WorldWideScience

Sample records for atlas experimental area

  1. 17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

  2. 4th July 2011 - Russian Deputy Director-General Director of Directorate for Scientific and Technical Complex ROSATOM V. Pershukov in the ATLAS underground experimental area with Adviser T. Kurtyka, ATLAS Technical Coordinator M. Nessi and ATLAS Russian users.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    4th July 2011 - Russian Deputy Director-General Director of Directorate for Scientific and Technical Complex ROSATOM V. Pershukov in the ATLAS underground experimental area with Adviser T. Kurtyka, ATLAS Technical Coordinator M. Nessi and ATLAS Russian users.

  3. 16 February 2012 - Chinese Taipei Ambassador to Switzerland F. Hsieh in the ATLAS visitor centre, ATLAS experimental area and LHC tunnel at Point 1 with Collaboration Deputy Sookesperson A. Lankford, throughout accompanied by International Relations Adviser R. Voss.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    16 February 2012 - Chinese Taipei Ambassador to Switzerland F. Hsieh in the ATLAS visitor centre, ATLAS experimental area and LHC tunnel at Point 1 with Collaboration Deputy Sookesperson A. Lankford, throughout accompanied by International Relations Adviser R. Voss.

  4. 14 December 2011 - Czech Republic Delegation to CERN Council and Finance Committees visiting ATLAS experimental area, LHC tunnel and ATLAS visitor centre with Former Collaboration Spokesperson P. Jenni, accompanied by Physicist R. Leitner and Swiss student A. Lister.

    CERN Multimedia

    Estelle Spirig

    2011-01-01

    14 December 2011 - Czech Republic Delegation to CERN Council and Finance Committees visiting ATLAS experimental area, LHC tunnel and ATLAS visitor centre with Former Collaboration Spokesperson P. Jenni, accompanied by Physicist R. Leitner and Swiss student A. Lister.

  5. 9 July 2008 - Microsoft Co-Founder P. Allen visiting ATLAS control room and underground experimental area with Adviser J. Ellis and IT Department Head W. von Rüden.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    9 July 2008 - Microsoft Co-Founder P. Allen visiting ATLAS control room and underground experimental area with Adviser J. Ellis and IT Department Head W. von Rüden and guided by ATLAS Collaboration Users S. Goldfarb, P. Nevski and L. Price.

  6. 16 December 2011 - Israeli Minister of Industry, Trade and Labour S.Simhon visiting ATLAS undeground area, ATLAS visitor centre and LHC tunnel with Senior Physicist G. Mikenberg. ATLAS Collaboration Former Spokesperson is also present.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Israeli minister of industry, trade and labour, Shalom Simhon, was welcomed in the ATLAS visitor centre before he toured the ATLAS underground experimental area, where he could see the ATLAS detector. He also had a chance to see the LHC tunnel and the CERN Control Centre.

  7. ATLAS experimental equipment. November 1983 workshop and present status

    International Nuclear Information System (INIS)

    1984-01-01

    The latest workshop was held in November 1983 with the purpose of presenting an overview of the experimental stations planned for ATLAS, describing the current status of each individual apparatus, soliciting final input on devices of the first phase (i.e. on those that will be ready when beams from ATLAS become available in late Spring of 1985), and discussing and collecting new ideas on equipment for the second phase. There were short presentations on the status of the various projects followed by informal discussions. The presentations mainly concentrated on new equipment for target area III, but included some descriptions of current apparatus in target area II that might also be of interest for experiments with the higher-energy beams available in area III. The meeting was well attended with approx. 50 scientists, approximately half of them from institutions outside Argonne. The present proceedings summarize the presentations and discussions of this one-day meeting. In addition we take the opportunity to include information about developments since this meeting and an update of the current status of the various experimental stations. We would like to emphasize again that outside-user input is extremely welcome

  8. 27 February 2012 - German Secretary General, Volkswagen Foundation, W. Krull signing the guest book with Director for Administration and general infrastructure S. Lettow and International Relations Adviser R. Voss; in the ATLAS visitor centre and ATLAS underground experimental area with Collaboration Member T. Wengler.

    CERN Document Server

    Laurent Egli

    2012-01-01

    27 February 2012 - German Secretary General, Volkswagen Foundation, W. Krull signing the guest book with Director for Administration and general infrastructure S. Lettow and International Relations Adviser R. Voss; in the ATLAS visitor centre and ATLAS underground experimental area with Collaboration Member T. Wengler.

  9. 14 February 2012 - Ambassadors from Algeria, Brunei Darussalam, Canada, Chad, Tunisia, Permanent Representatives to the United Nations Office at Geneva in the LHC tunnel at Point 1, ATLAS visitor centre, and ATLAS underground experimental area, throughout accompanied by Advisers P. Fassnacht, E. Tsesmelis and R. Voss

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    14 February 2012 - Ambassadors from Algeria, Brunei Darussalam, Canada, Chad, Tunisia, Permanent Representatives to the United Nations Office at Geneva in the LHC tunnel at Point 1, ATLAS visitor centre, and ATLAS underground experimental area, throughout accompanied by Advisers P. Fassnacht, E. Tsesmelis and R. Voss

  10. 17 May 2013 - Honourable Minister of Communications, Science and Technology of the Kingdom of Lesotho T. Mokhosi visiting the ATLAS experimental area with CERN International Adviser for Turkey R. Voss.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 May 2013 - Honourable Minister of Communications, Science and Technology of the Kingdom of Lesotho T. Mokhosi visiting the ATLAS experimental area with CERN International Adviser for Turkey R. Voss.

  11. 24 January 2011 - President of the Deutsche Forschungsgemeinschaft M. Kleiner in the ATLAS visitor centre and underground experimental area with Former Spokesperson P. Jenni, accompanied by P. Mättig and Adviser R. Voss.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    24 January 2011 - President of the Deutsche Forschungsgemeinschaft M. Kleiner in the ATLAS visitor centre and underground experimental area with Former Spokesperson P. Jenni, accompanied by P. Mättig and Adviser R. Voss.

  12. EnviroAtlas - Potential Wetland Areas - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Potential Wetland Areas (PWA) dataset shows potential wetland areas at 30-meter resolution. Beginning two centuries ago, many wetlands were turned...

  13. 30 January 2012 - Danish National Research Foundation Chairman of board K. Bock and University of Copenhagen Rector R. Hemmingsen visiting ATLAS underground experimental area, CERN Control Centre and ALICE underground experimental area, throughout accompanied by J. Dines Hansen and B. Svane Nielsen; signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss.

    CERN Document Server

    Jean-Claude Gadmer

    2012-01-01

    30 January 2012 - Danish National Research Foundation Chairman of board K. Bock and University of Copenhagen Rector R. Hemmingsen visiting ATLAS underground experimental area, CERN Control Centre and ALICE underground experimental area, throughout accompanied by J. Dines Hansen and B. Svane Nielsen; signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss.

  14. 6 June 2008 - Chancellor F. Tomàs Vert, University of Valencia, visiting ATLAS control room and experimental area with Collaboration Spokesperson P. Jenni.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    6 June 2008 - Chancellor F. Tomàs Vert, University of Valencia, visiting ATLAS control room and experimental area with Collaboration Spokesperson P. Jenni. Other participants: Prof. Francisco José Botella, Director, Instituto de Fisica Corpuscular, University of València and CSIC Prof. José Peñarrocha, Dean, Faculty of Physics Prof. Antonio Ferrer, Instituto de Fisica Corpuscular, University of València and CSIC Prof. Antonio Pich, University of València, Member of IFIC (CSIC - Univ. València), Coordinator of CPAN, Spanish National Centre for Particle, Astroparticle and Nuclear Physics.

  15. Experimental evaluation of job provenance in ATLAS environment

    International Nuclear Information System (INIS)

    Krenek, A; Sitera, J; Chudoba, J; Dvorak, F; Filipovic, J; KmunIcek, J; Matyska, L; Mulas, M; Ruda, M; Sustr, Z; Campana, S; Molinari, E; Rebatto, D

    2008-01-01

    Grid middleware stacks, including gLite, matured into the state of being able to process up to millions of jobs per day. Logging and Bookkeeping, the gLite job-tracking service, keeps pace with this rate; however, it is not designed to provide a long-term archive of information on executed jobs. ATLAS - representative of a large user community - addresses this issue with its own job catalogue (ProdDB). Development of such a customized service, not easily reusable, took considerable effort which is not affordable by smaller communities. On the contrary, Job Provenance (JP), a generic gLite service designed for long-term archiving of information on executed jobs focusing on scalability, extensibility, uniform data view, and configurability, allows more specialized catalogues to be easily built. We present the first results of an experimental JP deployment for the ATLAS production infrastructure where a JP installation was fed with a part of ATLAS jobs, and also stress tested with real production data. The main outcome of this work is a demonstration that JP can complement large-scale application-specific job catalogue services, while serving a similar purpose where there are none available

  16. 18 December 2012 -Portuguese President of FCT M. Seabra visiting the Computing Centre with IT Department Head F. Hemmer, ATLAS experimental area with Collaboration Spokesperson F. Gianotti and A. Henriques Correia, in the LHC tunnel at Point 2 and CMS experimental area with Deputy Spokesperson J. Varela, signing an administrative agreement with Director-General R. Heuer; LIP President J. M. Gago and Delegate to CERN Council G. Barreia present.

    CERN Multimedia

    Samuel Morier-Genoud

    2012-01-01

    18 December 2012 -Portuguese President of FCT M. Seabra visiting the Computing Centre with IT Department Head F. Hemmer, ATLAS experimental area with Collaboration Spokesperson F. Gianotti and A. Henriques Correia, in the LHC tunnel at Point 2 and CMS experimental area with Deputy Spokesperson J. Varela, signing an administrative agreement with Director-General R. Heuer; LIP President J. M. Gago and Delegate to CERN Council G. Barreia present.

  17. 19 August 2013 - German Member of the Parliament of North Rhine-Westphalia M.-S. Abel MdL visiting the ATLAS experimental area with Senior physicist C. Rembser and German members of the collaboration B. Heinemann with G. Gaycken and D. Hirschbuehl.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 August 2013 - German Member of the Parliament of North Rhine-Westphalia M.-S. Abel MdL visiting the ATLAS experimental area with Senior physicist C. Rembser and German members of the collaboration B. Heinemann with G. Gaycken and D. Hirschbuehl.

  18. 28 August 2013 - Director of Technical Quality Management Head of ESTEC Establishment European Space Agency F. Ongaro visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and Technology Department J.-P. Tock; visiting the ATLAS experimental area with ATLAS Deputy Spokesperson T. Wengler and signing the guest book with CERN Director-General R. Heuer. Accompanied throughout by F. Bordry and V. Parma.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    28 August 2013 - Director of Technical Quality Management Head of ESTEC Establishment European Space Agency F. Ongaro visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and Technology Department J.-P. Tock; visiting the ATLAS experimental area with ATLAS Deputy Spokesperson T. Wengler and signing the guest book with CERN Director-General R. Heuer. Accompanied throughout by F. Bordry and V. Parma.

  19. Preparing an ATLAS toroid magnet end-cap for lowering

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.

  20. Examining geographic patterns of mortality: the atlas of mortality in small areas in Spain (1987-1995).

    Science.gov (United States)

    Benach, Joan; Yasui, Yutaka; Borrell, Carme; Rosa, Elisabeth; Pasarín, M Isabel; Benach, Núria; Español, Esther; Martínez, José Miguel; Daponte, Antonio

    2003-06-01

    Small-area mortality atlases have been demonstrated to be a useful tool for both showing general geographical patterns in mortality data and identifying specific high-risk locations. In Spain no study has so far systematically examined geographic patterns of small-area mortality for the main causes of death. This paper presents the main features, contents and potential uses of the Spanish Atlas of Mortality in small areas (1987-1995). Population data for 2,218 small areas were drawn from the 1991 Census. Aggregated mortality data for 14 specific causes of death for the period 1987-1995 were obtained for each small area. Empirical Bayes-model-based estimates of age-adjusted relative risk were displayed in small-area maps for each cause/gender/age group (0-64 or 65 and over) combination using the same range of values (i.e. septiles) and colour schemes. The 'Spanish Atlas of Mortality' includes multiple choropleth (area-shaded) small-area maps and graphs to answer different questions about the data. The atlas is divided into three main sections. Section 1 includes the methods and comments on the main maps. Section 2 presents a two-page layout for each leading cause of death by gender including 1) a large map with relative risk estimates, 2) a map that indicates high- and low-risk small areas, 3) a graph with median and interquartile range of relative risk estimates for 17 large regions of Spain, and 4) relative-risk maps for two age groups. Section 3 provides specific information on the geographical units of analysis, statistical methods and other supplemental maps. The 'Spanish Atlas of Mortality' is a useful tool for examining geographical patterns of mortality risk and identifying specific high-risk areas. Mortality patterns displayed in the atlas may have important implications for research and social/health policy planning purposes.

  1. 13th February 2012 - German CEO Barmenia Insurance Group and Chair of the Hochschulrat Board of Governors of the Bergische Universitaet Wuppertal J. Beutelmann visiting ATLAS experimental area and signing the guest book with CERN Director-General R. Heuer and Advise R. Voss.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    13th February 2012 - German CEO Barmenia Insurance Group and Chair of the Hochschulrat Board of Governors of the Bergische Universitaet Wuppertal J. Beutelmann visiting ATLAS experimental area and signing the guest book with CERN Director-General R. Heuer and Advise R. Voss.

  2. 14 February 2012 - Vice-President of the Senate of the Parliament of the Czech Republic A. Gajduskova signing the guest book with CERN Director-General R. Heuer; visiting ATLAS experimental area with Collaboration Spokesperson F. Gianotti. Ambassador Sequensova to the UN accompanies the Vice-President.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    Vice-president of the Senate of the Parliament of the Czech Republic, Alena Gajduskova was welcomed to CERN by Rolf Heuer, CERN’s director-general, on 14 and 15 February. Her time at CERN included the ATLAS Visitor Centre and underground experimental area, the LHC tunnel, the LHC superconducting-magnet test hall and the ALICE underground experimental area. She also heard a presentation on the LHC Computing Grid Project at CERN’s Computer Centre.

  3. 09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

  4. EnviroAtlas - Candidate Areas for Ecological Restoration for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the candidate areas for ecological restoration, identified as close but geographically disjunct vegetated regions. Ecological...

  5. The PowerAtlas: a power and sample size atlas for microarray experimental design and research

    Directory of Open Access Journals (Sweden)

    Wang Jelai

    2006-02-01

    Full Text Available Abstract Background Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. Results To address this challenge, we have developed a Microrarray PowerAtlas 1. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO. The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC. Conclusion This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes.

  6. Experimental limits from ATLAS on Standard Model Higgs production.

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL

  7. 24 February 2012 - Polish Vice-Rectors AGH University of Science and Technology Cracow visiting the ATLAS underground experimental area with Former Collaboration Spokesperson P. Jenni; Vice Rector J. Lis signs a collaboration agreement with A. Unnervik; Adviser T. Kurtyka and A. Siemko accompany the delegation throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    24 February 2012 - Polish Vice-Rectors AGH University of Science and Technology Cracow visiting the ATLAS underground experimental area with Former Collaboration Spokesperson P. Jenni; Vice Rector J. Lis signs a collaboration agreement with A. Unnervik; Adviser T. Kurtyka and A. Siemko accompany the delegation throughout.

  8. 16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

    CERN Document Server

    Anna Pantelia

    2013-01-01

    16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

  9. EnviroAtlas - Potential Wetland Areas - Contiguous United States Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Potential...

  10. Distributed processing and analysis of ATLAS experimental data

    CERN Document Server

    Barberis, D; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is taking data steadily since Autumn 2009, collecting close to 1 fb-1 of data (several petabytes of raw and reconstructed data per year of data-taking). Data are calibrated, reconstructed, distributed and analysed at over 100 different sites using the World-wide LHC Computing Grid and the tools produced by the ATLAS Distributed Computing project. In addition to event data, ATLAS produces a wealth of information on detector status, luminosity, calibrations, alignments, and data processing conditions. This information is stored in relational databases, online and offline, and made transparently available to analysers of ATLAS data world-wide through an infrastructure consisting of distributed database replicas and web servers that exploit caching technologies. This paper reports on the experience of using this distributed computing infrastructure with real data and in real time, on the evolution of the computing model driven by this experience, and on the system performance during the first...

  11. Distributed processing and analysis of ATLAS experimental data

    CERN Document Server

    Barberis, D; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is taking data steadily since Autumn 2009, and collected so far over 5 fb-1 of data (several petabytes of raw and reconstructed data per year of data-taking). Data are calibrated, reconstructed, distributed and analysed at over 100 different sites using the World-wide LHC Computing Grid and the tools produced by the ATLAS Distributed Computing project. In addition to event data, ATLAS produces a wealth of information on detector status, luminosity, calibrations, alignments, and data processing conditions. This information is stored in relational databases, online and offline, and made transparently available to analysers of ATLAS data world-wide through an infrastructure consisting of distributed database replicas and web servers that exploit caching technologies. This paper reports on the experience of using this distributed computing infrastructure with real data and in real time, on the evolution of the computing model driven by this experience, and on the system performance during the...

  12. Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.

    Science.gov (United States)

    Zikic, D; Glocker, B; Criminisi, A

    2014-12-01

    We propose a method for multi-atlas label propagation (MALP) based on encoding the individual atlases by randomized classification forests. Most current approaches perform a non-linear registration between all atlases and the target image, followed by a sophisticated fusion scheme. While these approaches can achieve high accuracy, in general they do so at high computational cost. This might negatively affect the scalability to large databases and experimentation. To tackle this issue, we propose to use a small and deep classification forest to encode each atlas individually in reference to an aligned probabilistic atlas, resulting in an Atlas Forest (AF). Our classifier-based encoding differs from current MALP approaches, which represent each point in the atlas either directly as a single image/label value pair, or by a set of corresponding patches. At test time, each AF produces one probabilistic label estimate, and their fusion is done by averaging. Our scheme performs only one registration per target image, achieves good results with a simple fusion scheme, and allows for efficient experimentation. In contrast to standard forest schemes, in which each tree would be trained on all atlases, our approach retains the advantages of the standard MALP framework. The target-specific selection of atlases remains possible, and incorporation of new scans is straightforward without retraining. The evaluation on four different databases shows accuracy within the range of the state of the art at a significantly lower running time. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. EnviroAtlas - Percent Large, Medium, and Small Natural Areas for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains the percentage of small, medium, and large natural areas for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code...

  14. 31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.

    CERN Multimedia

    Raphaël Piguet

    2011-01-01

    31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.

  15. 8 October 2013 - Rolex Director- General G. Marini in the ATLAS Control Room with CERN Director-General R. Heuer and ATLAS Collaboration Senior Physicist C. Rembser; visiting the ATLAS experimental cavern at LHC Point 1. Were also present from the Directorate: S. Lettow, Director for Administration and General Infrastructure; from the ATLAS Collaboration: Technische Universitaet Dortmund (DE) J. Jentzsch and SLAC National Accelerator Laboratory (US) G. Piacquadio.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    8 October 2013 - Rolex Director- General G. Marini in the ATLAS Control Room with CERN Director-General R. Heuer and ATLAS Collaboration Senior Physicist C. Rembser; visiting the ATLAS experimental cavern at LHC Point 1. Were also present from the Directorate: S. Lettow, Director for Administration and General Infrastructure; from the ATLAS Collaboration: Technische Universitaet Dortmund (DE) J. Jentzsch and SLAC National Accelerator Laboratory (US) G. Piacquadio.

  16. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web

  17. A forebrain atlas of the lizard Gekko gecko.

    Science.gov (United States)

    Smeets, W J; Hoogland, P V; Lohman, A H

    1986-12-01

    An atlas of the forebrain of the lizard Gekko gecko has been provided, which will serve as the basis for subsequent experimental tracing and immunohistochemical studies. Apart from a strongly developed medial cortex and septal area, the Tokay gecko shows all the main features of the forebrain of the lacertid-type lizards. When its convenience as an experimental animal is also taken into account, this species seems to be very suitable for studying the limbic system in reptiles. The atlas comprises topographical reconstructions of the telencephalon and diencephalon and a series of transverse sections of which the levels have been indicated in the reconstructions. The results obtained in the Gekko are briefly compared with those found in other lizards studied.

  18. Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments – ATLAS12 design and initial results

    International Nuclear Information System (INIS)

    Unno, Y.; Edwards, S.O.; Pyatt, S.; Thomas, J.P.; Wilson, J.A.; Kierstead, J.; Lynn, D.; Carter, J.R.; Hommels, L.B.A.; Robinson, D.; Bloch, I.; Gregor, I.M.; Tackmann, K.; Betancourt, C.; Jakobs, K.; Kuehn, S.; Mori, R.; Parzefall, U.; Wiik-Fucks, L.; Clark, A.

    2014-01-01

    We have been developing a novel radiation-tolerant n + -in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 μm and slim edge space of 450 μm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers

  19. EnviroAtlas - Ecosystem Service Market and Project Areas, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem...

  20. 28th January 2011-Vice-President Max Planck Society-Prof. Martin Stratmann-Germany-visiting the ATLAS experimental area and the LHC Tunnel at CERN

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    Photo 1:ATLAS visitor Center with P. Jenni, ATLAS Collaboration former spokesperson Photo 2-10:visiting the ATLAS cavern Photo 10:D. Hoppe,P. Jenni,M. Stratmann,S. Bethke,S. Braun,D. Klammer Photo 11-15:visiting the LHC tunnel Photo 16-18:Signature of the Guest Book with S. Lettow,Director for Administration and General Infrastructure

  1. 30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

  2. The Homicide Atlas in Colombia: Contagion and Under-Registration for Small Areas

    Directory of Open Access Journals (Sweden)

    B. Piedad Urdinola

    2017-01-01

    Full Text Available The homocide atlas in Colombia is a visual representation of both expansion and aggravation of the armed internal conflict for the deadly decades of 1990 to 2009. However, mortality under-registration remains an issue in most developing countries, more remarkably when studying particular causes of death on small areas. This document proposes a Bayesian spatial method to identify mortality under-registration in municipalities. Probability maps help to identify under-registered municipalities in Colombia that coincide with the rise of violence at the turn of the century, which is not captured in vital registration systems. It also shows that women suffer of higher under-registration issues than men. Corrected homicide Atlases facilitate interpretation and the proposed methodology proves to be a good source of under-registration identification in small populations.

  3. Experimental characterization of resistive joints for use inside ATLAS toroids

    CERN Document Server

    Volpini, G; Pojer, M

    2001-01-01

    The authors have investigated, both experimentally and theoretically, the thermo-electrical behavior of the ATLAS magnets resistive joints. These magnets exploit an Al-clad NbTi Rutherford superconducting cable, and the splices between different sections are performed by TIG-welding the Al matrices of the two cables to be connected. This technique is simple from a construction point of view, and we have shown that its performance is adequate for a safe operation of the magnets. The two main concerns during the design of these joints are the temperature rise due to Joule dissipation and the eddy currents induced under nonstationary conditions. We have devised a reliable model of these joints, that allows estimating their resistances and the induced eddy currents; later we have built and measured several sample joints to give experimental confirmation. The model requires, along with the joint geometry, the knowledge of the Rutherford-matrix interface resistance as well as the RRR of the aluminum matrix. In this...

  4. New Physics with the ATLAS detector: experimental prospects

    International Nuclear Information System (INIS)

    Siragusa, Giovanni

    2011-01-01

    During 2010 the ATLAS detector has collected 45 pb -1 of proton-proton collisions at √= 7 TeV. These data have been used for a wide range of searches such as high-mass final states and contact interactions. Early inclusive SUSY searches have been also performed for a wide range of final states. The most recent results of searches of physics beyond the Standard Model with the ATLAS detector are presented. Prospects for physics searches with ∼ 1 fb -1 of data will be discussed together with the most relevant performance results.

  5. ATLAS MPGD production status

    CERN Document Server

    Schioppa, Marco; The ATLAS collaboration

    2018-01-01

    Micromegas (MICRO MEsh GAseous Structure) chambers are Micro-Pattern Gaseous Detectors designed to provide a high spatial resolution and reasonable good time resolution in highly irradiated environments. In 2007 an ambitious long-term R\\&D activity was started in the context of the ATLAS experiment, at CERN: the Muon ATLAS Micromegas Activity (MAMMA). After years of tests on prototypes and technology breakthroughs, Micromegas chambers were chosen as tracking detectors for an upgrade of the ATLAS Muon Spectrometer. These novel detectors will be installed in 2020 at the end of the second long shutdown of the Large Hadron Collider, and will serve mainly as precision detectors in the innermost part of the forward ATLAS Muon Spectrometer. Four different types of Micromegas modules, eight layers each, up to $3 m^2$ area (of unprecedented size), will cover a surface of $150 m^2$ for a total active area of about $1200 m^2$. With this upgrade the ATLAS muon system will maintain the full acceptance of its excellent...

  6. ATLAS Open Data project

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The current ATLAS model of Open Access to recorded and simulated data offers the opportunity to access datasets with a focus on education, training and outreach. This mandate supports the creation of platforms, projects, software, and educational products used all over the planet. We describe the overall status of ATLAS Open Data (http://opendata.atlas.cern) activities, from core ATLAS activities and releases to individual and group efforts, as well as educational programs, and final web or software-based (and hard-copy) products that have been produced or are under development. The relatively large number and heterogeneous use cases currently documented is driving an upcoming release of more data and resources for the ATLAS Community and anyone interested to explore the world of experimental particle physics and the computer sciences through data analysis.

  7. 31st January 2011 - OECD Secretary-General A. Gurría visiting the ATLAS underground experimental area with Former Collaboration Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    CERN-HI-1101036 21. Former ATLAS Collaboration Spokesperson P. Jenni, Counsellor for Scientific Affairs S. Michalowski, Secretary General Chief of Staff G. Ramos, OECD Secretary-General A. Gurría, Relations with International Organisations M. Bona, Head of International Relations F. Pauss and Director M. Oborne, in the ATLAS cavern.

  8. The Offshore New European Wind Atlas

    Science.gov (United States)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  9. Atlas of Wenchuan-Earthquake Geohazards : Analysis of co-seismic and post-seismic Geohazards in the area affected by the 2008 Wenchuan Earthquake

    NARCIS (Netherlands)

    Tang, Chuan; van Westen, C.J.

    2018-01-01

    This atlas provides basic information and overviews of the occurrence of co-seismic landslides, the subsequent rainstorm-induced debris flows, and the methods used for hazard and risk assessment in the Wenchuan-earthquake affected area. The atlas pages are illustrated with maps, photos and graphs,

  10. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  11. 13 February 2012 - World Economic Forum Founder and Executive Chairman K. Schwab and Chairperson and Co-Founder Schwab Foundation for Social Entrepreneurship H. Schwab (Mrs)in the ATLAS experimental area at LHC Point 1 with Collaboration Former Spokesperson P. Jenni; signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    13 February 2012 - World Economic Forum Founder and Executive Chairman K. Schwab and Chairperson and Co-Founder Schwab Foundation for Social Entrepreneurship H. Schwab (Mrs)in the ATLAS experimental area at LHC Point 1 with Collaboration Former Spokesperson P. Jenni; signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

  12. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D project

    International Nuclear Information System (INIS)

    Casse, G

    2014-01-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed

  13. Spracovanie dát na experimente ATLAS

    Czech Academy of Sciences Publication Activity Database

    Marčišovský, Michal; Kubeš, T.; Chudoba, Jiří

    2008-01-01

    Roč. 58, č. 6 (2008), 354-359 ISSN 0009-0700 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : Atlas * computing * DCS * Grid Subject RIV: BF - Elementary Particles and High Energy Physics

  14. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    Directory of Open Access Journals (Sweden)

    Kishan Andre Liyanage

    Full Text Available Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap to 1 (complete overlap. For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  15. Development of large area resistive electrodes for ATLAS NSW Micromegas

    Science.gov (United States)

    Ochi, Atsuhiko

    2018-02-01

    Micromegas with resistive anodes will be used for the NSW upgrades of the ATLAS experiment at LHC. Resistive electrodes are used in MPGD devices to prevent sparks in high-rate operation. Large-area resistive electrodes for Micromegas have been developed using two different technologies: screen printing and carbon sputtering. The maximum resistive foil size is 45 × 220 cm with a printed pattern of 425-μm pitch strips. These technologies are also suitable for mass production. Prototypes of a production model series have been successfully produced. In this paper, we report the development, the production status, and the test results of resistive Micromegas.

  16. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    Science.gov (United States)

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ATLAS Distributed Computing

    CERN Document Server

    Schovancova, J; The ATLAS collaboration

    2011-01-01

    The poster details the different aspects of the ATLAS Distributed Computing experience after the first year of LHC data taking. We describe the performance of the ATLAS distributed computing system and the lessons learned during the 2010 run, pointing out parts of the system which were in a good shape, and also spotting areas which required improvements. Improvements ranged from hardware upgrade on the ATLAS Tier-0 computing pools to improve data distribution rates, tuning of FTS channels between CERN and Tier-1s, and studying data access patterns for Grid analysis to improve the global processing rate. We show recent software development driven by operational needs with emphasis on data management and job execution in the ATLAS production system.

  18. Computational and mathematical methods in brain atlasing.

    Science.gov (United States)

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  19. Hidden Valley Searches at ATLAS

    CERN Document Server

    Ventura, D; The ATLAS collaboration

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models.

