WorldWideScience

Sample records for atlas experimental area

  1. 17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

  2. 4th July 2011 - Russian Deputy Director-General Director of Directorate for Scientific and Technical Complex ROSATOM V. Pershukov in the ATLAS underground experimental area with Adviser T. Kurtyka, ATLAS Technical Coordinator M. Nessi and ATLAS Russian users.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    4th July 2011 - Russian Deputy Director-General Director of Directorate for Scientific and Technical Complex ROSATOM V. Pershukov in the ATLAS underground experimental area with Adviser T. Kurtyka, ATLAS Technical Coordinator M. Nessi and ATLAS Russian users.

  3. 16 February 2012 - Chinese Taipei Ambassador to Switzerland F. Hsieh in the ATLAS visitor centre, ATLAS experimental area and LHC tunnel at Point 1 with Collaboration Deputy Sookesperson A. Lankford, throughout accompanied by International Relations Adviser R. Voss.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    16 February 2012 - Chinese Taipei Ambassador to Switzerland F. Hsieh in the ATLAS visitor centre, ATLAS experimental area and LHC tunnel at Point 1 with Collaboration Deputy Sookesperson A. Lankford, throughout accompanied by International Relations Adviser R. Voss.

  4. EnviroAtlas - Portland, OR - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Portland, OR Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  5. EnviroAtlas - Green Bay, WI - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Green Bay, WI Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  6. EnviroAtlas - Paterson, NJ - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Paterson, NJ Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  7. EnviroAtlas - Phoenix, AZ - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Phoenix, AZ Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  8. EnviroAtlas - Austin, TX - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Austin, TX Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas...

  9. 9 July 2008 - Microsoft Co-Founder P. Allen visiting ATLAS control room and underground experimental area with Adviser J. Ellis and IT Department Head W. von Rüden.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    9 July 2008 - Microsoft Co-Founder P. Allen visiting ATLAS control room and underground experimental area with Adviser J. Ellis and IT Department Head W. von Rüden and guided by ATLAS Collaboration Users S. Goldfarb, P. Nevski and L. Price.

  10. 17 May 2013 - Honourable Minister of Communications, Science and Technology of the Kingdom of Lesotho T. Mokhosi visiting the ATLAS experimental area with CERN International Adviser for Turkey R. Voss.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 May 2013 - Honourable Minister of Communications, Science and Technology of the Kingdom of Lesotho T. Mokhosi visiting the ATLAS experimental area with CERN International Adviser for Turkey R. Voss.

  11. 24 January 2011 - President of the Deutsche Forschungsgemeinschaft M. Kleiner in the ATLAS visitor centre and underground experimental area with Former Spokesperson P. Jenni, accompanied by P. Mättig and Adviser R. Voss.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    24 January 2011 - President of the Deutsche Forschungsgemeinschaft M. Kleiner in the ATLAS visitor centre and underground experimental area with Former Spokesperson P. Jenni, accompanied by P. Mättig and Adviser R. Voss.

  12. 14 February 2012 - Ambassadors from Algeria, Brunei Darussalam, Canada, Chad, Tunisia, Permanent Representatives to the United Nations Office at Geneva in the LHC tunnel at Point 1, ATLAS visitor centre, and ATLAS underground experimental area, throughout accompanied by Advisers P. Fassnacht, E. Tsesmelis and R. Voss

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    14 February 2012 - Ambassadors from Algeria, Brunei Darussalam, Canada, Chad, Tunisia, Permanent Representatives to the United Nations Office at Geneva in the LHC tunnel at Point 1, ATLAS visitor centre, and ATLAS underground experimental area, throughout accompanied by Advisers P. Fassnacht, E. Tsesmelis and R. Voss

  13. 30 January 2012 - Danish National Research Foundation Chairman of board K. Bock and University of Copenhagen Rector R. Hemmingsen visiting ATLAS underground experimental area, CERN Control Centre and ALICE underground experimental area, throughout accompanied by J. Dines Hansen and B. Svane Nielsen; signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    30 January 2012 - Danish National Research Foundation Chairman of board K. Bock and University of Copenhagen Rector R. Hemmingsen visiting ATLAS underground experimental area, CERN Control Centre and ALICE underground experimental area, throughout accompanied by J. Dines Hansen and B. Svane Nielsen; signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss.

  14. 6 June 2008 - Chancellor F. Tomàs Vert, University of Valencia, visiting ATLAS control room and experimental area with Collaboration Spokesperson P. Jenni.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    6 June 2008 - Chancellor F. Tomàs Vert, University of Valencia, visiting ATLAS control room and experimental area with Collaboration Spokesperson P. Jenni. Other participants: Prof. Francisco José Botella, Director, Instituto de Fisica Corpuscular, University of València and CSIC Prof. José Peñarrocha, Dean, Faculty of Physics Prof. Antonio Ferrer, Instituto de Fisica Corpuscular, University of València and CSIC Prof. Antonio Pich, University of València, Member of IFIC (CSIC - Univ. València), Coordinator of CPAN, Spanish National Centre for Particle, Astroparticle and Nuclear Physics.

  15. Statistical combination of experimental results in ATLAS

    CERN Document Server

    Gadatsch, Stefan; The ATLAS collaboration

    2016-01-01

    The combination of experimental results requires a careful statistical treatment. We review the methods and tools used in ATLAS for the statistical combination of measurements and of limits on new physics. We highlight the methods used in the recent combination of ATLAS and CMS measurements of the Higgs boson production/decay rates and the constraints on the Higgs coupling parameters.

  16. 16 December 2011 - Israeli Minister of Industry, Trade and Labour S.Simhon visiting ATLAS undeground area, ATLAS visitor centre and LHC tunnel with Senior Physicist G. Mikenberg. ATLAS Collaboration Former Spokesperson is also present.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Israeli minister of industry, trade and labour, Shalom Simhon, was welcomed in the ATLAS visitor centre before he toured the ATLAS underground experimental area, where he could see the ATLAS detector. He also had a chance to see the LHC tunnel and the CERN Control Centre.

  17. 28 August 2013 - Director of Technical Quality Management Head of ESTEC Establishment European Space Agency F. Ongaro visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and Technology Department J.-P. Tock; visiting the ATLAS experimental area with ATLAS Deputy Spokesperson T. Wengler and signing the guest book with CERN Director-General R. Heuer. Accompanied throughout by F. Bordry and V. Parma.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    28 August 2013 - Director of Technical Quality Management Head of ESTEC Establishment European Space Agency F. Ongaro visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and Technology Department J.-P. Tock; visiting the ATLAS experimental area with ATLAS Deputy Spokesperson T. Wengler and signing the guest book with CERN Director-General R. Heuer. Accompanied throughout by F. Bordry and V. Parma.

  18. 18 December 2012 -Portuguese President of FCT M. Seabra visiting the Computing Centre with IT Department Head F. Hemmer, ATLAS experimental area with Collaboration Spokesperson F. Gianotti and A. Henriques Correia, in the LHC tunnel at Point 2 and CMS experimental area with Deputy Spokesperson J. Varela, signing an administrative agreement with Director-General R. Heuer; LIP President J. M. Gago and Delegate to CERN Council G. Barreia present.

    CERN Multimedia

    Samuel Morier-Genoud

    2012-01-01

    18 December 2012 -Portuguese President of FCT M. Seabra visiting the Computing Centre with IT Department Head F. Hemmer, ATLAS experimental area with Collaboration Spokesperson F. Gianotti and A. Henriques Correia, in the LHC tunnel at Point 2 and CMS experimental area with Deputy Spokesperson J. Varela, signing an administrative agreement with Director-General R. Heuer; LIP President J. M. Gago and Delegate to CERN Council G. Barreia present.

  19. 28th January 2011-Vice-President Max Planck Society-Prof. Martin Stratmann-Germany-visiting the ATLAS experimental area and the LHC Tunnel at CERN

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    Photo 1:ATLAS visitor Center with P. Jenni, ATLAS Collaboration former spokesperson Photo 2-10:visiting the ATLAS cavern Photo 10:D. Hoppe,P. Jenni,M. Stratmann,S. Bethke,S. Braun,D. Klammer Photo 11-15:visiting the LHC tunnel Photo 16-18:Signature of the Guest Book with S. Lettow,Director for Administration and General Infrastructure

  20. EnviroAtlas - Cleveland, OH - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Cleveland, OH EnviroAtlas Community. It represents the outside edge of all the block groups included in the...

  1. EnviroAtlas - Des Moines, IA - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Des Moines, IA EnviroAtlas Community. It represents the outside edge of all the block groups included in the...

  2. 14 February 2012 - Vice-President of the Senate of the Parliament of the Czech Republic A. Gajduskova signing the guest book with CERN Director-General R. Heuer; visiting ATLAS experimental area with Collaboration Spokesperson F. Gianotti. Ambassador Sequensova to the UN accompanies the Vice-President.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Vice-president of the Senate of the Parliament of the Czech Republic, Alena Gajduskova was welcomed to CERN by Rolf Heuer, CERN’s director-general, on 14 and 15 February. Her time at CERN included the ATLAS Visitor Centre and underground experimental area, the LHC tunnel, the LHC superconducting-magnet test hall and the ALICE underground experimental area. She also heard a presentation on the LHC Computing Grid Project at CERN’s Computer Centre.

  3. 16 February 2012 - Permanent Representative of the Russian Federation to the United Nations Office and other international organisations at Geneva Ambassador A.Borodavkin signing the the guest book with CERN Director-General R. Heuer; visiting ATLAS underground experimental area with Collaboration Members O. Fedin, S. Malyukov and A. Romaniouk; throughout accompanied by Adviser T. Kurtyka.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    16 February 2012 - Permanent Representative of the Russian Federation to the United Nations Office and other international organisations at Geneva Ambassador A.Borodavkin signing the the guest book with CERN Director-General R. Heuer; visiting ATLAS underground experimental area with Collaboration Members O. Fedin, S. Malyukov and A. Romaniouk; throughout accompanied by Adviser T. Kurtyka.

  4. 13 February 2012 - World Economic Forum Founder and Executive Chairman K. Schwab and Chairperson and Co-Founder Schwab Foundation for Social Entrepreneurship H. Schwab (Mrs)in the ATLAS experimental area at LHC Point 1 with Collaboration Former Spokesperson P. Jenni; signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    13 February 2012 - World Economic Forum Founder and Executive Chairman K. Schwab and Chairperson and Co-Founder Schwab Foundation for Social Entrepreneurship H. Schwab (Mrs)in the ATLAS experimental area at LHC Point 1 with Collaboration Former Spokesperson P. Jenni; signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

  5. 24 February 2012 - Polish Vice-Rectors AGH University of Science and Technology Cracow visiting the ATLAS underground experimental area with Former Collaboration Spokesperson P. Jenni; Vice Rector J. Lis signs a collaboration agreement with A. Unnervik; Adviser T. Kurtyka and A. Siemko accompany the delegation throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    24 February 2012 - Polish Vice-Rectors AGH University of Science and Technology Cracow visiting the ATLAS underground experimental area with Former Collaboration Spokesperson P. Jenni; Vice Rector J. Lis signs a collaboration agreement with A. Unnervik; Adviser T. Kurtyka and A. Siemko accompany the delegation throughout.

  6. 24 January 2012 - British Vice-Chancellor of the University of Cambridge Sir Leszek Borysiewicz signing the guest book with CERN Director-General, visiting ATLAS experimental area with Collaboration Deputy Spokesperson D. Charlton and Sm18 with engineer R. Veness.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    24 January 2012 - British Vice-Chancellor of the University of Cambridge Sir Leszek Borysiewicz signing the guest book with CERN Director-General, visiting ATLAS experimental area with Collaboration Deputy Spokesperson D. Charlton and Sm18 with engineer R. Veness.

  7. 13th February 2012 - German CEO Barmenia Insurance Group and Chair of the Hochschulrat Board of Governors of the Bergische Universitaet Wuppertal J. Beutelmann visiting ATLAS experimental area and signing the guest book with CERN Director-General R. Heuer and Advise R. Voss.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    13th February 2012 - German CEO Barmenia Insurance Group and Chair of the Hochschulrat Board of Governors of the Bergische Universitaet Wuppertal J. Beutelmann visiting ATLAS experimental area and signing the guest book with CERN Director-General R. Heuer and Advise R. Voss.

  8. 31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.

    CERN Multimedia

    Raphaël Piguet

    2011-01-01

    31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.

  9. EnviroAtlas - Potential Wetland Areas - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Potential Wetland Areas (PWA) dataset shows potential wetland areas at 30-meter resolution. Beginning two centuries ago, many wetlands were turned...

  10. 29 January 2009 - Italian Minister for Foreign Affairs F. Frattini, visiting the ATLAS experimental area with Director-General R. Heuer and Collaboration Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Present during the ATLAS undegrround visit: Dr Fabiola Gianotti,ATLAS CollaborationDeputy Spokesperson and Spokesperson Designate; Dr Monica Pepe-Altarelli, LHCb Collaboration CERN Team Leader; Prof. Guido Tonelli,CMS Collaboration, Deputy Spokesperson; Prof. Roberto Petronzio, INFN President. CERN participants present in the audience during the presentations by the Director-General R. Heuer and by Prof. Antonino Zichichi, ALICE Collaboration, University of Bologna: Prof. Sergio Bertolucci,Director for Research and Scientific Computing; Prof. Felicitas Pauss, Coordinator for External Relations Coordinator; Prof. Carlo Rubbia, CERN Former Director-General, Nobel Prize in Physics 1984; Dr Jurgen Schukraft, ALICE Collaboration Spokesperson. Members of the delegation in the audience: Ambassador to the UN, H. Exc. Mr Caracciolo di Vetri; Ambassador Alain G.M. Economides,Capo di Gabinetto; Prof. Antonio Bettanini\tCons. dell’On. Ministro per le Relazioni istituzionali; On. Mario Pescante and Min. Plen Maurizio Mas...

  11. Views of the ATLAS experimental hall

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The shell of the ATLAS detector is seen from many angles within its cavernous underground hall. All of the eight huge toroid magnets have been installed and fixed in place. The core of the detector, the largest of its type in the world, will soon be filled with many different detector-elements to observe the results of proton-proton collisions at the LHC when it is turned on in 2008.

  12. The PowerAtlas: a power and sample size atlas for microarray experimental design and research

    Directory of Open Access Journals (Sweden)

    Wang Jelai

    2006-02-01

    Full Text Available Abstract Background Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. Results To address this challenge, we have developed a Microrarray PowerAtlas 1. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO. The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC. Conclusion This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes.

  13. ATLAS : civil engineering at Point 1

    CERN Multimedia

    2002-01-01

    The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are ever so busy to finish the different infrastructures for ATLAS. Real underground video.

  14. 8 March 2012 - Extraordinary and plenipotentiary Ambassador R. van Schreven, Permanent Representative of the Kingdom of the Netherlands to the United Nations Office and other international organisations at Geneva, signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS experimental area with Deputy Spokesperson Y. Schutz; throughout accompanied by Former Deputy Department Head and Senior Physicist L. Linssen.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    8 March 2012 - Extraordinary and plenipotentiary Ambassador R. van Schreven, Permanent Representative of the Kingdom of the Netherlands to the United Nations Office and other international organisations at Geneva, signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS experimental area with Deputy Spokesperson Y. Schutz; throughout accompanied by Former Deputy Department Head and Senior Physicist L. Linssen.

  15. 19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

  16. ATLAS Civil Engineering Point 1

    CERN Multimedia

    Jean-Claude Vialis

    1999-01-01

    Different phases of realisation to Point 1 : zone of the ATLAS experiment The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are ever so busy to finish the different infrastructures for ATLAS. Real underground video. The film has original working sound.

  17. Experimental limits from ATLAS on Standard Model Higgs production.

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL

  18. 3rd May 2009 - Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, visiting ATLAS experimental area, LHC tunnel and CERN Control Centre with CERN Director-General R. Heuer, Collaboration Spokesperson F. Gianotti and Beams Department Head P. Collier.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    090506101-08: signature of the guest book and exchange of gifts; 090506109 + 46-64: Japanese Ambassador to the United Nations Office S. Kitajima, Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer, Non Member-State relations Adviser J. Ellis and ATLAS Collaboration Spokesperson F. Gianotti visiting the LHC tunnel at Point 1; 090506110-11 + 28-45: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda and his delegation visiting ATLAS experimental area with CERN Japanese users and Management; 090506112 + 86-94: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer and Japanese users in front of an LHC superconducting magnet; sLHC Project Leader also present. 090506113-19: Arrival of Japanese Min...

  19. ISABELLE. Volume 3. Experimental areas, large detectors

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors.

  20. 26th February 2009 - US Google Vice President and Chief Internet Evangelist V. Cerf signing the guest book with Director for research and Computing S. Bertolucci; visiting ATLAS control room and experimental area with Collaboration Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    HI-0902038 05: IT Department Head, F. Hemmer; US Google Vice President and Chief Internet Evangelist V. Cerf; Computing Security Officer and Colloquium Convenor D. R. Myers; Member of the Internet Society Advisory Council F. Flückiger; Director for Research and Scientific Computing, S. Bertolucci ; Honorary Staff Member, B. Segal. HI-0902038 16: Computing Security Officer and Colloquium Convenor D. R. Myers; UC Irvine, ATLAS Deputy Spokesperson elect A. J. Lankford; US Google Vice President and Chief Internet Evangelist V. Cerf; ATLAS Collaboration Spokesperson P. Jenni; IT Department Head, F. Hemmer.

  1. Experimental characterization of resistive joints for use inside ATLAS toroids

    CERN Document Server

    Volpini, G; Pojer, M

    2001-01-01

    The authors have investigated, both experimentally and theoretically, the thermo-electrical behavior of the ATLAS magnets resistive joints. These magnets exploit an Al-clad NbTi Rutherford superconducting cable, and the splices between different sections are performed by TIG-welding the Al matrices of the two cables to be connected. This technique is simple from a construction point of view, and we have shown that its performance is adequate for a safe operation of the magnets. The two main concerns during the design of these joints are the temperature rise due to Joule dissipation and the eddy currents induced under nonstationary conditions. We have devised a reliable model of these joints, that allows estimating their resistances and the induced eddy currents; later we have built and measured several sample joints to give experimental confirmation. The model requires, along with the joint geometry, the knowledge of the Rutherford-matrix interface resistance as well as the RRR of the aluminum matrix. In this...

  2. EnviroAtlas - Percent Large, Medium, and Small Natural Areas for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains the percentage of small, medium, and large natural areas for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code...

  3. 09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

  4. Low Energy Antiproton Ring experimental area

    CERN Multimedia

    1991-01-01

    The experimental area at the Low Energy Antiproton Ring (LEAR) is seen. This set up was used to slow down antiprotons which had been produced by colliding a proton beam with a solid target. The experiments in the hall then took antiprotons from LEAR to perform antimatter studies. One such experiment, PS210, produced the world's first antihydrogen atoms.

  5. ATLAS Civil Engineering Point 1

    CERN Multimedia

    Jean-Claude Vialis

    2000-01-01

    Different phases of realisation to Point 1 : zone of the ATLAS experiment The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are ever so busy to finish the different infrastructures for ATLAS. Real underground video. When passing throw the walls the succeeding can be heard and seen. The film has original working sound.

  6. ATLAS: civil engineering Point 1

    CERN Multimedia

    2000-01-01

    The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are busy to finish the different infrastructures for ATLAS. Real underground video. Nice view from the surface to the cavern from the pit side - all the big machines looked very small. The film has original working sound.

  7. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  8. 11 March 2009 - Italian Minister of Education, University and Research M. Gelmini, visiting ATLAS and CMS underground experimental areas and LHC tunnel with Director for Research and Scientific Computing S. Bertolucci. Signature of the guest book with CERN Director-General R. Heuer and S. Bertolucci at CMS Point 5.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Members of the Ministerial delegation: Cons. Amb. Sebastiano FULCI, Consigliere Diplomatico Dott.ssa Elisa GREGORINI, Segretario Particolare del Ministro Dott. Massimo ZENNARO, Responsabile rapporti con la stampa Prof. Roberto PETRONZIO, Presidente dell’INFN (Istituto Nazionale di Fisica Nucleare) Dott. Luciano CRISCUOLI, Direttore Generale della Ricerca, MIUR Dott. Andrea MARINONI, Consulente scientifico del Ministro CERN delegation present throughout the programme: Prof. Sergio Bertolucci, Director for Research and Scientific Computing Prof. Fabiola Gianotti, ATLAS Collaboration Spokesperson Prof. Paolo Giubellino, ALICE Deputy Spokesperson, Universita & INFN, Torino Prof. Guido Tonelli, CMS Collaboration Deputy Spokesperson, INFN Pisa Dr Monica Pepe-Altarelli, LHCb Collaboration CERN Team Leader Guests in the ATLAS exhibition area: Dr Marcello Givoletti\tPresident of CAEN Dr Davide Malacalza\tPresident of ASG Ansaldo Superconductors and users: Prof. Clara Matteuzzi, LHCb Collaboration, Universita' d...

  9. Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

    CERN Document Server

    Knaster, J R; Chatelaine, A; Flakowski, D; Girard, C; Ivaldi, S; Laurent, Jean Michel; Monteiro, I; Rossi, A; Veness, R J M

    2003-01-01

    The LHC will be the world next generation accelerator to be operational in 2007 at CERN. The UHV requirements force the installation of ion pumps in the experimental areas of ATLAS. Due to the unacceptable particle background that standards ion pumps may generate, a reduction in the amount of material constitutive of the pump body is required. Hence, an stainless steel 0.8 mm thick body annular triode ion pump has been designed. A pumping speed of ~ 20 l/s at 10-9 mbar is provided by 15 pumping elements. Finite elements analysis and destructive tests have been performed in its design. Final vacuum tests results are shown.

  10. Atlas of experimentally-induced neoplasia in beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, G.E.; Watson, C.R.

    1996-10-01

    Beagle dogs have been utilized extensively in biomedical research. The US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER) has sponsored life-span dose-effect radiation studies in beagles at various laboratories. Because results from studies in the various laboratories were to be compared, all the investigators strove to use similar nomenclature and criteria to describe biological effects. For this reason, pathologists from these laboratories met on five occasions between 1976 and 1977 to discuss nomenclature and histologic criteria for diagnoses. At these meeting, criteria were discussed for histopathologic description of lesions in bone, liver, lung, hematopoietic and lymphoid tissues, mammary gland, pituitary, testis, and thyroid. To provide further assurance of cooperation among the DOE laboratories involved, DOE organized several Task Groups in 1985, composed of staff members from the laboratories. The Task Group on Biological Effects was asked to standardize nomenclature and diagnostic criteria for pathology; this beagle pathology atlas is the result of that request. The atlas describes target organs of particular interest: lungs for radionuclides delivered by inhalation; bones for bone-seeking radionuclides; and hematopoietic and other soft tissues for external irradiation.

  11. ATLAS

    CERN Multimedia

    2002-01-01

    Barrel and END-CAP Toroids In order to produce a powerful magnetic field to bend the paths of the muons, the ATLAS detector uses an exceptionally large system of air-core toroids arranged outside the calorimeter volumes. The large volume magnetic field has a wide angular coverage and strengths of up to 4.7tesla. The toroids system contains over 100km of superconducting wire and has a design current of 20 500 amperes. (ATLAS brochure: The Technical Challenges)

  12. EnviroAtlas - Ecosystem Service Market and Project Areas, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem...

  13. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  14. 30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

  15. 16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

  16. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC...

  17. EnviroAtlas - Potential Wetland Areas - Contiguous United States Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Potential...

  18. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  19. 8 October 2013 - Rolex Director- General G. Marini in the ATLAS Control Room with CERN Director-General R. Heuer and ATLAS Collaboration Senior Physicist C. Rembser; visiting the ATLAS experimental cavern at LHC Point 1. Were also present from the Directorate: S. Lettow, Director for Administration and General Infrastructure; from the ATLAS Collaboration: Technische Universitaet Dortmund (DE) J. Jentzsch and SLAC National Accelerator Laboratory (US) G. Piacquadio.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    8 October 2013 - Rolex Director- General G. Marini in the ATLAS Control Room with CERN Director-General R. Heuer and ATLAS Collaboration Senior Physicist C. Rembser; visiting the ATLAS experimental cavern at LHC Point 1. Were also present from the Directorate: S. Lettow, Director for Administration and General Infrastructure; from the ATLAS Collaboration: Technische Universitaet Dortmund (DE) J. Jentzsch and SLAC National Accelerator Laboratory (US) G. Piacquadio.

  20. Standard 3D digital atlas of zebrafish embryonic development for projection of experimental data

    Science.gov (United States)

    Verbeek, Fons J.; den Broeder, M. J.; Boon, Paul J.; Buitendijk, B.; Doerry, E.; van Raaij, E. J.; Zivkovic, D.

    1999-12-01

    In developmental biology an overwhelming amount of experimental data concerning patterns of gene expression is produced revealing the genetic layout of the embryo and finding evidence for anomalies. Genes are part of complex genetic cascades and consequently their study requires tools for handling combinatorial problems. Gene expression is spatio-temporal and generally, imagin is used to analyze expression in four dimensions. Reporting and retrieving experimental data has become so complex that printed literature is no longer adequate and therefore databases are being implemented. Zebrafish is a popular model system in developmental biology. We are developing a 3D digital atlas of the zebrafish embryo, which is envisaged as standard allowing comparisons of experimentally induced and normally developing embryos. This 3D atlas is based on microscopical anatomy. From serial sections 3D images are reconstructed by capturing section images and registering these images respectively. This is accomplished for al developmental stages. Data management is solved using XML which is platform independent, ASCII-based, interchangeable and allows easy browsing. Applying supervised segmentation accomplishes a completely anatomically annotated 3D image. It divides the image into domains required for comparison and mapping. Experts provided with dedicated software and Internet-access to the images review annotations. Complete annotation and review is stored in a database.

  1. Coastal Resources Atlas: Long Island: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use data for management areas, National Park Service properties, State Parks, and National Wildlife Refuges in Long Island, New York....

  2. Development of large area resistive electrodes for ATLAS NSW MicroMEGAS

    CERN Document Server

    Ochi, Atsuhiko; The ATLAS collaboration

    2015-01-01

    MicroMegas with resistive anode will be used for the NSW upgrade of the ATLAS experiment at LHC. The resistive electrode is one of key technology for MPGDs to prevent sparks. Large area resistive electrodes for the MM have been developed using two different technology; screen printing and carbon sputtering. Maximum size of each resistive foil is 45cm x 220cm with printed pattern of 425 micron pitch strips. Those technologies are also suitable to mass production. The prototypes of series production model have been produced successfully. We will report the development and production status and test results of the resistive MicroMegas.

  3. Monday 8th June 2009-Germany-President of München Technical University,Prof. Wolfgang A. Herrmann-visiting ATLAS underground area with M. Hauschild and R. Voss

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Tirage 1 : CERN Director-General,R Heuer and W. A. Herrmann Tirage 2 : Visit ATLAS underground area with R. Voss Tirage 3 : Visit ATLAS underground area with M. Hauschild Tirage 4-20:W. A. Herrmann signing the Guest book with R. Heuer and the Coordinator for External Relations,F. Pauss Tirage 21-27: Visit ATLAS underground area

  4. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  5. Report to users of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Glagola, B. [eds.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web.

  6. ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Cheol Bang

    2011-12-01

    Full Text Available In collaborative body sensor networks, namely wireless body area networks(WBANs, each of the physical sensor applications is used to collaboratively monitor thehealth status of the human body. The applications of WBANs comprise diverse and dynamictraffic loads such as very low-rate periodic monitoring (i.e., observation data and high-ratetraffic including event-triggered bursts. Therefore, in designing a medium access control(MAC protocol for WBANs, energy conservation should be the primary concern duringlow-traffic periods, whereas a balance between satisfying high-throughput demand andefficient energy usage is necessary during high-traffic times. In this paper, we design atraffic load-aware innovative MAC solution for WBANs, called ATLAS. The design exploitsthe superframe structure of the IEEE 802.15.4 standard, and it adaptively uses the contentionaccess period (CAP, contention free period (CFP and inactive period (IP of the superframebased on estimated traffic load, by applying a dynamic “wh” (whenever which is requiredapproach. Unlike earlier work, the proposed MAC design includes load estimation fornetwork load-status awareness and a multi-hop communication pattern in order to preventenergy loss associated with long range transmission. Finally, ATLAS is evaluated throughextensive simulations in ns-2 and the results demonstrate the effectiveness of the protocol.

  7. ATLAS: a traffic load aware sensor MAC design for collaborative body area sensor networks.

    Science.gov (United States)

    Rahman, Md Obaidur; Hong, Choong Seon; Lee, Sungwon; Bang, Young-Cheol

    2011-01-01

    In collaborative body sensor networks, namely wireless body area networks (WBANs), each of the physical sensor applications is used to collaboratively monitor the health status of the human body. The applications of WBANs comprise diverse and dynamic traffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-rate traffic including event-triggered bursts. Therefore, in designing a medium access control (MAC) protocol for WBANs, energy conservation should be the primary concern during low-traffic periods, whereas a balance between satisfying high-throughput demand and efficient energy usage is necessary during high-traffic times. In this paper, we design a traffic load-aware innovative MAC solution for WBANs, called ATLAS. The design exploits the superframe structure of the IEEE 802.15.4 standard, and it adaptively uses the contention access period (CAP), contention free period (CFP) and inactive period (IP) of the superframe based on estimated traffic load, by applying a dynamic "wh" (whenever which is required) approach. Unlike earlier work, the proposed MAC design includes load estimation for network load-status awareness and a multi-hop communication pattern in order to prevent energy loss associated with long range transmission. Finally, ATLAS is evaluated through extensive simulations in ns-2 and the results demonstrate the effectiveness of the protocol.

  8. Development of interfacial area transport equation - modeling and experimental benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States)

    2011-07-01

    A dynamic treatment of interfacial area concentration has been studied over the last decade by employing the interfacial area transport equation. When coupled with the two-fluid model, the interfacial area transport equation replaces the flow regime dependent correlations for interfacial area concentration and eliminates potential artificial bifurcation or numerical oscillations stemming from these static correlations. An extensive database has been established to evaluate the model under various two-phase flow conditions. These include adiabatic and heated conditions, vertical and horizontal flow orientations, round, rectangular, annulus and 8×8 rod bundle channel geometries, and normal-gravity and simulated reduced-gravity conditions. This paper reviews the current state-of-the-art in the development of the interfacial area transport equation, available experimental databases and 1D and 3D benchmarking work of the interfacial area transport equation. (author)

  9. Successfully Managing the Experimental Area of a Large Physics Experiment from Civil Engineering to the First Beams

    CERN Document Server

    Butin, F

    2010-01-01

    The role of "Experimental Area Manager" supported by a well organized, charismatic and motivated team is absolutely essential for managing the huge effort needed for a multi-cultural, multi-disciplinary installation of cathedral-size underground caverns housing a billion dollar physics experiment. Between the years 2002 and 2008, we supervised and coordinated the ATLAS work site at LHC, from the end of the civil engineering to the first circulating beams, culminating with 240 workers on the site, 24 hours a day, 7 days a week, with activities taking place simultaneously on the surface, in the 60 m shafts and in the 100 m underground experimental cavern. We depict the activities preparation scheme (including tasks ranging from the installation of 280 ton cranes to super-delicate silicon detectors), the work-site organization method, the safety management that was a top priority throughout the whole project, and the opencommunication strategy that required maintaining permanent public visits. The accumulation o...

  10. Control Modules for Scintillation Counters in the SPS Experimental Areas

    CERN Document Server

    Baribaud, Guy; Cojan, A; Ferri, G; Fullerton, J; Manarin, A; Spanggaard, J

    2001-01-01

    The hardware used in the SPS Experimental Areas to control the beam instrumentation electronics and mechanics of the particle detectors is based on CAMAC and NIM modules. The maintenance of this hardware now presents very serious problems. The modules used to operate the Experimental Areas are numerous and older than 20 years so many of them cannot be repaired any more and CAMAC is no longer well supported by industry. The fast evolution of technology and a better understanding of the detectors allow a new equipment-oriented approach, which is more favourable for maintenance purposes and presents fewer data handling problems. VME and IP Modules were selected as standard components to implement the new electronics to control and read out the particle detectors. The first application implemented in this way concerns the instrumentation for the Scintillation Counters (formerly referred to as triggers). The fundamental options and the design features will be presented.

