC

    CERN Document Server

    Schacht, P; The ATLAS collaboration

    2009-01-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeter employs the concept of 'active pads' which keeps the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new more radiati...

  15. ATLAS Liquid Argon Endcap Calorimeter R and D for sLHC

    CERN Document Server

    Schacht, P; The ATLAS collaboration

    2009-01-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operation of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeters employs the concept of 'active pads' which keeps the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new more radiati...

  16. Radiation hardness of WLS fibres for the ATLAS Tile Calorimeter

    CERN Document Server

    David, M; Maio, A

    2007-01-01

    In this document we present the data obtained in the irradiation in a Co-60 source of WLS fibers for the TileCal calorimeter. The optical, mechanical and radiation hardness properties of these fibers were developed in close contact with three producers: Bicron, Kuraray and Pol.Hi.Tech. The results on the degradation of the light output and attenuation length from five irradiations are presented. The fibers were irradiated with a total dose at least 3 times higher than the dose predicted for 10 years of operation of LHC at nominal luminosity.

  17. The upgraded calibration system for the scintillator-PMT Tile Hadronic Calorimeter of the ATLAS experiment at CERN/LHC

    CERN Document Server

    Chakraborty, Dhiman; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...

  18. Status of the Atlas Calorimeters: their performance during three years of LHC operation and plans for future upgrades.

    CERN Document Server

    Majewski, S; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Its calorimeter system measures the energy and direction of final state particles over the pseudorapidity range $|\\eta| < 4.9$. Accurate identification and measurement of the characteristics of electromagnetic objects (electrons/photons) are performed by liquid argon (LAr)-lead sampling calorimeters in the region $|\\eta| < 3.2$, using an innovative accordion geometry that provides a fast, uniform response without azimuthal gaps. This system played a critical role in the ATLAS analyses contributing to the Higgs boson discovery announced in 2012. The hadronic calorimeters measure the properties of hadrons, jets, and tau leptons, and also contribute to the measurement of the missing transverse energy and the identification of muons. A scintillator-steel sampling calorimeter (TileCal) is employed in the region $|\\eta| < 1.7$, while the region $1.5 < |\\eta| < 3.2$ is covered wi...

  19. The Upgraded Calibration System for the Scintillator-PMT Tile Hadronic Calorimeter of the ATLAS experiment at CERN/LHC

    CERN Document Server

    Chakraborty, Dhiman; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...

  20. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236332; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitized and then...

  1. Electron and photon energy reconstruction in the electromagnetic calorimeter of ATLAS

    CERN Document Server

    AUTHOR|(CDS)2075753; Mandelli, Luciano

    2007-01-01

    The Atlas LAr electromagnetic calorimeter is designed to provide a precise measurement of electrons and photons energies, in order to meet the requirements coming from the LHC physics program. This request of precision makes important to understand the behavior of the detector in all its aspect. Of fundamental importance to achieve the best possible performances is the calibration of the EM calorimeter, and this is the topic of this thesis. With detailed Monte Carlo simulations of single electrons and photons in the Atlas detector, we find a method to calibrate the electromagnetic calorimeter, based only on the informations that come from it. All the informations needed to develop a calibration method come from the simulations made with the technique of the Calibration Hits, that allows to know the en- ergy deposited in all the materials inside the detector volume, and not only in the active layer of each subdetector as possible in the standard simulations. This technique required a big effort for the develop...

  2. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. Currently, an analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitiz...

  3. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Asensi Tortajada, Ignacio; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed (at a rate of maximum 100 kHz). The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and of...

  4. Implementation and performance of the signal reconstruction in the ATLAS Hadronic Tile Calorimeter

    CERN Document Server

    Valero, A; The ATLAS collaboration

    2011-01-01

    The Tile Calorimeter (TileCal) for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is currently taking data with proton‐proton collisions. The Tile Calorimeter is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read‐out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front‐end electronics allows to read‐out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read‐out system is responsible to reconstruct the data in real‐time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHZ). The main component of the read‐out system is the Digital Signal Processor (DSP) which, using the Optimal Filtering technique, allows to compute for each channel the signal amplitude, time and quality factor at the required high r...

  5. Implementation and performance of the signal reconstruction in the ATLAS Hadronic Tile Calorimeter

    CERN Document Server

    Valero, A

    2012-01-01

    The Tile Calorimeter (TileCal) for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is currently taking data with proton‐proton collisions. The Tile Calorimeter is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front‐end electronics allows to read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read‐out system is designed to reconstruct the data in real‐time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The main component of the read‐out system is the Digital Signal Processor (DSP) which, using the Optimal Filtering technique, allows to compute for each channel the signal amplitude, time and quality factor at the required high rate. A ...

  6. A Study of Hadronic Calibration Schemes for Pion Test Beam Data in the ATLAS Forward Calorimeter

    CERN Document Server

    McCarthy, Thomas G

    The ATLAS forward calorimeters constitute a small though important fraction of the detector's calorimeter system, designed in part to accurately and precisely measure the energy of particles and jets of particles originating from the collisions of high-energy protons at the detector's centre. The application of hadronic weights, a practice common in high-energy calorimetry, provides a means of compensation for the fraction of energy which is deposited by particles in the detector, but which is invisible to the detector due to the nature of hadronic showers. Explored here are various schemes of extracting hadronic weights, as well as the application of such weights, based on pion data from the 2003 ATLAS forward calorimeter test beam. During the collection of test beam data, beams of both pions and electrons of known energy, ranging from 10 to 200 GeV, were fired at specific points of an isolated detector in order to understand its response. The improvement in noise-subtracted energy resolution with respect to...

  7. Calorimeter Performance for Tau Reconstruction and Identification at ATLAS

    CERN Document Server

    Volpi, M; The ATLAS collaboration

    2012-01-01

    On behalf of the ATLAS Speakers Committee, I will give a pleanry talk at the conference: "The XVth International Conference on Calorimetry in High Energy Physics (Calor 2012)", to be held in Santa Fe, New Mexico, USA from June 4 to 8, 2012.

  8. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC)expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes...

  9. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC) expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Change...

  10. Energy Measurement with the ATLAS Electromagnetic Calorimeter at the Per Mill Accuracy Level

    CERN Document Server

    Teischinger, Florian; Fabjan, Christian

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. It is made up of various sub-detectors to measure the properties of all the particles produced at the proton-proton collision. Over the last three years of running around 20 x 10^14 collisions of proton data have been recorded. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry and for hadronic calorimetry in the end-caps. The Inner Detector, on the other hand, measures the transverse momentum of charged particles down to a momentum of 0.5 GeV. This thesis deals with the absolute measurement of the energy in the electromagnetic calorimeter and the improvement of the systematic uncertainties. A method using the ratio of the energy E in the calorimeter and the momentum measurement p in the Inner Detector (E/p) was used to extract the energy scale of the electromagnetic LAr calorimeter for electrons and positrons. To investigate and further reduce the syst...

  11. The Optical Instrumentation of the ATLAS Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costelo, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, R; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazielle, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2013-01-01

    The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly loc...

  12. Performance of the TilePPr demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter Pre-processor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the off-detector electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the on-detector electronics of the TileCal Demonstrator module, as well as for configuring it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the on-detector electronics.

  13. Studies of the ATLAS hadronic Calorimeter response to different particles at Test Beams

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muons data allow to study the dependence of the response on the incident point and angle in the cell. The electron data are used to determine the linearity of the electron energy measurement. The hadron data will allow to tune the calorimeter response to pions and kaons modelling to improve the reconstruction of the jet energies. The results of the ongoing data analysis are discussed in the presentation.

  14. Development of ATLAS Liquid Argon Calorimeters readout electronics for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00388354; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider (LHC) will provide 5-7 times greater instantaneous and total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters and their readout system. The improved trigger system has a higher acceptance rate of 1 MHz and a longer latency of up to 60 micro-seconds. This requires an upgrade of the readout electronics, a better radiation tolerance is also required. This paper will present concepts for the future readout of the 182,468 calorimeter channels at 40 or 80 MHz with a 16 bit dynamic range. Progress of the development of low-noise, low-power and high-bandwidth electronic components will be presented. These include radiation-tolerant preamplifiers, analog-to-digital converters (ADC) up to 14 bits and low-power optical links providing transfer rates of at least 10 Gbps per fiber.

  15. Trigger of low $p_{T}$ muons with the ATLAS hadronic calorimeter

    CERN Document Server

    Usai, G L

    2004-01-01

    A strategy for tagging muons with the Tile Calorimeter at the second level trigger (LVL2) of the ATLAS experiment is presented and its efficiency and mistagging fraction are discussed. It is demonstrated that the Tile Calorimeter can identify muons with good efficiency down to p/sub T/ = 2 GeV/c where the stand-alone muon spectrometer has zero efficiency. A method of exploiting all information available at LVL2 to reduce spurious muon-tag and measure the candidate muon momentum is discussed. The effectiveness of this method is tested, in particular, in the case of bb events at low Large Hadron Collider luminosity (10/sup 33/ cm/sup -1/ s/sup -2/) with full simulation of experimental conditions. (3 refs).

  16. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run I and planned upgrades

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale was transferred to the rest of the detector via the response to radioactive sources. The calibrated scale was validated in situ with muons and single hadrons and the timing performance with muons and jets as detailed in this contribution. The data quality procedures used during the LHC data-taking and the evolution of the detector status are exposed. The energy and the time reconstruction performance...

  17. Development of ATLAS Liquid Argon Calorimeters Readout Electronics for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00388354; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater instantaneous and total luminosities than assumed in the original design of the ATLAS Liquid Argon Calorimeters and their readout system. An improved trigger system with a higher acceptance rate of 1 MHz and a longer latency of up to 60 micro-seconds together with a better radiation tolerance require an upgrade of the readout electronics. Concepts for the future readout of the 182,500 calorimeter channels at 40/80 MHz and 16 bit dynamic range, and the development of low-noise, low-power and high-bandwidth electronic components will be presented. These include ASIC developments towards radiation-tolerant low-noise pre-amplifiers, analog-to-digital converters up to 14 bits and low-power optical links providing transfer rates of at least 10 Gb/s per fiber.

  18. Electromagnetic calorimeter and accurate measurement with the ATLAS detector of the LHC collider; Calorimetrie electromagnetique et mesures de precision avec le detecteur ATLAS aupres du collisionneur LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pralavorio, P

    2007-06-15

    The main purpose of the ATLAS experiment is the understanding of the underlying mechanisms that drive the breaking of the electro-weak symmetry through the discovery of Higgs bosons. An important element to achieve this aim was the design of an electromagnetic calorimeter able to investigate the decay channels: H {yields} {gamma}{gamma} and H {yields} 4e. The high performance of the calorimeter will allow us to get a better accuracy on the measuring values of W and top masses which is essential to indirectly constrain the mass of the Higgs. In the same way, accurate measurements of top and W properties during the decays of top and tWb vertex will be necessary to question the standard model and to see beyond. The author has been working for 9 years in the ATLAS project, he has been involved in the design, construction, qualification and testing phases of the electromagnetic calorimeter of ATLAS. This document is a detailed presentation of the calorimeter, of its qualification and of its expectations when LHC is operating. This document is organized into 4 chapters: 1) assets and weaknesses of the standard model, 2) the ATLAS experiment, 3) the electromagnetic calorimeter, and 4) accurate measurements with ATLAS. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  19. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS subdetectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. Seventy thousand (70000) parameters are used for control and monitoring purposes, requiring an automated system. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCal detector. ...

  20. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS sub-detectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. Seventy thousand (70000) parameters are used for control and monitoring purposes of TileCal, requiring an automated system. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCa...