  20. 23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

  1. New experimental results in atlas-based brain morphometry

    Science.gov (United States)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  2. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  3. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica in the Moroccan Middle Atlas Forests

    Directory of Open Access Journals (Sweden)

    Jesús Julio Camarero

    2011-09-01

    Full Text Available An understanding of the interactions between climate change and forest structure on tree growth are needed for decision making in forest conservation and management. In this paper, we investigated the relative contribution of tree features and stand structure on Atlas cedar (Cedrus atlantica radial growth in forests that have experienced heavy grazing and logging in the past. Dendrochronological methods were applied to quantify patterns in basal-area increment and drought sensitivity of Atlas cedar in the Middle Atlas, northern Morocco. We estimated the tree-to-tree competition intensity and quantified the structure in Atlas cedar stands with contrasting tree density, age, and decline symptoms. The relative contribution of tree age and size and stand structure to Atlas cedar growth decline was estimated by variance partitioning using partial-redundancy analyses. Recurrent drought events and temperature increases have been identified from local climate records since the 1970s. We detected consistent growth declines and increased drought sensitivity in Atlas cedar across all sites since the early 1980s. Specifically, we determined that previous growth rates and tree age were the strongest tree features, while Quercus rotundifolia basal area was the strongest stand structure measure related to Atlas cedar decline. As a result, we suggest that Atlas cedar forests that have experienced severe drought in combination with grazing and logging may be in the process of shifting dominance toward more drought-tolerant species such as Q. rotundifolia.

  4. Searching possibilities of a composite structure of quarks from the jet studies in the ATLAS experiment: physical and experimental aspects

    International Nuclear Information System (INIS)

    Brette, Ph.

    1996-01-01

    This thesis presents the searching possibilities of a composite structure of quark from the jet studies in the ATLAS experiment. ATLAS is one of the major detectors on the LHC, the next proton-proton collider at CERN. The general physic framework of the quark compositeness is first introduced, the its expected search from the contact terms in the channel 2 → 2 is explained. After a description of the ATLAS apparatus and of the prototype of the hadronic scintillating tiles calorimeter, various experimental properties of the hadron calorimeter with respect to the jet measurement are studied. The effect of the non-linearity of the calorimeter response is particularly discussed, including the light red out with the photomultipliers. The laser monitoring system enables a full control of the gain stability of the photomultipliers and of their non-linearity for large signals. Its design and the measured performance are shown. Finally, by considering both the expected performances of the ATLAS detector and the theoretical uncertainties, it appears that the compositeness scale controlled at the LHC, for quarks, should reach 15 to 20 TeV depending upon the luminosity, from jet measurement up to 3 TeV. (author)

  5. Integrating Networking into ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2018-01-01

    Networking is foundational to the ATLAS distributed infrastructure and there are many ongoing activities related to networking both within and outside of ATLAS. We will report on the progress in a number of areas exploring ATLAS's use of networking and our ability to monitor the network, analyze metrics from the network, and tune and optimize application and end-host parameters to make the most effective use of the network. Specific topics will include work on Open vSwitch for production systems, network analytics, FTS testing and tuning, and network problem alerting and alarming.

  6. Development of large area resistive electrodes for ATLAS NSW MicroMEGAS

    CERN Document Server

    Ochi, Atsuhiko; The ATLAS collaboration

    2015-01-01

    MicroMegas with resistive anode will be used for the NSW upgrade of the ATLAS experiment at LHC. The resistive electrode is one of key technology for MPGDs to prevent sparks. Large area resistive electrodes for the MM have been developed using two different technology; screen printing and carbon sputtering. Maximum size of each resistive foil is 45cm x 220cm with printed pattern of 425 micron pitch strips. Those technologies are also suitable to mass production. The prototypes of series production model have been produced successfully. We will report the development and production status and test results of the resistive MicroMegas.

  7. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models and describe analysis strategies and limits on the production of such long-lived particles. A first estimation of the Hidden Valley trigger rates has been evaluated with 6 pb-1 of data collected at ATLAS during the data taking of 2010.

  8. EnviroAtlas - Durham, NC - Demo (Parent)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Durham, NC EnviroAtlas Area. The block groups are from the US Census Bureau and are included/excluded based on...

  9. EnviroAtlas - Phoenix, AZ - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Phoenix, AZ EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  10. EnviroAtlas - Fresno, CA - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Fresno, CA EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  11. 1 October 2013 - British Minister of State for Trade and Investment Lord Green of Hurstpierpoint signing the guest book with Head of Internationals Relations R. Voss; visiting the LHC tunnel at Point 1 and the ATLAS experimental cavern with ATLAS Collaboration Members K. Behr and J. Catmore.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    1 October 2013 - British Minister of State for Trade and Investment Lord Green of Hurstpierpoint signing the guest book with Head of Internationals Relations R. Voss; visiting the LHC tunnel at Point 1 and the ATLAS experimental cavern with ATLAS Collaboration Members K. Behr and J. Catmore.

  12. Search for compressed SUSY scenarios with the ATLAS detector

    CERN Document Server

    Maurer, Julien; The ATLAS collaboration

    2017-01-01

    Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This talk presents recent results of analyses explicitly targeting such “compressed” scenarios with a variety of experimental techniques. All results make use of proton-proton collisions collected at a centre of mass of 13 TeV with the ATLAS detector.

  13. LASER monitoring system for the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Viret, S.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) at CERN uses a scintillator-iron technique for its hadronic Tile Calorimeter (TileCal). Scintillating light is readout via 9852 photomultiplier tubes (PMTs). Calibration and monitoring of these PMTs are made using a LASER based system. Short light pulses are sent simultaneously into all the TileCal photomultiplier's tubes (PMTs) during ATLAS physics runs, thus providing essential information for ATLAS data quality and monitoring analyses. The experimental setup developed for this purpose is described as well as preliminary results obtained during ATLAS commissioning phase in 2008.

  14. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  15. Brain transcriptome atlases : A computational perspective

    NARCIS (Netherlands)

    Mahfouz, A.M.E.T.A.; Huisman, S.M.H.; Lelieveldt, B.P.F.; Reinders, M.J.T.

    2017-01-01

    The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases

  16. The GNAM system in the ATLAS online monitoring framework

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, D. [INFN Cosenza and Dip. di Fisica, Universita della Calabria, ponte P. Bucci 31 C, 87036 Rende (Italy)], E-mail: daniela.salvatore@cern.ch; Adragna, P. [Queen Mary, University of London, London (United Kingdom); Bosman, M. [IFAE, Institut de Fisica de Altes Energies, UAB/Barcelona (Spain); Burckhart, D. [CERN, Geneva (Switzerland); Caprini, M. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Corso-Radu, A. [University of California Irvine, Irvine, California (United States); Costa, M.J. [CERN, Geneva (Switzerland); Della Pietra, M. [INFN Sezione diNapoli, Napoli (Italy); Dotti, A. [Universita and INFN Pisa, Pisa (Italy); Eschrich, I. [University of California Irvine, Irvine, California (United States); Ferrari, R. [INFN Sezione di Pavia, Pavia (Italy); Ferrer, M.L. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Gaudio, G. [INFN Sezione di Pavia, Pavia (Italy); Hadavand, H. [Southern Methodist University, Dallas (United States); Hauschild, M. [CERN, Geneva (Switzerland); Hillier, S. [University of Birmingham, Birmingham (United Kingdom); Kehoe, B. [Southern Methodist University, Dallas (United States); Kolos, S. [University of California Irvine, Irvine, California (United States); Kordas, K. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Mcpherson, R. [University of Victoria, Vancouver (Canada)] (and others)

    2007-10-15

    ATLAS [ATLAS Collaboration, 'ATLAS Technical Proposal', CERN/LHHCC/94-43, LHCC/P2, CERN, Geneva, Switzerland, 1994] is one of the four experiments under construction along the Large Hadron Collider (LHC) ring, which will produce interactions at a center of mass energy of 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS detectors at the various levels of the ATLAS data flow.

  17. The GNAM system in the ATLAS online monitoring framework

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, D. [INFN Cosenza and Dip. di Fisica, Universita della Calabria, ponte P. Bucci 31 C, 87036 Rende (Italy)], E-mail: daniela.salvatore@cern.ch; Adragna, P [Queen Mary, University of London, London (United Kingdom); Bosman, M [IFAE, Institut de Fisica de Altes Energies, UAB/Barcelona (Spain); Burckhart, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Corso-Radu, A [University of California Irvine, Irvine, California (United States); Costa, M J [CERN, Geneva (Switzerland); Della Pietra, M [INFN Sezione diNapoli, Napoli (Italy); Dotti, A [Universita and INFN Pisa, Pisa (Italy); Eschrich, I [University of California Irvine, Irvine, California (United States); Ferrari, R [INFN Sezione di Pavia, Pavia (Italy); Ferrer, M L [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Gaudio, G [INFN Sezione di Pavia, Pavia (Italy); Hadavand, H [Southern Methodist University, Dallas (United States); Hauschild, M [CERN, Geneva (Switzerland); Hillier, S [University of Birmingham, Birmingham (United Kingdom); Kehoe, B [Southern Methodist University, Dallas (United States); Kolos, S [University of California Irvine, Irvine, California (United States); Kordas, K [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Mcpherson, R [University of Victoria, Vancouver (Canada)

    2007-10-15

    ATLAS [ATLAS Collaboration, 'ATLAS Technical Proposal', CERN/LHHCC/94-43, LHCC/P2, CERN, Geneva, Switzerland, 1994] is one of the four experiments under construction along the Large Hadron Collider (LHC) ring, which will produce interactions at a center of mass energy of 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS detectors at the various levels of the ATLAS data flow.

  18. The GNAM system in the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Salvatore, D.; Adragna, P.; Bosman, M.; Burckhart, D.; Caprini, M.; Corso-Radu, A.; Costa, M.J.; Della Pietra, M.; Dotti, A.; Eschrich, I.; Ferrari, R.; Ferrer, M.L.; Gaudio, G.; Hadavand, H.; Hauschild, M.; Hillier, S.; Kehoe, B.; Kolos, S.; Kordas, K.; Mcpherson, R.

    2007-01-01

    ATLAS [ATLAS Collaboration, 'ATLAS Technical Proposal', CERN/LHHCC/94-43, LHCC/P2, CERN, Geneva, Switzerland, 1994] is one of the four experiments under construction along the Large Hadron Collider (LHC) ring, which will produce interactions at a center of mass energy of 14 TeV at 40 MHz rate. The detector consists of more than 140 million electronic channels. The challenging experimental environment and the extreme detector complexity impose the necessity of a common scalable distributed monitoring framework, which can be tuned for the optimal use by different ATLAS detectors at the various levels of the ATLAS data flow

  19. Search for compressed SUSY scenarios with the ATLAS detector

    CERN Document Server

    Maurer, Julien; The ATLAS collaboration

    2017-01-01

    Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.

  20. EnviroAtlas - Frequency and Density of Candidate Areas for Ecological Restoration by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the number and density of candidate areas for ecological restoration in each 12-digit HUC. Ecological restoration may become a more...

  1. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  2. Experimental Results of A1.2 Test for OECD-ATLAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung-Ho; Bae, Byoung-Uhn; Park, Yu-Sun; Kim, Jong-Rok; Choi, Nam-Hyun; Choi, Ki-Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to meet the international interests in the multiple high-risk design extension conditions (DECs) raised after the Fukushima accident, KAERI (Korea Atomic Energy Research Institute) is operating an OECD/NEA project (hereafter, OECD-ATLAS project) by utilizing a thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation). As for a prolonged SBO transient of the OECD-ATLAS project, two tests, named A1.1 and A1.2, were determined to be performed. In particular, passive safety systems are considered as the most promising alternatives to reinforce the safety and reliability of an ultimate heat removal system without any operator actions in the SBO transients. As one of the new safety improvement concepts to mitigate an SBO accident efficiently, a cooling and operational performance of the passive auxiliary feedwater system (PAFS) is investigated in the framework of the OECD-ATLAS project to produce clearer knowledge of the actual phenomena and to provide the best guidelines for accident management. As the second test of the OECD-ATLAS project, the A1.2 test was conducted to simulate a prolonged SBO with asymmetric secondary cooling through the supply of passive auxiliary feedwater only to SG-2. When the collapsed water level of steam generator reached a wide range of 25%, PAFS was actuated. PAFS played a key role in cooling down the primary system by the heat transfer and the natural circulation. With the actuation of PAFS, the fluid temperatures at the core inlet and outlet started to decrease without any excursion of the maximum heater surface temperature in the core. This integral effect test data of A1.2 test can be used to evaluate the prediction capability of existing safety analysis codes and identify any code deficiency for an SBO simulation with an operation of a passive system such as PAFS.

  3. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M; The ATLAS collaboration

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models. and describe analysis strategies and limits on the production of such long-lived particles that can be achieved with the first 100 pb-1.

  4. Atlas of Yellowstone

    Science.gov (United States)

    Pierce, Kenneth L.; Marcus, A. W.; Meachan, J. E.; Rodman, A. W.; Steingisser, A. Y.; Allan, Stuart; West, Ross

    2012-01-01

    Established in 1872, Yellowstone National Park was the world’s first national park. In a fitting tribute to this diverse and beautiful region, the Atlas of Yellowstone is a compelling visual guide to this unique national park and its surrounding area. Ranging from art to wolves, from American Indians to the Yellowstone Volcano, and from geysers to population, each page explains something new about the dynamic forces shaping Yellowstone. Equal parts reference and travel guide, the Atlas of Yellowstone is an unsurpassed resource.

  5. 3rd May 2009 - Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, visiting ATLAS experimental area, LHC tunnel and CERN Control Centre with CERN Director-General R. Heuer, Collaboration Spokesperson F. Gianotti and Beams Department Head P. Collier.

    CERN Document Server

    Maximilien Brice

    2009-01-01

    090506101-08: signature of the guest book and exchange of gifts; 090506109 + 46-64: Japanese Ambassador to the United Nations Office S. Kitajima, Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer, Non Member-State relations Adviser J. Ellis and ATLAS Collaboration Spokesperson F. Gianotti visiting the LHC tunnel at Point 1; 090506110-11 + 28-45: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda and his delegation visiting ATLAS experimental area with CERN Japanese users and Management; 090506112 + 86-94: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer and Japanese users in front of an LHC superconducting magnet; sLHC Project Leader also present. 090506113-19: Arrival of Japanese Min...

  6. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  7. The Mitochondrial Protein Atlas: A Database of Experimentally Verified Information on the Human Mitochondrial Proteome.

    Science.gov (United States)

    Godin, Noa; Eichler, Jerry

    2017-09-01

    Given its central role in various biological systems, as well as its involvement in numerous pathologies, the mitochondrion is one of the best-studied organelles. However, although the mitochondrial genome has been extensively investigated, protein-level information remains partial, and in many cases, hypothetical. The Mitochondrial Protein Atlas (MPA; URL: lifeserv.bgu.ac.il/wb/jeichler/MPA ) is a database that provides a complete, manually curated inventory of only experimentally validated human mitochondrial proteins. The MPA presently contains 911 unique protein entries, each of which is associated with at least one experimentally validated and referenced mitochondrial localization. The MPA also contains experimentally validated and referenced information defining function, structure, involvement in pathologies, interactions with other MPA proteins, as well as the method(s) of analysis used in each instance. Connections to relevant external data sources are offered for each entry, including links to NCBI Gene, PubMed, and Protein Data Bank. The MPA offers a prototype for other information sources that allow for a distinction between what has been confirmed and what remains to be verified experimentally.

  8. Recent developments in the area of SoftQCD and Diffractive Physics at the ATLAS Experiment

    CERN Document Server

    Astalos, Robert; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration released several new measurements in the area of SoftQCD and diffractive physics, ranging from the exclusive production of dimuons, over the total pp cross section measurement to studies of correlated hadron production. An overview of these most recent developments will be given in this talk: The total inelastic proton-proton cross section and the diffractive part of the inelastic cross section has been measured at 8 and 13 TeV in special data sets taken with low beam currents and using forward scintillators. More precise measurements of the total pp cross section and the elastic and inelastic contributions have been extracted from measurements of the differential elastic cross section using the optical theorem. In the absence of forward proton tagging, exclusive processes can be distinguished in the central part of the ATLAS detector exploiting the large rapidity gap in the central region and the absence of charged particles reconstructed in the inner tracking detector. This strategy ...

  9. Mesure des champs de radiation dans le detecteur ATLAS et sa caverne avec les detecteurs au silicium a pixels ATLAS-MPX

    Science.gov (United States)

    Bouchami, Jihene

    The LHC proton-proton collisions create a hard radiation environment in the ATLAS detector. In order to quantify the effects of this environment on the detector performance and human safety, several Monte Carlo simulations have been performed. However, direct measurement is indispensable to monitor radiation levels in ATLAS and also to verify the simulation predictions. For this purpose, sixteen ATLAS-MPX devices have been installed at various positions in the ATLAS experimental and technical areas. They are composed of a pixelated silicon detector called MPX whose active surface is partially covered with converter layers for the detection of thermal, slow and fast neutrons. The ATLAS-MPX devices perform real-time measurement of radiation fields by recording the detected particle tracks as raster images. The analysis of the acquired images allows the identification of the detected particle types by the shapes of their tracks. For this aim, a pattern recognition software called MAFalda has been conceived. Since the tracks of strongly ionizing particles are influenced by charge sharing between adjacent pixels, a semi-empirical model describing this effect has been developed. Using this model, the energy of strongly ionizing particles can be estimated from the size of their tracks. The converter layers covering each ATLAS-MPX device form six different regions. The efficiency of each region to detect thermal, slow and fast neutrons has been determined by calibration measurements with known sources. The study of the ATLAS-MPX devices response to the radiation produced by proton-proton collisions at a center of mass energy of 7 TeV has demonstrated that the number of recorded tracks is proportional to the LHC luminosity. This result allows the ATLAS-MPX devices to be employed as luminosity monitors. To perform an absolute luminosity measurement and calibration with these devices, the van der Meer method based on the LHC beam parameters has been proposed. Since the ATLAS

  10. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines tree buffer for this community as only trees and forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. 19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

  12. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  13. Searches for Supersymmetry in ATLAS

    CERN Document Server

    Cervelli, Alberto; The ATLAS collaboration

    2017-01-01

    After the discovery of the Higgs boson in ATLAS first run of data taking, and due to the lack of observation of new physics, searches for new particles such as Supersymmetric states are one of the main area of interest for the general purpose detectors operating at LHC. In this talk we will present a review of the searches for Supersymmetric particles, performed by the ATLAS experiment

  14. 19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

  15. Atlas of experimentally-induced neoplasia in beagle dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.; Watson, C.R.

    1996-10-01

    Beagle dogs have been utilized extensively in biomedical research. The US Department of Energy''s (DOE) Office of Health and Environmental Research (OHER) has sponsored life-span dose-effect radiation studies in beagles at various laboratories. Because results from studies in the various laboratories were to be compared, all the investigators strove to use similar nomenclature and criteria to describe biological effects. For this reason, pathologists from these laboratories met on five occasions between 1976 and 1977 to discuss nomenclature and histologic criteria for diagnoses. At these meeting, criteria were discussed for histopathologic description of lesions in bone, liver, lung, hematopoietic and lymphoid tissues, mammary gland, pituitary, testis, and thyroid. To provide further assurance of cooperation among the DOE laboratories involved, DOE organized several Task Groups in 1985, composed of staff members from the laboratories. The Task Group on Biological Effects was asked to standardize nomenclature and diagnostic criteria for pathology; this beagle pathology atlas is the result of that request. The atlas describes target organs of particular interest: lungs for radionuclides delivered by inhalation; bones for bone-seeking radionuclides; and hematopoietic and other soft tissues for external irradiation

  16. Atlas of experimentally-induced neoplasia in beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, G.E.; Watson, C.R.

    1996-10-01

    Beagle dogs have been utilized extensively in biomedical research. The US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER) has sponsored life-span dose-effect radiation studies in beagles at various laboratories. Because results from studies in the various laboratories were to be compared, all the investigators strove to use similar nomenclature and criteria to describe biological effects. For this reason, pathologists from these laboratories met on five occasions between 1976 and 1977 to discuss nomenclature and histologic criteria for diagnoses. At these meeting, criteria were discussed for histopathologic description of lesions in bone, liver, lung, hematopoietic and lymphoid tissues, mammary gland, pituitary, testis, and thyroid. To provide further assurance of cooperation among the DOE laboratories involved, DOE organized several Task Groups in 1985, composed of staff members from the laboratories. The Task Group on Biological Effects was asked to standardize nomenclature and diagnostic criteria for pathology; this beagle pathology atlas is the result of that request. The atlas describes target organs of particular interest: lungs for radionuclides delivered by inhalation; bones for bone-seeking radionuclides; and hematopoietic and other soft tissues for external irradiation.

  17. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  19. EnviroAtlas - Portland, Maine - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Portland, OR - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  15. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  18. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Austin, TX - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. 29 March 2011 - Ninth President of Israel S.Peres welcomed by CERN Director-General R. Heuer who introduces Council President M. Spiro, Director for Accelerators and Technology S. Myers, Head of International Relations F. Pauss, Physics Department Head P. Bloch, Technology Department Head F. Bordry, Human Resources Department Head A.-S. Catherin, Beams Department Head P. Collier, Information Technology Department Head F. Hemmer, Adviser for Israel J. Ellis, Legal Counsel E. Gröniger-Voss, ATLAS Collaboration Spokesperson F. Gianotti, Former ATLAS Collaboration Spokesperson P. Jenni, Weizmann Institute G. Mikenberg, CERN VIP and Protocol Officer W. Korda.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    During his visit he toured the ATLAS underground experimental area with Giora Mikenberg of the ATLAS collaboration, Weizmann Institute of Sciences and Israeli industrial liaison office, Rolf Heuer, CERN’s director-general, and Fabiola Gianotti, ATLAS spokesperson. The president also visited the CERN computing centre and met Israeli scientists working at CERN.

  1. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  2. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  3. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  4. Event visualization in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211497; The ATLAS collaboration; Boudreau, Joseph; Konstantinidis, Nikolaos; Martyniuk, Alex; Moyse, Edward; Thomas, Juergen; Waugh, Ben; Yallup, David

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  5. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  6. Operation of the ATLAS end-cap calorimeters at sLHC luminosities, an experimental study

    CERN Document Server

    Ferencei, J; The ATLAS collaboration

    2009-01-01

    The expected increase of luminosity at sLHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters (EMEC, HEC, FCAL) in the endcap, respectively forward region. Small modules of each type of calorimeter have been built. The layout and the components used are very close to the ones used in the construction of the ATLAS calorimeter. The goal is to simulate in the high intensity proton beam at IHEP /Protvino the particle impact as expected for ATLAS in sLHC. Depending on the position in pseudorapidity |η|, each forward calorimeter has to cope with a different particle and energy flux. Placing absorber elements in-between the various small calorimeter modules, the particle and energy flux as expected in ATLAS later - given the variation due to |η| and longitudinal position - can be simulated very well.

  7. Analytics Platform for ATLAS Computing Services

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration; Bryant, Lincoln

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning tools like Spark, Jupyter, R, S...

  8. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  9. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. ISABELLE. Volume 3. Experimental areas, large detectors

    International Nuclear Information System (INIS)

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors

  11. Status of HVCMOS Developments for ATLAS

    CERN Document Server

    Peric, Ivan; Casanova Mohr, Raimon; Ehrler, Felix; Guezzi Messaoud, Fadoua; Kramer, Christian; Leys, Richard; Prathapan, Mridula; Schimassek, Rudolf; Schoning, Andre; Vilella Figueras, Eva; Weber, Alena; Zhang, Hui

    2017-01-01

    This paper describes the status of the developments made by ATLAS HVCMOS and HVMAPS collaborations. We have proposed two HVCMOS sensor concepts for ATLAS pixels—the capacitive coupled pixel detector (CCPD) and the monolithic detector. The sensors have been implemented in three semiconductor processes AMS H18, AMS H35 and LFoundry LFA15. Efficiency of 99.7% after neutron irradiation to 1015 neq/cm2W has been measured with the small area CCPD prototype in AMS H18 technology. About 84% of the particles are detected with a time resolution better than 25 ns. The sensor was implemented on a low resistivity substrate. The large area demonstrator sensor in AMS H35 process has been designed, produced and successfully tested. The sensor has been produced on different high resistivity substrates ranging from 80 Ωcm to more than 1 kΩ. Monolithic- and hybrid readout are both possible. In August 2016, six different monolithic pixel matrices for ATLAS with a total area of 1 cm2 have been submitted in LFoundry LFA15 proc...

  12. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  13. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  14. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet.

    Science.gov (United States)

    Nowinski, Wieslaw L; Belov, Dmitry

    2003-09-01

    The article introduces an atlas-assisted method and a tool called the Cerefy Neuroradiology Atlas (CNA), available over the Internet for neuroradiology and human brain mapping. The CNA contains an enhanced, extended, and fully segmented and labeled electronic version of the Talairach-Tournoux brain atlas, including parcelated gyri and Brodmann's areas. To our best knowledge, this is the first online, publicly available application with the Talairach-Tournoux atlas. The process of atlas-assisted neuroimage analysis is done in five steps: image data loading, Talairach landmark setting, atlas normalization, image data exploration and analysis, and result saving. Neuroimage analysis is supported by a near-real-time, atlas-to-data warping based on the Talairach transformation. The CNA runs on multiple platforms; is able to process simultaneously multiple anatomical and functional data sets; and provides functions for a rapid atlas-to-data registration, interactive structure labeling and annotating, and mensuration. It is also empowered with several unique features, including interactive atlas warping facilitating fine tuning of atlas-to-data fit, navigation on the triplanar formed by the image data and the atlas, multiple-images-in-one display with interactive atlas-anatomy-function blending, multiple label display, and saving of labeled and annotated image data. The CNA is useful for fast atlas-assisted analysis of neuroimage data sets. It increases accuracy and reduces time in localization analysis of activation regions; facilitates to communicate the information on the interpreted scans from the neuroradiologist to other clinicians and medical students; increases the neuroradiologist's confidence in terms of anatomy and spatial relationships; and serves as a user-friendly, public domain tool for neuroeducation. At present, more than 700 users from five continents have subscribed to the CNA.

  15. ATLAS discovery potential of the Standard Model Higgs boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2009-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  16. ATLAS Discovery Potential of the Standard Model Higgs Boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2010-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  17. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N G; Landberg, L; Rathmann, O; Nielsen, M N [Risoe National Lab., Roskilde (Denmark); Nielsen, P [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  18. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  20. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  1. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  2. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2004-04-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  4. The challenge of building large area, high precision small-strip Thin Gap Trigger Chambers for the upgrade of the ATLAS experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon endcap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 m2 in size and totaling an active area of 1200 m2 will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 μm to allow the Level-1 trigger track segments to be reconstructed with an angular resolution of 1mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 30 µm along the precision coordinate and 80 µm along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of construction and integrati...

  5. The Challenge of Building Large Area, High Precision Small-Strip Thin Gap Trigger Chambers for the Upgrade of the ATLAS Experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon end-cap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 $m^2$ in size and totaling an active area of 1200 $m^2$ will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 $\\mu m$ while the Level-1 trigger track segments need to be reconstructed with an angular resolution of 1 mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 40 $\\mu m$ along the precision coordinate and 80 $\\mu m$ along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of cons...

  6. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  7. ATLAS. LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In Greek mythology, Atlas was a Titan who had to hold up the heavens with his hands as a punishment for having taken part in a revolt against the Olympians. For LHC, the ATLAS detector will also have an onerous physics burden to bear, but this is seen as a golden opportunity rather than a punishment. The major physics goal of CERN's LHC proton-proton collider is the quest for the long-awaited£higgs' mechanism which drives the spontaneous symmetry breaking of the electroweak Standard Model picture. The large ATLAS collaboration proposes a large general-purpose detector to exploit the full discovery potential of LHC's proton collisions. LHC will provide proton-proton collision luminosities at the aweinspiring level of 1034 cm2 s~1, with initial running in at 1033. The ATLAS philosophy is to handle as many signatures as possible at all luminosity levels, with the initial running providing more complex possibilities. The ATLAS concept was first presented as a Letter of Intent to the LHC Committee in November 1992. Following initial presentations at the Evian meeting (Towards the LHC Experimental Programme') in March of that year, two ideas for generalpurpose detectors, the ASCOT and EAGLE schemes, merged, with Friedrich Dydak (MPI Munich) and Peter Jenni (CERN) as ATLAS cospokesmen. Since the initial Letter of Intent presentation, the ATLAS design has been optimized and developed, guided by physics performance studies and the LHC-oriented detector R&D programme (April/May, page 3). The overall detector concept is characterized by an inner superconducting solenoid (for inner tracking) and large superconducting air-core toroids outside the calorimetry. This solution avoids constraining the calorimetry while providing a high resolution, large acceptance and robust detector. The outer magnet will extend over a length of 26 metres, with an outer diameter of almost 20 metres. The total weight of the detector is 7,000 tonnes. Fitted with its end

  8. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  9. Wind Resource Atlas of Oaxaca (CD-ROM)

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The CD version of the Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  10. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS

    Directory of Open Access Journals (Sweden)

    Nicholas A. Forfinski-Sarkozi

    2016-09-01

    Full Text Available In 2018, the National Aeronautics and Space Administration (NASA is scheduled to launch the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2, with a new six-beam, green-wavelength, photon-counting lidar system, Advanced Topographic Laser Altimeter System (ATLAS. The primary objectives of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, if bathymetry can be reliably retrieved from ATLAS data, this could assist in addressing a key data need in many coastal and inland water body areas, including areas that are poorly-mapped and/or difficult to access. Additionally, ATLAS-derived bathymetry could be used to constrain bathymetry derived from complementary data, such as passive, multispectral imagery and synthetic aperture radar (SAR. As an important first step in evaluating the ability to map bathymetry from ATLAS, this study involves a detailed assessment of bathymetry from the Multiple Altimeter Beam Experimental Lidar (MABEL, NASA’s airborne ICESat-2 simulator, flown on the Earth Resources 2 (ER-2 high-altitude aircraft. An interactive, web interface, MABEL Viewer, was developed and used to identify bottom returns in Keweenaw Bay, Lake Superior. After applying corrections for refraction and channel-specific elevation biases, MABEL bathymetry was compared against National Oceanic and Atmospheric Administration (NOAA data acquired two years earlier. The results indicate that MABEL reliably detected bathymetry in depths of up to 8 m, with a root mean square (RMS difference of 0.7 m, with respect to the reference data. Additionally, a version of the lidar equation was developed for predicting bottom-return signal levels in MABEL and tested using the Keweenaw Bay data. Future work will entail extending these results to ATLAS, as the technical specifications of the sensor become available.