  11. Operation of the ATLAS end-cap calorimeters at sLHC luminosities, an experimental study

    CERN Document Server

    Ferencei, J; The ATLAS collaboration

    2009-01-01

    The expected increase of luminosity at sLHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters (EMEC, HEC, FCAL) in the endcap, respectively forward region. Small modules of each type of calorimeter have been built. The layout and the components used are very close to the ones used in the construction of the ATLAS calorimeter. The goal is to simulate in the high intensity proton beam at IHEP /Protvino the particle impact as expected for ATLAS in sLHC. Depending on the position in pseudorapidity |η|, each forward calorimeter has to cope with a different particle and energy flux. Placing absorber elements in-between the various small calorimeter modules, the particle and energy flux as expected in ATLAS later - given the variation due to |η| and longitudinal position - can be simulated very well.

  12. 29 March 2011 - Ninth President of Israel S.Peres welcomed by CERN Director-General R. Heuer who introduces Council President M. Spiro, Director for Accelerators and Technology S. Myers, Head of International Relations F. Pauss, Physics Department Head P. Bloch, Technology Department Head F. Bordry, Human Resources Department Head A.-S. Catherin, Beams Department Head P. Collier, Information Technology Department Head F. Hemmer, Adviser for Israel J. Ellis, Legal Counsel E. Gröniger-Voss, ATLAS Collaboration Spokesperson F. Gianotti, Former ATLAS Collaboration Spokesperson P. Jenni, Weizmann Institute G. Mikenberg, CERN VIP and Protocol Officer W. Korda.

    CERN Document Server

    Maximilien Brice

    2011-01-01

    During his visit he toured the ATLAS underground experimental area with Giora Mikenberg of the ATLAS collaboration, Weizmann Institute of Sciences and Israeli industrial liaison office, Rolf Heuer, CERN’s director-general, and Fabiola Gianotti, ATLAS spokesperson. The president also visited the CERN computing centre and met Israeli scientists working at CERN.

  13. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial...

  14. Experimental log hauling through a traditional caribou wintering area

    Directory of Open Access Journals (Sweden)

    Harold G. Cumming

    1998-03-01

    Full Text Available A 3-year field experiment (fall 1990-spring 1993 showed that woodland caribou (Rangifer tarandus caribou altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized.

  15. n_TOF: a new experimental area under way

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On Thursday 23 May, CERN celebrated the laying of the foundation stone of the new experimental area (EAR-2) of n_TOF – CERN’s neutron source facility*. Under a mild sun, Rolf Heuer, CERN Director-General, Enrico Chiaveri, spokesperson for the n_TOF collaboration, Frédérick Bordry, head of CERN’s Technology Department, and other important figures at CERN raised their glasses to the launch of this new scientific adventure.   Rolf Heuer, CERN Director-General, driving a backhoe at the EAR-2 foundation stone laying ceremony. “This new experimental area is very important as it shows the diversity of the science we are doing at CERN,” says Rolf Heuer. “One of the Laboratory’s goals is to build infrastructures and to do science that is unique, or at least world leading. And that is exactly what we are doing here.” The n_TOF collaboration is taking advantage of the long shutdown (LS1) for the const...

  16. The ATLAS ALFA and AFP detectors - the experimental challenge of measuring forward protons at the LHC

    CERN Document Server

    Trzebinski, M; The ATLAS collaboration

    2013-01-01

    The Absolute Luminosity For ATLAS (ALFA) and ATLAS Forward Protons (AFP) detectors are introduced. The forward proton trajectories are shown. The similarities and differences between these two detector systems are described. Finally, the physics possible to be done in these forward detectors is discussed. In particular, in case of ALFA the elastic scattering and exclusive di-pion production are described. In case of AFP, the hard diffractive processes like: Single Diffractive Jet, Double Pomeron Exchange Jet, Exclusive Jet and anomalous coupling production are described.

  17. Experimental Results of A1.2 Test for OECD-ATLAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung-Ho; Bae, Byoung-Uhn; Park, Yu-Sun; Kim, Jong-Rok; Choi, Nam-Hyun; Choi, Ki-Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to meet the international interests in the multiple high-risk design extension conditions (DECs) raised after the Fukushima accident, KAERI (Korea Atomic Energy Research Institute) is operating an OECD/NEA project (hereafter, OECD-ATLAS project) by utilizing a thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation). As for a prolonged SBO transient of the OECD-ATLAS project, two tests, named A1.1 and A1.2, were determined to be performed. In particular, passive safety systems are considered as the most promising alternatives to reinforce the safety and reliability of an ultimate heat removal system without any operator actions in the SBO transients. As one of the new safety improvement concepts to mitigate an SBO accident efficiently, a cooling and operational performance of the passive auxiliary feedwater system (PAFS) is investigated in the framework of the OECD-ATLAS project to produce clearer knowledge of the actual phenomena and to provide the best guidelines for accident management. As the second test of the OECD-ATLAS project, the A1.2 test was conducted to simulate a prolonged SBO with asymmetric secondary cooling through the supply of passive auxiliary feedwater only to SG-2. When the collapsed water level of steam generator reached a wide range of 25%, PAFS was actuated. PAFS played a key role in cooling down the primary system by the heat transfer and the natural circulation. With the actuation of PAFS, the fluid temperatures at the core inlet and outlet started to decrease without any excursion of the maximum heater surface temperature in the core. This integral effect test data of A1.2 test can be used to evaluate the prediction capability of existing safety analysis codes and identify any code deficiency for an SBO simulation with an operation of a passive system such as PAFS.

  18. Near Road Tree Cover in the Tampa, FL EnviroAtlas Community Area

    Science.gov (United States)

    Through EnviroAtlas, EPA and its partners seek to effectively measure and communicate the type, quality, and extent of services that humans receive from ecosystems so that their true value can be considered in decision-making. One of the ecosystem services examined in the communi...

  19. 9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

  20. 13 September 2013 - Chairman of the Board of Directors of the von Karman Institute Kingdom of Belgium J.-P. Contzen visiting the ATLAS experimental cavern with ATLAS Former Spokesperson P. Jenni; visiting the LHC tunnel at Point 1 with Technology Department N. Delruelle and signing the guest book with Technology Department Head F. Bordry. International Relations Adviser T. Kurtyka present.

    CERN Multimedia

    Laurent Egli (visit)

    2013-01-01

    13 September 2013 - Chairman of the Board of Directors of the von Karman Institute Kingdom of Belgium J.-P. Contzen visiting the ATLAS experimental cavern with ATLAS Former Spokesperson P. Jenni; visiting the LHC tunnel at Point 1 with Technology Department N. Delruelle and signing the guest book with Technology Department Head F. Bordry. International Relations Adviser T. Kurtyka present.

  1. 17 April 2013 - UK Queen Mary University London Principal S. Gaskell in the ATLAS control room at LHC Point 1, LHC tunnel and ATLAS experimental cavern with Collaboration Spokesperson D. Charlton and signing the guest book with CERN Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    17 April 2013 - UK Queen Mary University London Principal S. Gaskell in the ATLAS control room at LHC Point 1, LHC tunnel and ATLAS experimental cavern with Collaboration Spokesperson D. Charlton and signing the guest book with CERN Director for Accelerators and Technology S. Myers.

  2. 23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

  3. 19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

  4. 1 October 2013 - British Minister of State for Trade and Investment Lord Green of Hurstpierpoint signing the guest book with Head of Internationals Relations R. Voss; visiting the LHC tunnel at Point 1 and the ATLAS experimental cavern with ATLAS Collaboration Members K. Behr and J. Catmore.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    1 October 2013 - British Minister of State for Trade and Investment Lord Green of Hurstpierpoint signing the guest book with Head of Internationals Relations R. Voss; visiting the LHC tunnel at Point 1 and the ATLAS experimental cavern with ATLAS Collaboration Members K. Behr and J. Catmore.

  5. ATLAS Forward Detectors and Physics

    CERN Document Server

    Soni, N

    2010-01-01

    In this communication I describe the ATLAS forward physics program and the detectors, LUCID, ZDC and ALFA that have been designed to meet this experimental challenge. In addition to their primary role in the determination of ATLAS luminosity these detectors - in conjunction with the main ATLAS detector - will be used to study soft QCD and diffractive physics in the initial low luminosity phase of ATLAS running. Finally, I will briefly describe the ATLAS Forward Proton (AFP) project that currently represents the future of the ATLAS forward physics program.

  6. Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration; Hertenberger, Ralf; Mueller, Ralph Soeren Peter; Bortfeldt, Jonathan; Flierl, Bernhard Matthias; Zibell, Andre

    2016-01-01

    Four German institutes are building the 32 high-rate capable SM2 Micromegas quadruplets, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the m$^2$ in size quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 $\\mu$m. The qualification of a full-size SM2 quadruplet, foreseen by ATLAS time schedule for August 2015, will be performed in the Munich Cosmic Ray Measurement Facility (CRMF). Two fully working 4 m$\\times$ 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 frontend boards. We report on homogeneity of pulse-height and efficiency and will present measurements of the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a $102 \\times 92$ cm$^2$ Micromegas chamber with similar readout pitch in the CRMF using the TPC-like analysis method. At trigger rate...

  7. 12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

  8. Experimental Results of A1.1 Test for OECD-ATLAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung-Ho; Bae, Byoung-Uhn; Park, Yu-Sun; Kim, Jong-Rok; Choi, Nam-Hyun; Choi, Ki-Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI (Korea Atomic Energy Research Institute) is operating an OECD/NEA project (hereafter, OECD-ATLAS project) by utilizing a thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation). Considering the importance of the SBO scenario and the related accident mitigation measures, a prolonged SBO scenario was selected as the first test subject worthy of investigation in the OECD-ATLAS project as summarized in Table 1. After the Fukushima accident, design extension conditions (DECs) such as an SBO and a total loss of feed water (TLOFW) attracted wide international attention in that such high-risk multiple failure accidents should be revisited from the viewpoint of the reinforcement of the 'defense in depth' concept. In particular, an SBO is one of the most important DECs because a total loss of heat sink can lead to a core melt-down scenario under high pressure without any proper operator action. As for a prolonged SBO transient of the OECD-ATLAS project, two tests, named A1.1 and A1.2, were determined to be performed. In most nuclear power plants (NPPs), a turbine-driven auxiliary feedwater system was designed to remove the decay heat during the early period of an SBO transient. From a conservative point of view, however, it is necessary to investigate the thermal-hydraulic behaviors of the NPP when a turbine-driven auxiliary feedwater supply is not available during the initial period of an SBO transient and moreover a mobile pump-driven auxiliary feedwater supply can only become realized in the later period of the scenario. In particular, asymmetric heat removal characteristic through the supply of auxiliary feedwater only to one steam generator has its own peculiar importance in terms of safety analysis code validation. With an aim of considering these safety importance, in the A1.1 test, a prolonged SBO transient was simulated with two temporal phases: Phase (I) for a conservative SBO transient

  9. Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2015-01-01

    Four German institutes are building 32 high-rate capable SM2 Micromegas quadruplets, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the 2 m$^2$ quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 $\\mu$m. The qualification of full-size SM2 quadruplets will be performed in the Munich Cosmic Ray Measurement Facility (CRMF). Two fully working 4 m $\\times$ 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 front-end boards. The goal is to measure the homogeneity of pulse-height and efficiency and to determine the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a 102 $\\times$ 92 cm$^2$ Micromegas chamber with similar readout pitch in the CRMF using the TPC-like analysis method. At trigger rates above 100 Hz data taking takes only a few days for sufficie...

  10. 27 CFR 9.140 - Atlas Peak.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  11. Jurassic (uppermost Sinemurian - Aalenian sequence stratigraphy and geodynamic evolution of the Ait Bou Guemmez area (Central High Atlas, Morocco

    Directory of Open Access Journals (Sweden)

    El Bchari, F.

    2008-12-01

    Full Text Available In the Ait Bou Guemmez region (Central High Atlas, Morocco, five formations are recognised within the Jurassic (Late Sinemurian - Aalenian record. They are organised into seven third order sequences involved in three second order cycles. Three stages characterise the geodynamic evolution of the considered area: 1 Upper Sinemurian -Lower Carixian: lagoonal area; 2 Middle Carixian - Upper Domerian: NE dipping open carbonate platform; and 3 Late Domerian - Aalenian: tectonic activity of the Jbel Tizal -Jbel Azourki fault leading to the setting up of a mosaic sedimentary environments in the study area.Dans la région d’Ait Bou Guemmez (Haut Atlas central, Maroc, la série Jurassique (Sinémurien terminal - l’Aalénien à été subdivisée en cinq formations sédimentaires distinctes. Ces dernières s’organisent en sept séquences de troisième ordre, elles mêmes comprises dans trois cycles de deuxième ordre présentant les maxima de régression au sommet du Carixien inférieur et au Domérien supérieur. L’évolution géodynamique comporte trois étapes successives: 1 Sinémurien terminal - Carixien inférieur: un milieu de lagon limité par des zones émergées ou faiblement subsidentes situées le long de l’accident J.Tizal - J.Azourki; 2 Carixien moyen - Domérien supérieur: vaste plateforme carbonatée ouverte vers le NE; 3 Domérien terminal - Aalénien: intensification dans l’activité tectonique de l’accident de Jbel Tizal - Jbel Azourki, conduisant à la mise en place d’une mosaïque d’environnements sédimentaires dans l’ensemble du secteur étudié.

  12. Initial design for an experimental investigation of strongly coupled plasma behavior in the ATLAS facility

    CERN Document Server

    Munson, C P; Taylor, A J; Trainor, R J; Wood, B P; Wysocki, F J

    1999-01-01

    Summary form only given. Atlas is a high current (~30 MA peak, with a current risetime ~4.5 mu sec), high energy (E/sub stored/=24 MJ, E /sub load/=3-6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (>20 Mbar), adiabatic compression ( rho / rho /sub 0/>5, P>10 Mbar), high magnetic fields (~2000 T), high strain and strain rates ( epsilon >200, d epsilon /dt~10/sup 4/ to 10/sup 6/ s/sup -1/), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (<0.1 solid), relatively cold (~1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This target plasma will be compressed against a central column conta...

  13. EnviroAtlas - Milwaukee, WI - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Milwaukee, WI EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  14. EnviroAtlas - Fresno, CA - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Fresno, CA EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  15. EnviroAtlas - Durham, NC - Demo (Parent)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Durham, NC EnviroAtlas Area. The block groups are from the US Census Bureau and are included/excluded based on...

  16. EnviroAtlas - Portland, OR - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Portland, OR EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  17. EnviroAtlas - Paterson, NJ - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Paterson, NJ EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  18. EnviroAtlas - Phoenix, AZ - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Phoenix, AZ EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  19. ATLAS Civil Engineering Point 1

    CERN Multimedia

    Jean-Claude Vialis

    1999-01-01

    ATLAS Civil Engineering - Point 1 In the film you can see various stages of construction in Point 1: that is the experiment zone for ATLAS experimentation. One part of the video is filmed on the surface of Point 1. Therefore you can get the view of the hall SX 1 and the cranes. Cranes are located close to the ridge of the hall roof. The film gives you the view of the hall that covers the caps and the wells to underground cavern where the experiment will be implemented. The machinery for excavation lifts and cranes as well as the stock areas can also be seen. There are iron mounting and concrete works too

  20. EnviroAtlas - Minneapolis/St. Paul, MN - One Meter Resolution Urban Area Land Cover Map (MULC) (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Minneapolis-St. Paul, MN EnviroAtlas Meter-scale Urban Land Cover (MULC) data were generated from four-band (red, green, blue, and near infrared) aerial...

  1. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  2. ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks

    OpenAIRE

    Young-Cheol Bang; Md. Obaidur Rahman; Sungwon Lee; Choong Seon Hong

    2011-01-01

    In collaborative body sensor networks, namely wireless body area networks (WBANs), each of the physical sensor applications is used to collaboratively monitor the health status of the human body. The applications of WBANs comprise diverse and dynamic traffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-rate traffic including event-triggered bursts. Therefore, in designing a medium access control (MAC) protocol for WBANs, energy conservation should be the p...

  3. The challenge of building large area, high precision small-strip Thin Gap Trigger Chambers for the upgrade of the ATLAS experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon endcap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 m2 in size and totaling an active area of 1200 m2 will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 μm to allow the Level-1 trigger track segments to be reconstructed with an angular resolution of 1mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 30 µm along the precision coordinate and 80 µm along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of construction and integrati...

  4. The Challenge of Building Large Area, High Precision Small-Strip Thin Gap Trigger Chambers for the Upgrade of the ATLAS Experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon end-cap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 $m^2$ in size and totaling an active area of 1200 $m^2$ will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 $\\mu m$ while the Level-1 trigger track segments need to be reconstructed with an angular resolution of 1 mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 40 $\\mu m$ along the precision coordinate and 80 $\\mu m$ along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of cons...

  5. Experimental simulation of the energy parameters of the "ATLAS" capacitor bank using a disk explosive-magnetic generator

    CERN Document Server

    Buyko, A M; Gorbachev, Yu N; Yegorychev, B T; Zmushko, V V; Ivanov, V A; Ivanova, G G; Kuzaev, A I; Kulagin, A A; Mokhov, V N; Pavlii, V V; Pak, S V; Petrukhin, A A; Skobelev, A N; Sofronov, V N; Chernyshev, V K; Yakubov, V B; Anderson, B G; Atchison, W L; Clark, D A; Faehl, R J; Lindemuth, I R; Reinovsky, R E; Rodrigues, G; Stokes, J L; Tabaka, L J

    2001-01-01

    A joint US/Russian Advanced Liner Technology experiment ALT-1 was conducted to simulate the anticipated performance of the Atlas capacitor bank. A disk-explosive magnetic generator and foil opening switch were used to produce an electrical current waveform that reached a peak value of 32.5 MA and that imploded an aluminum liner to an inner surface velocity of 12 km/s. (6 refs).

  6. Neonatal atlas construction using sparse representation.

    Science.gov (United States)

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2014-09-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.

  7. Experimental Investigation of Macro-Bending Loss in Large Mode Area Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    Yinian Zhu; Joo Hin Chong; Ping Shum; Chao Lu

    2003-01-01

    We measured macro-bending losses for two large mode area photonic crystal fibers. Experimental results show that macro-bending loss and loss window are dependent on the parameter d/Λ and number of air-holes ring in the cladding.

  8. Experimental Investigation of Macro-Bending Loss in Large Mode Area Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    Joo; Hin; Chong; Ping; Shum

    2003-01-01

    We measured macro-bending losses for two large mode area photonic crystal fibers. Experimental results show that macro-bending loss and loss window are dependent on the parameter d/∧ and number of air-holes ring in the cladding.

  9. Experimental study and simulation of a micro-discharge with limited cathode area

    CERN Document Server

    Dufour, Thierry; Dussart, Remi; Pitchford, L C; Sadeghi, N; Lefaucheux, P; Kulsreshath, M; Ranson, P

    2016-01-01

    We report in this paper simulation results and experimental measurements to characterize a micro-discharge generated in a single micro cavity device operating in helium. By spatially limiting the cathode surface area using a dielectric layer, we demonstrate the ability of the micro-discharge to work in a steady-state abnormal glow regime. The physical properties of this regime are discussed.

  10. Anatomy atlases.

    Science.gov (United States)

    Rosse, C

    1999-01-01

    Anatomy atlases are unlike other knowledge sources in the health sciences in that they communicate knowledge through annotated images without the support of narrative text. An analysis of the knowledge component represented by images and the history of anatomy atlases suggest some distinctions that should be made between atlas and textbook illustrations. Textbook and atlas should synergistically promote the generation of a mental model of anatomy. The objective of such a model is to support anatomical reasoning and thereby replace memorization of anatomical facts. Criteria are suggested for selecting anatomy texts and atlases that complement one another, and the advantages and disadvantages of hard copy and computer-based anatomy atlases are considered.

  11. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  12. Qualification of the radiation environment in the TCC2 experimental test area.

    CERN Document Server

    Fynbo, C A

    2000-01-01

    This report qualifies the radiation environment to be found in the area behind the beam dump in the TCC2 experimental hall where tests are being performed on the radiation hardness and sensitivity to Single Event Upsets of electronics to be installed near the LHC machine. A comparison is made with the radiation environment expected for the LHC, and we conclude that the environment found in the test area matches that of LHC such that tests performed here will provide a valid simulation of electronics performance under LHC running conditions.

  13. Energy balance model applied to pasture experimental areas in São Paulo State, Brazil

    Science.gov (United States)

    Bayma-Silva, Gustavo; de Castro Teixeira, Antonio Heriberto; de Castro Victoria, Daniel; Furlan Nogueira, Sandra; Freitas Leivas, Janice; Coaguila, Daniel N.; Rodrigues Herling, Valdo

    2016-10-01

    The Simple Algorithm for Evapotranspiration Retrieving (SAFER) was used to estimate biophysical parameters and the energy balance components in two different pasture experimental areas, in the São Paulo state, Brazil. The experimental pastures consist in six rotational (RGS) and three continuous grazing systems (CGS) paddocks. Landsat-8 images from 2013 and 2015 dry and rainy seasons were used, as these presented similar hydrological cycle, with 1,600 mm and 1,613 mm of annual precipitation, resulting in 19 cloud-free images. Bands 1 to 7 and thermal bands 10 and 11 were used with weather data from a station located near the experimental area. NDVI, biomass, evapotranspiration and latent heat flux (λE) temporal values statistically differ CGS from RGS areas. Grazing systems influences the energy partition and these results indicate that RGS benefits biomass production, evapotranspiration and the microclimate, due higher LE values. SAFER is a feasible tool to estimate biophysical parameters and energy balance components in pasture and has potential to discriminate continuous and rotation grazing systems in a temporal analysis.

  14. A time for atlases and atlases for time

    Directory of Open Access Journals (Sweden)

    Yoav Livneh

    2010-02-01

    Full Text Available Advances in neuroanatomy and computational power are leading to the construction of new digital brain atlases. Atlases are rising as indispensable tools for comparing anatomical data as well as being stimulators of new hypotheses and experimental designs. Brain atlases describe nervous systems which are inherently plastic and variable. Thus, the levels of brain plasticity and stereotypy would be important to evaluate as limiting factors in the context of static brain atlases. In this review, we discuss the extent of structural changes which neurons undergo over time, and how these changes would impact the static nature of atlases. We describe the anatomical stereotypy between neurons of the same type, highlighting the differences between invertebrates and vertebrates. We review some recent experimental advances in our understanding of anatomical dynamics in adult neural circuits, and how these are modulated by the organism’s experience. In this respect, we discuss some analogies between brain atlases and the sequenced genome and the emerging epigenome. We argue that variability and plasticity of neurons are substantially high, and should thus be considered as integral features of high-resolution digital brain atlases.

  15. Experimental Study of Coal and Gas Outbursts Related to Gas-Enriched Areas

    Science.gov (United States)

    Tu, Qingyi; Cheng, Yuanping; Guo, Pinkun; Jiang, Jingyu; Wang, Liang; Zhang, Rong

    2016-09-01

    A coal and gas outburst can lead to a catastrophic failure in a coal mine. These outbursts usually occur where the distribution of coal seam gas is abnormal, commonly in tectonic belts. To study the effects of the abnormal distribution of this gas on outbursts, an experimental apparatus to collect data on simulated coal seam outbursts was constructed. Experiments on specimens containing discrete gas-enriched areas were run to induce artificial gas outbursts and further study of these outbursts using data from the experiment was conducted. The results suggest that more gas and outburst energy are contained in gas-enriched areas and this permits these areas to cause an outburst easily, even though the gas pressure in them is lower. During mining, the disappearance of the sealing effect of a coal pillar establishes the occurrence conditions for an outburst. When the enriched gas and outburst energy in the gas-enriched area is released suddenly, a reverse unloading wave and a high gas pressure gradient are formed, which have tension effects on the coal. Under these effects, the fragmentation degree of the coal intensifies and the intensity of the outburst increases. Because a high gas pressure gradient is maintained near the exposed surface and the enriched energy release reduces the coal strength, the existence of a gas-enriched area in coal leads to a faster outburst and the average thickness of the spall is smaller than where is no gas-enriched area.

  16. 27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Laurent Egli

    2012-01-01

    27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

  17. ATLAS Supersymmetry Searches

    CERN Document Server

    Ughetto, Michael; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV.

  18. 13th May 2009-Spanish Secretary of State for Research Ministry of Science and Innovation C. Martínez Alonso visiting CMS and ATLAS underground areas with Physics Deputy Department Head L. Alvarez-Gaume.

    CERN Multimedia

    Maximilien Brice; CERN

    2009-01-01

    Tirage 1-3; 7-9:C. Alonso, R. Heuer Tirage 4-6:F. Pauss, R. Heuer, C. Alonso, J. Labastida Tirage 10-11:M. Aguilar Benitez, C. Alonso at CMS Tirage 12-13:the delegation and G. Tonelli, counting room Tirage 14-15,17:the delegation and G. Tonelli, CMS underground area Tirage 16:G. Tonelli, C. Alonso, CMS underground area Tirage 18-20:G. Tonelli, C. Alonso, M. Aguilar Benitez, CMS underground area Tirage 21-28 :C. Alonso, R. Heuer, signing the Guest book Tirage 29-36;38-41:the delegation at ATLAS with P. Jenni Tirage 37:J. Aparicio, C. Parajes, J. Labastida, P. Jenni, C. Alonso, L. Alvarez Gaume Tirage 42-43:the delegation and spanish ATLAS collaborators Tirage 44-46: Meeting with spanish scientists at CERN

  19. Searching possibilities of a composite structure of quarks from the jet studies in the ATLAS experiment: physical and experimental aspects; Possibilite de recherche d`une structure composite des quarks dans l`experience ATLAS a partir des jets: aspects physiques et experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Brette, Ph

    1996-04-30

    This thesis presents the searching possibilities of a composite structure of quark from the jet studies in the ATLAS experiment. ATLAS is one of the major detectors on the LHC, the next proton-proton collider at CERN. The general physic framework of the quark compositeness is first introduced, the its expected search from the contact terms in the channel 2 {yields} 2 is explained. After a description of the ATLAS apparatus and of the prototype of the hadronic scintillating tiles calorimeter, various experimental properties of the hadron calorimeter with respect to the jet measurement are studied. The effect of the non-linearity of the calorimeter response is particularly discussed, including the light red out with the photomultipliers. The laser monitoring system enables a full control of the gain stability of the photomultipliers and of their non-linearity for large signals. Its design and the measured performance are shown. Finally, by considering both the expected performances of the ATLAS detector and the theoretical uncertainties, it appears that the compositeness scale controlled at the LHC, for quarks, should reach 15 to 20 TeV depending upon the luminosity, from jet measurement up to 3 TeV. (author) 38 refs.

  20. Evaluation of the radiation field and shielding assessment of the experimental area of HIE-ISOLDE.

    Science.gov (United States)

    Romanets, Y; Bernardes, A P; Dorsival, A; Gonçalves, I F; Kadi, Y; di Maria, S; Vaz, P; Vlachoudis, V; Vollaire, J

    2014-10-01

    The ISOLDE facility at CERN is one of the first facilities in the world dedicated to the production of the radioactive ion beams (RIB) and during all its working time underwent several upgrades. The goal of the latest proposed upgrade, 'The High Intensity and Energy ISOLDE' (HIE-ISOLDE), is to provide a higher performance facility in order to approximate it to the level of the next generation ISOL facilities, like EURISOL. The HIE-ISOLDE aims to improve significantly the quality of the produced RIB and for this reason the increasing of the primary beam power is one of the main objectives of the project. An increase in the nominal beam current (from 2 to 6 μA proton beam intensity) and energy (from 1.4 GeV to 2 GeV) of the primary proton beam will be possible due to the upgrade of CERN's accelerator infrastructure. The current upgrade means reassessment of the radiation protection and the radiation safety of the facility. However, an evaluation of the existing shielding configuration and access restrictions to the experimental and supply areas must be carried out. Monte Carlo calculations were performed in order to evaluate the radiation protection of the facility as well as radiation shielding assessment and design. The FLUKA-Monte Carlo code was used in this study to calculate the ambient dose rate distribution and particle fluxes in the most important areas, such as the experimental hall of the facility. The results indicate a significant increase in the ambient dose equivalent rate in some areas of the experimental hall when an upgrade configuration of the primary proton beam is considered. Special attention is required for the shielding of the target area once it is the main and very intensive radiation source, especially under the upgrade conditions. In this study, the access points to the beam extraction and beam maintenance areas, such as the mass separator rooms and the high voltage room, are identified as the most sensitive for the experimental hall from

  1. The new European wind atlas

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib; Ejsing Jørgensen, Hans;

    2014-01-01

    database. Although the project participants will come from the 27 member states it is envisioned that the project will be opened for global participation through test benches for model development and sharing of data – climatologically as well as experimental. Experiences from national wind atlases...... will be utilized, such as the Indian, the South African, the Finnish, the German, the Canadian atlases and others....... European Wind Atlas” aiming at reducing overall uncertainties in determining wind conditions; standing on three legs: A data bank from a series of intensive measuring campaigns; a thorough examination and redesign of the model chain from global, mesoscale to microscale models and creation of the wind atlas...

  2. 7 CFR 301.75-9 - Interstate movement of regulated articles from a quarantined area for experimental or scientific...

    Science.gov (United States)

    2010-01-01

    ... Interstate movement of regulated articles from a quarantined area for experimental or scientific purposes. A... 7 Agriculture 5 2010-01-01 2010-01-01 false Interstate movement of regulated articles from a quarantined area for experimental or scientific purposes. 301.75-9 Section 301.75-9 Agriculture Regulations...

  3. Design and construction of an experimental pervious paved parking area to harvest reusable rainwater.

    Science.gov (United States)

    Gomez-Ullate, E; Novo, A V; Bayon, J R; Hernandez, Jorge R; Castro-Fresno, Daniel

    2011-01-01

    Pervious pavements are sustainable urban drainage systems already known as rainwater infiltration techniques which reduce runoff formation and diffuse pollution in cities. The present research is focused on the design and construction of an experimental parking area, composed of 45 pervious pavement parking bays. Every pervious pavement was experimentally designed to store rainwater and measure the levels of the stored water and its quality over time. Six different pervious surfaces are combined with four different geotextiles in order to test which materials respond better to the good quality of rainwater storage over time and under the specific weather conditions of the north of Spain. The aim of this research was to obtain a good performance of pervious pavements that offered simultaneously a positive urban service and helped to harvest rainwater with a good quality to be used for non potable demands.

  4. Event visualization in ATLAS

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  5. Cacao roasting in rural areas of Peru using concentrated solar thermal energy: experimental results

    Directory of Open Access Journals (Sweden)

    Veynandt François

    2016-01-01

    Full Text Available Solar food processing is gaining interest for income generation. Our solar cacao roaster, designed for rural areas, consists in a horizontal rotating drum, opened at one end to collect solar radiation from Scheffler concentrators of 2.7 or 8 m2. The experimental results presented bring knowledge on the system's behavior and optimal operation. The influence of the most significant parameters is studied: quantity of cacao, absorptivity of drum's coating, thermal insulation, inclination and rotational speed of the drum. Cacao temperature and direct solar irradiance are monitored to evaluate the performance in roasting time per kilogram of cacao.

  6. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions.

  7. Experimental investigation of evaporation enhancement for water droplet containing solid particles in flaming combustion area

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2016-01-01

    Full Text Available The experimental study of integral characteristics of extinguishing liquid (water droplet evaporation in flaming combustion area has been held. Optical methods of two-phase and heterogeneous mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging” have been used for heat and mass transfer process investigation. It was established that small-size solid particles (for example, carbon particles in droplet structure can enhance water evaporation in flame area. It was shown that the rate of evaporation process depends on concentration and sizes of solid particles in a water droplet. The correlations have been determined between the sizes of solid particles and water droplets for maximum efficiency of fire extinguishing. The physical aspects of the problem have been discussed.