  1. Test Beam results and integration of the ATLAS Level-1 Muon Barrel Trigger

    CERN Document Server

    Bianco, M; Cataldi, G; Chiodini, G; Fiore, G; Gorini, E; Grancagnolo, F; Miccoli, A; Perrino, R; Primavera, M; Spagnolo, S; Tassielli, G F; Ventura, A; Aloisio, A; Alviggi, M G; Canale, V; Caprio, M A; Carlino, G; Conventi, F; De Asmundis, R; Della Pietra, M; Della Volpe, D; Iengo, P; Izzo, V; Migliaccio, A; Patricelli, S; Sekhniaidze, G; Bocci, V; Chiodi, G; Gennari, E; Nisati, A; Pasqualucci, E; Pastore, F; Petrolo, E; Vari, R; Veneziano, Stefano; Aielli, G; Camarri, P; Cardarelli, R; Delle Fratte, C; Di Ciaccio, A; Di Simone, A; Di Stante, L; Liberti, B; Salamon, A; Santonico, R; Solfaroli, E; Aprodu, V; Petcu, M; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference

    2005-01-01

    The ATLAS Level-1 Muon Trigger will be crucial for the online selection of events with high transverse momentum muons and for its correct association to the bunch-crossing corresponding to the detected events. This system uses dedicated coarse granularity and fast detectors capable of providing measurements in two orthogonal projections. The Resistive Plate Chambers (RPCs) are used in the barrel region. The associated trigger electronics is based on a custom chip, the Coincidence Matrix, that performs space coincidences within programmable roads and time gates. The system is highly redundant and communicates with the ATLAS Level-1 trigger Processor with the MUCTPI Interface. The trigger electronics provides also the Readout of the RPCs. Preliminary results achieved with a full trigger tower with production detectors in the H8 test beam at CERN will be shown. In particular preliminary results on the integration of the barrel muon trigger electronics with the MUCTPI interface and with the ATLAS DAQ system will ...

  2. Performance of the ATLAS Level-1 muon barrel trigger during the Run 2 data taking

    CERN Document Server

    Sessa, Marco; The ATLAS collaboration

    2017-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal. The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range |η| < 1.05 for a total surface of more than 4000 m 2 and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates according to their transverse momentum and associates them with the correct bunch-crossing. The trigger system is able to take a decision within a latency of about 2 μs. The measurement of the RPC detector efficiencies and the trigger performance during the ATLAS Run-II data taking are here presented.

  3. Upgrade of the ATLAS Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Usai, Giulio; The ATLAS collaboration

    2015-01-01

    The hadronic calorimeter of ATLAS (TileCal) will undergo a complete replacement of its on-detector and off-detector electronics for the high luminosity programme of the LHC in 2024. The calorimeter signals from all PMTs will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and feed into the ATLAS first level trigger at a rate of 40 MHz. This will provide better precision and a finer granularity for the trigger system and will allow the development of more efficient trigger selections. To validate this free-running read-out architecture we plan to insert into ATLAS at the end of 2015 one demonstrator prototype. The demonstrator is an hybrid module containing the new electronics but also providing the analog trigger signals to be compatible with the present system. At the current stage of development three different options are being investigated for the upgrade of the front-end electronic and we plan extensive test beam and simulation studies to select the bes...

  4. Energy Reconstruction in the Hadronic Tile Calorimeter and Early SUSY Fully Hadronic Searches in ATLAS

    CERN Document Server

    Poveda, Joaquín; Ferrer, A

    2009-01-01

    The work presented in this thesis is framed in the pre-operation phase of the ATLAS experiment at LHC. Its first part is devoted to the energy reconstruction in the ATLAS Tile Calorimeter. In particular, the Optimal Filtering energy reconstruction algorithm implementation for offline uses and its validation studies with Monte Carlo and real data are presented. This algorithm combines a simple formulation with robustness in the reconstruction of signal amplitude and timing for data affected by electronics noise. Furthermore, the performance under a minimum bias pileup environment and the impact of this kind of physics noise are also shown. The second part of the thesis contains a contribution to the ATLAS Jet/Missing Transverse Energy (MET) and SUSY groups. Cleaning methods for events with large fake MET are proposed. These methods are based on one hand in the jet energy deposition in selected parts of the calorimeter system which are related with jet leakage or dead material effects and, on the other hand, in...

  5. RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    AUTHOR|(SzGeCERN)478829; The ATLAS collaboration

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC, a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen in order to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz. The data is transferred via optical links to a digital processing system which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. The talk will give an overview of the Phase-I Upgrade of the ATLAS LAr Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. R...

  6. The ATLAS Liquid Argon Electromagnetic EndCap Calorimeter Construction and tests

    CERN Document Server

    Rodier, S; Del Peso, J

    2003-01-01

    This thesis has been carried out within the ATLAS collaboration. ATLAS is one of the two multipurpose experiments approved for data taking at the Large Hadron Collider (LHC) at CERN. The main goals of this experiment are, to find the Higgs boson, the missing piece in the otherwise so succesful Standard Model of Particle Physics, and to look for physics beyond the Standard Model up to a scale of 1TeV. For this purpose, electromagnetic (EM) calorimetry play a key role. The ATLAS Collaboration has chosen a Liquid Argon (LAr) option with lead as passive material. The liquid Argon Calorimeter is divided into two main subdetectors, the barrel and the end caps (EC). The design and construction of the LAr EM EC calorimeter is the responsability of the groups at Centre de Physique de Marseille (CPPM) and the Universidad Autonoma de Madrid (UAM)following the guideline developed by the research and development working, group 3 for LHC detectors (RD3). The sharing of responsabilities is such that CPPM provides spacers an...

  7. Hardware, firmware and software developments for the upgrade of the ATLAS Level-1 Central Trigger Processor

    CERN Document Server

    Ghibaudi, M; The ATLAS collaboration; Spiwoks, R; Anders, G; Bertelsen, H; Boisen, A; Childers, T; Dam, M; Ellis, N; Farthouat, P; Gabaldon Ruiz, C; Gorini, B; Kaneda, M; Ohm, C; Silva Oliveira, M; Pauly, T; Pottgen, R; Schmieden, K; Xella, S

    2013-01-01

    The Central Trigger Processor (CTP) is the final stage of the ATLAS first level trigger system which reduces the collision rate of 40 MHz to a Level-1 event rate of 100 kHz. An upgrade of the CTP is currently underway to significantly increase the number of trigger inputs and trigger combinations, allowing additional flexibility for the trigger menu.\

  8. Evaluation of IPbus for Control Communication in the ATLAS Level-1 Central Trigger

    CERN Document Server

    Barron, Uriel

    2015-01-01

    Abstract The future upgrade of the ATLAS Level-1 Central Trigger will require a new method of control communication to the MUCTPI. IPbus is suggested as a possible solution to this problem and setup instructions are provided. The functionality of IPbus was tested and its performance was measured for different operations and for different parameters. The Hardware Compiler was modified to support IPbus.

  9. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  10. Computer Simulation of the Cool Down of the ATLAS Liquid Argon Barrel Calorimeter

    CERN Document Server

    Korperud, N; Fabre, C; Owren, G; Passardi, Giorgio

    2002-01-01

    The ATLAS electromagnetic barrel calorimeter consists of a liquid argon detector with a total mass of 120 tonnes. This highly complicated structure, fabricated from copper, lead, stainless steel and glass-fiber reinforced epoxy will be placed in an aluminum cryostat. The cool down process of the detector will be limited by the maximum temperature differences accepted by the composite structure so as to avoid critical mechanical stresses. A computer program simulating the cool down of the detector by calculating the local heat transfer throughout a simplified model has been developed. The program evaluates the cool down time as a function of different contact gasses filling the spaces within the detector.

  11. Performance of the ATLAS Electromagnetic Calorimeter End-cap Module 0

    CERN Document Server

    Aubert, Bernard; Alexa, C; Astesan, F; Augé, E; Aulchenko, V M; Ballansat, J; Barreiro, F; Barrillon, P; Battistoni, G; Bazan, A; Beaugiraud, B; Beck-Hansen, J; Belhorma, B; Belorgey, J; Belymam, A; Ben-Mansour, A; Benchekroun, D; Benchouk, C; Bernard, R; Bertoli, W; Boniface, J; Bonivento, W; Bourdarios, C; Bremer, J; Breton, D; Bán, J; Camard, A; Canton, B; Carminati, L; Cartiglia, N; Chalifour, M; Chekhtman, A; Chen, H; Cherkaoui, R; Chevalley, J L; Chollet, F; Citterio, M; Clark, A; Cleland, W; Clément, C; Colas, Jacques; Collot, J; Costa, G; Cros, P; Cunitz, H; Del Peso, J; Delebecque, P; Delmastro, M; Di Ciaccio, Lucia; Dinkespiler, B; Djama, F; Dodd, J; Driouichi, C; Dumont-Dayot, N; Duval, P Y; Efthymiopoulos, I; Egdemir, J; El-Kacimi, M; El-Mouahhidi, Y; Engelmann, R; Ernwein, J; Falleau, I; Fanti, M; Farrell, J; Fassnacht, P; Ferrari, A; Fichet, S; Fournier, D; Gallin-Martel, M L; Gara, A; García, G; Gaumer, O; Ghazlane, H; Ghez, P; Gianotti, F; Girard, C; Gordon, H; Gouanère, M; Guilhem, G; Hackenburg, B; Hakimi, M; Hassani, S; Henry-Coüannier, F; Hervás, L; Hinz, L; Hoffman, A; Hoffman, J; Hostachy, J Y; Hoummada, A; Hubaut, F; Idrissi, A; Imbault, D; Jacquier, Y; Jevaud, M; Jérémie, A; Jézéquel, S; Kambara, H; Karst, P; Kazanin, V; Kierstead, J A; Kolachev, G M; Kordas, K; de La Taille, C; Labarga, L; Lacour, D; Lafaye, R; Laforge, B; Lanni, F; Le Coroller, A; Le Dortz, O; Le Maner, C; Le Van-Suu, A; Le Flour, T; Leite, M; Leltchouk, M; Lesueur, J; Lissauer, D; Lund-Jensen, B; Lundqvist, J M; Ma, H; Macé, G; Makowiecki, D S; Malsyshev, V; Mandelli, L; Mansoulié, B; Marin, C P; Martin, D; Martin, L; Martin, O; Martin, P; Maslennikov, A L; Massol, N; Mazzanti, M; McCarthy, R; McDonald, J; Megner, L; Merkel, B; Mirea, A; Moneta, L; Monnier, E; Moynot, M; Nagy, E; Negroni, S; Neukermans, L; Nicod, D; Nikolic-Audit, I; Noppe, J M; Ohlsson-Malek, F; Olivier, C; Orsini, F; Pailler, P; Parrour, G; Parsons, J A; Pearce, M; Perrodo, P; Perrot, G; Poggioli, Luc; Pospelov, G E; Pralavorio, Pascal; Prast, J; Przysiezniak, H; Puzo, P; Pétroff, P; Radeka, V; Rahm, David Charles; Rajagopalan, S; Raymond, M; Renardy, J F; Repetti, B; Rescia, S; Riccadona, X; Richer, J P; Rijssenbeek, M; Rodier, S; Rossel, F; Rousseau, D; Rydström, S; Saboumazrag, S; Sauvage, D; Sauvage, G; Schilly, P; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seman, M; Serin, L; Shousharo, A; Simion, S; Sippach, W; Snopkov, R; Steffens, J; Stroynowski, R; Stumer, I; Taguet, J P; Takai, H; Talyshev, A A; Tartarelli, F; Teiger, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tocut, V; Tóth, J; Veillet, J J; Vossebeld, Joost Herman; Vuillemin, V; Wielers, M; Willis, W J; Wingerter-Seez, I; Ye, J; Yip, K; Zerwas, D; Zitoun, R; Zolnierowski, Y

    2003-01-01

    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 < eta < 3.2 (inner wheel).