  11. How to review 4 million lines of ATLAS code

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00226135; The ATLAS collaboration; Lampl, Walter

    2017-01-01

    As the ATLAS Experiment prepares to move to a multi-threaded framework (AthenaMT) for Run3, we are faced with the problem of how to migrate 4 million lines of C++ source code. This code has been written over the past 15 years and has often been adapted, re-written or extended to the changing requirements and circumstances of LHC data taking. The code was developed by different authors, many of whom are no longer active, and under the deep assumption that processing ATLAS data would be done in a serial fashion. In order to understand the scale of the problem faced by the ATLAS software community, and to plan appropriately the significant efforts posed by the new AthenaMT framework, ATLAS embarked on a wide ranging review of our offline code, covering all areas of activity: event generation, simulation, trigger, reconstruction. We discuss the difficulties in even logistically organising such reviews in an already busy community, how to examine areas in sufficient depth to learn key areas in need of upgrade, yet...

  12. How To Review 4 Million Lines of ATLAS Code

    CERN Document Server

    Stewart, Graeme; The ATLAS collaboration

    2016-01-01

    As the ATLAS Experiment prepares to move to a multi-threaded framework (AthenaMT) for Run3, we are faced with the problem of how to migrate 4 million lines of C++ source code. This code has been written over the past 15 years and has often been adapted, re-written or extended to the changing requirements and circumstances of LHC data taking. The code was developed by different authors, many of whom are no longer active, and under the deep assumption that processing ATLAS data would be done in a serial fashion. In order to understand the scale of the problem faced by the ATLAS software community, and to plan appropriately the significant efforts posed by the new AthenaMT framework, ATLAS embarked on a wide ranging review of our offline code, covering all areas of activity: event generation, simulation, trigger, reconstruction. We discuss the difficulties in even logistically organising such reviews in an already busy community, how to examine areas in sufficient depth to learn key areas in need of upgrade, yet...

  13. 8 March 2012 - Extraordinary and plenipotentiary Ambassador R. van Schreven, Permanent Representative of the Kingdom of the Netherlands to the United Nations Office and other international organisations at Geneva, signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS experimental area with Deputy Spokesperson Y. Schutz; throughout accompanied by Former Deputy Department Head and Senior Physicist L. Linssen.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    8 March 2012 - Extraordinary and plenipotentiary Ambassador R. van Schreven, Permanent Representative of the Kingdom of the Netherlands to the United Nations Office and other international organisations at Geneva, signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS experimental area with Deputy Spokesperson Y. Schutz; throughout accompanied by Former Deputy Department Head and Senior Physicist L. Linssen.

  14. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  15. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  16. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  17. VizieR Online Data Catalog: VLT Survey Telescope ATLAS (Shanks+, 2015)

    Science.gov (United States)

    Shanks, T.; Metcalfe, N.; Chehade, B.; Findlay, J. R.; Irwin, M. J.; Gonzalez-Solares, E.; Lewis, J. R.; Yoldas, A. K.; Mann, R. G.; Read, M. A.; Sutorius, E. T. W.; Voutsinas, S.

    2017-11-01

    The ATLAS sky coverage consists of two contiguous blocks in the North and South galactic caps. The ATLAS South Galactic Cap (SGC) area lies between 21h30mCat. II/344) in the SGC, but only partial coverage in the NGC. The NGC area below Decac.uk/Cosmology/vstatlas/. (1 data file).

  18. 12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

  19. Bone age assessment in Hispanic children: digital hand atlas compared with the Greulich and Pyle (G&P) atlas

    Science.gov (United States)

    Fernandez, James Reza; Zhang, Aifeng; Vachon, Linda; Tsao, Sinchai

    2008-03-01

    Bone age assessment is most commonly performed with the use of the Greulich and Pyle (G&P) book atlas, which was developed in the 1950s. The population of theUnited States is not as homogenous as the Caucasian population in the Greulich and Pyle in the 1950s, especially in the Los Angeles, California area. A digital hand atlas (DHA) based on 1,390 hand images of children of different racial backgrounds (Caucasian, African American, Hispanic, and Asian) aged 0-18 years was collected from Children's Hospital Los Angeles. Statistical analysis discovered significant discrepancies exist between Hispanic and the G&P atlas standard. To validate the usage of DHA as a clinical standard, diagnostic radiologists performed reads on Hispanic pediatric hand and wrist computed radiography images using either the G&P pediatric radiographic atlas or the Children's Hospital Los Angeles Digital Hand Atlas (DHA) as reference. The order in which the atlas is used (G&P followed by DHA or vice versa) for each image was prepared before actual reading begins. Statistical analysis of the results was then performed to determine if a discrepancy exists between the two readings.

  20. The ATLAS detector control system

    International Nuclear Information System (INIS)

    Schlenker, S.; Arfaoui, S.; Franz, S.

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of more that 130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 10 6 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. First, this contribution describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years and the LHC high luminosity upgrades are outlined. (authors)

  1. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  2. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November.

  4. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  5. The ATLAS cavern in the spotlight

    CERN Multimedia

    On Wednesday, 4th June, the President of the Swiss Confederation, Pascal Couchepin, inaugurated the world's largest experimental cavern, which is to house the ATLAS detector in 2007, and announced Switzerland's gift to CERN of the "Palais de l'Equilibre".

  6. Atlas of ecologically and commercially important areas in the southern Gulf of St. Lawrence

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    This atlas provides useful baseline information for the environmental assessment of petroleum project proposals relative to sensitive areas and critical periods of fisheries resources in the southern Gulf of St. Lawrence. The southern boundary of the Gulf of St. Lawrence is bounded by the shores of western Cape Breton, southeastern New Brunswick and northern Nova Scotia. It is characterized as a coastal marine ecosystem because of the predominating effects of the rivers, but deeper areas have more in common with the Scotian Shelf and Slope and many common species move seasonally between the Gulf and the open Atlantic Ocean. This report is intended mostly for use by the Canada-Nova Scotia Offshore Petroleum Board (C-NSOPB), and to a lesser degree the Canada-Newfoundland Offshore Petroleum Board. The maps illustrate the known distribution of certain ecosystem components and known harvesting areas. The first part of the report describes the environmental setting of the southern Gulf of St. Lawrence. The report describes commercially important resources such as benthic, pelagic and shellfish species and other minor species, as well as aquaculture leases. It also discuses seals, whales, raptors, shorebirds and coastal waterfowl. The report identifies tourist areas, recreational parks and protected areas. Seasonality and sensitive timing of the resources are also summarized. refs., tabs., figs.

  7. First Cryogenic Testing of the ATLAS Superconducting Prototype Magnets

    CERN Document Server

    Delruelle, N; Haug, F; Mayri, C; Orlic, J P; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroids and the barrel toroid made of eight coils (BT) symmetrically placed around the central axis of the detector. All these magnets will be individually tested in an experimental area prior to their final installation in the underground cavern of the LHC collider. A dedicated cryogenic test facility has been designed and built for this purpose. It mainly consists of a 1'200 W at 4.5 K refrigerator, a 10 kW liquid nitrogen pre-cooling unit, a cryostat housing liquid helium centrifugal pumps, a distribution valve box and transfer lines. Prior to the start of the series tests of the BT magnets, two model coils are used at this facility. The first one, the so-called B00 of comparatively small size, contains the three different types of superconductors used for the ATLAS magnets which are wound on a cylindrical mandrel. The second magnet, the B0, is a reduced model of basically identical design concept as the...

  8. Production of the Finnish Wind Atlas

    DEFF Research Database (Denmark)

    Tammelin, Bengt; Vihma, Timo; Atlaskin, Evgeny

    2013-01-01

    ) the parameterization method for gust factor was extended to be applicable at higher altitudes; and (vii) the dissemination of the Wind Atlas was based on new technical solutions. The AROME results were calculated for the heights of 50, 75, 100, 125, 150, 200, 300 and 400 m, and the WAsP results for the heights of 50......, 75, 100, 125 and 150 m. In addition to the wind speed, the results included the values of the Weibull distribution parameters, the gust factor, wind power content and the potential power production, which was calculated for three turbine sizes. The Wind Atlas data are available for each grid point......The Finnish Wind Atlas was prepared applying the mesoscale model AROME with 2.5 km horizontal resolution and the diagnostic downscaling method Wind Atlas Analysis and Application Programme (WAsP) with 250 m resolution. The latter was applied for areas most favourable for wind power production: a 30...

  9. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Wednesday 26th August 2009-Israel,Minister of Science and Technology,Prof. D. Hershkovitz with Former ATLAS-Muon Project Leader, G. Mikenberg-visiting ATLAS underground area

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Tirage 1-5;7-15 :visiting ATLAS with Israeli scientists at CERN Tirage 6:Minister Hershkovitz with ATLAS Collaboration Spokesperson, F. Gianotti, and G. Mikenberg Tirage 16-23:Signing the Guest book with the Director-General, R. Heuer

  12. Integration of the trigger and data acquisition systems in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Abolins, M [Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan (United States); Adragna, P [Department of Physics, Queen Mary and Westfield College, University of London, London (United Kingdom); Aleksandrov, E; Aleksandrov, I [Joint Institute for Nuclear Research, Dubna (Russian Federation); Amorim, A [Laboratorio de Instrumentacao e Fisica Experimental, Lisboa (Portugal); Anderson, K [University of Chicago, Enrico Fermi Institute, Chicago, Illinois (United States); Anduaga, X [National University of La Plata, La Plata (United States); Aracena, I; Bartoldus, R [Stanford Linear Accelerator Center (SLAC), Stanford (United States); Asquith, L [Department of Physics and Astronomy, University College London, London (United Kingdom); Avolio, G; Backlund, S [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Badescu, E [National Institute for Physics and Nuclear Engineering, Institute of Atomic Physics, Bucharest (Romania); Baines, J [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Beck, H P [Laboratory for High Energy Physics, University of Bern, Bern (Switzerland); Bee, C [Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille (France); Bell, P [Department of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Bell, W H [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Barria, P; Batreanu, S [and others

    2008-07-01

    During 2006 and the first half of 2007, the installation, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area have progressed. There have been a series of technical runs using the final components of the system already installed in the experimental area. Various tests have been run including ones where level 1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, level 2 and event filter trigger algorithms. The scalability of the system with respect to the number of event building nodes used has been studied and quantities critical for the final system, such as trigger rates and event processing times, have been measured using different trigger algorithms as well as different TDAQ components. This paper presents the TDAQ architecture, the current status of the installation and commissioning and highlights the main test results that validate the system.

  13. Integration of the trigger and data acquisition systems in ATLAS

    International Nuclear Information System (INIS)

    Abolins, M; Adragna, P; Aleksandrov, E; Aleksandrov, I; Amorim, A; Anderson, K; Anduaga, X; Aracena, I; Bartoldus, R; Asquith, L; Avolio, G; Backlund, S; Badescu, E; Baines, J; Beck, H P; Bee, C; Bell, P; Bell, W H; Barria, P; Batreanu, S

    2008-01-01

    During 2006 and the first half of 2007, the installation, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area have progressed. There have been a series of technical runs using the final components of the system already installed in the experimental area. Various tests have been run including ones where level 1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, level 2 and event filter trigger algorithms. The scalability of the system with respect to the number of event building nodes used has been studied and quantities critical for the final system, such as trigger rates and event processing times, have been measured using different trigger algorithms as well as different TDAQ components. This paper presents the TDAQ architecture, the current status of the installation and commissioning and highlights the main test results that validate the system

  14. Integration of the Trigger and Data Acquisition Systems in ATLAS

    International Nuclear Information System (INIS)

    Abolins, M.; Adragna, P.; Aleksandrov, E.; Aleksandrov, I.; Amorim, A.; Anderson, K.; Anduaga, X.; Aracena, I.; Asquith, L.; Avolio, G.; Backlund, S.; Badescu, E.; Baines, J.; Barria, P.; Bartoldus, R.; Batreanu, S.; Beck, H.P.; Bee, C.; Bell, P.; Bell, W.H.; Bellomo, M.

    2011-01-01

    During 2006 and the first half of 2007, the installation, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area have progressed. There have been a series of technical runs using the final components of the system already installed in the experimental area. Various tests have been run including ones where level 1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, level 2 and event filter trigger algorithms. The scalability of the system with respect to the number of event building nodes used has been studied and quantities critical for the final system, such as trigger rates and event processing times, have been measured using different trigger algorithms as well as different TDAQ components. This paper presents the TDAQ architecture, the current status of the installation and commissioning and highlights the main test results that validate the system.

  15. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Barnes, Sarah Louise; The ATLAS collaboration

    2018-01-01

    Many forms of experimental evidence point to the existence of Dark Matter within the universe. As of yet, however, it's particle nature has not been discovered. Presented will be an overview of run-2 searches for Dark Matter at the ATLAS detector. The focus of the these studies are based on simplified signal models, moving away from the EFT based approach during run-1. An overview of such searches will be given, along with recent results and discussion as to the future of Dark Matter searches at ATLAS.

  16. QCD in Higgs and BSM Results from the ATLAS and CMS Experiments

    CERN Document Server

    Tompkins, Lauren; The ATLAS collaboration

    2015-01-01

    Advances in theoretical calculations of QCD processes and modeling of colored objects have underpinned the success of the ATLAS and CMS Run I LHC measurements of the Higgs boson and searches for physics beyond the Standard Model. In this talk, I will cover selected recent results from the two experiments which illustrate the ways in which QCD calculations and models are used. I will additionally highlight areas in which uncertainties from these calculations and models are comparable to the experimental uncertainties, motivating further theoretical work.

  17. Iran atlas of offshore renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, M.; Rahimi, R. [Sharif University of Technology, School of Mechanical engineering, Azadi Ave., Tehran (Iran)

    2011-01-15

    The aim of the present study is to provide an Atlas of IRAN Offshore Renewable Energy Resources (hereafter called 'the Atlas') to map out wave and tidal resources at a national scale, extending over the area of the Persian Gulf and Sea of Oman. Such an Atlas can provide necessary tools to identify the areas with greatest resource potential and within reach of present technology development. To estimate available tidal energy resources at the site, a two-dimensional tidally driven hydrodynamic numerical model of Persian Gulf was developed using the hydrodynamic model in the MIKE 21 Flow Model (MIKE 21HD), with validation using tidal elevation measurements and tidal stream diamonds from Admiralty charts. The results of the model were used to produce a time series of the tidal stream velocity over the simulation period. Moreover, to assess the potential of the wave energy in this site, a model was developed based on six-hourly data from a third generation ocean wave model (ISWM-Iranian Sea Wave Model) covering the period 1992-2003. To ensure the information provided to the Atlas is managed and maintained most effectively, all the derived marine resource parameters have been captured in a structured database, within a Geographical Information System (GIS), so enabling effective data management, presentation and interrogation. (author)

  18. Brain atlas for functional imaging. Clinical and research applications

    International Nuclear Information System (INIS)

    Nowinski, W.L.; Thirunavuukarasuu, A.; Kennedy, D.N

    2001-01-01

    This CD-ROM: Allows anatomical and functional images to be loaded and registered. Enables interactive placement of the Talairach landmarks in 3D Space. Provides automatic data-to-atlas warping based on the Talairaich proportional gridsystem transformation. Real-time interactive warping for fine tuning is also available. Allows the user to place marks on the activation loci in the warped functional images, display these marks with the atlas, and edit them in three planes. Mark placement is assisted by image thresholding. Provides simultaneous display of the atlas, anatomical image and functional image within one interactively blended image. Atlas-data blending and anatomical-functional image blending are controlled independently. Labels the data by means of the atlas. The atlas can be flipped left/right so that Brodmann's areas and gyri can be labeled on both hemispheres. Provides additional functions such as friendly navigation, cross-referenced display, readout of the Talairach coordinates and intensities, load coordinates, save, on-line help. (orig.)

  19. Brain atlas for functional imaging. Clinical and research applications

    Energy Technology Data Exchange (ETDEWEB)

    Nowinski, W.L.; Thirunavuukarasuu, A.; Kennedy, D.N

    2001-07-01

    This CD-ROM: Allows anatomical and functional images to be loaded and registered. Enables interactive placement of the Talairach landmarks in 3D Space. Provides automatic data-to-atlas warping based on the Talairaich proportional gridsystem transformation. Real-time interactive warping for fine tuning is also available. Allows the user to place marks on the activation loci in the warped functional images, display these marks with the atlas, and edit them in three planes. Mark placement is assisted by image thresholding. Provides simultaneous display of the atlas, anatomical image and functional image within one interactively blended image. Atlas-data blending and anatomical-functional image blending are controlled independently. Labels the data by means of the atlas. The atlas can be flipped left/right so that Brodmann's areas and gyri can be labeled on both hemispheres. Provides additional functions such as friendly navigation, cross-referenced display, readout of the Talairach coordinates and intensities, load coordinates, save, on-line help. (orig.)

  20. Experimental Results of A1.1 Test for OECD-ATLAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung-Ho; Bae, Byoung-Uhn; Park, Yu-Sun; Kim, Jong-Rok; Choi, Nam-Hyun; Choi, Ki-Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI (Korea Atomic Energy Research Institute) is operating an OECD/NEA project (hereafter, OECD-ATLAS project) by utilizing a thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation). Considering the importance of the SBO scenario and the related accident mitigation measures, a prolonged SBO scenario was selected as the first test subject worthy of investigation in the OECD-ATLAS project as summarized in Table 1. After the Fukushima accident, design extension conditions (DECs) such as an SBO and a total loss of feed water (TLOFW) attracted wide international attention in that such high-risk multiple failure accidents should be revisited from the viewpoint of the reinforcement of the 'defense in depth' concept. In particular, an SBO is one of the most important DECs because a total loss of heat sink can lead to a core melt-down scenario under high pressure without any proper operator action. As for a prolonged SBO transient of the OECD-ATLAS project, two tests, named A1.1 and A1.2, were determined to be performed. In most nuclear power plants (NPPs), a turbine-driven auxiliary feedwater system was designed to remove the decay heat during the early period of an SBO transient. From a conservative point of view, however, it is necessary to investigate the thermal-hydraulic behaviors of the NPP when a turbine-driven auxiliary feedwater supply is not available during the initial period of an SBO transient and moreover a mobile pump-driven auxiliary feedwater supply can only become realized in the later period of the scenario. In particular, asymmetric heat removal characteristic through the supply of auxiliary feedwater only to one steam generator has its own peculiar importance in terms of safety analysis code validation. With an aim of considering these safety importance, in the A1.1 test, a prolonged SBO transient was simulated with two temporal phases: Phase (I) for a conservative SBO transient

  1. 29 January 2009 - Italian Minister for Foreign Affairs F. Frattini, visiting the ATLAS experimental area with Director-General R. Heuer and Collaboration Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Present during the ATLAS undegrround visit: Dr Fabiola Gianotti,ATLAS CollaborationDeputy Spokesperson and Spokesperson Designate; Dr Monica Pepe-Altarelli, LHCb Collaboration CERN Team Leader; Prof. Guido Tonelli,CMS Collaboration, Deputy Spokesperson; Prof. Roberto Petronzio, INFN President. CERN participants present in the audience during the presentations by the Director-General R. Heuer and by Prof. Antonino Zichichi, ALICE Collaboration, University of Bologna: Prof. Sergio Bertolucci,Director for Research and Scientific Computing; Prof. Felicitas Pauss, Coordinator for External Relations Coordinator; Prof. Carlo Rubbia, CERN Former Director-General, Nobel Prize in Physics 1984; Dr Jurgen Schukraft, ALICE Collaboration Spokesperson. Members of the delegation in the audience: Ambassador to the UN, H. Exc. Mr Caracciolo di Vetri; Ambassador Alain G.M. Economides,Capo di Gabinetto; Prof. Antonio Bettanini\tCons. dell’On. Ministro per le Relazioni istituzionali; On. Mario Pescante and Min. Plen Maurizio Mas...

  2. An Atlas of annotations of Hydra vulgaris transcriptome.

    Science.gov (United States)

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  3. Report of the subgroup on experimental area upgrades

    International Nuclear Information System (INIS)

    Aronson, S.; Gollon, P.; Kantardjian, G.; Lanou, R.; Miller, D.; Pope, B.; Theriot, D.; Walker, W.

    1981-01-01

    This subgroup has been charged with the task of reconsidering these areas from the point of view of useability in the ISABELLE experimental program. As a result we have developed an ordered list of suggested improvements to each of the areas. The list is presented area-by-area, after some introductory remarks on the design considerations behind the present areas. The purpose of the list is to indicate the eventual scope of ISABELLE experimental areas, not to suggest that these upgrades should be put in place now. Indeed, although most of these additions will be needed regardless of which experiments are carried out, we think it prudent to wait for experiment approvals before the final design and installation of the suggested improvements

  4. What Data to Co-register for Computing Atlases

    Science.gov (United States)

    Yeo, B.T. Thomas; Sabuncu, Mert; Mohlberg, Hartmut; Amunts, Katrin; Zilles, Karl; Golland, Polina; Fischl, Bruce

    2015-01-01

    We argue that registration should be thought of as a means to an end, and not as a goal by itself. In particular, we consider the problem of predicting the locations of hidden labels of a test image using observable features, given a training set with both the hidden labels and observable features. For example, the hidden labels could be segmentation labels or activation regions in fMRI, while the observable features could be sulcal geometry or MR intensity. We analyze a probabilistic framework for computing an optimal atlas, and the subsequent registration of a new subject using only the observable features to optimize the hidden label alignment to the training set. We compare two approaches for co-registering training images for the atlas construction: the traditional approach of only using observable features and a novel approach of only using hidden labels. We argue that the alternative approach is superior particularly when the relationship between the hidden labels and observable features is complex and unknown. As an application, we consider the task of registering cortical folds to optimize Brodmann area localization. We show that the alignment of the Brodmann areas improves by up to 25% when using the alternative atlas compared with the traditional atlas. To the best of our knowledge, these are the most accurate Brodmann area localization results (achieved via cortical fold registration) reported to date. PMID:26082678

  5. Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration; Hertenberger, Ralf; Mueller, Ralph Soeren Peter; Bortfeldt, Jonathan; Flierl, Bernhard Matthias; Zibell, Andre

    2016-01-01

    Four German institutes are building the 32 high-rate capable SM2 Micromegas quadruplets, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the m$^2$ in size quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 $\\mu$m. The qualification of a full-size SM2 quadruplet, foreseen by ATLAS time schedule for August 2015, will be performed in the Munich Cosmic Ray Measurement Facility (CRMF). Two fully working 4 m$\\times$ 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 frontend boards. We report on homogeneity of pulse-height and efficiency and will present measurements of the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a $102 \\times 92$ cm$^2$ Micromegas chamber with similar readout pitch in the CRMF using the TPC-like analysis method. At trigger rate...

  6. Research at the fragment mass analyser at ATLAS

    International Nuclear Information System (INIS)

    Davids, C.N.; Back, B.; Bearden, I.G.

    1993-01-01

    The experimental program at the Fragment Mass Analyzer (FMA) at the ATLAS heavy ion accelerator of the Argonne National Laboratory is described. The brief description and operational properties of the FMA are presented. The highest mass resolution obtained with the FMA is 525/1. Some experimental results are presented. 5 refs., 7 figs

  7. ATLAS Installation: Building a Modern-day "Ship in a Bottle"

    CERN Multimedia

    Eisenstein, R

    By now, almost everyone connected with the ATLAS project is aware of its tremendously exciting discovery potential for physics. ATLAS is designed both to search for an as-yet-undiscovered piece of the Standard Model - the Higgs boson - as well as to search for indications of possible new physics - such as Supersymmetry - that lie beyond it. It is just this excitement that has propelled more than 2000 physicists, engineers, technical workers and students from all over the world to commit a significant part of their research careers to this massive undertaking. As the sub-detector components of ATLAS continue to arrive regularly here at CERN, the magnitude - and the quality - of that commitment has become very real. Actual objects exist, in building 180 and other places around the CERN site, waiting for installation into the ATLAS cavern, UX15. That installation will begin next April when ATLAS takes delivery of the experimental hall and associated other buildings and underground structures at Point 1. Indeed,...

  8. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  9. First-year experience with the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Corso-Radu, A

    2010-01-01

    ATLAS is one of the four experiments in the Large Hadron Collider (LHC) at CERN, which has been put in operation this year. The challenging experimental environment and the extreme detector complexity required development of a highly scalable distributed monitoring framework, which is currently being used to monitor the quality of the data being taken as well as operational conditions of the hardware and software elements of the detector, trigger and data acquisition systems. At the moment the ATLAS Trigger/DAQ system is distributed over more than 1000 computers, which is about one third of the final ATLAS size. At every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles more than 4 million histograms updates coming from more than 4 thousands applications, executes 10 thousands advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. This note presents the overview of the online monitoring software framework, and describes the experience, which was gained during an extensive commissioning period as well as at the first phase of LHC beam in September 2008. Performance results, obtained on the current ATLAS DAQ system will also be presented, showing that the performance of the framework is adequate for the final ATLAS system.

  10. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Ibragimov, I

    2008-01-01

    The ATLAS pixel detector is the innermost tracking detector of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It has a total active area of 1.7 m2 of silicon read out by approximately 80 million electronic channels, which will detect particle tracks and decay vertices with a very high precision. After more than 10 years of development and construction it is the first time ever the whole detector has been operated together. The paper will illustrate the detector performance and give first results from the combined ATLAS cosmics runs.

  11. The huge ATLAS cavern now fully excavated

    CERN Multimedia

    2002-01-01

    Excavation of the ATLAS cavern is now complete! At the end of two years' work involving a tremendous technical challenge, the civil engineering contractors have succeeded in digging out one of the biggest experimental caverns in the world. Bravo!

  12. Pre-Test Analysis of Major Scenarios for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Euh, Dong-Jin; Choi, Ki-Yong; Park, Hyun-Sik; Kwon, Tae-Soon

    2007-02-15

    A thermal-hydraulic integral effect test facility, ATLAS was constructed at the Korea Atomic Energy Research Institute (KAERI). The ATLAS is a 1/2 reduced height and 1/288 volume scaled test facility based on the design features of the APR1400. The simulation capability of the ATLAS for major design basis accidents (DBAs), including a large-break loss-of-coolant (LBLOCA), DVI line break and main steam line break (MSLB) accidents, is evaluated by the best-estimate system code, MARS, with the same control logics, transient scenarios and nodalization scheme. The validity of the applied scaling law and the thermal-hydraulic similarity between the ATLAS and the APR1400 for the major design basis accidents are assessed. It is confirmed that the ATLAS has a capability of maintaining an overall similarity with the reference plant APR1400 for the major design basis accidents considered in the present study. However, depending on the accident scenarios, there are some inconsistencies in certain thermal hydraulic parameters. It is found that the inconsistencies are mainly due to the reduced power effect and the increased stored energy in the structure. The present similarity analysis was successful in obtaining a greater insight into the unique design features of the ATLAS and would be used for developing the optimized experimental procedures and control logics.

  13. Pre-Test Analysis of Major Scenarios for ATLAS

    International Nuclear Information System (INIS)

    Euh, Dong-Jin; Choi, Ki-Yong; Park, Hyun-Sik; Kwon, Tae-Soon

    2007-02-01

    A thermal-hydraulic integral effect test facility, ATLAS was constructed at the Korea Atomic Energy Research Institute (KAERI). The ATLAS is a 1/2 reduced height and 1/288 volume scaled test facility based on the design features of the APR1400. The simulation capability of the ATLAS for major design basis accidents (DBAs), including a large-break loss-of-coolant (LBLOCA), DVI line break and main steam line break (MSLB) accidents, is evaluated by the best-estimate system code, MARS, with the same control logics, transient scenarios and nodalization scheme. The validity of the applied scaling law and the thermal-hydraulic similarity between the ATLAS and the APR1400 for the major design basis accidents are assessed. It is confirmed that the ATLAS has a capability of maintaining an overall similarity with the reference plant APR1400 for the major design basis accidents considered in the present study. However, depending on the accident scenarios, there are some inconsistencies in certain thermal hydraulic parameters. It is found that the inconsistencies are mainly due to the reduced power effect and the increased stored energy in the structure. The present similarity analysis was successful in obtaining a greater insight into the unique design features of the ATLAS and would be used for developing the optimized experimental procedures and control logics

  14. ATLAS RPC performance on a dedicated cosmic ray test-stand

    International Nuclear Information System (INIS)

    Liberti, B.; Aielli, G.; Camarri, P.; Cardarelli, R.; Corradi, M.; Di Ciaccio, A.; Di Stante, L.; Palummo, L.; Pastori, E.; Salamon, A.; Santonico, R.; Solfaroli, E.