  8. Transporting the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.

  9. Results of Experiments on Convective Precipitation Enhancement in the Camaguey Experimental Area, Cuba.

    Science.gov (United States)

    Koloskov, Boris; Zimin, Boris; Beliaev, Vitaly; Seregin, Yury; Chernikov, Albert; Petrov, Victor; Valdés, Mario; Martínez, Daniel; Pérez, Carlos A.; Puente, Guillermo

    1996-09-01

    Experiments on randomized seeding of individual convective clouds and cloud clusters were conducted in the Camaguey experimental area, Cuba, from 1985 through 1990 in order to elucidate whether cold-cloud dynamic seeding can be used to augment convective rainfall. An information measuring system was set up, and primary tools included three instrumented aircraft (AN-26, AN-12 CYCLONE, IL-14), MRL-5 and ARS-3 radars, a system for radiosounding, two special rain gauge networks, and surface weather stations.A total of 232 randomized experiments were carried out during this experimentation period, and 117 individual clouds and 115 cloud clusters were studied during 136 `go' days. Pyrotechnic flares containing silver iodide were ejected in a selected cloud when the seeder aircraft was flying through its top. The seeding effects were monitored by the MRL-5 radar, which was equipped with an automated system for digital processing of data.A total of 46 convective clouds, 29 seeded and 17 nonseeded, were studied during an exploratory experiment in 1985. Analyses of the radar properties of seeded and nonseeded clouds have indicated that the response of convective clouds to AgI seeding is dependent on their type, and the treatment within the range of cloud tops from 6 to 8 km—that is, at top temperatures between 10° and 20°C, is found to increase their maximum height by 13% and the lifetime by 30%, and to enhance rainfall.A confirmatory phase of the experiment in the Camaguey experimental area was conducted during 1986 90. A total of 46 individual convective clouds, 24 seeded and 22 nonseeded, were identified, and their properties were determined using three-dimensional radar data. The results have shown that the AgI seeding of growing clouds with top temperatures over the range from 10° to 20°C increases their lifetime by 24%, maximum height by 9%, area by 64%, and rain volume by 120%, as compared to unseeded clouds. The lifetime, area, and rainfall results are

  10. An experimental aeromagnetic survey in the Volturno valley area (South-Eastern Latium

    Directory of Open Access Journals (Sweden)

    G. Caneva

    1998-06-01

    Full Text Available A helicopter-borne experimental aeromagnetic survey, covering an area of 200 km2, was performed in the Volturno valley area north of the Roccamonfina volcano and south of Venafro in November 1994. Although severe logistical, instrumental and meteorological conditions significantly reduced the planned coverage, the processed magnetic image still shows a remarkable improvement in the description of the geological and structural features of the area in comparison with previous regional aeromagnetic data. A multi-directional shaded relief anomaly map displays two moderately positive NW magnetic bands associated with lavas, pyroclastics and dykes of the Roccamonfina volcanic district together with N-S, NNE-SSW and NE-SW lineations. A comparative magnetic-geologic map allows correlation with known Pleistocene faults and reveals the existence, especially in the area between Sesto Campano and Presenzano, of a larger presence of high susceptibility dykes than seen in the outcrop, which is dominated by non-magnetic carbonatic rocks. We interpret the curvilinear and intricate pattern of magnetic lineaments as suggestive of an extensional setting along the main NW structures with previous strike slip components and of tectonic activity along a N-S fabric; the latter has no superficial evidence and has also been used for magma upwelling. Overall, this local scale investigation shows both the utility and the need for further efforts in high resolution aeromagnetics in Italy both for geological and environmental purposes similar to those successfully carried out in many other countries throughout the world.

  11. Experimental Studies of the Inspection of Areas With Restricted Access Using A0 Lamb Wave Tomography.

    Science.gov (United States)

    Seher, Matthias; Huthwaite, Peter; Lowe, Michael J S

    2016-09-01

    Corrosion damage in inaccessible regions presents a significant challenge to the petrochemical industry, and determining the remaining wall thickness is important to establish the remaining service life. Guided wave tomography is one solution to this and involves transmitting Lamb waves through the area of interest and, subsequently, using the received signals to reconstruct a thickness map of the remaining wall thickness. This avoids the need to access all points on the surface, making the technique well suited to inspection for areas with restricted access. The influence of these areas onto the ability to detect and size surface conditions, such as corrosion damage, using guided wave tomography is assessed. For that, a guided wave tomography system is employed, which is based on low-frequency A0 Lamb waves that are excited and detected with two arrays of electromagnetic acoustic transducers. Two different defect depths are considered with different contrasts relative to the nominal wall thickness, both of which are smoothly varying and well-defined. The influence of areas with restricted surface access, support locations, pipe clamps, and STOPAQ(R) coatings is experimentally tested, and their influence assessed through comparison to a baseline reconstruction without the respective restriction in place, demonstrating only a small influence on the detected value of the remaining wall thickness.

  12. Mini-atlas of the marmoset brain.

    Science.gov (United States)

    Senoo, Aya; Tokuno, Hironobu; Watson, Charles

    2015-04-01

    A mini-atlas of the brain is designed to help students and young researchers who are not familiar with neuroanatomy. In the mini-atlas, a limited number of important nuclei and fiber tracts are shown on a small number of brain sections from posterior end to the anterior end of the brain. The first mini-atlas was introduced for the rat brain (Watson et al., 2010). Here we present a mini-atlas of the common marmoset (Callithrix jaccus), which is one of representative experimental primates for modern neuroscience. We further discuss the differences of brain structures between rodents and primates.

  13. Mapping and analysis of geological fractures extracted by remote sensing on Landsat TM images, example of the Imilchil-Tounfite area (Central High Atlas, Morocco

    Directory of Open Access Journals (Sweden)

    H. El Alaoui El Moujahid

    2016-11-01

    Full Text Available The use of remote sensing, in this research, can be summarized in mapping and statistical studies of lineaments on the satellites images of the Jurassic outcrops in the Imilchil-Tounfite area, Central High Atlas of Morocco. This is to apply various manual techniques for extracting lineaments from Landsat TM image. Analytical techniques used in this work are: the principal component analysis (PCA applied to selective bands of the visible and infrared, which allows creating new images with better visual interpretation. Directional filters N0°, N45°, N90°, and N135° with a 5.5 matrix were used to enhance lineaments in the corresponding perpendicular directions, and therefore to obtain a good discrimination of those structures. Preliminary results highlight a dominant geological fracturing trending ENE/WSW with 52% of the total lineaments, a second fracture trending is WNW/ESE at 23%, a third fracture series trending NE/SW with 20% and finally, a minor series of fractures trending NW/SE with 5% of the total lineaments. Distribution and statistical relationship, between fractures and the affected surface on the one hand and the fracture length on the other hand, shows a network of well-structured fractures. The final lineament map constitutes a contribution to complete the geology and assisting the mining and hydrogeological prospection, in the Imilchil-Tounfite area.

  14. Familiarity breeds contempt: kangaroos persistently avoid areas with experimentally deployed dingo scents.

    Directory of Open Access Journals (Sweden)

    Michael H Parsons

    Full Text Available BACKGROUND: Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces from a sympatric predator (Canis lupus dingo, along with a control (water. If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous, western grey kangaroos (Macropus fuliginosus and agile wallabies (Macropus agilis would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones. Finally, we scored non-invasive indicators (flight and alarm stomps to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75+/-3.97 g food remained as compared to the tap water control, X = 209.0+/-107.0 g (P0.5. Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R(2 = 83.8; P<0.001. CONCLUSIONS/SIGNIFICANCE: Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been

  15. Construction and Quality Assurance of Large Area Resistive Strip Micromegas for the Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2017-01-01

    To cope with the increased background induced hit rate of up to ~15 kHz/cm$^2$ in the innermost stations of the muon endcap system of the ATLAS experiment after the high-luminosity upgrade of the LHC, the currently used precision detectors will be replaced by resistive strip Micromegas in 2019. In the "New Small Wheel" the Micromegas will be arranged in two times four detection layers built of trapezoidally shaped quadruplets of four different sizes.The Micromegas quadruplets will consist of 5 panels, 3 drift panels and 2 readout panels, made of aluminum honeycomb core sandwiched by printed circuit boards (PCBs). To achieve 15% transverse momentum resolution for 1 TeV muons and thus a spatial resolution in a single plane of about 100 $\\mu$m, each active plane has to have an accuracy of 80 $\\mu$m perpendicular to the plane and the alignment of the readout strips on the individual PCBs and particularly the alignment within a quadruplet must fulfill a challenging precision of 30 $\\mu$m. The required mechanical p...

  16. Numerical model validation using experimental data: Application of the area metric on a Francis runner

    Science.gov (United States)

    Chatenet, Q.; Tahan, A.; Gagnon, M.; Chamberland-Lauzon, J.

    2016-11-01

    Nowadays, engineers are able to solve complex equations thanks to the increase of computing capacity. Thus, finite elements software is widely used, especially in the field of mechanics to predict part behavior such as strain, stress and natural frequency. However, it can be difficult to determine how a model might be right or wrong, or whether a model is better than another one. Nevertheless, during the design phase, it is very important to estimate how the hydroelectric turbine blades will behave according to the stress to which it is subjected. Indeed, the static and dynamic stress levels will influence the blade's fatigue resistance and thus its lifetime, which is a significant feature. In the industry, engineers generally use either graphic representation, hypothesis tests such as the Student test, or linear regressions in order to compare experimental to estimated data from the numerical model. Due to the variability in personal interpretation (reproducibility), graphical validation is not considered objective. For an objective assessment, it is essential to use a robust validation metric to measure the conformity of predictions against data. We propose to use the area metric in the case of a turbine blade that meets the key points of the ASME Standards and produces a quantitative measure of agreement between simulations and empirical data. This validation metric excludes any belief and criterion of accepting a model which increases robustness. The present work is aimed at applying a validation method, according to ASME V&V 10 recommendations. Firstly, the area metric is applied on the case of a real Francis runner whose geometry and boundaries conditions are complex. Secondly, the area metric will be compared to classical regression methods to evaluate the performance of the method. Finally, we will discuss the use of the area metric as a tool to correct simulations.

  17. A new spark detection system for the electrostatic septa of the SPS North (experimental) Area

    CERN Multimedia

    Barlow, R A; Borburgh, J; Carlier, E; Chanavat, C; Pinget, B

    2013-01-01

    Electrostatic septa (ZS) are used in the extraction of the particle beams from the CERN SPS to the North Area experimental zone. These septa employ high electric fields, generated from a 300 kV power supply, and are particularly prone to internal sparking around the cathode structure. This sparking degrades the electric field quality, consequently affecting the extracted beam, vacuum and equipment performance. To mitigate these effects, a Spark Detection System (SDS) has been realised, which is based on an industrial SIEMENS S7-400 programmable logic controller and deported Boolean processors modules interfaced through a PROFINET fieldbus. The SDS interlock logic uses a moving average spark rate count to determine if the ZS performance is acceptable. Below a certain spark rate it is probable that the ZS septa tank vacuum can recover, thus avoiding transition into a\

  18. The radiation monitoring system for the LHC experiments and experimental areas

    CERN Document Server

    Ilgner, C

    2004-01-01

    With the high energies stored in the beams of the LHC, special attention needs to be paid to accident scenarios involving beam losses which may have an impact on the installed experiments. Among others, an unsynchronized beam abort and a D1 magnet failure are considered serious cases. According to simulations, the CMS inner tracker in such accident scenarios can be damaged by instantaneous rates which are many orders of magnitude above normal conditions. Investigations of synthetic diamond as a beam condition monitor sensor, capable of generating a fast beam dump signal, will be presented. Furthermore, a system to monitor the radiation fields in the experimental areas is being developed. It must function in the radiation fields inside and around the experiments, over a large dynamic range. Several new active and passive sensors, such as RadFET, OSL (Optically Stimulated Luminescence) sensors, p-i-n diodes, Polymer-Alanine Dosimeters and TLDs (Thermoluminescent Dosimeters) are under investigation. Recent resul...

  19. Persistent ATLAS Data Structures and Reclustering of Event Data

    CERN Document Server

    Schaller, Martin

    1999-01-01

    The ATLAS experiment will start to take data in the year 2005. The amount of experimental data forms a serious challenge for data processing and data storage. About 1 PB (1015 bytes) per year has to be processed and stored. Currently, a paradigm shift in High-Energy Physics (HEP) computing is taking place. It is planned that software is written in object-oriented languages (mainly C++). For data storage the usage of object-oriented database management systems (ODBMSs) is foreseen. This thesis investigates the usage of an ODBMS in the ATLAS experiment. Work was done in several connected areas. First, we present exhaustive benchmarks of the commercial ODBMS Objectivity/DB that is today the most promising candidate for the storage system. We describe the ATLAS 1 TB milestone that was performed to investigate the reliability and performance of an ODBMS storage solution coupled to a mass storage system. Second, we report about the design and implementation of the persistent ATLAS data structures, both in the detec...

  20. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  1. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  2. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  3. Experimental and Theoretical Analysis of Storage Friendly TCP Performance in Distributed Storage Area Network

    Directory of Open Access Journals (Sweden)

    Suresh Muknahallipatna

    2007-08-01

    Full Text Available Fibre channel storage area networks (SAN are widely implemented in production data center environments. Recently the storage industry has moved towards deployment of distributed SANs (DSAN, geographically dispersed across large physical distances. In a DSAN, specialized gateway devices interconnect the individual Fibre Channel (FC fabrics over IP networks using TCP/IP based protocols (iFCP or FCIP or over metro to long distance optical networks such as Dense Wavelength Division Multiplexing (DWDM based networks that utilize native FC ports supporting large numbers of link credits. When using TCP/IP based storage networking protocols to interconnect local FC fabrics in a DSAN, the sustained throughput achievable depends upon the link characteristics and TCP/IP stack implementation. Sustaining maximum possible storage traffic throughput across the wide area network enables practical DSAN deployments by maintaining the required site to site service level agreements.This study explores the effects of several TCP/IP modifications on sustained traffic throughput for a DSAN interconnected via iFCP gateways across an impaired network. The TCP/IP stack modifications, known as storage friendly, include changes to the window scaling, congestion avoidance, and fast recovery algorithms. The theoretical background and experimental results are presented to explain and illustrate these modifications.

  4. Analysis of the Radiation Field in ATLAS Using 2008 2011 Data from the ATLAS-MPX Network

    CERN Document Server

    Campbell, M; The ATLAS collaboration; Leroy, C; Martin, J-P; Mornacchi, G; Nessi, M; Pospisil, S; Solc, J; Soueid, P; Suk, M; Turecek, D; Vykydal, Z

    2013-01-01

    The ATLAS-MPX collaboration has installed a network of 16 Medipix2 pixel detector based, single-quantum-sensitive devices before the LHC start-up in 2008 at various positions in the ATLAS experimental and technical caverns. The aim of the network is to perform real-time measurements of spectral characteristics and composition of the radiation environment inside the ATLAS detector during its operation and in particular already in the early stages with low luminosity. The detectors are generally sensitive to all radiation species capable to deposit energy of at least 8 keV per single pixel. With the devices, in two different modes of operation, a large dynamic range of particle flux can be covered, of at least 9 orders of magnitude, which corresponds to the highest luminosity, while also background measurement can be made. An important goal is the determination of the neutron component of the mixed radiation field. To identify different types of neutrons, the 300 μm thick silicon sensor area of each ATLAS-MPX ...

  5. Atlas to patient registration with brain tumor based on a mesh-free method.

    Science.gov (United States)

    Diaz, Idanis; Boulanger, Pierre

    2015-08-01

    Brain atlas to patient registration in the presence of tumors is a challenging task because its presence cause brain structure deformations and introduce large intensity variation between the affected areas. This large dissimilarity affects the results of traditional registration methods based on intensity or shape similarities. In order to overcome these problems, we propose a novel method that brings closer the atlas and the patient's image by simulating the mechanical behavior of brain deformation under a tumor pressure. The proposed method use a mesh-free total Lagrangian Explicit Dynamic algorithm for the simulation of atlas deformation and a data driven model of the tumor using multi-modal MRI segmentation. Experimental results look structurally very similar to the patient's image and outperform two of the top ranking algorithms.

  6. 15 June 2009 - President of the Argentine Nation C. Fernández visiting ATLAS experimental area.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Tirage 1:President of the Argentine Nation, C. Fernández and Minister of Science, Technology and Innovative Production,L. Barañao Tirage 2-8:Arrival greetings Tirage 9-12:Introduction to CERN's activities by Director-General, R. Heuer Tirage 13-15:Signature of the guest book Tirage 16-25:M. Benedetti,R. Heuer and L.Barañao sit for the signature of the Agreement Tirage 26-33: Meeting with Argentinian scientists at CERN

  7. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Science.gov (United States)

    2010-07-01

    ... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation...

  8. A methodology for evacuation design for urban areas: theoretical aspects and experimentation

    Science.gov (United States)

    Russo, F.; Vitetta, A.

    2009-04-01

    of models for evacuation simulation; (c) to calibrate and validate system of model for evacuation simulation from a real experimentation. In relation to the proposed objectives in this paper: (a) a general framework about risk analysis is reported in the first part, with specific methods and models to analyze urban transportation system performances in emergency conditions when exogenous phenomena occur and for the specification of the risk function; (b) a formulation of the general evacuation problem in the standard simulation context of "what if" approach is specified in the second part with reference to the model considered for the simulation of transportation system in ordinary condition; (c) a set of models specified in the second part are calibrated and validated from a real experimentation in the third part. The experimentation was developed in the central business district of an Italian village and about 1000 inhabitants were evacuated, in order to construct a complete data-base. Our experiment required that socioeconomic information (population, number employed, public buildings, schools, etc.) and ‎transport supply characteristics (infrastructures, etc.) be measured before and during experimentation. The real data of evacuation were recorded with 30 video cameras for laboratory analysis. The results are divided into six strictly connected tasks: Demand models; Supply and supply-demand interaction models for users; Simulation of refuge areas for users; Design of path choice models for emergency vehicles; Pedestrian outflow models in a building; Planning process and guidelines.

  9. The huge ATLAS cavern now fully excavated

    CERN Multimedia

    2002-01-01

    Excavation of the ATLAS cavern is now complete! At the end of two years' work involving a tremendous technical challenge, the civil engineering contractors have succeeded in digging out one of the biggest experimental caverns in the world. Bravo!

  10. The San Niccolo' experimental area for studying the hydrology of coastal Mediterranean peatlands

    Science.gov (United States)

    Rossetto, Rudy; Barbagli, Alessio; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2015-04-01

    Starting from 1930, a large part of the Massaciuccoli Lake coastal area (Tuscany, Italy) has been drained for agricultural purposes by a complex network of artificial drains and pumping stations. In the drained areas, peat soils, with values of organic matter up to 50% in some cases, are largely present (Pistocchi et al., 2012). As a consequence of the human impact, environmental problems arose in the last 50 years: i. the eutrophication status of the Massaciuccoli lake caused by nutrient enrichment (N, P) in surface- and ground-water (Rossetto et al., 2010a); ii. the subsidence (2-3 m in 70 years) of the lake bordering areas due to soil compaction and mineralization (Rossetto et al., 2010b). As a potential solution to improve water quality and to decrease soil organic matter mineralization, a rewetted pilot experimental area of 15 ha with phyto-treatment functionalities has been set up. This pilot, adequately instrumented, now constitutes an open field lab to conduct research on the hydrology of coastal Mediterranean peatlands. Site investigation was performed and data on stratigraphy (from top on average: 1/2 m thick peat layer, 1/3 m organic matter-rich silt, 1/3 m stiff blue-gray clay, up to 30 m thick sand layer) and water (ground- and surface-water) quantity and quality were gathered and related to both local and regional groundwater flows. The inferred hydrological conceptual model revealed the pilot is set in a regional discharge area and the ground-water dependent nature of the agro-ecosystem, with mixing of waters with different origins. The site has been divided in three different phyto-treatment systems: a constructed wetland system, internally and externally banked in order to force water flow to a convoluted pattern where Phragmites australis L. and Thypha angustifolia L. constitute the sparse natural vegetation; a vegetation filter system based on the plantation of seven different no-food crops managed according to a periodic cutting and biomass

  11. SUSY Searches in ATLAS

    CERN Document Server

    Zhuang, Xuai; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV using 2015+2016 data. The searches with final states including jets, missing transverse momentum, light leptons will be presented.

  12. ATLAS reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.R.

    1995-09-01

    Key elements of the 36 MJ ATLAS capacitor bank have been evaluated for individual probabilities of failure. These have been combined to estimate system reliability which is to be greater than 95% on each experimental shot. This analysis utilizes Weibull or Weibull-like distributions with increasing probability of failure with the number of shots. For transmission line insulation, a minimum thickness is obtained and for the railgaps, a method for obtaining a maintenance interval from forthcoming life tests is suggested.

  13. A new spark detection system for the electrostatic septa of the SPS North (experimental) Area

    CERN Document Server

    Barlow, R A; Borburgh, J; Carlier, E; Chanavat, C; Fowler, T; Pinget, B

    2014-01-01

    Electrostatic septa (ZS) are used in the extraction of the particle beams from the CERN SPS to the North Area experimental zone. These septa employ high electric fields, generated from a 300 kV power supply, and are particularly prone to internal sparking around the cathode structure. This sparking degrades the electric field quality, consequently affecting the extracted beam, vacuum and equipment performance. To mitigate these effects, a Spark Detection System (SDS) has been realised, which is based on an industrial SIEMENS S7-400 programmable logic controller and deported Boolean processor modules interfaced through a PROFINET fieldbus. The SDS interlock logic uses a moving average spark rate count to determine if the ZS performance is acceptable. Below a certain spark rate it is probable that the ZS septa tank vacuum can recover, thus avoiding transition into a state where rapid degradation would occur. Above this level an interlock is raised and the high voltage is switched off. Additionally, all spark si...

  14. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  15. Water quality and quantity assessment of pervious pavements performance in experimental car park areas.

    Science.gov (United States)

    Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge

    2014-01-01

    Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.

  16. Experimental and Numerical Investigation of Wide Area Blunt Impact Damage to Composite Aircraft Structures

    Science.gov (United States)

    Chen, Zhi Ming

    Due to their high performance and weight efficiency, carbon fiber composites are increasingly being used in aircraft primary structure applications. Exposed composite structures (e.g., fuselage lower body) are susceptible accidental impacts by ground service equipment (GSE). The very high mass (over 10,000 kg) of GSE impact can involve high energy (over 1000 J) and thus can induce significant internal damage. Furthermore, the large contact area potentially involved with GSE impact can create significant internal delamination and fiber failure without leaving exterior-visible signs that any damage has occurred. The objectives of the research described herein are to: (1) conduct experimental investigation into the composite aircraft damage caused by GSE impact, (2) examine the small-scale failure modes in focused, element-level studies, (3) establish a finite element modeling methodology involving detailed simulation capability that is validated via small-scale tests, and (4) apply these modeling capabilities to accurately predict full-scale structural behavior without adjustment (e.g., tuning) of modeling input parameters.

  17. Development and testing of a double length pets for the CLIC experimental area

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, L., E-mail: laura.sanchez@ciemat.es [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid (Spain); Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J.L; Calero, J.; Toral, F. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid (Spain); Samoshkin, A.; Gudkov, D.; Riddone, G. [European Organization for Nuclear Research (CERN), CH-1211, Geneva 23 (Switzerland)

    2014-05-11

    CLIC (compact linear collider) is a future e+e{sup −} collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.

  18. Vast Area Detection for Experimental Radiochemistry (VADER) at the National Ignition Facility

    Science.gov (United States)

    Galbraith, Justin; Bettencourt, Ron; Shaughnessy, Dawn; Gharibyan, Narek; Talison, Bahram; Morris, Kevin; Smith, Cal

    2015-08-01

    At the National Ignition Facility (NIF), the flux of neutrons and charged particles at peak burn in an inertial confinement fusion capsule induces measureable concentrations of nuclear reaction products in the target material. Radiochemical analysis of post-shot debris can be used to determine diagnostic parameters associated with implosion of the capsule, including fuel areal density and ablator-fuel mixing. Additionally, analysis of debris from specially doped targets can support nuclear forensic research. We have developed and are deploying the Vast Area Detection for Experimental Radiochemistry (VADER) diagnostic to collect shot debris and interact with post-shot reaction products at the NIF. VADER uses quick release collectors that are easily reconfigured for different materials and geometries. Collectors are located ~50 cm from the NIF target; each of up to 9 collectors views ~0.005-0.0125 steradians solid angle, dependent upon configuration. Dynamic loading of the NIF target vaporized mass was modelled using LS-DYNA. 3-dimensional printing was utilized to expedite the design process. Model-based manufacturing was used throughout. We will describe the design and operation of this diagnostic as well as some initial results.

  19. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  20. Septum magnet MNP-23 for the CERN PS experimental area and its fast interlock system

    CERN Document Server

    Borburgh, J; Prost, A; Zickler, T

    2004-01-01

    Two MNP-23 septum-like magnets are installed at CERN in the transfer line from the Proton Synchrotron (PS) to the East Hall Experimental Area. They are exposed to extremely high doses of ionizing radiation. In the past, the magnets experienced two catastrophic failures due to overheating of its coils and cannot be repaired. The magnets of improved design which is subject of this article are built as replacements for the magnets presently installed. The MNP-23 is a resistive C shaped iron-dominated magnet made of solid low carbon steel blocks. The excitation windings consist of two water-cooled coils wound from hollow copper conductor. The septum design of these magnets implies a high current density which requires an efficient water cooling system. The newly designed cooling circuit provides better cooling performance and more reliability. To avoid failures due to coil overheating, an elaborate interlock system was developed and installed. It consists of two parts: firstly a slow, more classic sensor, to dete...

  1. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  2. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector

    Science.gov (United States)

    Karthick, S. K.; Rao, Srisha M. V.; Jagadeesh, G.; Reddy, K. P. J.

    2016-07-01

    We use the rectangular gaseous supersonic ejector as a platform to study the mixing characteristics of a confined supersonic jet. The entrainment ratio (ER) of the ejector, the non-mixed length (LNM), and potential core length (LPC) of the primary supersonic jet are measures to characterize mixing within the supersonic ejector. Experiments are carried out on a low area ratio rectangular supersonic ejector with air as the working fluid in both primary and secondary flows. The design Mach number of the nozzle (MPD = 1.5-3.0) and primary flow stagnation pressure (Pop = 4.89-9.89 bars) are the parameters that are varied during experimentation. Wall static pressure measurements are carried out to understand the performance of the ejector as well as to estimate the LNM (the spatial resolution is limited by the placement of pressure transducers). Well-resolved flow images (with a spatial resolution of 50 μm/pixel and temporal resolution of 1.25 ms) obtained through Planar Laser Mie Scattering (PLMS) show the flow dynamics within the ejector with clarity. The primary flow and secondary flow are seeded separately with acetone that makes the LNM and LPC clearly visible in the flow images. These parameters are extracted from the flow images using in-house image processing routines. A significant development in this work is the definition of new scaling parameters within the ejector. LNM, non-dimensionalized with respect to the fully expanded jet height hJ, is found to be a linear function of the Mach number ratio (Mach number ratio is defined as the ratio of design Mach number (MPD) and fully expanded Mach number (MPJ) of the primary jet). This definition also provides a clear demarcation of under-expanded and over-expanded regimes of operation according to [MPD/MPJ] > 1 and [MPD/MPJ] < 1, respectively. It is observed that the ER increased in over-expanded mode (to 120%) and decreased in under-expanded mode (to 68%). Similarly, LNM decreased (to 21.8%) in over-expanded mode

  3. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  4. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  5. Experimental reintroduction of the crayfish species Orconectes virilis into formerly acidified Lake 302S, Experimental Lakes Area, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, I.D. [Saskatchewan Watershed Authority, Saskatoon, SK (Canada); Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Vinebrooke, R.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Turner, M.A. [Fisheries and Oceans Canada, Winnipeg, MB (Canada). Freshwater Inst.

    2009-11-15

    The sudden reappearance of extirpated species in damaged ecosystems may have adverse ecological impacts. This study reintroduced crayfish (Orconectes virilis) into a formerly acidified Boreal shield lake located in Ontario in order to evaluate the effect of the species on the littoral food web after a 17 year absence. A single factor experimental design consisting of 2 treatment levels was replicated 5 times in order to form a total of 10 littoral cages each measuring 4 m{sup 2}. The study showed that the crayfish significantly suppressed the total biomass of other benthic invertebrates by 70 per cent as a result of declines in larval damselflies and midges. Periphytic biomass was reduced by 90 per cent. Isotopic analyses of the mesocosm food webs demonstrated that the crayfish functioned as an omnivore. The study demonstrated that the re-introduction of crayfish must be balanced with adequate fish predation in order to prevent the species from negatively impacting the productive capacity of Boreal lakes. 67 refs., 2 tabs., 8 figs.

  6. The influence of experimental pain intensity in the local and referred pain area on somatosensory perception in the area of referred pain.

    Science.gov (United States)

    Kosek, Eva; Hansson, Per

    2002-01-01

    The aim of this study was to investigate the influence of experimental pain intensity in the local and referred pain area on somatosensory perception thresholds in the area of referred pain. Pain was induced by intramuscular electrical stimulation of the left infraspinatus muscle in 12 healthy individuals. The stimulation corresponded to the local pain threshold ("mild local pain"), the referred pain threshold ("mild referred pain"), and a pain intensity corresponding to 2 on a 10-point category scale in the referred pain area ("moderate referred pain"). Quantitative sensory testing was performed to assess perception thresholds in the referred pain area and the homologous contralateral area before and during stimulation. Perception thresholds to light touch (LTTs), pressure pain (PPTs), and to innocuous as well as noxious warmth and cold were assessed. During stimulation the LTTs increased in the referred pain area compared to baseline, uninfluenced by pain intensity. Perception thresholds to innocuous cold and warmth increased bilaterally during the stimulation, without relation to pain intensity. Heat pain thresholds were not affected. Compared to baseline, PPTs increased bilaterally during stimulation corresponding to "mild local pain" and "mild referred pain", respectively, and a further increase was seen during "moderate referred pain". The decreased sensitivity to innocuous cold, warmth, and pressure pain was bilateral, indicating activation of endogenous net inhibitory mechanisms interacting bilaterally. We found no influence of pain intensity on somatosensory thresholds restricted to the referred pain area and light touch was the only affected modality in the referred pain area only.

  7. California Ocean Uses Atlas: Industrial sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  8. Gravity Field Atlas of the S. Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Gravity Field Atlas of the Southern Ocean from GEOSAT is MGG Report 7. In many areas of the global ocean, the depth of the seafloor is not well known because...

  9. California Ocean Uses Atlas: Fishing sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  10. Analytics Platform for ATLAS Computing Services

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration; Bryant, Lincoln

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning tools like Spark, Jupyter, R, S...

  11. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_1.html

  12. Virtual Visit to the ATLAS Control Room by the University of Genova

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Genova-2012.html

  13. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_2.html

  14. ATLAS Visit of Indian President

    CERN Multimedia

    2005-01-01

    Welcomed by CERN's Director General, Robert Aymar, the President of India Dr. A.P.J. Abdul Kalam visited the LHC tunnel, the ATLAS experimental cavern and the test facility for the LHC magnets. There the President had the chance to meet Indian scientists working at CERN.

  15. 12 December 2013 - Sir Konstantin Novoselov, Nobel Prize in Physics 2010, signing the guest book with International Relations Adviser E. Tsesmelis; visiting the ATLAS experimental cavern with Spokesperson D. Charlton; in the LHC tunnel with Technology Department Head F. Bordry. I. Antoniadis, CERN Theory Group Leader, accompanies throughout.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    12 December 2013 - Sir Konstantin Novoselov, Nobel Prize in Physics 2010, signing the guest book with International Relations Adviser E. Tsesmelis; visiting the ATLAS experimental cavern with Spokesperson D. Charlton; in the LHC tunnel with Technology Department Head F. Bordry. I. Antoniadis, CERN Theory Group Leader, accompanies throughout.

  16. 21 January 2008 - Vice-President of the Human Rights Commission Z. Muhsin Al Hussein, Ambassador to United Nations A. Attar and their delegation from Saudi Arabia, visiting the ATLAS experimental cavern with Collaboration Spokesperson P. Jenni and Technical Coordinator M. Nessi.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    21 January 2008 - Vice-President of the Human Rights Commission Z. Muhsin Al Hussein, Ambassador to United Nations A. Attar and their delegation from Saudi Arabia, visiting the ATLAS experimental cavern with Collaboration Spokesperson P. Jenni and Technical Coordinator M. Nessi.

  17. 16 July 2013 - Israel Ministry of Education Director-General D. Stauber in the LHC tunnel at Point 1 with L. Tavian, visiting the ATLAS experimental cavern with Senior Physicist G. Mikenberg; Israeli Delegate to CERN Council E. Rabinovici and CERN Adviser for Israel E. Tsesmelis present; signing the guest book with CERN Director-General R. Heuer.

    CERN Document Server

    Anna Pantelia

    2013-01-01

    16 July 2013 - Israel Ministry of Education Director-General D. Stauber in the LHC tunnel at Point 1 with L. Tavian, visiting the ATLAS experimental cavern with Senior Physicist G. Mikenberg; Israeli Delegate to CERN Council E. Rabinovici and CERN Adviser for Israel E. Tsesmelis present; signing the guest book with CERN Director-General R. Heuer.