  12. The Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Ochoa, Ines; The ATLAS collaboration

    2017-01-01

    Electronics developments are pursued for the trigger readout of the ATLAS Liquid-Argon Calorimeter towards the Phase-I upgrade scheduled in the LHC shut-down period of 2019-2020. The LAr Trigger Digitizer system will digitize 34000 channels at a 40 MHz sampling with 12 bit precision after the bipolar shaper at the front-end system, and transmit to the LAr Digital Processing system in the back-end to extract the transverse energies. Results of ASIC developments including QA and radiation hardness evaluations, and performances on prototypes will presented with the overall system design.

  13. The Trigger Readout Electronics for the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389433; The ATLAS collaboration

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12bit precision at 40MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  14. Low voltage control for the liquid argon hadronic end-cap calorimeter of ATLAS

    CERN Document Server

    Brettel, H; Habring, J; Oberlack, H; Schacht, P

    2002-01-01

    At the ATLAS detector a SCADA system surveys and controls the sub- detectors. The link is realized by PVSS2 software and a CanBus hardware system. The low voltages for the Hadronic Endcaps of the liquid argon calorimeter are produced by DC/DC-converters in the power boxes and split into 320 channels corresponding to the pre- amplifier and summing boards in the cryostat. Six units of a prototype distribution board are currently under test. Each of it contains 2 ELMBs as CanBus interface, a FPGA of type QL3012 for digital control and 30 low voltage regulators for the individual fine adjustments of the outputs.

  15. Performance of ATLAS RPC Level-1 Muon trigger during the 2015 data taking

    CERN Document Server

    Corradi, Massimo; The ATLAS collaboration

    2016-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. Its input stage consists of an array of processors receiving the full granularity of data from Resistive Plate Chambers in the central area of the ATLAS detector ("Barrel"). The trigger efficiency and the level of synchronisation of its elements with the rest of ATLAS and the LHC clock are crucial figures of this system: many parameters of the constituent RPC detector and the trigger electronics have to be constantly and carefully checked to assure a correct functioning of the Level-1 selection. Notwithstanding the complexity of such a large array of integrated RPC detectors, the ATLAS Level-1 system has resumed operations successfully after the past 2 year shutdown, with levels similar to those of Run 1. We present the inclusive monitoring of the RPC+L1 system that we have developed to characterise the behaviour of the system, using reconstructed muons in events selected by...

  16. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  17. Characterization of COTS ADC radiation properties for ATLAS LAr calorimeter readout upgrade

    CERN Document Server

    Takai, H; The ATLAS collaboration; Chen, H; Chen, K; Lanni, F; Rescia, S

    2013-01-01

    The ATLAS LAr calorimeters plan to upgrade the readout electronics for both Phase-I and Phase-II LHC luminosity upgrades. Detector signals will be digitized at the front-end, and data will be streamed out to the back-end system continuously. Therefore, radiation tolerant ADCs are key components for both upgrade phases. This presentation will report on irradiation test results of commercial-off-the-shelf (COTS) ADCs that have potentials to be used in the readout electronics upgrade. Total-ionization-dose (TID) irradiation test results will be described, which has been used to pre-screen COTS ADCs for further studies. Various SEE studies of a candidate ADC with both neutron and proton beams will be presented. Finally, annealing studies following ATLAS policy on radiation tolerant electronics will be reported.

  18. Characterization of COTS ADC radiation properties for ATLAS LAr calorimeter readout upgrade

    CERN Document Server

    Takai, H; The ATLAS collaboration

    2013-01-01

    The ATLAS LAr calorimeters plan to upgrade the readout electronics for both Phase I and Phase II LHC luminosity upgrades. Detector signals will be digitized at the front-end, and data will be streamed out to the back-end system continuously. Therefore, radiation tolerant ADCs are key components for both upgrade phases. This presentation will report on irradiation test results of commercial off-the-shelf (COTS) ADCs that have potentials to be used in the readout electronics upgrade. Total-ionization-dose (TID) irradiation test results will be described, which has been used to pre-screen COTS ADCs for further studies. Various SEE studies of a candidate ADC with both neutron and proton beams will be presented. Finally, annealing studies following ATLAS policy on radiation tolerant electronics will be reported.

  19. Functional Super Read Out Driver Demonstrator for the Phase II Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Carrió, F; The ATLAS collaboration; Ferrer, A; Fiorini, L; González, V; Hernández, Y; Higón, E; Moreno, P; Sanchis, E; Solans, C; Valero, A; Valls, J

    2011-01-01

    This work presents the implementation of a functional super Read Out Driver (sROD) demonstrator for the Phase II Upgrade of the ATLAS Tile Calorimeter (TileCal) in the LHC experiment. The proposed front-end for the Phase II Upgrade communicates with back-end electronics using a multifiber optical connector with a data rate of 57.6 Gbps using the GBT protocol. This functional sROD demonstrator aims to help in the understanding of the problems that could arise in the upgrade of back-end electronics. The demonstrator is composed of three different boards that have been developed in the framework of ATLAS activities: the Optical Multiplexer Board (OMB), the Read-Out Driver (ROD) and the Optical Link Card (OLC). This functional sROD demonstrator will be used to develop a prototype, in ATCA format, of the new ROD for the Phase II.

  20. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, O; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, plans for a High Luminosity LHC (HL-LHC) are already being developed for operation of the collider and associated detectors at luminosities of up to (5-7)×1034 cm-2s-1, with the goal of accumulating an integrated luminosity of 3000 fb-1. The proposed instantaneous and integrated luminosities are both well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two solutions for this are un...

  1. Status of the ATLAS Liquid Argon Calorimeter; Performance after 2 years of LHC operation

    CERN Document Server

    AbouZeid, H; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at about 87 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LH...

  2. Upgraded Trigger Readout Electronics for the ATLAS LAr Calorimeters for Future LHC Running

    CERN Document Server

    Ma, H; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that are digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first- level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34cm^−2s^−1. In order to retain the capability to trigger on low energy electrons and photons when the LHC is upgraded to higher luminosity, an improved LAr calorimeter trigger readout is proposed and being constructed. The new trigger readout system makes available the fine segmentation of the calorimeter at the L1 trigger with high precision in order to reduce the QCD jet background in electron, photon and tau triggers, and to improve jet and missing ET trigger performance. The new LAr Trigger Digitizer Board is designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a...

  3. Electronics Development for the ATLAS Liquid Argon Calorimeter Trigger and Readout for Future LHC Running

    CERN Document Server

    Pacheco Rodriguez, Laura; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will provide up to 7.5 times greater instantaneous and total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. The radiation tolerance criteria and the improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019-2020, a trigger-readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024-2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated ...

  4. Laboratory tests of the response stability of the ATLAS Tile Calorimeter photomultipliers

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00216540; The ATLAS collaboration; Leone, Sandra; Scuri, Fabrizio

    2017-01-01

    High performance of the ATLAS Tile Calorimeter response is achieved with a multi- stage calibration. One step of the calibration is based on measurements of the response to laser pulse excitation of the PMTs used to read out the calorimeter cells. A facility to study the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests are to study the time evolution of the PMT response as a function of the integrated anode charge and to compare test bench results with the observed response drifts of the Tile Calorimeter PMTs during LHC Run I and Run II. A new statistical approach was used to measure the drift of the absolute PMT gain. A new procedure which combines studies of the time evolution of the global PMT responses and of the individual PMT gains was adopted to derive the evolution of the cathode quantum efficiency. The experimental setup of the Pisa facility is described and the first results obtained by testing about 30 PMTs Hamamatsu model R7877 (a special evolution f...

  5. Laboratory tests of the response stability of the ATLAS Tile Calorimeter photomultipliers

    CERN Document Server

    Kazanin, Vassili; The ATLAS collaboration; Scuri, Fabrizio

    2017-01-01

    High performance of the ATLAS Tile Calorimeter response is achieved with a multi-stage calibration. One step of the calibration is based on measurements of the response to laser pulse excitation of the PMTs used to read out the calorimeter cells. A facility to study the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests are to study the time evolution of the PMT response as a function of the integrated anode charge and to compare test bench results with the observed response drifts of the Tile Calorimeter PMTs during LHC Run I and Run II. A new statistical approach was used to measure the drift of the absolute PMT gain. A new procedure which combines studies of the time evolution of the global PMT responses and of the individual PMT gains was adopted to derive the evolution of the cathode quantum efficiency. The experimental setup of the Pisa facility is described and the first results obtained by testing about 30 PMTs Hamamatsu model R7877 (a special evolution fo...

  6. Status of the Atlas Liquid Argon Calorimeter and its Performance after three years of LHC operation

    CERN Document Server

    De La Torre, H; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 87 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beam...

  7. Status of the Atlas Liquid Argon Calorimeter and its Performance after Three Years of LHC Operation

    CERN Document Server

    Lampl, W; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo- rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.5-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at approximately 89 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three-year period prior to first collisions in 2009, using cosmic rays and s...

  8. Status of the Atlas Liquid Argon Calorimeter and its Performance after Three Years of LHC Operation

    CERN Document Server

    Lampl, W; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions pro- duced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo- rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.5-4.9. The electromagnetic calorimeters use lead as passive material and are characterised by an accordion geometry that allows a fast and uniform az- imuthal response without any gap. Copper and tungsten were chosen as pas- sive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical elec- trodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at approximately 89 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three-year period prior to first collisions in 2009, using cosmic ra...

  9. Laboratory tests of the response stability of the ATLAS Tile Calorimeter photomultipliers

    Science.gov (United States)

    Kazanin, V. F.

    2017-09-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a procedure including a multi-step calibration. One step of the calibration is based on measurements of the response stability to laser excitation of the PMTs that are used to read out the calorimeter cells. A facility to study the performance of the PMT stability response has been operating in the PISA-INFN laboratories since 2015. Goals of the tests are to study the time evolution of the PMT response in order to reproduce and understand the origin of the response drifts observed with the Tile Calorimeter PMTs during LHC Run I and Run II. A new statistical approach was used to measure the drift of the absolute PMT gain. A new procedure which combines studies of the time evolution of the global PMT responses and of the individual PMT gains was adopted to derive the evolution of the cathode quantum efficiency. The experimental setup of the Pisa facility and the first results obtained by testing about 30 PMTs are presented.

  10. Identification of Pile-up Using the Quality Factor of Pulse Shapes in the ATLAS Tile Calorimeter

    CERN Document Server

    Clement, C; The ATLAS collaboration

    2011-01-01

    Abstract—The ATLAS experiment records data from the proton-proton collisions produced by the Large Hadron Col- lider (LHC). The Tile Calorimeter is the hadronic sampling calorimeter of ATLAS in the region |η| < 1.7. It uses iron absorbers and scintillators as active material. The LHC will provide collisions every 25 ns, putting very strong requirements on the energy measurement in presence of energy deposits from different collisions in the same read out window and physical calorimeter channel (pile-up). In 2011 the LHC is running with filled bunches at 50 ns spacing and with an expected number of up to about 8 proton-proton collisions per bunch crossing. We present a quality factor that can be computed online for each collision and for each calorimeter channel within the 10 μs latency of ATLAS first level trigger (L1 trigger), and could allow to identify calorimeter channels presenting pile-up. In presence of poor quality factor the data from the corresponding channel is read out with additional i...