    2008-01-01

    596 RPC chambers have been assembled in the ATLAS Muon Spectrometer, covering a 7300 m 2 sensitive area with 355.000 read out channels. 1116 RPC Units were produced and tested before integration and installation on the experiment [A. Aloisio et al., 'The trigger chambers of the ATLAS muon spectrometer: production and tests', Nuclear Instruments and Methods A535 (2004) 265-271]. 192 ATLAS RPCs, the Barrel Outer Large (BOL) units were tested in INFN Roma Tor Vergata test stand

  15. California Ocean Uses Atlas: Industrial sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  16. California Ocean Uses Atlas: Fishing sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  17. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  18. Recent Development in the ATLAS Control Room

    CERN Document Server

    Armen Vartapetian

    Only recently the name ATLAS Control Room (ACR) was more associated with the building at Point 1 (SCX1) than with the real thing. But just within the last several months, with the installation of the ACR hardware, that perception has changed significantly. The recently furnished ATLAS control room. But first of all, if you are not familiar with the ATLAS experimental site and are interested in visiting the ATLAS control room to see the place that in the near future will become the brain of the detector operations, it is quite easy to do so. You don't even need safety helmet or shoes! The ACR is located on the ground floor of a not so typical, glass-covered building in Point 1. The building number on the CERN map is 3162, or SCX1 as we call it. It is also easy to recognize that building by its shiny appearance within the cluster of Point 1 buildings if you are driving from Geneva. Final design and prototyping of the ACR hardware started at the beginning of 2006. Evaluation of the chosen hardware confi...

  19. Advances in ATLAS@Home towards a major ATLAS computing resource

    CERN Document Server

    Cameron, David; The ATLAS collaboration

    2018-01-01

    The volunteer computing project ATLAS@Home has been providing a stable computing resource for the ATLAS experiment since 2013. It has recently undergone some significant developments and as a result has become one of the largest resources contributing to ATLAS computing, by expanding its scope beyond traditional volunteers and into exploitation of idle computing power in ATLAS data centres. Removing the need for virtualization on Linux and instead using container technology has made the entry barrier significantly lower data centre participation and in this paper, we describe the implementation and results of this change. We also present other recent changes and improvements in the project. In early 2017 the ATLAS@Home project was merged into a combined LHC@Home platform, providing a unified gateway to all CERN-related volunteer computing projects. The ATLAS Event Service shifts data processing from file-level to event-level and we describe how ATLAS@Home was incorporated into this new paradigm. The finishing...

  20. Making ATLAS Data from CERN Accessible to the General Public: The Development and Evaluation of a Learning Resource in Experimental Particle Physics

    CERN Document Server

    AUTHOR|(CDS)2243922; Ekelin, Svea Magdalena; Lund-Jensen, Bengt; Christiansen, Iben

    2017-08-15

    In 2016, the ATLAS experiment at CERN released data from 100 trillion proton-proton collisions to the general public. In connection to this release the ATLAS Outreach group has developed several tools for visualizing and analyzing the data, one of which is a Histogram analyzer. The focus of this project is to bridge the gap between the general public's knowledge in physics and what is needed to use this Histogram analyzer. The project consists of both the development and an evaluation of a learning resource that explains experimental particle physics for a general public audience. The learning resource is a website making use of analogies and two perspectives on learning: Variation Theory and Cognitive Load Theory. The evaluation of the website was done using a survey with 10 respondents and it focused on whether analogies and the perspectives on learning helped their understanding. In general the respondents found the analogies to be helpful for their learning, and to some degree they found the explanations ...

  1. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  2. Big Data tools as applied to ATLAS event data

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00225336; The ATLAS collaboration; Gardner, Robert; Bryant, Lincoln

    2017-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Logfiles, database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and associated analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data. Such modes would simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning environments and to...

  3. The effect of morphometric atlas selection on multi-atlas-based automatic brachial plexus segmentation

    International Nuclear Information System (INIS)

    Van de Velde, Joris; Wouters, Johan; Vercauteren, Tom; De Gersem, Werner; Achten, Eric; De Neve, Wilfried; Van Hoof, Tom

    2015-01-01

    The present study aimed to measure the effect of a morphometric atlas selection strategy on the accuracy of multi-atlas-based BP autosegmentation using the commercially available software package ADMIRE® and to determine the optimal number of selected atlases to use. Autosegmentation accuracy was measured by comparing all generated automatic BP segmentations with anatomically validated gold standard segmentations that were developed using cadavers. Twelve cadaver computed tomography (CT) atlases were included in the study. One atlas was selected as a patient in ADMIRE®, and multi-atlas-based BP autosegmentation was first performed with a group of morphometrically preselected atlases. In this group, the atlases were selected on the basis of similarity in the shoulder protraction position with the patient. The number of selected atlases used started at two and increased up to eight. Subsequently, a group of randomly chosen, non-selected atlases were taken. In this second group, every possible combination of 2 to 8 random atlases was used for multi-atlas-based BP autosegmentation. For both groups, the average Dice similarity coefficient (DSC), Jaccard index (JI) and Inclusion index (INI) were calculated, measuring the similarity of the generated automatic BP segmentations and the gold standard segmentation. Similarity indices of both groups were compared using an independent sample t-test, and the optimal number of selected atlases was investigated using an equivalence trial. For each number of atlases, average similarity indices of the morphometrically selected atlas group were significantly higher than the random group (p < 0,05). In this study, the highest similarity indices were achieved using multi-atlas autosegmentation with 6 selected atlases (average DSC = 0,598; average JI = 0,434; average INI = 0,733). Morphometric atlas selection on the basis of the protraction position of the patient significantly improves multi-atlas-based BP autosegmentation accuracy

  4. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette Aamand

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides....... The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...

  5. Research on segmentation based on multi-atlas in brain MR image

    Science.gov (United States)

    Qian, Yuejing

    2018-03-01

    Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.

  6. 13 September 2013 - Chairman of the Board of Directors of the von Karman Institute Kingdom of Belgium J.-P. Contzen visiting the ATLAS experimental cavern with ATLAS Former Spokesperson P. Jenni; visiting the LHC tunnel at Point 1 with Technology Department N. Delruelle and signing the guest book with Technology Department Head F. Bordry. International Relations Adviser T. Kurtyka present.

    CERN Multimedia

    Laurent Egli (visit)

    2013-01-01

    13 September 2013 - Chairman of the Board of Directors of the von Karman Institute Kingdom of Belgium J.-P. Contzen visiting the ATLAS experimental cavern with ATLAS Former Spokesperson P. Jenni; visiting the LHC tunnel at Point 1 with Technology Department N. Delruelle and signing the guest book with Technology Department Head F. Bordry. International Relations Adviser T. Kurtyka present.

  7. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  8. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  9. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  10. CERN Open Days 2013, Point 1 - ATLAS: ATLAS Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: The ATLAS Experiment at CERN is one of the largest and most complex scientific endeavours ever assembled. The detector, located at collision point 1 of the LHC, is designed to explore the fundamental components of nature and to study the forces that shape our universe. The past year’s discovery of a Higgs boson is one of the most important scientific achievements of our time, yet this is only one of many key goals of ATLAS. During a brief break in their journey, some of the 3000-member ATLAS collaboration will be taking time to share the excitement of this exploration with you. On surface no restricted access  The exhibit at Point 1 will give visitors a chance to meet these modern-day explorers and to learn from them how answers to the most fundamental questions of mankind are being sought. Activities will include a visit to the ATLAS detector, located 80m below ground; watching the prize-winning ATLAS movie in the ATLAS cinema; seeing real particle tracks in a cloud chamber and discussi...

  11. Addendum to a proposal for ATLAS: a precision heavy-ion accelerator at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1978-12-01

    This revised proposal for the construction of the Argonne Tandem-Linac Accelerator System (ATLAS) is in all essentials the same as the proposal originally presented to NUSAC in March 1978. The only differences worth mentioning are the plan to expand the experimental area somewhat more than was originally proposed and an increased cost, brought about principally by inflation. The outline presented is the same as in the original document, reproduced for the convenience of the reader. The objective of the proposed Argonne Tandem-Linac Accelerator System (ATLAS) is to provide precision beams of heavy ions for nuclear physics research in the region of projectile energies comparable to nuclear binding energies (5 to 25 MeV/A). By using the demonstrated potential of superconducting rf technology, beams of exceptional quality and flexibility can be obtained. The proposed system is designed to provide beams with tandem-like energy resolution and ease of energy variation, and the energy range is comparable to that of a approx. 50 MV tandem. In addition, the beam will be bunched into very short (approx. 50 psec) pulses, permitting fast-timing measurements that can open up major new experimental approaches

  12. California Ocean Uses Atlas: Non-Consumptive sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  13. MARS input data for steady-state calculation of ATLAS

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.

    2004-12-01

    An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments

  14. First operational experience with the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Joh, K.; Markovich, P.K.; Munson, F.H.; Zinkann, G.; Nolen, J.A.

    1992-01-01

    A Positive-Ion Injector (PH) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structures. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to ∼ 1.1 MeV/u. When ions with q/A > 0. 1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating 3O Si 7+ , 40 Ar ll+ , 132 Xe 13+ , and 208 Pb 24+ . For all of these, transmission through the injecter linac was ∼ 100% of the pre-bunched beam, which corresponds to ∼ 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time

  15. Big Data Analytics Tools as Applied to ATLAS Event Data

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of big data, statistical and machine learning tools...

  16. WatAA: Atlas of Protein Hydration. Exploring synergies between data mining and ab initio calculations.

    Science.gov (United States)

    Černý, Jiří; Schneider, Bohdan; Biedermannová, Lada

    2017-07-14

    Water molecules represent an integral part of proteins and a key determinant of protein structure, dynamics and function. WatAA is a newly developed, web-based atlas of amino-acid hydration in proteins. The atlas provides information about the ordered first hydration shell of the most populated amino-acid conformers in proteins. The data presented in the atlas are drawn from two sources: experimental data and ab initio quantum-mechanics calculations. The experimental part is based on a data-mining study of a large set of high-resolution protein crystal structures. The crystal-derived data include 3D maps of water distribution around amino-acids and probability of occurrence of each of the identified hydration sites. The quantum mechanics calculations validate and extend this primary description by optimizing the water position for each hydration site, by providing hydrogen atom positions and by quantifying the interaction energy that stabilizes the water molecule at the particular hydration site position. The calculations show that the majority of experimentally derived hydration sites are positioned near local energy minima for water, and the calculated interaction energies help to assess the preference of water for the individual hydration sites. We propose that the atlas can be used to validate water placement in electron density maps in crystallographic refinement, to locate water molecules mediating protein-ligand interactions in drug design, and to prepare and evaluate molecular dynamics simulations. WatAA: Atlas of Protein Hydration is freely available without login at .

  17. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  18. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  19. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  20. A digital 3D atlas of the marmoset brain based on multi-modal MRI.

    Science.gov (United States)

    Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C

    2018-04-01

    The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.

  1. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  2. A dynamic system for ATLAS software installation on OSG grid sites

    International Nuclear Information System (INIS)

    Zhao, X; Maeno, T; Wenaus, T; Leuhring, F; Youssef, S; Brunelle, J; De Salvo, A; Thompson, A S

    2010-01-01

    A dynamic and reliable system for installing the ATLAS software releases on Grid sites is crucial to guarantee the timely and smooth start of ATLAS production and reduce its failure rate. In this paper, we discuss the issues encountered in the previous software installation system, and introduce the new approach, which is built upon the new development in the areas of the ATLAS workload management system (PanDA), and software package management system (pacman). It is also designed to integrate with the EGEE ATLAS software installation framework. In the new system, ATLAS software releases are packaged as pacball, a uniquely identifiable and reproducible self-installing data file. The distribution of pacballs to remote sites is managed by ATLAS data management system (DQ2) and PanDA server. The installation on remote sites is automatically triggered by the PanDA pilot jobs. The installation job payload connects to a central ATLAS software installation portal, making the information of installation status easily accessible across OSG and EGEE Grids. The issues encountered in running the new system in production, and our future plan for improvement, will also be discussed.

  3. The ecological atlas. 3. rev. ed.

    International Nuclear Information System (INIS)

    Seager, J.

    1993-01-01

    ''The ecological atlas'' translates expert knowledge in a way that makes it accessable to the general public. In 37 double sided maps in four colours it gives information about the health of our planet and the quality of human life. Under 8 different angles: (the earth's habitat, food and drinking water, housing, energy, industry, armament, consumer needs and 'green politics'). ''The ecological atlas'' describes the effects of worldwide ecological effects: climatic disasters, the greenhouse effect, the hole in the ozone layer, destruction of the tropical rainforests, the effects of extensive farming and increasing urbanization. Pages of comprehensive commentaries complement the maps and aid understanding of their problem areas. (orig./DG) [de

  4. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  5. Multilevel Workflow System in the ATLAS Experiment

    International Nuclear Information System (INIS)

    Borodin, M; De, K; Navarro, J Garcia; Golubkov, D; Klimentov, A; Maeno, T; Vaniachine, A

    2015-01-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs are executed across more than a hundred distributed computing sites by PanDA - the ATLAS job-level workload management system. On the outer level, the Database Engine for Tasks (DEfT) empowers production managers with templated workflow definitions. On the next level, the Job Execution and Definition Interface (JEDI) is integrated with PanDA to provide dynamic job definition tailored to the sites capabilities. We report on scaling up the production system to accommodate a growing number of requirements from main ATLAS areas: Trigger, Physics and Data Preparation. (paper)

  6. The ATLAS experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Brouwer, G.; Buis, E.J.; Buskop, J.J.F.; Colijn, A.P.; Dankers, R.; Daum, C.; de Boer, R.; de Jong, P.; Ennes, P.; Gosselink, M.; Groenstege, H.; Hart, R.G.G.; Hartjes, F.; Hendriks, P.J.; Hessey, N.P.; Jansweijer, P.P.M.; Kieft, G.; Klok, P.F.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Liebig, W.; Limper, M.; Linde, F.; Luijckx, G.; Massaro, G.; Muijs, A.; Peeters, S.J.M.; Reichold, A.; Rewiersma, P.; Rijpstra, M.; Scholte, R.C.; Schuijlenburg, H.W.; Snuverink, J.; van der Graaf, H.; van der Kraaij, E.; van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vreeswijk, M.; Werneke, P.

    2008-01-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  7. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  8. Automating usability of ATLAS distributed computing resources

    International Nuclear Information System (INIS)

    Tupputi, S A; Girolamo, A Di; Kouba, T; Schovancová, J

    2014-01-01

    The automation of ATLAS Distributed Computing (ADC) operations is essential to reduce manpower costs and allow performance-enhancing actions, which improve the reliability of the system. In this perspective a crucial case is the automatic handling of outages of ATLAS computing sites storage resources, which are continuously exploited at the edge of their capabilities. It is challenging to adopt unambiguous decision criteria for storage resources of non-homogeneous types, sizes and roles. The recently developed Storage Area Automatic Blacklisting (SAAB) tool has provided a suitable solution, by employing an inference algorithm which processes history of storage monitoring tests outcome. SAAB accomplishes both the tasks of providing global monitoring as well as automatic operations on single sites. The implementation of the SAAB tool has been the first step in a comprehensive review of the storage areas monitoring and central management at all levels. Such review has involved the reordering and optimization of SAM tests deployment and the inclusion of SAAB results in the ATLAS Site Status Board with both dedicated metrics and views. The resulting structure allows monitoring the storage resources status with fine time-granularity and automatic actions to be taken in foreseen cases, like automatic outage handling and notifications to sites. Hence, the human actions are restricted to reporting and following up problems, where and when needed. In this work we show SAAB working principles and features. We present also the decrease of human interactions achieved within the ATLAS Computing Operation team. The automation results in a prompt reaction to failures, which leads to the optimization of resource exploitation.

  9. LS1 Report: Handing in the ATLAS keys

    CERN Multimedia

    Antonella Del Rosso, Katarina Anthony

    2014-01-01

    After completing more than 250 work packages concerning the whole detector and experimental site, the ATLAS and CERN teams involved with LS1 operations are now wrapping things up before starting the commissioning phase in preparation for the LHC restart. The giant detector is now more efficient, safer and even greener than ever thanks to the huge amount of work carried out over the past two years.   Cleaning up the ATLAS cavern and detector in preparation for Run 2. Hundreds of people, more than 3000 certified interventions, huge and delicate parts of the detector completely refurbished: the ATLAS detector that will take data during Run 2 is a brand new machine, which will soon be back in the hands of the thousands of scientists who are preparing for the high-energy run of the LHC accelerator. “During LS1, we have upgraded the detector’s basic infrastructure and a few of its sub-detectors,” explains Beniamino Di Girolamo, ATLAS Technical Coordinator. &...

  10. Jet calibration in the ATLAS experiment at LHC

    CERN Document Server

    Francavilla, P

    2009-01-01

    Jets produced in the hadronisation of quarks and gluons play a central role in the rich physics program that will be covered by the ATLAS experiment at the LHC, and are central elements of the signature for many physics channels. A well understood energy scale, which for some processes demands an uncertainty in the energy scale of order 1%, is a prerequisite. Moreover, in early data we face the challenge of dealing with the unexpected issues of a brand new detector in an unexplored energy domain. The ATLAS collaboration is carrying out a program to revisit the jet calibration strategies used in earlier hadron-collider experiments and develop a strategy which takes into account the new experimental problems introduced from higher measurement precision and from the LHC environment. The ATLAS calorimeter is intrinsically non-compensating and we will discuss the use of different offline approaches based on cell energy density and jet topology to correct the linearity response while improving the resolution. In ad...

  11. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  12. New Physics searches in Heavy Flavor with ATLAS

    CERN Document Server

    Dearnaley, W; The ATLAS collaboration

    2013-01-01

    Precision determinations of the flavor sector allow the search for indirect new physics signatures. At the forefront of these studies are the determinations of interference of new physics with known Df=1 and Df=2 processes. The ATLAS collaboration explores this area with competitive results measuring the CP violating phase phi_s from Bs->J/Psi phi decays and investigating rare B decays with dileptons in the final state. The latest ATLAS results relevant for new physics searches in the heavy flavor sector will be discussed.

  13. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  14. Atlas Pulsed Power System: a Driver for Multi-Megagauss Fields

    International Nuclear Information System (INIS)

    Cochrane, J.C.; Bartsch, R.R.; Bennett, G.A.; Bowman, D.W.; Davis, H.A.; Ekdahl, C.A.; Gribble, R.F.; Kimerly, H.J.; Nielsen, K.E.; Parsons, W.M.; Paul, J.D.; Scudder, D.W.; Trainor, R.J.; Thompson, M.C.; Watt, R.G.

    1998-01-01

    Atlas is a pulsed power machine designed for hydrodynamic experiments for the Los Alamos High Energy Density Physics Experimental program. It is presently under construction and should be operational in late 2000. Atlas will store 23 MJ at an erected voltage of 240 kV. This will produce a current of 30 MA into a static load and as much as 32 MA into a dynamic load. The current pulse will have a rise time of approximately5micros and will produce a magnetic field driving the impactor liner of several hundred Tesla at the target radius of one to two centimeters. The collision can produce shock pressures of approximately15 megabars. Design of the pulsed power system will be presented along with data obtained from the Atlas prototype Marx module

  15. Discovery of SM Higgs Boson in ATLAS Experiment

    Indian Academy of Sciences (India)

    IAS Admin

    ics, Higgs boson, particle detec- tors, trigger, grid computing. Discovery of SM Higgs Boson in ATLAS Experiment. Prafulla Kumar Behera. Prafulla Kumar Behera is an experimental high energy physicist at the. IITM, Chennai. He has participated in many large-scale collider experiments namely. BELLE at Japan, BABAR.

  16. The ATLAS Detector Control System

    International Nuclear Information System (INIS)

    Lantzsch, K; Braun, H; Hirschbuehl, D; Kersten, S; Arfaoui, S; Franz, S; Gutzwiller, O; Schlenker, S; Tsarouchas, C A; Mindur, B; Hartert, J; Zimmermann, S; Talyshev, A; Oliveira Damazio, D; Poblaguev, A; Martin, T; Thompson, P D; Caforio, D; Sbarra, C; Hoffmann, D

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  17. The ATLAS Detector Control System

    Science.gov (United States)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  18. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    Science.gov (United States)

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  19. Allen Brain Atlas-Driven Visualizations: A Web-Based Gene Expression Energy Visualization Tool

    Directory of Open Access Journals (Sweden)

    Andrew eZaldivar

    2014-05-01

    Full Text Available The Allen Brain Atlas-Driven Visualizations (ABADV is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  20. EnviroAtlas Connects Urban Ecosystem Services and Human ...

    Science.gov (United States)

    Ecosystem services in urban areas can improve public health and well-being by mitigating natural and anthropogenic pollution, and by promoting healthy lifestyles that include engagement with nature and enhanced opportunities for physical activity and social interaction. EPA’s EnviroAtlas online mapping tool identifies urban environmental features linked in the scientific and medical literature to specific aspects of public health and well-being. EnviroAtlas researchers have synthesized newly-generated one-meter resolution landcover data, downscaled census population data, and other existing datasets such as roads and parks. Resulting geospatial metrics represent health-related indicators of urban ecosystem services supply and demand by census block-group and finer scales. EnviroAtlas maps include percent of the population with limited window views of trees, tree cover along walkable roads, overall neighborhood green space, and proximity to parks. Demographic data can be overlaid to perform analyses of disproportionate distribution of urban ecosystem services across population groups. Together with the Eco-Health Relationship Browser, EnviroAtlas data can be linked to numerous aspects of public health and well-being including school performance, physical fitness, social capital, and longevity. EnviroAtlas maps have been developed using consistent methods to allow for comparisons between neighborhoods and across multiple U.S. communities. To feature eco-heal

  1. First bulk and surface results for the ATLAS ITk Strip stereo annulus sensors

    CERN Document Server

    Hunter, Robert Francis Holub; The ATLAS collaboration; Affolder, Tony; Bohm, Jan; Botte, James Michael; Ciungu, Bianca; Dette, Karola; Dolezal, Zdenek; Escobar, Carlos; Fadeyev, Vitaliy

    2018-01-01

    A novel microstrip sensor geometry, the stereo annulus, has been developed for use in the end-cap of the ATLAS experiment's strip tracker upgrade at the HL-LHC. Its first implementation is in the ATLAS12EC sensors a large-area, radiation-hard, single-sided, ac-coupled, \

  2. ATLAS-AWS

    International Nuclear Information System (INIS)

    Gehrcke, Jan-Philip; Stonjek, Stefan; Kluth, Stefan

    2010-01-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  3. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  4. Effets de rayonnement sur les detecteurs au silicium a pixels du detecteur ATLAS

    CERN Document Server

    Lebel, Celine

    2007-01-01

    Two detection systems are using pixel silicon detectors in the ATLAS detector: the Pixel, which is the subdetector closest to the interaction point, and the MPX network. The activation of the materials present in the Pixel produced by radiation has been measured in two experiments which we performed at CERF (CERN) and NPI-ASCR (Czech Republic). These experimental studies of activation are com- pared with GEANT4 simulations. The results of these comparisons show that the simulation can predict the activities with a precision of an order of magnitude. They also show that GEANT4 fails to produce certain radioisotopes seen in the experimental activation studies. The contribution to background and the resid- ual doses due to the desintegration of the radioisotopes produced by fast neutrons (category in which falls the expected average neutron energy of 1 MeV in ATLAS) are extrapolated to ATLAS conditions. It is found that this background in the AT- LAS Pixel subdetector will be negligible and that the doses are we...

  5. Dear ATLAS colleagues,

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  6. ATLAS helicity analyses in beauty hadron decays

    CERN Document Server

    Smizanska, M

    2000-01-01

    The ATLAS detector will allow a precise spatial reconstruction of the kinematics of B hadron decays. In combination with the efficient lepton identification applied already at trigger level, ATLAS is expected to provide large samples of exclusive decay channels cleanly separable from background. These data sets will allow spin-dependent analyses leading to the determination of production and decay parameters, which are not accessible if the helicity amplitudes are not separated. Measurement feasibility studies for decays B/sub s //sup 0/ to J/ psi phi and Lambda /sub b//sup 0/ to Lambda J/ psi , presented in this document, show the experimental precisions that can be achieved in determination of B/sub s//sup 0/ and Lambda /sub b //sup 0/ characteristics. (19 refs).

  7. Report of the AGS Experimental Area Shielding Upgrade Committee

    International Nuclear Information System (INIS)

    Beavis, D.; Brown, H.N.; Bunce, G.; Carroll, A.S.; Chiang, I.H.; Glenn, J.W.; Lazarus, D.M.; Lessard, E.; Pendzick, A.; Sims, W.; Woodle, K.

    1990-08-01

    The proton intensity delivered to the AGS experimental areas is expected to increase fourfold when the full potential of the Booster is realized. It is therefore necessary to anticipate the modifications to the shielding and radiation monitoring that will be required in order to insure safe operation within the appropriate guidelines for radiation exposure. This report examines the consequences of site boundary requirements and soil and air activation as well as the protection of radiation workers, i.e., AGS personnel and experimenters, from unnecessary radiation exposure in the experimental areas. Where possible, Health Physics surveys and fault studies carried out in the Spring of 1990 have been used to estimate levels in and around the experimental areas with 5 x 10 13 protons per pulse or 75% of the total anticipated intensity delivered to each of the target stations under ''normal'' as well as fault conditions. Where fault studies were not possible due to construction, the new beams and facilities were designed for the higher intensities that will be available and radiation patterns were calculated. Weak spots were identified and improvements recommended. Capital and manpower estimates were developed for the upgrades. 7 refs

  8. CHALLENGES OF A MODERN ATLAS OF THE AGEING SOCIETY

    Directory of Open Access Journals (Sweden)

    S. Bleisch

    2016-06-01

    Full Text Available Atlases are collections of illustrated data, often maps, which give an overview - as well as some details - of one or several topic areas. We noted that this description serves well especially for traditional paper and digital atlases. However, in our today's world of entertainment it might give a somewhat dated impression. For the topic area 'Ageing Society' we aim to visualise age related data in an interactive digital way that supports not only the content but also engages the users, offers opportunities for different stakeholders and levels of interest, and is able to accommodate a range of data as well as future updates. A set of guiding principles for the development process addresses these challenges. First implementations show that following the principles is feasible but expensive in terms of time and attention to detail needed. For each selected topic, a story guides the users through the data and highlights interesting aspects. The user can interrupt the story at any time and explore the data further through interacting with the detailed data representations, and switch back to the story when needed. This allows different levels of access which in combination with the specifically designed navigation concept as well as through the adherence to user aware design principles are very promising for the future developments of the Atlas of the Ageing Society and potentially other atlas products.

  9. 9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

  10. A high resolution global wind atlas - improving estimation of world wind resources

    DEFF Research Database (Denmark)

    Badger, Jake; Ejsing Jørgensen, Hans

    2011-01-01

    to population centres, electrical transmission grids, terrain types, and protected land areas are important parts of the resource assessment downstream of the generation of wind climate statistics. Related to these issues of integration are the temporal characteristics and spatial correlation of the wind...... resources. These aspects will also be addressed by the Global Wind Atlas. The Global Wind Atlas, through a transparent methodology, will provide a unified, high resolution, and public domain dataset of wind energy resources for the whole world. The wind atlas data will be the most appropriate wind resource...

  11. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  12. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  13. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  14. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  15. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  16. Gravity Field Atlas of the S. Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Gravity Field Atlas of the Southern Ocean from GEOSAT is MGG Report 7. In many areas of the global ocean, the depth of the seafloor is not well known because...

  17. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  18. Evaluation of ATLAS 100% DVI Line Break Using TRACE Code

    International Nuclear Information System (INIS)

    Huh, Byung Gil; Bang, Young Seok; Cheong, Ae Ju; Woo, Sweng Woong

    2011-01-01

    ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) is an integral effect test facility in KAERI. It had installed completely to simulate the accident for the OPR1000 and the APR1400 in 2005. After then, several tests for LBLOCA, DVI line break have been performed successfully to resolve the safety issues of the APR1400. Especially, a DVI line break is considered as another spectrum among the SBLOCAs in APR1400 because the DVI line is directly connected to the reactor vessel and the thermal hydraulic behaviors are expected to be different from those for the cold leg injection. However, there are not enough experimental data for the DVI line break. Therefore, integral effect data for the DVI line break of ATLAS is very useful and available for an improvement and validation of safety codes. For the DVI line break in ATLAS, several analyses using MARS and RELAP codes were performed in the ATLAS DSP (Domestic Standard Problem) meetings. However, TRACE code has still not used to simulate a DVI line break. TRACE code has developed as the unified code for the reactor thermal hydraulic analyses in USNRC. In this study, the 100% DVI line break in ATLAS was evaluated by TRACE code. The objectives of this study are to identify the prediction capability of TRACE code for the major thermal hydraulic phenomena of a DVI line break in ATLAS

  19. Automatic labeling of MR brain images through extensible learning and atlas forests.

    Science.gov (United States)

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic

  20. NODC Standard Product: International ocean atlas Volume 4 - Atlas of temperature / salinity frequency distributions (2 disc set) (NCEI Accession 0101473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents more than 80,000 plots of the empirical frequency distributions of temperature and salinity for each 5-degree square area of the North Atlantic...

  1. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2016-01-01

    In ATLAS, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  2. The ATLAS software installation system for LCG/EGEE

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, A D [Istituto Nazionale di Fisica Nucleare, sez. Roma 1 (Italy); Barchiesi, A [Universita di Roma I ' La Sapienza' (Italy); Gnanvo, K [Queen Mary and Westfield College (United Kingdom); Gwilliam, C [University of Liverpool (United Kingdom); Kennedy, J; Krobath, G [Ludwig-Maximilians-Universitaet Muenchen (Germany); Olszewski, A [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences (Poland); Rybkine, G [Royal Holloway College (United Kingdom)

    2008-07-15

    The huge amount of resources available in the Grids, and the necessity to have the most up-to-date experimental software deployed in all the sites within a few hours, have driven the need for an automatic installation system for the LHC experiments. In this work we describe the ATLAS system for the experiment software installation in LCG/EGEE, based on the Light Job Submission Framework for Installation (LJSFi), an independent job submission framework for generic submission and job tracking in EGEE. LJSFi is able to automatically discover, check, install, test and tag the full set of resources made available in LCG/EGEE to the ATLAS Virtual Organization in a few hours, depending on the site availability.