  18. 8 May 2013 - Swedish European Spallation Source Chief Executive Officer J. H. Yeck in the ATLAS visitor centre and experimental cavern with Collaboration Spokesperson D. Charlton (also present M. Nessi, R. Garoby and E. Tsesmelis); signing the guest book with International Relations Adviser E. Tsesmelis.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    8 May 2013 - Swedish European Spallation Source Chief Executive Officer J. H. Yeck in the ATLAS visitor centre and experimental cavern with Collaboration Spokesperson D. Charlton (also present M. Nessi, R. Garoby and E. Tsesmelis); signing the guest book with International Relations Adviser E. Tsesmelis.

  19. 28 March 2014 - Italian Minister of Education, University and Research S. Giannini welcomed by CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci in the ATLAS experimental cavern with Former Collaboration Spokesperson F. Gianotti. Signature of the guest book with Belgian State Secretary for the Scientific Policy P. Courard.

    CERN Multimedia

    Gadmer, Jean-Claude

    2014-01-01

    28 March 2014 - Italian Minister of Education, University and Research S. Giannini welcomed by CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci in the ATLAS experimental cavern with Former Collaboration Spokesperson F. Gianotti. Signature of the guest book with Belgian State Secretary for the Scientific Policy P. Courard.

  20. 6 November 2013 - Permanent Representative of Chile to the United Nations Office and Other international organizations in Geneva Ambassador J. Balmaceda Serigos signing the guest book with Adviser for Latin America J. Salicio Diez; visiting the ATLAS experimental cavern with Spokesperson D. Charlton (Spouse, Son and First Secretary present).

    CERN Document Server

    Anna Pantelia

    2013-01-01

    6 November 2013 - Permanent Representative of Chile to the United Nations Office and Other international organizations in Geneva Ambassador J. Balmaceda Serigos signing the guest book with Adviser for Latin America J. Salicio Diez; visiting the ATLAS experimental cavern with Spokesperson D. Charlton (Spouse, Son and First Secretary present).

  1. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  2. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  3. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica in the Moroccan Middle Atlas Forests

    Directory of Open Access Journals (Sweden)

    Jesús Julio Camarero

    2011-09-01

    Full Text Available An understanding of the interactions between climate change and forest structure on tree growth are needed for decision making in forest conservation and management. In this paper, we investigated the relative contribution of tree features and stand structure on Atlas cedar (Cedrus atlantica radial growth in forests that have experienced heavy grazing and logging in the past. Dendrochronological methods were applied to quantify patterns in basal-area increment and drought sensitivity of Atlas cedar in the Middle Atlas, northern Morocco. We estimated the tree-to-tree competition intensity and quantified the structure in Atlas cedar stands with contrasting tree density, age, and decline symptoms. The relative contribution of tree age and size and stand structure to Atlas cedar growth decline was estimated by variance partitioning using partial-redundancy analyses. Recurrent drought events and temperature increases have been identified from local climate records since the 1970s. We detected consistent growth declines and increased drought sensitivity in Atlas cedar across all sites since the early 1980s. Specifically, we determined that previous growth rates and tree age were the strongest tree features, while Quercus rotundifolia basal area was the strongest stand structure measure related to Atlas cedar decline. As a result, we suggest that Atlas cedar forests that have experienced severe drought in combination with grazing and logging may be in the process of shifting dominance toward more drought-tolerant species such as Q. rotundifolia.

  4. 3 May 2014 - His Excellency Dr Karolos Papoulias President of the Hellenic Republic in the LHC tunnel at Point 1 and in ATLAS experimental cavern with Director-General R. Heuer.

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    In the LHC tunnel at Point 1: Beams Department, Controls Group Leader E. Hatziangeli and Technology Department, Cryogenics Group Deputy Leader D. Delikaris. In the ATLAS cavern: ATLAS Deputy Spokesperson B. Heinemann and ATLAS Collaboration National contact person and CAST Collaboration National Technical University of Athens Team Leader E. Gazis.

  5. StureGate:a Data Model for the ATLAS Software Architecture

    Institute of Scientific and Technical Information of China (English)

    P.Calafiura; H.Ma; 等

    2001-01-01

    ATLAS[1] has recently joined Gaudi,an open project to develop a data processing framework for HEP experiments[2],The data model is one of the areas where ATLAS has extended more the original Gaudi design to meet the experiment's own requirments.This paper describes StoreGate,the first implementation of the ATLAS Data Model.

  6. Impact of ATLAS measurements on PDFs

    Directory of Open Access Journals (Sweden)

    Orlando Nicola

    2015-01-01

    Full Text Available A review of the ATLAS measurements sensitive to parton distribution functions is presented. The analyses use proton–proton collision data at center–of–mass–energy √s = 7 TeV collected at the Large Hadron Collider between April and November 2011. When included in QCD fits, the ATLAS data allow for improving the experimental constraints on the gluon and strange–quark parton density functions of the proton.

  7. A method for the construction of strongly reduced representations of ATLAS experimental uncertainties and the application thereof to the jet energy scale

    CERN Document Server

    Boerner, Daniela; The ATLAS collaboration

    2016-01-01

    A method is presented for the reduction of large sets of related uncertainty sources into strongly reduced representations which retain a suitable level of correlation information for use in many cases. The method provides a self-consistent means of determining whether a given analysis is sensitive to the loss of correlation information arising from the reduction procedure. The method is applied to the ATLAS Jet Energy Scale (JES) uncertainty, demonstrating that the set of 60+ independent sources can be reduced to form a representation constructed of 3 nuisance parameters. By forming a set of four such representations, it is shown that JES correlation information is retained or probed over the full parameter space to within an average of 1%. This procedure is expected to significantly reduce the computational requirements placed upon early ATLAS searches in the upcoming 2015 dataset while still providing sufficient performance and correlation structure to avoid changing the analysis results.

  8. ATLAS Assembly Hall Open Day

    CERN Document Server

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  9. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  10. Atlas image labeling of subcortical structures and vascular territories in brain CT images.

    Science.gov (United States)

    Du, Kaifang; Zhang, Li; Nguyen, Tony; Ordy, Vincent; Fichte, Heinz; Ditt, Hendrik; Chefd'hotel, Christophe

    2013-01-01

    We propose a multi-atlas labeling method for subcortical structures and cerebral vascular territories in brain CT images. Each atlas image is registered to the query image by a non-rigid registration and the deformation is then applied to the labeling of the atlas image to obtain the labeling of the query image. Four label fusion strategies (single atlas, most similar atlas, major voting, and STAPLE) were compared. Image similarity values in non-rigid registration were calculated and used to select and rank atlases. Major voting fusion strategy gave the best accuracy, with DSC (Dice similarity coefficient) around 0.85 ± 0.03 for caudate, putamen, and thalamus. The experimental results also show that fusing more atlases does not necessarily yield higher accuracy and we should be able to improve accuracy and decrease computation cost at the same time by selecting a preferred set with the minimum number of atlases.

  11. Feedback control in quantum optics: an overview of experimental breakthroughs and areas of application

    CERN Document Server

    Serafini, Alessio

    2012-01-01

    We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback strategies will all be touched upon in our discussion.

  12. Feedback control in quantum optics: an overview of experimental breakthroughs and areas of application

    OpenAIRE

    Alessio Serafini

    2012-01-01

    We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback str...

  13. ATLAS Story

    CERN Multimedia

    Nordberg, Markus

    2012-01-01

    This film produced in July 2012 explains how fundamental research connects to Society and what benefits collaborative way of working can and may generate in the future, using ATLAS Collaboration as a case study. The film is intellectually inspired by the book "Collisions and Collaboration" (OUP) by Max Boisot (ed.), see: collisionsandcollaboration.com. The film is directed by Andrew Millington (OMNI Communications)

  14. An Experimental Study of the Noise Due to Traffic in a Congested Urban Area

    Science.gov (United States)

    Sangeetha, M.; Sankar, P.

    2016-03-01

    Noise pollution in an urban environment is an issue of serious concern in the major cities of India. There are various factors that contribute to the increase of noise levels in urban areas. The intensity of traffic is one of the factors which contributes to a drastic increase in environmental noise. The management of noise pollution has to be considered in the decision making process. In this paper, an attempt is made to study the existing noise level due to the traffic in Velachery which is declared as a sensitive area by the Ministry of Environment and Forestry (MoEF). The noise level data is collected using the MS6710 digital sound meter. The Custic simulation software version 3.2 is used for finding the propagation of noise. The spatial patterns of measurement were also calculated, in the sub-urban area of Velachery, Chennai, Tamilnadu, India. A means of transmitting this data to vehicles moving in the area, through a wireless medium is simulated using NCTUns 6.0 (network simulator), to enable drivers to understand the environmental conditions. A hardware was also designed which can be used to transmit and receive the noise data using the Zigbee module. A noise transmitting station is placed at a junction, so that it can transmit this noise data to the receivers which are fitted inside the vehicles.

  15. Experimental validation of a distributed algorithm for dynamic spectrum access in local area networks

    DEFF Research Database (Denmark)

    Tonelli, Oscar; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão;

    2013-01-01

    Next generation wireless networks aim at a significant improvement of the spectral efficiency in order to meet the dramatic increase in data service demand. In local area scenarios user-deployed base stations are expected to take place, thus making the centralized planning of frequency resources...

  16. Probabilistic liver atlas construction

    OpenAIRE

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E.

    2017-01-01

    Background Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. Results A new method for probabilistic atlas con...

  17. 14th March 2011 - Australian Senator the Hon. K. Carr Minister for Innovation, Industry, Science and Research in the ATLAS Visitor Centre with Collaboration Spokesperson F. Gianotti,visiting the SM18 area with G. De Rijk,the Computing centre with Department Head F. Hemmer, signing the guest book with Director-General R. Heuer with Head of International relations F. Pauss

    CERN Multimedia

    Jean-claude Gadmer

    2011-01-01

    14th March 2011 - Australian Senator the Hon. K. Carr Minister for Innovation, Industry, Science and Research in the ATLAS Visitor Centre with Collaboration Spokesperson F. Gianotti,visiting the SM18 area with G. De Rijk,the Computing centre with Department Head F. Hemmer, signing the guest book with Director-General R. Heuer with Head of International relations F. Pauss

  18. Supersymmetry searches in ATLAS

    CERN Document Server

    Meloni, Federico; The ATLAS collaboration

    2015-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. Sensitivity projections for the data that will be collected in 2015 are also presented.

  19. Supersymmetry searches in ATLAS

    CERN Document Server

    Meloni, Federico; The ATLAS collaboration

    2015-01-01

    This document summarises recent ATLAS results for searches for supersymmetric particles using LHC proton-proton collision data. Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. We consider both R-Parity conserving and R-Parity violating SUSY scenarios. The searches involve final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. Sensitivity projections for the data that will be collected in 2015 are also presented.

  20. An MRI Von Economo - Koskinas atlas.

    Science.gov (United States)

    Scholtens, Lianne H; de Reus, Marcel A; de Lange, Siemon C; Schmidt, Ruben; van den Heuvel, Martijn P

    2016-12-28

    The cerebral cortex displays substantial variation in cellular architecture, a regional patterning that has been of great interest to anatomists for centuries. In 1925, Constantin von Economo and George Koskinas published a detailed atlas of the human cerebral cortex, describing a cytoarchitectonic division of the cortical mantle into over 40 distinct areas. Von Economo and Koskinas accompanied their seminal work with large photomicrographic plates of their histological slides, together with tables containing for each described region detailed morphological layer-specific information on neuronal count, neuron size and thickness of the cortical mantle. Here, we aimed to make this legacy data accessible and relatable to in vivo neuroimaging data by constructing a digital Von Economo - Koskinas atlas compatible with the widely used FreeSurfer software suite. In this technical note we describe the procedures used for manual segmentation of the Von Economo - Koskinas atlas onto individual T1 scans and the subsequent construction of the digital atlas. We provide the files needed to run the atlas on new FreeSurfer data, together with some simple code of how to apply the atlas to T1 scans within the FreeSurfer software suite. The digital Von Economo - Koskinas atlas is easily applicable to modern day anatomical MRI data and is made publicly available online.

  1. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N.G.; Landberg, L.; Rathmann, O.; Nielsen, M.N. [Risoe National Lab., Roskilde (Denmark); Nielsen, P. [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  2. Hyperglycemia decreased medial amygdala projections to medial preoptic area in experimental model of Diabetes Mellitus.

    OpenAIRE

    Yousef Mohamadi; Seyed Behnam-edin Jameie; Mohammad Akbari; Masumeh Staji; Fatemeh Moradi; Tahmineh Mokhtari; Maryam Khanehzad; Gholamreza Hassanzadeh

    2015-01-01

    In Wistar rats, reproductive behavior is controlled in a neural circuit of ventral forebrain including the medial amygdala (Me), bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA) via perception of social odors. Diabetes Mellitus (DM) is a widespread metabolic disease that affects many organs in a variety of levels. DM can cause central neuropathies such as neuronal apoptosis, dendritic atrophy, neurochemical alterations and also causes reproductive dysfunctions. So we...

  3. Chemical analysis of interstitial water in rivers of Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Goncalves, Julia Rosa, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha (CE/CTM-SP), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Quimica. Departamento de Quimica Analitica

    2013-07-01

    This work presents the results from analysis of samples of interstitial waters for the following chemical parameters: F{sup -}, Cl{sup -}, NO{sub 2}{sup -}, Br{sup -}, NO{sub 3}{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-} by Ionic Chromatography, Na, K by Flame Photometry, Al, Cd, Pb, Cu, Cr, Fe, Mn, Ni, Zn by ICP OES, pH and the biological parameter: toxicity by natural bioluminescent bacterium (Vibrio fischeri) bioassay. The samples were obtained from sediments collected in 6 different sampling locations, in a ratio of 10-km-long from Centro Experimental Aramar (CEA). The rivers were the samples came from were: Ipanema River, Sorocaba River and Ribeirao do Ferro River. The interstitial water was extracted by centrifugation (3000 rpm, 20 min, 4 deg C). Analysis for metal concentrations were carried out after acid digestion and others tests proceeded in the sample after filtration without further treatment. These data will contribute to evaluate the distribution of contaminants and nutrients in these collecting points and this toxicity status. The release of soluble substances from sediments to interstitial water provides one way for bioaccumulation of these compounds and may affect the survival or development of aquatic organisms. The analysis in interstitial water has never been evaluated at this sampling points and the importance of this study is collecting data providing a better knowledge of the hydrological conditions in which Centro Experimental Aramar is located. (author)

  4. Experimental investigation of the influences of shape and surface area on the EGR cooler efficiency

    Science.gov (United States)

    Jang, Sanghoon; Park, Sangki; Choi, Kapseung; Kim, Hyungman

    2011-06-01

    The cooled EGR system is one of the most effective techniques currently available for reducing NOx emissions. In this study, engine dynamometer experiments were performed to investigate the efficiencies of the shell and tube-type and stack-type EGR coolers. The results show that the heat exchange of the stack-type EGR cooler is much more effective than that of the shell and tube type because of the increased surface area and better mixing of the coolant flow, and also more PM is produced at low exhaust gas temperature than at high temperature.

  5. Primary productivity of the agrobiogeocenoses on the experimental area of the land reclamation after mining impact

    Directory of Open Access Journals (Sweden)

    O. V. Zhukov

    2010-01-01

    Full Text Available The results of the primary productivity investigation of agrobiogeocoenoses in different edaphic condition of reclamated soil have been presented. The spatial variability of the plant community biomass has been shown by means of GIS-approaches. By means of regression analysis the dependence of the phytomass on edaphic factors, such as aggregate composition and humus content, have been quantitatively assessed. The data obtained reveal that the rise of the soil aggregate with size of more than 3 mm leads to primary production increase of agrobiogeocenoses in the recultivated areas.

  6. 2 April 2014 - H. E. Mr Joachim Gauck, President of the Federal Republic of Germany in the ATLAS experimental cavern with Director-General R. Heuer.

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    in the ATLAS cavern: Minister of State at the Federal Foreign Office M. Böhmer (green jacket) and Mrs daniela Schadt (First Lady). 201404-069_39.jpg: State Secretary, Federal Ministry of Education and Research G. Schütte, Minister of State at the Federal Foreign Office M. Böhmer, President Gauck, CERN DG, State Secretary, Chief of the Federal President´s Office D. Gill and Ambassador of the Federal Republic of Germany to the Swiss Confederation O. Lampe.

  7. Dynamic Carpooling in Urban Areas: Design and Experimentation with a Multi-Objective Route Matching Algorith

    Directory of Open Access Journals (Sweden)

    Matteo Mallus

    2017-02-01

    Full Text Available This paper focuses on dynamic carpooling services in urban areas to address the needs of mobility in real-time by proposing a two-fold contribution: a solution with novel features with respect to the current state-of-the-art, which is named CLACSOON and is available on the market; the analysis of the carpooling services performance in the urban area of the city of Cagliari through emulations. Two new features characterize the proposed solution: partial ridesharing, according to which the riders can walk to reach the driver along his/her route when driving to the destination; the possibility to share the ride when the driver has already started the ride by modelling the mobility to reach the driver destination. To analyse which features of the population bring better performance to changing the characteristics of the users, we also conducted emulations. When compared with current solutions, CLACSOON allows for achieving a decrease in the waiting time of around 55% and an increase in the driver and passenger success rates of around 4% and 10%,respectively. Additionally, the proposed features allowed for having an increase in the reduction of the CO2 emission by more than 10% with respect to the traditional carpooling service.

  8. EnviroAtlas - Green Bay, WI - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Green Bay, WI EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  9. An analytical and experimental study of sound propagation and attenuation in variable-area ducts. [reducing aircraft engine noise

    Science.gov (United States)

    Nayfeh, A. H.; Kaiser, J. E.; Marshall, R. L.; Hurst, L. J.

    1978-01-01

    The performance of sound suppression techniques in ducts that produce refraction effects due to axial velocity gradients was evaluated. A computer code based on the method of multiple scales was used to calculate the influence of axial variations due to slow changes in the cross-sectional area as well as transverse gradients due to the wall boundary layers. An attempt was made to verify the analytical model through direct comparison of experimental and computational results and the analytical determination of the influence of axial gradients on optimum liner properties. However, the analytical studies were unable to examine the influence of non-parallel ducts on the optimum linear conditions. For liner properties not close to optimum, the analytical predictions and the experimental measurements were compared. The circumferential variations of pressure amplitudes and phases at several axial positions were examined in straight and variable-area ducts, hard-wall and lined sections with and without a mean flow. Reasonable agreement between the theoretical and experimental results was obtained.

  10. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    Science.gov (United States)

    Liyanage, Kishan Andre; Steward, Christopher; Moffat, Bradford Armstrong; Opie, Nicholas Lachlan; Rind, Gil Simon; John, Sam Emmanuel; Ronayne, Stephen; May, Clive Newton; O'Brien, Terence John; Milne, Marjorie Eileen; Oxley, Thomas James

    2016-01-01

    Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution) MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap) to 1 (complete overlap). For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  11. Shielding design of an underground experimental area at point 5 of the CERN Super Proton Synchrotron (SPS).

    Science.gov (United States)

    Mueller, Mario J; Stevenson, Graham R

    2005-01-01

    Increasing projected values of the circulating beam intensity in the Super Proton Synchrotron (SPS) and decreasing limits to radiation exposure, taken with the increasing non-acceptance of unjustified and unoptimised radiation exposures, have led to the need to re-assess the shielding between the ECX and ECA5 underground experimental areas of the SPS. Twenty years ago, these experimental areas at SPS-Point 5 housed the UA1 experiment, where Carlo Rubbia and his team verified the existence of W and Z bosons. The study reported here describes such a re-assessment based on simulations using the multi-purpose FLUKA radiation transport code. This study concludes that while the main shield which is made of concrete blocks and is 4.8 m thick satisfactorily meets the current design limits even at the highest intensities presently planned for the SPS, dose rates calculated for liaison areas on both sides of the main shield significantly exceed the design limits. Possible ways of improving the shielding situation are discussed.

  12. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS

    Directory of Open Access Journals (Sweden)

    Nicholas A. Forfinski-Sarkozi

    2016-09-01

    Full Text Available In 2018, the National Aeronautics and Space Administration (NASA is scheduled to launch the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2, with a new six-beam, green-wavelength, photon-counting lidar system, Advanced Topographic Laser Altimeter System (ATLAS. The primary objectives of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, if bathymetry can be reliably retrieved from ATLAS data, this could assist in addressing a key data need in many coastal and inland water body areas, including areas that are poorly-mapped and/or difficult to access. Additionally, ATLAS-derived bathymetry could be used to constrain bathymetry derived from complementary data, such as passive, multispectral imagery and synthetic aperture radar (SAR. As an important first step in evaluating the ability to map bathymetry from ATLAS, this study involves a detailed assessment of bathymetry from the Multiple Altimeter Beam Experimental Lidar (MABEL, NASA’s airborne ICESat-2 simulator, flown on the Earth Resources 2 (ER-2 high-altitude aircraft. An interactive, web interface, MABEL Viewer, was developed and used to identify bottom returns in Keweenaw Bay, Lake Superior. After applying corrections for refraction and channel-specific elevation biases, MABEL bathymetry was compared against National Oceanic and Atmospheric Administration (NOAA data acquired two years earlier. The results indicate that MABEL reliably detected bathymetry in depths of up to 8 m, with a root mean square (RMS difference of 0.7 m, with respect to the reference data. Additionally, a version of the lidar equation was developed for predicting bottom-return signal levels in MABEL and tested using the Keweenaw Bay data. Future work will entail extending these results to ATLAS, as the technical specifications of the sensor become available.

  13. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    Science.gov (United States)

    Bedogni, R.; Sperduti, A.; Pietropaolo, A.; Pillon, M.; Pola, A.; Gómez-Ros, J. M.

    2017-01-01

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a 241Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm-2 s-1 to 1000 cm-2 s-1 can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  14. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  15. ATLAS Recordings

    CERN Multimedia

    Steven Goldfarb; Mitch McLachlan; Homer A. Neal

    Web Archives of ATLAS Plenary Sessions, Workshops, Meetings, and Tutorials from 2005 until this past month are available via the University of Michigan portal here. Most recent additions include the Trigger-Aware Analysis Tutorial by Monika Wielers on March 23 and the ROOT Workshop held at CERN on March 26-27.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal.Feedback WelcomeOur group is making arrangements now to record plenary sessions, tutorials, and other important ATLAS events for 2007. Your suggestions for potential recording, as well as your feedback on existing archives is always welcome. Please contact us at wlap@umich.edu. Thank you.Enjoy the Lectures!

  16. Hyperglycemia decreased medial amygdala projections to medial preoptic area in experimental model of Diabetes Mellitus.

    Directory of Open Access Journals (Sweden)

    Yousef Mohamadi

    2015-01-01

    Full Text Available In Wistar rats, reproductive behavior is controlled in a neural circuit of ventral forebrain including the medial amygdala (Me, bed nucleus of the stria terminalis (BNST and medial preoptic area (MPOA via perception of social odors. Diabetes Mellitus (DM is a widespread metabolic disease that affects many organs in a variety of levels. DM can cause central neuropathies such as neuronal apoptosis, dendritic atrophy, neurochemical alterations and also causes reproductive dysfunctions. So we hypothesized damage to the nuclei of this circuit can cause reproductive dysfunctions. Therefore in this project we assessed diabetic effect on these nuclei. For this purpose neuron tracing technique and TUNEL assay were used. We injected HRP in the MPOA and counted labeled cells in the Me and BNST to evaluate the reduction of neurons in diabetic animals. Also, coronal sections were analyzed with the TMB histochemistry method. Animals in this study were adult male Wistar rats (230 ± 8g divided to control and 10-week streptozotocin-induced diabetic groups. After data analysis by SPSS 16 software, a significant reduction of HRP-labeled neurons was shown in both Me and BNST nuclei in the diabetic group. Moreover, apoptotic cells were significantly observed in diabetic animals in contrast to control the group. In conclusion, these alterations of the circuit as a result of diabetes might be one of the reasons for reproductive dysfunctions.

  17. Experimental Research of Reinforced Concrete Buildings Struck by Debris Flow in Mountain Areas of Western China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; WEI Fangqiang; WANG Qing

    2007-01-01

    It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced framed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.

  18. ATLAS UPGRADES

    CERN Document Server

    Lacasta, C; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. In parallel the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for ...

  19. Three-dimensional atlas system for mouse and rat brain imaging data

    Directory of Open Access Journals (Sweden)

    Trine Hjornevik

    2007-11-01

    Full Text Available Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast.

  20. The ATLAS Experiment at the CERN Large Hadron Collider

    Science.gov (United States)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  1. Hydrogeologic and water-quality data for the explosive experimental area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia

    Science.gov (United States)

    Hammond, E.C.; Bell, C.F.

    1995-01-01

    Hydrogeologic and water-quality data were collected at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1993. The U.S. Geological Survey conducted this study to provide the U.S. Navy with hydrogeologic data to aid in the evaluation of the effects from remediation of contaminated sites and to protect against additional contamination. This report describes the ground-water observation- well network, hydrogeologic, and water-quality data collected between October 1993 and April 1995. The report includes a description of the locations and construction of 28 observation wells on the Explosive Experimental Area. Hydrogeologic data include lithologic logs, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, and observation-well slug tests to determine horizontal hydraulic conductivity. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

  2. Atlases: Complex models of geospace

    Directory of Open Access Journals (Sweden)

    Ikonović Vesna

    2005-01-01

    Full Text Available Atlas is modeled contexture contents of treated thematic of space on optimal map union. Atlases are higher form of cartography. Atlases content composition of maps which are different by projection, scale, format methods, contents, usage and so. Atlases can be classified by multi criteria. Modern classification of atlases by technology of making would be on: 1. classical or traditional (printed on paper and 2. electronic (made on electronic media - computer or computer station. Electronic atlases divided in three large groups: view-only electronic atlases, 2. interactive electronic atlases and 3. analytical electronic atlases.

  3. A method for the construction of strongly reduced representations of ATLAS experimental uncertainties and the application thereof to the jet energy scale

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    A method is presented for the reduction of large sets of related uncertainty sources into strongly reduced representations which retain a suitable level of correlation information for use in many cases. So long as the search or measurement is not sensitive to the details of the correlations associated with the uncertainty source, this procedure can be used to reduce the complexity of the analysis. The method provides a self-consistent means of determining whether a given analysis is sensitive to the loss of correlation information arising from the reduction procedure. The method is applied to the ATLAS Jet Energy Scale (JES) uncertainty, demonstrating that the set of 67 independent sources can be strongly reduced to form a representation constructed of 3 nuisance parameters. By forming a set of four such representations, it is shown that JES correlation information is retained or probed over the full parameter space to within an average of 1%. This procedure is expected to significantly reduce the computation...

  4. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  5. Pb-Zn mineralization of Ali ou Daoud area (Central High Atlas, Morocco: characterisation of deposit and relationship with the clay assemblages

    Directory of Open Access Journals (Sweden)

    Daoudi, L.

    2008-12-01

    Full Text Available Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., synsedimentary faults played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralisations would result from the same hydrothermal fluid.[Français] Dans les séries sédimentaires carbonatées d’Ali ou Daoud (Haut Atlas Central, les minéralisations à Zn, Pb et Fe en amas stratiformes forment les faciès de remplissage des karsts d’une plateforme carbonatée bajocienne. Le contrôle structural joue un rôle capital dans la localisation du gîte en bordure de plateforme sur des failles synsédimentaires. Dans les niveaux dolomitiques encaissants des minéralisations, les assemblages argileux sont caractérisés par la présence de kaolinite dont la teneur varie parallèlement avec celle du minerai. Ceci suggère que la mise en place de la kaolinite et des minéralisations résulterait du même fluide hydrothermal. [Español] En las series sedimentarias carbonatadas de Ali ou Daoud (Alto Atlas Central, las mineralizaciones de Zn, Pb y Fe aparecen en niveles estratiformes como facies de reemplazamiento de los karsts de una plataforma carbonatada Bajociense. El control estructural desempeña un papel crucial en la localización del yacimiento a lo largo de la plataforma sobre fallas sinsedimentarias. En los niveles dolomíticos que incluyen las mineralizaciones, las asociaciones arcillosas se caracterizan por la presencia de caolinita, cuyo contenido varía paralelamente al de la mineralización. Esto sugiere que la creación de caolinita y de la

  6. Search for Rare B Decays into Two Muons with the ATLAS Detector

    CERN Document Server

    AUTHOR|(SzGeCERN)676779

    Rare B decays have always played a crucial role in shaping the flavour structure of the SM and particle physics in general. Since the first measurement of rare radiative B meson decays by the CLEO Collaboration this area of particle physics has received much experimental and theoretical attention. In particular, FCNC B decays provided crucial tests for the SM at the quantum level, since they are highly suppressed. Hence, these rare B decays are characterised by their high sensitivity to NP. My thesis reports all the studies I performed within the rare B decays ATLAS group, measuring the branching ratio of the B_{s} meson decaying into two muons on data collected by the ATLAS detector during the first period of data taking at the LHC.

  7. Experimental remolding on the caprock's 3D strain field of the Indosinian-Yanshanian epoch in Tongling deposit concentrating area

    Institute of Scientific and Technical Information of China (English)

    DENG; Jun; HUANG; Dinghua; WANG; Qingfei; WAN; Li; SUN; Zho

    2005-01-01

    Based on field observations and rheology analysis, we perform one analogue experiment and remold the 3D structural frame of Tongling deposit concentrating area firstly. Then we disassemble and dialyze the 3D structures of the model using the methods of "slicing" and "stripping". A series of sliced planes vertical to the fold hinges show similar landscapes of that in the drill hole profiles. Meanwhile, layer stripping analysis indicates that the deformation features of each layer in the model are qualitatively analogical to those obtained from field observations.Through contrasting the 3D structure between the experimental model and the field phenomena,we verify the following 3D deformation features of the caprock in this area: (1) the Tongling area mainly consists of three series of NE S-typed fold groups; (2) in the uniform stress field, the incoherent folds universally develop in different positions, along different axes as well as in different strata; (3) the faults propagate upward which are mostly inter-bedded detachment faults,while the fold amplitudes decrease while going deeper; and (4) the folds and cleavages are highly developed in the Silurian System indicating that the deformation effect of the Indosinian-Yanshanian structural layer terminates at this layer, which suggests that the Silurian System is the crucial layer for the inversion between brittle and plastic deformation domains and the underlying strata are subject to the control of another deformation system with distinct properties.

  8. ATLAS Data Access Policy

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    ATLAS has fully supported the principle of open access in its publication policy. This document outlines the policy of ATLAS as regards open access to data at different levels as described in the DPHEP model. The main objective is to make the data available in a usable way to people external to the ATLAS collaboration.

  9. ATLAS Virtual Visit Terascale-10-07-2014

    CERN Multimedia

    2014-01-01

    The ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP) is a collaborative research venture between the University of Melbourne, the University of Adelaide, the University of Sydney and Monash University. Through the Centre, terascale, high-energy and particle physics research across Australia is coordinated, bringing together theoretical and experimental physicists, who work on the ATLAS experiment. This ATLAS virtual visit is the culmination of our international masterclass day for high-school students. Students will work with CoEPP physicists to analyse ATLAS events and then — like in an international research collaboration — the participants join in a video conference for discussion and combination of their results. The discussion of results will be moderated by Fermilab. - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2014/Australia-2014.html#sthash.VNiawvRe.dpuf

  10. [Atlas fractures].

    Science.gov (United States)

    Schären, S; Jeanneret, B

    1999-05-01

    Fractures of the atlas account for 1-2% of all vertebral fractures. We divide atlas fractures into 5 groups: isolated fractures of the anterior arch of the atlas, isolated fractures of the posterior arch, combined fractures of the anterior and posterior arch (so-called Jefferson fractures), isolated fractures of the lateral mass and fractures of the transverse process. Isolated fractures of the anterior or posterior arch are benign and are treated conservatively with a soft collar until the neck pain has disappeared. Jefferson fractures are divided into stable and unstable fracture depending on the integrity of the transverse ligament. Stable Jefferson fractures are treated conservatively with good outcome while unstable Jefferson fractures are probably best treated operatively with a posterior atlanto-axial or occipito-axial stabilization and fusion. The authors preferred treatment modality is the immediate open reduction of the dislocated lateral masses combined with a stabilization in the reduced position using a transarticular screw fixation C1/C2 according to Magerl. This has the advantage of saving the atlanto-occipital joints and offering an immediate stability which makes immobilization in an halo or Minerva cast superfluous. In late instabilities C1/2 with incongruency of the lateral masses occurring after primary conservative treatment, an occipito-cervical fusion is indicated. Isolated fractures of the lateral masses are very rare and may, if the lateral mass is totally destroyed, be a reason for an occipito-cervical fusion. Fractures of the transverse processes may be the cause for a thrombosis of the vertebral artery. No treatment is necessary for the fracture itself.