  11. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  12. A TTC to Data Acquisition interface for the ATLAS Tile Hadronic calorimeter at the LHC

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration; Torres Pais, Jose Gabriel; Soret Medel, Jesús

    2017-01-01

    TileCal is the central tile hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It is a sampling calorimeter where scintillating tiles are embedded in steel absorber plates. The tiles are read-out using almost 10,000 photomultipliers which convert the light into an electrical signal. These signals are digitized and stored in pipelines memories in the front-end electronics. Upon the reception of a trigger signal, the PMT data is transferred to the Read-Out Drivers in the back-end electronics which process and transmits the processed data to the ATLAS Data AcQuisition (DAQ) system. The Timing, Trigger and Control (TTC) system is an optical network used to distribute the clock synchronized with the accelerator, the trigger signals and configuration commands to both the front-end and back-end electronics components. During physics operation, the TTC system is used to configure the electronics and to distribute trigger information used to synchronize the different parts of the ...

  13. Search for Technihadrons in Dielectron channel and Alignments of the ATLAS Liquid Argon Electromagnetic calorimeters.

    CERN Document Server

    Aperio Bella, Ludovica; Di Ciaccio, L

    The LHC campaign in the first years of data taking was successful. The 2011 run has allowed to record more than 5 fb−1 of data at sqrt{s}=7 TeV with the ATLAS experiment. In the work presented in this this thesis the whole 2011 data set is used to performed different studies. This thesis is organized in five chapters. In the first chapter is presented a theoretical introduction to the Standard Model (SM) and to one of its possible extension the TechniColor (TC). The second chapter gives an overview of the LHC complex and of the ATLAS detector components. In the third chapter the timing analysis on all the readout channels of the Liquid Argon Calorimeter is reported. A precise timing alignment over the whole calorimeter is used to synchronize the detector readout system with the LHC bunch crossing and has also application in some physics analysis such as those looking for long lived particles. In the searches for new phenomena an excellent electron identification capability, with high efficiency and high ...

  14. Upgrade of the Trigger System of the ATLAS Liquid Argon calorimeters

    CERN Document Server

    Kanaya, N; The ATLAS collaboration

    2014-01-01

    ATLAS detector was designed and build to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals, which are digitized and processed by the front-end and back-end electronics for each triggered event. In addition, the front-end electronics sums analog signals to provide coarse-grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2020, instantaneous luminosities of (2-3)×1034 cm-2s-1 are expected, far beyond that for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed, t...

  15. Upgrade of the Trigger System of the ATLAS Liquid Argon calorimeters

    CERN Document Server

    Kanaya, N; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and build to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm^-2s^-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals, which are digitized and processed by the front-end and back-end electronics for each triggered event. In addition, the front-end electronics sums analog signals to provide coarse-grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2019, instantaneous luminosities of (2-3)×1034 cm^-2s^-1 are expected, far beyond that for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is pro...

  16. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00069444; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular dete...

  17. Signal Reconstruction of the Atlas Hadronic Tile Calorimeter Implementation and Validation

    CERN Document Server

    Usai, G

    2010-01-01

    TileCal, the central hadronic section of the ATLAS Calorimeter, is a sampling calorimeter consisting of steel and scitntillating tiles. The TileCal front-end electronics allows to measures the signals produced by about 10000 photo-multipliers measuring energies ranging from about 30 MeV to about 2TeV .  The read-out system is responsible to reconstruct the data in real-time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 KHz).  The main component of the read-out system is the Digital Signal Processor (DSP) which, using the Optimal Filtering technique, allows to compute for each channel the signal amplitude, time and quality factor at the required high rate. After a short overview of the TileCal system we will discuss the implementation of Optimal Filtering signal reconstruction highlighting the constraints imposed by the use of the DSP. We will than report results on the validation of the implementation of the DSP signal reconstruction and the overall signal reconstru...

  18. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.

  19. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    Science.gov (United States)

    Solovyanov, Oleg

    2017-10-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tauparticles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudo-rapidity up to 1.7, with almost 10000 channels measuring energies ranging from ˜30 MeV to ˜2 TeV. Each stage of the signal production, from scintillation light to the signal reconstruction, is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions, acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons. The modelling of the response by the Monte Carlo simulation is discussed. The calorimeter timing calibration and resolutions are studied with a sample of multijets events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. TileCal performance satisfies the design requirements and has provided an essential contribution to physics results in ATLAS. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC), delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Calorimeter will undergo a major replacement of its on- and off-detector electronics. All signals will be digitised and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz

  20. Energy Reconstruction and high-speed Data Transmission with FPGAs for the Upgrade of the ATLAS Liquid Argon Calorimeter at LHC

    CERN Document Server

    Stärz, Steffen

    The Liquid Argon calorimeter of the ATLAS detector at CERN near Geneva is equipped with improved readout and trigger electronics for the operation at higher luminosity LHC in the frame of several upgrades (Phase-0, I, and II). Special attention is given to an early digitisation of detector raw data and their following digital data transmission and processing via FPGAs already for the Level-1 trigger. The upgrades additionally foresee to provide higher spatial granularity information for the Level-1 trigger in order to improve its performance for low momentum single particles at increased collision rates. The first part of this dissertation contains the development and implementation of a modular detector simulation framework, AREUS, which allows to analyse different filter algorithms for the energy reconstruction as well as their performance with respect to the expected digitised detector raw data. In this detector simulation framework the detailed algorithmic functionality of the FPGAs has been taken into ac...

  1. The Trigger Readout Electronics for the Phase-1 Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Wolff, Robert; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider, scheduled for 2019-2020, will increase the instantaneous luminosity by more than three, hence the ATLAS trigger rates. To cope with this increase, the trigger signals from the ATLAS Liquid Argon Calorimeter will be rearranged in 34000 so-called super cells to get a 5 to 10 times finer granularity. This will improve the background rejection performance through more precise energy measurements and the use of shower shape information to discriminate electrons, photons and hadronically decaying tau leptons from jets. The new system will process the super cell signal at 40 MHz and with 12 bit precision. The data will be transmitted at 5.12 Gb/s to the back-end system using a custom serializer and optical transmitter. To verify full functionality, a demonstrator set- up has been installed on the ATLAS detector and operated during the LHC Run 2. This document gives a status on hardware developments towards the final design readout system, including the performance of the new...

  2. Performances of the ATLAS RPC Level-1 Muon trigger during the Run-II data taking

    CERN Document Server

    Alberghi, Gian Luigi; The ATLAS collaboration

    2018-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. Its input stage consists of an array of processors receiving the full granularity of data from Resistive Plate Chambers in the central area of the ATLAS detector ("Barrel"). The RPCs, placed in the barrel region of the ATLAS detector, are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range |η|<1.05 for a total surface of more than 4000 m2 and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates with respect to their transverse momentum and associates them with the correct bunch-crossing number. The trigger system is able to take a decision within a latency of about 2 μs. We illustrate the selections, strategy and validation for an unbiased determination of the efficiency and timing of the RPC and the L1 from data; and show the results w...

  3. Performances of the ATLAS Level-1 Muon barrel trigger during the Run-II data taking

    CERN Document Server

    Sessa, Marco; The ATLAS collaboration

    2017-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal. The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range $|\\eta|<1.05$ for a total surface of more than $4000\\ m^2$ and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates with respect to their transverse momentum and associates them with the correct bunch-crossing number. The trigger system is able to take a decision within a latency of about 2 $\\mu s$. The detailed measurement of the RPC detector efficiencies and of the trigger performance during the ATLAS Run-II data taking is here presented.

  4. Status of the Atlas Calorimeters: their performance after two years of LHC operation and plans for future upgrades.

    CERN Document Server

    Solans, C; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Its calorimeter system measures the energy and direction of final state particles with pseudo rapidity $|eta| < 4.9$. Accurate identification and measurement of the characteristics of electromagnetic objects (electrons/photons) are performed by liquid argon (LAr)-lead sampling calorimeters in the region $|eta| < 3.2$, using an innovative accordion geometry that provides a fast, uniform azimuthal response without gaps. The hadronic calorimeters measure the properties of hadrons, jets, and tau leptons, and also contribute to the measurement of the missing transverse energy and identification of muons. This is done in the region $|eta| < 1.7$ with a scintillator-steel sampling calorimeter, and in the region $1.4 < |eta| < 3.2$ with a copper-LAr sampling calorimeter. The coverage is extended to $|eta| < 4.9$ by an integrated forward calorimeter (FCal) based on LAr with copp...

  5. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity signals produced by about 10000 channels measuring energies ranging from $\\sim$30 MeV to $\\sim$2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons and the modelling of the response by the Monte Carlo simulation is dis...

  6. Design and testing of the high speed signal densely populated ATLAS calorimeter trigger board dedicate to jet identification

    CERN Document Server

    Vieira De Souza, Julio; The ATLAS collaboration

    2017-01-01

    Abstract—The ATLAS experiment has planned a major upgrade in view of the enhanced luminosity of the beam delivered by the Large Hadron Collider (LHC) in 2021. As part of this, the trigger at Level-1 based on calorimeter data will be upgraded to exploit fine-granularity readout using a new system of Feature Extractors (three in total), which each uses different physics objects for the trigger selection. The contribution focusses on the jet Feature EXtractor (jFEX) prototype. Up to a data volume of 2 TB/s has to be processed to provide jet identification (including large area jets) and measurements of global variables within few hundred nanoseconds latency budget. Such requirements translate into the use of large Field Programmable Gate Array (FPGA) with the largest number of Multi Gigabit Transceivers (MGTs) available on the market. The jFEX board prototype hosts four large FPGAs from the Xilinx Ultrascale family with 120 MGTs each, connected to 24 opto-electrical devices, resulting in a densely populated hi...

  7. The first integration test of the ATLAS end-cap muon level 1 trigger system

    CERN Document Server

    Hasuko, K; Hasegawa, Y; Ichimiya, R; Ikeno, M; Ishida, Y; Kano, H; Komatsu, S; Kurashige, H; Maeno, T; Matsumoto, Y; Mizouchi, K; Nakamura, Y; Nakayoshi, K; Sakamoto, H; Sasaki, O; Takemoto, T; Tanaka, K; Totsuka, M; Tsuji, S; Yasu, Y

    2003-01-01

    A slice test system has been constructed for the ATLAS end-cap muon level-1 trigger. ATLAS is one of the four Large Hadron Collider (LHC) experiment. Although the system has been constructed using prototype application specific integrated circuits (ASICs) and electronics modules, the design scheme of the trigger, readout as well as control logic applied to the system is the final one. The size is about 1/300 of the whole number of channels. The purpose of the slice test is to demonstrate the system design and performance in detail prior to production commitment. In this paper, we discuss the validity of the logic through the comparison of the simulation results, the latency measurement and long run tests. (11 refs).

  8. The design of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    Allbrooke, Benedict; The ATLAS collaboration

    2016-01-01

    The design of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy. This talk will discuss the projected performance of the system in terms of tracking, timing and physics.

  9. A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2014-01-01

    We have been developing a serializer application-specific integrated circuit (ASIC) based on a commercial 0.25-μm silicon-on-sapphire (SOS) CMOS technology for the ATLAS liquid argon calorimeter front-end electronics upgrade. The first prototype, a 5 Gbps 16:1 serializer has been designed, fabricated, and tested in lab environment and in 200 MeV proton beam. The test results indicate that the first prototype meets the design goals. The second prototype, a double-lane, 8 Gbps per lane serializer is under development. The post layout simulation indicates that 8 Gbps is achievable. In this paper we present the design and the test results of the first prototype and the design and status of the second prototype.