  3. Hidden Valley Higgs Decays in the ATLAS detector

    CERN Document Server

    Ciapetti, G

    2009-01-01

    A number of extensions of the Standard Model result in particles that are neutral, weakly-coupled and have macroscopic decay lengths that can be comparable with LHC detector dimensions. These particles represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. For the purpose of exploring the challenges to the trigger posed by long-lived particles, the Hidden Valley scenario serves as an excellent setting. In this note we present the results of a first study of ATLAS detector performance for some Hidden Valley processes with long-lived, neutral states that decay throughout the detector volume to multi heavy-flavor jets, mainly b-bbar.

  4. ATLAS Grid Data Processing: system evolution and scalability

    CERN Document Server

    Golubkov, D; The ATLAS collaboration; Klimentov, A; Minaenko, A; Nevski, P; Vaniachine, A; Walker, R

    2012-01-01

    The production system for Grid Data Processing handles petascale ATLAS data reprocessing and Monte Carlo activities. The production system empowered further data processing steps on the Grid performed by dozens of ATLAS physics groups with coordinated access to computing resources worldwide, including additional resources sponsored by regional facilities. The system provides knowledge management of configuration parameters for massive data processing tasks, reproducibility of results, scalable database access, orchestrated workflow and performance monitoring, dynamic workload sharing, automated fault tolerance and petascale data integrity control. The system evolves to accommodate a growing number of users and new requirements from our contacts in ATLAS main areas: Trigger, Physics, Data Preparation and Software & Computing. To assure scalability, the next generation production system architecture development is in progress. We report on scaling up the production system for a growing number of users provi...

  5. [Book review] Massachusetts breeding bird atlas

    Science.gov (United States)

    Robbins, Chandler S.

    2005-01-01

    A glance at the dust jacket of this handsome volume drives home the conservation message that breeding bird atlases are designed to promote—that bird populations are changing over vast areas and, unless we become aware of changes in status and take remedial action, some species will disappear from our neighborhoods and even our county or state. A case in point involves the closely related Golden-winged Warbler (Vermivora chrysoptera) and Blue- winged Warbler (Vermivora pinus). The males are shown in the atlas with their breeding distribution maps. When I was an active birder in the Boston suburbs in the 1930s, the Golden-winged Warbler was a common breeder and it was a treat to find a Blue-winged Warbler. The atlas map 40 years later (1974–1979) shows only five confirmed records statewide for the Golden-winged Warbler, compared with 73 for the Blue-winged Warbler, and the Golden-winged Warbler is now listed as endangered by the Massachusetts Division of Fisheries and Wildlife. Nationally, it is a species of management concern.

  6. New format for ATLAS e-news

    CERN Multimedia

    Pauline Gagnon

    ATLAS e-news got a new look! As of November 30, 2007, we have a new format for ATLAS e-news. Please go to: http://atlas-service-enews.web.cern.ch/atlas-service-enews/index.html . ATLAS e-news will now be published on a weekly basis. If you are not an ATLAS colaboration member but still want to know how the ATLAS experiment is doing, we will soon have a version of ATLAS e-news intended for the general public. Information will be sent out in due time.

  7. ATLAS starts moving in

    CERN Multimedia

    Della Mussia, S

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1st March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day. Two road trailers each with 64 wheels, positioned side by side. This was the solution chosen to transport the lower part of the central barrel of ATLAS' tile hadronic calorimeter from Building 185 to the PX16 shaft at Point 1 (see Figure 1). The transportation, and then the installation of the component in the experimental cavern, which took place over three days were, to say the least, rather spectacular. On 25 February, the component, consisting of eight 6-metre modules, was loaded on to the trailers. The segment of the barrel was transported on a steel support so that it wouldn't move an inch during the journey. On 26 February, once all the necessary safety checks had been carried out, the convoy was able to leave Buildi...

  8. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.

  9. ATLAS facility fabrication and assembly

    CERN Document Server

    Ballard, E O; Davis, H A; Nielsen, K E; Parker, G V; Parsons, W M

    2001-01-01

    Summary form only given. Atlas is a pulsed-power facility recently completed at Los Alamos National Laboratory to drive hydrodynamic experiments. This new generation pulsed-power machine consists of a radial array of 24, 240-kV Marx modules and transmission lines supplying current to the load region at the machine center. The transmission lines, powered by the Marx modules, consist of cable headers, load protection switches and tri-plates interfacing to the center transition section through detachable current joints. A conical power-flow-channel attaches to the transition section providing an elevated interface to attach the experimental loads for diagnostic access. Fabrication and assembly of all components for the Atlas machine was completed in August 2000. The machine has also progressed through a test phase where the Marx module/transmission line units were fired, individually, into a test load. Progression continued with eight and sixteen lines being fired. Subsequently, an overall machine test was condu...

  10. ATLAS Virtual Visits bringing the world into the ATLAS control room

    CERN Document Server

    AUTHOR|(CDS)2051192; The ATLAS collaboration; Yacoob, Sahal

    2016-01-01

    ATLAS Virtual Visits is a project initiated in 2011 for the Education & Outreach program of the ATLAS Experiment at CERN. Its goal is to promote public appreciation of the LHC physics program and particle physics, in general, through direct dialogue between ATLAS physicists and remote audiences. A Virtual Visit is an IP-based videoconference, coupled with a public webcast and video recording, between ATLAS physicists and remote locations around the world, that typically include high school or university classrooms, Masterclasses, science fairs, or other special events, usually hosted by collaboration members. Over the past two years, more than 10,000 people, from all of the world’s continents, have actively participated in ATLAS Virtual Visits, with many more enjoying the experience from the publicly available webcasts and recordings. We present an overview of our experience and discuss potential development for the future.

  11. DI-HIGGS RESULTS FROM THE ATLAS AND CMS EXPERIMENTS

    CERN Document Server

    Kagan, Michael; The ATLAS collaboration

    2018-01-01

    Measurements of di-Higgs production are of fundamental importance to understanding the process of electroweak symmetry breaking and the structure of the Higgs potential. While the Standard Model (SM) predicted production cross section for this process is too small to be observed by current LHC datasets, searches for this process at the ATLAS and CMS experiments can limit the SM production rate, anomalous Higgs self-couplings and Beyond the SM di-Higgs interaction vertices, and contributions to this process from new heavy resonances. Results from current experimental searches by ATLAS and CMS using data from Run 1 (2009- 2013) and Run 2 (2015-2018) of the LHC are presented.

  12. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M; Pardo, R C; Shepard, K W; Billquist, P J; Bogaty, J M; Clifft, B E; Harkewicz, R; Joh, K; Markovich, P K; Munson, F H; Zinkann, G; Nolen, J A [Physics Div., Argonne National Lab., IL (United States)

    1993-03-01

    A Positive-Ion Injector (PII) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structure. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to [approx equal] 1.1 MeV/u. When ions with q/A>0.1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating [sup 30]Si[sup 7+], [sup 40]Ar[sup 11+], [sup 132]Xe[sup 13+], and [sup 208]Pb[sup 24+]. For all of these, transmission through the injector linac was [approx equal] 100% of the pre-bunched beam, which corresponds to [approx equal] 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time. (orig.).

  13. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  14. Atlas - a new pulsed power tool at Los Alamos

    CERN Document Server

    Scudder, D W; Ballard, E O; Barr, G W; Cochrane, J C; Davis, H A; Griego, J R; Hadden, E S; Hinckley, W B; Hosack, K W; Martínez, J E; Mills, D; Padilla, J N; Parker, J V; Parsons, W M; Reinovsky, R E; Stokes, J L; Thompson, M C; Tom, C Y; Wysocki, F J; Vigil, B N; Elizondo, J; Miller, R B; Anderson, H D; Campbell, T N; Owens, R S

    2001-01-01

    Summary form only given, as follows. The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. The paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et al. on machine performance and Ballard et al. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low- inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access incl...

  15. Search for Extra Dimensions With ATLAS at LHC

    CERN Document Server

    Benslama, Kamal

    2004-01-01

    Theories with extra space time dimensions aiming at resolving the hierarchy problem have recently been developed. These scenarios have provided exciting new grounds for experimental probes. A review of the studies done by the ATLAS collaboration on the sensitivity of the detector to various extra dimension models is reported in this document

  16. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  17. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  18. The 3rd ATLAS Domestic Standard Problem for Improvement of Safety Analysis Technology

    International Nuclear Information System (INIS)

    Choi, Ki-Yong; Kang, Kyoung-Ho; Park, Yusun; Kim, Jongrok; Bae, Byoung-Uhn; Choi, Nam-Hyun

    2014-01-01

    The third ATLAS DSP (domestic standard problem exercise) was launched at the end of 2012 in response to the strong need for continuation of the ATLAS DSP. A guillotine break of a main steam line without LOOP at a zero power condition was selected as a target scenario, and it was successfully completed in the beginning of 2014. In the 3 rd ATLAS DSP, comprehensive utilization of the integral effect test data was made by dividing analysis with three topics; 1. scale-up where extrapolation of ATLAS IET data was investigated 2. 3D analysis where how much improvement can be obtained by 3D modeling was studied 3. 1D sensitivity analysis where the key phenomena affecting the SLB simulation were identified and the best modeling guideline was achieved. Through such DSP exercises, it has been possible to effectively utilize high-quality ATLAS experimental data of to enhance thermal-hydraulic understanding and to validate the safety analysis codes. A strong human network and technical expertise sharing among the various nuclear experts are also important outcomes from this program

  19. 3D atlas of brain connections and functional circuits

    Science.gov (United States)

    Pan, Jinghong; Nowinski, Wieslaw L.; Fock, Loe K.; Dow, Douglas E.; Chuan, Teh H.

    1997-05-01

    This work aims at the construction of an extendable brain atlas system which contains: (i) 3D models of cortical and subcortical structures along with their connections; (ii) visualization and exploration tools; and (iii) structures and connections editors. A 3D version of the Talairach- Tournoux brain atlas along with 3D Brodmann's areas are developed, co-registered, and placed in the Talairach stereotactic space. The initial built-in connections are thalamocortical ones. The structures and connections editors are provided to allow the user to add and modify cerebral structures and connections. Visualization and explorations tools are developed with four ways of exploring the brain connections model: composition, interrogation, navigation and diagnostic queries. The atlas is designed as an open system which can be extended independently in other centers according to their needs and discoveries.

  20. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407321; The ATLAS collaboration

    2016-01-01

    In the ATLAS experiment, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  1. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  2. Preparation of the ATLAS experiment in the LHC proton collider, performances of the electromagnetic calorimeter and its potentialities for the top quark; Preparation de l'experience ATLAS aupres du futur grand collisionneur de protons LHC: performances du calorimetre electromagnetique et potentiels pour la physique du quark top

    Energy Technology Data Exchange (ETDEWEB)

    Hubaut, F

    2007-03-15

    ATLAS is the biggest and the more complex detector ever built, it will operate on the LHC and is the outcome of a huge international collaboration of 2000 physicists. This document reviews the theoretical and experimental achievements of one of them, his collaboration spread over 7 years and has followed 2 axis. First, the design, construction and test of the electromagnetic calorimeter of ATLAS and secondly, the development of analysis strategies in the physics of the top quark. The expected important production of top quarks in LHC will allow an accurate measurement of the properties of this particle and in the same way will provide new testing areas for the standard model. The top quark, being extremely massive, might play a significant role in the mechanism of electro-weak symmetry breaking. This document is organized into 5 chapters: 1) ATLAS detector, performance and progress, 2) the optimization of the energy measurement with the electromagnetic calorimeter, 3) the performance of the electromagnetic calorimeter, 4) the physics of the top quark, and 5) the potentialities of ATLAS in the top quark sector. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  3. Heavy ion results from ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00241915; The ATLAS collaboration

    2017-01-01

    These proceedings provide an overview of the new results obtained with the ATLAS Detector at the LHC, which are presented in the Quark Matter 2017 conference. These results are covered in twelve parallel talks, one flash talk and eleven posters, and they are grouped into five areas: initial state, jet quenching, quarkonium production, longitudinal flow dynamics, and collectivity in small systems.

  4. B-Identifikation im Level 2 Trigger des ATLAS Experiments

    CERN Document Server

    AUTHOR|(CDS)2072780

    Zur Zeit wird am europäischen Forschungszentrum für Teilchenphysik CERN der neue Proton-Proton-Speicherring LHC und die zugehörigen vier Experimente gebaut. Ziele der Experimente sind unter anderem der Nachweis des Higgs-Bosons sowie detaillierte Studien des top-Quarks. Um möglichst reine Datensätze zu erhalten wäre es hilfreich, diese Ereignisse bereits während der Datennahme möglichst effizient zu selektieren. Dabei würde es helfen, wenn b-Quark-Jets auf Trigger-Niveau erkannt werden könnten. Ziel der Arbeit war die Entwicklung eines Algorithmus zur Identifikation von b-Quark-Jets, welcher die Anforderungen des Level 2 Triggers erfüllt. Das erste Kapitel der Arbeit gibt einen Einblick in die wesentlichen Bestandteile des Standardmodells der Teilchenphysik. In den folgenden zwei Kapiteln wird der Beschleuniger und der ATLAS Detektor sowie das ATLAS-Triggersystem beschrieben. Kapitel vier beschreibt die Möglichkeiten der B-Jet-Identifikation sowie einen Vertexalgorithmus auf Basis der Perigee-Pa...

  5. Jet calibration in the ATLAS experiment at LHC

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    Jets produced in the hadronisation of quarks and gluons play a central role in the rich physics program that will be covered by the ATLAS experiment at the LHC, and are central elements of the signature for many physics channels. A well understood energy scale, which for some process demands an uncertainty in the energy scale of order 1%, is a prerequisite. Moreover, in early data we face the challenge of dealing with the unexpected issues of a brand new detector in an unexplored energy domain. The ATLAS collaboration is carrying out a program to revisit the jet calibration strategies used in earlier hadron-collider experiments and develop a strategy which takes account of the new experimental problems and demand for greater measurement precision which will be faced at the LHC. The ATLAS calorimeter is intrinsically non-compensating and we will present the use of different offline approaches based on cell energy density and jet topology to correct for this effect on jet energy resolution and scale. In additio...

  6. Report to users of Atlas

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1996-06-01

    This report contains the following topics: Status of the ATLAS Accelerator; Highlights of Recent Research at ATLAS; Program Advisory Committee; ATLAS User Group Executive Committee; FMA Information Available On The World Wide Web; Conference on Nuclear Structure at the Limits; and Workshop on Experiments with Gammasphere at ATLAS

  7. Two-stage atlas subset selection in multi-atlas based image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-06-15

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  8. Two-stage atlas subset selection in multi-atlas based image segmentation.

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2015-06-01

    Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas

  9. Two-stage atlas subset selection in multi-atlas based image segmentation

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2015-01-01

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  10. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  11. 13th May 2009-Spanish Secretary of State for Research Ministry of Science and Innovation C. Martínez Alonso visiting CMS and ATLAS underground areas with Physics Deputy Department Head L. Alvarez-Gaume.

    CERN Multimedia

    Maximilien Brice; CERN

    2009-01-01

    Tirage 1-3; 7-9:C. Alonso, R. Heuer Tirage 4-6:F. Pauss, R. Heuer, C. Alonso, J. Labastida Tirage 10-11:M. Aguilar Benitez, C. Alonso at CMS Tirage 12-13:the delegation and G. Tonelli, counting room Tirage 14-15,17:the delegation and G. Tonelli, CMS underground area Tirage 16:G. Tonelli, C. Alonso, CMS underground area Tirage 18-20:G. Tonelli, C. Alonso, M. Aguilar Benitez, CMS underground area Tirage 21-28 :C. Alonso, R. Heuer, signing the Guest book Tirage 29-36;38-41:the delegation at ATLAS with P. Jenni Tirage 37:J. Aparicio, C. Parajes, J. Labastida, P. Jenni, C. Alonso, L. Alvarez Gaume Tirage 42-43:the delegation and spanish ATLAS collaborators Tirage 44-46: Meeting with spanish scientists at CERN

  12. Operational status of the uranium beam upgrade of the ATLAS accelerator

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Nolen, J.A.

    1993-01-01

    The Positive-Ion Injector (PII) for ATLAS is complete. First beams from the new injector have been accelerated and used for experiments at ATLAS. The PH consists of an ECR ion source on a 350-kV platform and a low-velocity superconducting linac. The first acceleration of uranium for the experimental program has demonstrated the design goals of the project have been met. Since the summer of 1992, the new injecter has been used for the research program approximately 50% of the time. Longitudinal beam quality from the new injector has been measured to be significantly better than comparable beams from the tandem injecter. Changes to the mix of resonators in the main ATLAS accelerator to match better the velocity profile for heavy beams such as uranium are nearly complete and uranium energies up to 6.45 MeV per nucleon have been achieved. The operating experience of the new ATLAS facility will be discussed with emphasis on the measured beam quality as well as achieved beam energies and currents

  13. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  14. First oceanographic atlas of the Gulf of Mexico. National Award of Oceanographic Research

    International Nuclear Information System (INIS)

    Vidal L., F.; Vidal L., V.M.; Hernandez O., A.

    1991-01-01

    First oceanographic atlas of the Gulf of Mexico National award of oceanographic research. As a result of the research activities applied by Federal Electricity Commission related with oceanographic studies for nuclear stations siting and licensing in coastal areas, doctors Victor Manuel and Francisco Vidal Lorandi and Master in Sciences Abel Hernandez Ochoa got the oceanographic research National award, instituted recently by Mexican Government, by research work published in Oceanographic Atlas of the Gulf of Mexico, Volume II. Atlas presents synthetized oceanographic information about mexican gulf circulation, as well as residence time and water masses distribution. Atlas includes information related with siting and licensing of nuclear stations on shore and has also application, among others, in petroleum, fishery, maritime transportation, and tourism sectors

  15. Calculation Sheet for the Basic Design of the ATLAS Fluid System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Moon, S. K.; Yun, B. J.; Kwon, T. S.; Choi, K. Y.; Cho, S.; Park, C. K.; Lee, S. J.; Kim, Y. S.; Song, C. H.; Baek, W. P.; Hong, S. D

    2007-03-15

    The basic design of an integral effect test loop for pressurized water reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been carried out by Thermal-Hydraulics Safety Research Team in Korea Atomic Energy Research Institute (KAERI). The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400, and is scaled for full pressure and temperature conditions. This report includes calculation sheets for the basic design of ATLAS fluid systems, which are consisted of a reactor pressure vessel with core simulator, the primary loop piping, a pressurizer, reactor coolant pumps, steam generators, the secondary system, the safety system, the auxiliary system, and the heat loss compensation system. The present calculation sheets will be used to help understanding the basic design of the ATLAS fluid system and its based scaling methodology.

  16. Calculation Sheet for the Basic Design of the ATLAS Fluid System

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Moon, S. K.; Yun, B. J.; Kwon, T. S.; Choi, K. Y.; Cho, S.; Park, C. K.; Lee, S. J.; Kim, Y. S.; Song, C. H.; Baek, W. P.; Hong, S. D.

    2007-03-01

    The basic design of an integral effect test loop for pressurized water reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been carried out by Thermal-Hydraulics Safety Research Team in Korea Atomic Energy Research Institute (KAERI). The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400, and is scaled for full pressure and temperature conditions. This report includes calculation sheets for the basic design of ATLAS fluid systems, which are consisted of a reactor pressure vessel with core simulator, the primary loop piping, a pressurizer, reactor coolant pumps, steam generators, the secondary system, the safety system, the auxiliary system, and the heat loss compensation system. The present calculation sheets will be used to help understanding the basic design of the ATLAS fluid system and its based scaling methodology

  17. 27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Laurent Egli

    2012-01-01

    27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

  18. ATLAS database application enhancements using Oracle 11g

    International Nuclear Information System (INIS)

    Dimitrov, G; Canali, L; Blaszczyk, M; Sorokoletov, R

    2012-01-01

    The ATLAS experiment at LHC relies on databases for detector online data-taking, storage and retrieval of configurations, calibrations and alignments, post data-taking analysis, file management over the grid, job submission and management, condition data replication to remote sites. Oracle Relational Database Management System (RDBMS) has been addressing the ATLAS database requirements to a great extent for many years. Ten database clusters are currently deployed for the needs of the different applications, divided in production, integration and standby databases. The data volume, complexity and demands from the users are increasing steadily with time. Nowadays more than 20 TB of data are stored in the ATLAS production Oracle databases at CERN (not including the index overhead), but the most impressive number is the hosted 260 database schemes (for the most common case each schema is related to a dedicated client application with its own requirements). At the beginning of 2012 all ATLAS databases at CERN have been upgraded to the newest Oracle version at the time: Oracle 11g Release 2. Oracle 11g come with several key improvements compared to previous database engine versions. In this work we present our evaluation of the most relevant new features of Oracle 11g of interest for ATLAS applications and use cases. Notably we report on the performance and scalability enhancements obtained in production since the Oracle 11g deployment during Q1 2012 and we outline plans for future work in this area.

  19. ATLAS Review Office

    CERN Multimedia

    Szeless, B

    The ATLAS internal reviews, be it the mandatory Production Readiness Reviews, the now newly installed Production Advancement Reviews, or the more and more requested different Design Reviews, have become a part of our ATLAS culture over the past years. The Activity Systems Status Overviews are, for the time being, a one in time event and should be held for each system as soon as possible to have some meaning. There seems to a consensus that the reviews have become a useful project tool for the ATLAS management but even more so for the sub-systems themselves making achievements as well as possible shortcomings visible. One other recognized byproduct is the increasing cross talk between the systems, a very important ingredient to make profit all the systems from the large collective knowledge we dispose of in ATLAS. In the last two months, the first two PARs were organized for the MDT End Caps and the TRT Barrel Modules, both part of the US contribution to the ATLAS Project. Furthermore several different design...

  20. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  1. Software Validation in ATLAS

    International Nuclear Information System (INIS)

    Hodgkinson, Mark; Seuster, Rolf; Simmons, Brinick; Sherwood, Peter; Rousseau, David

    2012-01-01

    The ATLAS collaboration operates an extensive set of protocols to validate the quality of the offline software in a timely manner. This is essential in order to process the large amounts of data being collected by the ATLAS detector in 2011 without complications on the offline software side. We will discuss a number of different strategies used to validate the ATLAS offline software; running the ATLAS framework software, Athena, in a variety of configurations daily on each nightly build via the ATLAS Nightly System (ATN) and Run Time Tester (RTT) systems; the monitoring of these tests and checking the compilation of the software via distributed teams of rotating shifters; monitoring of and follow up on bug reports by the shifter teams and periodic software cleaning weeks to improve the quality of the offline software further.

  2. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, A; The ATLAS collaboration; Klimentov, A; Senchenko, A

    2012-01-01

    The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  3. Cartea de Colorat a Experimentului ATLAS - ATLAS Experiment Colouring Book in Romanian

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Language: Romanian - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration. Limba: Română - Cartea de Colorat a Experimentului ATLAS este o carte educativă gratuită, ideală pentru copiii cu vârsta cuprinsă între 5-9 ani. Scopul său este de a introduce copii în domeniul fizicii de înaltă energie, precum și activitatea desfășurată de colaborarea ATLAS.

  4. Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

    CERN Document Server

    AUTHOR|(SzGeCERN)743338; The ATLAS collaboration

    2016-01-01

    Four German institutes are building 32 high-rate capable SM2 Micromegas quadruplets, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the 2 m$^2$ quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 $\\mu$m. The qualification of full-size SM2 quadruplets will be performed in the Munich Cosmic Ray Measurement Facility (CRMF). Two fully working 4 m $\\times$ 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 front-end boards. The goal is to measure the homogeneity of pulse-height and efficiency and to determine the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a 102 $\\times$ 92 cm$^2$ Micromegas chamber with similar readout pitch in the CRMF using the TPC-like analysis method. At trigger rates above 100 Hz data taking takes only a few days for sufficie...

  5. Report to users of ATLAS [Argonne Tandem-Line Accelerator System

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1987-03-01

    The operation and development of ATLAS are reported, including accelerator improvements. Particularly noted is an upgrade to extend the mass range of projectiles up to uranium and to increase the beam intensity by at least two orders of magnitude for all ions. Meetings are discussed, particularly of the Program Advisory Committee and the User Group Executive Committee. Some basic information is provided for users planning to run experiments at ATLAS, including a table of beams available. The data acquisition system for ATLAS, DAPHNE, is discussed, as are the following experimental facilities: the Argonne-Notre Dame Gamma Ray Facility, a proposal submitted for constructing a large-acceptance Fragment Mass Analyzer. Brief summaries are provided of some recent experiments for which data analysis is complete. Experiments performed during the period from June 1, 1986 to January 31, 1987 are tabulated, providing the experiment number, scientists, institution, experiment name, number of days, beam, and energy

  6. Report to users of ATLAS (Argonne Tandem-Line Accelerator System)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Glagola, B. (eds.)

    1987-03-01

    The operation and development of ATLAS are reported, including accelerator improvements. Particularly noted is an upgrade to extend the mass range of projectiles up to uranium and to increase the beam intensity by at least two orders of magnitude for all ions. Meetings are discussed, particularly of the Program Advisory Committee and the User Group Executive Committee. Some basic information is provided for users planning to run experiments at ATLAS, including a table of beams available. The data acquisition system for ATLAS, DAPHNE, is discussed, as are the following experimental facilities: the Argonne-Notre Dame Gamma Ray Facility, a proposal submitted for constructing a large-acceptance Fragment Mass Analyzer. Brief summaries are provided of some recent experiments for which data analysis is complete. Experiments performed during the period from June 1, 1986 to January 31, 1987 are tabulated, providing the experiment number, scientists, institution, experiment name, number of days, beam, and energy. (LEW)

  7. An Open-Source Label Atlas Correction Tool and Preliminary Results on Huntingtons Disease Whole-Brain MRI Atlases.

    Science.gov (United States)

    Forbes, Jessica L; Kim, Regina E Y; Paulsen, Jane S; Johnson, Hans J

    2016-01-01

    The creation of high-quality medical imaging reference atlas datasets with consistent dense anatomical region labels is a challenging task. Reference atlases have many uses in medical image applications and are essential components of atlas-based segmentation tools commonly used for producing personalized anatomical measurements for individual subjects. The process of manual identification of anatomical regions by experts is regarded as a so-called gold standard; however, it is usually impractical because of the labor-intensive costs. Further, as the number of regions of interest increases, these manually created atlases often contain many small inconsistently labeled or disconnected regions that need to be identified and corrected. This project proposes an efficient process to drastically reduce the time necessary for manual revision in order to improve atlas label quality. We introduce the LabelAtlasEditor tool, a SimpleITK-based open-source label atlas correction tool distributed within the image visualization software 3D Slicer. LabelAtlasEditor incorporates several 3D Slicer widgets into one consistent interface and provides label-specific correction tools, allowing for rapid identification, navigation, and modification of the small, disconnected erroneous labels within an atlas. The technical details for the implementation and performance of LabelAtlasEditor are demonstrated using an application of improving a set of 20 Huntingtons Disease-specific multi-modal brain atlases. Additionally, we present the advantages and limitations of automatic atlas correction. After the correction of atlas inconsistencies and small, disconnected regions, the number of unidentified voxels for each dataset was reduced on average by 68.48%.

  8. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, Alexey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  9. Strong Production SUSY Searches at ATLAS and CMS

    CERN Document Server

    Marshall, Z L

    2015-01-01

    The results of searches for strongly-produced supersymmetry at the Large Hadron Collider by the ATLAS and CMS collaborations are presented. Several of the historically strongest zero-and one-lepton final state searches have been updated to include multi-bin fits and combinations. In addition, new two-lepton final state search results are shown from CMS and ATLAS, which show 2.6 and 3.0 standard deviation excesses, respectively, above the standard model expectation, albeit in different regions of phase space. Both collaborations have also shown new searches that cover areas uncovered by previous searches, in both searches for light stops and searches for stealth supersymmetry.

  10. A contribution to the development of an economic atlas of the Houston Area Test Site

    Science.gov (United States)

    1972-01-01

    An outine description of the Houston Area Test Site was prepared, in the form of an atlas-catalog of Universal Transverse Mercator grid coordinate locations, building on the manufacturing sector and expanding along agreed lines as far as possible. It was concluded that (1) the effort expended in securing and verifying the locations of larger manufacturing plants yielded 5,000-plus usable entries, in addition to certain valuable conclusions about the general feasibility of obtaining ground information by economic sector; (2) on the basis of the number and the quality of the usable entries obtained, the resources expended on nonmanufacturing sectors and on historical data cannot be wholly justified; and (3) even without the 5,000-odd locations of completely satisfactory quality, the relatively modest cost of this pilot study secured enough data to provide a sound basis for obtaining feasibly and systematically some appropriate ground information on almost any economic or social activity, together with some indication of their relative areal and economic significance.

  11. The potential value of a pictorial atlas for aid in the visual diagnosis of 123I FP-CIT SPECT scans

    International Nuclear Information System (INIS)

    Goethals, I.; Ham, H.; Dobbeleir, A.; D'Asseler, Y.; Santens, P.