  11. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond based luminosity monitor to complement the time segmented ATLAS Beam Conditions Monitor (BCM) so that when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning the ATLAS luminosity measurement is not compromised.

  12. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.

  13. ATLAS starts moving in

    CERN Multimedia

    Della Mussia, S

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1st March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day. Two road trailers each with 64 wheels, positioned side by side. This was the solution chosen to transport the lower part of the central barrel of ATLAS' tile hadronic calorimeter from Building 185 to the PX16 shaft at Point 1 (see Figure 1). The transportation, and then the installation of the component in the experimental cavern, which took place over three days were, to say the least, rather spectacular. On 25 February, the component, consisting of eight 6-metre modules, was loaded on to the trailers. The segment of the barrel was transported on a steel support so that it wouldn't move an inch during the journey. On 26 February, once all the necessary safety checks had been carried out, the convoy was able to leave Buildi...

  14. ATLAS experimentet

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    Filmen innehåller mycket information om fysik och varför LHC behövs tilsammans med stora detektorer och specielt om behovet av ATLAS Experimentet. Mycket bra film för att förklara det okända- som man undersöker i CERN för att ge svar på frågor som människor har försökt förklara under flere tusen år.

  15. An experimental study of Aurelia aurita feeding behaviour: Inference of the potential predation impact on a temperate estuarine nursery area

    Science.gov (United States)

    Pereira, Rita; Teodósio, Maria Alexandra; Garrido, Susana

    2014-06-01

    Temperate estuaries are nursery areas for economically important fisheries resources. The common jellyfish Aurelia aurita is a resident species in many of these areas, where it can reach high abundances. This work aimed to determine the potential for predation of A. aurita on zooplanktonic organisms and early life stages of fishes, measuring feeding rates at concentrations that mimic those occurring for zooplankton, fish eggs and larvae in an estuarine nursery area. A set of experiments was aimed at determining the feeding selectivity of jellyfish when offered a mixture of fish eggs and larvae and wild plankton. Clearance rates varied markedly with prey availability and concentrations. When given mixtures of different prey types, jellyfish preferentially elected some taxa (copepods and fish eggs). Data obtained in the laboratory experiments were used to infer the potential impact of jellyfish predation upon zooplankton and ichthyoplankton in the Guadiana estuary (Southern Iberia). Repeated sampling of zooplankton, fish eggs and medusae was undertaken during the summer season of 2011. Abundance determinations were combined with experimentally estimated clearance rates of individual medusa to infer the potential jellyfish-induced mortality on prey in the area. In June and early August jellyfish-induced mortality rates were very high, and half-life times (t1/2) were consequently short for the zooplankton and ichthyoplankton. Although the potentially overestimation of our feeding rates typical of confined laboratory experiments, the results show high ingestion and clearance rates at high temperatures, typical from summer condition, and results also suggest that either by predation on early life stages of fish, or by competition for food resources, jellyfish may have a significant impact on estuarine communities and its nursery function.

  16. Detail-preserving construction of neonatal brain atlases in space-frequency domain.

    Science.gov (United States)

    Zhang, Yuyao; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang

    2016-06-01

    Brain atlases are commonly utilized in neuroimaging studies. However, most brain atlases are fuzzy and lack structural details, especially in the cortical regions. This is mainly caused by the image averaging process involved in atlas construction, which often smoothes out high-frequency contents that capture fine anatomical details. Brain atlas construction for neonatal images is even more challenging due to insufficient spatial resolution and low tissue contrast. In this paper, we propose a novel framework for detail-preserving construction of population-representative atlases. Our approach combines spatial and frequency information to better preserve image details. This is achieved by performing atlas construction in the space-frequency domain given by wavelet transform. In particular, sparse patch-based atlas construction is performed in all frequency subbands, and the results are combined to give a final atlas. For enhancing anatomical details, tissue probability maps are also used to guide atlas construction. Experimental results show that our approach can produce atlases with greater structural details than existing atlases. Hum Brain Mapp 37:2133-2150, 2016. © 2016 Wiley Periodicals, Inc.

  17. California Ocean Uses Atlas: Non-Consumptive sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  18. ATLAS Recordings

    CERN Document Server

    Jeremy Herr; Homer A. Neal; Mitch McLachlan

    The University of Michigan Web Archives for the 2006 ATLAS Week Plenary Sessions, as well as the first of 2007, are now online. In addition, there are a wide variety of Software and Physics Tutorial sessions, recorded over the past couple years, to chose from. All ATLAS-specific archives are accessible here.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal. Shaping Collaboration 2006The Michigan group is happy to announce a complete set of recordings from the Shaping Collaboration conference held last December at the CICG in Geneva.The event hosted a mix of Collaborative Tool experts and LHC Users, and featured presentations by the CERN Deputy Director General, Prof. Jos Engelen, the President of Internet2, and chief developers from VRVS/EVO, WLAP, and other tools...

  19. Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: a microarray analysis.

    Directory of Open Access Journals (Sweden)

    Jaime Ramos-Cejudo

    Full Text Available BACKGROUND: A large number of genes are regulated to promote brain repair following stroke. The thorough analysis of this process can help identify new markers and develop therapeutic strategies. This study analyzes gene expression following experimental stroke. METHODOLOGY/PRINCIPAL FINDINGS: A microarray study of gene expression in the core, periinfarct and contralateral cortex was performed in adult Sprague-Dawley rats (n = 60 after 24 hours (acute phase or 3 days (delayed stage of permanent middle cerebral artery (MCA occlusion. Independent qRT-PCR validation (n = 12 was performed for 22 of the genes. Functional data were evaluated by Ingenuity Pathway Analysis. The number of genes differentially expressed was 2,612 (24 h and 5,717 (3 d in the core; and 3,505 (24 h and 1,686 (3 d in the periinfarct area (logFC>|1|; adjP<0.05. Expression of many neurovascular unit development genes was altered at 24 h and 3 d including HES2, OLIG2, LINGO1 and NOGO-A; chemokines like CXCL1 and CXCL12, stress-response genes like HIF-1A, and trophic factors like BDNF or BMP4. Nearly half of the detected genes (43% had not been associated with stroke previously. CONCLUSIONS: This comprehensive study of gene regulation in the core and periinfarct areas at different times following permanent MCA occlusion provides new data that can be helpful in translational research.

  20. Diagnostic development for the Atlas pulsed power facility

    CERN Document Server

    Taylor, A J; Fulton, R D; Oro, D M; McCuistian, B T; Clark, D A; Roberts, J P; Holtkamp, D B; Watt, R G; Bartsch, R R; Trainor, R J

    1999-01-01

    Atlas will be a 23 MJ capacitor bank capable of delivering greater than 30 MA to a liner target with a nominal 4 microsecond risetime. We describe here our ongoing diagnostic development efforts in this extreme Atlas environment. Included in this discussion are development efforts in X-ray radiography, shock physics diagnostics, and temperature and pressure diagnostics. X-ray radiography is the key diagnostic for visualizing the shock-induced fluid flows characteristic of the proposed Atlas experiments. Due to the large area densities needed for Atlas targets, a number of radiographic systems are under investigation. Diagnostics that address shock physics issues on Atlas include VISAR (velocity interferometer for a surface of any reflector), shock breakout, optical pins, and dark- field shadowgraphy. Temperature diagnostics include infrared pyrometry. As pressure diagnostics we are developing probes based on the pressure dependence of the frequency of fluorescence lines from ruby and the Raman shift in diamon...

  1. Big Data Tools as Applied to ATLAS Event Data

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration

    2017-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Logfiles, database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and associated analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data. Such modes would simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning environments and to...

  2. Big Data Analytics Tools as Applied to ATLAS Event Data

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of big data, statistical and machine learning tools...

  3. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  4. NODC Standard Product: International ocean atlas Volume 4 - Atlas of temperature / salinity frequency distributions (2 disc set) (NODC Accession 0101473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents more than 80,000 plots of the empirical frequency distributions of temperature and salinity for each 5-degree square area of the North Atlantic...

  5. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  6. ATLAS Large Scale Thin Gap Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-04-29

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the ATLAS sTGC New Small Wheel collaboration who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program.

  7. The ATLAS cavern in the spotlight

    CERN Multimedia

    On Wednesday, 4th June, the President of the Swiss Confederation, Pascal Couchepin, inaugurated the world's largest experimental cavern, which is to house the ATLAS detector in 2007, and announced Switzerland's gift to CERN of the "Palais de l'Equilibre".

  8. ATLAS, and Wide-Angle Tail Galaxies in ATLAS

    Indian Academy of Sciences (India)

    Minnie Y. Mao; Rob Sharp; D. J. Saikia; Ray P. Norris; Melanie Johnston-Hollitt; Enno Middelberg; Jim E. J. Lovell

    2011-12-01

    Using the Australia Telescope Compact Array (ATCA), ATLAS (Australia Telescope Large Area Survey) is imaging two fields totalling 7 square degrees down to 10 Jy beam-1 at 1.4 GHz. We have found 6 wide-angle tail galaxies (WATs), 4 of which have sufficient data to identify associated galaxy overdensities. The largest WAT, at a red-shift of 0.22, appears to be associated with an overdensity of galaxies that is spread over an unusually large extent of 12Mpc, with a velocity range of 4500 km s-1. Here we present the WATs in ATLAS and discuss the implications of these observations for future large-scale radio surveys such as ASKAP-EMU.

  9. Exotic Physics at ATLAS

    Directory of Open Access Journals (Sweden)

    Meehan Samuel

    2014-04-01

    Full Text Available A number of proposed explanations to observed phenomena predict new physics that will be directly observable at the LHC. Each new theory is manifested in the experiments as an experimental signature that sets it apart from the many well understood Standard Model processes. Presented here is a summary of a selection of such searches performed using 8 TeV center of mass energy data produced by the LHC and collected with the ATLAS detector. As no significant deviations from the standard model are observed in any search channel presented here, the results are interpreted in terms of constraints on new physics in a number of scenarios including dark matter, sequential standard model extensions, and model independent interpretations depending on the given search channel.

  10. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  11. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  12. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  13. The study of a new PARRNe experimental area using an electron linac close to the Orsay tandem

    CERN Document Server

    Essabaa, S; Ausset, P; Baronick, J P; Bergot, J P; Boulot, A; Clapier, F; Coacolo, J L; Curaudeau, J M; Dupont, F; Galès, Sydney; Gardès, D; Grialou, D; Ibrahim, F; Junquera, T; Kandry-Rody, S; Lefort, H; Le Scornet, J C; Lesrel, J; M'Garrech, S; Müller, A C; Rouvière, N; Tkatchenko, A; Waast, B; Rinolfi, Louis; Rossat, G; Bienvenu, G; Bourdon, J C; Garvey, Terence; Jacquemard, B; Omeich, M

    2002-01-01

    The Production of neutron-rich radioactive nuclei through fission is currently prime of research interest for the future radioactive beam facilities. For example in the EURISOL[1] project, photo-fission and fast neutron induced fission are proposed. The photo-fission cross-section for 238U is about 0.16 barn (against 1.6 barn for fast neutrons of 40 MeV) but the conversion electrons/gammas is much more efficient than that of deuterons/neutrons. It was necessary, to test this new method of production, to carry out, in equivalent conditions, an experiment of the type PARRNe-1 using a 50 MeV electron beam. In April 2001, production of fission fragments induced by gammas proved to be successful. Bremsstrahlung gamma rays were produced by the few nA-50 MeV electron beam delivered by the CERN LEP Injector Linac (LIL). This promising alternative has stimulated the study of a new experimental area at IPNO based on an electron Linac close to the Tandem, through a collaboration with LAL and CERN PS groups.

  14. The Experimental Lakes Area: Over 45 Years of Whole Ecosystem Monitoring and Manipulation Experiments and a Focus on the Future

    Science.gov (United States)

    Emmerton, C. A.

    2015-12-01

    The IISD Experimental Lakes Area is a unique facility which has existed since 1968 and consists of 58 lakes and their watersheds set aside for research purposes. The IISD-ELA also boasts an on-site water chemistry lab, accommodations and facilities for up to 60 personnel. Since its inception in 1968 over 50 whole ecosystem experiments have been conducted at the ELA including eutrophication, acidification of lakes, environmental mercury fates, hydro-electric reservoir impacts and much more. The recent partnership between IISD and ELA has allowed ELA to refocus on freshwater research and policy development in a time where the preservation of the earth's most precious resource is of the utmost concern. In addition to water quality monitoring, the ELA is also focused on autotrophic ecology, zooplankton community structures, fish population and behaviour and food-web interactions. Monitoring all of these disciplines and their inter-relationships gives the research facility a unique perspective and along with the long term dataset stretching back to 1968 the ELA can look at historical records to monitor long term changes in the environment.

  15. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  16. Major Achievements and Prospect of the ATLAS Integral Effect Tests

    OpenAIRE

    2012-01-01

    A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line ...

  17. Simulation of hadronic showers in the ATLAS liquid argon calorimeters

    CERN Document Server

    Kiryunin, A E; Strízenec, P; Kish, J; Loch, P; Mazini, R

    2002-01-01

    Results of Geant4 based simulations of the response of the ATLAS hadronic end-cap calorimeter to charged pions are presented. The first results of hadronic simulations with Geant4 for the ATLAS forward calorimeter are shown as well. Predictions of Geant4 and Geant3 on energy response and resolution for charged pions are compared. Where it is possible, the comparison with experimental results of beam tests is done. (6 refs).

  18. Waxholm Space atlas of the Sprague Dawley rat brain

    OpenAIRE

    Papp, Eszter A.; Trygve B. Leergaard; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.

    2014-01-01

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in ...

  19. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  20. Virtual Visit to the ATLAS Control Room by Federal University of Rio Grande do Norte

    CERN Multimedia

    2013-01-01

    On June 27th, 2013, a Virtual Visit to the ATLAS Experiment at CERN will take place. This Virtual Visit will be presented by Professor Amadeu Albino Jr (IFRN), Anderson Guedes (SEEC/RN) and Denis Damazio (researcher at the ATLAS experiment/CERN). The event will take place in LAPEFA - the Laboratory for Research in Physics and Astronomy Teaching - located in the Department of theoretical and experimental physics of the Federal University of Rio Grande do Norte (UFRN). The event will start at 9 a.m. local time. - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Natal-2013.html

  1. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  2. Report of International Coastal Atlas Network Workshop 6: Expanding Participation in Coastal Web Atlas Development and Use

    OpenAIRE

    Dwyer, Ned; Kopke, Kathrin

    2014-01-01

    From June 16th to 17th, 2013, the International Coastal Atlas Network (ICAN) held a workshop on “Expanding Participation in Coastal Web Atlas Development and Use”, at the University of Victoria, British Columbia, Canada. The workshop (aka “ICAN 6”) engaged 29 participants from 9 countries, representing 22 organizations and multiple areas of scientific and technical expertise. This meeting was a follow-up to the successful 2011 workshop on “Coastal Atlases as Engines for Coastal & Marine Spati...

  3. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  4. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  5. First Cryogenic Testing of the ATLAS Superconducting Prototype Magnets

    CERN Document Server

    Delruelle, N; Haug, F; Mayri, C; Orlic, J P; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroids and the barrel toroid made of eight coils (BT) symmetrically placed around the central axis of the detector. All these magnets will be individually tested in an experimental area prior to their final installation in the underground cavern of the LHC collider. A dedicated cryogenic test facility has been designed and built for this purpose. It mainly consists of a 1'200 W at 4.5 K refrigerator, a 10 kW liquid nitrogen pre-cooling unit, a cryostat housing liquid helium centrifugal pumps, a distribution valve box and transfer lines. Prior to the start of the series tests of the BT magnets, two model coils are used at this facility. The first one, the so-called B00 of comparatively small size, contains the three different types of superconductors used for the ATLAS magnets which are wound on a cylindrical mandrel. The second magnet, the B0, is a reduced model of basically identical design concept as the...

  6. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Roda, C

    2004-01-01

    The tile calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. Almost all the work to build the calorimeter has been completed and most of the effort is now directed toward the final assembly and testing in the experimental area. The lay-out of the calorimeter and the tasks carried out during construction are described after a brief reminder of the requirements that drove the calorimeter design. During the last years a lot of work has also been put in the test accomplish the tests on beam to set the electromagnetic scale, to study its uniformity and to acquire data to tune the detector simulation. The test beam setup and selected results obtained from the acquired data are described. In this last year a few months long test on beam has been carried out acquiring data with a complete slice of the central ATLAS calorimeter. The data collected at the test on beam are crucial to study the algorithms to reco...

  7. Allen Brain Atlas-Driven Visualizations: A Web-Based Gene Expression Energy Visualization Tool

    Directory of Open Access Journals (Sweden)

    Andrew eZaldivar

    2014-05-01

    Full Text Available The Allen Brain Atlas-Driven Visualizations (ABADV is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  8. Implementation of nonlinear registration of brain atlas based on piecewise grid system

    Science.gov (United States)

    Liu, Rong; Gu, Lixu; Xu, Jianrong

    2007-12-01

    In this paper, a multi-step registration method of brain atlas and clinical Magnetic Resonance Imaging (MRI) data based on Thin-Plate Splines (TPS) and Piecewise Grid System (PGS) is presented. The method can help doctors to determine the corresponding anatomical structure between patient image and the brain atlas by piecewise nonlinear registration. Since doctors mostly pay attention to particular Region of Interest (ROI), and a global nonlinear registration is quite time-consuming which is not suitable for real-time clinical application, we propose a novel method to conduct linear registration in global area before nonlinear registration is performed in selected ROI. The homogenous feature points are defined to calculate the transform matrix between patient data and the brain atlas to conclude the mapping function. Finally, we integrate the proposed approach into an application of neurosurgical planning and guidance system which lends great efficiency in both neuro-anatomical education and guiding of neurosurgical operations. The experimental results reveal that the proposed approach can keep an average registration error of 0.25mm in near real-time manner.

  9. A study on the levels of radioactivity in fish samples from the experimental lakes area in Ontario, Canada.

    Science.gov (United States)

    Chen, Jing; Rennie, Michael D; Sadi, Baki; Zhang, Weihua; St-Amant, Nadereh

    2016-03-01

    To better understand background radiation levels in country foods, a total of 125 fish samples were collected from three lakes (Lake 226, Lake 302 and Lake 305) in the Experimental Lakes Area (ELA) in Ontario of Canada during the summer of 2014. Concentrations of naturally occurring radionuclides ((226)Ra, (210)Pb and (210)Po) as well as anthropogenic radionuclides ((134)Cs and (137)Cs) were measured. This study confirmed that (210)Po is the dominant contributor to radiation doses resulting from fish consumption. While concentrations of (210)Pb and (226)Ra were below conventional detection limits, (210)Po was measured in almost all fish samples collected from the ELA. The average concentration was about 1.5 Bq/kg fresh weight (fw). None of the fish samples analysed in this study contained any detectable levels of (134)Cs. An average (137)Cs level of 6.1 Bq/kg fw was observed in freshwater fishes harvested in the ELA, almost twice that of samples measured in the National Capital Region of Canada in 2014 and more than 20 times higher than the levels observed in marine fish harvested from the Canadian west coast in 2013 and 2014. However, it is important to note that the concentrations of (137)Cs in fish samples from these inland lakes are considered very low from a radiological protection perspective. The resulting radiation dose for people from fish consumption would be a very small fraction of the annual dose from exposure to natural background radiation in Canada. The results indicate that fishes from inland lakes do not pose a radiological health concern.

  10. Source-receptor relationships for speciated atmospheric mercury at the remote experimental lakes area, Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    I. Cheng

    2011-12-01

    Full Text Available Source-receptor relationships for speciated atmospheric mercury measured at the Experimental Lakes Area (ELA, Northwestern Ontario, Canada were investigated using various receptor-based approaches. The data used in this study include gaseous elemental mercury (GEM, mercury bound to fine airborne particles (< 2.5 μm (PHg, reactive gaseous mercury (RGM, major inorganic ions, sulphur dioxide, nitric acid gas, ozone, and meteorological variables, all of which were measured between May 2005 and December 2006. The source origins identified were related to transport of industrial and combustion emissions (associated with elevated GEM, photochemical production of RGM (associated with elevated RGM, road-salt particles with adsorption of gaseous Hg (associated with elevated PHg and RGM, crustal/soil emissions, and background pollution. Back trajectory modelling illustrated that a remote site, like the ELA, is affected by distant Hg point sources in Canada and the United States. The sources identified from correlation analysis, principal components analysis and K-means cluster analysis were generally consistent. The discrepancies between the K-means and Hierarchical cluster analysis were the clusters related to transport of industrial/combustion emissions, photochemical production of RGM, and crustal/soil emissions. Although it was possible to assign the clusters to these source origins, the trajectory plots for the Hierarchical clusters were similar to some of the trajectories belonging to several K-means clusters. This likely occurred because the variables indicative of transport of industrial/combustion emissions were elevated in at least two or more of the clusters, which means this Hg source was well-represented in the data.

  11. A new experimental method for the determination of the effective orifice area based on the acoustical source term

    Science.gov (United States)

    Kadem, L.; Knapp, Y.; Pibarot, P.; Bertrand, E.; Garcia, D.; Durand, L. G.; Rieu, R.

    2005-12-01

    The effective orifice area (EOA) is the most commonly used parameter to assess the severity of aortic valve stenosis as well as the performance of valve substitutes. Particle image velocimetry (PIV) may be used for in vitro estimation of valve EOA. In the present study, we propose a new and simple method based on Howe’s developments of Lighthill’s aero-acoustic theory. This method is based on an acoustical source term (AST) to estimate the EOA from the transvalvular flow velocity measurements obtained by PIV. The EOAs measured by the AST method downstream of three sharp-edged orifices were in excellent agreement with the EOAs predicted from the potential flow theory used as the reference method in this study. Moreover, the AST method was more accurate than other conventional PIV methods based on streamlines, inflexion point or vorticity to predict the theoretical EOAs. The superiority of the AST method is likely due to the nonlinear form of the AST. There was also an excellent agreement between the EOAs measured by the AST method downstream of the three sharp-edged orifices as well as downstream of a bioprosthetic valve with those obtained by the conventional clinical method based on Doppler-echocardiographic measurements of transvalvular velocity. The results of this study suggest that this new simple PIV method provides an accurate estimation of the aortic valve flow EOA. This new method may thus be used as a reference method to estimate the EOA in experimental investigation of the performance of valve substitutes and to validate Doppler-echocardiographic measurements under various physiologic and pathologic flow conditions.

  12. Digital Atlas of Mexico Provides Accessible Climate Information

    Science.gov (United States)

    Zavala-Hidalgo, Jorge; Fernández-Eguiarte, Agustin; Romero-Centeno, Rosario; Zavala-Romero, Olmo

    2010-04-01

    Modern geomatic technologies—and particularly geoscientific, digital, and online multimedia cartography—represent one response to the growing demand for climatic information by the scientific community and general users. The Digital Climatic Atlas of Mexico (DCAM) fills the need to have readily accessible climate information about Mexico, Central America, and adjacent areas in preconfigured or user-configured georeferenced maps. The atlas provides information about the continental and oceanic climate, bioclimatic variables, and socioeconomic indicators (Figure 1).

  13. ATLAS brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  14. ATLAS Brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  15. ATLAS brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  16. ATLAS brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  17. ATLAS brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  18. ATLAS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  19. ATLAS Brochure (english version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  20. ATLAS Brochure (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  1. ATLAS Brochure (english version)

    CERN Multimedia

    2004-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  2. Searches in ATLAS

    CERN Document Server

    Kondrashova, Nataliia; The ATLAS collaboration

    2017-01-01

    Many theories beyond the Standard Model predict new phenomena accessible by the LHC. Searches for new physics models are performed using the ATLAS experiment at the LHC. The results reported here use the pp collision data sample collected in 2015 and 2016 by the ATLAS detector at the LHC with a centre-of-mass energy of 13 TeV.

  3. ATLAS Colouring Book

    CERN Multimedia

    Anthony, Katarina

    2016-01-01

    The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  4. ATLAS brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter. Français

  5. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    La Givrine near St Cergue Cross Country Skiing and Fondue at Basse Ruche with M Nordberg, P Jenni, M Nessi, F Gianotti and Co. ATLAS Management Fondu dinner, reviewing state of play of the experiment Many fun scenes from cross country skiing and after 41 minutes of the film starts the fondue dinner in a nice chalet with many persons working for ATLAS experiment

  6. ATLAS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  7. ATLAS Thesis Awards 2015

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on Thursday 25 February. The winners also presented their work in front of members of the ATLAS Collaboration. Winners: Javier Montejo Berlingen, Barcelona (Spain), Ruth Pöttgen, Mainz (Germany), Nils Ruthmann, Freiburg (Germany), and Steven Schramm, Toronto (Canada).

  8. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  9. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  10. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    Budker Nuclear Physics Institute, Novosibirsk Sequence 1 Shots of aircraft factory where machining for ATLAS is done Shots of aircraft Work on components for ATLAS big wheel Discussions between Tikhonov and Nordberg in workshop Sequence 2 Shots of downtown Novosibirsk, including little church which is mid-point of Russian Federation Sequence 3 Interview of Yuri Tikhonov by Andrew Millington

  11. Higgs searches at ATLAS

    CERN Document Server

    Lafaye, R

    2002-01-01

    This proceeding is an overview of ATLAS capabilities on Higgs studies. After a short introduction on LEP and Tevatron searches on this subject, the ATLAS potential on a standard model and a supersymmetric Higgs discovery are summarized. Last, a section presents the Higgs parameters measurement that will be possible at LHC. (6 refs).

  12. ATLAS brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  13. A Slice of ATLAS

    CERN Multimedia

    2004-01-01

    An entire section of the ATLAS detector is being assembled at Prévessin. Since May the components have been tested using a beam from the SPS, giving the ATLAS team valuable experience of operating the detector as well as an opportunity to debug the system.

  14. ATLAS rewards industry

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Picture 30 : representatives of the three award-wining companies after the ceremony

  15. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  16. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  17. ATLAS brochure (Catalan version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  18. Dear ATLAS colleagues,

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  19. ATLAS Virtual Visits

    CERN Document Server

    Goldfarb, Steven; The ATLAS collaboration

    2015-01-01

    ATLAS Virtual Visits is a project initiated in 2011 for the Education & Outreach program of the ATLAS Experiment at CERN. Its goal is to promote public appreciation of the LHC physics program and particle physics, in general, through direct dialogue between ATLAS physicists and remote audiences. A Virtual Visit is an IP-based videoconference, coupled with a public webcast and video recording, between ATLAS physicists and remote locations around the world, that typically include high school or university classrooms, Masterclasses, science fairs, or other special events, usually hosted by collaboration members. Over the past two years, more than 10,000 people, from all of the world’s continents, have actively participated in ATLAS Virtual Visits, with many more enjoying the experience from the publicly available webcasts and recordings. We present an overview of our experience and discuss potential development for the future.

  20. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  1. Searches for long-lived particles in Hidden Valley Scenarios with the Atlas detector at the LHC

    CERN Document Server

    Mastroberardino, Anna; The ATLAS collaboration

    2015-01-01

    Searches for long-lived neutral particles decaying into hadronic jets have been performed with the ATLAS detector. The search strategy depends on the lifetime and mass of such particles, and experimental techniques to reconstruct decay vertices in various ATLAS detector components have been developed. This talk summarizes ATLAS searches for long-lived particles and their connection to hidden sectors with LHC Run 1 data. First LHC Run-2 results will be included if available.

  2. Experimental characterization of the rectification process in ammonia-water absorption systems with a large-specific-area corrugated sheet structured packing

    Energy Technology Data Exchange (ETDEWEB)

    Sieres, Jaime; Fernandez-Seara, Jose; Uhia, Francisco J. [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, Campus Lagoas-Marcosende No 9, 36310 Vigo, Pontevedra (Spain)

    2009-09-15

    In this paper, the mass transfer performance of a large-specific-area corrugated sheet structured packing for ammonia-water absorption refrigeration systems (AARS) is reported. An experimental facility was used to test the performance of the packing. Experimental results of the temperature, ammonia concentration and mass flow rate of the rectified vapour are presented and discussed for different operating conditions including reflux ratio values from 0.2 to 1. The volumetric vapour phase mass transfer coefficient is calculated from the measured data and compared with different correlations found in the literature. A new correlation is proposed which was fitted from the experimental data. Finally, a comparison is made between the actual packing height used in the experimental setup and the height required to obtain the same ammonia rectification in AARS with different packings previously tested by the authors. (author)

  3. Prediction of Experimental Rainfall-Eroded Soil Area Based on S-Shaped Growth Curve Model Framework

    Directory of Open Access Journals (Sweden)

    Wen Nie

    2015-07-01

    Full Text Available Rainfall-induced soil erosion of a mountain area plays a significant role in supplying sediment and shaping the landscape. The related area of soil erosion, as an index of the changed landscape, is easier to calculate visually using some popular imaging tools. By image analysis, our work shows that the changing of the soil erosion area admits the structure of an S-growth curve. Therefore, we propose to establish an S-curve model, based on incremental learning, to predict the soil erosion area. In the process of incremental learning, we dynamically update the accumulative rainfall and rainfall intensity to train the parameters of our S-curve model. In order to verify our prediction model, the index of area is utilized to express the output of eroded soil in a series of experiments. The results show that the proposed S-growth curve model can be used to estimate the growth of the soil erosion area (average relative error 3%–9.7% according to variable soil material and rainfall intensity. The original S-growth curve model can calculate the erosion areas of just one soil material and one rainfall condition whose average relative error is 7.5%–12.2%; compared to the simple time series analysis-moving average method (average relative error 5.7%–12.1%, our proposed S-growth curve model can reveal the physical mechanism and evolution of the research object.

  4. Recent Development in the ATLAS Control Room

    CERN Multimedia

    Armen Vartapetian

    Only recently the name ATLAS Control Room (ACR) was more associated with the building at Point 1 (SCX1) than with the real thing. But just within the last several months, with the installation of the ACR hardware, that perception has changed significantly. The recently furnished ATLAS control room. But first of all, if you are not familiar with the ATLAS experimental site and are interested in visiting the ATLAS control room to see the place that in the near future will become the brain of the detector operations, it is quite easy to do so. You don't even need safety helmet or shoes! The ACR is located on the ground floor of a not so typical, glass-covered building in Point 1. The building number on the CERN map is 3162, or SCX1 as we call it. It is also easy to recognize that building by its shiny appearance within the cluster of Point 1 buildings if you are driving from Geneva. Final design and prototyping of the ACR hardware started at the beginning of 2006. Evaluation of the chosen hardware confi...

  5. 21 May 2013 - Greek Minister of Health A. Lykouretzos signing the guest book with CERN Director-General R. Heuer; visiting the LHC tunnel at POint 5 and CMS experimental cavern with Deputy Spokesperson T. Camporesi. CERN-HERMES Network Technical Coordinator E. Dimovasili; Life Sciences Adviser M. Dosanjh; National Contact Physicist, ATLAS Collaboration, NTU, Athens E. Gazis and International Relations Adviser R. Voss accompany the delegation throughout.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    21 May 2013 - Greek Minister of Health A. Lykouretzos signing the guest book with CERN Director-General R. Heuer; visiting the LHC tunnel at POint 5 and CMS experimental cavern with Deputy Spokesperson T. Camporesi. CERN-HERMES Network Technical Coordinator E. Dimovasili; Life Sciences Adviser M. Dosanjh; National Contact Physicist, ATLAS Collaboration, NTU, Athens E. Gazis and International Relations Adviser R. Voss accompany the delegation throughout.