  10. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    CERN Document Server

    Guimaraes Ferreira, F; The ATLAS collaboration; Fink Grael, F; Sivolella Gomes, A; Balabram Filho, L

    2010-01-01

    TileCal is the barrel hadronic calorimeter of the ATLAS experiment and has ~10 000 electronic channels. Supervising the detector behavior is a very important task to ensure proper operation. Collaborators perform analyzes over reconstructed data of calibration runs in order to give detailed considerations about failures and to assert the equipment status. Then, the data quality responsible provides the list of problematic channels that should not be considered for physics analysis. Since the commissioning period, our group has developed seven web systems that guide the collaborators through the data quality assessment task. Each system covers a part of the job, providing information on the latest runs, displaying status from the automatic monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment ...

  11. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    CERN Document Server

    Maidantchik1, C; The ATLAS collaboration; Grael, F; Sivolella, A; Balabram, L

    2011-01-01

    TileCal is the barrel hadronic calorimeter of the ATLAS experiment and has about 10 000 electronic channels. Supervising the detector behavior is a very important task to ensure proper operation. Collaborators perform analyzes over reconstructed data of calibration runs in order to give detailed considerations about failures and to assert the equipment status. Since the commissioning period, our group has developed seven web systems that guide the collaborators through the data quality assessment task. Each system covers a part of the job, providing information on the latest runs, displaying status from the automatic monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment performance history. Due to the beginning of the operation, runs are acquired more often. The increasing amount of data repr...

  12. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00306349; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  13. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    Science.gov (United States)

    Valero, A.; Tile Calorimeter System, ATLAS

    2017-10-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  14. Study of a Readout System for a Liquid Argon Calorimet er at ATLAS

    CERN Document Server

    Buchanan, Norm

    A readout system for the liquid argon calorimeter of the ATLAS detector was built and tested at CERN in 1996. This system contained an analog pipeline and was designed to operate in a dual gain mode as m-el1 as a single gain mode. Koise, linearity. dynamic range. and electron energy resolution of the system were rneasured. The total noise introduced by the electronics was found to be approsimately 100 MeI,' to 220 MeV per channel. The nonlinearity of the system was less than 0.3% over a dynamic range of 11.2 bits. The measured electroti energv resolution was less than 1.9% for the 100 GeV, 150 GeV, and 200 GeV electrons. The effects of different operating parameters were studied.

  15. Upgrade for the ATLAS Tile Calorimeter Readout Electronics at the High Luminosity LHC

    CERN Document Server

    Carrió, F; The ATLAS collaboration

    2012-01-01

    This work presents an overview of the on-detector and off-detector electronics for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. Three options are being studied for the implementation of the new front end readout: an improved version of the 3-in-1 card, a new version of the QIE chip and a dedicated ASIC called FATALIC. Moreover, the MainBoard will manage incoming signals of the FEBs and the DaughterBoard will send the digitized data to the off-detector electronics where the sROD will perform processing tasks on them. This work summarizes the status of the project.

  16. Performance of the ATLAS liquid argon forward calorimeter in beam tests

    CERN Document Server

    Archambault, J P; Cadabeschi, M; Epshteyn, V; Galt, C; Gillberg, D; Gorbounov, P; Heelan, L; Khakzad, M; Khovanskiy, V; Krieger, P; Loch, P; McCarthy, T G; Oakham, F G; Orr, R S; Rutherfoord, J; Savine, A; Schram, M; Shatalov, P; Shaver, L; Shupe, M; Strickland, V; Thompson, P; Tsukerman, I

    2013-01-01

    One of two ATLAS Forward Calorimeters, consisting of threemodules, one behind the other, was exposed to particle beams ofknown energies in order to study the detector performance with andwithout the presence of upstream material in the beam, and at theinner edge of the acceptance where shower energy containment isincomplete. Data were taken in the H6 beamline at CERN usingelectron and hadron beams with energies from 10 to 200 GeV.Results related to the intrinsic detector calibration, based on datataken with a minimal amount of material in front of the detector,have been previously published, but are updated here. This paperfocuses on studies of data taken with additional upstream materialin place. The effects of this additional material on the linearityand resolution of the response are presented. The response at theinner edge of the acceptance is also investigated. For all analyses,results based on a GEANT4 simulation of the beam-test setup anddetector response are also presented.

  17. R&D Studies of the ATLAS LAr Calorimeter Readout Electronics for super-LHC

    CERN Document Server

    Chen, H

    2009-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. 180,000 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. A luminosity upgrade (x10) of the LHC will occur around 2016. The current readout electronics will have to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The frontend readout will send out data continuously at each bunch crossing through highspeed radiation resistant optical links. The data (100Gbps each board) will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a much higher granularity than what currently implemented. We present here an overview of the R&D activities and architectural s...

  18. Performances of the ATLAS Hadronic Tile Calorimeter Modules for Electrons and Pions

    CERN Document Server

    Kulchitskii, Yu A

    2004-01-01

    With the aim of establishing of an electromagnetic energy scale of the ATLAS Tile calorimeter and understanding of performance of the calorimeter to electrons 12 \\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron calibration constants and electron energy resolutions some of these barrel and extended barrel modules at energies E = 10, 20, 50, 100 and 180 GeV for the cell-scan at $\\theta = 20^o$, the $\\eta$ scan and the tile scan at $90^o$. The average values of these constants are equal to $\\langle R_e \\rangle =1.157\\pm0.002$ pC/GeV for the cell-scan at $\\theta = 20^o$, $\\langle R_e \\rangle =1.143\\pm0.005$ pC/GeV for the $\\eta$-scan and $\\langle R_e\\rangle =1.196\\pm0.005$ pC/GeV for the tile-scan at $\\theta = 90^o$. The RMS values are the following: for the cell-scan is $RMS=2.6\\pm0.1$ \\%, for t...

  19. Pulse simulations and heat flow measurements for the ATLAS Forward Calorimeter under high-luminosity conditions

    CERN Document Server

    AUTHOR|(SzGeCERN)758133; Zuber, Kai

    The high luminosity phase of the Large Hadron Collider at CERN is an important step for further and more detailed studies of the Standard Model of particle physics as well as searches for new physics. The necessary upgrade of the ATLAS detector is a challenging task as the increased luminosity entails many problems for the different detector parts. The liquid-argon Forward Calorimeter suffers signal-degradation effects and a high voltage drop of the supply potential under high-luminosity conditions. It is possible that the argon starts to boil due to the large energy depositions. The effect of the high-luminosity environment on the liquid-argon Forward Calorimeter has been simulated in order to investigate the level of signal degradation. The results show a curvature of the triangular pulse shape that appears prolonged when increasing the energy deposit. This effect is caused by the drop in the electric potential that produces a decrease in the electric field across the liquid-argon gap in the Forward Calorim...

  20. The upgrade of the laser calibration system for the ATLAS hadron calorimeter TileCal

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. TileCal is built of steel and scintillating tiles coupled to optical fibers and read‐out by photomultipliers (PMT). The performance of TileCal relies on a continuous, high resolution calibration of the individual response of the 10,000 channels forming the detector. The calibration is based on a three level architecture: a charge injection system used to monitor the full electronics chain including front-end amplifiers, digitizers and event builder blocks for each individual channel; a distributed optical system using laser pulses to excite all PMTs; and a mobile Cesium radiative source which is driven through the detector cell floating inside a pipe system. This architecture allows for a cascade calibration of the electronics, of the PMT and electronics, and of full chain including the active detec...

  1. The Phase-2 Electronics Upgrade of the ATLAS Liquid Argon Calorimeter System

    CERN Document Server

    Vachon, Brigitte; The ATLAS collaboration

    2018-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and back- end readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the back-end for further processing. Results from the design studies on the performance of the components of the readou...

  2. The Phase-2 Electronics Upgrade of the ATLAS Liquid Argon Calorimeter System

    CERN Document Server

    Vachon, Brigitte; The ATLAS collaboration

    2018-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the LAr front-end and back-end readout system is foreseen for the 182,500 readout channels. The system will follow a free-running architecture, where the calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40MHz to the backend, which performs the energy and time reconstruction, send inputs to the trigger, and buffers the data until trigge...

  3. Upgrade of the Cold Electronics of the ATLAS HEC Calorimeter for sLHC

    CERN Document Server

    Oberlack, H G; Fischer, A; Hambarzumjan, A; Pospelov, G; Reimann, O; Rudert, A; Schacht, P

    2009-01-01

    The signal amplification and summation electronics of the ATLAS Hadronic End-cap Calorimeter (HEC) is operated at the circumference of the HEC calorimeters inside the cryostats in liquid argon. The present electronics is designed to operate at irradiation levels expected for the LHC. For operation at the sLHC the irradiation levels are expected to be a factor 10 higher, therefore a new electronic system might be needed. The technological possibilities are investigated. From irradiation tests of the present HEC electronics it is known that it will operate up to a dose of 55 kGy of ionizing radiation and up to a neutron fluence of 3 * 10**14 n/cm**2, where it shows some degradation of performance. This matches well the requirements of up to 1.5 * 10**13 n/cm**2 for 10 years of LHC operation, including safety factors. For a subsequent sLHC running phase with 10 times higher expected irradiation levels, a more radiation hard HEC electronics will be needed. Therefore generic studies of different technologies have ...

  4. Two-Stage Cerenkov Radiation Shifting Liquid Zero Degree Calorimeter for pp-Run at ATLAS

    Science.gov (United States)

    Li, Daniel; Perdekamp, Matthias; Citron, Zvi; Atlas Zdc Team

    2017-09-01

    The Liquid Zero Degree Calorimeter (LqZDC) is an electromagnetic sampling calorimeter that transmits Cerenkov radiation produced by incoming scattered particles using a two-stage wavelength shifting process. The first iteration of the LqZDC was irradiated by a Pb-nuclei beam at the SPS to test the validity of a liquid two-stage shifting process. The first stage transmitted Cerenkov radiation transversely (horizontal) in the active region which consisted of an organic wavelength shifter (WLS), Alexa Fluor 430, dissolved in LAB oil. The second stage transmitted the shifted Cerenkov light transversely (vertical) within a quartz capillary immersed at opposite ends of the active region which consisted of the WLS POPOP dissolved in DMSO. The signal produced by the two-stage process transmits through an incident PMMA fiber to a silicon photomultiplier-equipped pre-amplifier and processed using DRS4/RCDAQ software. However, for the LqZDC to withstand the high radiation environment (1.8 Grad) environment at ATLAS, quantum dots (QD) will replace the organic WLS. The degradative effects and byproducts of QD under large neutron flux (1014 n/cm2) are undescribed in literature, thus are the current focus of this research. NSF, DOE.

  5. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O

    2015-01-01

    The ATLAS experiment is designed to study the proton-proton ($pp$) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region $|\\eta|< 3.2$, as well as for hadronic calorimetry in the range $1.5 < |\\eta| < 4.9$. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5~K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and t...

  6. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η|< 3.2, as well as for hadronic calorimetry in the range 1.5<|η|<4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed for the coverage at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5K. The approximately 200K cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigg...

  7. ATLAS Liquid Argon Calorimeter Performance in Run 1 and Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00286685; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{−2}$ s$^{−1}$ . Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudo-rapidity region $\\eta < 3.2$, and for hadronic calorimetry in the region from $\\eta = 1.5$ to $\\eta = 4.9$. In the first LHC run a total luminosity of $27$ fb$^{−1}$ has been collected at center-of-mass energies of 7-8 TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately $3.9$ fb$^{-1}$ of data at a center-of-mass energy of 13 TeV recorded in this year. The well calibrated and highly granular Liquid Argon Calorimeter achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successful discovery of a Higgs boson in the di-photon decay channel. This contribution will give ...

  8. ATLAS Level-1 Topological Trigger : Commissioning and Validation in Run 2

    CERN Document Server

    Aukerman, Andrew Todd; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has recently commissioned a new hardware component of its first-level trigger: the topological processor (L1Topo). This innovative system, using state-of-the-art FPGA processors, selects events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Since the first-level trigger is a synchronous pipelined system, such requirements are applied within a latency of 200ns. We will present the first results from data recorded using the L1Topo trigger; these demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-$P_{T}$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize the performance of this new trigger system. To reach ...