    2009-01-01

    The aim of our study was to evaluate the value of a pictorial atlas of 123 I FP-CIT SPECT images for aid in the visual diagnosis. Patients, materials, methods: Sixty patients, of whom 20 were clinically diagnosed as 'non-parkinsonian' and 40 as having Parkinson's disease or any related disorder, were included in the study. An atlas consisting of 12 123 I FP-CIT SPECT images was constructed first. Validity of the atlas was investigated by performing a receiver operating characteristic (ROC) analysis with the clinical diagnosis as the gold standard. The remaining 48 SPECT images were visually assessed twice by 5 observers, first with and secondly without consulting the atlas, or vice versa. The added value of the atlas was investigated by comparing the diagnostic accuracy and the interobserver variability for both methods. Results: ROC analysis performed on the atlas yielded an area under the curve of 1 for a threshold discriminating between clinically non-parkinsonian and parkinsonian patients that was situated between image 4 and 5 of the atlas, For the diagnostic accuracy, we found that the area under the ROC curve was systematically higher if observers had access to the atlas compared to when they had not (Wilcoxon's test, p 123 I FP-CIT SPECT scans. (orig.)

  12. Funding ATLAS 2012 key indicators for publicly funded research in Germany

    CERN Document Server

    Deutsche Forschungsgemeinschaft (DFG)

    2013-01-01

    The Funding ATLAS is a reporting system (previously referred to as the Funding Ranking) employed by the German Research Foundation (DFG) to provide information in the form of indicators of key developments in publicly funded research in Germany every three years. This English version of the Funding ATLAS 2012 presents selected findings from the more comprehensive German edition. At the core of the report are indicators that provide information on which subject areas have received funding at higher education and other research institutions in the period 2008-2010. This report also includes, as a supplement not found in the German edition, the decisions on the Excellence Initiative, which were taken shortly after the German edition of the Funding ATLAS 2012 was published. The report also addresses the subject of internationality by presenting selected indicators that show how attractive Germany's research institutions are for visiting scientists. In summary, the DFG Funding ATLAS furnishes reliable indicators o...

  13. Visits to the ATLAS cavern - A record of 20000 visitors in 2006!

    CERN Document Server

    Alessandra Ciocio

    The year 2006 closed with the impressive record of just under 20000 visitors to the ATLAS cavern. These visitors come from all walks of life - people within ATLAS, groups from other CERN divisions, retired CERN staff, school groups both from the local area and from far away, companies looking for something different as a special outing, celebrities (Cirque du Soleil, Black Eyed Peas hip-hop group) passing through Geneva who had read Angels and Demons, a stream of VIP visitors and now, more and more, Press visitors. There have been public visits in the ATLAS cavern since the middle of 2003. At that time a lot of the visitors were guided by Bernard Lebegue and Francois Butin. The total number of visits in 2003 was 2220 people. Not bad for just two guides! Over the following three years demand for visits increased to such an extent that the ATLAS Visits Service was created and is now run very successfully under the supervision of Connie Potter in the ATLAS Secretariat in close collaboration with the ever-helpfu...

  14. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  15. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  16. Data federation strategies for ATLAS using XRootD

    Science.gov (United States)

    Gardner, Robert; Campana, Simone; Duckeck, Guenter; Elmsheuser, Johannes; Hanushevsky, Andrew; Hönig, Friedrich G.; Iven, Jan; Legger, Federica; Vukotic, Ilija; Yang, Wei; Atlas Collaboration

    2014-06-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the wide area network and staging of remote data files to local disk. To support job-brokering decisions, a time-dependent cost-of-data-access matrix is made taking into account network performance and key site performance factors. The system's response to production-scale physics analysis workloads, either from individual end-users or ATLAS analysis services, is discussed.

  17. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S.

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: June ATLAS Plenary Meeting Tutorial on Physics EDM and Tools (June) Freiburg Overview Week Ketevi Assamagan's Tutorial on Analysis Tools Click here to browse WLAP for all ATLAS lectures.

  18. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    International Nuclear Information System (INIS)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O; Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6 LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ( 252 Cf and 241 AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  19. Second ATLAS Domestic Standard Problem (DSP-02) For A Code Assessment

    International Nuclear Information System (INIS)

    Kim, Yeonsik; Choi, Kiyong; Cho, Seok; Park, Hyunsik; Kang, Kyungho; Song, Chulhwa; Baek, Wonpil

    2013-01-01

    KAERI (Korea Atomic Energy Research Institute) has been operating an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), for transient and accident simulations of advanced pressurized water reactors (PWRs). Using ATLAS, a high-quality integral effect test database has been established for major design basis accidents of the APR1400 plant. A Domestic Standard Problem (DSP) exercise using the ATLAS database was promoted to transfer the database to domestic nuclear industries and contribute to improving a safety analysis methodology for PWRs. This 2 nd ATLAS DSP (DSP-02) exercise aims at an effective utilization of an integral effect database obtained from ATLAS, the establishment of a cooperation framework among the domestic nuclear industry, a better understanding of the thermal hydraulic phenomena, and an investigation into the possible limitation of the existing best-estimate safety analysis codes. A small break loss of coolant accident with a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to the code calculations. This paper includes major information of the DSP-02 exercise as well as comparison results between the calculations and the experimental data

  20. SECOND ATLAS DOMESTIC STANDARD PROBLEM (DSP-02 FOR A CODE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    YEON-SIK KIM

    2013-12-01

    Full Text Available KAERI (Korea Atomic Energy Research Institute has been operating an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS, for transient and accident simulations of advanced pressurized water reactors (PWRs. Using ATLAS, a high-quality integral effect test database has been established for major design basis accidents of the APR1400 plant. A Domestic Standard Problem (DSP exercise using the ATLAS database was promoted to transfer the database to domestic nuclear industries and contribute to improving a safety analysis methodology for PWRs. This 2nd ATLAS DSP (DSP-02 exercise aims at an effective utilization of an integral effect database obtained from ATLAS, the establishment of a cooperation framework among the domestic nuclear industry, a better understanding of the thermal hydraulic phenomena, and an investigation into the possible limitation of the existing best-estimate safety analysis codes. A small break loss of coolant accident with a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to the code calculations. This paper includes major information of the DSP-02 exercise as well as comparison results between the calculations and the experimental data.

  1. ATLAS beam properties: some implications for target making

    International Nuclear Information System (INIS)

    Pardo, R.

    1984-01-01

    The expansion of the tandem-linac booster into the Argonne Tandem-Linac Accelerator System, ATLAS, is approximately 40% complete. When completed, the facility will provide beams of heavy ions from lithium to tin with energies eventually, to 25 MeV/amu. The existing facility continues to provide beams for the experimental program in nuclear and atomic physics during the construction phase. The booster system is capable of accelerating ions as heavy as selenium to energies of 10 MeV/amu for the lighter ions. The good beam quality provided by the linac means that multiple scattering, energy straggling, and target inhomogeneities are major factors in the resolution attainable in experiments. The beam properties that can be expected from ATLAS will be discussed and the present state of high resolution experiments will be reported

  2. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  3. Run-2 Supersymmetry searches in ATLAS

    CERN Document Server

    Soffer, Abner; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. With the large increase in collision energy with the LHC Run-2 (from 8TeV to 13 TeV) the sensitivity to heavy strongly produced SUSY particles (squarks and gluinos) increases tremendously. This talk presents recent ATLAS Run-2 searches for such particles in final states including jets, missing transverse momentum, and possibly light leptons.

  4. The ATLAS high level trigger region of interest builder

    International Nuclear Information System (INIS)

    Blair, R.; Dawson, J.; Drake, G.; Haberichter, W.; Schlereth, J.; Zhang, J.; Ermoline, Y.; Pope, B.; Aboline, M.; High Energy Physics; Michigan State Univ.

    2008-01-01

    This article describes the design, testing and production of the ATLAS Region of Interest Builder (RoIB). This device acts as an interface between the Level 1 trigger and the high level trigger (HLT) farm for the ATLAS LHC detector. It distributes all of the Level 1 data for a subset of events to a small number of (16 or less) individual commodity processors. These processors in turn provide this information to the HLT. This allows the HLT to use the Level 1 information to narrow data requests to areas of the detector where Level 1 has identified interesting objects

  5. 11 March 2009 - Italian Minister of Education, University and Research M. Gelmini, visiting ATLAS and CMS underground experimental areas and LHC tunnel with Director for Research and Scientific Computing S. Bertolucci. Signature of the guest book with CERN Director-General R. Heuer and S. Bertolucci at CMS Point 5.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Members of the Ministerial delegation: Cons. Amb. Sebastiano FULCI, Consigliere Diplomatico Dott.ssa Elisa GREGORINI, Segretario Particolare del Ministro Dott. Massimo ZENNARO, Responsabile rapporti con la stampa Prof. Roberto PETRONZIO, Presidente dell’INFN (Istituto Nazionale di Fisica Nucleare) Dott. Luciano CRISCUOLI, Direttore Generale della Ricerca, MIUR Dott. Andrea MARINONI, Consulente scientifico del Ministro CERN delegation present throughout the programme: Prof. Sergio Bertolucci, Director for Research and Scientific Computing Prof. Fabiola Gianotti, ATLAS Collaboration Spokesperson Prof. Paolo Giubellino, ALICE Deputy Spokesperson, Universita & INFN, Torino Prof. Guido Tonelli, CMS Collaboration Deputy Spokesperson, INFN Pisa Dr Monica Pepe-Altarelli, LHCb Collaboration CERN Team Leader Guests in the ATLAS exhibition area: Dr Marcello Givoletti\tPresident of CAEN Dr Davide Malacalza\tPresident of ASG Ansaldo Superconductors and users: Prof. Clara Matteuzzi, LHCb Collaboration, Universita' d...

  6. ATLAS@Home looks for CERN volunteers

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    ATLAS@Home is a CERN volunteer computing project that runs simulated ATLAS events. As the project ramps up, the project team is looking for CERN volunteers to test the system before planning a bigger promotion for the public.   The ATLAS@home outreach website. ATLAS@Home is a large-scale research project that runs ATLAS experiment simulation software inside virtual machines hosted by volunteer computers. “People from all over the world offer up their computers’ idle time to run simulation programmes to help physicists extract information from the large amount of data collected by the detector,” explains Claire Adam Bourdarios of the ATLAS@Home project. “The ATLAS@Home project aims to extrapolate the Standard Model at a higher energy and explore what new physics may look like. Everything we’re currently running is preparation for next year's run.” ATLAS@Home became an official BOINC (Berkeley Open Infrastructure for Network ...

  7. Implementation of the ATLAS trigger within the ATLAS Multi­Threaded Software Framework AthenaMT

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2016-01-01

    We present an implementation of the ATLAS High Level Trigger that provides parallel execution of trigger algorithms within the ATLAS multi­threaded software framework, AthenaMT. This development will enable the ATLAS High Level Trigger to meet future challenges due to the evolution of computing hardware and upgrades of the Large Hadron Collider, LHC, and ATLAS Detector. During the LHC data­taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further, to up to 7.5 times the design value, in 2026 following LHC and ATLAS upgrades. This includes an upgrade of the ATLAS trigger architecture that will result in an increase in the High Level Trigger input rate by a factor of 4 to 10 compared to the current maximum rate of 100 kHz. The current ATLAS multiprocess framework, AthenaMP, manages a number of processes that process events independently, executing algorithms sequentially in each process. AthenaMT will provide a fully multi­threaded env...

  8. EnviroAtlas - Memphis, TN - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  9. EnviroAtlas - Portland, OR - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  10. EnviroAtlas - Austin, TX - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  11. EnviroAtlas - Paterson, NJ - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  12. EnviroAtlas - Durham, NC - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  13. EnviroAtlas - Portland, ME - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  14. ATLAS Cold Leg Top Slot Break Analysis using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Haejung; Lee, Sang Ik; Park, Ju-Hyun; Choi, Tong-Soo [KEPCO NF, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. Nuclear Regulatory Commission (US-NRC) has been reviewing the design certification application for APR1400 submitted by Korea Electric Power Corporation (KEPCO). The main concern about cold leg top slot break is that cladding temperature might be increased by core uncover due to four loop seal reformation following flooding of safety injection water. An integral effect test for cold leg top slot break was performed by KAERI (Korea Atomic Energy Research Institute) using ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation), which is a scaled down experimental facility for APR1400. In this study, RELAP5/MOD3.3/Patch04 is assessed by experimental result of ATLAS cold leg top slot break. Also, thermal hydraulic phenomena by four loop seals reformation is observed by RELAP5 result. The RELAP5/MOD3.3/Patch04 is assessed by the experimental result of ATLAS cold leg top slot break. The top slot break is described by offtake model, and the mass flow rate is fairly well estimated. The RELAP5 well predicts the correlation between general trend and four loop seal reformation. The pressure of the core region and the cladding temperature tends to increase during four loop seal reformation due to steam path blockage on four loop seals. It is presumed that the code cannot estimate two phase phenomena by loop seal clearing as same as experiments. In terms of cladding temperature, loop seal reformation due to loop seal elevation of APR1400 does not need to be the issue, since the void fraction at the active top core is maintained over 0.4.

  15. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1997-03-01

    This report covers the following topics: (1) status of the ATLAS accelerator; (2) progress in R and D towards a proposal for a National ISOL Facility; (3) highlights of recent research at ATLAS; (4) the move of gammasphere from LBNL to ANL; (5) Accelerator Target Development laboratory; (6) Program Advisory Committee; (7) ATLAS User Group Executive Committee; and (8) ATLAS user handbook available in the World Wide Web. A brief summary is given for each topic

  16. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Energy Technology Data Exchange (ETDEWEB)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O [Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J, E-mail: scallon@lps.umontreal.ca [Institute of Experimental and Applied Physics of the CTU in Prague, Horska 3a/22, CZ-12800 Praha2 - Albertov (Czech Republic)

    2011-01-15

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of {sup 6}LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ({sup 252}Cf and {sup 241}AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  17. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Science.gov (United States)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  18. Comparison report of open calculations for ATLAS Domestic Standard Problem (DSP 02)

    International Nuclear Information System (INIS)

    Choi, Ki Yong; Kim, Y. S.; Kang, K. H.; Cho, S.; Park, H. S.; Choi, N. H.; Kim, B. D.; Min, K. H.; Park, J. K.; Chun, H. G.; Yu, Xin Guo; Kim, H. T.; Song, C. H.; Sim, S. K.; Jeon, S. S.; Kim, S. Y.; Kang, D. G.; Choi, T. S.; Kim, Y. M.; Lim, S. G.; Kim, H. S.; Kang, D. H.; Lee, G. H.; Jang, M. J.

    2012-09-01

    KAERI (Korea Atomic Energy Research Institute) has been operating an integral effect test facility, the Advanced Thermal Hydraulic Test Loop for Accident Simulation (ATLAS) for transient and accident simulations of advanced pressurized water reactors (PWRs). By using the ATLAS, a high quality integral effect test database has been established for major design basis accidents of the APR1400. A Domestic Standard Problem (DSP) exercise using the ATLAS database was promoted in order to transfer the database to domestic nuclear industries and to contribute to improving safety analysis methodology for PWRs. This 2nd ATLAS DSP exercise was led by KAERI in collaboration with KINS since the successful completion of the 1st ATLAS DSP in 2009. This exercise aims at effective utilization of integral effect database obtained from the ATLAS, establishment of cooperation framework among the domestic nuclear industry, better understanding of thermal hydraulic phenomena, and investigation of the possible limitation of the existing best estimate safety analysis codes. A small break loss of coolant accident of 6 inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating with interests from participants. Twelve domestic organizations joined this DSP 02 exercise. Finally, eleven out of the joined organizations submitted their calculation results, including universities, government, and nuclear industries. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to code calculations. This report includes all information of the 2nd ATLAS DSP (DSP 02) exercise as well as comparison results between the calculations and the experimental data

  19. ATLAS Colouring Book

    CERN Multimedia

    Anthony, Katarina

    2016-01-01

    The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  20. SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is first roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit

  1. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  2. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  3. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  5. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  11. Standard Model Higgs boson searches with the ATLAS detector

    Indian Academy of Sciences (India)

    The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production ...

  12. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  13. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  14. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  15. Future ATLAS Higgs Studies

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC will prove a challenging environment to work in, with for example $=200$ expected. It will however also provide great opportunities for advancing studies of the Higgs boson. The ATLAS detector will be upgraded, and Higgs prospects analyses have been performed to assess the reach of ATLAS Higgs studies in the HL-LHC era. These analyses are presented, as are Run-2 ATLAS di-Higgs analyses for comparison.

  16. Atlas 1.1: An Update to the Theory of Effective Systems Engineers

    Science.gov (United States)

    2018-01-16

    Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ...which are the most discrete areas of proficiency included in Atlas. • For each proficiency area, there are Levels, which describe the extent to which... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain

  17. ELECTROMAGNETIC COMPATIBILITY OF A DC POWER DISTRIBUTION SYSTEM FOR THE ATLAS LIQUID ARGON CALORIMETER COMPATIBILIDAD ELECTROMAGNÉTICA EN EL SISTEMA DE DISTRIBUCIÓN DE CORRIENTE CONTINUA PARA EL CALORÍMETRO DE ARGÓN LÍQUIDO EN ATLAS

    Directory of Open Access Journals (Sweden)

    George Blanchot

    2008-06-01

    Full Text Available The front-end electronics of the ATLAS Liquid Argon Calorimeter is powered by DC/DC converters nearby the front-end crates. They are fed by AC/DC converters located in a remote control room through long power cables. The stability of the power distribution scheme is compromised by the impedance of the long interconnection cable, and proper matching of the converters dynamic impedances is required. Also, the long power cable fed by a powerful AC/DC converter is a source of electromagnetic interferences in the experimental area. The optimal grounding and shielding configuration to minimize these EMI is discussed.El Calorímetro de Argón Líquido en ATLAS es alimentado por convertidores DC/DC localizados cerca de sus compartimientos. Ellos son alimentados por convertidores AC/DC localizados en una sala de control lejana conectados mediante cables largos de poder. La estabilidad del sistema de distribución es sensible a la impedancia del cable largo de interconexión y son requeridos los convertidores apropiados para estabilizar la dinámica de la impedancia. También, el cable largo alimentado por el convertidor AC/DC es una fuente de interferencia electromagnética en el área experimental. En este trabajo se analiza La óptima configuración de aterrizamiento y blindaje para minimizar los efectos de EMI.

  18. Baby brain atlases.

    Science.gov (United States)

    Oishi, Kenichi; Chang, Linda; Huang, Hao

    2018-04-03

    The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed. Copyright © 2018. Published by Elsevier Inc.

  19. Glance Information System for ATLAS Management

    International Nuclear Information System (INIS)

    Grael, F F; Maidantchik, C; Évora, L H R A; Karam, K; Moraes, L O F; Cirilli, M; Nessi, M; Pommès, K

    2011-01-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  20. Glance Information System for ATLAS Management

    Science.gov (United States)

    Grael, F. F.; Maidantchik, C.; Évora, L. H. R. A.; Karam, K.; Moraes, L. O. F.; Cirilli, M.; Nessi, M.; Pommès, K.; ATLAS Collaboration

    2011-12-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  1. Supersymmetry searches with ATLAS: overview and latest results

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. The ATLAS experiment searches for signs of supersymmetry in a large variety of signatures involving events with abnormal production of missing transverse momentum, jets, leptons, photons, third generation fermions, gauge bosons or massive long-lived particles. The talk presents the latest results obtained in these searches.

  2. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  3. Status of the physics validation studies using Geant4 in ATLAS

    CERN Document Server

    AUTHOR|(CDS)2108477

    2003-01-01

    The new simulation for the ATLAS detector at LHC is performed using Geant4 in a complete OO/C++ environment. In this framework the simulation of the various test beams for the different ATLAS subdetectors offers an excellent opportunity to perform physics validation studies over a wide range of physics domains: the electromagnetic processes, the individual hadronic interactions, the electromagnetic and hadronic signals in calorimeters. The simulation is implemented by paying special attention to all details of the experimental layout and by testing all possible physics processes which may be of relevance to the specific detector under test: the resulting simulation programs are often more detailed than the corresponding Geant3-based simulation suites. In this paper we present relevant features of muon, electron and pion signals in various ATLAS detectors. All remaining discrepancies between Geant4 and test-beam data are currently being addressed and progress is continuous. This work shows that Geant4 is becom...

  4. n_TOF: a new experimental area under way

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On Thursday 23 May, CERN celebrated the laying of the foundation stone of the new experimental area (EAR-2) of n_TOF – CERN’s neutron source facility*. Under a mild sun, Rolf Heuer, CERN Director-General, Enrico Chiaveri, spokesperson for the n_TOF collaboration, Frédérick Bordry, head of CERN’s Technology Department, and other important figures at CERN raised their glasses to the launch of this new scientific adventure.   Rolf Heuer, CERN Director-General, driving a backhoe at the EAR-2 foundation stone laying ceremony. “This new experimental area is very important as it shows the diversity of the science we are doing at CERN,” says Rolf Heuer. “One of the Laboratory’s goals is to build infrastructures and to do science that is unique, or at least world leading. And that is exactly what we are doing here.” The n_TOF collaboration is taking advantage of the long shutdown (LS1) for the const...

  5. Review of the ATLAS experiment at the LHC (CERN)

    International Nuclear Information System (INIS)

    Taylor, G.

    1998-01-01

    Full text: This talk gives in overview of the physics program for the next generation high energy physics experiments at CERN's Large Hadron Collider (LHC). Emphasis will be on the ATLAS experiment and in particular on the Australian participation in that experiment. Australian physicists from Melbourne, Sydney and Wollongong are playing a significant role in the development, production, installation and operation of the ambitious Semiconductor Tracker (SCT) in the ATLAS' Inner Detector. The SCT, particularly important for the detection and measurement of high energy electrons, will be essential in the search for the Higgs Boson through electron decay channels (amongst other reactions). The design calls for a total detector surface area an order of magnitude larger than in current silicon detectors, in a harsh radiation environment. Prodigious data rates and high speed electronics add to the complications of this detector. The talk will review progress and describe the schedule for the completion of the SCT and ATLAS

  6. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  7. The detector control system of the ATLAS experiment

    International Nuclear Information System (INIS)

    Poy, A Barriuso; Burckhart, H J; Cook, J; Franz, S; Gutzwiller, O; Hallgren, B; Schlenker, S; Varela, F; Boterenbrood, H; Filimonov, V; Khomutnikov, V

    2008-01-01

    The ATLAS experiment is one of the experiments at the Large Hadron Collider, constructed to study elementary particle interactions in collisions of high-energy proton beams. The individual detector components as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision using operator commands, reads, processes and archives the operational parameters of the detector, allows for error recognition and handling, manages the communication with external control systems, and provides a synchronization mechanism with the physics data acquisition system. Given the enormous size and complexity of ATLAS, special emphasis was put on the use of standardized hardware and software components enabling efficient development and long-term maintainability of the DCS over the lifetime of the experiment. Currently, the DCS is being used successfully during the experiment commissioning phase

  8. Measurements of ttbar+X using the ATLAS detector

    CERN Document Server

    Kawade, Kentaro; The ATLAS collaboration

    2017-01-01

    The large centre-of-mass energy available at the Large Hadron Collider (LHC) allows for the copious production of top quark pairs in association with other final state particles at high transverse momenta. Several final state observables that are sensitive to additional radiation in top anti-top quark final states has been measured by the ATLAS experiment. The production of top quark pair in association with $W$ and $Z$ bosons or with a photon are also measured by using the ATLAS detector. Analyses probing the top pair production with additional QCD radiation include the multiplicity of jets for various transverse momentum thresholds in the 13 TeV data. These measurements are compared to modern Monte Carlo generators based on NLO QCD matrix element or LO multi-leg matrix elements, and the results are consistent with the standard model predictions within the experimental uncertainties.

  9. O Livro de Colorir da Experiência ATLAS - ATLAS Experiment Colouring Book in Portuguese

    CERN Multimedia

    Anthony, Katarina

    2017-01-01

    Language: Portuguese - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration. Língua: Português - O Livro de Colorir da Experiência ATLAS é um livro educacional gratuito para descarregar, ideal para crianças dos 5 aos 9 anos de idade. Este livro procura introduzir as crianças ao estudo da Física de Alta-Energia, bem como ao trabalho desenvolvido pela Colaboração ATLAS.

  10. Maľovanka Experiment ATLAS - ATLAS Experiment Colouring Book in Slovak

    CERN Multimedia

    Anthony, Katarina

    2017-01-01

    Language: Slovak - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  11. ATLAS Deneyi Boyama Kitabı - ATLAS Experiment Colouring Book in Turkish

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Language: Turkish - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  12. AGIS: The ATLAS Grid Information System

    Science.gov (United States)

    Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration

    2014-06-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  13. 6 January 2011 - Extraordinary and plenipotentiary Ambassador M. Kovačič, Permanent Representative of the Republic of Slovenia to the United Nations Office and other international Organisations at Geneva (and Permanent Mission Staff)signing the guest book with CERN Director-General R. Heuer; in the ATLAS visitor centre, ATLAS underground area and LHC tunnel with Collaboration Spokesperson F. Gianotti and Adviser T. Kurtyka.

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    6 January 2011 - Extraordinary and plenipotentiary Ambassador M. Kovačič, Permanent Representative of the Republic of Slovenia to the United Nations Office and other international Organisations at Geneva (and Permanent Mission Staff)signing the guest book with CERN Director-General R. Heuer; in the ATLAS visitor centre, ATLAS underground area and LHC tunnel with Collaboration Spokesperson F. Gianotti and Adviser T. Kurtyka.

  14. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  15. Data federation strategies for ATLAS using XRootD

    International Nuclear Information System (INIS)

    Gardner, Robert; Vukotic, Ilija; Campana, Simone; Iven, Jan; Duckeck, Guenter; Elmsheuser, Johannes; Hönig, Friedrich G; Legger, Federica; Hanushevsky, Andrew; Yang, Wei

    2014-01-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the wide area network and staging of remote data files to local disk. To support job-brokering decisions, a time-dependent cost-of-data-access matrix is made taking into account network performance and key site performance factors. The system's response to production-scale physics analysis workloads, either from individual end-users or ATLAS analysis services, is discussed.

  16. Commissioning of the Atlas pixel detector and search of the Higgs boson in the tt-H, H → bb- channel with the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    Aad, G.

    2009-09-01

    The global fit of Higgs boson quantum contributions to the electroweak experimental observables, computed within the Standard Model, favors a light Higgs boson with a mass of m H = 90 -27 +36 GeV, on the edge of the 95% Confidence Level region excluded by LEP. Finding a light Higgs boson at LHC is experimentally difficult and several channels with various signatures will be sought for. The associated production of the Higgs boson with a pair of top quarks, with the subsequent decay of the Higgs boson into b-quark pairs (dominant for m H <135 GeV), is one of the channels considered. This channel opens the possibility of measuring the top and b-quark Yukawa couplings. The potential of the ATLAS detector to observe this channel is described. Several ingredients are crucial: the reconstruction of the top-anti-top system with a high-purity, excellent b-tagging capabilities and good knowledge of the tt-bar+jets background. The pixel detector is the most important ATLAS sub-detectors for tagging b -jets. The ATLAS detector was commissioned with cosmic muon rays in autumn 2008. The pixel detector dead channels, calibration constants and slow control informations are described for this period. A detailed study about pixel noise determination and suppression is presented. Finally, the pixel detection efficiency is measured using cosmic muon rays. (author)

  17. Preparing a new book on ATLAS

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    A book about the ATLAS project and the ATLAS collaboration is going to be published and available for sale in mid 2008. The book is intended to be a symbol of appreciation for all the people from ATLAS institutes, triggering fond memories through photos, interviews, short commentaries and anecdotes about the daily life and milestones encountered while designing, constructing and completing ATLAS. We would like to give you the opportunity to collaborate with this project in two different ways: Firstly, please send us the best anecdotes related to ATLAS that you remember. To submit anecdotes, send an email to Claudia.Marcelloni@cern.ch. Secondly, you are invited to participate in our PHOTO COMPETITION. Please send the best photos you have of ATLAS attached with a description, the location, and date taken. The categories are: Milestones in the process of designing and building the detector, People at work and Important gatherings. To submit photos you should go to the CDS page and select ATLAS Photo Competi...

  18. The future of event-level information repositories, indexing, and selection in ATLAS

    International Nuclear Information System (INIS)

    Barberis, D; Cranshaw, J; Malon, D; Gemmeren, P Van; Zhang, Q; Dimitrov, G; Nairz, A; Sorokoletov, R; Doherty, T; Quilty, D; Gallas, E J; Hrivnac, J; Nowak, M

    2014-01-01

    ATLAS maintains a rich corpus of event-by-event information that provides a global view of the billions of events the collaboration has measured or simulated, along with sufficient auxiliary information to navigate to and retrieve data for any event at any production processing stage. This unique resource has been employed for a range of purposes, from monitoring, statistics, anomaly detection, and integrity checking, to event picking, subset selection, and sample extraction. Recent years of data-taking provide a foundation for assessment of how this resource has and has not been used in practice, of the uses for which it should be optimized, of how it should be deployed and provisioned for scalability to future data volumes, and of the areas in which enhancements to functionality would be most valuable. This paper describes how ATLAS event-level information repositories and selection infrastructure are evolving in light of this experience, and in view of their expected roles both in wide-area event delivery services and in an evolving ATLAS analysis model in which the importance of efficient selective access to data can only grow.

  19. Major Achievements and Prospect of the ATLAS Integral Effect Tests

    International Nuclear Information System (INIS)

    Choi, K.; Kim, Y.; Song, C.; Baek, W.

    2012-01-01

    A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R and D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.

  20. ATLAS B-physics potential

    International Nuclear Information System (INIS)

    Smizanska, M.

    2001-01-01

    Studies since 1993 have demonstrated the ability of ATLAS to pursue a wide B physics program. This document presents the latest performance studies with special stress on lepton identification. B-decays containing several leptons in ATLAS statistically dominate the high-precision measurements. We present new results on physics simulations of CP violation measurements in the B s 0 → J/Ψphi decay and on a novel ATLAS programme on beauty production in central proton-proton collisions of LHC

  1. EnviroAtlas - Green Bay, WI - People and Land Cover in Floodplains by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the total counts and percentage of population, land area, and impervious surface in the 1% Annual Chance Flood Hazard area or 0.2%...