  6. Preparation of the ATLAS experiment in the LHC proton collider, performances of the electromagnetic calorimeter and its potentialities for the top quark; Preparation de l'experience ATLAS aupres du futur grand collisionneur de protons LHC: performances du calorimetre electromagnetique et potentiels pour la physique du quark top

    Energy Technology Data Exchange (ETDEWEB)

    Hubaut, F

    2007-03-15

    ATLAS is the biggest and the more complex detector ever built, it will operate on the LHC and is the outcome of a huge international collaboration of 2000 physicists. This document reviews the theoretical and experimental achievements of one of them, his collaboration spread over 7 years and has followed 2 axis. First, the design, construction and test of the electromagnetic calorimeter of ATLAS and secondly, the development of analysis strategies in the physics of the top quark. The expected important production of top quarks in LHC will allow an accurate measurement of the properties of this particle and in the same way will provide new testing areas for the standard model. The top quark, being extremely massive, might play a significant role in the mechanism of electro-weak symmetry breaking. This document is organized into 5 chapters: 1) ATLAS detector, performance and progress, 2) the optimization of the energy measurement with the electromagnetic calorimeter, 3) the performance of the electromagnetic calorimeter, 4) the physics of the top quark, and 5) the potentialities of ATLAS in the top quark sector. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  7. EXPERIMENTAL RESULTS ON THE POSSIBILITIES OF VEGETABLE GROWING IN THE AREA OF WESTERN CARPATHIAN MOUNTAINS FROM ROMANIA

    OpenAIRE

    Al. Silviu APAHIDEAN; Maria APAHIDEAN; Florin PACURAR

    2004-01-01

    In the area of Western Carpathian Mountains, the vegetable growing is less extended and the assortment of vegetables is limited to few species with smaller necessities regarding the pedoclimatic conditions. This research presents the results obtained after testing a number of 25 species and varieties of vegetables in the specific conditions of the area of Glacier - Western Carpathian Mountains, at an altitude of 1150 m. From these, the following vegetables reacted very well: onion, winter oni...

  8. Pre-Test Analysis of Major Scenarios for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Euh, Dong-Jin; Choi, Ki-Yong; Park, Hyun-Sik; Kwon, Tae-Soon

    2007-02-15

    A thermal-hydraulic integral effect test facility, ATLAS was constructed at the Korea Atomic Energy Research Institute (KAERI). The ATLAS is a 1/2 reduced height and 1/288 volume scaled test facility based on the design features of the APR1400. The simulation capability of the ATLAS for major design basis accidents (DBAs), including a large-break loss-of-coolant (LBLOCA), DVI line break and main steam line break (MSLB) accidents, is evaluated by the best-estimate system code, MARS, with the same control logics, transient scenarios and nodalization scheme. The validity of the applied scaling law and the thermal-hydraulic similarity between the ATLAS and the APR1400 for the major design basis accidents are assessed. It is confirmed that the ATLAS has a capability of maintaining an overall similarity with the reference plant APR1400 for the major design basis accidents considered in the present study. However, depending on the accident scenarios, there are some inconsistencies in certain thermal hydraulic parameters. It is found that the inconsistencies are mainly due to the reduced power effect and the increased stored energy in the structure. The present similarity analysis was successful in obtaining a greater insight into the unique design features of the ATLAS and would be used for developing the optimized experimental procedures and control logics.

  9. ATLAS Event - First Splash of Particles in ATLAS

    CERN Multimedia

    ATLAS Outreach

    2008-01-01

    A simulated event. September 10, 2008 - The ATLAS detector lit up as a flood of particles traversed the detector when the beam was occasionally directed at a target near ATLAS. This allowed ATLAS physicists to study how well the various components of the detector were functioning in preparation for the forthcoming collisions. The first ATLAS data recorded on September 10, 2008 is seen here. Running time 24 seconds

  10. ATLAS Inner Detector Alignment

    CERN Document Server

    Bocci, A

    2008-01-01

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider at CERN. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements have to be known to a precision better than 10 μm. Several track-based alignment algorithms have been developed for the Inner Detector. An extensive validation has been performed with simulated events and real data coming from the ATLAS. Results from such validation are reported in this paper.

  11. Ceremony for ATLAS cavern

    CERN Multimedia

    2003-01-01

    Wednesday 4 June will be a special day for CERN. The President of the Swiss Confederation, Pascal Couchepin, will officially inaugurate the huge ATLAS cavern now that the civil engineering works have ended. The inauguration ceremony will be held in the ATLAS surface building, with speeches by Pascal Couchepin and CERN, ATLAS and civil engineering personalities. This ceremony will be Webcast live. To access the Webcast on 4 June at 18h00 go to CERN Intranet home page or the following address : http://webcast.cern.ch/live.php

  12. Highlights from ATLAS

    CERN Document Server

    Charlton, D; The ATLAS collaboration

    2013-01-01

    Highlights of recent results from ATLAS were presented. The data collected to date, the detector and physics performance, and measurements of previously established Standard Model processes were reviewed briefly before summarising the latest ATLAS results in the Brout-Englert-Higgs sector, where big progress has been made in the year since the discovery. Finally, selected prospects for measurements including the data from the HL-LHC luminosity upgrade were presented, for both ATLAS and CMS. Many of the results mentioned are preliminary. These proceedings reflect only a brief summary of the material presented, and the status at the time of the conference is reported.

  13. Atlas Skills for Learning Rather than Learning Atlas Skills.

    Science.gov (United States)

    Carswell, R. J. B.

    1986-01-01

    Presents a model for visual learning and describes an approach to skills instruction which aids students in using atlases. Maintains that teachers must help students see atlases as tools capable of providing useful information rather than experiencing atlas learning as an empty exercise with little relevance to their lives. (JDH)

  14. Dynamic Comparison and Trend analysis of Southeast Guizhou’s Experimental Area of Eco-civilization Construction and the National Eco-efficiency

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In order to better understand the development level of eco-efficiency in Southeast Guizhou’s experimental area of eco-civilization construction,we conduct dynamic comparison research of its eco-efficiency and the national eco-efficiency,using single ratio method based on the ecological footprint model,to grasp the gap between its eco-efficiency and the national eco-efficiency,so that we can take appropriate countermeasures to improve eco-efficiency. The results show that in the period 1978-2010,the eco-efficiency in Southeast Guizhou’s experimental area of eco-civilization construction was always lower than the national eco-efficiency; the long-time average annual value of its eco-efficiency was less than one half of that of the national eco-efficiency,with the absolute gap of 1 630. 095 yuan /hm 2 ,and the gap tended to widen year by year in the period 1978-2002 ( the gap increased from 276. 551 yuan /hm 2 in 1978 to peak of 3 227. 713 yuan /hm 2 in 2002,with an average annual increase of 118. 047 yuan /hm 2 ,and especially after 1992,the gap was particularly evident,with an average annual increase of 194.771 yuan/hm 2 ) ,but from 2003,the gap between the two tended to decrease. Based on the prediction results of grey system,in the period 2011-2025,the gap between the eco-efficiency in Southeast Guizhou’s experimental area of eco-civilization construction and the national eco-efficiency will gradually narrow,and from 2019, the eco-efficiency in Southeast Guizhou’s experimental area of eco-civilization construction will be higher than the national eco-efficiency.

  15. Recent results from ATLAS experiment

    CERN Document Server

    Smirnov, Sergei; The ATLAS collaboration

    2016-01-01

    The 2nd LHC run has started in 2015 with a pp centre-of-mass collision energy of 13 TeV and ATLAS has taken more than 20 fb-1 of data at the new energy by 2016 summer. In this talk, an overview is given on the ATLAS data taking and the improvements made to the ATLAS experiment during the 2-year shutdown 2013/2014. Selected new results from the recent data analysis from ATLAS is also presented.

  16. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S.

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: June ATLAS Plenary Meeting Tutorial on Physics EDM and Tools (June) Freiburg Overview Week Ketevi Assamagan's Tutorial on Analysis Tools Click here to browse WLAP for all ATLAS lectures.

  17. Experimental study of traffic noise and human response in an urban area: Deviations from standard annoyance predictions

    NARCIS (Netherlands)

    Salomons, E.M.; Janssen, S.A.; Verhagen, H.L.M.; Wessels, P.W.

    2014-01-01

    Annoyance and sleep disturbance by road and rail traffic noise in an urban area are investigated. Noise levels Lden and Lnight are determined with an engineering noise model that is optimized for the local situation, based on local noise measurements. The noise levels are combined with responses of

  18. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  19. Robust multi-atlas label propagation by deep sparse representation.

    Science.gov (United States)

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2017-03-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared

  20. Vermont Natural Resources Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — The purpose of the Natural Resources Atlas is to provide geographic information about environmental features and sites that the Vermont Agency of Natural Resources...

  1. Higgs measurements with ATLAS

    CERN Document Server

    Queitsch-Maitland, Michaela; The ATLAS collaboration

    2017-01-01

    The final Run 1 and first Run 2 results with the ATLAS detector on the measurement of the cross sections, couplings and properties of the Higgs boson in individual final states and their combination are presented.

  2. Lunar Sample Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sample Atlas provides pictures of the Apollo samples taken in the Lunar Sample Laboratory, full-color views of the samples in microscopic thin-sections,...

  3. ATLAS TV PROJECT

    CERN Multimedia

    2006-01-01

    CERN, Building 40 Interview with theorist Mr. Philip Hinchliffe (Berkeley) as well an interview with his wife Mrs. Hinchliffe who is also Physics Department head at Berkeley. They are both working in ATLAS Experiment.

  4. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  5. The Latest from ATLAS

    CERN Multimedia

    2009-01-01

    Since November 2008, ATLAS has undertaken detailed maintenance, consolidation and repair work on the detector (see Bulletin of 20 July 2009). Today, the fraction of the detector that is operational has increased compared to last year: less than 1% of dead channels for most of the sub-systems. "We are going to start taking data this year with a detector which is even more efficient than it was last year," agrees ATLAS Spokesperson, Fabiola Gianotti. By mid-September the detector was fully closed again, and the cavern sealed. The magnet system has been operated at nominal current for extensive periods over recent months. Once the cavern was sealed, ATLAS began two weeks of combined running. Right now, subsystems are joining the run incrementally until the point where the whole detector is integrated and running as one. In the words of ATLAS Technical Coordinator, Marzio Nessi: "Now we really start physics." In parallel, the analysis ...

  6. ATLAS Cavern baseplate

    CERN Multimedia

    2002-01-01

    This video shows the incredible amounth of iron used for ATLAS cavern. Please look at the related links and also videos that are concerning the civil engineering where you can see even more detailed cavern excavation work.

  7. ATLAS DAQ Configuration Databases

    Institute of Scientific and Technical Information of China (English)

    I.Alexandrov; A.Amorim; 等

    2001-01-01

    The configuration databases are an important part of the Trigger/DAQ system of the future ATLAS experiment .This paper describes their current status giving details of architecture,implementation,test results and plans for future work.

  8. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    ATLAS Physics Workshop at the University of Roma Tre held from Monday 06 June 2005 to Saturday 11 June 2005. Experts establishing workshop, poster, people milling Shots of Peter Jenni introduction Many audience shots Sequences from various talks

  9. Virtual Visit to the ATLAS Control Room by CEFET in Rio de Janeiro

    CERN Multimedia

    2013-01-01

    The CEFET/RJ is the Center for Tecnological Education grouping 3000 students from High-School level, 2000 Engineering and 200 post-graduation students. To keep the students always up to date with recent advances in the field of Experimental Physics, we invite researchers in the field that can contribute to the learning process of these students. In this direction, a conference is being organized with teachers José de Seixas (UFRJ/ATLAS BRASIL) and Denis Damazio (CERN/BNL/ATLAS). The conference will be enriched by a Virtual Visit to the ATLAS detector in Switzerland. - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/RioDeJaneiro-2013.html

  10. Budker INP in ATLAS

    CERN Multimedia

    2001-01-01

    The Novosibirsk group has proposed a new design for the ATLAS liquid argon electromagnetic end-cap calorimeter with a constant thickness of absorber plates. This design has signifi- cant advantages compared to one in the Technical Proposal and it has been accepted by the ATLAS Collaboration. The Novosibirsk group is responsible for the fabrication of the precision aluminium structure for the e.m.end-cap calorimeter.

  11. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  12. ATLAS physics results

    CERN Document Server

    AUTHOR|(CDS)2074312

    2015-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN has been successfully taking data since the end of 2009 in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, and in heavy ion collisions. In these lectures, some of the most recent ATLAS results will be given on Standard Model measurements, the discovery of the Higgs boson, searches for supersymmetry and exotics and on heavy-ion results.

  13. ATLAS Transitional Radiation Tracker

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the transitional radiation tracker within the ATLAS detector. Subjects covered include what the tracker is used to measure, its structure, what happens when particles pass through the tracker, how it distinguishes between different types of particles within it.

  14. ATLAS construction status

    CERN Document Server

    Jenni, P

    2006-01-01

    The ATLAS detector is being constructed at the LHC, in view of a data-taking start-up in 2007. This report concentrates on the progress and the technical challenges of the detector construction, and summarizes the status of the work as of August 2004. The project is on track to allow the highly motivated ATLAS collaboration to enter into a new exploratory domain of high-energy physics in 2007.

  15. An Experimental Study of Mixture Corrosion Effects of Carbonate Rocks in the Transitional Zone of Littoral Karst Areas

    Institute of Scientific and Technical Information of China (English)

    陈鸿汉; 邹胜章; 朱远峰; 陈从喜

    2001-01-01

    The mechanism for development of littoral karst differs from that of inland karst, and the mixture corrosion effects are one of the most important factors that control the development of littoral karst. Through seven groups of static experiments carried out in a closed CO2-H2O system, basic conclusions can be drawn as follows: (1) the basic law of corrosion process in a transitional zone of seawater-freshwater in littoral karst areas is identical with that in the fresh water,i.e., the lithologic characteristics and rock structure are the main factors which control the development of littoral karst; (2)the mixture corrosion rate of the carbonate rock in the above transitional zone is faster than that in fresh water or seawater;(3) the mechanism for development of carbonate rocks differs at various pressures of CO2 in a transitional zone in littoral karst areas.``

  16. Integration of the Trigger and Data Acquisition Systems in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Abolins, M.; /Michigan State U.; Adragna, P.; /Queen Mary, U. of London; Aleksandrov, E.; /Dubna, JINR; Aleksandrov, I.; /Dubna, JINR; Amorim, A.; /Lisbon, LIFEP; Anderson, K.; /Chicago U., EFI; Anduaga, X.; /La Plata U.; Aracena, I.; /SLAC; Asquith, L.; /University Coll. London; Avolio, G.; /CERN; Backlund, S.; /CERN; Badescu, E.; /Bucharest, IFIN-HH; Baines, J.; /Rutherford; Barria, P.; /Rome U. /INFN, Rome; Bartoldus, R.; /SLAC; Batreanu, S.; /Bucharest, IFIN-HH /CERN; Beck, H.P.; /Bern U.; Bee, C.; /Marseille, CPPM; Bell, P.; /Manchester U.; Bell, W.H.; /Glasgow U.; Bellomo, M.; /Pavia U. /INFN, Pavia /Regina U. /CERN /Annecy, LAPP /Paris, IN2P3 /Royal Holloway, U. of London /Napoli Seconda U. /INFN, Naples /Argonne /CERN /UC, Irvine /Barcelona, Autonoma U. /CERN /Montreal U. /CERN /Glasgow U. /Michigan State U. /Bucharest, IFIN-HH /Napoli Seconda U. /INFN, Naples /New York U. /Barcelona, Autonoma U. /Salento U. /INFN, Lecce /Pisa U. /INFN, Pisa /Bucharest, IFIN-HH /UC, Irvine /CERN /Glasgow U. /Genoa U. /INFN, Genoa /Lisbon, LIFEP /Napoli Seconda U. /INFN, Naples /UC, Irvine /Valencia U. /Rio de Janeiro Federal U. /University Coll. London /New York U. /University Coll. London; /more authors..

    2011-11-09

    During 2006 and the first half of 2007, the installation, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area have progressed. There have been a series of technical runs using the final components of the system already installed in the experimental area. Various tests have been run including ones where level 1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, level 2 and event filter trigger algorithms. The scalability of the system with respect to the number of event building nodes used has been studied and quantities critical for the final system, such as trigger rates and event processing times, have been measured using different trigger algorithms as well as different TDAQ components. This paper presents the TDAQ architecture, the current status of the installation and commissioning and highlights the main test results that validate the system.

  17. EnviroAtlas - Metrics for Cleveland, OH

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web...

  18. EnviroAtlas - Metrics for Austin, TX

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web...

  19. EnviroAtlas Community Boundaries Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundaries of all EnviroAtlas Communities. It represents the outside edge of all the block groups included in each EnviroAtlas...

  20. EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network,...

  1. EnviroAtlas - Fruit and vegetable crops for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes data on the area, yield, and number of fruit and vegetable crops grown per 12-digit Hydrologic Unit (HUC) in the conterminous USA....

  2. EnviroAtlas - Paterson, NJ - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  3. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  5. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Paterson, NJ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Portland, ME - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  11. EnviroAtlas -- Memphis, TN (2012) -- One Meter Resolution Urban Land Cover Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Memphis, TN EnviroAtlas One Meter-scale Urban Land Cover (MULC) dataset comprises 2,733 km2 around the city of Memphis, surrounding towns, and rural areas. These...

  12. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  13. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  14. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  15. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  16. EnviroAtlas - Durham, NC - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  17. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  18. EnviroAtlas - Fresno, CA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  19. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  20. EnviroAtlas - Major Grains and Cotton by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the number of major grains grown, yield in tons, and area in hectares for several major grains and for cotton by 12-digit Hydrologic...

  1. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  2. EnviroAtlas - Pittsburgh, PA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  3. EnviroAtlas - Green Bay, WI - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  5. EnviroAtlas - Green Bay, WI - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Pittsburgh, PA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  11. EnviroAtlas - Portland, OR - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  12. EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  13. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  14. EnviroAtlas - 2011 Land Cover by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset represents the percentage of land area that is classified as natural, forest, wetland, agricultural, natural, and developed land cover using...

  15. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  16. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  17. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  18. Environmental Oil Spill Sensitivity Atlas for the West Greenland (68º-72º N) Coastal Zone

    DEFF Research Database (Denmark)

    Mosbech, A.; Boertmann, D.; Olsen, B. Ø.

    This oil spill sensitivity atlas covers the shoreline and the offshore areas of West Greenlandbetween 68º N and 72º N. The coastal zone is divided into nearly 200 areas and the offshorezone into 8 areas. A sensitivity index value is calculated for each area, and each area issubsequently ranked...

  19. Forward energy flow and diffraction at ATLAS

    CERN Document Server

    Staroba, P; The ATLAS collaboration

    2012-01-01

    First measurements of forward energy flow and diffractive dissociation processes at ATLAS are presented. Measurements are based on 7 TeV minimum bias (7.1μb−1) and dijet (585μb−1) data samples taken during March-May 2010 in the low pileup accelerator setup. Measurement of transverse energy density as a function of pseudorapidity was performed using the full acceptance of ATLAS detectors. Stable charged particles with PT > 500 MeV and stable neutral particles with PT > 200 MeV were included. Manifestation of diffractive processes of three classes (single, double and central diffractive dissociation) was studied using inelastic differential cross section in forward rapidity gap size ΔηF bins. Experimental distributions are compared with several Monte Carlo predictions (PYTHIA6, PYTHIA8, PHOJET, HERWIG++ and EPOS) using different tunes.

  20. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2016-01-01

    In ATLAS, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  1. New format for ATLAS e-news

    CERN Document Server

    Pauline Gagnon

    ATLAS e-news got a new look! As of November 30, 2007, we have a new format for ATLAS e-news. Please go to: http://atlas-service-enews.web.cern.ch/atlas-service-enews/index.html . ATLAS e-news will now be published on a weekly basis. If you are not an ATLAS colaboration member but still want to know how the ATLAS experiment is doing, we will soon have a version of ATLAS e-news intended for the general public. Information will be sent out in due time.

  2. High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image

    Science.gov (United States)

    Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore

    2016-03-01

    Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.

  3. Review of Higgs Results from the ATLAS experiment

    CERN Document Server

    Tsukerman, Ilya; The ATLAS collaboration

    2016-01-01

    The LHC has now delivered a large amount of data at 13 TeV center of mass energy. The experimental sensitivity is equivalent to that of Run-1 for the Higgs boson (125 GeV), and surpasses it for searches of higher masses Higgs-like particles. This talk will review recent ATLAS results on both of these topics.

  4. Experimental investigation and modelling of tritium washout by precipitation in the area of the nuclear power plant of Paks, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Koello, Z., E-mail: kolloz42@gmail.co [Hertelendi Laboratory of Environmental Studies, Institute of Nuclear Research of the Hungarian Academy of Sciences, Bem ter 18/c, Debrecen 4026 (Hungary); Palcsu, L.; Major, Z.; Papp, L.; Molnar, M. [Hertelendi Laboratory of Environmental Studies, Institute of Nuclear Research of the Hungarian Academy of Sciences, Bem ter 18/c, Debrecen 4026 (Hungary); Ranga, T.; Dombovari, P.; Manga, L. [Department of Radiation Protection, Nuclear Power Plant of Paks, Paks (Hungary)

    2011-01-15

    Tritium occurs in nature in trace amounts, but its concentration is changing due to natural and artificial sources. Studies focusing on natural tritium have to take into account the effect of artificial sources. Also, the impact of tritium is an important issue in environmental protection, e.g. in connection with the emissions from nuclear power plants. The present work focuses on the rain washout of tritium emitted from the Paks nuclear power plant in Hungary. Rainwater collectors were placed around the plant and after a period of precipitation, rainwater was collected and analysed for tritium content. Samples were analysed using low-level liquid scintillation counting, with some also subject to the more accurate {sup 3}He ingrowth method. The results clearly show the trace of the tritium plume emitted from the plant; however, values are only about one order of magnitude higher than environmental background levels. A washout model was devised to estimate the distribution of tritium around the plant. The model gives slightly higher concentrations than those measured in the field, but in general the agreement is satisfactory. The modelled values demonstrate that the effect of the plant on rainwater tritium levels is negligible over a distance of some kilometres. - Research highlights: {yields}The rainwater around a nuclear power plant was collected with a special rainwater collector {yields}The rainwater after a rain event was analysed for tritium with LSC and with the helium ingrowth method. {yields}The trace of the tritium plume is clearly detectable in the rainwater. {yields}The agreement between a reversible washout model and experimental data is satisfactory. {yields}According to the model the tritium plume is hardly detectable over some kilometers from the plant

  5. Experimental study of the test module of the electromagnetic end-cap calorimeter for the ATLAS experiment. Study of the spin correlation in the production of pairs tt-bar; Etude experimentale des performances du module 0 du calorimetre electromagnetique bouchon d'ATLAS. Etude de la correlation de spin dans la production des paires tt-bar au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hinz, L

    2001-06-01

    LHC, the future CERN proton collider, will start in 2006. It will be devoted to a better understanding of the Standard Model and new physics research. With a 10 {integral}b{sup -1} per year at low luminosity during the first three years, then 100 {integral}b{sup -1} per year, and energy of 14 TeV in the center of mass, the LHC is designed to discover the Standard or SUSY Higgs boson, or probe signature of new physics. ATLAS, one of the four experiments at the LHC, can study a large physics range, as Higgs boson, top and bottom, gauge bosons and new particles expected by SUSY model or other models beyond the Standard Model. The CPPM laboratory is responsible of a part of the electromagnetic end-cap calorimeter for the ATLAS experiment. In 1999, an ATLAS-like prototype of module was stacked in Marseille and intensively tested at CERN. Description of the calorimeter and a part of test-beam results are presented in this PhD manuscript. In parallel, a study about potentiality of the tt-bar spin correlation measurement was done. The high tt-bar statistic produced at the LHC allows to explore the quark top properties in details and being sensitive to new physics phenomena. Signatures of such physics can be extracted from tt-bar decay product angular distributions which are sensitive to tt-bar spin correlation. (authors)

  6. Numerical simulation and experimental validation of a large-area capacitive strain sensor for fatigue crack monitoring

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Bennett, Caroline; Collins, William; Laflamme, Simon

    2016-12-01

    A large-area electronics in the form of a soft elastomeric capacitor (SEC) has shown great promise as a strain sensor for fatigue crack monitoring in steel structures. The SEC sensors are inexpensive, easy to fabricate, highly stretchable, and mechanically robust. It is a highly scalable technology, capable of monitoring deformations on mesoscale systems. Preliminary experiments verified the SEC sensor’s capability in detecting, localizing, and monitoring crack growth in a compact specimen. Here, a numerical simulation method is proposed to simulate accurately the sensor’s performance under fatigue cracks. Such a method would provide a direct link between the SEC’s signal and fatigue crack geometry, extending the SEC’s capability to dense network applications on mesoscale structural components. The proposed numerical procedure consists of two parts: (1) a finite element (FE) analysis for the target structure to simulate crack growth based on an element deletion method; (2) an algorithm to compute the sensor’s capacitance response using the FE analysis results. The proposed simulation method is validated based on test data from a compact specimen. Results from the numerical simulation show good agreement with the SEC’s response from the laboratory tests as a function of the crack size. Using these findings, a parametric study is performed to investigate how the SEC would perform under different geometries. Results from the parametric study can be used to optimize the design of a dense sensor network of SECs for fatigue crack detection and localization.

  7. 1st February 2011-CERN Cultural Board for Engaging with the Arts, visiting CMS experimental area and LHC Tunnel at Point 5

    CERN Multimedia

    Michael Hoch

    2011-01-01

    Photo 1-4: Visit to CMS Control Room with G. Tonelli,CMS Collaboration Spokesperson Photo 5-9,16-20:CMS experimental area Photo 10-15:LHC Tunnel at Point 5 Photo 21:F. Madlener,Director of IRCAM Paris+S. Dorny,Director-General Lyon Opera House+C. Bollman,Art by Genève+M. Doser,AEgIS Collaboration Spokesperson,Former Physics Department Deputy Head+A. Koek,International Arts Development+G. Tonelli+M. Monje Cano,Arts Development Assistant (part-time work experience)+B. Ruf,Director of Kunsthalle Zürich

  8. Experimental study of flow field in interference area between impeller and guide vane of axial flow pump

    Institute of Scientific and Technical Information of China (English)

    张华; 施卫东; 陈斌; 曹卫东; 张启华

    2014-01-01

    Axial flow pump is a kind of typical pumps with rotor-stator interaction, thus the measurement of the flow field between impeller and guide vane would facilitate the study of the internal rotor-stator interaction mechanism. Through a structural modifi-cation of a traditional axial flow pump, the requirements of particle image velocimetry (PIV) measurement are met. Under the condition of opt.0.8Q , the axial vortex is identified between impeller hub and guide vane hub, which is developed into the main flow and to affect the movement when the relative positions of impeller and guide vane at different flow rates are the same. Besides, the development and the dissipation of the tip leakage and the passage vortex in impeller passages are mainly responsible for the difference of the flow field close to the outer rim. As the flow rate decreases, the distribution of the meridional velocities at the impeller outlet becomes more non-uniform and the radial velocity component keeps increasing. The PIV measurement results under the condition of opt.1.0Q indicate that the flow separation and the trailing vortex at the trailing edge of a blade are likely to result in a velocity sudden change in this area, which would dramatically destroy the continuity of the flow field. Moreover, the radial direction of the flow between impeller and guide vane on the measurement plane does not always point from hub to rim. For a certain position, the direction is just from rim to hub, as is affected by the location of the intersection line of the shooting section and the impeller blade on the impeller as well as the angle between the intersection line and the rotating shaft.

  9. ATLAS Review Office

    CERN Multimedia

    Szeless, B

    The ATLAS internal reviews, be it the mandatory Production Readiness Reviews, the now newly installed Production Advancement Reviews, or the more and more requested different Design Reviews, have become a part of our ATLAS culture over the past years. The Activity Systems Status Overviews are, for the time being, a one in time event and should be held for each system as soon as possible to have some meaning. There seems to a consensus that the reviews have become a useful project tool for the ATLAS management but even more so for the sub-systems themselves making achievements as well as possible shortcomings visible. One other recognized byproduct is the increasing cross talk between the systems, a very important ingredient to make profit all the systems from the large collective knowledge we dispose of in ATLAS. In the last two months, the first two PARs were organized for the MDT End Caps and the TRT Barrel Modules, both part of the US contribution to the ATLAS Project. Furthermore several different design...

  10. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  11. OCCIPITALIZATION OF ATLAS

    Directory of Open Access Journals (Sweden)

    Sween Walia

    2014-12-01

    Full Text Available Occipitalization of atlas is an osseous anomaly of the craniovertebral junction which occurs at the base of the skull in the region of the foramen magnum. The knowledge of such a fusion is important because skeletal abnormalities at the craniocervical junction may result in sudden death. During bone cleaning procedure and routine undergraduate osteology teaching, three skulls with Occipitalization of atlas were encountered in the department of Anatomy at MMIMSR, Mullana, India. In one skull, both anterior and posterior arch were completely fused with occipital bone while the transverse process on the right side was not fused whereas left transverse process was fused with occipital bone. Both anterior and posterior arch were completely fused whereas transverse process on both sides were not fused in other skull. In another skull, partial and asymmetrical Occipitalization of atlas vertebra with occipital bone was found with bifid posterior arch of atlas at the level of posterior tubercle. Anterior arch was completely fused with basilar part of occipital bone but both the transverse processes were not fused. Reduced diameter of foramen magnum due to the atlanto-occipital fusion might cause neurological complications due to compression of spinal cord or medulla oblongata, vertebral vessels, 1st cervical nerve, thus, knowledge of occipitalization of the atlas may be of substantial importance to orthopaedicians, neurosurgeons, physicians and radiologists dealing with abnormalities of the cervical spine.

  12. Distributed analysis in ATLAS

    CERN Document Server

    Legger, Federica; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data for the distributed physics community is a challenging task. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are daily running on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We r...

  13. Automating usability of ATLAS Distributed Computing resources

    CERN Document Server

    "Tupputi, S A; The ATLAS collaboration

    2013-01-01

    The automation of ATLAS Distributed Computing (ADC) operations is essential to reduce manpower costs and allow performance-enhancing actions, which improve the reliability of the system. In this perspective a crucial case is the automatic exclusion/recovery of ATLAS computing sites storage resources, which are continuously exploited at the edge of their capabilities. It is challenging to adopt unambiguous decision criteria for storage resources who feature non-homogeneous types, sizes and roles. The recently developed Storage Area Automatic Blacklisting (SAAB) tool has provided a suitable solution, by employing an inference algorithm which processes SAM (Site Availability Test) site-by-site SRM tests outcome. SAAB accomplishes both the tasks of providing global monitoring as well as automatic operations on single sites.\

  14. ATLAS Offline Data Quality System Upgrade

    CERN Document Server

    Farrell, Steve

    2012-01-01

    The ATLAS data quality software infrastructure provides tools for prompt investigation of and feedback on collected data and propagation of these results to analysis users. Both manual and automatic inputs are used in this system. In 2011, we upgraded our framework to record all issues affecting the quality of the data in a manner which allows users to extract as much information (of the data) for their particular analyses as possible. By improved recording of issues, we are allowed the ability to reassess the impact of the quality of the data on different physics measurements and adapt accordingly. We have gained significant experience with collision data operations and analysis; we have used this experience to improve the data quality system, particularly in areas of scaling and user interface. This document describes the experience gained in assessing and recording of the data quality of ATLAS and subsequent benefits to the analysis users.

  15. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  16. ATLAS Virtual Visit Bonn-08-07-2014

    CERN Multimedia

    2014-01-01

    The Department of Physics and Astronomy of the University of Bonn will host a five day camp for high school students on July 7 - 11. The camp is organized by the school lab of the University of Bonn “Physics Workshop Rhineland” and supported by the Foundation for Physics and Astronomy in Bonn. Students will be introduced to experimental techniques at the LHC and will have the opportunity to analyze data of the ATLAS experiment and to search even for the Higgs-particle. During the virtual visit of CERN students will talk to young scientists working in Geneva and ask them questions about their work, the experiments and the life at the world largest high energy research center. - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2014/Bonn-2014.html#sthash.73GWJC5c.dpuf

  17. Automating usability of ATLAS Distributed Computing resources

    Science.gov (United States)

    Tupputi, S. A.; Di Girolamo, A.; Kouba, T.; Schovancová, J.; Atlas Collaboration

    2014-06-01

    The automation of ATLAS Distributed Computing (ADC) operations is essential to reduce manpower costs and allow performance-enhancing actions, which improve the reliability of the system. In this perspective a crucial case is the automatic handling of outages of ATLAS computing sites storage resources, which are continuously exploited at the edge of their capabilities. It is challenging to adopt unambiguous decision criteria for storage resources of non-homogeneous types, sizes and roles. The recently developed Storage Area Automatic Blacklisting (SAAB) tool has provided a suitable solution, by employing an inference algorithm which processes history of storage monitoring tests outcome. SAAB accomplishes both the tasks of providing global monitoring as well as automatic operations on single sites. The implementation of the SAAB tool has been the first step in a comprehensive review of the storage areas monitoring and central management at all levels. Such review has involved the reordering and optimization of SAM tests deployment and the inclusion of SAAB results in the ATLAS Site Status Board with both dedicated metrics and views. The resulting structure allows monitoring the storage resources status with fine time-granularity and automatic actions to be taken in foreseen cases, like automatic outage handling and notifications to sites. Hence, the human actions are restricted to reporting and following up problems, where and when needed. In this work we show SAAB working principles and features. We present also the decrease of human interactions achieved within the ATLAS Computing Operation team. The automation results in a prompt reaction to failures, which leads to the optimization of resource exploitation.