  9. Commissioning and Validation of the ATLAS Level-1 Topological Trigger in Run 2

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for rate reduction with minimal efficiency loss. This improvement has been shown for several physics processes leading to low-$p_T$ leptons, including $H\\rightarrow\\tau \\tau$ and $J/\\psi \\rightarrow \\mu \\mu$. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a pow...

  10. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    Science.gov (United States)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. Supported by the U. S. Department of Energy (DE-SC001270)

  11. Hardware and firmware developments for the upgrade of the ATLAS Level-1 Central Trigger Processor

    CERN Document Server

    Anders, G; Boisen, A; Childers, T; Dam, M; Ellis, N; Farthouat, P; Gabaldon Ruiz, C; Ghibaudi, M; Gorini, B; Haas, S; Kaneda, M; Ohm, C; Silva Oliveira, M; Pauly, T; Pottgen, R; Schmieden, K; Spiwoks, R; Xella, S

    2014-01-01

    The Central Trigger Processor (CTP) is the final stage of the ATLAS first level trigger system which reduces the collision rate of 40 MHz to a Level-1 event rate of 100 kHz. An upgrade of the CTP is currently underway to significantly increase the number of trigger inputs and trigger combinations, allowing additional flexibility for the trigger menu. We present the hardware and FPGA firmware of the newly designed core module (CTPCORE+) module of the CTP, as well as results from a system used for early firmware and software prototyping based on commercial FPGA evaluation boards. First test result from the CTPCORE+ module will also be shown.

  12. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    CERN Document Server

    Nikiforou, Nikiforos

    2013-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry as well as hadronic calorimetry in the endcaps. After installation in 2004--2006, the calorimeters were extensively commissioned over the three--year period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, approximately 27~fb$\\mathbf{^{-1}}$ of data have been collected at an unprecedented center of mass energy. During all these stages, the calorimeter and its electronics have been operating almost optimally, with a performance very close to specifications. This paper covers all aspects of these first years of operation. The excellent performance achieved is especially presented in the context of the discovery of the elusive Higgs boson. The future plans to preserve this performance until the end of the LHC program are also presented.

  13. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    Science.gov (United States)

    Maidantchik, C.; Ferreira, F.; Grael, F.; Sivolella, A.; Balabram, L.; ATLAS TILE Calorimeter Community

    2011-12-01

    TileCal, the barrel hadronic calorimeter of the ATLAS experiment, gathers almost about 10,000 electronic channels. The supervision of the detector behavior is very important in order to ensure proper operation. Collaborators perform analysis over reconstructed data of calibration runs for giving detailed considerations about the equipment status. During the commissioning period, our group has developed seven web systems to support the data quality (DQ) assessment task. Each system covers a part of the process by providing information on the latest runs, displaying the DQ status from the monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment performance history. The ATLAS operation increases amount of data that are retrieved, processed and stored by the web systems. In order to accomplish the new requirements, an optimized data model was designed to reduce the number of needed queries. The web systems were reassembled in a unique system in order to provide an integrated view of the validating process. The server load was minimized by using asynchronous requests from the browser.

  14. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    Science.gov (United States)

    Burghgrave, Blake; ATLAS Collaboration

    2017-10-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database updates can be performed through a custom-made web interface.

  15. Fatalic, a very-front-end Asic for the ATLAS Tile Calorimeter

    CERN Document Server

    Manen, Samuel Pierre; The ATLAS collaboration

    2016-01-01

    Abstract—The ATLAS Collaboration has started a vast program of upgrades in the context of high-luminosity LHC (HLLHC) forseen in 2024. The current readout electronics of every subdetector, including the Tile Calorimeter (TileCal), must be upgraded to comply with the new specifications aiming for the future operating conditions. The ASIC described in this document, named Front-end ATlAs tiLe Integrated Circuit (FATALIC), has been developed to fulfil the requirements of the TileCal upgrade. FATALIC is based on a 130 nm CMOS technology and performs the complete processing of the signal, including amplification, shaping and digitization. The first stage is a current conveyor which splits the input signal into three ranges, allowing to deal with a large dynamic range (from 25 fC up to 1.2 nC). Each current conveyor output is followed by a shaper and a dedicated pipeline 12 bit ADC operating at 40 MHz. Measurements show a non-linearity at the percent level for a typical input charge of interest. The noise of the ...

  16. Data acquisition and processing in the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2016-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The photomultiplier signals will be digitized and transferred to the TileCal PreProcessors (TilePPr) located off-detector for every bunch crossing, requiring a data bandwidth of 80 Tbps. The TilePPr will provide preprocessed information to the first level of trigger and in parallel will store the samples in pipeline memories. The data of the events selected by the trigger system will be transferred to the ATLAS global Data AcQuisition (DAQ) system for further processing. A demonstrator drawer has been built to evaluate the new proposed readout architecture and prototypes of all the components. In the demonstrator, the detector data received in the Til...

  17. The Trigger Readout Electronics for the Phase-1 Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Wolff, Robert; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the shut-down period of 2018-2019 (Phase-I upgrade), will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow a corresponding increase of the trigger rate, an improvement of the trigger system is required. The new trigger signals from the ATLAS Liquid Argon Calorimeter will be arranged in 34000 so-called Super Cells which achieve 5-10 times better granularity than the current system; this improves the background rejection capabilities through more precise energy measurements, and the use of shower shapes to discriminate electrons and photons from jets. The new system will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the back-end using a custom serializer and optical converter with 5.12 Gb/s. To verify the full functionality, a demonstrator set-up has been installed on the A...

  18. Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El-Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Tarrade, F; Wingerter-Seez, I; Zitoun, R; Lanni, F; Ma, H; Rajagopalan, S; Rescia, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Barberio, E; Gao, Y S; Lü, L; Stroynowski, R; Aleksa, Martin; Beck-Hansen, J; Carli, T; Efthymiopoulos, I; Fassnacht, P; Follin, F; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Martin, P; Ohlsson-Malek, F; Saboumazrag, S; Leltchouk, M; Parsons, J A; Seman, M; Simion, S; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Bourdarios, C; Fayard, L; Fournier, D; Graziani, G; Hassani, S; Iconomidou-Fayard, L; Kado, M; Lechowski, M; Lelas, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Camard, A; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, P; Ghazlane, H; Cherkaoui-El-Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindling, J; Lund-Jensen, B; Tayalati, Y

    2006-01-01

    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resoluti...

  19. Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Mori, Tatsuya; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) is foreseen to be upgraded during the shut-down period of 2018-2019 to deliver about 3 times the instantaneous design luminosity. Since the ATLAS trigger system, at that time, will not support such an increase of the trigger rate an improvement of the trigger system is required. The ATLAS LAr Calorimeter readout will therefore be modified and digital trigger signals with a higher spatial granularity will be provided to the trigger. The new trigger signals will be arranged in 34000 Super Cells which achieves a 5-10 better granularity than the trigger towers currently used and allows an improved background rejection. The Super Cell readout is composed of custom developed 12-bit combined SAR ADCs in 130 nm CMOS technology which will be installed on-detector in a radiation environment and digitizes the detector pulses at 40 MHz. The data will be transmitted to the back end using a custom serializer and optical converter applying 5.44 Gb/s optical links. These components are install...

  20. The PreProcessors for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    AUTHOR|(SzGeCERN)713745; The ATLAS collaboration; Castillo, V.; Cerda, L.; Ferrer, A.; Fiorini, L.; Hernandez, Y.; Higon, E.; Moreno, P.; Solans, C.; Valero, A.; Valls, J.A.

    2016-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Hadronic Calorimeter (TileCal) will replace completely front-end and back-end electronics using a new readout architecture. The digitized detector data will be transferred for every beam crossing to the PreProcessors (TilePPr) located in off-detector counting rooms with a total data bandwidth of roughly 80 Tbps. The TilePPr implements increased pipelines memories and must provide pre-processed digital trigger information to Level 0 trigger systems. The TilePPr system represents the link between the front-end electronics and the overall ATLAS data acquisition system. It also implements the interface between the Detector Control System (DCS) and the front-end electronics which is used to control and monitor the high volta...

  1. Functional Super Read Out Driver Demonstrator for the Phase II Upgrade of the Atlas Tile Calorimeter

    CERN Document Server

    Carrió, F; The ATLAS collaboration; Ferrer, A; González, V; Higón, E; Moreno, P; Sanchis, E; Solans, C; Valero, A; Valls, J

    2011-01-01

    This work presents the implementation of a functional super Read Out Driver (sROD) demonstrator for the Phase II Upgrade of the ATLAS Tile Calorimeter (TileCal) in the LHC experiment. The proposed front-end for the Phase II Upgrade communicates with back-end electronics using a multifiber optical connector with a data rate of 57.6 Gbps using the GBT protocol. This functional sROD demonstrator aims to help in the understanding of the problems that could arise in the upgrade of back-end electronics. The demonstrator is composed of three different boards that have been developed in the framework of ATLAS activities: the Optical Multiplexer Board (OMB), the Read-Out Driver (ROD) and the Optical Link Card (OLC). The first two boards, OMB and ROD, are part of the current back-end system where OMB receives two optical fibers with redundant data from front-end, performs online CRC for data and send to ROD the data from the error-free fiber; and ROD is the main element of the back-end electronics and it is responsible...

  2. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00534610; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events even at rather low transverse energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of 1 MHz are planned, combined with longer latencies up to 60 micro-seconds in order to read out the necessary data from all detector channels. Under these conditions, the current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons a replacement of the LAr front-end and back-end readout system is foreseen for all 182,500 readout channels, with the exception of t...

  3. The PreProcessors for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Hadronic Calorimeter (TileCal) will replace completely on- and off-detector electronics using a new read-out architecture. The digitized detector data will be transferred for every beam crossing to the super Read Out Drivers (sRODs) located in off-detector counting rooms with a total data bandwidth of roughly 80 Tbps. The sROD implements increased pipelines memories and must provide pre-processed digital trigger information to Level 0/1 systems. The sROD module represents the link between the on-detector electronics and the overall ATLAS data acquisition system. It also implements the interface between the Detector Control System (DCS) and the on-detector electronics which is used to control and monitor the high voltage...

  4. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00352208

    2016-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC Run 2 conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slow...

  5. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC run II conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slo...

  6. Design of a Portable Test Facility for the ATLAS Tile Calorimeter Front-End Electronics Verification

    CERN Document Server

    Kim, HY; The ATLAS collaboration; Carrio, F; Moreno, P; Masike, T; Reed, R; Sandrock, C; Schettino, V; Shalyugin, A; Solans, C; Souza, J; Suter, R; Usai, G; Valero, A

    2013-01-01

    An FPGA-based motherboard with an embedded hardware processor is used to implement a portable test- bench for the full certification of Tile Calorimeter front-end electronics in the ATLAS experiment at CERN. This upgrade will also allow testing future versions of the TileCal read-out electronics as well. Because of its lightness the new facility is highly portable, allowing on-detector validation using sophisticated algorithms. The new system comprises a front-end GUI running on an external portable computer which controls the motherboard. It also includes several dedicated daughter-boards that exercise the different specialized functionalities of the system. Apart from being used to evaluate different technologies for the future upgrades, it will be used to certify the consolidation of the electronics by identifying low frequency failures. The results of the tests presented here show that new system is well suited for the 2013 ATLAS Long Shutdown. We discuss all requirements necessary to give full confidence...

  7. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354209; The ATLAS collaboration

    2017-01-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline D...