  2. A geochemical atlas of North Carolina, USA

    Science.gov (United States)

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only

  3. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  4. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2017. In this paper an overview of the ongoing R\\&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

  5. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  6. ATLAS Facility Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loop-type. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations in detail

  7. SUSY searches with the ATLAS detector

    CERN Document Server

    Ventura, Andrea; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  8. TU-CD-BRA-05: Atlas Selection for Multi-Atlas-Based Image Segmentation Using Surrogate Modeling

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: The growing size and heterogeneity in training atlas necessitates sophisticated schemes to identify only the most relevant atlases for the specific multi-atlas-based image segmentation problem. This study aims to develop a model to infer the inaccessible oracle geometric relevance metric from surrogate image similarity metrics, and based on such model, provide guidance to atlas selection in multi-atlas-based image segmentation. Methods: We relate the oracle geometric relevance metric in label space to the surrogate metric in image space, by a monotonically non-decreasing function with additive random perturbations. Subsequently, a surrogate’s ability to prognosticate the oracle order for atlas subset selection is quantified probabilistically. Finally, important insights and guidance are provided for the design of fusion set size, balancing the competing demands to include the most relevant atlases and to exclude the most irrelevant ones. A systematic solution is derived based on an optimization framework. Model verification and performance assessment is performed based on clinical prostate MR images. Results: The proposed surrogate model was exemplified by a linear map with normally distributed perturbation, and verified with several commonly-used surrogates, including MSD, NCC and (N)MI. The derived behaviors of different surrogates in atlas selection and their corresponding performance in ultimate label estimate were validated. The performance of NCC and (N)MI was similarly superior to MSD, with a 10% higher atlas selection probability and a segmentation performance increase in DSC by 0.10 with the first and third quartiles of (0.83, 0.89), compared to (0.81, 0.89). The derived optimal fusion set size, valued at 7/8/8/7 for MSD/NCC/MI/NMI, agreed well with the appropriate range [4, 9] from empirical observation. Conclusion: This work has developed an efficacious probabilistic model to characterize the image-based surrogate metric on atlas selection

  9. ATLAS measurements of vector boson production

    CERN Document Server

    Levchenko, M; The ATLAS collaboration

    2014-01-01

    ATLAS measurements of vector boson production with associated jets Productions of light and heavy-flavour jets in association with a W or a Z boson in proton-proton collisions are important processes to study QCD in multi-scale environments and the proton parton content. The cross section, differential in several kinematics variables, have been measured with the ATLAS detector in 7 TeV proton-proton collisions and compared to high-order QCD calculations and Monte Carlo simulations. The results demonstrate the need for the inclusion of high-multiplicity matrix elements in the calculations of high jet multiplicities. The ratio of (Z+jets)/(W+jets) provides a precise test of QCD due to the large cancellations of theoretical and experimental uncertainties. Measurement of W+c production cross section has a unique sensitivity to the strange-quark density, which is poorly known at low x. W or Z boson production in association with b-quark jets, on the other hand, probes the b-quark density in the proton and the b-qu...

  10. Search for vector-like quarks at ATLAS

    CERN Document Server

    Ellinghaus, Frank; The ATLAS collaboration

    2017-01-01

    Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector-like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular, the selection criteria, the background modelling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed.

  11. Taking ATLAS to new heights

    CERN Document Server

    Abha Eli Phoboo, ATLAS experiment

    2013-01-01

    Earlier this month, 51 members of the ATLAS collaboration trekked up to the highest peak in the Atlas Mountains, Mt. Toubkal (4,167m), in North Africa.    The physicists were in Marrakech, Morocco, attending the ATLAS Overview Week (7 - 11 October), which was held for the first time on the African continent. Around 300 members of the collaboration met to discuss the status of the LS1 upgrades and plans for the next run of the LHC. Besides the trek, 42 ATLAS members explored the Saharan sand dunes of Morocco on camels.  Photos courtesy of Patrick Jussel.

  12. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    Energy Technology Data Exchange (ETDEWEB)

    Vandelli, Wainer, E-mail: wainer.vandelli@cern.c

    2010-04-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  13. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    International Nuclear Information System (INIS)

    Vandelli, Wainer

    2010-01-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  14. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  15. Brief retrospection on Hungarian school atlases

    Science.gov (United States)

    Klinghammer, István; Jesús Reyes Nuñez, José

    2018-05-01

    The first part of this article is dedicated to the history of Hungarian school atlases to the end of the 1st World War. Although the first maps included in a Hungarian textbook were probably made in 1751, the publication of atlases for schools is dated almost 50 years later, when professor Ézsáiás Budai created his "New School Atlas for elementary pupils" in 1800. This was followed by a long period of 90 years, when the school atlases were mostly translations and adaptations of foreign atlases, the majority of which were made in German-speaking countries. In those years, a school atlas made by a Hungarian astronomer, Antal Vállas, should be highlighted as a prominent independent piece of work. In 1890, a talented cartographer, Manó Kogutowicz founded the Hungarian Geographical Institute, which was the institution responsible for producing school atlases for the different types of schools in Hungary. The professional quality of the school atlases published by his institute was also recognized beyond the Hungarian borders by prizes won in international exhibitions. Kogutowicz laid the foundations of the current Hungarian school cartography: this statement is confirmed in the second part of this article, when three of his school atlases are presented in more detail to give examples of how the pupils were introduced to the basic cartographic and astronomic concepts as well as how different innovative solutions were used on the maps.

  16. Searching for Higgs boson production in association with a top quark pair with the ATLAS detector

    CERN Document Server

    Ospanov, Rustem; The ATLAS collaboration

    2018-01-01

    This contribution will report on most recent searches for Higgs boson production in association with a top quark pair (ttH) performed by the ATLAS experiment at the LHC. The ttH process is interesting because it can measure directly the Higgs boson coupling to the top quark, which otherwise is known only via virtual top quark loop contributions to the inclusive Higgs boson production at the LHC. The ttH production process has not been observed yet and it is a subject of extensive experimental studies by the ATLAS and CMS collaborations. This presentation will discuss most recent ATLAS searches for the ttH production, focusing on Higgs boson decays to a pair of W or Z bosons, or to a pair of tau leptons. These decay modes result in final states with multiple leptons and jets, thus allowing significant suppression of background processes. This presentation will discuss new experimental techniques for suppressing these background processes and present latest results in different multi-lepton channels. The presen...

  17. EnviroAtlas - Fruit and vegetable crops for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes data on the area, yield, and number of fruit and vegetable crops grown per 12-digit Hydrologic Unit (HUC) in the conterminous USA....

  18. ATLAS Maintenance and Operation management system

    CERN Document Server

    Copy, B

    2007-01-01

    The maintenance and operation of the ATLAS detector will involve thousands of contributors from 170 physics institutes. Planning and coordinating the action of ATLAS members, ensuring their expertise is properly leveraged and that no parts of the detector are understaffed or overstaffed will be a challenging task. The ATLAS Maintenance and Operation application (referred to as Operation Task Planner inside the ATLAS experiment) offers a fluent web based interface that combines the flexibility and comfort of a desktop application, intuitive data visualization and navigation techniques, with a lightweight service oriented architecture. We will review the application, its usage within the ATLAS experiment, its underlying design and implementation.

  19. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica) in the Moroccan Middle Atlas Forests

    OpenAIRE

    Linares, Juan C.; Taïqui, Lahcen; Camarero, Jesús Julio

    2011-01-01

    An understanding of the interactions between climate change and forest structure on tree growth are needed for decision making in forest conservation and management. In this paper, we investigated the relative contribution of tree features and stand structure on Atlas cedar (Cedrus atlantica) radial growth in forests that have experienced heavy grazing and logging in the past. Dendrochronological methods were applied to quantify patterns in basal-area increment and drought sensitivity of Atla...

  20. Taus at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Demers, Sarah M. [Yale Univ., New Haven, CT (United States). Dept. of Physics

    2017-12-06

    The grant "Taus at ATLAS" supported the group of Sarah Demers at Yale University over a period of 8.5 months, bridging the time between her Early Career Award and her inclusion on Yale's grant cycle within the Department of Energy's Office of Science. The work supported the functioning of the ATLAS Experiment at CERN's Large Hadron Collider and the analysis of ATLAS data. The work included searching for the Higgs Boson in a particular mode of its production (with a W or Z boson) and decay (to a pair of tau leptons.) This was part of a broad program of characterizing the Higgs boson as we try to understand this recently discovered particle, and whether or not it matches our expectations within the current standard model of particle physics. In addition, group members worked with simulation to understand the physics reach of planned upgrades to the ATLAS experiment. Supported group members include postdoctoral researcher Lotte Thomsen and graduate student Mariel Pettee.

  1. A probabilistic atlas of human brainstem pathways based on connectome imaging data.

    Science.gov (United States)

    Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang

    2018-04-01

    The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles

  2. Soft QCD at CMS and ATLAS

    CERN Document Server

    Starovoitov, Pavel; The ATLAS collaboration

    2018-01-01

    A short overview of the recent soft QCD results from the ATLAS and CMS collaborations is presented. The inelastic cross section measurement by CMS at 13 TeV is summarised. The contribution of the diffractive processes to the very forward photon spectra studied by ATLAS and LHCf is discussed. The ATLAS measurements of the exclusive two-photon production of the muon pairs is presented and compared to the previous ATLAS and CMS results.

  3. AGIS: The ATLAS Grid Information System

    OpenAIRE

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configurat...

  4. ATLAS B-physics potential

    CERN Document Server

    Smizanska, M

    2001-01-01

    Studies since 1993 have demonstrated the ability of ATLAS to pursue a wide B physics program. This document presents the latest performance studies with special stress on lepton identification. B-decays containing several leptons in ATLAS statistically dominate the high- precision measurements. We present new results on physics simulations of CP violation measurements in the B/sub s//sup 0/ to J/ psi phi decay and on a novel ATLAS programme on beauty production in central proton-proton collisions at the LHC. (7 refs).

  5. Language choice, language alternation and code-switching in the Mercator-Hondius Atlas

    Directory of Open Access Journals (Sweden)

    Aleksi Mäkilähde

    2016-05-01

    Full Text Available The atlas of Gerardus Mercator (Gerard de Cremer, or the Atlas sive cosmographicae meditationes de fabrica mundi et fabricati figura, is one of first modern atlases and one of the most famous of those compiled in the Netherlands. The first (unfinished edition was published in 1595, but the copperplates were later acquired by Jodocus Hondius (Joost de Hondt and his business associates. The revised Mercator-Hondius Atlas was published for the first time in 1606 with added maps and texts. The texts printed on verso of the maps were written by Petrus Montanus (Pieter van den Berg, who was a brother-in-law of Hondius and a Latin teacher. Many subsequent editions of the atlas were produced in the years that followed. The first editions were in Latin, but versions in European vernaculars such as French, German and Italian were produced later as well. The present article focuses on the multilingual nature of the Mercator-Hondius Atlas (1613, editio quarta by discussing language choice, language alternation and code-switching patterns in different parts of the atlas. The dominant language of the descriptive texts is Latin, but there are also switches into many other languages, including Greek (written in Greek script and several vernaculars. Furthermore, the map pages tend to indicate the names of different types of area (e.g. cities, seas, and oceans in different languages. The aim of the present article is to provide a preliminary exploration of the possibilities of approaching the atlas with the aid of concepts and ideas derived from modern code-switching studies. I demonstrate how these concepts can be used to describe the language choice patterns in the text and discuss some of the challenges the data poses for a linguistic approach.

  6. Triggering on Long-Lived Neutral Particles in the ATLAS Detector

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Acerbi, E; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Asman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barr, A J; Barreiro, F; Barreiro Guimaraes da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bazalova, M; Beare, B; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger- Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchot, G; Blocker, C; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boek, J; Boelaert, N; Boeser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodet, E; Bromberg, C; Brooijmans, G; Brooks, W K; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Buescher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero-Bejar, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Camarri, P; Cameron, D; Campana, S; Campanelli, M; Canale, V; Canelli, F; Cantero, J; Capasso, L; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Castaneda Hernadez, A M; Castaneda Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chatterjii, S; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, X; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Chernyatin, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coggeshall, J; Cogneras, E; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muino, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Cote, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davison, A R; Dawson, I; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; de Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca Silberberg, C; Demers, S; Demichev, M; Demirkoz, B; Deng, W; Denisov, S P; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Dobos, D; Dobson, E; Dobson, M; Doherty, T; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Dragic, J; Drasal, Z; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Duehrssen, M; Duflot, L; Dufour, M-A; Dunford, M; Duperrin, A; Duran Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, E J; Gallas, M V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Goebel, M; Goepfert, T; Goeringer, C; Goessling, C; Goettfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Goncalo, R; Gong, C; Gonzalez de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gordon, H; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafstrom, P; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Griesmayer, E; Grigalashvili, N; Grillo, A A; Grimm, K; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guicheney, C; Guida, A; Guillemin, T; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haertel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecki, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkings, R J; Hayakawa, T; Hayward, H S; Haywood, S J; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henss, T; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Higon-Rodriguez, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hirose, M; Hirsch, F; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holy, T; Holzbauer, J L; Homma, Y; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S -C; Huang, G S; Huang, J; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ince, T; Ioannou, P; Iodice, M; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Ivashin, A V; Iwasaki, H; Izen, J M; Izzo, V; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jenni, P; Jez, P; Jezequel, S; Ji, W; Jia, J; Jiang, Y; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joos, D; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalilzade, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klimkovich, T; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E -E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Koeneke, K; Koenig, A C; Koepke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kovar, S; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krueger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rotonda, L; Labarga, L; Labbe, J A; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leroy, C; Lessard, J-R; Lester, C G; Leung Fook Cheong, A; Leveque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Linhart, V; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Litke, A M; Liu, C; Liu, D; Liu, J B; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, I; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundquist, J; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macek, B; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Maettig, P; Maettig, S; Magass, C; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March Ruiz, L; Marchand, J F; Marchese, F; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martinez Perez, M; Martinez Outschoorn, V; Martini, A; Martynenko, V; Martyniuk, A C; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; Mayne, A; Mazini, R; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCormick, C; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J-P; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Minano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjoernmark, J U; Mladenov, D; Moa, T; Moed, S; Moeller, V; Moenig, K; Moeser, N; Mohr, W; Mohrdieck-Moeck, S; Moles-Valls, R; Molina Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, J; Mueller, K; Mueller, T A; Muenstermann, D; Muir, A; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Nevski, P; Newcomer, F M; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nuncio-Quiroz, A -E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odino, G A; Ogren, H; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Orr, R S; Ortega, E O; Osculati, B; Osuna, C; Otec, R; Ottersbach, J; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Paganis, E; Paige, F; Pajchel, K; Pal, A; Palestini, S; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passeri, A; Pastore, F; Pastore, Fr; Pasztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Perez Garcia-Estan, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petti, R; Pezoa, R; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pinto, B; Pinzon, G; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M -A; Poblaguev, A; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommes, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qian, W; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, D; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rizatdinova, F; Rizvi, E R; Roa Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Rodriguez, D; Rodriguez, Y; Roe, S; Rohne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero Maltrana, D; Roos, L; Ros, E; Rosati, M; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossi, L P; Rotaru, M; Rothberg, J; Rottlaender, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Ruehr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryan, P; Rybin, A M; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F-W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachúa Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sandaker, H; Sander, H G; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, D; Santos, J; Saraiva, J G; Sarangi, T; Saremi, S; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schaefer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmid, P; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schultes, J; Schultz-Coulon, H-C; Schumacher, J; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Soukharev, A; Spagnolo, S; Spano, F; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; Denis, R D; Stahl, T; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Stastny, J; Staude, A; Stavina, P; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strassler, M J; Strauss, M; Strizenec, P; Stroehmer, R; Strom, D M; Stroynowski, R; Stugu, B; Su, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Sulin, V V; Sultansoy, S; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Toczek, B; Todorov, T; Todorova-Nova, S; Tojo, J; Tokar, S; Tokushuku, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torro Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocme, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Vallecorsa, S; Valls Ferrer, J A; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; VanBerg, R; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vassilieva, L; Vazeille, F; Veillet, J J; Vellidis, C; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vokac, P; Volpi, M; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, J; Wang, S M; Ward, C P; Warsinsky, M; Watkins, P M; Watson, A T; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wemans, A; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wildauer, A; Wildt, M A; Wilkens, H G; Williams, E; Williams, H H; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Z; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zimmermann, R; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zobernig, G; Zoccoli, A; zur Nedden, M

    2009-01-01

    Neutral particles with long decay paths that decay to many-particle final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. The Hidden Valley scenario serves as an excellent setting for the purpose of exploring the challenges to the trigger posed by long-lived particles.

  7. Study of the performance of the Micromegas chambers for the ATLAS Muon Spectrometer upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237763; The ATLAS Muon collaboration

    2017-01-01

    Micromegas (MICRO MEsh GAseous Structure) chambers are Micro-Pattern Gaseous Detectors designed to provide a high spatial resolution in highly irradiated environments. In 2007 an ambitious long-term R&D activity was started in the context of the ATLAS experiment, at CERN: the Muon ATLAS Micromegas Activity (MAMMA). After years of tests on prototypes and technology breakthroughs, Micromegas chambers were chosen as tracking detectors for an upgrade of the ATLAS Muon Spectrometer. These novel detectors will be installed in 2018 and 2019 during the second long shutdown of the Large Hadron Collider, and will serve as precision detectors in the innermost part of the ATLAS Muon Spectrometer. Eight layers of Micromegas modules of unprecedented size, up to 3 $\\rm{{m^2}}$, will cover a surface of 150 $\\rm{{m^2}}$ for a total active area of about 1200 $\\rm{{m^2}}$. This upgrade will be crucial to ensure high quality performance for the ATLAS Muon Spectrometer in view of the third run of the Large Hadron Collider and...

  8. Sharing ATLAS data and research with young students

    CERN Document Server

    AUTHOR|(CDS)2073758; The ATLAS collaboration; Ould-Saada, Farid; Bugge, Magnar Kopangen

    2016-01-01

    In recent years the International Masterclasses (IMC) featured the use of real experimental data as produced by the Large Hadron Collider (LHC) and collected by the detectors. We present ATLAS-based educational material using these data allowing high-school students to learn about properties of known particles and search for new phenomena. The ambition to bring to the “classrooms” important LHC discoveries is realised using the recent discovery of the Higgs boson. Approximately 10% of the ATLAS discovery data are made available for students to search for the Higgs boson: 2 fb−1 at 8 TeV for the Z path, and 1 fb−1 at 7 TeV for the W path, in the 2014 version of IMC. The Higgs study samples constitute one third of the total sample including Z, W and other low mass resonances. The educational material is tuned and expanded to follow LHC “heartbeats”.

  9. Development and test of the DAQ system for a Micromegas prototype installed into the ATLAS experiment

    CERN Document Server

    Zibell, Andre; The ATLAS collaboration; Bianco, Michele; Martoiu, Victor Sorin

    2015-01-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m$^2$ that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible ReadOutDriver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Soft...

  10. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  11. Error Management in ATLAS TDAQ: An Intelligent Systems approach

    CERN Document Server

    Slopper, John Erik

    2010-01-01

    This thesis is concerned with the use of intelligent system techniques (IST) within a large distributed software system, specically the ATLAS TDAQ system which has been developed and is currently in use at the European Laboratory for Particle Physics(CERN). The overall aim is to investigate and evaluate a range of ITS techniques in order to improve the error management system (EMS) currently used within the TDAQ system via error detection and classication. The thesis work will provide a reference for future research and development of such methods in the TDAQ system. The thesis begins by describing the TDAQ system and the existing EMS, with a focus on the underlying expert system approach, in order to identify areas where improvements can be made using IST techniques. It then discusses measures of evaluating error detection and classication techniques and the factors specic to the TDAQ system. Error conditions are then simulated in a controlled manner using an experimental setup and datasets were gathered fro...

  12. ATLAS Grid Workflow Performance Optimization

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment grid workflow system manages routinely 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG. At this scale small improvements in the software and computing performance and workflows can lead to significant resource usage gains. ATLAS is reviewing together with CERN IT experts several typical simulation and data processing workloads for potential performance improvements in terms of memory and CPU usage, disk and network I/O. All ATLAS production and analysis grid jobs are instrumented to collect many performance metrics for detailed statistical studies using modern data analytics tools like ElasticSearch and Kibana. This presentation will review and explain the performance gains of several ATLAS simulation and data processing workflows and present analytics studies of the ATLAS grid workflows.

  13. The accuracy of the ATLAS muon X-ray tomograph

    Science.gov (United States)

    Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.

    2003-01-01

    A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)×60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented.

  14. The accuracy of the ATLAS muon X-ray tomograph

    International Nuclear Information System (INIS)

    Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.

    2003-01-01

    A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)x60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented

  15. Sprawl in European urban areas

    Science.gov (United States)

    Prastacos, Poulicos; Lagarias, Apostolos

    2016-08-01

    In this paper the 2006 edition of the Urban Atlas database is used to tabulate areas of low development density, usually referred to as "sprawl", for many European cities. The Urban Atlas database contains information on the land use distribution in the 305 largest European cities. Twenty different land use types are recognized, with six of them representing urban fabric. Urban fabric classes are residential areas differentiated by the density of development, which is measured by the sealing degree parameter that ranges from 0% to 100% (non-developed, fully developed). Analysis is performed on the distribution of the middle to low density areas defined as those with sealing degree less than 50%. Seven different country groups in which urban areas have similar sprawl characteristics are identified and some key characteristics of sprawl are discussed. Population of an urban area is another parameter considered in the analysis. Two spatial metrics, average patch size and mean distance to the nearest neighboring patch of the same class, are used to describe proximity/separation characteristics of sprawl in the urban areas of the seven groups.

  16. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    International Nuclear Information System (INIS)

    Greenham, Stuart; Dean, Jenna; Fu, Cheuk Kuen Kenneth; Goman, Joanne; Mulligan, Jeremy; Tune, Deanna; Sampson, David; Westhuyzen, Justin; McKay, Michael

    2014-01-01

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinically in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined

  17. Recent tests of QCD with the ATLAS detector

    CERN Document Server

    Callea, Giuseppe; The ATLAS collaboration

    2018-01-01

    A summary of the recent ATLAS results in Quantum Chromodynamics is given, covering a number of areas that reflect the work of the collaboration on the Bose-Einstein correlations in multi-particle events, the inclusive jet production, the measurements of jet substructure quantities in di-jet events and the photon-photon scattering exclusive processes.

  18. EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States

    Science.gov (United States)

    This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives.

    Science.gov (United States)

    Čerňanský, Andrej

    2016-04-01

    The comparative vertebral morphology of the atlas-axis complex in cordyliforms, xantusiid and several skinks is studied here. These lizards are particularly interesting because of their different ecological adaptations and anti-predation strategies, where conformation ranges from the lizard-like body to a snake-like body. This transition to serpentiform morphology shows several evolutionary patterns in the atlas-axis complex: 1) the zygapophyseal articulations are lost in the early stage of the transition. In contrast to mammals, the atlas is more or less locked to the axis in lepidosaurs, but the absence of zygapophyseal articulation releases this locking for rotation. However despite its serpentiform morphology, Chamaesaura is different, in possessing this articulation; 2) the first intercentrum of Chamaesaura and Tetradactylus africanus (serpentiform grass-swimmers) is fully curved anteriorly, underlying the occipital condyle. While this limits ventral skull rotation beyond a certain angle, it locks the skull, which is a crucial adaptation for a sit-and-wait position in grassland habitats that needs to keep the head stabilized; and 3) in Acontias, most of the atlas articular surface with the occipital condyle is formed by the lateral aspect of the articulation area relative to the area located in the dorsal region of the slightly reduced intercentrum. A similar state occurs in amphisbaenians, most likely reflecting a fossorial lifestyle of the limbless lizards. Although Chamaesaura and Tetradactylus live sympatrically in grasslands, Chamaesaura differs in several ways in atlas-axis complex: for example, aforementioned presence of the atlas-axis zygapophyseal articulation, and long posterodorsal processes. Its occipital condyle protrudes further posteriorly, placing the atlas-axis complex further from the endocranium than in Tetradactylus. Hence, adaptation in the same niche, even among sister clades, can lead to different atlas-axis morphology due to different

  20. Expected Performance of the ATLAS Inner Tracker at the High Luminosity LHC

    CERN Document Server

    Mansour, Jason Dhia; The ATLAS collaboration

    2017-01-01

    The large data samples at the High-Luminosity LHC will enable precise measurements of the Higgs boson and other Standard Model particles, as well as searches for new phenomena such as supersymmetry and extra dimensions. To cope with the experimental challenges presented by the HL-LHC such as large radiation doses and high pileup, the current Inner Detector will be replaced with a new all-silicon Inner Tracker for the Phase II upgrade of the ATLAS detector. The current tracking performance of two candidate Inner Tracker layouts with an increased tracking acceptance (compared to the current Inner Detector) of |η|<4.0, employing either an ‘Extended’ or ‘Inclined’ Pixel barrel, is evaluated. New pattern recognition approaches facilitated by the detector designs are discussed, and ongoing work in optimising the track reconstruction for the new layouts and experimental conditions are outlined. Finally, future approaches that may improve the physics and/or technical performance of the ATLAS track reconst...

  1. ATLAS End-cap Part II

    CERN Multimedia

    2007-01-01

    The epic journey of the ATLAS magnets is drawing to an end. On Thursday 12 July, the second end-cap of the ATLAS toroid magnet was lowered into the cavern of the experiment with the same degree of precision as the first (see Bulletin No. 26/2007). This spectacular descent of the 240-tonne component, is one of the last transport to be completed for ATLAS.

  2. ATLAS experiment : mapping the secrets of the universe

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    This 4 page color brochure describes ATLAS and the LHC, the ATLAS inner detector, calorimeters, muon spectrometer, magnet system, a short definition of the terms "particles," "dark matter," "mass," "antimatter." It also explains the ATLAS collaboration and provides the ATLAS website address with some images of the detector and the ATLAS collaboration at work.

  3. 28 January 2011 - German State Secretary Ministry for Innovation, Science and Research of North Rhine-Westphalia H. Dockter in the ATLAS experimental cavern at LHC Point 1 with Former Spokesperson P. Jenni; signing the guest book with Adviser R. Voss.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    28 January 2011 - German State Secretary Ministry for Innovation, Science and Research of North Rhine-Westphalia H. Dockter in the ATLAS experimental cavern at LHC Point 1 with Former Spokesperson P. Jenni; signing the guest book with Adviser R. Voss.

  4. 21 January 2008 - Vice-President of the Human Rights Commission Z. Muhsin Al Hussein, Ambassador to United Nations A. Attar and their delegation from Saudi Arabia, visiting the ATLAS experimental cavern with Collaboration Spokesperson P. Jenni and Technical Coordinator M. Nessi.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    21 January 2008 - Vice-President of the Human Rights Commission Z. Muhsin Al Hussein, Ambassador to United Nations A. Attar and their delegation from Saudi Arabia, visiting the ATLAS experimental cavern with Collaboration Spokesperson P. Jenni and Technical Coordinator M. Nessi.

  5. 7 May 2013 - Ambassador of the Federal Republic of Germany to Switzerland and Liechtenstein P. Gottwald and Mrs Gottwald in the ATLAS experimental cavern and LHC tunnel with Collaboration Deputy Spokesperson T. Wengler and German Scientists A. Schopper and V. Mertens.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    7 May 2013 - Ambassador of the Federal Republic of Germany to Switzerland and Liechtenstein P. Gottwald and Mrs Gottwald in the ATLAS experimental cavern and LHC tunnel with Collaboration Deputy Spokesperson T. Wengler and German Scientists A. Schopper and V. Mertens.

  6. Mindboggle: Automated brain labeling with multiple atlases

    International Nuclear Information System (INIS)

    Klein, Arno; Mensh, Brett; Ghosh, Satrajit; Tourville, Jason; Hirsch, Joy

    2005-01-01

    To make inferences about brain structures or activity across multiple individuals, one first needs to determine the structural correspondences across their image data. We have recently developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels to cortical structures and activity in human brain MRI data. Label assignment is based on structural correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set of labels manually assigned to a single brain image. In the present work, we study the influence of using variable numbers of individual atlases to nonlinearly label human brain image data. Each brain image voxel of each of 20 human subjects is assigned a label by each of the remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence rating based on the number of atlases that assigned that label. The automatically assigned labels for each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a database of atlases), Mindboggle labels a subject by each atlas in a database independently. When Mindboggle labels a human subject's brain image with at least four atlases, the resulting label agreement with coregistered manual labels is significantly higher than when only a single atlas is used. Different numbers of atlases provide significantly higher label agreements for individual brain regions. Increasing the number of reference brains used to automatically label a human subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle software can provide confidence measures for labels based on probabilistic assignment of labels and could be applied to large databases of brain images

  7. Planetary Data Systems (PDS) Imaging Node Atlas II

    Science.gov (United States)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  8. Survey of the ATLAS Pixel Detector Components

    International Nuclear Information System (INIS)

    Andreazza, A.; Kostyukhim, V.; Madaras, R.