  18. Evaluation of the Molluscicidal Properties of Euphorbia splendens var. hislopii (N.E.B. Latex: Experimental Test in an Endemic Area in the State of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Mendes Nelymar M

    1997-01-01

    Full Text Available Following the positive results obtained regarding the molluscicidal properties of the latex of Euphorbia splendens that were corroborated in laboratory and field tests under restricted conditions, a field study was conducted in experimental streams located in an endemic area. After recording the average annual fluctuations of vectors in three streams, a solution of E. splendens latex at 12 ppm was applied in stream A, a solution of niclosamide at 3 ppm that was applied in stream B and a third stream (C remained untreated for negative control. Applications of E. splendens and niclosamide resulted in a mortality of 100% among the snails collected in the streams A and B. No dead snails were found in the negative control stream. A monthly follow-up survey conducted during three consecutive months confirmed the return of vectors to both experimental streams treated with latex and niclosamide. This fact has called for a need to repeat application in order to reach the snails that remained buried in the mud substrate or escaped to the water edge, as well as, newly hatched snails that did not respond to the concentration of these molluscicides. Adults snails collected a month following treatment led us to believe that they had migrate from untreated areas of the streams to those previously treated

  19. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  20. A cross-validated cytoarchitectonic atlas of the human ventral visual stream.

    Science.gov (United States)

    Rosenke, M; Weiner, K S; Barnett, M A; Zilles, K; Amunts, K; Goebel, R; Grill-Spector, K

    2017-02-14

    The human ventral visual stream consists of several areas considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang, 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4) and tested how alignment technique affects the accuracy of the atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore that this coupling can be utilized towards generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in

  1. Calorimetry triggering in ATLAS

    CERN Document Server

    Igonkina, O; Adragna, P; Aharrouche, M; Alexandre, G; Andrei, V; Anduaga, X; Aracena, I; Backlund, S; Baines, J; Barnett, B M; Bauss, B; Bee, C; Behera, P; Bell, P; Bendel, M; Benslama, K; Berry, T; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Bosman, M; Boyd, J; Bracinik, J; Brawn, I, P; Brelier, B; Brooks, W; Brunet, S; Bucci, F; Casadei, D; Casado, P; Cerri, A; Charlton, D G; Childers, J T; Collins, N J; Conde Muino, P; Coura Torres, R; Cranmer, K; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Davis, A O; De Santo, A; Degenhardt, J; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Diaz, M; Djilkibaev, R; Dobson, E; Dova, M, T; Dufour, M A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Faulkner, P J W; Ferland, J; Flacher, H; Fleckner, J E; Flowerdew, M; Fonseca-Martin, T; Fratina, S; Fhlisch, F; Gadomski, S; Gallacher, M P; Garitaonandia Elejabarrieta, H; Gee, C N P; George, S; Gillman, A R; Goncalo, R; Grabowska-Bold, I; Groll, M; Gringer, C; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hauser, R; Hellman, S; Hidvgi, A; Hillier, S J; Hryn'ova, T; Idarraga, J; Johansen, M; Johns, K; Kalinowski, A; Khoriauli, G; Kirk, J; Klous, S; Kluge, E-E; Koeneke, K; Konoplich, R; Konstantinidis, N; Kwee, R; Landon, M; LeCompte, T; Ledroit, F; Lei, X; Lendermann, V; Lilley, J N; Losada, M; Maettig, S; Mahboubi, K; Mahout, G; Maltrana, D; Marino, C; Masik, J; Meier, K; Middleton, R P; Mincer, A; Moa, T; Monticelli, F; Moreno, D; Morris, J D; Mller, F; Navarro, G A; Negri, A; Nemethy, P; Neusiedl, A; Oltmann, B; Olvito, D; Osuna, C; Padilla, C; Panes, B; Parodi, F; Perera, V J O; Perez, E; Perez Reale, V; Petersen, B; Pinzon, G; Potter, C; Prieur, D P F; Prokishin, F; Qian, W; Quinonez, F; Rajagopalan, S; Reinsch, A; Rieke, S; Riu, I; Robertson, S; Rodriguez, D; Rogriquez, Y; Rhr, F; Saavedra, A; Sankey, D P C; Santamarina, C; Santamarina Rios, C; Scannicchio, D; Schiavi, C; Schmitt, K; Schultz-Coulon, H C; Schfer, U; Segura, E; Silverstein, D; Silverstein, S; Sivoklokov, S; Sjlin, J; Staley, R J; Stamen, R; Stelzer, J; Stockton, M C; Straessner, A; Strom, D; Sushkov, S; Sutton, M; Tamsett, M; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Torrence, E; Tripiana, M; Urquijo, P; Urrejola, P; Vachon, B; Vercesi, V; Vorwerk, V; Wang, M; Watkins, P M; Watson, A; Weber, P; Weidberg, T; Werner, P; Wessels, M; Wheeler-Ellis, S; Whiteson, D; Wiedenmann, W; Wielers, M; Wildt, M; Winklmeier, F; Wu, X; Xella, S; Zhao, L; Zobernig, H; de Seixas, J M; dos Anjos, A; Asman, B; Özcan, E

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 105 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  2. ATLAS production system

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Golubkov, Dmitry; Maeno, Tadashi; Mashinistov, Ruslan; Wenaus, Torre; Padolski, Siarhei

    2016-01-01

    The second generation of the ATLAS production system called ProdSys2 is a distributed workload manager which used by thousands of physicists to analyze the data remotely, with the volume of processed data is beyond the exabyte scale, across a more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criterias, such as input and output size, memory requirements and CPU consumption with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteering computers. Besides jobs definition Production System also includes flexible web user interface, which implements user-friendly environment for main ATLAS workflows, e.g. simple way of combining different data flows, and real-time monitoring, optimised for using with huge amount of information to present. We present an overview of the ATLAS Production System major components: job and task definition, workflow manager web user i...

  3. ATLAS rewards industry

    CERN Multimedia

    2006-01-01

    Showing excellence in mechanics, electronics and cryogenics, three industries are honoured for their contributions to the ATLAS experiment. Representatives of the three award-wining companies after the ceremony. For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Close interaction with CERN was a key factor in the selection of each rewarded company, in addition to the high-quality products they delivered to the experiment. Alu Menziken Industrie AG, of Switzerland, was honoured for the production of 380,000 aluminium tubes for the Monitored Drift Tube Chambers (MDT). As Giora Mikenberg, the Muon System Project Leader stressed, the aluminium tubes were delivered on time with an extraordinary quality and precision. Between October 2000 and Jan...

  4. Two ATLAS suppliers honoured

    CERN Multimedia

    2007-01-01

    The ATLAS experiment has recognised the outstanding contribution of two firms to the pixel detector. Recipients of the supplier award with Peter Jenni, ATLAS spokesperson, and Maximilian Metzger, CERN Secretary-General.At a ceremony held at CERN on 28 November, the ATLAS collaboration presented awards to two of its suppliers that had produced sensor wafers for the pixel detector. The CiS Institut für Mikrosensorik of Erfurt in Germany has supplied 655 sensor wafers containing a total of 1652 sensor tiles and the firm ON Semiconductor has supplied 515 sensor wafers (1177 sensor tiles) from its foundry at Roznov in the Czech Republic. Both firms have successfully met the very demanding requirements. ATLAS’s huge pixel detector is very complicated, requiring expertise in highly specialised integrated microelectronics and precision mechanics. Pixel detector project leader Kevin Einsweiler admits that when the project was first propo...

  5. ATLAS TDAQ System Administration:

    CERN Document Server

    Lee, Christopher Jon; The ATLAS collaboration; Bogdanchikov, Alexander; Ballestrero, Sergio; Contescu, Alexandru Cristian; Dubrov, Sergei; Fazio, Daniel; Korol, Aleksandr; Scannicchio, Diana; Twomey, Matthew Shaun; Voronkov, Artem

    2015-01-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is responsible for the online processing of live data, streaming from the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The online farm is composed of ̃3000 servers, processing the data readout from ̃100 million detector channels through multiple trigger levels. During the two years of the first Long Shutdown (LS1) there has been a tremendous amount of work done by the ATLAS TDAQ System Administrators, implementing numerous new software applications, upgrading the OS and the hardware, changing some design philosophies and exploiting the High Level Trigger farm with different purposes. During the data taking only critical security updates are applied and broken hardware is replaced to ensure a stable operational environment. The LS1 provided an excellent opportunity to look into new technologies and applications that would help to improve and streamline the daily tasks of not only the System Administrators, but also of the scientists who wil...

  6. Controllable fabrication of large-area 2D colloidal crystal masks with large size defect-free domains based on statistical experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yajuan, E-mail: yajuan@kth.se; Jönsson, Pär Göran; Zhao, Zhe, E-mail: zhezhao@kth.se

    2014-09-15

    Highlights: • 3000 μm{sup 2} defect-free HCP domain was successfully synthesized. • Relative humidity (RH) as well as the first rotational speed (v{sub a}) of the dual-speed procedure was identified as the quality-control parameters in spin coating. • 23% RH and v{sub a} = 1000 rpm were identified as the optimistic spin coating processing parameters for SiO{sub 2} HCP monolayer. • Statistical experimental design was demonstrated as one efficient strategy for multi-factor processing optimization. - Abstract: A large-area hexagonal packed monolayer of silica spheres with consistent defect-free domains of a size larger than 3000 μm{sup 2} was prepared by spin coating on glass substrates with the assistance of experimental design and statistical analysis. The ratio of the defect-free monolayer area to the square of sphere diameter is nearly two times of the previously reported maximum values. Several parameters involved in the spin coating systems were investigated. The results indicated that the relative humidity and the rotational speed of the first step of the spin coating had the most important impact on the ordering degree of the prepared monolayer. Furthermore, the ordering degree of the obtained monolayer increased with a decreased relative humidity. In addition, it reached an optimal value when the first rotational speed during spin coating reached a value of 1000 rpm. From this study, it can be concluded that statistical experimental design is an efficient strategy, especially for multi-factor phenomenon studies.

  7. Local atlas selection for discrete multi-atlas segmentation

    OpenAIRE

    Alchatzidis, Stavros; Sotiras, Aristeidis; Paragios, Nikos

    2015-01-01

    International audience; Multi-atlas segmentation is commonly performed in two separate steps: i) multiple pairwise registrations, and ii) fusion of the deformed segmentation masks towards labeling objects of interest. In this paper we propose an approach for integrated volume segmentation through multi-atlas registration. To tackle this problem, we opt for a graphical model where registration and segmentation nodes are coupled. The aim is to recover simultaneously all atlas deformations along...

  8. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Vankov, P; The ATLAS collaboration

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a center-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall. After the commissioning phase it arrived to the first LHC pp collision runs in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications, the alignment is already close enough to the ideal one to allow on-line track reconstruction and invariant mass determination. In the talk the current status of the SCT will be reviewed, including results from the latest data-taking periods in 2009 and 2010, and from the detector alignment. We will report on the operation of the detector and ob...

  9. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Torchiani, I; The ATLAS collaboration

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall. After the commissioning phase it arrived to the first LHC pp collision runs in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications, the alignment is already close enough to the ideal one to allow on-line track reconstruction and invariant mass determination. In the talk the current status of the SCT will be reviewed, including in particular results from the latest data-taking periods of the 2010 running at centre-of-mass energies of 7 TeV, and from the detector alignment. We will report on the operation of the detector and observed problems. The...

  10. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Vankov, P; The ATLAS collaboration

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a center-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall. After the commissioning phase it arrived to the first LHC pp collision runs in very good shape: 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications, the alignment is already close enough to the ideal one to allow on-line track reconstruction and invariant mass determination. This overview presents the current status of the SCT, including results from the latest data-taking periods in 2009 and 2010, and from the detector alignment. We report on the operation of the detector and observed pro...

  11. ATLAS Silicon Microstrip Detector Operation and Performance

    CERN Document Server

    Coniavitis, E

    2011-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV, followed by the unprecedented energy of 7 TeV in March 2010. The Semi-Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall. After the commissioning phase it arrived to the first LHC pp collision runs in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications, the alignment is already close enough to the ideal one to allow on-line track reconstruction and invariant mass determination. The current status of the SCT is reviewed, including results from the latest data-taking periods in 2009 and 2010, and from the detector alignment. We report on the operation of the detector and observed problems. The main emphasi...

  12. ATLAS forward physics program

    CERN Document Server

    HELLER, M; The ATLAS collaboration

    2010-01-01

    The variety of forward detectors installed in the vicinity of the ATLAS experiment allows to look over a wide range of forward physics topics. They ensure a good information about rapidity gaps, and the installation of very forward detectors (ALFA and AFP) will allow to tag the leading proton(s) remaining from the different processes studied. Most of the studies have to be done at low luminosity to avoid pile-up, but the AFP project offers a really exiting future for the ATLAS forward physics program. We also present how these forward detectors can be used to measure the relative and absolute luminosity.

  13. The ATLAS Simulation Infrastructure

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Adorisio, Cristina; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov , Andrei; Aktas, Adil; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Makoto; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asner, David; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Mark; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Baranov, Sergey; Baranov, Sergei; Barashkou, Andrei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Bazalova, Magdalena; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Becerici, Neslihan; Bechtle, Philip; Beck, Graham; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benincasa, Gianpaolo; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bocci, Andrea; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Françcois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Byatt, Tom; Caballero, Jose; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Camarri, Paolo; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D.; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Tcherniatine, Valeri; Chesneanu, Daniela; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiarella, Vitaliano; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Clark, Allan G.; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coggeshall, James; Cogneras, Eric; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cranshaw, Jack; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Daly, Colin; Dam, Mogens; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawson, Ian; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De Mora, Lee; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Deng, Wensheng; Denisov, Sergey; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Doglioni, Caterina; Doherty, Tom; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Dris, Manolis; Dubbert, Jörg; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen , Michael; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Dushkin, Andrei; Duxfield, Robert; Dwuznik, Michal; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Egorov, Kirill; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ermoline, Iouri; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fayette, Florent; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Feligioni, Lorenzo; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; Freestone, Julian; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K K; Gao, Yongsheng; Gaponenko, Andrei; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gautard, Valerie; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Girtler, Peter; Giugni, Danilo; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goggi, Virginio; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçcalo, Ricardo; Gonella, Laura; Gong, Chenwei; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Green, Barry; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Grishkevich, Yaroslav; Groh, Manfred; Groll, Marius; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Gupta, Ambreesh; Gusakov, Yury; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Härtel, Roland; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, John Renner; Hansen, Peter Henrik; Hansl-Kozanecka, Traudl; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hashemi, Kevan; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Takashi; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Hemperek, Tomasz; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernández Jiménez, Yesenia; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Horazdovsky, Tomas; Hori, Takuya; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howe, Travis; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Hughes, Emlyn; Hughes, Gareth; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issakov, Vladimir; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joseph, John; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kalinowski, Artur; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kastoryano, Michael; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kayumov, Fred; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kind, Oliver; Kind, Peter; King, Barry; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiyamura, Hironori; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Klute, Markus; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kolos, Serguei; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Konoplich, Rostislav; Konovalov, Serguei; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostka, Peter; Kostyukhin, Vadim; Kotov, Serguei; Kotov, Vladislav; Kotov, Konstantin; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Henri; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurchaninov, Leonid; Kurochkin, Yurii; Kus, Vlastimil; Kwee, Regina; La Rotonda, Laura; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Vine, Micheal; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Leyton, Michael; Li, Haifeng; Li, Shumin; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Tiankuan; Liu, Yanwen; Livan, Michele; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Lovas, Lubomir; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Luisa, Luca; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahmood, A.; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makouski, Mikhail; Makovec, Nikola; Malecki, Piotr; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mambelli, Marco; Mameghani, Raphael; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March , Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti-Garcia, Salvador; Martin, Alex; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martini, Agnese; Martyniuk, Alex; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCubbin, Norman; McFarlane, Kenneth; McGlone, Helen; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Menke, Sven; Meoni, Evelin; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W. Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Mills, Bill; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Misawa, Shigeki; Miscetti, Stefano; Misiejuk, Andrzej; Mitrevski, Jovan; Mitsou, Vasiliki A.; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mladenov, Dimitar; Moa, Torbjoern; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murillo Garcia, Raul; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakamura, Koji; Nakano, Itsuo; Nakatsuka, Hiroki; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nderitu, Simon Kirichu; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicoletti, Giovanni; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforov, Andriy; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Notz, Dieter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, John; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Ottersbach, John; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Ozcan, Veysi Erkcan; Ozone, Kenji; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadopoulou, Theodora; Park, Su-Jung; Park, Woochun; Parker, Andy; Parker, Sherwood; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor , Gabriella; Pataraia, Sophio; Pater, Joleen; Patricelli, Sergio; Patwa, Abid; Pauly, Thilo; Peak, Lawrence; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Piacquadio, Giacinto; Piccinini, Maurizio; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poffenberger, Paul; Poggioli, Luc; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Ponsot, Patrick; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Popule, Jiri; Portell Bueso, Xavier; Porter, Robert; Pospelov, Guennady; Pospisil, Stanislav; Potekhin, Maxim; Potrap, Igor; Potter, Christina; Potter, Christopher; Potter, Keith; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Pribyl, Lukas; Price, Darren; Price, Lawrence; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Puigdengoles, Carles; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qi, Ming; Qian, Jianming; Qian, Weiming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renkel, Peter; Rescia, Sergio; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richards, Ronald; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Roa Romero, Diego Alejandro; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosenbaum, Gabriel; Rosselet, Laurent; Rossetti, Valerio; Rossi, Leonardo Paolo; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybkin, Grigori; Rzaeva, Sevda; Saavedra, Aldo; Sadrozinski, Hartmut; Sadykov, Renat; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sanny, Bernd; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Savard, Pierre; Savine, Alexandre; Savinov, Vladimir; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R.~Dean; Schamov, Andrey; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schroers, Marcel; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Sluka, Tomas; Smakhtin, Vladimir; Smirnov, Sergei; Smirnov, Yuri; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soluk, Richard; Sondericker, John; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spencer, Edwin; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stancu, Stefan Nicolae; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stastny, Jan; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Su, Dong; Soh, Dart-yin; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Takuya; Suzuki, Yu; Sykora, Ivan; Sykora, Tomas; Szymocha, Tadeusz; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Ryan P.; Taylor, Wendy; Teixeira-Dias, Pedro; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Stan; Thompson, Emily; Thompson, Peter; Thompson, Paul; Thompson, Ray; Thomson, Evelyn; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomasek, Lukas; Tomasek, Michal; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tuggle, Joseph; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Twomey, Matthew Shaun; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasilyeva, Lidia; Vassilakopoulos, Vassilios; Vazeille, Francois; Vellidis, Constantine; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Villa, Mauro; Villani, Giulio; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Viret, Sébastien; Virzi, Joseph; Vitale , Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vudragovic, Dusan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Walbersloh, Jorg; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Manuel; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Werthenbach, Ulrich; Wessels, Martin; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Eric; Williams, Hugh; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wright, Dennis; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wulf, Evan; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xu, Da; Xu, Neng; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Zhaoyu; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yuan, Li; Yurkewicz, Adam; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zambrano, Valentina; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Qizhi; Zhang, Xueyao; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu

    2010-01-01

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

  14. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  15. ATLAS fast physics monitoring

    Indian Academy of Sciences (India)

    Karsten Köneke; on behalf of the ATLAS Collaboration

    2012-11-01

    The ATLAS experiment at the Large Hadron Collider is recording data from proton–proton collisions at a centre-of-mass energy of 7 TeV since the spring of 2010. The integrated luminosity has grown nearly exponentially since then and continues to rise fast. The ATLAS Collaboration has set up a framework to automatically process the rapidly growing dataset and produce performance and physics plots for the most interesting analyses. The system is designed to give fast feedback. The histograms are produced within hours of data reconstruction (2–3 days after data taking). Hints of potentially interesting physics signals obtained this way are followed up by physics groups.

  16. ATLAS SCT Commissioning

    CERN Document Server

    Limper, Maaike

    2007-01-01

    The Barrel and End-Cap SCT detectors are installed in the ATLAS cavern. This paper will focus on the assembly, installation and first tests of the SCT in-situ. The thermal, electrical and optical services were tested and the results will be reviewed. Problems with the cooling have led to a modification for the heaters on the cooling return lines. The first tests of the SCT in-situ will be described using the calibration scans. The performance of the SCT, in particular the fraction of working channels and the noise performance, is well within the ATLAS specification.

  17. The Herschel ATLAS

    Science.gov (United States)

    Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; Negrello, M.; Serjeant, S.; Thompson, M. A.; Van Kampen, E.; Amblard, A.; Andreani, P.; Baes, M.; Beelen, A.; Bendo, G. J.; Bertoldi, F.; Benford, D.; Bock, J.

    2010-01-01

    The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 sq deg of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

  18. The ATLAS Simulation Infrastructure

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; McDonald, J.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliveira Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M. S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X. H.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

  19. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    CAMERA ON TOROID The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The video is about the slow lowering of the toroid down to the cavern of ATLAS. It is very demanding task. The camera is placed on top of the toroid.

  20. ATLAS/CMS Upgrades

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00370685; The ATLAS collaboration

    2016-01-01

    Precision studies of the Standard Model (SM) and the searches of the physics beyond the SM are ongoing at the ATLAS and CMS experiments at the Large Hadron Collider (LHC). A luminosity upgrade of LHC is planned, which provides a significant challenge for the experiments. In this report, the plans of the ATLAS and CMS upgrades are introduced. Physics prospects for selected topics, including Higgs coupling measurements, Bs,d -> mumu decays, and top quark decays through flavor changing neutral current, are also shown.

  1. Estimation of radioactive contamination of soils from the "Balapan" and the "Experimental field" technical areas of the Semipalatinsk nuclear test site.

    Science.gov (United States)

    Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T

    2012-07-01

    In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan.

  2. 24 February 2012 - Portuguese Minister for Education and Science N. Crato visiting the LHC superconducting magnet test hall with technology Department Head F. Bordry and signing the guest book with CERN Director-General R. Heuer. The Minister is accompanied by Secretary of State for Science L. Parreira and LIP Director J.M. Gago. A. Henriques(ATLAS), C. Lourenço (CMS) and Adviser R. Voss accompany the delegation throughout.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    On 24 February Nuno Crato, the Portuguese minister for education and science, left, toured the LHC superconducting-magnet test hall accompanied by Frédérick Bordry, CERN’s technology department head. He also took the opportunity to visit the underground experimental areas of ATLAS and CMS, and heard about the LHC Computing Grid Project before meeting Portuguese scientists working at CERN.

  3. Comprehensive cellular-resolution atlas of the adult human brain.

    Science.gov (United States)

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  4. ATLAS Virtual Visit-Venezuela-Colombia-05-06-2014

    CERN Multimedia

    2014-01-01

    The Virtual Center of High Energy Studies (Centro Virtual de Altos Estudios en Altas Energias CeVALE2) is a Colombian-Venezuelan initiative to promote the research on particle physics in the region. It groups four Colombian universities and four Venezuelan institutions. The two main objectives of CeVALE2 are the development and transfer of collaborative and organizational platforms in the area and the creation of opportunities for the dissemination of particle physics such as courses and seminars. A cycle of conferences has been organized during June 2014 for teachers and students from the member institutions. The ATLAS Virtual Visit will be a key part of this experience - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2014/Venezuela-Colombia-2014.html#sthash.tZw8PxLn.dpuf

  5. Herschel-ATLAS: Planck sources in the Phase 1 fields

    CERN Document Server

    Herranz, D; Clements, D L; Clemens, M; De Zotti, G; López-Caniego, M; Lapi, A; Rodighiero, G; Danese, L; Fu, H; Cooray, A; Baes, M; Bendo, G J; Bonavera, L; Carrera, F J; Dole, H; Eales, S; Ivison, R J; Jarvis, M; Lagache, G; Massardi, M; Michalowski, M J; Negrello, M; Rigby, E; Scott, D; Valiante, E; Valtchanov, I; Van der Werf, P; Auld, R; Buttiglione, S; Dariush, A; Dunne, L; Hopwood, R; Hoyos, C; Ibar, E; Maddox, S

    2012-01-01

    We present the results of a cross-correlation of the Planck Early Release Compact Source Catalog (ERCSC) with the catalog of Herschel-ATLAS sources detected in the Phase 1 fields, covering 134.55 deg2. There are 28 ERCSC sources detected by Planck at 857 GHz in this area. As many as 16 of them are probably high Galactic latitude cirrus; 10 additional sources can be clearly identified as bright, low-z galaxies; one further source is resolved by Herschel as two relatively bright sources; and the last is resolved into an unusual condensation of low-flux, probably high-redshift point sources, around a strongly lensed Herschel-ATLAS source at z = 3.26. Our results demonstrate that the higher sensitivity and higher angular resolution H-ATLAS maps provide essential information for the interpretation of candidate sources extracted from Planck sub-mm maps.

  6. Search for the standard-model Higgs boson in the associated WH production with 1.47 fb{sup -1} data of the ATLAS experiment at the LHC; Suche des Standardmodell Higgs-Boson bei der assoziierten WH-Produktion mit 1.47 fb{sup -1} Daten des ATLAS-Experimentes am LHC

    Energy Technology Data Exchange (ETDEWEB)

    Verlage, Tobias

    2011-09-28

    The Large Hadron Collider is a particle accelerator at CERN, in which since March 30th 2010 protons are brought to collision at a c. m. energy of √(s)=7 TeV. These events can be observed b y means of the ATLAS detector, one of two universal detectors at the Large Hadron Collider. One of the main purposes of the ATLAS detector is the search for the Standard-Model Higgs boson. This thesis describes a study on the search for the Standard-Model Higgs boson, whereby the production of the Higgs boson in association with a vector boson W{sup ±} and the subsequent decay in a bottom-quark pair iks studied. For this token data of the ATLAS detector, which correspond to an integrated luminosity of 1.47 fb{sup -1}, are compared with simulated physical events. An analysis based on cuts for the separation of the signal events of background processes is presented. Furthermore systematic uncertainties are determined. Finally an upper exclusion limit of the production rate for a Standard-Model Higgs boson in dependence of its mass in the range from 110 GeV to 139 GeV is calculated and discussed. The strongest exclusion limit can be posed for a Higgs boson with a mass of 110 GeV. For this a 16-fold larger production rate as that of the Standard-Model prediction can be excluded with a confidence level of 95%. For the whole studied mass range an upper exclusion limit for Higgs bosons with 16-29-fold increased Standard-Model production rate results.

  7. Multi-atlas segmentation with augmented features for cardiac MR images.

    Science.gov (United States)

    Bai, Wenjia; Shi, Wenzhe; Ledig, Christian; Rueckert, Daniel

    2015-01-01

    Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods only utilise the intensity information within a small patch during the label fusion process and may neglect other useful information such as gradient and contextual information (the appearance of surrounding regions). This paper proposes to combine the intensity, gradient and contextual information into an augmented feature vector and incorporate it into multi-atlas segmentation. Also, it explores the alternative to the K nearest neighbour (KNN) classifier in performing multi-atlas label fusion, by using the support vector machine (SVM) for label fusion instead. Experimental results on a short-axis cardiac MR data set of 83 subjects have demonstrated that the accuracy of multi-atlas segmentation can be significantly improved by using the augmented feature vector. The mean Dice metric of the proposed segmentation framework is 0.81 for the left ventricular myocardium on this data set, compared to 0.79 given by the conventional multi-atlas patch-based segmentation (Coupé et al., 2011; Rousseau et al., 2011). A major contribution of this paper is that it demonstrates that the performance of non-local patch-based segmentation can be improved by using augmented features.

  8. Taking ATLAS to new heights

    CERN Multimedia

    Abha Eli Phoboo, ATLAS experiment

    2013-01-01

    Earlier this month, 51 members of the ATLAS collaboration trekked up to the highest peak in the Atlas Mountains, Mt. Toubkal (4,167m), in North Africa.    The physicists were in Marrakech, Morocco, attending the ATLAS Overview Week (7 - 11 October), which was held for the first time on the African continent. Around 300 members of the collaboration met to discuss the status of the LS1 upgrades and plans for the next run of the LHC. Besides the trek, 42 ATLAS members explored the Saharan sand dunes of Morocco on camels.  Photos courtesy of Patrick Jussel.

  9. In Brief: New atlas of Africa

    Science.gov (United States)

    Showstack, Randy

    2008-07-01

    A newly revised atlas of Africa features more than 300 satellite images that show striking before and after photographs of environmental changes spanning about 35 years. Africa: Atlas of Our Changing Environment, compiled by the United Nations Environment Programme (UNEP), provides visual evidence of how development choices, population growth, climate change, and, in some cases, conflicts affect Africa, often negatively. The book includes photographs of shrinking glaciers on Mount Kilimanjaro as well as on Uganda's Rwenzori Mountains; deforestation along an expanding road system in the Congo; the drying up of Lake Chad; and the expansion of urban areas such as Cape Town, South Africa, and Dakar, Senegal. Satellite images also indicate some positive signs of environmental management, including action to stop overgrazing in a Tunisian national park, the effects of a management plan for a dam in Zambia that has helped restore seasonal flooding, and positive impacts of wetlands expansion around a national park in Mauritania. For more information, visit http://www.unep.org/dewa/africa/AfricaAtlas.

  10. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse

    Science.gov (United States)

    Van Essen, David C.

    2002-01-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  11. Studies of the ATLAS Muon Spectrometer with Test Beam and Simulated Physics Data

    CERN Document Server

    Bachas, Constantin

    2008-01-01

    In the ATLAS detector, muon related measurements are achieved by a huge Muon Spectrometer installed at the outermost region of the detector. At the LHC energies, high-pT muons are expected to be measured with a momentum resolution of ∼ 10% at 1 TeV . The main detecting element of the Muon Spectrometer is the Monitored Drift Tube chamber. The reconstruction potential of a BIS type Monitored Drift Tube chamber, in a special setup at the H8 Testbeam experimental area at CERN, is investigated. Data from the BIS muon chamber with both muon and positron beams are taken and the reconstruction of track segments in the chamber is studied. The correlation of the precision coordinate of the reconstructed track segment with the calorimeter cluster barycentre is also studied. In the ATLAS detector, muons lose parts of their energy in the Calorimetric System before reaching the Muon Spectrometer. As the muon energy increases radiative effects start playing a significant role in the energy loss mechanism and increase t...

  12. Seismic vulnerability analysis of moderate seismicity areas using in situ experimental techniques: from the building to the city scale ? Application to Grenoble and Pointe-\\`a-Pitre (France)

    CERN Document Server

    Michel, Clotaire

    2009-01-01

    Seismic vulnerability analysis of existing buildings requires basic information on their structural behaviour. The ambient vibrations of buildings and the modal parameters (frequencies, damping ration and modal shapes) that can be extracted from them naturally include the geometry and quality of material in the linear elastic part of their behaviour. The aim of this work is to use this modal information to help the vulnerability assessment. A linear dynamic modal model based on experimental modal parameters is proposed and the fragility curve corresponding to the damage state ?Slight? is built using this model and a simple formula is proposed. This curve is particularly interesting in moderate seismic areas. This methodology is applied to the Grenoble City where ambient vibrations have been recorded in 61 buildings of various types and to the Pointe-\\`a-Pitre City with 7 study-buildings. The fragility curves are developed using the aforementioned methodology. The seismic risk of the study-buildings is discuss...

  13. Experimental study on electrical conductivity of dunite at high temperature and pressure—— The evidence of electrical conductivity of cold mantle in the Gaize-Lugu area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electrical conductivities of the dunite from the Qinghai-Xizang (Tibetan) Plateau were measured with the impedance spectra method at 1.0 -4.0 GPa and 643-1093 K. The experimental results indicated that activation enthalpies of the dunite are smaller than 0.9 eV, the conduction mechanism in dunite may be attributed to the mixed electrical conduction involving grain interiors and boundaries. On the basis of the results of this experiment, we can deduce that there exists cold mantle in the area of Gaize- Lugu in the Qinghai-Xizang (Tibetan) Plateau by reverse methods from the magnetotelluric sounding data (conductivity-depths profile) available for western Tibet. The result provides the present cold mantle viewpoint with strong proof on the basis of high temperature and pressure experiments.