  8. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    Burghgrave, Blake; The ATLAS collaboration

    2016-01-01

    We present an overview of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database during a brief calibration loop between when a run ends and bulk processing begins. Bulk processed data is reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and MC production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database upd...

  9. gFEX, the ATLAS Calorimeter Global Feature Extractor for the Phase-I upgrade of the ATLAS experiment

    CERN Document Server

    Miller, David; The ATLAS collaboration

    2016-01-01

    The Global Feature Extractor (gFEX) module is a component of the Level I trigger system for the ATLAS experiment planned for installation during the Phase I upgrade in 2018. This unique single ATCA board with multiple high speed processors on board will receive coarse-granularity information from all the ATLAS calorimeters enabling the identification in real time of large radius jets for capturing Lorentz-boosted objects such as top quarks, Higgs, Z and W bosons. The gFEX architecture is also suitable for the calculation of global event variables such as missing transverse energy, centrality for heavy ion collisions and event-by-event pile-up subtraction. gFEX will use 3 processor Xilinx Ultra-scale FPGAs for data processing and one single system-on-chip processor, ZYNQ, for configuring all the processor FPGAs and monitoring the board status. The current pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA has been designed for testing and verification. The design of the final gFEX module as well...

  10. Electromagnetic Compatibility of a Low Voltage Power Supply for the ATLAS Tile Calorimeter Front-End Electronics

    CERN Document Server

    Blanchot, Georges; Hruska, I; Korolkov, I Ya; Palan, B; Pontt, J; Toro, A; Usai, G

    2007-01-01

    The front-end electronics of the ATLAS Tile Calorimeter is powered by DC/DC converters that sit close to it. The performance of the detector electronics is constrained by the conducted noise emissions of its power supply. A compatibility limit is defined for the system. The noise susceptibility of the front-end electronics is evaluated, and different solutions to reduce the front-end electronics noise are discussed and tested.

  11. Studies of VCSEL Failures in the Optical Readout Systems of the ATLAS Silicon Trackers and Liquid Argon Calorimeters

    CERN Document Server

    Cooke, Mark S

    2011-01-01

    The readout systems for the ATLAS silicon trackers and liquid argon calorimeters utilize vertical-cavity surface-emitting laser diodes to communicate between on and off detector readout components. A number of these VCSEL devices have failed well before their expected lifetime. We summarize the failure history and present what has been learned thus far about failure mechanisms and the dependence of the lifetime on environmental conditions.

  12. The design of a fast Level-1 track trigger for the high luminosity upgrade of ATLAS.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00413032; The ATLAS collaboration

    2016-01-01

    The high/luminosity upgrade of the LHC will increase the rate of the proton-proton collisions by approximately a factor of 5 with respect to the initial LHC-design. The ATLAS experiment will upgrade consequently, increasing its robustness and selectivity in the expected high radiation environment. In particular, the earliest, hardware based, ATLAS trigger stage ("Level 1") will require higher rejection power, still maintaining efficient selection on many various physics signatures. The key ingredient is the possibility of extracting tracking information from the brand new full-silicon detector and use it for the process. While fascinating, this solution poses a big challenge in the choice of the architecture, due to the reduced latency available at this trigger level (few tens of micro-seconds) and the high expected working rates (order of MHz). In this paper, we review the design possibilities of such a system in a potential new trigger and readout architecture, and present the performance resulting from a d...

  13. ATLAS High-Level Trigger Performance for Calorimeter-Based Algorithms in LHC Run-I

    CERN Document Server

    Mann, A; The ATLAS collaboration

    2013-01-01

    The ATLAS detector operated during the three years of the Run-I of the Large Hadron Collider collecting information on a large number of proton-proton events. One the most important results obtained so far is the discovery of one Higgs boson. More precise measurements of this particle must be performed as well as there are other very important physics topics still to be explored. One of the key components of the ATLAS detector is its trigger system. It is composed of three levels: one (called Level 1 - L1) built on custom hardware and the two others based on software algorithms - called Level 2 (L2) and Event Filter (EF) – altogether referred to as the ATLAS High Level Trigger. The ATLAS trigger is responsible for reducing almost 20 million of collisions per second produced by the accelerator to less than 1000. The L2 operates only in the regions tagged by the first hardware level as containing possible interesting physics while the EF operates in the full detector, normally using offline-like algorithms to...

  14. The development of the Global Feature Extractor for the LHC Run-3 upgrade of the ATLAS L1 Calorimeter trigger system

    CERN Document Server

    Wu, Weihao; The ATLAS collaboration; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Tang, Shaochun; ATLAS TDAQ Collaboration

    2016-01-01

    The Global Feature Extractor (gFEX) is one of several modules in LHC Run-3 upgrade of Level 1 Calorimeter (L1Calo) trigger system in the ATLAS experiment. It is a single Advanced Telecommunications Computing Architecture (ATCA) module for large-area jet identification with three Xilinx UltraScale FPGAs for data processing and a system-on-chip (SoC) FPGA for control and monitoring. A pre-prototype board has been designed to verify all functionalities. The performance of this pre-prototype has been tested and evaluated. As a major achievement, the high-speed links in FPGAs are stable at 12.8 Gb/s with Bit Error Ratio (BER) < 10-15 (no error detected). The low-latency parallel GPIO (General Purpose I/O) buses for communication between FPGAs are stable at 960 Mb/s. Besides that, the peripheral components of Soc FPGA have also been verified. After laboratory tests, the link speed test with LAr (Liquid Argon Calorimeter) Digital Processing Blade (LDPB) AMC card has been carried out at CERN for determination of t...

  15. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T.P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart-Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso-Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Di Girolamo, B; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, C; Drohan, J; Ebenstein, W L; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Idrissi Fakhr-Eddine, A; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Glonti, G; Gottfert, T.; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Hartel, R.; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, J D; Hansen, P H; Hara, K; Harvey, A., Jr; Hawkings, R J; Heinemann, F.E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P.D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K.; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Loureiro, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i Garcia, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E.W J; Munar, A; Myagkov, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitski, S; Pasqualucci, E; Passmore, S M; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P.A.; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Rohne, O.; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C.Santamarina; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S.Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C.J.W P; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoz Unel, M.; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; de Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiesmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  16. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O. K.; Banfi, D.; Baron, S.; Barr, A. J.; Beccherle, R.; Beck, H. P.; Belhorma, B.; Bell, P. J.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H. O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A. I.; Fabich, A.; Facius, K.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B. J.; Gameiro, S.; Gan, K. K.; Garcia, R.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Goettfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.-J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Harvey, A., Jr.; Hawkings, R. J.; Heinemann, F. E. W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J. C.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klingenberg, R.; Klinkby, E. B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.-C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C. G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Loureiro, K. F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Garcia, S. Marti i.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K. W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Moyse, E. W. J.; Munar, A.; Myagkov, A.; Nadtochi, A. V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S. M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Phillips, P. W.; Pilcher, J.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P. A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Timmermans, C. J. W. P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J. A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J. B.; Volpi, M.; Anh, T. Vu; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-04-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  17. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)758889; The ATLAS collaboration

    2016-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  18. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  19. Test of Sliding Window Algorithm fir Jets Reconstruction in ATLAS Hadronic Calorimeters

    CERN Document Server

    Mehdiyev, R; Nevski, P; Salihagic, D

    1999-01-01

    Test of the ``sliding window'' jet finding algorithm has been perfor med for reconstruction of back-to-back jets in barrel and end-cap regions of the ATLAS hadronic calorimeters. Fully simulated events have been used for var ious jet energies and pseudorapidities in E (jet)=20 - 2000 GeV and eta = 0.6 - 3.05 range. The transverse energy threshold for the jet candidates was found to be the most sensitive parameter of the algorithm. The values of this parameter has been selected to maximise jet reconstruction efficiency in a window of 0.3X0.3 radians both in pseudorapidity and azimuthal angle. Plots are given to demonstrate the dependence of the optimal transverse energy threshold on the jet total energy, transverse ener gy and pseudorapidity. It is shown that the 90 - 95 % efficiency of a single jet reconstruc tion is achievable by the proper choice of the transverse energy threshold. For this range of jet energies and pseudorapidities the value of the transverse energy threshold varies between 15 - 35 % of th...

  20. The New Front-End Electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2015-01-01

    We present the plans, design, and performance results to date ofor the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increase in beam energy and luminosity planned for the LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the front-end boards that connect directly to the photo-multiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high-speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low-voltage power supply. There are different options for implementing these subcompone...

  1. The New Front-End Electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00029377; The ATLAS collaboration

    2015-01-01

    We present the design for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increase in beam energy and luminosity planned for the LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the Front End Boards that connect directly to the photo-multiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high-speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low-voltage power supply. There are different options for implementing these subcomponents, which will be described. The new sys...

  2. Latest Frontier Technology and Design of the ATLAS Calorimeter Trigger Board Dedicated to Jet Identification

    CERN Document Server

    Rocco, Elena; The ATLAS collaboration

    2016-01-01

    To cope with the enhanced luminosity of the beam delivered by the Large Hadron Collider (LHC) in 2020, the A Thoroidal LHC ApparatuS (ATLAS) experiment has planned a major upgrade. As part of this, the trigger at Level-I based on calorimeter data, will be upgraded to exploit fine-granularity readout using a new system of Feature Extractors, which differ in the physics objects for the trigger selection. The presentation is focused on the jet Feature EXtractor (jFEX) prototype, one of the three Feature Extractors. In few hundreds nanoseconds latency budget, up to 2 TB/s have to be processed to provide jet identification (even large area jets) and measurements of global variables. This requires the use of large Field Programmable Gate Array (FPGA) with the largest Multi Giga Transceiver available on the market. The jFEX board prototype hosts four large FPGAs from the Xilinx Ultrascale family with 120 Multi Giga Transceivers each, connected to 24 opto-electrical devices, resulting in a densely populated high spee...

  3. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests where performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of...

  4. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    INSPIRE-00106910

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  5. Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    AUTHOR|(SzGeCERN)713745; The ATLAS collaboration

    2016-01-01

    The Hadronic Tile Calorimeter (TileCal) detector is one of the several subsystems composing the ATLAS experiment at the Large Hadron Collider (LHC). The LHC upgrade program plans an increase of order five times the LHC nominal instantaneous luminosity culminating in the High Luminosity LHC (HL-LHC). In order to accommodate the detector to the new HL-LHC parameters, the TileCal read out electronics is being redesigned introducing a new read out strategy with a full-digital trigger system. In the new read out architecture, the front-end electronics allocates the MainBoards and the DaughterBoards. The MainBoard digitizes the analog signals coming from the PhotoMultiplier Tubes (PMTs), provides integrated data for minimum bias monitoring and includes electronics for PMT calibration. The DaughterBoard receives and distributes Detector Control System (DCS) commands, clock and timing commands to the rest of the elements of the front-end electronics, as well as, collects and transmits the digitized data to the back-e...

  6. A NEW ELECTRONIC BOARD TO DRIVE THE LASER CALIBRATION SYSTEM OF THE ATLAS HADRON CALORIMETER

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00086824; The ATLAS collaboration

    2016-01-01

    The LASER calibration system of the ATLAS hadron calorimeter aims at monitoring the ~10000 PMTs of the TileCal. The LASER light injected in the PMTs is measured by sets of photodiodes at several stages of the optical path. The monitoring of the photodiodes is performed by a redundant internal calibration system using an LED, a radioactive source, and a charge injection system. The LASer Calibration Rod (LASCAR) electronics card is a major component of the LASER calibration scheme. Housed in a VME crate, its main components include a charge ADC, a TTCRx, a HOLA part, an interface to control the LASER, and a charge injection system. The 13 bits ADC is a 2000pc full-scale converter that processes up to 16 signals stemming from 11 photodiodes, 2 PMTs, and 3 charge injection channels. Two gains are used (x1 and x4) to increase the dynamic range and avoid a saturation of the LASER signal for high intensities. The TTCRx chip (designed by CERN) retrieves LHC signals to synchronize the LASCAR card with the collider. T...