    2008-01-01

    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly. During the production of the ATLAS pixel detector great care was put in the geometrical survey of the location of the sensitive area of modules. This had a double purpose: (1) to provide a check of the quality of the assembly procedure and assure tolerances in the geometrical assembly were met; and (2) to provide an initial point for the alignment (the so called 'as-built detector'), better than the ideal geometry. Since direct access to the sensitive area becomes more and more difficult with the progress of the assembly, the survey needed to be performed at different stages: after module loading on the local supports (sectors and staves) and after assembly of the local supports in disks or halfshells. Different techniques were used, including both optical 2D and 3D surveys and mechanical survey. This document summarizes the survey procedures, the analysis done on the collected data and how survey data are stored in case they will need to be accessed in the future

  9. Convergências lexicais: a área dos olhos no Atlas Lingüístico Galego e no Atlas Lingüístico do Paraná

    Directory of Open Access Journals (Sweden)

    Vanderci de Andrade Aguilera

    2015-01-01

    Full Text Available This article presents some points of convergence between the lexical variants of two geolinguistic corpora: volume V of the Atlas Lingüístico Galego - ALGa (García et alii 2005 and the Atlas Lingüístico do Paraná – ALPR (Aguilera 1994 together with the Atlas Lingüístico do Paraná II - ALPR II (Altino 2005. Within the Human Body semantic field, items referring to the eye area were examined. Geolinguistic and lexicological methods were used in the analysis, since we were looking for information about spatial distribution and lexical documentation of variants common to both corpora. The analysis indicated that certain variants surviving in rural Paraná speech are linked to Galician forms, and that some metonymic and lexical creation processes act similarly in both languages. We also found analogous sociolinguistic features of the lexical item capela in three different language areas: Galician, European Portuguese and Paraná dialect. This convergence is illustrated by (i the diatopic distribution of variants such as capela in the dialect of Paraná and its presence, though sparse, in Galician, (ii the attribution of more than one meaning to the same concept, such as pestana which, according to both atlases, may mean either ‘eyelid’ or ‘eyelash’, and (iii the creation of folk terms through semantic extension or the use of more generic terms such as piel ‘skin’, tapa ‘cover’, papo ‘maw’ (in ALGa and pele ‘skin’, couro ‘hide’ (in ALPR rather than the learned form pálpebra ‘eyelid.’

  10. Progressive multi-atlas label fusion by dictionary evolution.

    Science.gov (United States)

    Song, Yantao; Wu, Guorong; Bahrami, Khosro; Sun, Quansen; Shen, Dinggang

    2017-02-01

    Accurate segmentation of anatomical structures in medical images is important in recent imaging based studies. In the past years, multi-atlas patch-based label fusion methods have achieved a great success in medical image segmentation. In these methods, the appearance of each input image patch is first represented by an atlas patch dictionary (in the image domain), and then the latent label of the input image patch is predicted by applying the estimated representation coefficients to the corresponding anatomical labels of the atlas patches in the atlas label dictionary (in the label domain). However, due to the generally large gap between the patch appearance in the image domain and the patch structure in the label domain, the estimated (patch) representation coefficients from the image domain may not be optimal for the final label fusion, thus reducing the labeling accuracy. To address this issue, we propose a novel label fusion framework to seek for the suitable label fusion weights by progressively constructing a dynamic dictionary in a layer-by-layer manner, where the intermediate dictionaries act as a sequence of guidance to steer the transition of (patch) representation coefficients from the image domain to the label domain. Our proposed multi-layer label fusion framework is flexible enough to be applied to the existing labeling methods for improving their label fusion performance, i.e., by extending their single-layer static dictionary to the multi-layer dynamic dictionary. The experimental results show that our proposed progressive label fusion method achieves more accurate hippocampal segmentation results for the ADNI dataset, compared to the counterpart methods using only the single-layer static dictionary. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  12. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  13. ATLAS rewards industry

    CERN Document Server

    Maximilien Brice

    2006-01-01

    For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Picture 30 : representatives of the three award-wining companies after the ceremony

  14. Readout electronics development for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Borer, K.; Beringer, J.; Anghinolfi, F.; Aspell, P.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Bonino, R.; Clark, A.G.; Kambara, H.; La Marra, D.; Leger, A.; Wu, X.; Richeux, J.P.; Taylor, G.N.; Fedotov, M.; Kuper, E.; Velikzhanin, Yu.; Campbell, D.; Murray, P.; Seller, P.

    1995-01-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.)

  15. EnviroAtlas - Portland, OR - Meter-Scale Urban Land Cover (MULC) Data (2012)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Portland, OR Meter-Scale Urban Land Cover (MULC) dataset includes data for the Portland metropolitan area plus the city of Vancouver, Washington and...

  16. The ATLAS Experiment Laboratory - Overview

    International Nuclear Information System (INIS)

    Malecki, P.

    1999-01-01

    Full text: ATLAS Experiment Laboratory has been created by physicists and engineers preparing a research programme and detector for the LHC collider. This group is greatly supported by members of other Departments taking also part (often full time) in the ATLAS project. These are: J. Blocki, J. Godlewski, Z. Hajduk, P. Kapusta, B. Kisielewski, W. Ostrowicz, E. Richter-Was, and M. Turala. Our ATLAS Laboratory realizes its programme in very close collaboration with the Faculty of Physics and Nuclear Technology of the University of Mining and Metallurgy. ATLAS, A Toroidal LHC ApparatuS Collaboration groups about 1700 experimentalists from about 150 research institutes. This apparatus, a huge system of many detectors, which are technologically very advanced, is going to be ready by 2005. With the start of the 2 x 7 TeV LHC collider ATLAS and CMS (the sister experiment at LHC) will begin their fascinating research programme at beam energies and intensities which have never been exploited. (author)

  17. ATLAS Award for Difficult Task

    CERN Multimedia

    2004-01-01

    Two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week. On 23 March the Russian company ORPE Technologiya and its subcontractor, RSP Khrunitchev, were jointly presented with an ATLAS Supplier Award. Since 1998, ORPE Technologiya has been actively involved in the development of the carbon-fibre reinforced plastic elements of the ATLAS Inner Detector barrel support structure. After three years of joint research and development, CERN and ORPE Technologiya launched the manufacturing contract. It had a tight delivery schedule and very demanding specifications in terms of mechanical tolerance and stability. The contract was successfully completed with the arrival of the last element of the structure at CERN on 8 January 2004. The delivery of this key component of the Inner Detector deserves an ATLAS Award given the difficulty of manufacturing the end-frames, which very few companies in the world would have been able to do at an ...

  18. ATLAS & Google - The Data Ocean Project

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2018-01-01

    With the LHC High Luminosity upgrade the workload and data management systems are facing new major challenges. To address those challenges ATLAS and Google agreed to cooperate on a project to connect Google Cloud Storage and Compute Engine to the ATLAS computing environment. The idea is to allow ATLAS to explore the use of different computing models, to allow ATLAS user analysis to benefit from the Google infrastructure, and to give Google real science use cases to improve their cloud platform. Making the output of a distributed analysis from the grid quickly available to the analyst is a difficult problem. Redirecting the analysis output to Google Cloud Storage can provide an alternative, faster solution for the analyst. First, Google's Cloud Storage will be connected to the ATLAS Data Management System Rucio. The second part aims to let jobs run on Google Compute Engine, accessing data from either ATLAS storage or Google Cloud Storage. The third part involves Google implementing a global redirection between...

  19. The ATLAS hadronic tau trigger

    International Nuclear Information System (INIS)

    Shamim, Mansoora

    2012-01-01

    The extensive tau physics programs of the ATLAS experiment relies heavily on trigger to select hadronic decays of tau lepton. Such a trigger is implemented in ATLAS to efficiently collect signal events, while keeping the rate of multi-jet background within the allowed bandwidth. This contribution summarizes the performance of the ATLAS hadronic tau trigger system during 2011 data taking period and improvements implemented for the 2012 data collection.

  20. ATLAS OF EUROPEAN VALUES

    NARCIS (Netherlands)

    M Ed Uwe Krause

    2008-01-01

    Uwe Krause: Atlas of Eurpean Values De Atlas of European Values is een samenwerkingsproject met bijbehorende website van de Universiteit van Tilburg en Fontys Lerarenopleiding in Tilburg, waarbij de wetenschappelijke data van de European Values Study (EVS) voor het onderwijs toegankelijk worden

  1. ATLAS brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  2. ATLAS brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  3. ATLAS brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  4. ATLAS brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  5. The Hatfield SCT lunar atlas photographic atlas for Meade, Celestron, and other SCT telescopes

    CERN Document Server

    2014-01-01

    In a major publishing event for lunar observers, the justly famous Hatfield atlas is updated in even more usable form. This version of Hatfield’s classic atlas solves the problem of mirror images, making identification of left-right reversed imaged lunar features both quick and easy. SCT and Maksutov telescopes – which of course include the best-selling models from Meade and Celestron – reverse the visual image left to right. Thus it is extremely difficult to identify lunar features at the eyepiece of one of the instruments using a conventional Moon atlas, as the human brain does not cope well when trying to compare the real thing with a map that is a mirror image of it. Now this issue has at last been solved.   In this atlas the Moon’s surface is shown at various sun angles, and inset keys show the effects of optical librations. Smaller non-mirrored reference images are also included to make it simple to compare the mirrored SCT plates and maps with those that appear in other atlases. This edition s...

  6. Last piece of the puzzle for ATLAS

    CERN Multimedia

    Clare Ryan

    At around 15.40 on Friday 29th February the ATLAS collaboration cracked open the champagne as the second of the small wheels was lowered into the cavern. Each of ATLAS' small wheels are 9.3 metres in diameter and weigh 100 tonnes including the massive shielding elements. They are the final parts of ATLAS' muon spectrometer. The first piece of ATLAS was installed in 2003 and since then many detector elements have journeyed down the 100 metre shaft into the ATLAS underground cavern. This last piece completes this gigantic puzzle.

  7. NATIONAL ATLAS OF THE ARCTIC

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2018-01-01

    Full Text Available The National Atlas of the Arctic is a set of spatio-temporal information about the geographic, ecological, economic, historical-ethnographic, cultural, and social features of theArcticcompiled as a cartographic model of the territory. The Atlas is intended for use in a wide range of scientific, management, economic, defense, educational, and public activities. The state policy of theRussian Federationin the Arctic for the period until 2020 and beyond, states that the Arctic is of strategic importance forRussiain the 21st century. A detailed description of all sections of the Atlas is given. The Atlas can be used as an information-reference and educational resource or as a gift edition.

  8. Commissioning and first data with the ATLAS silicon microstrip tracker

    International Nuclear Information System (INIS)

    Rohne, Ole Myren

    2010-01-01

    The ATLAS experiment at the CERN large hadron collider (LHC) has started taking data this autumn with the inauguration of the LHC. The semiconductor tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has recently been installed inside the ATLAS experimental hall. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analysed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has been performed. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The current status of the SCT will be reviewed, including results from the latest data-taking periods in autumn 2008, and from the detector alignment. We will report on the commissioning of the detector, including overviews on services, connectivity and observed problems. Particular emphasis will also be placed on the SCT data taken in the latest running period with the entire ATLAS detector participating. The SCT commissioning and running experience will then be used to extract valuable lessons for future silicon strip detector projects.

  9. EnviroAtlas Proximity to Parks Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This EnviroAtlas dataset shows...

  10. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  11. Forward Detectors in ATLAS: ALFA, ZDC and LUCID

    CERN Document Server

    Fabbri, L; The ATLAS collaboration

    2009-01-01

    In order to determine the experimental cross sections for the observed physics processes, an estimation of the absolute luminosity is needed. In fact a careful study of “well known” processes will be one of the first steps of the LHC experiments as it can provide possible signatures of new physics which consist in deviations with respect to the Standard Model (SM) predictions. The methodologies for luminosity monitoring and total cross section estimation at the LHC will be reviewed in this talk along with the dedicated detectors of the ATLAS experiment. ATLAS will make extensive usage of the detectors in the forward region each one with a different task: LUCID (LUminosity measurement using Cherenkov Integrating Detector) is a system of 40 (2 x 20) Cherenkov tubes, surrounding the beam pipe at about 17 m from the interaction region. It will be able to monitor the collision-by-collision luminosity by detecting and counting the number of charged particles coming from the impact point. ALFA (Absolute Luminosi...

  12. Development, deployment and operations of ATLAS databases

    International Nuclear Information System (INIS)

    Vaniachine, A. V.; von der Schmitt, J. G.

    2008-01-01

    In preparation for ATLAS data taking, a coordinated shift from development towards operations has occurred in ATLAS database activities. In addition to development and commissioning activities in databases, ATLAS is active in the development and deployment (in collaboration with the WLCG 3D project) of the tools that allow the worldwide distribution and installation of databases and related datasets, as well as the actual operation of this system on ATLAS multi-grid infrastructure. We describe development and commissioning of major ATLAS database applications for online and offline. We present the first scalability test results and ramp-up schedule over the initial LHC years of operations towards the nominal year of ATLAS running, when the database storage volumes are expected to reach 6.1 TB for the Tag DB and 1.0 TB for the Conditions DB. ATLAS database applications require robust operational infrastructure for data replication between online and offline at Tier-0, and for the distribution of the offline data to Tier-1 and Tier-2 computing centers. We describe ATLAS experience with Oracle Streams and other technologies for coordinated replication of databases in the framework of the WLCG 3D services

  13. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  14. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  15. The Cerefy registered clinical brain atlas on CD-ROM. Based on the classic Talairach-Tournoux and Schaltenbrand-Wahren brain atlases. 2. ed.

    International Nuclear Information System (INIS)

    Nowinski, W.L.; Thirunavuukarasuu, A.

    2001-01-01

    This remarkable CD-ROM provides enhanced and extended versions of three world-famous Thieme atlases, (Schaltenbrand and Wahren's Atlas for Stereotaxy of the Human Brain, Talairach and Tournoux's Co-Planar Stereotaxis Atlas of the Human Brain and Referentially Oriented Cerebral MRI Anatomy). It contains the electronic atlases as well as an easy navigation system to facilitate searching for and displaying more than 525 anatomical structures. Revolutionizing the field of brain anatomy, the authors have segmented, labeled, and cross referenced all the information contained in the books, and created contours for all three atlases. The Cerefy registered Clinical Brain Atlas now allows you to electronically navigate these atlases simultaneously on axial, coronal, and sagittal planes, and enjoy the ability to: 1. Access 210 high-quality, fully segmented, and labeled atlas images with corresponding contours, 2. Display and manipulate spatially co-registered atlases, 3. Dynamically label images with structure names and descriptions, and then highlight selected structures in the atlas image, 4. Image zoom in five different levels, mensurate, search, set triplanar, get coordinates, save, and print, 5. Access on-line help, glossary, and supportive atlas materials. (orig.)

  16. ATLAS brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter. Français

  17. A Slice of ATLAS

    CERN Document Server

    2004-01-01

    An entire section of the ATLAS detector is being assembled at Prévessin. Since May the components have been tested using a beam from the SPS, giving the ATLAS team valuable experience of operating the detector as well as an opportunity to debug the system.

  18. The Latest from ATLAS

    CERN Multimedia

    2009-01-01

    Since November 2008, ATLAS has undertaken detailed maintenance, consolidation and repair work on the detector (see Bulletin of 20 July 2009). Today, the fraction of the detector that is operational has increased compared to last year: less than 1% of dead channels for most of the sub-systems. "We are going to start taking data this year with a detector which is even more efficient than it was last year," agrees ATLAS Spokesperson, Fabiola Gianotti. By mid-September the detector was fully closed again, and the cavern sealed. The magnet system has been operated at nominal current for extensive periods over recent months. Once the cavern was sealed, ATLAS began two weeks of combined running. Right now, subsystems are joining the run incrementally until the point where the whole detector is integrated and running as one. In the words of ATLAS Technical Coordinator, Marzio Nessi: "Now we really start physics." In parallel, the analysis ...

  19. A thermosiphon for ATLAS

    CERN Multimedia

    Rosaria Marraffino

    2013-01-01

    A new thermosiphon cooling system, designed for the ATLAS silicon detectors by CERN’s EN-CV team in collaboration with the experiment, will replace the current system in the next LHC run in 2015. Using the basic properties of density difference and making gravity do the hard work, the thermosiphon promises to be a very reliable solution that will ensure the long-term stability of the whole system.   Former compressor-based cooling system of the ATLAS inner detectors. The system is currently being replaced by the innovative thermosiphon. (Photo courtesy of Olivier Crespo-Lopez). Reliability is the major issue for the present cooling system of the ATLAS silicon detectors. The system was designed 13 years ago using a compressor-based cooling cycle. “The current cooling system uses oil-free compressors to avoid fluid pollution in the delicate parts of the silicon detectors,” says Michele Battistin, EN-CV-PJ section leader and project leader of the ATLAS thermosiphon....

  20. The High-Resolution IRAS Galaxy Atlas

    Science.gov (United States)

    Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.; Oliversen, R. (Technical Monitor)

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg is less than b is less than 4.7 deg), along with the molecular clouds in Orion, rho Oph, and Taurus-Auriga, has been produced at 60 and 100 microns from IRAS data. The atlas consists of resolution-enhanced co-added images with 1 min - 2 min resolution and co-added images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the Dominion Radio Astrophysical Observatory H(sub I) line/21 cm continuum and FCRAO CO (1-0) Galactic plane surveys, which both have similar (approx. 1 min) resolution to the IRAS atlas, provides a powerful tool for studying the interstellar medium, star formation, and large-scale structure in our Galaxy. This paper documents the production and characteristics of the atlas.

  1. Atlas warping for brain morphometry

    Science.gov (United States)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  2. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  3. The geosystems of complex geographical atlases

    Directory of Open Access Journals (Sweden)

    Jovanović Jasmina

    2012-01-01

    Full Text Available Complex geographical atlases represent geosystems of different hierarchical rank, complexity and diversity, scale and connection. They represent a set of large number of different pieces of information about geospace. Also, they contain systematized, correlative and in the apparent form represented pieces of information about space. The degree of information revealed in the atlas is precisely explained by its content structure and the form of presentation. The quality of atlas depends on the method of visualization of data and the quality of geodata. Cartographic visualization represents cognitive process. The analysis converts geospatial data into knowledge. A complex geographical atlas represents information complex of spatial - temporal coordinated database on geosystems of different complexity and territorial scope. Each geographical atlas defines a concrete geosystem. Systemic organization (structural and contextual determines its complexity and concreteness. In complex atlases, the attributes of geosystems are modeled and pieces of information are given in systematized, graphically unique form. The atlas can be considered as a database. In composing a database, semantic analysis of data is important. The result of semantic modeling is expressed in structuring of data information, in emphasizing logic connections between phenomena and processes and in defining their classes according to the degree of similarity. Accordingly, the efficiency of research of needed pieces of information in the process of the database use is enabled. An atlas map has a special power to integrate sets of geodata and present information contents in user - friendly and understandable visual and tactile way using its visual ability. Composing an atlas by systemic cartography requires the pieces of information on concrete - defined geosystems of different hierarchical level, the application of scientific methods and making of adequate number of analytical, synthetic

  4. Jet reconstruction and performance using particle flow with the ATLAS Detector

    Czech Academy of Sciences Publication Activity Database

    Aaboud, M.; Aad, G.; Abbott, B.; Chudoba, Jiří; Hejbal, Jiří; Hladík, Ondřej; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek

    2017-01-01

    Roč. 77, č. 7 (2017), s. 1-47, č. článku 466. ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : ATLAS * CERN LHC Coll * resolution * stability * pile-up * experimental results * 8000 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  5. Latest news on SUSY from the ATLAS experiment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.

  6. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analyzed to determine the noise performance of the ...

  7. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analysed to determine the noise performance of the ...

  8. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector (ID) of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules with a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each side of the barrel). The SCT silicon microstrip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICs ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational ever since. Calibration data has been taken regularly and analysed to determine the noise performance of the system. ...

  9. The ATLAS distributed analysis system

    OpenAIRE

    Legger, F.

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During...

  10. EnviroAtlas - Memphis, TN - Meter-Scale Urban Land Cover (MULC) Data (2012)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Memphis, TN EnviroAtlas One Meter-scale Urban Land Cover (MULC) dataset comprises 2,733 km2 around the city of Memphis, surrounding towns, and rural areas. These...

  11. ATLAS brochure (Catalan version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  12. ATLAS Brochure (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  13. ATLAS brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  14. ATLAS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  15. ATLAS Brochure (english version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  16. ATLAS Brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  17. ATLAS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  18. A three-plane architectonic atlas of the rat hippocampal region.

    Science.gov (United States)

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  19. TU-AB-202-10: How Effective Are Current Atlas Selection Methods for Atlas-Based Auto-Contouring in Radiotherapy Planning?

    Energy Technology Data Exchange (ETDEWEB)

    Peressutti, D; Schipaanboord, B; Kadir, T; Gooding, M [Mirada Medical Limited, Science and Medical Technology, Oxford (United Kingdom); Soest, J van; Lustberg, T; Elmpt, W van; Dekker, A [Maastricht University Medical Centre, Department of Radiation Oncology MAASTRO - GROW School for Oncology Developmental Biology, Maastricht (Netherlands)

    2016-06-15

    Purpose: To investigate the effectiveness of atlas selection methods for improving atlas-based auto-contouring in radiotherapy planning. Methods: 275 H&N clinically delineated cases were employed as an atlas database from which atlases would be selected. A further 40 previously contoured cases were used as test patients against which atlas selection could be performed and evaluated. 26 variations of selection methods proposed in the literature and used in commercial systems were investigated. Atlas selection methods comprised either global or local image similarity measures, computed after rigid or deformable registration, combined with direct atlas search or with an intermediate template image. Workflow Box (Mirada-Medical, Oxford, UK) was used for all auto-contouring. Results on brain, brainstem, parotids and spinal cord were compared to random selection, a fixed set of 10 “good” atlases, and optimal selection by an “oracle” with knowledge of the ground truth. The Dice score and the average ranking with respect to the “oracle” were employed to assess the performance of the top 10 atlases selected by each method. Results: The fixed set of “good” atlases outperformed all of the atlas-patient image similarity-based selection methods (mean Dice 0.715 c.f. 0.603 to 0.677). In general, methods based on exhaustive comparison of local similarity measures showed better average Dice scores (0.658 to 0.677) compared to the use of either template image (0.655 to 0.672) or global similarity measures (0.603 to 0.666). The performance of image-based selection methods was found to be only slightly better than a random (0.645). Dice scores given relate to the left parotid, but similar results patterns were observed for all organs. Conclusion: Intuitively, atlas selection based on the patient CT is expected to improve auto-contouring performance. However, it was found that published approaches performed marginally better than random and use of a fixed set of

  20. Report to users of ATLAS, January 1998

    International Nuclear Information System (INIS)

    Ahmad, I.; Hofman, D.

    1998-01-01

    This report is aimed at informing users about the operating schedule, user policies, and recent changes in research capabilities. It covers the following subjects: (1) status of the Argonne Tandem-Linac Accelerator System (ATLAS) accelerator; (2) the move of Gammasphere from LBNL to ANL; (3) commissioning of the CPT mass spectrometer at ATLAS; (4) highlights of recent research at ATLAS; (5) Program Advisory Committee; and (6) ATLAS User Group Executive Committee

  1. ATLAS construction status

    International Nuclear Information System (INIS)

    Jenni, P.

    2006-01-01

    The ATLAS detector is being constructed at the LHC, in view of a data-taking startup in 2007. This report concentrates on the progress and the technical challenges of the detector construction, and summarizes the status of the work as of August 2004. The project is on track to allow the highly motivated ATLAS Collaboration to enter into a new exploratory domain of high-energy physics in 2007. (author)

  2. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities.

    Science.gov (United States)

    Schurz, Matthias; Tholen, Matthias G; Perner, Josef; Mars, Rogier B; Sallet, Jerome

    2017-09-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  4. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  5. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  6. ATLAS cloud R and D

    International Nuclear Information System (INIS)

    Panitkin, Sergey; Bejar, Jose Caballero; Hover, John; Zaytsev, Alexander; Megino, Fernando Barreiro; Girolamo, Alessandro Di; Kucharczyk, Katarzyna; Llamas, Ramon Medrano; Benjamin, Doug; Gable, Ian; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Hendrix, Val; Love, Peter; Ohman, Henrik; Walker, Rodney

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R and D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R and D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R and D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R and D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  7. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  8. Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)

    2015-09-17

    The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks

  9. An atlas of the smaller maps in orientable and nonorientable surfaces

    CERN Document Server

    Jackson, David

    2000-01-01

    Maps are beguilingly simple structures with deep and ubiquitous properties. They arise in an essential way in many areas of mathematics and mathematical physics, but require considerable time and computational effort to generate. Few collected drawings are available for reference, and little has been written, in book form, about their enumerative aspects. An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces is the first book to provide complete collections of maps along with their vertex and face partitions, number of rootings, and an index number for cross referencing. It provides an explanation of axiomatization and encoding, and serves as an introduction to maps as a combinatorial structure. The Atlas lists the maps first by genus and number of edges, and gives the embeddings of all graphs with at most five edges in orientable surfaces, thus presenting the genus distribution for each graph. Exemplifying the use of the Atlas, the authors explore two substantial conjectures with origins in ...

  10. Construction of the new silicon microstrips tracker for the Phase-II ATLAS detector

    CERN Document Server

    Liang, Zhijun; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of silicon microstrip sensors. This paper will focus on the latest research and development act...

  11. Performance of ATLAS RPC Level-1 Muon trigger during the 2015 data taking

    CERN Document Server

    Corradi, Massimo; The ATLAS collaboration

    2016-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. Its input stage consists of an array of processors receiving the full granularity of data from Resistive Plate Chambers in the central area of the ATLAS detector ("Barrel"). The trigger efficiency and the level of synchronisation of its elements with the rest of ATLAS and the LHC clock are crucial figures of this system: many parameters of the constituent RPC detector and the trigger electronics have to be constantly and carefully checked to assure a correct functioning of the Level-1 selection. Notwithstanding the complexity of such a large array of integrated RPC detectors, the ATLAS Level-1 system has resumed operations successfully after the past 2 year shutdown, with levels similar to those of Run 1. We present the inclusive monitoring of the RPC+L1 system that we have developed to characterise the behaviour of the system, using reconstructed muons in events selected by...

  12. The Next Generation ATLAS Production System

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; Golubkov, Dmitry; Klimentov, Alexei; Maeno, Tadashi; Mashinistov, Ruslan; Vaniachine, Alexandre

    2015-01-01

    The ATLAS experiment at LHC data processing and simulation grows continuously, as more data and more use cases emerge. For data processing the ATLAS experiment adopted the data transformation approach, where software applications transform the input data into outputs. In the ATLAS production system, each data transformation is represented by a task, a collection of many jobs, dynamically submitted by the ATLAS workload management system (PanDA/JEDI) and executed on the Grid, clouds and supercomputers. Patterns in ATLAS data transformation workflows composed of many tasks provided a scalable production system framework for template definitions of the many-tasks workflows. User interface and system logic of these workflows are being implemented in the Database Engine for Tasks (DEFT). Such development required using modern computing technologies and approaches. We report technical details of this development: database implementation, server logic and Web user interface technologies.

  13. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    DEFF Research Database (Denmark)

    Saygin, Z M; Kliemann, D; Iglesias, J. E.

    2017-01-01

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high...... resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently...... developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE...

  14. Search for long-lived massive particles with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Numerous new physics models predict the existence of massive long-lived particles. Such particles may be produced at the LHC singly or in pairs, and can be detected through abnormal specific energy loss, long time-of-flight, late calorimetric energy deposits, disappearing tracks or displaced vertices. The seminar presents the experimental challenges and recent results from searches for long-lived particles with the ATLAS detector.

  15. The ATLAS detector simulation application

    International Nuclear Information System (INIS)

    Rimoldi, A.

    2007-01-01

    The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the test productions since 2004. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004-2005) and cosmic ray studies (2006)

  16. Herschel-ATLAS : Planck sources in the phase 1 fields

    NARCIS (Netherlands)

    Herranz, D.; González-Nuevo, J.; Clements, D.; De, Zotti G.; Lopez-Caniego, M.; Lapi, A.; Rodighiero, G.; Danese, L.; Fu, H.; Cooray, A.; Baes, M.; Bendo, G.; Bonavera, L.; Carrera, F.; Dole, H.; Eales, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Massardi, M.; Michalowski, M.; Negrello, M.; Rigby, E.E.; Scott, D.; Valiante, E.; Valtchanov, I.; Werf, van der P.P.; Auld, R.; Buttiglione, S.; Dariush, A.; Dunne, L.; Hopwood, R.; Hoyos, C.; Ibar, E.; Maddox, S.

    2013-01-01

    We present the results of a cross-correlation of the Planck Early Release Compact Source catalogue (ERCSC) with the catalogue of Herschel-ATLAS sources detected in the phase 1 fields, covering 134.55{deg}$^{2}$. There are 28 ERCSC sources detected by Planck at 857 GHz in this area. As many as 16 of

  17. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  18. Development and test of the DAQ system for a Micromegas prototype to be installed in the ATLAS experiment

    CERN Document Server

    Zibell, Andre; The ATLAS collaboration; Bianco, Michele; Martoiu, Victor Sorin

    2015-01-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m 2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Soft...

  19. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211509

    2016-01-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about $150m^2$ of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2 to $3 m^2$ for a total active area of $1200 m^2$. Together with the small- strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/19 shutdown. This upgrade will mantain a low pt threshold for single muons and provides excellent tracking capabilities for the HL-LHC phase. The NSW project requires fully efficient MM chambers with spatial resolution down to $100 \\mu m$, at rate capability up to about $15kHz/cm^2$ and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a challengi...

  20. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Bianco, Michele; The ATLAS collaboration

    2015-01-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2 to 3 m$^{2}$ for a total active area of 1200 m$^{2}$. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/19 shutdown. This upgrade will maintain a low pt threshold for single muons and provides excellent tracking capabilities for the HL- LHC phase. The NSW project requires fully efficient MM chambers with spatial resolution down to 100 $ \\mu m$, a rate capability up to about 15 kHz/cm$^{2}$ and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a cha...