  14. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  15. Pb-Zn mineralization of the Ali ou Daoud area (Central High Atlas, Morocco): characterisation of the deposit and relationships with the clay assemblages; Mineralisation Pb-Zn du type MVT de la region d'Ali ou Daoud (Haut Atlas Central, Maroc): caracterisations du gite et relations avec les corteges de mineraux argileux

    Energy Technology Data Exchange (ETDEWEB)

    Mouguina, E. M.; Daoudi, L.

    2008-07-01

    Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas) are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., syn sedimentary faults) played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralizations would result from the same hydrothermal fluid. (Author) 55 refs.

  16. South Baltic Wind Atlas

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Hasager, Charlotte Bay

    A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles at the m...

  17. HWW in ATLAS

    CERN Document Server

    Rados, Pere; The ATLAS collaboration

    2016-01-01

    The H-->WW channel plays an important role in Higgs boson property measurements, searches for rare decay modes, and searches for possible extended Higgs sectors. In this talk the latest H-->WW results from ATLAS will be briefly summarised.

  18. Exotic searches at ATLAS

    CERN Document Server

    Turra, Ruggero; The ATLAS collaboration

    2016-01-01

    The ATLAS detector has collected 3.2 fb^-1 of proton-proton collisions at 13 TeV centre of mass energy during the 2015 LHC run. A selected review of the recent result are presented in the context of the direct search for BSM, not SUSY, not BSM Higgs.

  19. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  20. Higgs searches with ATLAS

    CERN Document Server

    Price, J D; The ATLAS collaboration

    2013-01-01

    Summary of the ATLAS analyses for the rarer SM Higgs decay channels, and the limits of the SM Higgs invisible decay width. Analyses included are the VH->Vbb, H->tautau, VH->VWW, H->Zy, H->mumu, ttH->ttyy and ZH->ll+inv.

  1. ATLAS Experiment Brochure

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00085461

    2016-01-01

    ATLAS is one of the four major experiments at the Large Hadron Collider at CERN. It is a general-purpose particle physics experiment run by an international collaboration, and is designed to exploit the full discovery potential and the huge range of physics opportunities that the LHC provides.

  2. A thermosiphon for ATLAS

    CERN Multimedia

    Rosaria Marraffino

    2013-01-01

    A new thermosiphon cooling system, designed for the ATLAS silicon detectors by CERN’s EN-CV team in collaboration with the experiment, will replace the current system in the next LHC run in 2015. Using the basic properties of density difference and making gravity do the hard work, the thermosiphon promises to be a very reliable solution that will ensure the long-term stability of the whole system.   Former compressor-based cooling system of the ATLAS inner detectors. The system is currently being replaced by the innovative thermosiphon. (Photo courtesy of Olivier Crespo-Lopez). Reliability is the major issue for the present cooling system of the ATLAS silicon detectors. The system was designed 13 years ago using a compressor-based cooling cycle. “The current cooling system uses oil-free compressors to avoid fluid pollution in the delicate parts of the silicon detectors,” says Michele Battistin, EN-CV-PJ section leader and project leader of the ATLAS thermosiphon....

  3. An Icelandic wind atlas

    Science.gov (United States)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  4. Prime wires for ATLAS

    CERN Multimedia

    2003-01-01

    In an award ceremony on 3 September, ATLAS honoured the French company Axon Cable for its special coaxial cables, which were purpose-built for the Liquid Argon calorimeter modules. Working for CERN since the 1970s, Axon' Cable received the ATLAS supplier award last week for its contribution to the liquid argon calorimeter cables of ATLAS (LAL/Orsay, France and University of Victoria, Canada), started in 1996. Its two sets of minicoaxial cables, called harnesses "A" and "B", are designed to function in the harsh conditions in the liquid argon (at 90 Kelvin or -183°C) and under extreme radiation (up to several Mrads). The cables are mainly used for the readout of the calorimeters, and are connected to the outside world by 114 signal feedthroughs with 1920 channels each. The signal from the detectors is transmitted directly without any amplification, which imposes tight restrictions on the impedance and on the signal propagation time of the cables. Peter Jenni, ATLAS spokesperson, gives the award for best s...

  5. ATLAS Detector Upgrade Prospects

    Science.gov (United States)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  6. ATLAS starts moving in

    CERN Multimedia

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1 March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day.

  7. Atlas of NATO.

    Science.gov (United States)

    Young, Harry F.

    This atlas provides basic information about the North Atlantic Treaty Organization (NATO). Formed in response to growing concern for the security of Western Europe after World War II, NATO is a vehicle for Western efforts to reduce East-West tensions and the level of armaments. NATO promotes political and economic collaboration as well as military…

  8. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  9. 28 June 2012 - Members of the European Brain Council led by President Mary Baker visiting the LHC tunnel at Point 5 with Technology Department Group Leader L. Bottura and CMS experimental area with Run Coordinator M. Chamizo-Llatas.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    28 June 2012 - Members of the European Brain Council led by President Mary Baker visiting the LHC tunnel at Point 5 with Technology Department Group Leader L. Bottura and CMS experimental area with Run Coordinator M. Chamizo-Llatas.

  10. 27 September 2013 -Lithuanian Minister of Culture Š. Birutis in the LHC tunnel with International Relations Adviser T. Kurtyka and visiting CMS experimental area with Deputy Spokesperson T. Camporesi. Also present: V. Rapsevicius, CMS Collaboration.

    CERN Multimedia

    Laurent Egli

    2013-01-01

    27 September 2013 -Lithuanian Minister of Culture Š. Birutis in the LHC tunnel with International Relations Adviser T. Kurtyka and visiting CMS experimental area with Deputy Spokesperson T. Camporesi. Also present: V. Rapsevicius, CMS Collaboration.

  11. 27 January 2011 - Mitglieder des Stiftungsrates Academia Engelberg, Switzerland in CMS surface and underground experimental area with Head of International Relations F. Pauss and ETHZ/CMS Physicist G. Dissertori.

    CERN Multimedia

    Michael Hoch

    2011-01-01

    27 January 2011 - Mitglieder des Stiftungsrates Academia Engelberg, Switzerland in CMS surface and underground experimental area with Head of International Relations F. Pauss and ETHZ/CMS Physicist G. Dissertori.

  12. 5th August 2008 - British Secretary of State for Innovation, Universities and Skills J. Denham MP visiting LHCb experimental area with Collaboration Spokesperson A. Golutvin and users T. Bowcock and U. Egede.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    5th August 2008 - British Secretary of State for Innovation, Universities and Skills J. Denham MP visiting LHCb experimental area with Collaboration Spokesperson A. Golutvin and users T. Bowcock and U. Egede.

  13. 4 July 2013- European Commission DG CONNECT Director-General R. Madelin, signing the guest book with CERN Director-General R. Heuer and visiting CMS experimental area with Collaboration Deputy Spokesperson J. Varela.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    4 July 2013- European Commission DG CONNECT Director-General R. Madelin, signing the guest book with CERN Director-General R. Heuer and visiting CMS experimental area with Collaboration Deputy Spokesperson J. Varela.

  14. 4th February 2011- Polish Ambassador to the United Nations Office R. A. Henczel visiting CMS control room and underground experimental area with his daughter, guided by Collaboration Spokesperson G. Tonelli.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    4th February 2011- Polish Ambassador to the United Nations Office R. A. Henczel visiting CMS control room and underground experimental area with his daughter, guided by Collaboration Spokesperson G. Tonelli.

  15. 31 May 2010 - Vice President Z. Yang of Huazhong Normal University, Wuhan, People’s Republic of China signing the guest book with Adviser R. Voss and visiting the ALICE experimental area with Collaboration Spokespersonn J. Schukraft.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    31 May 2010 - Vice President Z. Yang of Huazhong Normal University, Wuhan, People’s Republic of China signing the guest book with Adviser R. Voss and visiting the ALICE experimental area with Collaboration Spokespersonn J. Schukraft.

  16. How to review 4 million lines of ATLAS code

    CERN Document Server

    Stewart, Graeme; The ATLAS collaboration

    2017-01-01

    As the ATLAS Experiment prepares to move to a multi-threaded framework (AthenaMT) for Run3, we are faced with the problem of how to migrate 4 million lines of C++ source code. This code has been written over the past 15 years and has often been adapted, re-written or extended to the changing requirements and circumstances of LHC data taking. The code was developed by different authors, many of whom are no longer active, and under the deep assumption that processing ATLAS data would be done in a serial fashion. In order to understand the scale of the problem faced by the ATLAS software community, and to plan appropriately the significant efforts posed by the new AthenaMT framework, ATLAS embarked on a wide ranging review of our offline code, covering all areas of activity: event generation, simulation, trigger, reconstruction. We discuss the difficulties in even logistically organising such reviews in an already busy community, how to examine areas in sufficient depth to learn key areas in need of upgrade, yet...

  17. How To Review 4 Million Lines of ATLAS Code

    CERN Document Server

    Stewart, Graeme; The ATLAS collaboration

    2016-01-01

    As the ATLAS Experiment prepares to move to a multi-threaded framework (AthenaMT) for Run3, we are faced with the problem of how to migrate 4 million lines of C++ source code. This code has been written over the past 15 years and has often been adapted, re-written or extended to the changing requirements and circumstances of LHC data taking. The code was developed by different authors, many of whom are no longer active, and under the deep assumption that processing ATLAS data would be done in a serial fashion. In order to understand the scale of the problem faced by the ATLAS software community, and to plan appropriately the significant efforts posed by the new AthenaMT framework, ATLAS embarked on a wide ranging review of our offline code, covering all areas of activity: event generation, simulation, trigger, reconstruction. We discuss the difficulties in even logistically organising such reviews in an already busy community, how to examine areas in sufficient depth to learn key areas in need of upgrade, yet...

  18. SUSY searches with the ATLAS detector

    CERN Document Server

    Ventura, Andrea; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  19. SUSY searches with the ATLAS detector

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2017-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 \\TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  20. Searches for Supersymmetry with the ATLAS Experiment

    CERN Document Server

    Lee, Lawrence; The ATLAS collaboration

    2017-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches used proton-proton collisions at sqrt{s} = 13 TeV, and involved final states including jets, missing transverse momentum, light leptons as well as long-lived particle signatures.

  1. Brain areas impaired in oral and verbal apraxic patients.

    Directory of Open Access Journals (Sweden)

    Fariba Yadegari

    2014-06-01

    Full Text Available As both oral and verbal apraxia are related to vocal orofacial musculature, this study aimed at identifying brain regions impaired in cases with oral and verbal apraxia.In this non-experimental study, 46 left brain damaged subjects (17 females aged 23-84 years, were examined by oral and verbal apraxia tasks. Impaired and spared Broca's area, insula, and middle frontal gyrus in the left hemisphere were checked from magnetic resonance imaging and computed tomography scans utilizing Talairach Atlas. Data were analyzed using chi-square test.Insula was significantly impaired in both forms of oral and verbal apraxia and different severities and prominent forms of both apraxias (P < 0.05. Broca's area was slightly less involved than insula in two forms of apraxia.As the damage of insula was more prominent in both forms of apraxias, it seems that oral and verbal apraxia may have commonalities regarding their underlying brain lesions.

  2. EnviroAtlas - MSPA connectivity with water as foreground and 1-pixel edge width for the conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core...

  3. EnviroAtlas - MSPA connectivity with water as background and 1-pixel edge width for the conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core...

  4. EnviroAtlas - MSPA connectivity with water as foreground and 3-pixel edge width for the conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core...

  5. EnviroAtlas - MSPA connectivity with water as missing and 1-pixel edge width for the conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core...

  6. EnviroAtlas - MSPA connectivity with water as missing and 3-pixel edge width for the conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core...

  7. EnviroAtlas - MSPA connectivity with water as background and 3-pixel edge width for the conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core...

  8. Improving atlas methodology

    Science.gov (United States)

    Robbins, C.S.; Dowell, B.A.; O'Brien, J.

    1987-01-01

    We are studying a sample of Maryland (2 %) and New Hampshire (4 %) Atlas blocks and a small sample in Maine. These three States used different sampling methods and block sizes. We compare sampling techniques, roadside with off-road coverage, our coverage with that of the volunteers, and different methods of quantifying Atlas results. The 7 1/2' (12-km) blocks used in the Maine Atlas are satisfactory for coarse mapping, but are too large to enable changes to be detected in the future. Most states are subdividing the standard 7 1/2' maps into six 5-km blocks. The random 1/6 sample of 5-km blocks used in New Hampshire, Vermont (published 1985), and many other states has the advantage of permitting detection of some changes in the future, but the disadvantage of leaving important habitats unsampled. The Maryland system of atlasing all 1,200 5-km blocks and covering one out of each six by quarterblocks (2 1/2-km) is far superior if enough observers can be found. A good compromise, not yet attempted, would be to Atlas a 1/6 random sample of 5-km blocks and also one other carefully selected (non-random) block on the same 7 1/2' map--the block that would include the best sample of habitats or elevations not in the random block. In our sample the second block raised the percentage of birds found from 86% of the birds recorded in the 7 1/2' quadrangle to 93%. It was helpful to list the expected species in each block and to revise this list annually. We estimate that 90-100 species could be found with intensive effort in most Maryland blocks; perhaps 95-105 in New Hampshire. It was also helpful to know which species were under-sampled so we could make a special effort to search for these. A total of 75 species per block (or 75% of the expected species in blocks with very restricted habitat diversity) is considered a practical and adequate goal in these States. When fewer than 60 species are found per block, a high proportion of the rarer species are missed, as well as some of

  9. ATLAS recognises its best suppliers

    CERN Document Server

    2002-01-01

    The ATLAS Collaboration has recently rewarded two of its suppliers in the construction of very major detector components, fabricated in Japan. The ATLAS Supplier Award in recognition of excellent supplier performance has just been attributed to Kawasaki Heavy Industries, while Toshiba Corporation received the award two months ago at their headquarters in Japan.

  10. Population-averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain.

    Science.gov (United States)

    Veraart, Jelle; Leergaard, Trygve B; Antonsen, Bjørnar T; Van Hecke, Wim; Blockx, Ines; Jeurissen, Ben; Jiang, Yi; Van der Linden, Annemie; Johnson, G Allan; Verhoye, Marleen; Sijbers, Jan

    2011-10-15

    Rats are widely used in experimental neurobiological research, and rat brain atlases are important resources for identifying brain regions in the context of experimental microsurgery, tissue sampling, and neuroimaging, as well as comparison of findings across experiments. Currently, most available rat brain atlases are constructed from histological material derived from single specimens, and provide two-dimensional or three-dimensional (3D) outlines of diverse brain regions and fiber tracts. Important limitations of such atlases are that they represent individual specimens, and that finer details of tissue architecture are lacking. Access to more detailed 3D brain atlases representative of a population of animals is needed. Diffusion tensor imaging (DTI) is a unique neuroimaging modality that provides sensitive information about orientation structure in tissues, and is widely applied in basic and clinical neuroscience investigations. To facilitate analysis and assignment of location in rat brain neuroimaging investigations, we have developed a population-averaged three-dimensional DTI atlas of the normal adult Sprague Dawley rat brain. The atlas is constructed from high resolution ex vivo DTI images, which were nonlinearly warped into a population-averaged in vivo brain template. The atlas currently comprises a selection of manually delineated brain regions, the caudate-putamen complex, globus pallidus, entopeduncular nucleus, substantia nigra, external capsule, corpus callosum, internal capsule, cerebral peduncle, fimbria of the hippocampus, fornix, anterior commisure, optic tract, and stria terminalis. The atlas is freely distributed and potentially useful for several purposes, including automated and manual delineation of rat brain structural and functional imaging data.

  11. ATLAS Award for Difficult Task

    CERN Multimedia

    2004-01-01

    Two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week. On 23 March the Russian company ORPE Technologiya and its subcontractor, RSP Khrunitchev, were jointly presented with an ATLAS Supplier Award. Since 1998, ORPE Technologiya has been actively involved in the development of the carbon-fibre reinforced plastic elements of the ATLAS Inner Detector barrel support structure. After three years of joint research and development, CERN and ORPE Technologiya launched the manufacturing contract. It had a tight delivery schedule and very demanding specifications in terms of mechanical tolerance and stability. The contract was successfully completed with the arrival of the last element of the structure at CERN on 8 January 2004. The delivery of this key component of the Inner Detector deserves an ATLAS Award given the difficulty of manufacturing the end-frames, which very few companies in the world would have been able to do at an ...

  12. Challenges of a Modern Atlas of the Ageing Society

    Science.gov (United States)

    Bleisch, S.; Hil, D.; Korkut, S.; Meyer, P.

    2016-06-01

    Atlases are collections of illustrated data, often maps, which give an overview - as well as some details - of one or several topic areas. We noted that this description serves well especially for traditional paper and digital atlases. However, in our today's world of entertainment it might give a somewhat dated impression. For the topic area 'Ageing Society' we aim to visualise age related data in an interactive digital way that supports not only the content but also engages the users, offers opportunities for different stakeholders and levels of interest, and is able to accommodate a range of data as well as future updates. A set of guiding principles for the development process addresses these challenges. First implementations show that following the principles is feasible but expensive in terms of time and attention to detail needed. For each selected topic, a story guides the users through the data and highlights interesting aspects. The user can interrupt the story at any time and explore the data further through interacting with the detailed data representations, and switch back to the story when needed. This allows different levels of access which in combination with the specifically designed navigation concept as well as through the adherence to user aware design principles are very promising for the future developments of the Atlas of the Ageing Society and potentially other atlas products.

  13. Experimental Plan: 300 Area Treatability Test: In Situ Treatment of the Vadose Zone and Smear Zone Uranium Contamination by Polyphosphate Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Oostrom, Mart; Fruchter, Jonathan S.

    2007-08-31

    The overall objectives of the treatability test is to evaluate and optimize polyphosphate remediation technology for infiltration either from ground surface, or some depth of excavation, providing direct stabilization of uranium within the deep vadose and capillary fringe above the 300 Area aquifer. Expected result from this experimental plan is a data package that includes: 1) quantification of the retardation of polyphosphate, 2) the rate of degradation and the retardation of degradation products as a function of water content, 3) an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) an understanding of the transformation mechanism, identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and –silicate minerals with the polyphosphate remedy under solubility-limiting conditions, 5) quantification of the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and capillary fringe, and 6) quantification of reliable equilibrium solubility values for autunite under hydraulically unsaturated conditions allowing accurate prediction of the long-term stability of autunite. Moreover, results of intermediate scale testing will quantify the transport of polyphosphate and degradation products, and yield degradation rates, at a scale that is bridging the gap between the small-scale UFA studies and the field scale. These results will be used to test and verify a site-specific, variable saturation, reactive transport model and to aid in the design of a pilot-scale field test of this technology. In particular, the infiltration approach and monitoring strategy of the pilot test would be primarily based on results from intermediate-scale testing. Results from this

  14. A Reflection on the Establishment of Experimental Areas of Aiding the Poor through Developing Tourism and Its Related Issues%广西旅游扶贫试验区建设的相关问题思考

    Institute of Scientific and Technical Information of China (English)

    王华

    2004-01-01

    The national experimental areas for aiding the poor through tourism is a creative measure taken by China in the new century and provides a rare opportunity for the development of tourism in western regions of China. Guangxi is one of China's poorest regions with vast land areas but it enjoys rich natural resources, thus offering it favorable conditions to construct such experimental areas. In this respect, this paper, based on the analysis of the necessity and feasibility of such experiments, puts forwards some basic ideas and suggestions.

  15. Funding ATLAS 2012 key indicators for publicly funded research in Germany

    CERN Document Server

    Deutsche Forschungsgemeinschaft (DFG)

    2013-01-01

    The Funding ATLAS is a reporting system (previously referred to as the Funding Ranking) employed by the German Research Foundation (DFG) to provide information in the form of indicators of key developments in publicly funded research in Germany every three years. This English version of the Funding ATLAS 2012 presents selected findings from the more comprehensive German edition. At the core of the report are indicators that provide information on which subject areas have received funding at higher education and other research institutions in the period 2008-2010. This report also includes, as a supplement not found in the German edition, the decisions on the Excellence Initiative, which were taken shortly after the German edition of the Funding ATLAS 2012 was published. The report also addresses the subject of internationality by presenting selected indicators that show how attractive Germany's research institutions are for visiting scientists. In summary, the DFG Funding ATLAS furnishes reliable indicators o...

  16. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2013-01-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (Wʹ′ and Zʹ′), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this poster, and the latest performance measurements are presented.

  17. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2013-01-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (Wʹ and Zʹ), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this paper, and the results of the latest performance measurements are presented.

  18. Networks in ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2016-01-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks....

  19. ATLAS Transition Radiation Tracker

    CERN Multimedia

    2006-01-01

    The ATLAS transition radiation tracker is made of 300'000 straw tubes, up to 144cm long. Filled with a gas mixture and threaded with a wire, each straw is a complete mini-detector in its own right. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre. The tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Also, together with the ATLAS calorimeters, it distinguishes between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws.

  20. ATLAS IBL operational experience

    CERN Document Server

    Takubo, Yosuke; The ATLAS collaboration

    2016-01-01

    The Insertable B-Layer (IBL) is the inner most pixel layer in the ATLAS experiment, which was installed at 3.3 cm radius from the beam axis in 2014 to improve the tracking performance. To cope with the high radiation and hit occupancy due to proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed for the IBL. After the long shut-down period over 2013 and 2014, the ATLAS experiment started data-taking in May 2015 for Run-2 of the Large Hadron Collider (LHC). The IBL has been operated successfully since the beginning of Run-2 and shows excellent performance with the low dead module fraction, high data-taking efficiency and improved tracking capability. The experience and challenges in the operation of the IBL is described as well as its performance.

  1. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV and 8 TeV centre-of-mass LHC operation periods allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  2. Networks in ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2017-01-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks....

  3. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  4. Virtual Visit to the ATLAS Control Room by The State University of Londrina in Paraná

    CERN Multimedia

    2013-01-01

    The State University of Londrina in Paraná will organize the XVIII Physics Week. During the meeting, there will be a lecture by professor Pedro Abreu from the Instrumentation and Experimental Particle Physics Laboratory of Portugal about particle physics in the Large Hadron Collider (LHC). The lecture will be followed by a virtual visit to the ATLAS experiment at CERN, Switzerland with teachers Denis Damazio (BNL/CERN) and Yara Coutinho (UFRJ/CERN). - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Londrina-2013.html

  5. Atlaskartosemiotik: neue Möglichkeiten und Lösungen [Atlas cartosemiotics: new approaches and answers

    Directory of Open Access Journals (Sweden)

    Alexander Wolodtschenko

    2010-01-01

    Full Text Available Atlas cartosemiotics as a part of applied cartosemiotics is a new integrative research area with a mapsign related background, combining cartographic and non-cartographic traditions (geography, informatics, arts, history, medical science, etc. . This article aims to present various new and attractive approaches of using the idea of atlases on mobile devices (e.g. quantitative and analytical comparing descriptions; semiotic atlas architecture based on meta-variables like text, image and map; mini-display atlases with three viewing displays (3VD on mobile devices featuring 3-4 inch touchscreens. User oriented knowledge production is a main challenge for the 21st century where real and virtual spaces on mobile multimedia devices will play a major role. Students and young people (“digital generation” already show increasing interest in these technologies. But where can they learn the languages of digital maps, images, atlases and geoportals? To answer this question, atlas-cartosemiotic (atlassemiotic lectures are proposed in order to build an interface between the various research areas of the faculties of geosciences.

  6. Higgs results from ATLAS

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2016-01-01

    Full Text Available The updated Higgs measurements in various search channels with ATLAS Run 1 data are reviewed. Both the Standard Model (SM Higgs results, such as H → γγ, ZZ, WW, ττ, μμ, bb̄, and Beyond Standard Model (BSM results, such as the charged Higgs, Higgs invisible decay and tensor couplings, are summarized. Prospects for future Higgs searches are briefly discussed.

  7. Hybrid Atlas Models

    CERN Document Server

    Ichiba, Tomoyuki; Banner, Adrian; Karatzas, Ioannis; Fernholz, Robert

    2009-01-01

    We study Atlas-type models of equity markets with local characteristics that depend on both name and rank, and in ways that induce a stability of the capital distribution. Ergodic properties and rankings of processes are examined with reference to the theory of reflected Brownian motions in polyhedral domains. In the context of such models, we discuss properties of various investment strategies, including the so-called growth-optimal and universal portfolios.

  8. Supersymmetry searches in ATLAS

    CERN Document Server

    Torro Pastor, Emma; The ATLAS collaboration

    2016-01-01

    Weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  9. ATLAS support rails

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    These supports will hold the 7000 tonne ATLAS detector in its cavern at the LHC. The huge toroid will be assembled from eight coils that will house some of the muon chambers. Supported within the toroid will be the inner detector, containing tracking devices, as well as devices to measure the energies of the particles produced in the 14 TeV proton-proton collisions at the LHC.

  10. The ATLAS Experiment Movie

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  11. Overview of ATLAS results

    CERN Document Server

    Grabowska-Bold, Iwona; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This talk presents recent results based on Run 2 data on production of jet, electroweak bosons and quarkonium, electromagnetic processes in ultra-peripheral collisions, and bulk particle collectivity from PbPb, pPb and pp collisions.

  12. El experimento ATLAS

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  13. L'esperimento ATLAS

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  14. The first-level trigger of ATLAS

    CERN Document Server

    Haller, J; Aielli, G; Aloisio, A; Alviggi, M G; Aprodu, V; Ask, S; Barnett, B M; Bartos, D; Bauss, B; Belkin, A; Benhammou, Ya; Bocci, V; Booth, J R A; Brambilla, Elena; Brawn, I P; Bressler, S; Buda, S; Bohm, C; Canale, V; Caracinha, D; Cardarelli, R; Carlino, G; Cataldi, G; Charlton, D G; Chiodi, G; Ciapetti, G; Constantin, S; Conventi, F; Davis, A O; De Asmundis, R; De Pedis, D; De Seixas, J M; Della Pietra, M; Della Volpe, D; Di Ciaccio, A; Di Girolamo, A; Di Mattia, A; Di Simone, A; Distante, L; Dogaru, M; Edwards, J; Eisenhandler, E F; Ellis, Nick; Etzion, E; Farthouat, P; Fukunaga, C; Föhlisch, F; Gee, C N P; Gennari, E; Geweniger, C; Gillman, A R; Gorini, E; Grancagnolo, F; Gällnö, P; Haas, S; Hanke, P; Harel, A; Hasegawa, Y; Hellman, S; Hidvegi, A; Hillier, S J; Ichimiya, R; Iengo, P; Ikeno, M; Ishino, M; Iwasaki, H; Izzo, V; Kagawa, S; Kanaya, N; Kawagoe, K; Kawamoto, T; Kiyamura, H; Kluge, E -E; Kobayashi, T; Krasznahorkay, A; Kurashige, H; Kuwabara, T; Landon, M; Lellouch, D; Levinson, L; Lifshitz, R; Luci, C; Lupu, N; Magureanu, C; Mahboubi, K; Mahout, G; Meier, K; Migliaccio, A; Mikenberg, G; Mirea, A; Moye, T H; Nagano, K; Nisati, A; Nomachi, M; Nomoto, H; Nozaki, M; Ochi, A; Ogata, T; Omachi, C; Oshita, H; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Pectu, M; Perantoni, M; Perera, V J O; Perrino, R; Pessoa-Lima, H; Petrolo, E; Primavera, M; Prodan, L; Qian, W; Rieke, S; Rusu, A; Rühr, F; Sakamoto, H; Salamon, A; Sankey, D P C; Santonico, R; Sasaki, O; Schmitt, K; Schuler, G; Schultz-Coulon, H C; Schäfer, U; Sekhniaidze, G; Silverstein, S; Spagnolo, S; Spila, F; Spiwoks, R; Staley, R J; Sugaya, Y; Sugimoto, T; Takeda, H; Takeshita, T; Tanaka, S; Tapprogge, S; Tarem, S; Thomas, J P; Trefzger, T; Typaldos, D; Uroseviteanu, C; Vari, R; Veneziano, Stefano; Watkins, P M; Watson, A; Weber, G A; Weber, P; Wengler, T; Woerling, E E; Yamaguchi, Y; Yasu, Y; Zanello, L

    2006-01-01

    Due to the huge interaction rates and the tough experimental environment of pp collisions at a centre-of-mass energy sqrt(s)=14 TeV and luminosities of up to 10^34cm^-2s^-1, one of the experimental challenges at the LHC is the triggering of interesting events. In the ATLAS experiment a three-level trigger system is foreseen for this purpose. The first-level trigger is implemented in custom hardware and has been designed to reduce the data rate from the initial bunch-crossing rate of 40MHz to around 75 kHz. Its event selection is based on information from the calorimeters and dedicated muon detectors. This article gives an overview over the full first-level trigger system including the Calorimeter Trigger, the Muon Trigger and the Central Trigger Processor. In addition, recent results are reported that have been obtained from test-beam studies performed at CERN where the full first-level trigger chain was established successfully for the first time and used to trigger the read-out of up to nine ATLAS sub-detec...

  15. UAV-based Estimation of Carbon Exports from Heterogeneous Soil Landscapes - A Case Study from the CarboZALF Experimental Area

    Science.gov (United States)

    Wehrhan, Marc; Rauneker, Philipp; Sommer, Michael

    2016-04-01

    The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation (R² = 0.88) between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band 11 (899 nm). The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability (75-225 g C m-2) at field- and plot-scale could be attributed to small-scale soil heterogeneity in part. Soil effects were suppressed by the nearly optimal weather conditions for plant growth in 2014.

  16. UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes--A Case Study from the CarboZALF Experimental Area.

    Science.gov (United States)

    Wehrhan, Marc; Rauneker, Philipp; Sommer, Michael

    2016-02-19

    The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b899. The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.

  17. Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping.

    Science.gov (United States)

    Adams, Jennifer R; Lucash, Chris; Schutte, Leslie; Waits, Lisette P

    2007-05-01

    Hybridization with coyotes (Canis latrans) continues to threaten the recovery of endangered red wolves (Canis rufus) in North Carolina and requires the development of new strategies to detect and remove coyotes and hybrids. Here, we combine a spatially targeted faecal collection strategy with a previously published reference genotype data filtering method and a genetic test for coyote ancestry to screen portions of the red wolf experimental population area for the presence of nonred wolf canids. We also test the accuracy of our maximum-likelihood assignment test for identifying hybrid individuals using eight microsatellite loci instead of the original 18 loci and compare its performance to the Bayesian approach implemented in newhybrids. We obtained faecal DNA genotypes for 89 samples, 73 of which were matched to 23 known individuals. The performance of two sampling strategies - comprehensive sweep and opportunistic spot-check was evaluated. The opportunistic spot-check sampling strategy required less effort than the comprehensive sweep sampling strategy but identified fewer individuals. Six hybrids or coyotes were detected and five of these individuals were subsequently captured and removed from the population. The accuracy and power of the genetic test for coyote ancestry is decreased when using eight loci; however, nonred wolf canids are identified with high frequency. This combination of molecular and traditional field-based approaches has great potential for addressing the challenge of hybridization in other species and ecosystems.

  18. ATLAS overview week highlights

    CERN Multimedia

    D. Froidevaux

    2005-01-01

    A warm and early October afternoon saw the beginning of the 2005 ATLAS overview week, which took place Rue de La Montagne Sainte-Geneviève in the heart of the Quartier Latin in Paris. All visitors had been warned many times by the ATLAS management and the organisers that the premises would be the subject of strict security clearance because of the "plan Vigipirate", which remains at some level of alert in all public buildings across France. The public building in question is now part of the Ministère de La Recherche, but used to host one of the so-called French "Grandes Ecoles", called l'Ecole Polytechnique (in France there is only one Ecole Polytechnique, whereas there are two in Switzerland) until the end of the seventies, a little while after it opened its doors also to women. In fact, the setting chosen for this ATLAS overview week by our hosts from LPNHE Paris has turned out to be ideal and the security was never an ordeal. For those seeing Paris for the first time, there we...

  19. ATLAS Job Transforms

    CERN Document Server

    Stewart, G A; The ATLAS collaboration; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2013-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to `transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is mini...

  20. ATLAS Job Transforms

    CERN Document Server

    Stewart, G A; The ATLAS collaboration; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2013-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to 'transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is mini...