  7. A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2011-01-01

    The current front-end electronics of the ATLAS Liquid Argon calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. This upgrade calls for an optical link system of 100 Gbps per front-end board (FEB). A high speed, low power, radiation tolerant serializer is the critical component in this system. In this paper, we present the design and test results of a single channel 16:1 serializer and the design of a double-channel 16:1 serializer. Both designs are based on a commercial 0.25 μm silicon-on-sapphire CMOS technology. The single channel serializer consists of a serializing unit, a PLL clock generator and a line driver implemented in current mode logic (CML). The serializing unit multiplexes 16 bit parallel LVDS data into 1-bit width serial CMOS data. The serializing unit is composed of a cascade of 2:1 multiplexing circuits based on static D-flip-fl...

  8. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  9. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Ma, Hong; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34/cm^2/s. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger chan...

  10. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  11. The sROD Module for the ATLAS Tile Calorimeter Phase-2 Upgrade Demonstrator

    CERN Document Server

    Carrió, F; The ATLAS collaboration; Castillo, V; Hernández, Y; Higón, E; Fiorini, L; Mellado, B; March, L; Moreno, P; Reed, R; Solans, C; Valero, A; Valls, J

    2013-01-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade phase-2, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting room. Thus, the back-end system will provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project has been envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be upgraded with the new electronics during 2014 to evaluate the proposed architecture in real conditions.The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes...

  12. The sROD Module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    CERN Document Server

    Carrio, F; Ferrer, A; Fiorini, L; Hernandez, Y; Higon, E; Mellado, B; March, L; Moreno, P; Reed, R; Solans, C; Valero, A; Valls, J A

    2014-01-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will provide digital calibrated information with en- hanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be upgraded with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II The sROD module is des...

  13. A GRID-like computing proposal for the Tile calorimeter of the ATLAS experiment

    CERN Document Server

    Maidantchik, C; Lanza, M L D; Santelli, R; Damazio, D O

    2004-01-01

    For the hadronic calorimeter of the ATLAS detector, the TileTransfer has been developed as a Web system to facilitate the transferring of data that are produced during calibration testbeam periods. It automatically searches, stages and provides a link to download the selected data stored at a remote file center. The system has an interface with the Run Info Database, which contains the description of all test beam runs. In order to optimize the file transmission, the system is connected to a central repository that stores information of the latest accesses. Once a client host connects to the TileTransfer, it can become a file server to other users. At the servers, the selected file is split into several pieces and each piece is sent in parallel and built up together in the final destination. TileTransfer allows that the rile administration be geographically distributed, avoiding an overloaded at the central repository. We also foresee the integration with analysis tools by remote Web access and the publicatio...

  14. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    CERN Document Server

    Rutherfoord, J; The ATLAS collaboration

    2012-01-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 10^34 cm^-2 s^-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals w...

  15. Development of an ADC Radiation Tolerance Characterization System for the Upgrade of the ATLAS LAr Calorimeter

    CERN Document Server

    INSPIRE-00445642; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2016-01-01

    ATLAS LAr calorimeter will perform its Phase-I upgrade during the long shut down (LS2) in 2018, a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multichannel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for LTDB. In order to evaluate the radiation tolerance of these back up commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, which has ADC driver and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as DAQ board. The data from ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed wit...

  16. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high moment...

  17. Instrumentation of a Level-1 Track Trigger in the ATLAS detector for the High Luminosity LHC

    CERN Document Server

    Boisvert, V; The ATLAS collaboration

    2012-01-01

    One of the main challenges in particle physics experiments at hadron colliders is to build detector systems that can take advantage of the future luminosity increase that will take place during the next decade. More than 200 simultaneous collisions will be recorded in a single event which will make the task to extract the interesting physics signatures harder than ever before. Not all events can be recorded hence a fast trigger system is required to select events that will be stored for further analysis. In the ATLAS experiment at the Large Hadron Collider (LHC) two different architectures for accommodating a level-1 track trigger are being investigated. The tracker has more readout channels than can be readout in time for the trigger decision. Both architectures aim for a data reduction of 10-100 in order to make readout of data possible in time for a level-1 trigger decision. In the first architecture the data reduction is achieved by reading out only parts of the detector seeded by a high rate pre-trigger ...

  18. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  19. Top quark studies with Atlas at the LHC. Electromagnetic calorimeter commissioning; Etude du quark top avec Atlas au LHC. Mise en route du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Resende Vaz de Melo Xavier, B

    2007-05-15

    The first proton-proton collisions in the Large Hadron Collider at CERN will take place on 2007. It aims at understanding the origins of mass. and it will also look for new physics. The ATLAS experiment will exploit all those physics potentialities. using a multilayer generalist detector. Quark top studies will be an important step in ATLAS physics program: its properties may reveal hints of new phenomena. One way to look for new physics is through quark top and W boson polarizations. which are studied here. This detailed simulation study has confirmed previous fast simulation results including extensive systematics estimation. ATLAS should thus yield a precision of a few percents with 10 fb{sup -1} of data. that is a year of LHC working. This precision is sufficient to select among several new physics models. Among ATLAS subsystems, the electromagnetic calorimeter plays a crucial role in the characterisation of electrons and photons. which are used in particular for the Higgs boson search. This document deals with the calorimeter commissioning as the time of the first collisions approaches. The detector itself and its electronics will be described, as well as its installation and calibration. Cosmic muons observation will then be presented. as the first overall test of the reading and reconstruction electronics chain in actual working conditions. (author)

  20. Performance of a Remote High Voltage Power Supply for the Phase II Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Vazeille, Francois; The ATLAS collaboration

    2015-01-01

    The experience gained in the working of the present High Voltage system of the Tile calorimeter of the ATLAS detector and the new HL-LHC constraints, in particular the increase of the radiation, lead to the proposal of moving the embedded regulation system to be a remote system in the counting room, by adding easily new functionalities. This system is using the same regulation scheme as the current one and distributes the individual High Voltage settings with multi-conductor cables. The tests show that it reaches the same performance in terms of regulation stability and noise, with a permanent access to the electronics.

  1. Reliability Analysis of a Low Voltage Power Supply Design for the Front-End Electronics of the Atlas Tile Calorimeter

    CERN Document Server

    Drake, G; The ATLAS collaboration; Gopalakrishnan, A; Mahadik, S; Mellado, B; Proudfoot, J

    2012-01-01

    –We present a reliability study on a new low voltage power supply design for the front-end electronics of the ATLAS Tile Calorimeter. Using the reliability data from the manufacturers of the components, we derive an estimate of the expected number of failures per year during the normal operating lifetime of the power supply bricks. This may be useful for other power supply designs or front-end electronics designs where high reliability is required. We discuss the factors in the design that limit reliability, and present conclusions for improvements to the power distribution system for the LHC Phase 2 upgrade.

  2. Reliability Analysis of a Low Voltage Power Supply Design for the Front-End Electronics of the ATLAS Tile Calorimeter

    CERN Document Server

    Senthilkumaran, A; The ATLAS collaboration; Gopalakrishnan, A; Mahadik, S; Drake, G; Proudfoot, J

    2012-01-01

    We present a reliability study on a new low voltage power supply design for the front-end electronics of the ATLAS Tile Calorimeter. Using the reliability data from the manufacturers of the components, we derive an estimate of the expected number of failures per year during the normal operating lifetime of the power supply bricks. We will illustrate the technique, which may be useful for other power supply designs or front-end electronics designs where high reliability is required. We discuss the factors in the design that limit reliability, and present our preliminary design work for improvements in the power distribution system for the LHC Phase 2 upgrade.

  3. Radiation Qualification of Electronics Components used for the ATLAS Level-1 Muon Endcap Trigger System

    CERN Document Server

    Ichimiya, R; Arai, Y; Ikeno, M; Sasaki, O; Ohshita, H; Takada, N; Hane, Y; Hasuko, K; Nomoto, H; Sakamoto, H; Shibuya, K; Takemoto, T; Fukunaga, C; Toshima, K; Sakuma, T; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference

    2004-01-01

    The ATLAS end-cap muon level-1 trigger system is divided into three parts; one off-detector part and two on-detector parts. Application specific IC (ASIC) and anti-fuse FPGA (Field Programmable Gate Array) are actively used in on-detector parts. Data transfer with Low-Voltage Data Signaling serial link (LVDS link) is used between two on-detector parts (15m apart) and G-Link (Hewlett-Packard 1.4Gbaud high speed data link) with optical transmission(90m) is used from one of the on-detector parts to the off-detector part. These components will suffer for ten years the radiation of approximately 200Gy of total ionizing dose (TID) and a hadron fluence of 2x10^10 hadrons/c^m2. We have investigated systematically the radiation susceptibility to both total ionizing dose and single event effects for ASIC, FPGA, and Commercial Off The Shelf (COTS) serializer and deserializer chipsets for LVDS (two candidates) and G-Link (one) together. In this presentation we report the result of irradiation tests for these devices and ...

  4. Slice Test Results of the ATLAS Barrel Muon Level-1 Trigger

    CERN Document Server

    Aielli, G; Alviggi, M G; Bocci, V; Brambilla, Elena; Canale, V; Caprio, M A; Cardarelli, R; Cataldi, G; De Asmundis, R; Della Volpe, D; Di Ciaccio, A; Di Simone, A; Distante, L; Gorini, E; Grancagnolo, F; Iengo, P; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Salamon, A; Santonico, R; Sekhniaidze, G; Severi, M; Spagnolo, S; Vari, R; Veneziano, Stefano; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The muon spectrometer of the ATLAS experiment makes use of the Resistive Plate Chambers detectors for particle tracking in the barrel region. The level-1 muon trigger system has to measure and discriminate muon transverse momentum, perform a fast and coarse tracking of the muon candidates, associate them to the bunch crossing corresponding to the event of interest, measure the second coordinate in the non-bending projection. The on-detector electronics first collects front-end signals coming from the two inner RPC stations on the low-pT PAD boards, each one covering a region of DetaxDphi=0.2x0.2, and hosting four Coincidence Matrix ASICs. Each CMA performs the low-pT trigger algorithm and data readout on a region of DetaxDphi=0.2x0.1. Data coming from the four CMAs are assembled by the low-pT PAD logic. Each low-pT PAD board sends data to the corresponding high-pT PAD boards, located on the outer RPC station. Four CMA on each board make use of the low-pT trigger result and of the front-end signals coming from...

  5. The coincidence matrix ASIC of the level-1 muon barrel trigger of the ATLAS experiment

    CERN Document Server

    Bocci, V; Salamon, A; Vari, R; Veneziano, Stefano

    2003-01-01

    The ATLAS barrel level-1 muon trigger processes hit information from the resistive plate chamber detector, identifying candidate muon tracks and assigning them to a programmable p/sub T/ range and to a unique bunch crossing number. The trigger system uses up to seven detector layers and seeks hit patterns compatible with muon tracks in the bending and nonbending projection. The basic principle of the algorithm is to demand a coincidence of hits in the different chamber layers within a path. The width of the road is related to the p/sub T / threshold to be applied. The system is split into an on-detector and an off-detector part. The on-detector electronics reduces the information from about 350 k channels to about 400 32-bit data words sent via optical fiber to the so-called sector logic (SL). The off- detector SL electronics collects muon candidates and associates them to detector regions-of-interest of Delta eta * Delta Phi of 0.1*0.1. The core of the on-detector electronics is the coincidence matrix ASIC (...

  6. Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS<