WorldWideScience

Sample records for atlas beam conditions

  1. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  2. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  3. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  4. The ATLAS Beam Conditions Monitor

    International Nuclear Information System (INIS)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz', M; Zavrtanik, M; Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P; Frais-Koelbl, H; Griesmayer, E; Niegl, M; Kagan, H; Tardif, D; Trischuk, W

    2008-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10 15 charged particles per cm 2 over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = ±184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware

  5. The ATLAS Beam Conditions Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz' , M; Zavrtanik, M [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P [CERN, Geneva (Switzerland); Frais-Koelbl, H; Griesmayer, E; Niegl, M [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H [Ohio State University, Columbus (United States); Tardif, D; Trischuk, W [University of Toronto, Toronto (Canada)], E-mail: william@physics.utoronto.ca

    2008-02-15

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10{sup 15} charged particles per cm{sup 2} over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = {+-}184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware.

  6. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  7. Development of Beam Conditions Monitor for the ATLAS experiment

    CERN Document Server

    Dolenc Kittelmann, Irena; Mikuž, M

    2008-01-01

    If there is a failure in an element of the accelerator the resulting beam losses could cause damage to the inner tracking devices of the experiments. This thesis presents the work performed during the development phase of a protection system for the ATLAS experiment at the LHC. The Beam Conditions Monitor (BCM) system is a stand-alone system designed to detect early signs of beam instabilities and trigger a beam abort in case of beam failures. It consists of two detector stations positioned at z=±1.84m from the interaction point. Each station comprises four BCM detector modules installed symmetrically around the beam pipe with sensors located at r=55 mm. This structure will allow distinguishing between anomalous events (beam gas and beam halo interactions, beam instabilities) and normal events due to proton-proton interaction by measuring the time-of-flight as well as the signal pulse amplitude from detector modules on the timescale of nanoseconds. Additionally, the BCM system aims to provide a coarse instan...

  8. Commissioning and first operation of the pCVD diamond ATLAS Beam Conditions Monitor

    CERN Document Server

    Dobos, D

    2009-01-01

    The main aim of the ATLAS Beam Conditions Monitor is to protect the ATLAS Inner Detector silicon trackers from high radiation doses caused by LHC beam incidents, e.g. magnet failures. The BCM uses in total 16 1x1 cm2 500 μm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors. They are arranged in 8 positions around the ATLAS LHC interaction point. Time difference measurements with sub nanosecond resolution are performed to distinguish between particles from a collision and spray particles from a beam incident. An abundance of the latter leads the BCM to provoke an abort of the LHC beam. A FPGA based readout system with a sampling rate of 2.56 GHz performs the online data analysis and interfaces the results to ATLAS and the beam abort system. The BCM diamond sensors, the detector modules and their readout system are described. Results of the operation with the first LHC beams are reported and results of commissioning and timing measurements (e.g. with cosmic muons) in preparation for first ...

  9. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Mikuz, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)], E-mail: Marko.Mikuz@ijs.si; Cindro, V.; Dolenc, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Frais-Koelbl, H. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Gorisek, A. [CERN, Geneva (Switzerland); Griesmayer, E. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H. [Ohio State University, Columbus (United States); Kramberger, G.; Mandic, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Niegl, M. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Pernegger, H. [CERN, Geneva (Switzerland); Trischuk, W. [University of Toronto, Toronto (Canada); Weilhammer, P. [CERN, Geneva (Switzerland); Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z={+-}183.8cm and r{approx}55mm ({eta}{approx}4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14{+-}2.

  10. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    International Nuclear Information System (INIS)

    Mikuz, M.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Gorisek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandic, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r∼55mm (η∼4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2

  11. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  12. ATLAS looks forward to having beams!

    CERN Multimedia

    Hans von der Schmitt

    Lyn Evans, head of the LHC project at CERN, brought very good news: all problems are now solved or understood, and barring a disaster, the LHC should see beams in July 2008. The ATLAS overview week (8-12 October) showed impressively that the experiment is getting ready for beams on all fronts. Perhaps that is best seen in the recent runs with cosmic events, which are integrating all ATLAS subsystems. The integration milestone M4 ended just a month ago (see the article in the September issue of ATLAS e-news), exercising for one week the complete chain from detectors - trigger and data acquisition - reconstruction at Tier0 - shipment of data worldwide to Tier1s. Event displays and histograms, available both online and offline, were shown throughout the overview week and are proof that the entire chain is actually working. The integration milestones give an enormous boost to the experiment - next time during M5 end of October. During the week we learned about successes and remaining issues along this ent...

  13. A beam halo event of the ATLAS Experiment

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Beam halo events: These occur as a single beam of protons is circulating in one direction in LHC, just passing through ATLAS. An outlier particle hits a part of the detector causing a spray of particles.

  14. ATLAS TRT Barrel in Test Beam

    CERN Multimedia

    Luehring, F

    In July, the TRT group made a highly successful test of 6 Barrel TRT modules in the ATLAS H8 testbeam. Over 3000 TRT straw tubes (4 mm diameter gas drift tubes) were instrumented and found to operate well. The prototype represents 1/16 of the ATLAS TRT barrel and was assembled from TRT modules produced as spares. This was the largest scale test of the TRT to this date and the measured detector performance was as good as or better than what was expected in all cases. The 2004 TRT testbeam setup before final cabling was attached. The readout chain and central DAQ system used in the TRT testbeam is a final prototype for the ATLAS experiment. The TRT electronics used to read out the data were: The Amplifier/Shaper/Discriminator with Baseline Restoration (ASDBLR) chip is the front-end analog chip that shapes and discriminates the electronic pulses generated by the TRT straws. The Digital Time Measurement Read Out Chip (DTMROC) measures the time of the pulse relative to the beam crossing time. The TRT-ROD ...

  15. The ATLAS beam pick-up based timing system

    International Nuclear Information System (INIS)

    Ohm, C.; Pauly, T.

    2010-01-01

    The ATLAS BPTX stations are composed of electrostatic button pick-up detectors, located 175 m away along the beam pipe on both sides of ATLAS. The pick-ups are installed as a part of the LHC beam instrumentation and used by ATLAS for timing purposes. The usage of the BPTX signals in ATLAS is twofold: they are used both in the trigger system and for LHC beam monitoring. The BPTX signals are discriminated with a constant-fraction discriminator to provide a Level-1 trigger when a bunch passes through ATLAS. Furthermore, the BPTX detectors are used by a stand-alone monitoring system for the LHC bunches and timing signals. The BPTX monitoring system measures the phase between collisions and clock with a precision better than 100 ps in order to guarantee a stable phase relationship for optimal signal sampling in the sub-detector front-end electronics. In addition to monitoring this phase, the properties of the individual bunches are measured and the structure of the beams is determined. On September 10, 2008, the first LHC beams reached the ATLAS experiment. During this period with beam, the ATLAS BPTX system was used extensively to time in the read-out of the sub-detectors. In this paper, we present the performance of the BPTX system and its measurements of the first LHC beams.

  16. Beam tests of ATLAS SCT silicon strip detector modules

    CERN Document Server

    Campabadal, F; Key, M; Lozano, M; Martínez, C; Pellegrini, G; Rafí, J M; Ullán, M; Johansen, L; Pommeresche, B; Stugu, B; Ciocio, A; Fadeev, V; Gilchriese, M G D; Haber, C; Siegrist, J; Spieler, H; Vu, C; Bell, P J; Charlton, D G; Dowell, John D; Gallop, B J; Homer, R J; Jovanovic, P; Mahout, G; McMahon, T J; Wilson, J A; Barr, A J; Carter, J R; Fromant, B P; Goodrick, M J; Hill, J C; Lester, C G; Palmer, M J; Parker, M A; Robinson, D; Sabetfakhri, A; Shaw, R J; Anghinolfi, F; Chesi, Enrico Guido; Chouridou, S; Fortin, R; Grosse-Knetter, J; Gruwé, M; Ferrari, P; Jarron, P; Kaplon, J; MacPherson, A; Niinikoski, T O; Pernegger, H; Roe, S; Rudge, A; Ruggiero, G; Wallny, R; Weilhammer, P; Bialas, W; Dabrowski, W; Grybos, P; Koperny, S; Blocki, J; Brückman, P; Gadomski, S; Godlewski, J; Górnicki, E; Malecki, P; Moszczynski, A; Stanecka, E; Stodulski, M; Szczygiel, R; Turala, M; Wolter, M; Ahmad, A; Benes, J; Carpentieri, C; Feld, L; Ketterer, C; Ludwig, J; Meinhardt, J; Runge, K; Mikulec, B; Mangin-Brinet, M; D'Onofrio, M; Donega, M; Moêd, S; Sfyrla, A; Ferrère, D; Clark, A G; Perrin, E; Weber, M; Bates, R L; Cheplakov, A P; Saxon, D H; O'Shea, V; Smith, K M; Iwata, Y; Ohsugi, T; Kohriki, T; Kondo, T; Terada, S; Ujiie, N; Ikegami, Y; Unno, Y; Takashima, R; Brodbeck, T; Chilingarov, A G; Hughes, G; Ratoff, P; Sloan, T; Allport, P P; Casse, G L; Greenall, A; Jackson, J N; Jones, T J; King, B T; Maxfield, S J; Smith, N A; Sutcliffe, P; Vossebeld, Joost Herman; Beck, G A; Carter, A A; Lloyd, S L; Martin, A J; Morris, J; Morin, J; Nagai, K; Pritchard, T W; Anderson, B E; Butterworth, J M; Fraser, T J; Jones, T W; Lane, J B; Postranecky, M; Warren, M R M; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Duerdoth, I P; Freestone, J; Foster, J M; Ibbotson, M; Loebinger, F K; Pater, J; Snow, S W; Thompson, R J; Atkinson, T M; Bright, G; Kazi, S; Lindsay, S; Moorhead, G F; Taylor, G N; Bachindgagyan, G; Baranova, N; Karmanov, D; Merkine, M; Andricek, L; Bethke, Siegfried; Kudlaty, J; Lutz, Gerhard; Moser, H G; Nisius, R; Richter, R; Schieck, J; Cornelissen, T; Gorfine, G W; Hartjes, F G; Hessey, N P; de Jong, P; Muijs, A J M; Peeters, S J M; Tomeda, Y; Tanaka, R; Nakano, I; Dorholt, O; Danielsen, K M; Huse, T; Sandaker, H; Stapnes, S; Bargassa, Pedrame; Reichold, A; Huffman, T; Nickerson, R B; Weidberg, A; Doucas, G; Hawes, B; Lau, W; Howell, D; Kundu, N; Wastie, R; Böhm, J; Mikestikova, M; Stastny, J; Broklová, Z; Broz, J; Dolezal, Z; Kodys, P; Kubík, P; Reznicek, P; Vorobel, V; Wilhelm, I; Chren, D; Horazdovsky, T; Linhart, V; Pospísil, S; Sinor, M; Solar, M; Sopko, B; Stekl, I; Ardashev, E N; Golovnya, S N; Gorokhov, S A; Kholodenko, A G; Rudenko, R E; Ryadovikov, V N; Vorobev, A P; Adkin, P J; Apsimon, R J; Batchelor, L E; Bizzell, J P; Booker, P; Davis, V R; Easton, J M; Fowler, C; Gibson, M D; Haywood, S J; MacWaters, C; Matheson, J P; Matson, R M; McMahon, S J; Morris, F S; Morrissey, M; Murray, W J; Phillips, P W; Tyndel, M; Villani, E G; Dorfan, D E; Grillo, A A; Rosenbaum, F; Sadrozinski, H F W; Seiden, A; Spencer, E; Wilder, M; Booth, P; Buttar, C M; Dawson, I; Dervan, P; Grigson, C; Harper, R; Moraes, A; Peak, L S; Varvell, K E; Chu Ming Lee; Hou Li Shing; Lee Shih Chang; Teng Ping Kun; Wan Chang Chun; Hara, K; Kato, Y; Kuwano, T; Minagawa, M; Sengoku, H; Bingefors, N; Brenner, R; Ekelöf, T J C; Eklund, L; Bernabeu, J; Civera, J V; Costa, M J; Fuster, J; García, C; García, J E; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Modesto, P; Sánchez, J; Sospedra, L; Vos, M; Fasching, D; González, S; Jared, R C; Charles, E

    2005-01-01

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 multiplied by 1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  17. Early operational experience with uranium beams at ATLAS

    International Nuclear Information System (INIS)

    Pardo, R.C.; Nolen, J.A.; Specht, J.R.

    1994-01-01

    The first acceleration of a uranium beam using the new ATLAS Positive Ion Injector(PII) took place on July 27, 1992. Since that first run, ATLAS and PII have completely achieved the design goals of the project and now provide high-current heavy-ion beams with energies beyond the Coulomb barrier for the research program. ATLAS routinely and reliably provides low-emittance beams of uranium and other very high-mass ions at energies in excess of 6 MeV/n with available on-target beam intensities exceeding 5 particle nA. The expectation that the beam quality for heavy beams would be significantly better than that of the tandem injector has been fully realized. The longitudinal emittance of beams from the PII is typically one-third that of similar beams from the tandem injector. In the past year ATLAS provided uranium beams for approximately 19% of the total research beam time, while beams with A≥100 were used 33% of the time. The system performance and techniques developed which made for this successful result will be discussed. Improvement projects underway will be presented and future goals described

  18. The 2004 ATLAS Combined Test Beam

    CERN Multimedia

    The ATLAS CTB Team, .

    2004-01-01

    In the year 2004, ATLAS has been involved in a huge combined test beam (CTB) effort in H8. A complete slice of the barrel detector and of the Muon End-cap has been tested, with the following clear goals: pre-commission the final elements and study the detector performance in a realistic combined data taking. Thanks to this experience, a lot of expertise in the operations has been acquired and much data (~ 4.6 TB of data, ~ 90 million events on castor) has been collected and is already under analysis. The CTB has been characterized by different phases with an incremental presence of sub-detectors modules and associated DAQ infrastructure, as well as incremental improvement of analysis tools for prompt data certification. The physics goals of the CTB have been defined in consultation with the physics coordinator, all the sub-detector representatives and the combined performance group representative. With all these indications, a detailed run plan day-by-day schedule was defined before the CTB start and was foll...

  19. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  20. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  1. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  2. ATLAS beam properties: some implications for target making

    International Nuclear Information System (INIS)

    Pardo, R.

    1984-01-01

    The expansion of the tandem-linac booster into the Argonne Tandem-Linac Accelerator System, ATLAS, is approximately 40% complete. When completed, the facility will provide beams of heavy ions from lithium to tin with energies eventually, to 25 MeV/amu. The existing facility continues to provide beams for the experimental program in nuclear and atomic physics during the construction phase. The booster system is capable of accelerating ions as heavy as selenium to energies of 10 MeV/amu for the lighter ions. The good beam quality provided by the linac means that multiple scattering, energy straggling, and target inhomogeneities are major factors in the resolution attainable in experiments. The beam properties that can be expected from ATLAS will be discussed and the present state of high resolution experiments will be reported

  3. Beam tests of ATLAS SCT silicon strip detector modules

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 538, - (2005), s. 384-407 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * silicon * micro-strip * beam * test Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  4. Reconstruction of FXR Beam Conditions

    International Nuclear Information System (INIS)

    Nexen, W E; Scarpetti, R D; Zentler, J

    2001-01-01

    Beam-envelope radius, envelope angle, and beam emittance can be derived from measurements of beam radius for at least three different transport conditions. We have used this technique to reconstruct exit parameters from the FXR injector and accelerator. We use a diamagnetic loop (DML) to measure the magnetic moment of the high current beam. With no assumptions about radial profile, we can derive the beam mean squire radius from the moment under certain easily met conditions. Since it is this parameter which is required for the reconstruction, it is evident that the DML is the ideal diagnostic for this technique. The simplest application of this technique requires at least three shots for a reconstruction but in reality requires averaging over many more shots because of shot to shot variation. Since DML measurements do not interfere with the beam, single shot time resolved measurements of the beam parameters appear feasible if one uses an array of at least three DMLs separated by known transport conditions

  5. Performance of the ATLAS hadronic end-cap calorimeter in beam tests

    International Nuclear Information System (INIS)

    Dowler, B.; Pinfold, J.; Soukup, J.; Vincter, M.; Cheplakov, A.; Datskov, V.; Fedorov, A.; Javadov, N.; Kalinnikov, V.; Kakurin, S.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Lazarev, A.; Neganov, A.; Pisarev, I.; Serochkin, E.; Shilov, S.; Shalyugin, A.; Usov, Yu.; Ban, J.; Bruncko, D.; Chytracek, R.; Jusko, A.; Kladiva, E.; Strizenec, P.; Gaertner, V.; Hiebel, S.; Hohlfeld, M.; Jakobs, K.; Koepke, L.; Marschalkowski, E.; Meder, D.; Othegraven, R.; Schaefer, U.; Thomas, J.; Walkowiak, W.; Zeitnitz, C.; Leroy, C.; Mazini, R.; Mehdiyev, R.; Akimov, A.; Blagov, M.; Komar, A.; Snesarev, A.; Speransky, M.; Sulin, V.; Yakimenko, M.; Aderholz, M.; Brettel, H.; Cwienk, W.; Dulny, B.; Fent, J.; Fischer, A.; Haberer, W.; Huber, J.; Huber, R.; Karev, A.; Kiryunin, A.; Kobler, T.; Kurchaninov, L.; Laskus, H.; Lindenmayer, M.; Mooshofer, P.; Oberlack, H.; Salihagic, D.; Schacht, P.; Stenzel, H.; Striegel, D.; Tribanek, W.; Chekulaev, S.; Denisov, S.; Levitsky, M.; Minaenko, A.; Mitrofanov, G.; Moiseev, A.; Pleskatch, A.; Sytnik, V.; Benoit, P.; Hoyle, K.W.; Honma, A.; Maharaj, R.; Oram, C.J.; Pattyn, E.W.; Rosvick, M.; Sbarra, C.; Wellisch, H-P.; Wielers, M.; Birney, P.S.; Dobbs, M.; Fincke-Keeler, M.; Fortin, D.; Hodges, T.A.; Keeler, R.K.; Langstaff, R.; Lefebvre, M.; Lenckowski, M.; McPherson, R.; O'Neil, D.C.; Forbush, D.; Mockett, P.; Toevs, F.; Braun, H.M.; Thadome, J.

    2002-01-01

    Modules of the ATLAS liquid argon Hadronic End-cap Calorimeter (HEC) were exposed to beams of electrons, muons and pions in the energy range 6≤E≤200 GeV at the CERN SPS. A description of the HEC and of the beam test setup are given. Results on the energy response and resolution are presented and compared with simulations. The ATLAS energy resolution for jets in the end-cap region is inferred and meets the ATLAS requirements

  6. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  7. RP process studies with radioactive beams at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K E [Argonne National Lab., Physics Div., Argonne, IL (United States)

    1998-06-01

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F(T{sub 1/2}=110 min) and {sup 56}Ni(T{sub 1/2}=6.1 d) have been produced. The reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed. (orig.)

  8. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new read-out system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. We present the current status and results where the new Demonstrator new electronics were situated in calorimeter modules and exposed to beams of muons, electrons and hadrons with different energies and impact angles.

  9. Test Beam Studies for the ATLAS Tile Calorimeter Upgrade Readout Electronics

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2018-01-01

    The High Luminosity Large Hadron Collider is expected to deliver 3-4/ab of p-p collisions with around 200 collisions per proton bunch crossing starting in 2026, and the readout electronics of the ATLAS Tile Calorimeter need to be upgraded to deal with the high rate of data taking as well as the large pileup conditions. The proposed digitizer/shaper cards were tested in 2016-7 in the North Area at CERN using the beam from the SPS to produce high energy pions, electrons, muons, and kaons. This presentation summarizes the setup for particle identification and study of the ATLAS Tile Calorimeter data taking in preparation for the production of main boards and digitizer/shaper boards for the photo-multiplier tubes. The fully assembled and tested mini-drawers will start to be installed after the LHC long shutdown in December 2023. The pulse shape, uniformity, and timing precision of the upgrade system are demonstrated.

  10. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. The results of the ongoing data analysis are discussed in the presentation.

  11. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  12. Event displays from Beam 2 in ATLAS, November 20th, 2009

    CERN Multimedia

    ATLAS collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded today, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detect

  13. Event displays from Beam Halo in ATLAS, November 20th, 2009

    CERN Multimedia

    ATLAS collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded today, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detect

  14. Event displays from Beam 01 in ATLAS, November 20th, 2009

    CERN Multimedia

    atlas collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded on, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detector

  15. ATLAS DataFlow Infrastructure recent results from ATLAS cosmic and first-beam data-taking

    CERN Document Server

    Vandelli, W

    2010-01-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented testbed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its fle...

  16. Test beam studies for the atlas tile calorimeter readout electronics

    CERN Document Server

    Rodriguez Perez, Andrea; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muon data allow to study the response dependence on the incident point and angle in a cell and inter-calibration of the response between cells. The electron data are used to determine the linearity of the electron energy measurement. The hadron data allow to determined the calorimeter response to pions, kaons and protons and tune the calorimeter simulation to that data. The results of the ongoing data analyses are discussed in the presentation.

  17. Beam splash effects on ATLAS silicon microstrip detectors evaluated using 1-w Nd YAG laser

    CERN Document Server

    Hara, K; Kohriki, T; Kuwano, T; Moorhead, G F; Terada, S; Unno, Y

    2005-01-01

    On an incident of accelerator beam loss, the tracking detector located close to the beam line is subjected to receive intensive radiation in a short period. We used a 1-W focused Nd: YAG laser and simulated the effects on the ATLAS microstrip detector. The laser corresponds to intensity of up to 1 multiplied by 109mips/pulse with a pulse width of about 10 ns. We observed breaks on Al strips on extreme conditions, depending on the laser intensity and bias voltage applied to the silicon sensor. The break can be interpreted as the oxide breakdown due to a large voltage locally created across the oxide by the intensive signal charges. The robustness of the Semiconductor Tracker (SCT) module including readout ASICs is also evaluated.

  18. Conditions Data Handling In The Multithreaded ATLAS Framework

    CERN Document Server

    Leggett, Charles; The ATLAS collaboration

    2018-01-01

    In preparation for Run 3 of the LHC, the ATLAS experiment is migrating its offline software to use a multithreaded framework, which will allow multiple events to be processed simultaneously. This implies that the handling of non-event, time-dependent (conditions) data, such as calibrations and geometry, must also be extended to allow for multiple versions of such data to exist simultaneously. This has now been implemented as part of the new ATLAS framework. The detector geometry is included in this scheme by having sets of time-dependent displacements on top of a static base geometry.

  19. Detailed Performance Study of ATLAS Endcap Muon Trigger with Beam Collision Data

    CERN Document Server

    Hayakawa, T

    2010-01-01

    In 2009 the first beam collision was occurred at the LHC and the ATLAS has started data taking with beam collision at s = 7 TeV since May 2010. This poster will mention the contraptions to take the beam collision data for the electronics of Level1 Endcap Muon Trigger system, and the result and detailed study of LVL1 Endcap Muon Trigger system performance with beam collision.

  20. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guido, Elisa; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-07-17

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstra...

  1. ATLAS One of the first Heavy ions collisions with stable beams- Event Display - November 2015

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    One of the first heavy ions collisions with stable beams recorded by ATLAS in November 2015. Tracks reconstructed from hits in the inner tracking detector are shown as orange arcs curving in the solenoidal magnetic field. The green and yellow bars indicate energy deposits in the Liquid Argon and Scintillating Tile calorimeters respectively. The beam pipe and the inner detectors are also shown.

  2. A tool for conditions tag management in ATLAS

    International Nuclear Information System (INIS)

    Sharmazanashvili, A; Batiashvili, G; Gvaberidze, G; Shekriladze, L; Formica, A

    2014-01-01

    ATLAS Conditions data include about 2 TB in a relational database and 400 GB of files referenced from the database. Conditions data is entered and retrieved using COOL, the API for accessing data in the LCG Conditions Database infrastructure. It is managed using an ATLAS-customized python based tool set. Conditions data are required for every reconstruction and simulation job, so access to them is crucial for all aspects of ATLAS data taking and analysis, as well as by preceding tasks to derive optimal corrections to reconstruction. Optimized sets of conditions for processing are accomplished using strict version control on those conditions: a process which assigns COOL Tags to sets of conditions, and then unifies those conditions over data-taking intervals into a COOL Global Tag. This Global Tag identifies the set of conditions used to process data so that the underlying conditions can be uniquely identified with 100% reproducibility should the processing be executed again. Understanding shifts in the underlying conditions from one tag to another and ensuring interval completeness for all detectors for a set of runs to be processed is a complex task, requiring tools beyond the above mentioned python utilities. Therefore, a JavaScript /PHP based utility called the Conditions Tag Browser (CTB) has been developed. CTB gives detector and conditions experts the possibility to navigate through the different databases and COOL folders; explore the content of given tags and the differences between them, as well as their extent in time; visualize the content of channels associated with leaf tags. This report describes the structure and PHP/ JavaScript classes of functions of the CTB.

  3. The Atlas Liquid Argon Calorimeter: Commissioning with Cosmic Muons and First LHC Beams

    CERN Document Server

    Trocmé, B

    2008-01-01

    In 2009, the Large Hadron Collider at CERN will collide protons with a center of mass energy of 14 TeV. ATLAS is a general purpose experiment that will allow to explore the wide potential of discovery and achieve high precision measurements. The ATLAS liquid argon calorimeters are presented, with an emphasis on their in situ commissioning using cosmic muons and their response during the first LHC single beam runs on September 2008.

  4. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    Energy Technology Data Exchange (ETDEWEB)

    Vandelli, Wainer, E-mail: wainer.vandelli@cern.c

    2010-04-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  5. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    International Nuclear Information System (INIS)

    Vandelli, Wainer

    2010-01-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  6. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-01-01

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged 132 Xe and 84 Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations

  7. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  8. Photon reconstruction in the ATLAS inner detector and liquid argon barrel calorimeter at the 2004 combined test beam

    NARCIS (Netherlands)

    Abat, E.; et al., [Unknown; Ferrari, P.; Gorfine, G.; Liebig, W.

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal

  9. Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Winklmeier, F; The ATLAS collaboration

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  10. A System for Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Bartoldus, R; The ATLAS collaboration; Cogan, J; Salnikov, A; Strauss, E; Winklmeier, F

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  11. Operational status of the uranium beam upgrade of the ATLAS accelerator

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Nolen, J.A.

    1993-01-01

    The Positive-Ion Injector (PII) for ATLAS is complete. First beams from the new injector have been accelerated and used for experiments at ATLAS. The PH consists of an ECR ion source on a 350-kV platform and a low-velocity superconducting linac. The first acceleration of uranium for the experimental program has demonstrated the design goals of the project have been met. Since the summer of 1992, the new injecter has been used for the research program approximately 50% of the time. Longitudinal beam quality from the new injector has been measured to be significantly better than comparable beams from the tandem injecter. Changes to the mix of resonators in the main ATLAS accelerator to match better the velocity profile for heavy beams such as uranium are nearly complete and uranium energies up to 6.45 MeV per nucleon have been achieved. The operating experience of the new ATLAS facility will be discussed with emphasis on the measured beam quality as well as achieved beam energies and currents

  12. Conditions and configuration metadata for the ATLAS experiment

    International Nuclear Information System (INIS)

    Gallas, E J; Pachal, K E; Tseng, J C L; Albrand, S; Fulachier, J; Lambert, F; Zhang, Q

    2012-01-01

    In the ATLAS experiment, a system called COMA (Conditions/Configuration Metadata for ATLAS), has been developed to make globally important run-level metadata more readily accessible. It is based on a relational database storing directly extracted, refined, reduced, and derived information from system-specific database sources as well as information from non-database sources. This information facilitates a variety of unique dynamic interfaces and provides information to enhance the functionality of other systems. This presentation will give an overview of the components of the COMA system, enumerate its diverse data sources, and give examples of some of the interfaces it facilitates. We list important principles behind COMA schema and interface design, and how features of these principles create coherence and eliminate redundancy among the components of the overall system. In addition, we elucidate how interface logging data has been used to refine COMA content and improve the value and performance of end-user reports and browsers.

  13. Conditions and configuration metadata for the ATLAS experiment

    CERN Document Server

    Gallas, E J; Albrand, S; Fulachier, J; Lambert, F; Pachal, K E; Tseng, J C L; Zhang, Q

    2012-01-01

    In the ATLAS experiment, a system called COMA (Conditions/Configuration Metadata for ATLAS), has been developed to make globally important run-level metadata more readily accessible. It is based on a relational database storing directly extracted, refined, reduced, and derived information from system-specific database sources as well as information from non-database sources. This information facilitates a variety of unique dynamic interfaces and provides information to enhance the functionality of other systems. This presentation will give an overview of the components of the COMA system, enumerate its diverse data sources, and give examples of some of the interfaces it facilitates. We list important principles behind COMA schema and interface design, and how features of these principles create coherence and eliminate redundancy among the components of the overall system. In addition, we elucidate how interface logging data has been used to refine COMA content and improve the value and performance of end-user...

  14. Evolution of ATLAS conditions data and its management for LHC Run-2

    CERN Document Server

    Boehler, Michael; Formica, Andrea; Gallas, Elizabeth; Radescu, Voica

    2015-01-01

    The ATLAS detector at the LHC consists of several sub-detector systems. Both data taking and Monte Carlo (MC) simulation rely on an accurate description of the detector conditions from every subsystem, such as calibration constants, different scenarios of pile-up and noise conditions, size and position of the beam spot, etc. In order to guarantee database availability for critical online applications during data-taking, two database systems, one for online access and another one for all other database access have been implemented. The long shutdown period has provided the opportunity to review and improve the Run-1 system: revise workflows, include new and innovative monitoring and maintenance tools and implement a new database instance for Run-2 conditions data. The detector conditions are organized by tag identification strings and managed independently from the different sub-detector experts. The individual tags are then collected and associated into a global conditions tag, assuring synchronization of var...

  15. Combined performance studies for electrons at the 2004 ATLAS combined test-beam

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2010-01-01

    In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.

  16. Combined performance studies for electrons at the 2004 ATLAS combined test-beam

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra, Barcelona Spain (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT - 20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU - Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: robert.froeschl@cern.c [Yale University, Department of Physics, PO Box 208121, New Haven, CT06520-8121 (United States)

    2010-11-15

    In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.

  17. Optimizing access to conditions data in ATLAS event data processing

    CERN Document Server

    Rinaldi, Lorenzo; The ATLAS collaboration

    2018-01-01

    The processing of ATLAS event data requires access to conditions data which is stored in database systems. This data includes, for example alignment, calibration, and configuration information that may be characterized by large volumes, diverse content, and/or information which evolves over time as refinements are made in those conditions. Additional layers of complexity are added by the need to provide this information across the world-wide ATLAS computing grid and the sheer number of simultaneously executing processes on the grid, each demanding a unique set of conditions to proceed. Distributing this data to all the processes that require it in an efficient manner has proven to be an increasing challenge with the growing needs and number of event-wise tasks. In this presentation, we briefly describe the systems in which we have collected information about the use of conditions in event data processing. We then proceed to explain how this information has been used to refine not only reconstruction software ...

  18. Tests of Local Hadron Calibration Approaches in ATLAS Combined Beam Tests

    International Nuclear Information System (INIS)

    Grahn, Karl-Johan; Kiryunin, Andrey; Pospelov, Guennadi

    2011-01-01

    Three ATLAS calorimeters in the region of the forward crack at |η| 3.2 in the nominal ATLAS setup and a typical section of the two barrel calorimeters at |η| = 0.45 of ATLAS have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap beam test. The local hadron calibration approach as used in the full Atlas setup has been applied to the endcap beam test data. An extension of it using layer correlations has been tested with the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to Monte Carlo simulations are presented.

  19. The ATLAS conditions database architecture for the Muon spectrometer

    International Nuclear Information System (INIS)

    Verducci, Monica

    2010-01-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  20. The ATLAS conditions database architecture for the Muon spectrometer

    Science.gov (United States)

    Verducci, Monica; ATLAS Muon Collaboration

    2010-04-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  1. The ATLAS conditions database architecture for the Muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Verducci, Monica, E-mail: monica.verducci@cern.c [University of Wuerzburg Am Hubland, 97074, Wuerzburg (Germany)

    2010-04-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  2. First experiences with the ATLAS pixel detector control system at the combined test beam 2004

    International Nuclear Information System (INIS)

    Imhaeuser, Martin; Becks, Karl-Heinz; Henss, Tobias; Kersten, Susanne; Maettig, Peter; Schultes, Joachim

    2006-01-01

    Detector control systems (DCS) include the readout, control and supervision of hardware devices as well as the monitoring of external systems like cooling system and the processing of control data. The implementation of such a system in the final experiment also has to provide the communication with the trigger and data acquisition system (TDAQ). In addition, conditions data which describe the status of the pixel detector modules and their environment must be logged and stored in a common LHC wide database system. At the combined test beam all ATLAS subdetectors were operated together for the first time over a longer period. To ensure the functionality of the pixel detector, a control system was set up. We describe the architecture chosen for the pixel DCS, the interfaces to hardware devices, the interfaces to the users and the performance of our system. The embedding of the DCS in the common infrastructure of the combined test beam and also its communication with surrounding systems will be discussed in some detail

  3. Study of the 2004 End-Cap beam tests of the ATLAS detector

    CERN Document Server

    Bieri, Marco

    The ATLAS detector is an all-purpose detector to study high-ener gy proton–proton colli- sions. ATLAS is located at the LHC (Lar ge Hadron Collider) at CERN in Gene va, Switzer - land. Before first data taking, man y beam tests have been carried out in order to fully understand each detector component. The studies in this thesis will concentrate on the 2004 beam test of the entire combined end-cap calorimeter system. The first section of this thesis outlines particle selection in the incoming test beam, eliminating contamination in order to have an accurate calibration environment. The remainder of the thesis focuses on detector calibration and performance studies, including signal-to-ener gy calibration con- stant determination, and various detector ener gy summation methods studying their effect on response. Ov erall detector ener gy sharing characteristics including the response of dead detector regions is also presented.

  4. Beam backgrounds in the ATLAS detector during LHC loss map tests at beta*=40cm and beta*=80cm at Ebeam=6.5 TeV

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    In this note the beam-background measurements with the ATLAS detector during lossmap tests of the LHC are described. Loss maps taken at beta*=40 cm and the normal 2015 setting of beta*=80 cm are compared. In the first case several collimator settings were explored, resulting in significant changes of beam backgrounds in ATLAS. Besides the studies of the dependence of background on collimation, which are important for optimisation of the LHC performance, these tests provide a clean environment to study the relative importance of beam halo losses on the experiment. The results show that the halo-related component of beam background in ATLAS decreases exponentially with increasing aperture of the tertiary collimators, the slope in terms of nominal sigma being about -0.5. From the data it is also shown that in normal operation conditions of LHC run 2 the beam halo losses contribute at most at the percent level to the total background, the dominant part coming from beam-gas interactions. The data are also used to ...

  5. The ATLAS Liquid Argon Electromagnetic Calorimeter Construction, commissioning and elected test beam results

    CERN Document Server

    Hervás, L

    2004-01-01

    The construction of the ATLAS Liquid Argon Electromagnetic Calorimeter has been completed and commissioning is in progress to prepare the cryostats for lowering into the ATLAS pit. After a brief description of the detector, its construction and readout electronics, this paper summarizes results of quality checks (electrical, connectivity) carried out during the integration of the calorimeter wheels into the cryostats. We present also selected results of its performance, such as linearity, energy resolution, timing resolution, uniformity of the energy response, obtained in beam tests with several series modules. 16 Refs.

  6. Relational databases for conditions data and event selection in ATLAS

    International Nuclear Information System (INIS)

    Viegas, F; Hawkings, R; Dimitrov, G

    2008-01-01

    The ATLAS experiment at LHC will make extensive use of relational databases in both online and offline contexts, running to O(TBytes) per year. Two of the most challenging applications in terms of data volume and access patterns are conditions data, making use of the LHC conditions database, COOL, and the TAG database, that stores summary event quantities allowing a rapid selection of interesting events. Both of these databases are being replicated to regional computing centres using Oracle Streams technology, in collaboration with the LCG 3D project. Database optimisation, performance tests and first user experience with these applications will be described, together with plans for first LHC data-taking and future prospects

  7. Relational databases for conditions data and event selection in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viegas, F; Hawkings, R; Dimitrov, G [CERN, CH-1211 Geneve 23 (Switzerland)

    2008-07-15

    The ATLAS experiment at LHC will make extensive use of relational databases in both online and offline contexts, running to O(TBytes) per year. Two of the most challenging applications in terms of data volume and access patterns are conditions data, making use of the LHC conditions database, COOL, and the TAG database, that stores summary event quantities allowing a rapid selection of interesting events. Both of these databases are being replicated to regional computing centres using Oracle Streams technology, in collaboration with the LCG 3D project. Database optimisation, performance tests and first user experience with these applications will be described, together with plans for first LHC data-taking and future prospects.

  8. SU-E-T-49: Automatic Beam Angle Determination for Lung IMRT Planning Using a Beam Configuration Atlas

    International Nuclear Information System (INIS)

    Yuan, L; Yin, F; Sheng, Y; Wu, Q J.; Ge, Y; Li, Y

    2014-01-01

    Purpose: To present a technique to automatically determine beam angle configurations for lung IMRT planning based on the patient-specific anatomy and tumor geometry. Methods: The relationship between individual patient anatomy and proper beam configurations was learned from high quality clinical plans in three steps. First, a beam configuration atlas was obtained by classifying 60 lung IMRT plans into 6 beam configuration clusters based on a dissimilarity measure defined between different beam configurations. A beam configuration template was extracted from each cluster to form an atlas. Second, a beam efficiency index map (EI map) was constructed to characterize the geometry of the tumor relative to the lungs, the body and other OARs along each candidate beam direction. Finally, the EI maps of the clinical cases and the cluster assignments of their beam configurations were paired to train a Bayesian classification model. This technique was validated by leave-one-out cross validation with 16 cases randomly selected from the original dataset. An IMRT plan (autobeam plan) for each test case was generated using the beam configuration template according to the cluster assignment given by the model and was compared with the corresponding clinical plan. Results: The dosimetric parameters (mean±S.D. in percentage of prescription dose) in the auto-beam plans and in the clinical plans, respectively, and the p-values by a paired ttest (in parenthesis) are: lung Dmean: 16.3±9.3, 18.6±7.4 (0.48), esophagus Dmean: 28.4±18, 30.7±19.3 (0.02), Heart Dmean: 21.5±17.5,21.1±17.2 (0.76), Spinal Cord D2%: 48±23, 51.2±21.8 (0.01), PTV dose homogeneity (D2%–D99%): 22±27.4, 20.4±12.8 (0.10).The dose reductions by the autobeam plans in esophagus Dmean and cord D02 are statistically significant but the differences (<4%) may not be clinically significant. The other dosimetric parameters are not statistically different. Conclusion: Plans generated by the automatic beam angle

  9. LHC Report: special run with de-squeezed beams for ATLAS/ALFA and TOTEM

    CERN Multimedia

    Helmut Burkhardt for the LHC team

    2015-01-01

    The main high-luminosity proton-proton run of the LHC is complemented by one week per year of special proton-proton runs. The special runs are performed with larger beam sizes at the interaction points to allow the forward physics experiments, TOTEM and ATLAS/ALFA, the chance to make precise measurements of protons as they emerge from collisions at small angles.   In standard high-luminosity operation, the beams are squeezed to give small beam sizes at the interaction points to maximise the collision rates. The “squeeze” takes place at top energy and the beam size at the centre of ATLAS (IP1) and CMS (IP5) is reduced from 66 micrometres at the top of the ramp to 18 micrometres before colliding beams are established. Protons that avoid the fate of an inelastic collision but yet still interact – in elastic or diffractive events – are scattered and emerge in the forward direction. The reduction in beam size has a side effect of increasing the an...

  10. ATLAS tile calorimeter data quality assessment and performance with calibration, cosmic and first beam data

    International Nuclear Information System (INIS)

    Volpi, Matteo

    2010-01-01

    The commissioning of the barrel hadronic calorimeter (Tile) of the ATLAS detector at the Large Hadron Collider (LHC) has been the focus of an extensive project over the last several years. Work with Tile has resulted in a fully operational detector before the first LHC beam test on 10 September 2008. A set of tools has been developed spanning from the hardware and software systems of the detector and online monitoring to the offline reconstruction. This set of tools constitutes the final Tile data quality system and is highly integrated with all ATLAS online and offline frameworks. A review of the final data quality system of the Tile hadronic calorimeter will be presented together with selected results on hardware reliability. This will be followed by the detector performance checks performed on cosmic data and on the first LHC beam data taken on 10 September 2008.

  11. ATLAS event at 13 TeV - First stable beam, 3 June 2015 - run: 266904

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Display of proton-proton collision events recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV. Tracks reconstructed from hits in the inner tracking detector are shown as arcs curving in the solenoidal magnetic field. The green and yellow bars indicate energy deposits in the liquid argon and scintillating-tile calorimeters.

  12. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    OpenAIRE

    Kovalenko, S.; Khoriauli, G.; C. Driouchi; J. D. Peso; L. Santi; Soloviev, I.; Arik, E.; Bernabeu, J; M. V. Castillo; Atkinson, T; Tegenfeldt, F.; Weidberg, A.R.; Røhne, O.; F. Anghinolfi; S. Chouridou

    2016-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Gea...

  13. Evolution of ATLAS conditions data and its management for LHC Run-2

    International Nuclear Information System (INIS)

    Böhler, Michael; Borodin, Mikhail; Formica, Andrea; Gallas, Elizabeth; Radescu, Voica

    2015-01-01

    The ATLAS detector at the LHC consists of several sub-detector systems. Both data taking and Monte Carlo (MC) simulation rely on an accurate description of the detector conditions from every subsystem, such as calibration constants, different scenarios of pile-up and noise conditions, size and position of the beam spot, etc. In order to guarantee database availability for critical online applications during data-taking, two database systems, one for online access and another one for all other database access, have been implemented.The long shutdown period has provided the opportunity to review and improve the Run-1 system: revise workflows, include new and innovative monitoring and maintenance tools and implement a new database instance for Run-2 conditions data. The detector conditions are organized by tag identification strings and managed independently by the different sub-detector experts. The individual tags are then collected and associated into a global conditions tag, assuring synchronization of various sub-detector improvements. Furthermore, a new concept was introduced to maintain conditions over all different data run periods into a single tag, by using Interval of Validity (IOV) dependent detector conditions for the MC database as well. This allows on the fly preservation of past conditions for data and MC and assures their sustainability with software evolution.This paper presents an overview of the commissioning of the new database instance, improved tools and workflows, and summarizes the actions taken during the Run-2 commissioning phase in the beginning of 2015. (paper)

  14. A JEE RESTful service to access Conditions Data in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081940; Gallas, Elizabeth

    2015-01-01

    Usage of Conditions Data in ATLAS is extensive for offline reconstruction and analysis (e.g.: alignment, calibration, data quality). The system is based on the LCG Conditions Database infrastructure, with read and write access via an ad hoc C++ API (COOL), a system which was developed before Run 1 data taking began. The infrastructure dictates that the data is organized into separate schemata (assigned to subsystems/groups storing distinct and independent sets of conditions), making it difficult to access information from several schemata at the same time. We have thus created PL/SQL functions containing queries to provide content extraction at multi-schema level. The PL/SQL API has been exposed to external clients by means of a Java application providing DB access via RESTful services, deployed inside an application server (JBoss WildFly). The services allow navigation over multiple schemata via simple URLs. The data can be retrieved either in XML or JSON formats, via simple clients (like curl or Web browser...

  15. A JEE RESTful service to access Conditions Data in ATLAS

    CERN Document Server

    Formica, Andrea; The ATLAS collaboration

    2015-01-01

    Usage of Conditions Data in ATLAS is extensive for offline reconstruction and analysis (for example: alignment, calibration, data quality). The system is based on the LCG Conditions Database infrastructure, with read and write access via an ad hoc C++ API (COOL), a system which was developed before Run 1 data taking began. The infrastructure dictates that the data is organized into separate schemas (assigned to subsystems/groups storing distinct and independent sets of conditions), making it difficult to access information from several schemas at the same time. We have thus created PL/SQL functions containing queries to provide content extraction at multi-schema level. The PL/SQL API has been exposed to external clients by means of an intermediate java application server (JBoss), where an application delivering access to the DB via RESTful services has been deployed. The services allow navigation over multiple schema content, via simple URLs. The queried data can be retrieved either in XML or JSON formats, vi...

  16. A JEE RESTful service to access Conditions Data in ATLAS

    Science.gov (United States)

    Formica, Andrea; Gallas, E. J.

    2015-12-01

    Usage of condition data in ATLAS is extensive for offline reconstruction and analysis (e.g. alignment, calibration, data quality). The system is based on the LCG Conditions Database infrastructure, with read and write access via an ad hoc C++ API (COOL), a system which was developed before Run 1 data taking began. The infrastructure dictates that the data is organized into separate schemas (assigned to subsystems/groups storing distinct and independent sets of conditions), making it difficult to access information from several schemas at the same time. We have thus created PL/SQL functions containing queries to provide content extraction at multi-schema level. The PL/SQL API has been exposed to external clients by means of a Java application providing DB access via REST services, deployed inside an application server (JBoss WildFly). The services allow navigation over multiple schemas via simple URLs. The data can be retrieved either in XML or JSON formats, via simple clients (like curl or Web browsers).

  17. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Kaye, R. A.

    1999-01-01

    In recent tests without beam, the Argonne 12 MHz split-coaxial radio-frequency quadruple (RFQ) achieved a cw intervane voltage of more than 100 kV, the design operating voltage for the device. This voltage is sufficient for the RFQ to function as the first stage of a RIB injector for the Argonne Tandem Linear Accelerator System (ATLAS). Previously reported beam dynamics calculations for the structure predict longitudinal emittance growth of only a few keV·ns for beams of mass 132 and above with transverse emittance of 0.27 π mm·mrad (normalized). Such beam quality is not typical of RFQ devices. The work reported here is preparation for tests with beams of mass up to 132. Beam diagnostic stations are being developed to measure the energy gain and beam quality of heavy ions accelerated by the RFQ using the Dynamitron accelerator facility at the ANL Physics Division as the injector. Beam diagnostic development includes provisions for performing the measurements with both a Si charged-particle detector and an electrostatic energy spectrometer system

  18. Validation of the ATLAS hadronic calibration with the LAr End-Cap beam tests data

    International Nuclear Information System (INIS)

    Barillari, Teresa

    2009-01-01

    The high granularity of the ATLAS calorimeter and the large number of expected particles per event require a clustering algorithm that is able to suppress noise and pile-up efficiently. Therefore the cluster reconstruction is the essential first step in the hadronic calibration. The identification of electromagnetic components within a hadronic cluster using cluster shape variables is the next step in the hadronic calibration procedure. Finally the energy density of individual cells is used to assign the proper weight to correct for the invisible energy deposits of hadrons due to the non-compensating nature of the ATLAS calorimeter and to correct for energy losses in material non instrumented with read-out. The weighting scheme employs the energy density in individual cells. Therefore the validation of the Monte Carlo simulation, which is used to define the weighting parameters and energy correction algorithms, is an essential step in the hadronic calibration procedure. Pion data, obtained in a beam test corresponding to the pseudorapidity region 2.5 < |η| < 4.0 in ATLAS and in the energy range 40 GeV ≤ E ≤ 200 GeV, have been compared with Monte Carlo simulations, using the full ATLAS hadronic calibration procedure.

  19. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    CERN Document Server

    INSPIRE-00397348

    2016-09-19

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14{\\deg}, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 {\\mu}m pitch of 5.5 +/- 0.5 {\\mu}m per pixel plane and of 2.8 +/- 0.5 {\\mu}m for the full four-plane tracker at 14{\\deg} were found, largely surpassing the AFP requirement of 10 {\\mu}m. The timing detector...

  20. Commissioning of the ATLAS High Level Trigger with single beam and cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Di Mattia, A, E-mail: dimattia@mail.cern.c [Michigan State University - Department of Physics and Astronomy 3218 Biomedical Physical Science - East Lansing, MI 48824-2320 (United States)

    2010-04-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system is responsible for making the online selection of interesting collision events. At the LHC design luminosity of 10{sup 34} cm{sup -2}s{sup -1} it will need to achieve a rejection factor of the order of 10{sup -7} against random proton-proton interactions, while selecting with high efficiency events that are needed for physics analyses. After a first processing level using custom electronics based on FPGAs and ASICs, the trigger selection is made by software running on two processor farms, containing a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a 'stress test' of the system and some initial calibration data. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. After giving an overview of the trigger design and its innovative features, this paper focuses on the experience gained from operating the ATLAS trigger with single LHC beams and cosmic-rays.

  1. Commissioning of the ATLAS High Level Trigger with single beam and cosmic rays

    International Nuclear Information System (INIS)

    Di Mattia, A

    2010-01-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system is responsible for making the online selection of interesting collision events. At the LHC design luminosity of 10 34 cm -2 s -1 it will need to achieve a rejection factor of the order of 10 -7 against random proton-proton interactions, while selecting with high efficiency events that are needed for physics analyses. After a first processing level using custom electronics based on FPGAs and ASICs, the trigger selection is made by software running on two processor farms, containing a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a 'stress test' of the system and some initial calibration data. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. After giving an overview of the trigger design and its innovative features, this paper focuses on the experience gained from operating the ATLAS trigger with single LHC beams and cosmic-rays.

  2. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  3. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  4. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2011-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  5. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra (Barcelona) Spain (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics CERN, CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT - 20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU - Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: kjg@particle.kth.se [Yale University, Department of Physics , PO Box 208121, New Haven, CT06520-8121 (United States)

    2011-06-15

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  6. First use of LHC Run 3 Conditions Database infrastructure for auxiliary data files in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081940; The ATLAS collaboration; Barberis, Dario; Gallas, Elizabeth; Rybkin, Grigori; Rinaldi, Lorenzo; Aperio Bella, Ludovica; Buttinger, William

    2017-01-01

    Processing of the large amount of data produced by the ATLAS experiment requires fast and reliable access to what we call Auxiliary Data Files (ADF). These files, produced by Combined Performance, Trigger and Physics groups, contain conditions, calibrations, and other derived data used by the ATLAS software. In ATLAS this data has, thus far for historical reasons, been collected and accessed outside the ATLAS Conditions Database infrastructure and related software. For this reason, along with the fact that ADF are effectively read by the software as binary objects, this class of data appears ideal for testing the proposed Run 3 conditions data infrastructure now in development. This paper describes this implementation as well as the lessons learned in exploring and refining the new infrastructure with the potential for deployment during Run 2.

  7. Advanced technologies for scalable ATLAS conditions database access on the grid

    CERN Document Server

    Basset, R; Dimitrov, G; Girone, M; Hawkings, R; Nevski, P; Valassi, A; Vaniachine, A; Viegas, F; Walker, R; Wong, A

    2010-01-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysi...

  8. First Use of LHC Run 3 Conditions Database Infrastructure for Auxiliary Data Files in ATLAS

    CERN Document Server

    Aperio Bella, Ludovica; The ATLAS collaboration

    2016-01-01

    Processing of the large amount of data produced by the ATLAS experiment requires fast and reliable access to what we call Auxiliary Data Files (ADF). These files, produced by Combined Performance, Trigger and Physics groups, contain conditions, calibrations, and other derived data used by the ATLAS software. In ATLAS this data has, thus far for historical reasons, been collected and accessed outside the ATLAS Conditions Database infrastructure and related software. For this reason, along with the fact that ADF data is effectively read by the software as binary objects, makes this class of data ideal for testing the proposed Run 3 Conditions data infrastructure now in development. This paper will describe this implementation as well as describe the lessons learned in exploring and refining the new infrastructure with the potential for deployment during Run 2.

  9. A Study of Hadronic Calibration Schemes for Pion Test Beam Data in the ATLAS Forward Calorimeter

    CERN Document Server

    McCarthy, Thomas G

    The ATLAS forward calorimeters constitute a small though important fraction of the detector's calorimeter system, designed in part to accurately and precisely measure the energy of particles and jets of particles originating from the collisions of high-energy protons at the detector's centre. The application of hadronic weights, a practice common in high-energy calorimetry, provides a means of compensation for the fraction of energy which is deposited by particles in the detector, but which is invisible to the detector due to the nature of hadronic showers. Explored here are various schemes of extracting hadronic weights, as well as the application of such weights, based on pion data from the 2003 ATLAS forward calorimeter test beam. During the collection of test beam data, beams of both pions and electrons of known energy, ranging from 10 to 200 GeV, were fired at specific points of an isolated detector in order to understand its response. The improvement in noise-subtracted energy resolution with respect to...

  10. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES-08193 Bellaterra, Barcelona (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE-55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW-Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE-221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU-Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: stathes.paganis@cern.ch [Yale University, Department of Physics, PO Box 208121, New Haven, CT06520-8121 (United States)

    2011-04-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  11. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  12. Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xiahai, E-mail: zhuangxiahai@sjtu.edu.cn; Qian, Xiaohua [SJTU-CU International Cooperative Research Center, Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Bai, Wenjia; Shi, Wenzhe; Rueckert, Daniel [Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ (United Kingdom); Song, Jingjing; Zhan, Songhua [Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Lian, Yanyun [Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China)

    2015-07-15

    Purpose: Cardiac computed tomography (CT) is widely used in clinical diagnosis of cardiovascular diseases. Whole heart segmentation (WHS) plays a vital role in developing new clinical applications of cardiac CT. However, the shape and appearance of the heart can vary greatly across different scans, making the automatic segmentation particularly challenging. The objective of this work is to develop and evaluate a multiatlas segmentation (MAS) scheme using a new atlas ranking and selection algorithm for automatic WHS of CT data. Research on different MAS strategies and their influence on WHS performance are limited. This work provides a detailed comparison study evaluating the impacts of label fusion, atlas ranking, and sizes of the atlas database on the segmentation performance. Methods: Atlases in a database were registered to the target image using a hierarchical registration scheme specifically designed for cardiac images. A subset of the atlases were selected for label fusion, according to the authors’ proposed atlas ranking criterion which evaluated the performance of each atlas by computing the conditional entropy of the target image given the propagated atlas labeling. Joint label fusion was used to combine multiple label estimates to obtain the final segmentation. The authors used 30 clinical cardiac CT angiography (CTA) images to evaluate the proposed MAS scheme and to investigate different segmentation strategies. Results: The mean WHS Dice score of the proposed MAS method was 0.918 ± 0.021, and the mean runtime for one case was 13.2 min on a workstation. This MAS scheme using joint label fusion generated significantly better Dice scores than the other label fusion strategies, including majority voting (0.901 ± 0.276, p < 0.01), locally weighted voting (0.905 ± 0.0247, p < 0.01), and probabilistic patch-based fusion (0.909 ± 0.0249, p < 0.01). In the atlas ranking study, the proposed criterion based on conditional entropy yielded a performance curve

  13. ATLAS event at 13 TeV - First stable beam, 3 June 2015 - run: 266904

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Display of a proton-proton collision event recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV. Tracks reconstructed from hits in the inner tracking detector are shown as arcs curving in the solenoidal magnetic field. The yellow rectangles along with the red and green bars indicate energy deposits in the liquid argon and scintillating-tile calorimeters. Tracks originate from several vertices, indicating multiple proton-proton interactions (also known as pile-up ) recorded in one event.

  14. ATLAS event at 13 TeV - First stable beam, 3 June 2015 - run: 266904

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Display of a proton-proton collision event recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV. Tracks reconstructed from hits in the inner tracking detector are shown as arcs curving in the solenoidal magnetic field. The green and yellow bars indicate energy deposits in the liquid argon and scintillating-tile calorimeters, clustered in a structure typical of a di-jet event. The transverse momentum of the jets are about 200 GeV and 170 GeV.

  15. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  16. Electron Energy Resolution of the ATLAS TILECAL Modules with Flat Filter Method (July 2002 test beam)

    CERN Document Server

    Kulchitskii, Yu A; Vinogradov, V B

    2005-01-01

    The constructed ATLAS detector at the LHC will have the great physics discovery potential, in particular in the detection of a heavy Higgs boson. Calorimeters will play a crucial role in it. It is necessary to have confidence that the calorimeters will perform as expected. With the aim of understanding of performance of the ATLAS Tile hadronic calorimeter to electrons 12\\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron energy resolutions of the $EBM-$ (ANL-44), $EBM+$ (IFA-42) and $BM$ (JINR-55) Modules of the ATLAS Tile Calorimeter at energies E = 10, 20, 50, 100 and 180 GeV and $\\theta = 20^o$ and $90^o $ and $\\eta$ scan from the July 2002 testbeam run data using the flat filter method of the PMT signal reconstruction. We have determined the statistical and constant terms for the electron en...

  17. Electron Energy Resolution of the ATLAS TILECAL Modules with Fit Filter Method (July 2002 test beam)

    CERN Document Server

    Kulchitskii, Yu A; Vinogradov, V B

    2006-01-01

    The constructed ATLAS detector at the LHC will have the great physics discovery potential, in particular in the detection of a heavy Higgs boson. Calorimeters will play a crucial role in it. It is necessary to have confidence that the calorimeters will perform as expected. With the aim of understanding of performance of the ATLAS Tile hadronic calorimeter to electrons 12\\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron energy resolutions of the $EBM-$ (ANL-44), $EBM+$ (IFA-42) and $BM$ (JINR-55) Modules of the ATLAS Tile Calorimeter at energies E = 10, 20, 50, 100 and 180 GeV and $\\theta = 20^o$ and $90^o $ and $\\eta$ scan from the July 2002 testbeam run data using the fit filter method of the PMT signal reconstruction. We have determined the statistical and constant terms for the electron ene...

  18. Utility of collecting metadata to manage a large scale conditions database in ATLAS

    International Nuclear Information System (INIS)

    Gallas, E J; Albrand, S; Borodin, M; Formica, A

    2014-01-01

    The ATLAS Conditions Database, based on the LCG Conditions Database infrastructure, contains a wide variety of information needed in online data taking and offline analysis. The total volume of ATLAS conditions data is in the multi-Terabyte range. Internally, the active data is divided into 65 separate schemas (each with hundreds of underlying tables) according to overall data taking type, detector subsystem, and whether the data is used offline or strictly online. While each schema has a common infrastructure, each schema's data is entirely independent of other schemas, except at the highest level, where sets of conditions from each subsystem are tagged globally for ATLAS event data reconstruction and reprocessing. The partitioned nature of the conditions infrastructure works well for most purposes, but metadata about each schema is problematic to collect in global tools from such a system because it is only accessible via LCG tools schema by schema. This makes it difficult to get an overview of all schemas, collect interesting and useful descriptive and structural metadata for the overall system, and connect it with other ATLAS systems. This type of global information is needed for time critical data preparation tasks for data processing and has become more critical as the system has grown in size and diversity. Therefore, a new system has been developed to collect metadata for the management of the ATLAS Conditions Database. The structure and implementation of this metadata repository will be described. In addition, we will report its usage since its inception during LHC Run 1, how it has been exploited in the process of conditions data evolution during LSI (the current LHC long shutdown) in preparation for Run 2, and long term plans to incorporate more of its information into future ATLAS Conditions Database tools and the overall ATLAS information infrastructure.

  19. Studies of the ATLAS hadronic Calorimeter response to different particles at Test Beams

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muons data allow to study the dependence of the response on the incident point and angle in the cell. The electron data are used to determine the linearity of the electron energy measurement. The hadron data will allow to tune the calorimeter response to pions and kaons modelling to improve the reconstruction of the jet energies. The results of the ongoing data analysis are discussed in the presentation.

  20. Utility of collecting metadata to manage a large scale conditions database in ATLAS

    CERN Document Server

    Gallas, EJ; The ATLAS collaboration; Borodin, M; Formica, A

    2014-01-01

    The ATLAS Conditions Database, based on the LCG Conditions Database infrastructure, contains a wide variety of information needed in online data taking and offline analysis. The total volume of ATLAS conditions data is in the multi-Terabyte range. Internally, the active data is divided into 65 separate schemas (each with hundreds of underlying tables) according to overall data taking type, detector subsystem, and whether the data is used offline or strictly online. While each schema has a common infrastructure, each schema's data is entirely independent of other schemas, except at the highest level, where sets of conditions from each subsystem are tagged globally for ATLAS event data reconstruction and reprocessing. The partitioned nature of the conditions infrastructure works well for most purposes, but metadata about each schema is problematic to collect in global tools from such a system because it is only accessible via LCG tools schema by schema. This makes it difficult to get an overview of all schemas,...

  1. Beam conditions monitors at CMS and LHC using diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria; Lohmann, Wolfgang [Desy-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universitaet Cottbus, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); Castro-Carballo, Maria-Elena; Lange, Wolfgang; Novgorodova, Olga [Desy-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Walsh, Roberval [Desy-Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-07-01

    The Fast Beam Conditions Monitor (BCM1F) is a particle detector based on diamonds. Eight modules comprising a single crystal diamond, front-end electronics and an optical link are installed on both sides of the interaction point inside the tracker of the CMS detector. The back-end uses ADCs, TDCs and scalers to measure the amplitudes, arrival time and rates of beam-halo particles and collision products. These data are used to protect the inner tracker from adverse beam conditions, perform a fast monitoring of the luminosity and e.g. beam-gas interactions. Recently two additional BCM1F modules have been installed at other positions of the LHC to supplement the beam-loss monitors by a flux measurement with nanosecond time resolution. In the talk essential parameters of the system are presented and examples of beam conditions monitoring are reported.

  2. Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection.

    Science.gov (United States)

    Zhuang, Xiahai; Bai, Wenjia; Song, Jingjing; Zhan, Songhua; Qian, Xiaohua; Shi, Wenzhe; Lian, Yanyun; Rueckert, Daniel

    2015-07-01

    Cardiac computed tomography (CT) is widely used in clinical diagnosis of cardiovascular diseases. Whole heart segmentation (WHS) plays a vital role in developing new clinical applications of cardiac CT. However, the shape and appearance of the heart can vary greatly across different scans, making the automatic segmentation particularly challenging. The objective of this work is to develop and evaluate a multiatlas segmentation (MAS) scheme using a new atlas ranking and selection algorithm for automatic WHS of CT data. Research on different MAS strategies and their influence on WHS performance are limited. This work provides a detailed comparison study evaluating the impacts of label fusion, atlas ranking, and sizes of the atlas database on the segmentation performance. Atlases in a database were registered to the target image using a hierarchical registration scheme specifically designed for cardiac images. A subset of the atlases were selected for label fusion, according to the authors' proposed atlas ranking criterion which evaluated the performance of each atlas by computing the conditional entropy of the target image given the propagated atlas labeling. Joint label fusion was used to combine multiple label estimates to obtain the final segmentation. The authors used 30 clinical cardiac CT angiography (CTA) images to evaluate the proposed MAS scheme and to investigate different segmentation strategies. The mean WHS Dice score of the proposed MAS method was 0.918 ± 0.021, and the mean runtime for one case was 13.2 min on a workstation. This MAS scheme using joint label fusion generated significantly better Dice scores than the other label fusion strategies, including majority voting (0.901 ± 0.276, p ranking study, the proposed criterion based on conditional entropy yielded a performance curve with higher WHS Dice scores compared to the conventional schemes (p ranking algorithm and joint label fusion, the MAS scheme is able to generate accurate segmentation

  3. Simulation of the ATLAS SCT barrel module response to LHC beam loss scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2014-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beam line may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth in the sensors which results in less collected charge. These effects provide a larger measure of safety during beam loss events than ...

  4. One of the first heavy-ion collisions with stable beams recorded by ATLAS in November 2015.

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    One of the first heavy-ion collisions with stable beams recorded by ATLAS in November 2015. Tracks reconstructed from hits in the inner tracking detector are shown as orange arcs curving in the solenoidal magnetic field. The green and yellow bars indicate energy deposits in the Liquid Argon and Scintillating Tile calorimeters respectively.

  5. Proposal of a Self-baking Single-wall Design for the VI Section of the ATLAS Beam Pipe

    CERN Document Server

    Marco Olcese, MO

    2002-01-01

    A single-wall design for the VI section of the ATLAS beam vacuum chamber is presented. This design would allow for a major cost saving with respect to the current double-wall baseline. All the thermal implications and impact on the B-layer mudules are discussed.

  6. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav

    2013-01-01

    Roč. 8, Jul (2013), s. 1-58 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : background * induced * semiconductor detector * pixel * muon * spectrometer * jet * single production * ATLAS * calorimeter * new physics * beam Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.526, year: 2013

  7. 9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

  8. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  9. Advanced technologies for scalable ATLAS conditions database access on the grid

    International Nuclear Information System (INIS)

    Basset, R; Canali, L; Girone, M; Hawkings, R; Valassi, A; Viegas, F; Dimitrov, G; Nevski, P; Vaniachine, A; Walker, R; Wong, A

    2010-01-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysis of server performance under stress tests indicates that Conditions Db data access is limited by the disk I/O throughput. An unacceptable side-effect of the disk I/O saturation is a degradation of the WLCG 3D Services that update Conditions Db data at all ten ATLAS Tier-1 sites using the technology of Oracle Streams. To avoid such bottlenecks we prototyped and tested a novel approach for database peak load avoidance in Grid computing. Our approach is based upon the proven idea of pilot job submission on the Grid: instead of the actual query, an ATLAS utility library sends to the database server a pilot query first.

  10. De-squeeze the beams: the TOTEM and ATLAS/ALFA experiments

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    A special week-long proton–proton run with larger beam sizes at the interaction point is intended to probe the p-p elastic scattering regime at small angles.   Nicola Turini, deputy spokesperson for TOTEM, in front of one of the experiment’s ‘Roman Pot’ detectors in the LHC tunnel. (Photo: Maximilien Brice/CERN) Usually, the motto of the LHC is “maximum luminosity”. But for a few days per year, the LHC ignores its motto to run at very low luminosity for the forward experiments. This week, the LHC will provide the TOTEM and ATLAS/ALFA experiments with data for a broad physics programme. The TOTEM experiment at Point 5 and the ATLAS/ALFA experiment at Point 1 study the elastic scattering of protons, which are not observable in normal operation runs. In the elastic scattering process, the two protons survive their encounter intact and only change directions by exchanging momentum. To allow this special run, the operators play with the so-c...

  11. Commissioning of the ATLAS high-level trigger with single beam and cosmic rays

    CERN Document Server

    Özcan, V Erkcan

    2010-01-01

    ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). Using fast reconstruction algorithms, its trigger system needs to efficiently reject a huge rate of background events and still select potentially interesting ones with good efficiency. After a first processing level using custom electronics, the trigger selection is made by software running on two processor farms, designed to have a total of around two thousand multi-core machines. This system is known as the High Level Trigger (HLT). To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection of background events. The recent LHC startup and short single-beam run provided a "stress test" of the trigger. Following this period, ATLAS continued to collect cosmic-ray events for detector alignment and calibration purposes. These running periods allowed strict tests of the HLT reconstruction and selection algorithms as we...

  12. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  13. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  14. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  15. Simulation of the ATLAS SCT Barrel Module Response to LHC Beam Loss Scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2013-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth which results in less collected charge. These effects provide a larger measure of safety during beam loss events than we have previous...

  16. Collecting conditions usage metadata to optimize current and future ATLAS software and processing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00064378; The ATLAS collaboration; Formica, Andrea; Gallas, Elizabeth; Oda, Susumu; Rinaldi, Lorenzo; Rybkin, Grigori; Verducci, Monica

    2017-01-01

    Conditions data (for example: alignment, calibration, data quality) are used extensively in the processing of real and simulated data in ATLAS. The volume and variety of the conditions data needed by different types of processing are quite diverse, so optimizing its access requires a careful understanding of conditions usage patterns. These patterns can be quantified by mining representative log files from each type of processing and gathering detailed information about conditions usage for that type of processing into a central repository.

  17. Analyses of test beam data for the ATLAS upgrade readout chip (ABC130)

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Richard [DESY, Hamburg (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    As part of the ATLAS phase II upgrade it is planned to replace the current tracker with an all silicon tracker. The outer part of the new tracker will consist of silicon strip detectors. For the readout of the strip detector a new Analog to Binary Converter chip (ABC130) was designed. The chip is processed in the 130 nm technology. In laboratory measurements the preamplifier of the new ABC130 showed a significant lower gain than expected. From the measurements in the laboratory it was not possible to distinguish if the malfunction is in the preamplifier or in the test circuit. Therefore an unbiased test was mandatory. Among other measurements, one was a test beam campaign at the Stanford Linear Accelerator Collider (SLAC). The result of measurement is shown in the presentation.

  18. TESTBEAM COORDINATION: 2nd ATLAS H8 Combined Test Beam Workshop

    CERN Multimedia

    Di Girolamo, B

    The second ATLAS H8 Combined Test Beam Workshop took place at CERN on 24th and 25th November. After a first workshop in July to warm up the atmosphere, a lot of work has been done in the meantime and there was a clear need to get together again before the end of 2003. The morning of the first day has been devoted to an assessment of the status of the various elements needed for next year’s test beam in H8. Each sub-detector has been presenting the status of preparation, as well as the work in progress and still to be done. The picture has been completed with the first plans for the DAQ from the point of view of the sub-detectors requirements, and a status of the LVL1 elements. Finally, the status and the timescale for availability of the LVL2 and EF infrastructure have been presented. The final draft layout of the sub-detectors has been discussed (figures 1 and 2). A more detailed description of the layout is in preparation to include more information on dead material and on the ancillary detectors (scint...

  19. Online Measurement of LHC Beam Parameters with the ATLAS High Level Trigger

    CERN Document Server

    Strauss, E; The ATLAS collaboration

    2011-01-01

    We present an online measurement of the LHC beam parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise, up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beam values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections....

  20. Online measurement of LHC beam parameters with the ATLAS High Level Trigger

    CERN Document Server

    Strauss, E; The ATLAS collaboration

    2011-01-01

    We present an online measurement of the LHC beam parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise,up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beam values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections. ...

  1. LHC Beam Splash seen by the ATLAS detector, 7 Apr 2015 - Run 260466 - event 22425

    CERN Multimedia

    Adam Bourdarios, Claire

    2015-01-01

    Event display of one of the collimator "splash" event seen by the ATLAS experiment in LHC Run-2 , on Tuesday April the 7th : event 22425, run 260466. The collimator position is 140m in front of the ATLAS interaction point. The spray of particles enters ATLAS from the left hand side of the picture. The length of the yellow bars indicates the energy deposited in the ATLAS calorimeter.

  2. TEST BEAM COORDINATION: Major upgrade of the ATLAS Test Beam network infrastructure

    CERN Multimedia

    Di Girolamo, B; Pasqualucci, E

    Based on the positive experience gained last year by the Muon group with the adoption of a completely isolated private network for the data acquisition, already last year for the 2002 Combined Pixel-Tilecal-Muon Test Beam, we adopted the private network solution. The main advantage of the isolation from the common CERN network infrastructure is the complete independence from possible problems that could affect the network in the area, intended to serve many other users, and the possibility to have a completely independent management of the IP addresses assignment. Moreover the presence of a firewall in the private network allows a better protection against possible external hackers, allowing users to transparently access the external word. A Fast Ethernet network has been set up as a control network. It relies on a backbone 24-port Fast Ethernet switch on which, in a tree structure, are connected several smaller switches dedicated to each sub-detector. In this way each sub-detector produces its own traffic...

  3. A study of the application of Brain Atlas with and without +Gz acceleration conditions.

    Science.gov (United States)

    Li, Yifeng; Zhang, Lihui; Zhang, Tao; Li, Baohui

    2017-07-20

    The purposes of this study were to utilize Brain Atlas to investigate the fluctuations in the characteristics of human EEG, with and without +Gz acceleration produced by human centrifuge, and also to examine the G load endurance of human body. The Brain Atlas of the EEG signal with and without +Gz acceleration in a static state were compared in order to reveal the correlation and differences. When compared with those in a static state, it was found that for the EEG readings of the subjects undergoing +Gz acceleration conditions, the energy and gray scale values of the low-frequency component-delta rhythm showed significant increases, while the energy and gray scale values of the high-frequency component-beta rhythm showed significant decreases. Among these, the beta2 rhythm was determined to be significantly inhibited. These fluctuations suggested that the ischemia conditions of brain had been improved. Also, the recoveries in the energy and gray-scale values were determined to be faster, which suggested that the G load endurance of human body had been enhanced. The Brain Atlas was found to show observable changes in color. The experimental results indicated that the Brain Atlas was able to provide assistance during the exploration of the fluctuations in the characteristics of EEG, and provided a criterion to assist in the observations of the function state fluctuations of human brain with +Gz acceleration. It also assisted in the evaluations of the G load endurance of human body.

  4. Ionization beam profile monitor for operation under hard environmental conditions

    International Nuclear Information System (INIS)

    Teterev, Yu.G.; Kaminski, G.; Phi Thanh Huong; Kaminski, G.; Kozik, E.

    2010-01-01

    The design and the performance of the Ionization Beam Profile Monitor (IBPM) operating on the residual gas ionization principle are described. The main advantage of the constructed device is the non-contact measuring method. Operating under hard environmental conditions it delivers the information about the primary beam position, profile and intensity in 'on-line' regime. It was found out that the device is capable to operate in vacuum in the range of 10 -6 /10 -3 mbar without the loss of the resolution power at the beam current as low as a few nA. The IBPM is prospective for beam profile monitoring due to long time. Emergency situations do not lead to decrease of its operability.

  5. Experience with the Open Source based implementation for ATLAS Conditions Data Management System

    CERN Document Server

    Amorim, A; Oliveira, C; Pedro, L; Barros, N

    2003-01-01

    Conditions Data in high energy physics experiments is frequently seen as every data needed for reconstruction besides the event data itself. This includes all sorts of slowly evolving data like detector alignment, calibration and robustness, and data from detector control system. Also, every Conditions Data Object is associated with a time interval of validity and a version. Besides that, quite often is useful to tag collections of Conditions Data Objects altogether. These issues have already been investigated and a data model has been proposed and used for different implementations based in commercial DBMSs, both at CERN and for the BaBar experiment. The special case of the ATLAS complex trigger that requires online access to calibration and alignment data poses new challenges that have to be met using a flexible and customizable solution more in the line of Open Source components. Motivated by the ATLAS challenges we have developed an alternative implementation, based in an Open Source RDBMS. Several issues...

  6. Large scale access tests and online interfaces to ATLAS conditions databases

    International Nuclear Information System (INIS)

    Amorim, A; Lopes, L; Pereira, P; Simoes, J; Soloviev, I; Burckhart, D; Schmitt, J V D; Caprini, M; Kolos, S

    2008-01-01

    The access of the ATLAS Trigger and Data Acquisition (TDAQ) system to the ATLAS Conditions Databases sets strong reliability and performance requirements on the database storage and access infrastructures. Several applications were developed to support the integration of Conditions database access with the online services in TDAQ, including the interface to the Information Services (IS) and to the TDAQ Configuration Databases. The information storage requirements were the motivation for the ONline A Synchronous Interface to COOL (ONASIC) from the Information Service (IS) to LCG/COOL databases. ONASIC avoids the possible backpressure from Online Database servers by managing a local cache. In parallel, OKS2COOL was developed to store Configuration Databases into an Offline Database with history record. The DBStressor application was developed to test and stress the access to the Conditions database using the LCG/COOL interface while operating in an integrated way as a TDAQ application. The performance scaling of simultaneous Conditions database read accesses was studied in the context of the ATLAS High Level Trigger large computing farms. A large set of tests were performed involving up to 1000 computing nodes that simultaneously accessed the LCG central database server infrastructure at CERN

  7. Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    CERN Document Server

    Deile, M.; Dubbert, J; Horvat, S; Kortner, O; Kroha, H; Manz, A; Mohrdieck, S; Rauscher, F; Richter, Robert; Staude, A

    2004-01-01

    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal ?eld of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection e?ciency of the drift tubes is unchanged under irradiation...

  8. EnviroAtlas - Ecosystem Service Market and Project Enabling Conditions, U.S., 2016, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting conditions enabling market-based programs, referred to herein as markets, and projects addressing ecosystem...

  9. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  10. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web

  11. Fast beam condition monitor for CMS. Performance and upgrade

    International Nuclear Information System (INIS)

    Leonard, Jessica L.; Bell, Alan; Burtowy, Piotr

    2014-05-01

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  12. Fast Beam Condition Monitor for CMS: performance and upgrade

    CERN Document Server

    INSPIRE-00009152; Bell, Alan; Burtowy, Piotr; Dabrowski, Anne; Hempel, Maria; Henschel, Hans; Lange, Wolfgang; Lohmann, Wolfgang; Odell, Nathaniel; Penno, Marek; Pollack, Brian; Przyborowski, Dominik; Ryjov, Vladimir; Stickland, David; Walsh, Roberval; Warzycha, Weronika; Zagozdzinska, Agnieszka

    2014-11-21

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  13. LHC Beam Splash seen by the ATLAS detector - 5 Apr 2015 - run 260272 - event 6539

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Event display of one of the collimator "splash" events seen by the ATLAS experiment in LHC Run-2, on Tuesday April the 5th : run 260272, event 6539 . The collimator position is 140m in front of the ATLAS interaction point.

  14. Implementing a modular framework in a conditions database explorer for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, J; Amorim, A; Batista, J; Lopes, L; Neves, R; Pereira, P [SIM and FCUL, University of Lisbon, Campo Grande, P-1749-016 Lisbon (Portugal); Kolos, S [University of California, Irvine, California 92697-4575 (United States); Soloviev, I [Petersburg Nuclear Physics Institute, Gatchina, St-Petersburg RU-188350 (Russian Federation)], E-mail: jalmeida@mail.cern.ch, E-mail: Antonio.Amorim@sim.fc.ul.pt

    2008-07-15

    The ATLAS conditions databases will be used to manage information of quite diverse nature and level of complexity. The usage of a relational database manager like Oracle, together with the object managers POOL and OKS developed in-house, poses special difficulties in browsing the available data while understanding its structure in a general way. This is particularly relevant for the database browser projects where it is difficult to link with the class defining libraries generated by general frameworks such as Athena. A modular approach to tackle these problems is presented here. The database infrastructure is under development using the LCG COOL infrastructure, and provides a powerful information sharing gateway upon many different systems. The nature of the stored information ranges from temporal series of simple values up to very complex objects describing the configuration of systems like ATLAS' TDAQ infrastructure, including also associations to large objects managed outside of the database infrastructure. An important example of this architecture is the Online Objects Extended Database BrowsEr (NODE), which is designed to access and display all data, available in the ATLAS Monitoring Data Archive (MDA), including histograms and data tables. To deal with the special nature of the monitoring objects, a plugin from the MDA framework to the Time managed science Instrument Databases (TIDB2) is used. The database browser is extended, in particular to include operations on histograms such as display, overlap, comparisons as well as commenting and local storage.

  15. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  16. ATLAS event at 13 TeV - First stable beam, 3 June 2015 - run: 266904, evt: 25884805

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Display of a proton-proton collision event recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV. Tracks reconstructed by the tracking detector are shown as light blue lines, and hits in the layers of the silicon tracking detector are shown as colored filled circles. The four inner layers are part of the silicon pixel detector and the four outer layers are part of the silicon strip detector. The layer closest to the beam, called IBL, is new for Run 2. In the view in the bottom right it is seen that this event has multiple pp collisions. The total number of reconstructed collision vertices is 17 but they are not all resolvable on the scale of this picture

  17. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  18. Performance of the ATLAS liquid argon endcap calorimeter in the pseudorapidity region 2.5<|η|<4.0 in beam tests

    International Nuclear Information System (INIS)

    Pinfold, J.; Soukup, J.; Archambault, J.P.; Cojocaru, C.; Khakzad, M.; Oakham, G.; Schram, M.; Vincter, M.G.; Datskov, V.; Drobin, V.; Fedorov, A.; Golubykh, S.; Javadov, N.; Kalinnikov, V.; Kakurin, S.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Lazarev, A.; Neganov, A.

    2008-01-01

    The pseudorapidity region 2.5<|η|<4.0 in ATLAS is a particularly complex transition zone between the endcap and forward calorimeters. A set-up consisting of 1/4 resp. 1/8 of the full azimuthal acceptance of the ATLAS liquid argon endcap and forward calorimeters has been exposed to beams of electrons, pions and muons in the energy range E≤200GeV at the CERN SPS. Data have been taken in the endcap and forward calorimeter regions as well as in the transition region. This beam test set-up corresponds very closely to the geometry and support structures in ATLAS. A detailed study of the performance in the endcap and forward calorimeter regions is described. The data are compared with MC simulations based on GEANT 4 models

  19. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Takeda, S. [SPring-8 Service Co., Ltd., 1-20-5, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Yokoyama, K.; Matsui, J. [Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Kagoshima, Y. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan)

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.

  20. Test-beam evaluation of heavily irradiated silicon strip modules for ATLAS Phase-II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of 7.5x1034cm−2s−1. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II and CERN SPS test beam facilities to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before and after irradiation with 8x1014neqcm−2 protons and a total ionising dose of 37.2MRad. The DURA...

  1. Collecting conditions usage metadata to optimize current and future ATLAS software and processing

    CERN Document Server

    Barberis, Dario; The ATLAS collaboration; Gallas, Elizabeth; Oda, Susumu

    2016-01-01

    Conditions data (for example: alignment, calibration, data quality) are used extensively in the processing of real and simulated data in ATLAS. The volume and variety of the conditions data needed by different types of processing are quite diverse, so optimizing its access requires a careful understanding of conditions usage patterns. These patterns can be quantified by mining representative log files from each type of processing and gathering detailed information about conditions usage for that type of processing into a central repository. In this presentation, we describe the systems developed to collect this conditions usage metadata per job type and describe a few specific (but very different) ways in which it has been used. For example, it can be used to cull specific conditions data into a much more compact package to be used by jobs doing similar types of processing: these customized collections can then be shipped with jobs to be executed on isolated worker nodes (such as HPC farms) that have no netwo...

  2. Single Event Upset Studies Using the ATLAS SCT

    CERN Document Server

    Weidberg, A R; The ATLAS collaboration

    2013-01-01

    Single Event Upsets (SEU) are expected to occur during high luminosity running of the ATLAS SemiConductor Tracker (SCT). The SEU cross sections were measured in pion beams with momenta in the range 200 to 465 MeV/c and proton test beams at 24 GeV/c but the extrapolation to LHC conditions is non-trivial because of the range of particle types and momenta. The SEUs studied occur in the \\emph{p-i-n} photodiode and the registers in the ABCD chip. Comparisons between predicted SEU rates and those measured from ATLAS data are presented. The implications for ATLAS operation are discussed.

  3. Single Event Upset Studies Using the ATLAS SCT

    CERN Document Server

    Dafinca, A; The ATLAS collaboration; Weidberg, A R

    2014-01-01

    Single Event Upsets (SEU) are expected to occur during high luminosity running of the ATLAS SemiConductor Tracker (SCT). The SEU cross sections were measured in pion beams with momenta in the range 200 to 465 MeV/c and proton test beams at 24 GeV/c but the extrapolation to LHC conditions is non-trivial because of the range of particle types and momenta. The SEUs studied occur in the p-i-n photodiode and the registers in the ABCD chip. Comparisons between predicted SEU rates and those measured from ATLAS data are presented. The implications for ATLAS operation are discussed

  4. Commissioning and performance of the ATLAS Inner Detector with the first beam and cosmic data

    Energy Technology Data Exchange (ETDEWEB)

    Andreazza, A., E-mail: attilio.andreazza@mi.infn.i [Universita degli Studi di Milano and I.N.F.N., Milano (Italy)

    2010-05-21

    The ATLAS experiment at the CERN Large Hadron Collider (LHC) started data-taking in Autumn 2008 with the inauguration of the LHC. The Inner Detector is a tracking system for charged particles based on three technologies: silicon pixels, silicon micro-strips and drift tubes. The detector was commissioned and calibrated in the ATLAS cavern. Cosmic muons data are used for timing the different components of the system, measuring detector performance on particles and cross-checking the calibration results. Cosmic ray data serve also to align the detector prior to the LHC start up, exercising the alignment procedure to be repeated during the accelerator's operation. Tracking performance after this early alignment is suitable for initial LHC collisions.

  5. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2010-01-01

    Roč. 6, č. 6 (2010), P06001/1-P06001/28 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter methods * calorimeters * detector modelling and simulations * pattern recognition * cluster finding * calibration and fitting methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010

  6. GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

    CERN Multimedia

    2004-01-01

    GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

  7. Fast beam conditions monitor BCM1F for the CMS experiment

    International Nuclear Information System (INIS)

    Bell, A.; Castro, E.; Hall-Wilton, R.

    2009-10-01

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  8. Fast beam conditions monitor BCM1F for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A. [CERN, Geneva (Switzerland); Geneva Univ. (Switzerland); Castro, E. [DESY Zeuthen (Germany); Hall-Wilton, R. [CERN, Geneva (Switzerland); Wisconsin Univ., Madison, WI (US)] (and others)

    2009-10-15

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  9. LHC Beam Splash seen by the ATLAS detector - 7 Apr 2015 - Run 260466 - LB 731 - Event 16848

    CERN Multimedia

    ATLAS, EXPERIMENT

    2015-01-01

    Event display of a collimator "splash" event seen by the ATLAS experiment in LHC Run-2, on Tuesday April the 7th 2015: event 16848, run 260466. The collimator position is 140m in front of the ATLAS interaction point. The figure on the left shows an axial view of the various components of the ATLAS detector. The figure on the right shows the energy deposits in the cells of the ATLAS calorimeter.

  10. The ATLAS inner detector semiconductor tracker (Si and GaAs strips): review of the 1995 beam tests at the CERN SPS H8 beamline

    International Nuclear Information System (INIS)

    Moorhead, G.F.

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author)

  11. Non-collision backgrounds in ATLAS

    CERN Document Server

    Gibson, S M; The ATLAS collaboration

    2012-01-01

    The proton-proton collision events recorded by the ATLAS experiment are on top of a background that is due to both collision debris and non-collision components. The latter comprises of three types: beam-induced backgrounds, cosmic particles and detector noise. We present studies that focus on the first two of these. We give a detailed description of beam-related and cosmic backgrounds based on the full 2011 ATLAS data set, and present their rates throughout the whole data-taking period. Studies of correlations between tertiary proton halo and muon backgrounds, as well as, residual pressure and resulting beam-gas events seen in beam-condition monitors will be presented. Results of simulations based on the LHC geometry and its parameters will be presented. They help to better understand the features of beam-induced backgrounds in each ATLAS sub-detector. The studies of beam-induced backgrounds in ATLAS reveal their characteristics and serve as a basis for designing rejection tools that can be applied in physic...

  12. ATLAS collision event from the first LHC fill with stable beam on 17th April 2018

    CERN Multimedia

    ATLAS Collaboration

    2018-01-01

    Event display (run 348197, event 562578) from the first stable beam proton-proton collision run of 2018, recorded on April 17. Curved white lines show the trajectories of charged particles in the tracking systems.

  13. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    Science.gov (United States)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  14. Simulation of effects of incident beam condition in p-p elastic scattering

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Le Xiaoyun; Tanihata, I.

    2014-01-01

    The simulation is performed for the monitors of beam direction and beam position for p-p elastic scattering. We set several variables to simulate the monitors of incident beam condition changes: beam positions at the quadrupole magnet and target in beam line polarimeter (BLP2), distance between quadrupole magnet and target, size of plastic scintillators, distance between the target in BLP2 and the centers of plastic scintillators, and beam polarization. Through the rotation of the coordinate system, the distributions of scattered and recoiled protons in the laboratory system were obtained. By analyzing the count yields in plastic scintillators at different beam positions, we found that the beam incident angular change (0.35°) could be detected when the asymmetry of geometries of left and right scintillators in BLP2 was changed by 6%. Therefore, the scattering angle measured in the experiment can be tracked by these monitors. (authors)

  15. Pulse simulations and heat flow measurements for the ATLAS Forward Calorimeter under high-luminosity conditions

    CERN Document Server

    AUTHOR|(SzGeCERN)758133; Zuber, Kai

    The high luminosity phase of the Large Hadron Collider at CERN is an important step for further and more detailed studies of the Standard Model of particle physics as well as searches for new physics. The necessary upgrade of the ATLAS detector is a challenging task as the increased luminosity entails many problems for the different detector parts. The liquid-argon Forward Calorimeter suffers signal-degradation effects and a high voltage drop of the supply potential under high-luminosity conditions. It is possible that the argon starts to boil due to the large energy depositions. The effect of the high-luminosity environment on the liquid-argon Forward Calorimeter has been simulated in order to investigate the level of signal degradation. The results show a curvature of the triangular pulse shape that appears prolonged when increasing the energy deposit. This effect is caused by the drop in the electric potential that produces a decrease in the electric field across the liquid-argon gap in the Forward Calorim...

  16. Ajax, XSLT and SVG: Displaying ATLAS conditions data with new web technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roe, S A, E-mail: shaun.roe@cern.c [CERN, CH-1211 Geneve 23 (Switzerland)

    2010-04-01

    The combination of three relatively recent technologies is described which allows an easy path from database retrieval to interactive web display. SQL queries on an Oracle database can be performed in a manner which directly return an XML description of the result, and Ajax techniques (Asynchronous JavaScript And XML) are used to dynamically inject the data into a web display accompanied by an XSLT transform template which determines how the data will be formatted. By tuning the transform to generate SVG (Scalable Vector Graphics) a direct graphical representation can be produced in the web page while retaining the database data as the XML source, allowing dynamic links to be generated in the web representation, but programmatic use of the data when used from a user application. With the release of the SVG 1.2 Tiny draft specification, the display can also be tailored for display on mobile devices. The technologies are described and a sample application demonstrated, showing conditions data from the ATLAS Semiconductor Tracker.

  17. Ajax, XSLT and SVG: Displaying ATLAS conditions data with new web technologies

    International Nuclear Information System (INIS)

    Roe, S A

    2010-01-01

    The combination of three relatively recent technologies is described which allows an easy path from database retrieval to interactive web display. SQL queries on an Oracle database can be performed in a manner which directly return an XML description of the result, and Ajax techniques (Asynchronous JavaScript And XML) are used to dynamically inject the data into a web display accompanied by an XSLT transform template which determines how the data will be formatted. By tuning the transform to generate SVG (Scalable Vector Graphics) a direct graphical representation can be produced in the web page while retaining the database data as the XML source, allowing dynamic links to be generated in the web representation, but programmatic use of the data when used from a user application. With the release of the SVG 1.2 Tiny draft specification, the display can also be tailored for display on mobile devices. The technologies are described and a sample application demonstrated, showing conditions data from the ATLAS Semiconductor Tracker.

  18. Ajax, XSLT and SVG: Displaying ATLAS conditions data with new web technologies

    CERN Document Server

    Roe, S A

    2010-01-01

    The combination of three relatively recent technologies is described which allows an easy path from database retrieval to interactive web display. SQL queries on an Oracle database can be performed in a manner which directly return an XML description of the result, and Ajax techniques (Asynchronous JavaScript And XML) are used to dynamically inject the data into a web display accompanied by an XSLT transform template which determines how the data will be formatted. By tuning the transform to generate SVG (Scalable Vector Graphics) a direct graphical representation can be produced in the web page while retaining the database data as the XML source, allowing dynamic links to be generated in the web representation, but programmatic use of the data when used from a user application. With the release of the SVG 1.2 Tiny draft specification, the display can also be tailored for display on mobile devices. The technologies are described and a sample application demonstrated, showing conditions data from the ATLAS Sem...

  19. ATLAS collision event from the first LHC fill with stable beam on 17th April 2018

    CERN Multimedia

    ATLAS Collaboration

    2018-01-01

    Event display (run 348197, event 921894) from the first stable beam proton-proton collision run of 2018, recorded on April 17. Orange lines show the trajectories of charged particles in the tracking systems. The green and yellow boxes show the energy deposits in the electromagnetic and hadronic calorimeters, respectively. The three yellow cones show jets of particles produced in the collision.

  20. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  1. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  2. Full data consistency conditions for cone-beam projections with sources on a plane

    International Nuclear Information System (INIS)

    Clackdoyle, Rolf; Desbat, Laurent

    2013-01-01

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example. (paper)

  3. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.

  4. Online measurement of LHC beam parameters with the ATLAS High Level Trigger

    International Nuclear Information System (INIS)

    Strauss, E

    2012-01-01

    We present an online measurement of the LHC beamspot parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise, up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beamspot values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual bunch crossings have allowed for studies of single-bunch distributions as well as the behavior of bunch trains. This talk will cover the constraints imposed by the online environment and describe how these measurements are accomplished with the given resources. The algorithm tasks must be completed within the time constraints of the Level 2 trigger, with limited CPU and bandwidth allocations. This places an emphasis on efficient algorithm design and the minimization of data requests.

  5. Run II performance of luminosity and beam condition monitors at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Hamburg (Germany)

    2016-07-01

    The BRIL (Beam Radiation Instrumentation and Luminosity) system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. Many of the BRIL subsystems have been upgraded and others have been added for LHC Run II to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) delivers an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. An overview of the performance during 2015 LHC running for the new/updated BRIL subsystems will be given, including the uncertainties of the luminosity measurements.

  6. Explicit formulation for natural frequencies of double-beam system with arbitrary boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mirzabeigy, Alborz; Madoliat, Reza [Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Dabbagh, Vahid [University of Malaya, Kuala Lumpur (Malaysia)

    2017-02-15

    In this paper, free transverse vibration of two parallel beams connected through Winkler type elastic layer is investigated. Euler- Bernoulli beam hypothesis has been applied and it is assumed that boundary conditions of upper and lower beams are similar while arbitrary without any limitation even for non-ideal boundary conditions. Material properties and cross-section geometry of beams could be different from each other. The motion of the system is described by a homogeneous set of two partial differential equations, which is solved by using the classical Bernoulli-Fourier method. Explicit expressions are derived for the natural frequencies. In order to verify accuracy of results, the problem once again solved using modified Adomian decomposition method. Comparison between results indicates excellent accuracy of proposed formulation for any arbitrary boundary conditions. Derived explicit formulation is simplest method to determine natural frequencies of double-beam systems with high level of accuracy in comparison with other methods in literature.

  7. Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions.

    Science.gov (United States)

    Pérez, Darío G; Funes, Gustavo

    2012-12-03

    Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

  8. A Slice of ATLAS

    CERN Document Server

    2004-01-01

    An entire section of the ATLAS detector is being assembled at Prévessin. Since May the components have been tested using a beam from the SPS, giving the ATLAS team valuable experience of operating the detector as well as an opportunity to debug the system.

  9. Quantitative approach for optimizing e-beam condition of photoresist inspection and measurement

    Science.gov (United States)

    Lin, Chia-Jen; Teng, Chia-Hao; Cheng, Po-Chung; Sato, Yoshishige; Huang, Shang-Chieh; Chen, Chu-En; Maruyama, Kotaro; Yamazaki, Yuichiro

    2018-03-01

    Severe process margin in advanced technology node of semiconductor device is controlled by e-beam metrology system and e-beam inspection system with scanning electron microscopy (SEM) image. By using SEM, larger area image with higher image quality is required to collect massive amount of data for metrology and to detect defect in a large area for inspection. Although photoresist is the one of the critical process in semiconductor device manufacturing, observing photoresist pattern by SEM image is crucial and troublesome especially in the case of large image. The charging effect by e-beam irradiation on photoresist pattern causes deterioration of image quality, and it affect CD variation on metrology system and causes difficulties to continue defect inspection in a long time for a large area. In this study, we established a quantitative approach for optimizing e-beam condition with "Die to Database" algorithm of NGR3500 on photoresist pattern to minimize charging effect. And we enhanced the performance of measurement and inspection on photoresist pattern by using optimized e-beam condition. NGR3500 is the geometry verification system based on "Die to Database" algorithm which compares SEM image with design data [1]. By comparing SEM image and design data, key performance indicator (KPI) of SEM image such as "Sharpness", "S/N", "Gray level variation in FOV", "Image shift" can be retrieved. These KPIs were analyzed with different e-beam conditions which consist of "Landing Energy", "Probe Current", "Scanning Speed" and "Scanning Method", and the best e-beam condition could be achieved with maximum image quality, maximum scanning speed and minimum image shift. On this quantitative approach of optimizing e-beam condition, we could observe dependency of SEM condition on photoresist charging. By using optimized e-beam condition, measurement could be continued on photoresist pattern over 24 hours stably. KPIs of SEM image proved image quality during measurement and

  10. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions

    International Nuclear Information System (INIS)

    Sahmani, S.; Ansari, R.

    2011-01-01

    Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis

  11. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-09-15

    Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.

  12. Flow conditioning for improved optical propagation of beams through regions bounded by surfaces of high solidity

    International Nuclear Information System (INIS)

    Robey, H.F.; Albrecht, G.F.; Freitas, B.L.

    1991-01-01

    A flow conditioning system has been designed to maximize the thermal homogeneity in an enclosed region through which a laser beam must propagate. In the present application, such an enclosed region exists between the Nd:glass disks of a high average power solid-state laser amplifier. Experiments have been conducted on a test facility to quantify the magnitude of the beam losses due to thermal scattering. It is shown that the intensity of the incoherent light which is thermally scattered from this region can be reduced to less than 0.1% of the incident-beam intensity under apropriate flow and cooling conditions

  13. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    CERN Document Server

    INSPIRE-00407830; Blue, Andrew; Bates, Richard; Bloch, Ingo; Diez, Sergio; Fernandez-Tejero, Javier; Fleta, Celeste; Gallop, Bruce; Greenall, Ashley; Gregor, Ingrid-Maria; Hara, Kazuhiko; Ikegami, Yoichi; Lacasta, Carlos; Lohwasser, Kristin; Maneuski, Dzmitry; Nagorski, Sebastian; Pape, Ian; Phillips, Peter W.; Sperlich, Dennis; Sawhney, Kawal; Soldevila, Urmila; Ullan, Miguel; Unno, Yoshinobu; Warren, Matt

    2016-07-29

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1x10^35 cm^-2 s^-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb^-1, requiring the tracking detectors to withstand hadron equivalences to over 1x10^16 1 MeV neutrons per cm^2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 micron FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 micron thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 micron thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout...

  14. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B.S.; Adamczyk, L.; Adams, D.L.; Adelman, J.

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β * are studied.

  15. The Atlas of Health and Working Conditions by Occupation. 1. Occupational ranking lists and occupational profiles from periodical occupational health survey data

    NARCIS (Netherlands)

    Broersen, J. P.; van Dijk, F. J.; Weel, A. N.; Verbeek, J. H.

    1995-01-01

    In this article, we describe methods which have been applied in the compilation of the Atlas of Health and Working conditions by Occupation. First, we discuss the need for information systems to identify problems concerning working conditions and health. Such information systems have an exploratory

  16. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Simmat, I. [Medical Univ. Vienna/AKH Vienna (Austria). Div. of Medical Radiation Physics; Georg, P.; Georg, D.; Goldner, G.; Stock, M. [Medical Univ. Vienna/AKH Vienna (Austria). Div. of Medical Radiation Physics; Medical Univ. Vienna (Austria). Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology; Birkfellner, W. [Medical Univ. Vienna (Austria). Center for Medical Physics and Biomedical Engineering; Medical Univ. Vienna (Austria). Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology

    2012-09-15

    Background and purpose: The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability. Material and methods: A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS {sup registered} and iPlan {sup registered} were compared to an expert's delineation by calculating the Dice similarity coefficient (DSC) and conformity index. Results: Demo-atlases of both systems showed different results for bladder (DSC{sub ABAS} 0.86 {+-} 0.17, DSC{sub iPlan} 0.51 {+-} 0.30) and prostate (DSC{sub ABAS} 0.71 {+-} 0.14, DSC{sub iPlan} 0.57 {+-} 0.19). Rectum delineation (DSC{sub ABAS} 0.78 {+-} 0.11, DSC{sub iPlan} 0.84 {+-} 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS {sup registered} was closest to the interobserver benchmark. Autosegmentation with iPlan {sup registered}, ABAS {sup registered} and manual segmentation took 0.5, 4 and 15-20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34). Conclusion: For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy. (orig.)

  17. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions.

    Science.gov (United States)

    Simmat, I; Georg, P; Georg, D; Birkfellner, W; Goldner, G; Stock, M

    2012-09-01

    The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability. A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS(®) and iPlan(®) were compared to an expert's delineation by calculating the Dice similarity coefficient (DSC) and conformity index. Demo-atlases of both systems showed different results for bladder (DSC(ABAS) 0.86 ± 0.17, DSC(iPlan) 0.51 ± 0.30) and prostate (DSC(ABAS) 0.71 ± 0.14, DSC(iPlan) 0.57 ± 0.19). Rectum delineation (DSC(ABAS) 0.78 ± 0.11, DSC(iPlan) 0.84 ± 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS(®) was closest to the interobserver benchmark. Autosegmentation with iPlan(®), ABAS(®) and manual segmentation took 0.5, 4 and 15-20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34). For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy.

  18. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions

    International Nuclear Information System (INIS)

    Simmat, I.; Georg, P.; Georg, D.; Goldner, G.; Stock, M.; Medical Univ. Vienna; Birkfellner, W.; Medical Univ. Vienna

    2012-01-01

    Background and purpose: The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability. Material and methods: A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS registered and iPlan registered were compared to an expert's delineation by calculating the Dice similarity coefficient (DSC) and conformity index. Results: Demo-atlases of both systems showed different results for bladder (DSC ABAS 0.86 ± 0.17, DSC iPlan 0.51 ± 0.30) and prostate (DSC ABAS 0.71 ± 0.14, DSC iPlan 0.57 ± 0.19). Rectum delineation (DSC ABAS 0.78 ± 0.11, DSC iPlan 0.84 ± 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS registered was closest to the interobserver benchmark. Autosegmentation with iPlan registered , ABAS registered and manual segmentation took 0.5, 4 and 15-20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34). Conclusion: For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy. (orig.)

  19. Double-wall IFR cell for conditioning intense relativistic electron beams

    International Nuclear Information System (INIS)

    Myers, M.C.; Meger, R.A.; Murphy, D.P.; Fernsler, R.F.; Hubbard, R.F.; Slinker, S.P.; Weidman, D.J.

    1994-01-01

    An intense relativistic electron beam (IREB) injected into neutral gas in the high pressure regime characteristically propagates in a self-pinched mode but is susceptible to the resistive hose instability. Typically, beam are conditioned for propagation experiments by reducing the perturbations that may excite resistive hose and by adjusting the emittance profile of the beam such that the convective growth of the instability is decreased. The former has been achieved by applying an anharmonic focusing force as the beam is transported through a conducting tube or cell. The latter has been effectively demonstrated by passing the beam through an ion focus regime (IFR) cell which imposes a head to tail beam emittance variations. However, since the physical parameters of the two types of cells are different, conflicts arise when the cells are coupled sequentially. The double-wall IFR cell described here eliminates these interface difficulties by providing the necessary conditions properties in a single cell. The physics and design of the cell will be introduced and parameter variations explored. The conditioning and propagation measurements will be presented and the results of the experiment will be discussed in relation to theory and simulation

  20. LIPAc personnel protection system for realizing radiation licensing conditions on injector commissioning with deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Narita, Takahiro; Kasugai, Atsushi [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki [Gitec Co. Ltd., Hachinohe, Aomori (Japan); Marqueta, Alvaro; Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan); Sakaki, Hironao [Quantum Beam Science Center, JAEA, Kizu, Kyoto (Japan); Gobin, Raphael [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, Gif/Yvette (France)

    2016-11-01

    Highlights: • Personnel Protection System (PPS) is developed to adapt the radiation licensing. • PPS achieves the target performance to secure the personnel safety. • Pulse Duty Management System (PDMS) is developed to manage the beam-operation-time. • Satisfying performance of PDMS is confirmed by injector operation with H+ beam. • By the result of PPS and PDMS tests, the radiation license was successfully obtained. - Abstract: The performance validation of the Linear IFMIF Prototype Accelerator (LIPAc), up to the energy of 9 MeV deuteron beam with 125 mA continuous wave (CW), is planned in Rokkasho, Japan. There are three main phases of LIPAc performance validation: Injector commissioning, RFQ commissioning and LIPAc commissioning. Injector commissioning was started by H{sup +} and D{sup +} beam. To apply the radiation licensing for the Injector commissioning, the entering/leaving to/from accelerator vault should be under control, and access to the accelerator vault has to be prohibited for any person during the beam operation. The Personnel Protection System (PPS) was developed to adapt the radiation licensing conditions. The licensing requests that PPS must manage the accumulated D{sup +} current. So, to manage the overall D{sup +} beam time during injector operation, Pulse Duty Management System (PDMS) was developed as a configurable subsystem as part of the PPS. The PDMS was tested during H{sup +} beam (as simulated D{sup +}) operation, to confirm that it can handle the beam inhibit from Injector before the beam accumulation is above the threshold value specified in the radiation licensing condition. In this paper, the design and configuration of these systems and the result of the tests are presented.

  1. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    International Nuclear Information System (INIS)

    Libov, Vladyslav

    2013-08-01

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb -1 . The kinematic region of the measurement is given by 5 2 2 and 0.02 2 is the photon virtuality and y is the inelasticity. A lifetime technique is used to tag the production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by E jet T >4.2(5) GeV for charm (beauty) and -1.6 jet jet T and η jet are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q 2 , y, E jet T and η jet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F cbar c 2 and F b anti b 2 , are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  2. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Libov, Vladyslav

    2013-08-15

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb{sup -1}. The kinematic region of the measurement is given by 54.2(5) GeV for charm (beauty) and -1.6<{eta}{sup jet}<2.2 for both charm and beauty, where E{sup jet}{sub T} and {eta}{sup jet} are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q{sup 2}, y, E{sup jet}{sub T} and {eta}{sup jet} are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F{sup cbar} {sup c}{sub 2} and F{sup b} {sup anti} {sup b}{sub 2}, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam

  3. Structural condition assessment and service load performance of deteriorated prestressed concrete deck beam bridges

    Science.gov (United States)

    Fuentes, Juan Bolivar

    Precast pretensioned deck beam bridges are a generic bridge type widely used by IDOT for new construction through the end of the 1970's and still widely used on county roads throughout Illinois. While these bridges were economical to build, IDOT discontinued their use because reflective cracks developed along the length of the longitudinal joints between beams. Three 30 years old deteriorated beams were removed from an existing bridge over Spoon River in Fulton County, IL and delivered to Newmark Civil Engineering Laboratory. The program consisted of a series of comprehensive, destructive and non-destructive, tests and evaluations of the three beams with emphasis on three major areas; (1) The Condition Assessment of the as-delivered beams. (2) The service load performance of the bridge sub-assemblage constructed from those beams. After a comprehensive inspection of the beams was completed, the beams were integrated together into a bridge subassembly that simulated a bridge lane. (3) Following the service load tests, the three beams were separated and tested individually to failure. The critical signs to be observed in existing structures that will lead the inspectors to conclude that a deck beam is being overloaded were are also studied. Several conclusions were found. Cracking of the longitudinal joint has little effect on the stiffness of the bridge if the transverse rod is snug. The presence of a snug transverse tie rod increases the strength of the longitudinal joint. After a longitudinal joint has fractured, reincorporating a snug transverse rod can significantly reestablish the stiffness of the longitudinal joint and reduce overloading of a deteriorated beam. Participation factors must be based on relative bending moments of one beam with respect to the total amount of bending moment produced by the applied load and not to the amount of total vertical displacement. The participation factors will vary along the span of the bridge deck and will depend on the

  4. Test beam results on Atlas electromagnetic end-cap calorimeter: Electrons-jets separation; Resultats des tests en faisceau sur les bouchons du calorimetre electromagnetique d'ATLAS - separation electrons-jets

    Energy Technology Data Exchange (ETDEWEB)

    Serfon, C

    2005-05-15

    ATLAS is one of the four experiments being built on the future proton-proton collider at CERN: the LHC. This experiment has a large physics program, from Standard Model to new physics. The search for the Higgs boson in two photons or in four leptons, or the search of Z' or W' needs a good energy resolution for the electromagnetic calorimeter. This thesis describes the beam tests performed on three modules of the electromagnetic end cap calorimeter. A 0.6% non-uniformity, and a 0.7% energy resolution global constant term (dominant at high energy) has been obtained. Moreover, a study on the separation between electrons and jets is also performed. This study shows that a jets rejection factor of 10{sup 5} can be obtained keeping an electron efficiency better than 78%. (author)

  5. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arduini, Gianluigi; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muskinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palm, Marcus; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-05-20

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was obse...

  6. Optimal condition for employing an axicon-generated Bessel beam to fabricate cylindrical microlens arrays

    Science.gov (United States)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji’an

    2018-05-01

    A numerical algorithm, modelling the transformation from a Gaussian beam to a Bessel beam, is presented for the purpose to study the optimal condition for employing an axicon-generated Bessel beam to fabricate cylindrical microlens arrays (CMLAs). By applying the numerical algorithm to simulate the spatial intensity distribution behind the axicon under different defects of a rotund-apex and different diameter ratios of an incident beam to the axicon, we find that the diffraction effects formed by the axicon edge can be almost eliminated when the diameter ratio is less than 1:2, but the spatial intensity distribution is disturbed dramatically even a few tens of microns deviation of the apex, especially for the front part of the axicon-generated Bessel beam. Fortunately, the lateral intensity profile in the rear part still maintains a desirable Bessel curve. Therefore, the rear part of the Bessel area and the less than 1:2 diameter ratio are the optimal choice for employing an axicon-generated Bessel beam to implement surface microstructures fabrication. Furthermore, by applying the optimal conditions to direct writing microstructures on fused silica with a femtosecond (fs) laser, a large area close-packed CMLA is fabricated. The CMLA presents high quality and uniformity and its optical performance is also demonstrated.

  7. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  8. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  9. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2010-01-01

    Roč. 6, č. 4 (2010), P04001/1-P04001/32 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter * tracking detector * photon * Monte Carlo Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010

  10. Characterisation of silicon microstrip detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    International Nuclear Information System (INIS)

    Poley, Luise; Blue, Andrew; Bates, Richard

    2016-03-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1 x 10 35 cm -2 s -1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb -1 , requiring the tracking detectors to withstand hadron equivalences to over 1 x 10 16 1 MeV neutrons per cm 2 . With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). Sub-strip resolution of the 74.5 μm strips was achieved for both detectors. Investigation of the p-stop diffusion layers between strips is shown in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stops regions between the strips rather than the strip pitch. The collected signal allowed for the identification of operating thresholds for both devices, making it possible to compare signal response between different versions of silicon strip detector modules.

  11. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Science.gov (United States)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  12. Characterisation of silicon microstrip detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Hamburg (Germany); Blue, Andrew; Bates, Richard [Glasgow Univ. (United Kingdom). SUPA School of Physics and Astronomy; and others

    2016-03-15

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1 x 10{sup 35} cm{sup -2}s{sup -1} after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb{sup -1}, requiring the tracking detectors to withstand hadron equivalences to over 1 x 10{sup 16} 1 MeV neutrons per cm{sup 2}. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). Sub-strip resolution of the 74.5 μm strips was achieved for both detectors. Investigation of the p-stop diffusion layers between strips is shown in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stops regions between the strips rather than the strip pitch. The collected signal allowed for the identification of operating thresholds for both devices, making it possible to compare signal response between different versions of silicon strip detector modules.

  13. Novel optics for conditioning neutron beams. II Focussing neutrons with a 'lobster-eye' optic

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Griffin, S.L.; Klein, A.G.; Nugent, K.A.

    1998-01-01

    Square-channel capillary, or 'Lobster-eye' arrays have been shown to be the optimum geometry for array optics. This configuration leads to a novel class of conditioning devices for X-ray and neutron beams. We present the first results of the focussing of neutrons with a Pb glass square-channel array. (authors)

  14. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    International Nuclear Information System (INIS)

    Kobulnicky, K; Pawlak, D; Purwar, A

    2015-01-01

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc

  15. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, K; Pawlak, D; Purwar, A [Varian Medical Systems, Inc., Palo Alto, CA (United States)

    2015-06-15

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc.

  16. Testing and calibration through laser radiation and muon beams of the hadron calorimeter in ATLAS detector; Controle et etalonnage par lumiere laser et par faisceaux de muons du calorimetre hadronique a tuiles scintillantes d'ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Garde, V

    2003-10-15

    This study is dedicated to the calibration of the hadronic calorimeter (Tilecal) of the ATLAS detector. This detector will be installed on the LHC collider at CERN. The first data will be taken in 2007. This thesis is divided in two parts. The first part is dedicated to the study of the LASER system. A prototype of the final system was studied. It was shown that the stability and the linearity of this prototype are conform to the specification. Several studies were devoted to measurements which can be done on the Tilecal: The relative gain can be calculated and gives the stability of the Tilecal with a resolution of 0.35 %. The number of photoelectrons per charge unit has been calculated. The linearity was checked for a normal range of functioning and was corrected for the functioning at high charge. In both cases it was shown that the non-linearity was smaller than 0.5 %. The second study is devoted to muons beams in test beam periods. These results are used to find a calibration constant. Several problems which come from the difference of size cells are not totally solved. But the resolution of the calibration constant found by this method cannot exceed 2.3%. (author)

  17. First-year experience with the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Corso-Radu, A

    2010-01-01

    ATLAS is one of the four experiments in the Large Hadron Collider (LHC) at CERN, which has been put in operation this year. The challenging experimental environment and the extreme detector complexity required development of a highly scalable distributed monitoring framework, which is currently being used to monitor the quality of the data being taken as well as operational conditions of the hardware and software elements of the detector, trigger and data acquisition systems. At the moment the ATLAS Trigger/DAQ system is distributed over more than 1000 computers, which is about one third of the final ATLAS size. At every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles more than 4 million histograms updates coming from more than 4 thousands applications, executes 10 thousands advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. This note presents the overview of the online monitoring software framework, and describes the experience, which was gained during an extensive commissioning period as well as at the first phase of LHC beam in September 2008. Performance results, obtained on the current ATLAS DAQ system will also be presented, showing that the performance of the framework is adequate for the final ATLAS system.

  18. Condition of the centers of linkage of serum albumin in cancer gynecological patients at beam therapy

    International Nuclear Information System (INIS)

    Malenchenko, A.F.; Belyakovskij, V.N.; Lukovskaya, N.D.; Prigozhaya, T.I.; Stasenkova, S.V.

    2009-01-01

    With the use of the method of fluorescent probes the condition of the centers of linkage of serum albumin in healthy women and in the cancer patients, passing a course of beam therapy, is analyzed at different modes. It is shown that general concentration of albumin in healthy persons and cancer patients are in the limits of normal values, however parameters of effective concentration of albumin, reserve of albumin linkage and toxicity index of patients statistically, for certain, differ in comparison with those in the control group. Carrying out the beam therapy course both split and not split promotes an increase of values of toxicity index. (authors)

  19. Measurements of the performance of a beam condition monitor prototype in a 5 GeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, M., E-mail: maria.hempel@desy.de [Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03013 (Germany); DESY, Zeuthen 15738 (Germany); Afanaciev, K. [NCPHEP, Minsk 220040 (Belarus); Burtowy, P.; Dabrowski, A. [CERN, Geneva 1211 (Switzerland); Henschel, H. [DESY, Zeuthen 15738 (Germany); Idzik, M. [AGH University of Science and Technology, Cracow 30-059 (Poland); Karacheban, O. [Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03013 (Germany); Lange, W.; Leonard, J. [DESY, Zeuthen 15738 (Germany); Levy, I. [Tel Aviv University, Tel Aviv 6997801 (Israel); Lohmann, W. [Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03013 (Germany); DESY, Zeuthen 15738 (Germany); Pollak, B. [Northwestern University, Evanston, IL 60208 (United States); Przyborowski, D. [AGH University of Science and Technology, Cracow 30-059 (Poland); Ryjov, V. [CERN, Geneva 1211 (Switzerland); Schuwalow, S. [DESY, Zeuthen 15738 (Germany); Stickland, D. [Princeton University, Princeton, NJ 08544 (United States); Walsh, R. [DESY, Zeuthen 15738 (Germany); Zagozdzinska, A. [CERN, Geneva 1211 (Switzerland)

    2016-08-01

    The Fast Beam Conditions Monitor, BCM1F, in the Compact Muon Solenoid, CMS, experiment was operated since 2008 and delivered invaluable information on the machine induced background in the inner part of the CMS detector supporting a safe operation of the inner tracker and high quality data. Due to the shortening of the time between two bunch crossings from 50 ns to 25 ns and higher expected luminosity at the Large Hadron Collider, LHC, in 2015, BCM1F needed an upgrade to higher bandwidth. In addition, BCM1F is used as an on-line luminometer operated independently of CMS. To match these requirements, the number of single crystal diamond sensors was enhanced from 8 to 24. Each sensor is subdivided into two pads, leading to 48 readout channels. Dedicated fast front-end ASICs were developed in 130 nm technology, and the back-end electronics is completely upgraded. An assembled prototype BCM1F detector comprising sensors, a fast front-end ASIC and optical analog readout was studied in a 5 GeV electron beam at the DESY-II accelerator. Results on the performance are given.

  20. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  1. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  2. ttH, H → WW(*) analysis at Atlas, LHC and Very Low Energy electron studies of 2004 combined test beam

    International Nuclear Information System (INIS)

    Zhang, H.

    2008-06-01

    The Large Hadron Collider(LHC) at CERN is a proton-proton collider with a designed center of mass energy of 14 TeV. ATLAS is a general purpose particle detector located at one of the colliding point of the LHC. Using ATLAS Computing System Commissioning (CSC) Monte Carlo full simulation data of the tt-bar H, H → WW * channel, this thesis studies the feasibility of measuring top-quark Yukawa Coupling up to 30 fb -1 integrated luminosity, within the intermediate Higgs mass range from 120 to 200 GeV. For the first time, trigger, pileup effects as well as all possible systematic uncertainties are extensively studied. For a Higgs mass of 160 GeV, with the detailed systematics uncertainties studied, the signal significance is shown to exceed 2σ by combining 2 leptons and 3 leptons final states together. The combined branching ratio of σ tt -bar H *BR H→WW (*) can reach an accuracy of 47%, and gives important information on the top quark Yukawa Coupling. This is the first study of the tt-bar H, H → WW * channel based on full simulation data, including a complete and detailed study of the systematic uncertainties. The most difficult part of the tt-bar H, H → WW * analysis is to extract signal from an abundant background since the total cross section of signal is only 0.1% of the main background. Moreover, signals have a complex final state of at least 4 jets, 2 leptons, 2 neutrinos, making the Higgs mass reconstruction very difficult. Lepton isolation is one of the most powerful method to suppress reducible backgrounds. This thesis develops a special Cone Isolation procedure, which suppress by a factor 5 the main tt-bar background. Lepton energy scale uncertainty is one of the important systematics for the tt-bar H, H → WW * analysis. A good linearity of Very Low Energy (VLE) electrons can improve the performance of estimating electron energy scale. The second part of this thesis presents a study of the linearity of VLE electron from 2004 ATLAS Combined Test

  3. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  4. An in-beam test study of the response of calorimeters in the ATLAS Experiment of LHC to charged pions of 3 to 350 GeV energy range

    International Nuclear Information System (INIS)

    Giangiobbe Vincent

    2006-11-01

    ATLAS is one of the four main experiments under way of installing within the Large Hadron Project (LHC). LHC will provide two proton beams of high luminosity (1 x 10 34 cm -2 s -1 at peak), colliding in the center of ATLAS detector at a 14 TeV rated COM energy. The aim of this study is an in-beam test characterization of the response of calorimeters in the central part of ATLAS. The study will be focused on the response to pions as main jet components. In the beginning a short presentation of the ATLAS program of physics is given enlightening the basic theoretical and experimental aspects of the experiment. A description of the ATLAS detector is also presented. The second chapter is devoted to detailed description of the central calorimetry of ATLAS. One starts from the mechanism of signal production in calorimeters, through the electronic processing up to the reconstruction of the released energy. The third chapter deals with the processing electronics of the TileCal hadron calorimeter the installation and certification at CERN of which was in charge of Clermont-Ferrand team. The chapter 4 gives a description of the SPS beam line and of the associated instrumentation tested in-beam in 2004. The chapters 6 and 7 are devoted to the study of the response of calorimeters to high energy pions (within 20 to 350 GeV range). The pion selection is described in the chapter 5. In the eighth chapter the calorimeter response to low energy pions (up to 9 GeV) is examined. In conclusion this study has shown that the data concerning pions obtained in-beam in 2004 are usable for energies within 3 to 350 GeV. The response and the energy resolution of LAr and TileCal were measured with a satisfactory accuracy,. A systematic comparison of these results with simulations (in the configuration of in-beam test) can now be done. Should the agreement be satisfying, the modelling could be used for the study of calibration of calorimeter response for the case of works with the jets

  5. Analytical solution for beam with time-dependent boundary conditions versus response spectrum

    International Nuclear Information System (INIS)

    Gou, P.F.; Panahi, K.K.

    2001-01-01

    This paper studies the responses of a uniform simple beam for which the supports are subjected to time-dependent conditions. Analytical solution in terms of series was presented for two cases: (1) Two supports of a simple beam are subjected to a harmonic motion, and (2) One of the two supports is stationary while the other is subjected to a harmonic motion. The results of the analytical solution were investigated and compared with the results of conventional response spectrum method using the beam finite element model. One of the applications of the results presented in this paper can be used to assess the adequacy and accuracy of the engineering approaches such as response spectra methods. It has been found that, when the excitation frequency equals the fundamental frequency of the beam, the results from response spectrum method are in good agreement with the exact calculation. The effects of initial conditions on the responses are also examined. It seems that the non-zero initial velocity has pronounced effects on the displacement time histories but it has no effect on the maximum accelerations. (author)

  6. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.

  7. Metadata aided run selection at ATLAS

    International Nuclear Information System (INIS)

    Buckingham, R M; Gallas, E J; Tseng, J C-L; Viegas, F; Vinek, E

    2011-01-01

    Management of the large volume of data collected by any large scale scientific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user interfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called 'runBrowser' makes these Conditions Metadata available as a Run based selection service. runBrowser, based on PHP and JavaScript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions attributes, but also gives the user information at each stage about the relationship between the conditions chosen and the remaining conditions criteria available. When a set of COMA selections are complete, runBrowser produces a human readable report as well as an XML file in a standardized ATLAS format. This XML can be saved for later use or refinement in a future runBrowser session, shared with physics/detector groups, or used as input to ELSSI (event level Metadata browser) or other ATLAS run or event processing services.

  8. The completeness condition and source orbits for exact image reconstruction in 3D cone-beam CT

    International Nuclear Information System (INIS)

    Mao Xiping; Kang Kejun

    1997-01-01

    The completeness condition for exact image reconstruction in 3D cone-beam CT are carefully analyzed in theory, and discussions about some source orbits which fulfill the completeness condition are followed

  9. Effect of storage conditions on graft of polypropylene non-woven fabric induced by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Young; Jeun, Joon Pyo; Kang, Phil Hyun [Radiation Research Dvision for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-05-15

    In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: 60 degrees Celcius, reaction time: 6 hours and styrene monomer concentration: 20 wt%.

  10. Performance of the Fast Beam Conditions Monitor BCM1F of CMS in the first running periods of LHC

    International Nuclear Information System (INIS)

    Schmidt, R S; Hempel, M; Lohmann, W; Bell, A J; Hall-Wilton, R; Mueller, S; Ryjov, V; Stickland, D; Castro, E; Lange, W; Walsh, R

    2011-01-01

    The Beam Conditions and Radiation Monitoring System, BRM, is implemented in CMS to protect the detector and provide an interface to the LHC. Seven sub-systems monitor beam conditions and the radiation level inside the detector on different time scales. They detect adverse beam conditions, facilitate beam tuning close to CMS, and measure the doses accumulated in different detector components. Data are taken and analysed independently of the CMS data acquisition, displayed in the control room, and provide inputs to the trigger system and the LHC operators. In case of beam conditions dangerous to the CMS detector, a beam abort is induced. The Fast Beam Conditions Monitor, BCM1F, is a flux counter close to the beam pipe inside the tracker volume. It uses single-crystal CVD diamond sensors, radiation-hard FE electronics, and optical signal transmission to measure the beam halo as well as collision products bunch by bunch. The system has been operational during the initiatory runs of LHC in September 2008. It works reliably since the restart in 2009 and is invaluable to CMS for everyday LHC operation. A characterisation of the system on the basis of data collected during LHC operation is presented.

  11. Performance of the fast beam conditions monitor BCM1F of CMS in the first running periods of LHC

    International Nuclear Information System (INIS)

    Schmidt, R.S.; Bell, A.J.; Castro, E.

    2010-12-01

    The Beam Conditions and Radiation Monitoring System, BRM, is implemented in CMS to protect the detector and provide an interface to the LHC. Seven sub-systems monitor beam conditions and the radiation level inside the detector on different time scales. They detect adverse beam conditions, facilitate beam tuning close to CMS, and measure the doses accumulated in different detector components. Data are taken and analysed independently of the CMS data acquisition, displayed in the control room, and provide inputs to the trigger system and the LHC operators. In case of beam conditions dangerous to the CMS detector, a beam abort is induced. The Fast Beam Conditions Monitor, BCM1F, is a flux counter close to the beam pipe inside the tracker volume. It uses single-crystal CVD diamond sensors, radiation-hard FE electronics, and optical signal transmission to measure the beam halo as well as collision products bunch by bunch. The system has been operational during the initiatory runs of LHC in September 2008. It works reliably since the restart in 2009 and is invaluable to CMS for everyday LHC operation. A characterisation of the system on the basis of data collected during LHC operation is presented. (orig.)

  12. An in-beam test study of the response of calorimeters in the ATLAS Experiment of LHC to charged pions of 3 to 350 GeV energy range; Etude en faisceau-test de la reponse des calorimetres de l'Experience ATLAS du LHC a des pions charges, d'energie comprise entre 3 et 350 Gev

    Energy Technology Data Exchange (ETDEWEB)

    Giangiobbe Vincent [Ecole Doctorale des Sciences Fondamentales, Universite Blaise Pascal, U.F.R de Recherches Scientifiques et Techniques, 34, avenue Carnot - BP 185, 63006 Clermont-Ferrand Cedex (France)

    2006-11-15

    ATLAS is one of the four main experiments under way of installing within the Large Hadron Project (LHC). LHC will provide two proton beams of high luminosity (1 x 10{sup 34} cm{sup -2} s{sup -1} at peak), colliding in the center of ATLAS detector at a 14 TeV rated COM energy. The aim of this study is an in-beam test characterization of the response of calorimeters in the central part of ATLAS. The study will be focused on the response to pions as main jet components. In the beginning a short presentation of the ATLAS program of physics is given enlightening the basic theoretical and experimental aspects of the experiment. A description of the ATLAS detector is also presented. The second chapter is devoted to detailed description of the central calorimetry of ATLAS. One starts from the mechanism of signal production in calorimeters, through the electronic processing up to the reconstruction of the released energy. The third chapter deals with the processing electronics of the TileCal hadron calorimeter the installation and certification at CERN of which was in charge of Clermont-Ferrand team. The chapter 4 gives a description of the SPS beam line and of the associated instrumentation tested in-beam in 2004. The chapters 6 and 7 are devoted to the study of the response of calorimeters to high energy pions (within 20 to 350 GeV range). The pion selection is described in the chapter 5. In the eighth chapter the calorimeter response to low energy pions (up to 9 GeV) is examined. In conclusion this study has shown that the data concerning pions obtained in-beam in 2004 are usable for energies within 3 to 350 GeV. The response and the energy resolution of LAr and TileCal were measured with a satisfactory accuracy,. A systematic comparison of these results with simulations (in the configuration of in-beam test) can now be done. Should the agreement be satisfying, the modelling could be used for the study of calibration of calorimeter response for the case of works with the

  13. An in-beam test study of the response of calorimeters in the ATLAS Experiment of LHC to charged pions of 3 to 350 GeV energy range; Etude en faisceau-test de la reponse des calorimetres de l'Experience ATLAS du LHC a des pions charges, d'energie comprise entre 3 et 350 Gev

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Giangiobbe [Ecole Doctorale des Sciences Fondamentales, Universite Blaise Pascal, U.F.R de Recherches Scientifiques et Techniques, 34, avenue Carnot - BP 185, 63006 Clermont-Ferrand Cedex (France)

    2006-11-15

    ATLAS is one of the four main experiments under way of installing within the Large Hadron Project (LHC). LHC will provide two proton beams of high luminosity (1 x 10{sup 34} cm{sup -2} s{sup -1} at peak), colliding in the center of ATLAS detector at a 14 TeV rated COM energy. The aim of this study is an in-beam test characterization of the response of calorimeters in the central part of ATLAS. The study will be focused on the response to pions as main jet components. In the beginning a short presentation of the ATLAS program of physics is given enlightening the basic theoretical and experimental aspects of the experiment. A description of the ATLAS detector is also presented. The second chapter is devoted to detailed description of the central calorimetry of ATLAS. One starts from the mechanism of signal production in calorimeters, through the electronic processing up to the reconstruction of the released energy. The third chapter deals with the processing electronics of the TileCal hadron calorimeter the installation and certification at CERN of which was in charge of Clermont-Ferrand team. The chapter 4 gives a description of the SPS beam line and of the associated instrumentation tested in-beam in 2004. The chapters 6 and 7 are devoted to the study of the response of calorimeters to high energy pions (within 20 to 350 GeV range). The pion selection is described in the chapter 5. In the eighth chapter the calorimeter response to low energy pions (up to 9 GeV) is examined. In conclusion this study has shown that the data concerning pions obtained in-beam in 2004 are usable for energies within 3 to 350 GeV. The response and the energy resolution of LAr and TileCal were measured with a satisfactory accuracy,. A systematic comparison of these results with simulations (in the configuration of in-beam test) can now be done. Should the agreement be satisfying, the modelling could be used for the study of calibration of calorimeter response for the case of works with the

  14. Environmental Conditions and Threatened and Endangered Species Populations near the Titain, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    Science.gov (United States)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitant resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycteria americana) and several state-listed species of special concern including the Snowy Egret (Egretta thula thula), Reddish Egret (Egretta rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egretta tricolor ruficolis), and Little Blue Heron (Egretta caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active

  15. Environmental Conditions and Threatened and Endangered Species Populations near the Titan, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    Science.gov (United States)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitat resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycferia americana) and several state-listed species of special concern including the Snowy Egret (Egretfa thula fhula), Reddish Egret (Egreffa rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egreffa tricolor ruficolis), and Little Blue Heron (Egreffa caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch colexes

  16. Response and Shower Topology of 2 to 180 GeV Pions Measured with the ATLAS Barrel Calorimeter at the CERN Test-beam and Comparison to Monte Carlo Simulations

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, G; Drohan, J; Ebenstein, W L; Eerola, P; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Di Girolamo, B; Glonti, G; Goettfert, T; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Haertel, R; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, D J; Hansen, P H; Hara, K; Harvey Jr, A; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Le Bihan, A C; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Latorre, S; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i García, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Miagkov, A; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmore, M S; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Rohne, O; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; De Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2010-01-01

    The response of the ATLAS barrel calorimeter to pions with momenta from $2$ to $180$~GeV~ is studied in a test--beam at the CERN H8 beam line. %Various methods to reconstruct the deposited pion energies are studied. The mean energy, the energy resolution and the longitudinal and radial shower profiles, and, various observables characterising the shower topology in the calorimeter are measured. The data are compared to Monte Carlo simulations based on a detailed description of the experimental set--up and on various models describing the interaction of particles with matter based on Geant4.

  17. Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2006-01-01

    Full Text Available Ground clutter caused by anomalous propagation (anaprop can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.

  18. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  19. Sampling conditions of the three dimensional (3D) fan beam X ray transform

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Grangeat, P.; Koenig, A.

    2003-01-01

    We give the sampling conditions of the 3 D fan beam X ray transform (3.D.F.B.X.R.T.). The motivation of this work lie in the fact that helical tomography with a single detector line is simply a sampling of this transform under the helical constraint. we give a precise description of the geometry of the essential support of Fourier transform of the 3.D.F.B.X.R.T. and we show how to derive efficient sampling. (N.C.)

  20. Finding Multiple Peaks Signal in Fast Beam Conditions Monitor (BCM1F)

    CERN Document Server

    Bin Ab Maalek, Abu Ubaidah Amir; CERN. Geneva. EP Department

    2017-01-01

    Fast Beam Conditions Monitor (BCM1F) is diamond and silicon sensors based luminometer of CMS detector. The methods of finding multiple peaks signal in BCM1F is shown. Multiple peaks signal found at signal with width between 60 ns - 300 ns. Double peaks are counted as single hit in the constant threshold analysis and leads to underestimation in the luminosity. Therefore it should be estimated for different filling schemes and sensor types. The percentage of long width pulse in different sensor for different fill are calculated. About 30 \\% long width pulse found in sCVD sensor, 12 \\% in pCVD and no more than 1 \\% for silicon sensor.

  1. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  2. Effet des conditions climatiques sur le niveau du lac Sidi Ali (Moyen Atlas, Maroc

    Directory of Open Access Journals (Sweden)

    Claude Martin

    2011-11-01

    Full Text Available Le lac Sidi Ali est un lac naturel d'altitude (2070-2080 m, sans exutoire superficiel, déterminé par le barrage d'une coulée basaltique. Doté d'un bassin versant apparent de 15,6 km2, il est alimenté par des eaux de ruissellement et par des sources karstiques. Son niveau subit des variations très fortes, annuelles et interannuelles, sous le contrôle des conditions climatiques, et en particulier des pluies et de l'évapotranspiration. Les périodes de sécheresse qui ont marqué les trois dernières décennies, se sont traduites par un abaissement du niveau de près de 7 m. Mais les précipitations abondantes des années 2008-09 et 2009-10 ont provoqué une nette remontée. Une régression multiple d'assez bonne qualité (r = 0,87 lie la variation annuelle du niveau (d'août à août à différents paramètres (conditions climatiques et niveau initial du lac.Lake Sidi Ali is a natural lake at high altitude (2070-2080 m, without surface outlet, determined by the dam of a basalt flow. With an apparent catchment of 15.6 km2, it is fed by runoff and karst springs. Its level shows strong annual and interannual variations, depending on weather conditions, particularly rainfall and evapotranspiration. Droughts that have marked the last three decades have resulted in a lowering of about 7 m of the water level. But heavy rainfall that occurred in 2008-09 and 2009-10 caused a marked rise. A multiple regression of sufficient quality (r = 0.87 binds the annual change (from august to august at differents parameters (weather conditions and initial level of the lake.

  3. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    Science.gov (United States)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  4. A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS calorimeter system: detector concept description and first beam test results

    Science.gov (United States)

    Lacour, D.

    2018-02-01

    The expected increase of the particle flux at the high luminosity phase of the LHC (HL-LHC) with instantaneous luminosities up to 7.5ṡ1034 cm-2s-1 will have a severe impact on the ATLAS detector performance. The pile-up is expected to increase on average to 200 interactions per bunch crossing. The reconstruction performance for electrons, photons as well as jets and transverse missing energy will be severely degraded in the end-cap and forward region. A High Granularity Timing Detector (HGTD) is proposed in front of the liquid Argon end-cap and forward calorimeters for pile-up mitigation. This device should cover the pseudo-rapidity range of 2.4 to about 4.0. Low Gain Avalanche Detectors (LGAD) technology has been chosen as it provides an internal gain good enough to reach large signal over noise ratio needed for excellent time resolution. The requirements and overall specifications of the High Granular Timing Detector at the HL-LHC will be presented as well as the conceptual design of its mechanics and electronics. Beam test results and measurements of irradiated LGAD silicon sensors, such as gain and timing resolution, will be shown.

  5. A top quark pair production event from proton-proton collisions recorded by ATLAS with LHC stable beams at a collision energy of 13 TeV

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Display of a candidate boosted top quark pair production event from proton-proton collisions recorded by ATLAS with LHC stable beams at a collision energy of 13 TeV. The red line shows the path of a muon with transverse momentum around 50 GeV through the detector. The dashed line shows the direction of the missing transverse momentum, which has a magnitude of about 470 GeV. The green and yellow bars indicate energy deposits in the liquid argon and scintillating-tile calorimeters, from these deposits 4 small-radius (R=0.4) jets are identified with transverse momenta between 70 and 300 GeV. Three of these small-radius jets are re-clustered into the leading large-radius (R=1.0) jet (not shown explicitly) with a transverse momentum of about 600 GeV and a jet mass of about 180 GeV, near the top quark mass. One of these three jets in addition to the fourth jet above 70 GeV are identified as having originated from b-quarks. Tracks reconstructed from hits in the inner tracking detector are shown as arcs curving in th...

  6. Effect of pump-beam conditions on dual polarization oscillations in a microchip Nd:GdVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C-C; Jiang, I-M [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Ko, J-Y; Tsai, K-T; Cheng, Y-T; Ho, M-C, E-mail: jyko@nknucc.nknu.edu.t [Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan (China)

    2009-08-28

    This study investigated the input-output characteristics of a laser-diode-end-pumped microchip Nd:GdVO{sub 4} laser under different pump-beam focusing conditions by varying the magnifications of the microscope objective lenses and pump-beam positions on a chip. Dual-polarization oscillations were generated in the entire pump region using pumping conditions associated with different temperature gradients.

  7. Effet des conditions climatiques sur le niveau du lac Sidi Ali (Moyen Atlas, Maroc)

    OpenAIRE

    Sayad, Ahmed; Chakiri, Saïd; Martin, Claude; Bejjaji, Zohra; Echarfaoui, Hassan

    2012-01-01

    Le lac Sidi Ali est un lac naturel d'altitude (2070-2080 m), sans exutoire superficiel, déterminé par le barrage d'une coulée basaltique. Doté d'un bassin versant apparent de 15,6 km2, il est alimenté par des eaux de ruissellement et par des sources karstiques. Son niveau subit des variations très fortes, annuelles et interannuelles, sous le contrôle des conditions climatiques, et en particulier des pluies et de l'évapotranspiration. Les périodes de sécheresse qui ont marqué les trois dernièr...

  8. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  9. Codes of practice and protocols for the dosimetry in reference conditions of proton and ion beams

    International Nuclear Information System (INIS)

    Vatnitsky, S.; Andreo, P.

    2002-01-01

    The advantages of radiotherapy protons and heavier charged-particle beams, the technological feasibility, and the clinical results obtained so far have led to the establishment of about 20 treatment facilities worldwide and plans to open another 20 proton and light-ion therapy centres in the next five years. In order to meet the expanding capabilities of treatment techniques, considerable effort has been devoted during the last fifteen years to the development of the dosimetry and calibration of such beams. This paper reviews these developments and summarizes the present status of Codes of Practice and protocols for the dosimetry in reference conditions of proton and ion beams. The first dosimetry protocol for heavy-particle radiotherapy beams, AAPM TG 20, was based on the use of Faraday cups and calorimeters, whereas ionization chamber dosimetry received little attention. Following the trends in 'nuclear particle' radiotherapy, TG 20 included recommendations for specifying 'dose to tissue'. The lack of availability of a harmonized set of data for the different particles made this protocol to include data for stopping-powers and for the mean energy required to produce and ion pair in air, W air , from multiple authors, without enough attention being paid to their consistency. The increased focus into proton beams was materialized in the publication of the ECHED Code of Practice, dedicated exclusively to protons, where ionization dosimetry received more attention than in TG 20. It was not until the publication of the Supplement to the ECHED recommendations that ionization chambers having a 60 CO calibration factor were recommended as a reference detector for proton dosimetry, and data supplied for chambers with different wall materials. The emphasis on ionization chamber-based proton dosimetry was complemented with a recommendation for using water as dosimetry phantom material and the necessary data on tissue and water to air stopping-power ratios and W air . One of

  10. Effect of beam condition in variable-shaped electron-beam direct writing for 0.25 μm and below

    International Nuclear Information System (INIS)

    Hirasawa, S.; Nakajima, K.; Tamura, T.; Aizaki, N.

    1993-01-01

    The effect of incident electron-beam conditions, which are acceleration voltage and beam blur of variable-shaped electron-beam direct writing, is investigated using the deposited energy distribution to realize a fine pattern of ≤0.25 μm in trilayer resist process. The deposited energy distribution is calculated using a three-dimensional Monte Carlo method. In a trilayer resist system, a thin bottom resist layer can be used, because the contrast value derived from the Monte Carlo calculation is independent of the bottom layer thickness. The beam blur of 0.05 μm does not degrade 0.25 μm line-and-space (L/S) patterns, but seriously degrades 0.1 μm L/S patterns. Higher acceleration voltage is effective for improving the contrast. At lower acceleration voltage, the slope of the deposited energy profile defined at the resist bottom is mainly influenced by electron scattering. On the other hand, at higher acceleration voltage, the slope of deposited energy profile mainly depends on the beam blur. The 0.1 μm L/S patterns are expected to be resolved at 30 kV when there is less than 0.02 μm beam blur with trilayer resist system. The possibility of using a single layer resist process for 0.1 μm L/S pattern will be barely realized at the conditions of 50 kV and 0.02 μm beam blur

  11. TLD Postal service for quality audits of beams of Co-60 in reference conditions in Cuba

    International Nuclear Information System (INIS)

    Gutierrez L, S.; Walwyn S, G.; Alonso V, G.

    2006-01-01

    Purpose: To describe the methodology and experience of the Secondary Laboratory of Dosimetric Calibration of Cuba in the establishment of the TLD Postal Service for quality audits of beams of Co-60 in reference conditions. Materials and methods: Through the Coordinated Project of Research (Contract 10794) its was bought 200 solid thermoluminescent detectors of LiF: Mg, Ti (TLD-100) in micro bars form with dimensions of 6 x 1 x 1 mm and of the JR 1152F type manufactured in China. All these detectors were identified individually with a serial number on one of its faces, using a graphite fine sheet. Those detectors for its irradiation are introduced in cylindrical plastic capsules developed and used by the International Atomic Energy Agency (IAEA) in the Audit Postal Service of Dose IAEA/WHO, the capsules have one cavity equal to 3 mm for that is necessary to recover this cavity with a fine plastic tube so that the detectors remain immobile during the irradiation. The method used to determine the individual sensitivity of the thermoluminescent detectors is: to irradiate a detectors group (100 micro bars) 4 times in those same geometric conditions, with the same irradiation history and reading, then it is determine for each detector a sensitivity factor equal to the average of those readings obtained for the 4 irradiation cycles for each i detector among the average of all the reading values obtained during the 4 cycles. The thermoluminescent signal is obtained with a Harshaw 2000C/B reader manual. Results: The satisfactory results obtained in the verification of the calibration of the TLD system, using the reference irradiation service of the Seibersdorf Dosimetry Laboratory of the IAEA in three different years are shown. The results of the audits carried out to the different radiotherapy services of the country in different years are also presented. Conclusions: The experience with the detectors acquired in the project demonstrates that with an appropriate

  12. On the energetics of a damped beam-like equation for different boundary conditions

    International Nuclear Information System (INIS)

    Sandilo, S.H.; Sheikh, A.H.; Soomro, A.R.

    2017-01-01

    In this paper, the energy estimates for a damped linear homogeneous beam-like equation will be considered. The energy estimates will be studied for different BCs (Boundary Conditions) for the axially moving continuum. The problem has physical and engineering application. The applications are mostly occurring in models of conveyor belts and band-saw blades. The research study is focused on the Dirichlet, the Neumann and the Robin type of BCs. From physical point of view, the considered mathematical model expounds the transversal vibrations of a moving belt system or moving band-saw blade. It is assumed that a viscous damping parameter and the horizontal velocity are positive and constant. It will be shown in this paper that change in geometry or the physics of the boundaries can affect the stability properties of the system in general and stability depends on the axial direction of the motion. In all cases of the BCs, it will be shown that there is energy decay due to viscous damping parameter and it will also be shown that in some cases there is no conclusion whether the beam energy decreases or increases. The detailed physical interpretation of all terms and expressions is provided and studied in detail. (author)

  13. On the Energetics of a Damped Beam-Like Equation for Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    SAJAD HUSSAIN SANDILO

    2017-04-01

    Full Text Available In this paper, the energy estimates for a damped linear homogeneous beam-like equation will be considered. The energy estimates will be studied for different BCs (Boundary Conditions for the axially moving continuum. The problem has physical and engineering application. The applications are mostly occurring in models of conveyor belts and band-saw blades. The research study is focused on the Dirichlet, the Neumann and the Robin type of BCs. From physical point of view, the considered mathematical model expounds the transversal vibrations of a moving belt system or moving band-saw blade. It is assumed that a viscous damping parameter and the horizontal velocity are positive and constant. It will be shown in this paper that change in geometry or the physics of the boundaries can affect the stability properties of the system in general and stability depends on the axial direction of the motion. In all cases of the BCs, it will be shown that there is energy decay due to viscous damping parameter and it will also be shown that in some cases there is no conclusion whether the beam energy decreases or increases. The detailed physical interpretation of all terms and expressions is provided and studied in detail.

  14. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2016-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  15. Correction of experimental photon pencil-beams for the effects of non-uniform and non-parallel measurement conditions

    International Nuclear Information System (INIS)

    Ceberg, Crister P.; Bjaerngard, Bengt E.

    1995-01-01

    An approximate experimental determination of photon pencil-beams can be based on the reciprocity theorem. The scatter part of the pencil-beam is then essentially the derivative with respect to the field radius of measured scatter-to-primary ratios in circular fields. Obtained in this way, however, the pencil-beam implicitly carries the influence from the lateral fluence and beam quality variations of the incident photons, as well as the effects of the divergence of the beam. In this work we show how these effects can be corrected for. The procedure was to calculate scatter-to-primary ratios using an analytical expression for the pencil-beam. By disregarding one by one the effects of the divergence and the fluence and beam quality variations, the influence of these effects were separated and quantified. For instance, for a 6 MV beam of 20x20 cm 2 field size, at 20 cm depth and a source distance of 100 cm, the total effect was 3.9%; 2.0% was due to the non-uniform incident profile, 1.0% due to the non-uniform beam quality, and 0.9% due to the divergence of the beam. At a source distance of 400 cm, all these effects were much lower, adding up to a total of 0.3 %. Using calculated correction factors like these, measured scatter-to-primary ratios were then stripped from the effects of non-uniform and non-parallel measurement conditions, and the scatter part of the pencil-beam was determined using the reciprocity theorem without approximations

  16. The ATLAS Experiment Laboratory - Overview

    International Nuclear Information System (INIS)

    Malecki, P.

    1999-01-01

    Full text: ATLAS Experiment Laboratory has been created by physicists and engineers preparing a research programme and detector for the LHC collider. This group is greatly supported by members of other Departments taking also part (often full time) in the ATLAS project. These are: J. Blocki, J. Godlewski, Z. Hajduk, P. Kapusta, B. Kisielewski, W. Ostrowicz, E. Richter-Was, and M. Turala. Our ATLAS Laboratory realizes its programme in very close collaboration with the Faculty of Physics and Nuclear Technology of the University of Mining and Metallurgy. ATLAS, A Toroidal LHC ApparatuS Collaboration groups about 1700 experimentalists from about 150 research institutes. This apparatus, a huge system of many detectors, which are technologically very advanced, is going to be ready by 2005. With the start of the 2 x 7 TeV LHC collider ATLAS and CMS (the sister experiment at LHC) will begin their fascinating research programme at beam energies and intensities which have never been exploited. (author)

  17. Designing of the Low Energy Beam Lines with Achromatic Condition in the RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2017-01-15

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the Korea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  18. Architecture of the upgraded BCM1F Backend Electronics for Beam Conditions and Luminosity measurement - hardware and firmware

    CERN Document Server

    Zagozdzinska, Agnieszka Anna; Przyborowski, D.; Leonard, J.L.; Pozniak, K.T.; Miraglia, M.; Walsh, R.; Lange, W.; Lohmann, W.; Ryjov, V.

    2015-01-01

    The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. Data in the form of histograms is transmitted to the DAQ. The system architecture and the signal processing algorithms will be presented.SummaryThe Fast Beam Conditions Monitor (BCM1F) detector is a part of the CMS Beam Radiation Instrumentation and Luminosity Project (BRIL). The increased performance expected of the LHC with energy of up to 14 TeV, higher luminosity and 25 ns bunch spacing is a challenge for the detector systems and increase the importance of real-time beam monitoring at ...

  19. Testbeam results of the upgraded fast beam condition monitor at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria; Karacheban, Olena; Lohmann, Wolfgang [BTU, Cottbus (Germany); DESY, Zeuthen (Germany); Afanaciev, Konstantin [NCPHEP, Minsk (Belarus); Burtowy, Piotr; Ryjov, Vladimir; Zagozdzinska, Agnieszka [CERN, Geneva (Switzerland); Henschel, Hans; Lange, Wolfgang; Leonard, Jessica Lynn [DESY, Zeuthen (Germany); Levy, Itamar [Tel Aviv University, Tel Aviv (Israel); Przyborowski, Dominik [AGH-UST, Cracow (Poland); Schuwalow, Sergej; Walsh, Roberval [DESY, Hamburg (Germany)

    2016-07-01

    The Fast Beam Condition Monitor BCM1F at CMS is based on single-crystal diamond sensor with nanosecond time resolution. BCM1F delivered luminosity and machine induced background information to the CMS and LHC control room during the first running period of the LHC. A major upgrade to BCM1F was developed and built during the long shutdown of the LHC in 2014. The increased rate and the 25ns spacing should be handled with sensors subdivided by a double pad metallization and a faster new front-end ASIC. A prototype with these new components was investigated in the testbeam at DESY-II. The results are presented and also verified by Superfish simulations.

  20. Complete synchronization condition in a network of piezoelectric micro-beam

    International Nuclear Information System (INIS)

    Taffoti Yolong, V.Y.; Woafo, P.

    2007-10-01

    This work deals with the dynamics of a network of piezoelectric micro-beams. The complete synchronization condition for this class of chaotic nonlinear electromechanical systems devices with nearest-neighbor diffusive coupling is studied. The nonlinearities on the device studied here are both on the electrical component and on the mechanical one. The investigation is made for the case of a large number of discrete piezoelectric disks coupled. The problem of chaos synchronization is described and converted into the analysis of stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having the shift invariant coupling schemes can be calculated from the synchronization of two of them coupled in both directions. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators. (author)

  1. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    International Nuclear Information System (INIS)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-01-01

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150μA of proton current from the source, with over 70μA on the target stage. However, beam fluxes above ∼1×10 17 /m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  2. Using condition and usefulness of dental cone-beam CT in endodontic treatment

    International Nuclear Information System (INIS)

    Kimura, Yuichi; Araki, Kazuyuki; Yamada, Yoshishige; Tagaya, Atsuko; Seki, Kenji; Okano, Tomohiro; Endo, Atsushi

    2009-01-01

    This study evaluated the condition and usefulness of the dental cone-beam CT (3DX) in clinical endodontic treatments. Images from 55 examinations of 49 patients obtained using 3DX during an 11-month period were evaluated retrospectively to identify the usefulness of this modality compared with periapical or panoramic radiographs. The main indication for using of 3DX was diagnosis of root fracture in 65% of the examinations, second was the presence and expansion of periapical lesion in 22%, and third was to detect the canal system or root abnormality in 13%. The 3DX visualizes bony anatomical structures precisely and detects the presence and expansion of periapical lesions and the canal system of each root of mulirooted teeth that cannot easily be observed by intraoral radiography or panoramic radiography. The results of this study suggest that 3DX is a useful and reliable tool for endodontic treatments. (author)

  3. A new luminometer and beam conditions monitor for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena; Hempel, Maria [Brandenburg University of Technology, Cottbus (Germany); DESY, Zeuthen (Germany); Dabrowski, Anne; Ryjov, Vladimir; Stickland, David; Zagozdzinska, Agnieszka [CERN, Geneva (Switzerland); Henschel, Hans; Lange, Wolfgang [DESY, Zeuthen (Germany); Leonard, Jessica; Walsh, Roberval [DESY, Hamburg (Germany); Levy, Itamar [Tel Aviv University, Tel Aviv (Israel); Lohmann, Wolfgang [Brandenburg University of Technology, Cottbus (Germany); RWTH Aachen University, Aachen (Germany); Przyborowski, Dominik [AGH-UST University, Cracow (Poland); Schuwalow, Sergej [DESY, Zeuthen (Germany); DESY, Hamburg (Germany)

    2016-07-01

    The luminosity is a key quantity of any collider, which allows for the determination of the absolute cross sections from the observed rate in a detector. The Fast Beam Conditions Monitor (BCM1F) was upgraded in the last LHC long technical stop (LS1) to 24 diamond sensors read out by a dedicated fast ASIC in 130 nm CMOS technology. The backend comprises a deadtime-less histogramming unit, with a 6.25 ns bin width, in VME standard. A microTCA system with better time resolution is in development. BCM1F is used for luminosity and machine induced background measurements at the CMS experiment. The performance of the detector in the first running period, as well as results on the calibration (Van-der-Meer scan) and the measurements of the luminosity are presented.

  4. The ATLAS detector simulation application

    International Nuclear Information System (INIS)

    Rimoldi, A.

    2007-01-01

    The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the test productions since 2004. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004-2005) and cosmic ray studies (2006)

  5. TLD postal dose quality audit service for Co-60 beams in reference conditions in Cuba

    International Nuclear Information System (INIS)

    Gutierrez Lores, S.; Walwyn Salas, G.; Alonso Villanueva, G.

    2008-01-01

    This report presents the methodology and experience of the Cuban's Secondary Standard Dosimetry Laboratory for the implementation of postal dose quality audits service for Co-60 beams in reference conditions, using TLDs. Under coordinated research project (Contract 10794) were bought (TLD -100) Tl rods type JR 1152F made in China, with dimensions of 6 mm x 1 mm x 1 mm. All of these rods were identified individually with a consecutive number made over one of its sides, using a fine tip of graphite. The method used to determinate the individual sensibility of the TL detectors was: irradiating a group of them, with the same history of irradiation and readout (100 rods approximately), four serial times in the same geometrical conditions, to read them out and to attribute to each of them a sensitivity factor. This sensitivity factor is equal to average for the 4 cycle of irradiation and readout of the quote between the TL readout from dosimeter i and the mean of all values for each cycle. The TLD signal was read using HARSHAW 2000C/B reader. The results obtained in the external verification of the accuracy of the dose determination by the TLD system were performed in cooperation with IAEA Dosimetry Laboratory at Seibersdorf in different years are shown, the results obtained of the quality audits carried out to the different services of radiotherapy of the country are analysed also. The quality audits are an useful tool for the improvement of the accuracy in the dosimetry of clinical beams of radiotherapy with Co-60, contributing this way to the improvement of the life quality to cancer patients of the Cuban system of health. (author)

  6. Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition.

    Science.gov (United States)

    Ying, Zhoufeng; Wang, Guanghui; Zhang, Xuping; Ho, Ho-pui; Huang, Ying

    2015-05-01

    An ultracompact and broadband polarization beam splitter (PBS) based on the polarization-dependent critical guiding condition of an asymmetrical directional coupler is proposed. The device consists of a pair of silicon waveguides with different height and width. Due to the different cutoff conditions for the TE and TM polarization modes, it is possible to have the TM mode guided in one waveguide while the TE mode is supported in both. Therefore, only the phase-matching condition for the cross-coupling of the TE mode needs to be considered. This approach not only simplifies the design procedures but also significantly improves device performance with smaller total length and larger bandwidth. Finally, regardless of the contribution of S-bend waveguides, our proposed PBS has a coupling region as short as 0.2 μm, which is the shortest reported until now. The simulation result shows that the extinction ratios for the TE and TM polarization are 13.5 and 16.6 dB at their respective output ports, and their insertion losses are 0.29 and 0.13 dB, respectively. Numerical simulations also show that the device offers a very large bandwidth (∼140  nm) with large extinction ratio (>10  dB) and low insertion loss (<1  dB).

  7. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  8. Development of micromegas muon chambers for the ATLAS upgrade

    Science.gov (United States)

    Wotschack, J.

    2012-02-01

    Large-area particle detectors based on the bulk-micromegas technology are an attractive choice for the upgrade of LHC detectors and/or detectors for the ILC or other experiments. In the context of the R&D for the ATLAS Muon System upgrade, we have built detectors of order 1 m2. In order to overcome the spark problem in micromegas a novel protection scheme using resistive strips above the readout electrode has been developed. This technology has undergone extensive tests with hadron beams at the CERN-SPS, X-rays in the lab, as well as in a neutron beam. In addition, four 10 × 10 cm2 micromegas chambers have been installed in the ATLAS cavern and are taking data under LHC conditions. We will discuss the underlying design of the chambers and present results on the performance of these chambers.

  9. Development of micromegas muon chambers for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Wotschack, J

    2012-01-01

    Large-area particle detectors based on the bulk-micromegas technology are an attractive choice for the upgrade of LHC detectors and/or detectors for the ILC or other experiments. In the context of the R and D for the ATLAS Muon System upgrade, we have built detectors of order 1 m 2 . In order to overcome the spark problem in micromegas a novel protection scheme using resistive strips above the readout electrode has been developed. This technology has undergone extensive tests with hadron beams at the CERN-SPS, X-rays in the lab, as well as in a neutron beam. In addition, four 10 × 10 cm 2 micromegas chambers have been installed in the ATLAS cavern and are taking data under LHC conditions. We will discuss the underlying design of the chambers and present results on the performance of these chambers.

  10. Suitable exposure conditions for CB Throne? New model cone beam computed tomography unit for dental use

    International Nuclear Information System (INIS)

    Tanabe, Kouji; Nishikawa, Keiichi; Yajima, Aya; Mizuta, Shigeru; Sano, Tsukasa; Yajima, Yasutomo; Nakagawa, Kanichi; Kousuge, Yuuji

    2008-01-01

    The CB Throne is a cone beam computed tomography unit for dental use, and the smaller version of the CB MercuRay developed by Hitachi Medico Co. We investigated which exposure conditions were suitable in the clinical use. Suitable exposure conditions were determined by simple subjective comparisons. The right temporomandibular joint of the head phantom was scanned at all possible combinations of tube voltage (60, 80, 100, 120 kV) and tube current (10, 15 mA). Oblique-sagittal images of the same position were obtained using multiplanar reconstruction (MPR) function. Images obtained at 120 kV and 15 mA, which are the highest exposure conditions and certain to produce images of the best quality, were used to establish the standard. Eight oral radiologists observed each image and standard image on a LCD monitor. They compared subjectively spatial resolution and noise between each image and standard image using a 10 cm scale. Evaluation points were obtained from the check positions on the scales. The Steel method was used to determine significant differences. The images at 60 kV/10 mA and 80 kV/15 mA showed significantly lower evaluation points on spatial resolution. The images at 60 kV/10 mA, 60 kV/15 mA and 80 kV/10 mA showed significantly lower evaluation points on noise. In conclusion, even if exposure conditions are reduced to 100 kV/10 mA, 100 kV/15 mA or 120 kV/10 mA, the CB Throne will produce images of the best quality. (author)

  11. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Lomonosov, I. V.; Shutov, A. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432 Chernogolovka (Russian Federation); Borm, B. [Goethe-Universität Frankfurt, D-60438 Frankfurt (Germany); Piriz, A. R.; Piriz, S. A. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain)

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  12. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    International Nuclear Information System (INIS)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.; Lomonosov, I. V.; Shutov, A.; Borm, B.; Piriz, A. R.; Piriz, S. A.

    2017-01-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  13. Status of the AFP Project in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224260; The ATLAS collaboration

    2017-01-01

    Status of the AFP project in the ATLAS experiment is given. In 2016 one arm of the AFP detector was installed and first data have been taken. In parallel with integration of the AFP subdetector into the ATLAS TDAQ nad DCS, beam tests and preparations for the installation of the 2nd arm are performed.

  14. Electron beam effects on VLSI MOS conditions for testing and reconfiguration

    International Nuclear Information System (INIS)

    Girard, P.; Roche, F.M.; Pistoulet, B.

    1986-01-01

    Wafer scale integrated-MOS circuits problems related to test and reconfiguration by electron beams are analyzed. First of all the alterations in characteristics of MOS circuits submitted to an electron beam testing are considered. Then the capabilities of reconfiguration by an electron beam bombardment are discussed. The various phenomena involved are reviewed. Experimental data are reported and discussed on the light of data of the literature. (Auth.)

  15. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  16. Systems approach for condition management design: JET neutral beam system-A fusion case study

    Energy Technology Data Exchange (ETDEWEB)

    Khella, M., E-mail: M.Khella@lboro.ac.uk [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Pearson, J. [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Dixon, R. [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Ciric, D.; Day, I.; King, R.; Milnes, J.; Stafford-Allen, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2011-10-15

    The maturation of any new technology can be coarsely divided into three stages of a development lifecycle: (1) fundamental research, (2) experimental rig development and testing through to (3) commercialization. With the enhancement of machines like JET, the building of ITER and the initiation of DEMO design activities, the fusion community is moving from stages 1 and 2 towards stage 3. One of the consequences of this transition will be a shift in emphasis from scientific achievement to maximizing machine reliability and availability. The fusion community should therefore be preparing itself for this shift by examining all methods and tools utilized in established engineering sectors that might help to improve these fundamental performance parameters. To this end, the Culham Centre for Fusion Energy (CCFE) has proactively engaged with UK industry to examine whether the development of condition management (CM) systems could help improve such performance parameters. This paper describes an initial CM design case study on the JET neutral beam system. The primary output of this study was the development of a CM design methodology that captures existing experience in fault detection, and classification as well as new methods for fault diagnosis. A summary of the methods used and the potential benefits of data fusion are presented here.

  17. Mechanical behaviour of vacuum chambers and beam screens under quench conditions in dipole and quadrupole fields

    CERN Document Server

    Rathjen, C

    2002-01-01

    A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.

  18. Report to users of ATLAS, December 1995

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-12-01

    This report covers the following: status of ATLAS accelerator; highlights of recent research at ATLAS; research related concept for an Advanced Exotic Beam Facility on ATLAS; program advisory committee; and ATLAS user group executive committee. Research highlights are given for the following: APEX progress report; transport efficiency of the Argonne Fragment Mass Analyzer; collective motion in light polonium isotopes; angular correlation measurements for 12 C(g.s.) + 12 C(3-,9.64MeV) inelastic scattering; and the AYE-ball (Argonne-Yale-European gamma spectrometer) used to study the structure of nuclei far from stability

  19. Estimation methods of deformational behaviours of RC beams under the unrestrained condition at elevated temperatures

    International Nuclear Information System (INIS)

    Kanezu, Tsutomu; Nakano, Takehiro; Endo, Tatsumi

    1986-01-01

    The estimation methods of free deformations of reinforced concrete (RC) beams at elevated temperatures are investigated based on the concepts of ACI's and CEB/FIP's formulas, which are well used to estimate the flexural deformations of RC beams at normal temperature. Conclusions derived from the study are as follows. 1. Features of free deformations of RC beams. (i) The ratios of the average compressive strains on the top fiber of RC beams to the calculated ones at the cracked section show the inclinations that the ratios once drop after cracking and then remain constant according to temperature rises. (ii) Average compressive strains might be estimated by the average of the calculated strains at the perfect bond section and the cracked section of RC beam. (iii) The ratios of the average tensile strains on the level of reinforcements to the calculated ones at the cracked section are inclined to approach the value of 1.0 monotonically according to temperature rises. The changes of the average tensile strains are caused by the deterioration of bond strength and cracking due to the increase of the differences of expansive strains between reinforcement and concrete. 2. Estimation methods of free deformations of RC beams. (i) In order to estimate the free deformations of RC beams at elevated temperatures, the basic concepts of ACI's and CEB/FIP's formulas are adopted, which are well used to estimate the M-φ relations of RC beams at normal temperature. (ii) It was confirmed that the suggested formulas are able to estimate the free deformations of RC beams, that is, the longitudinal deformation and the curvature, at elevated temperatures. (author)

  20. Versatile 0.5 TW electron beam facility for power conditioning studies of large rare-gas/halide lasers

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1980-01-01

    Rare-gas/halide lasers which are being developed for Inertial Confinement Fusion will require large area, low impedance electron beam drivers. A wide range of electron beam parameters are being considered for future systems in an effort to optimize the overall system design. A number of power conditioning issues must be investigated in order to obtain a better understanding of the various trade-offs involved in making such optimizations. The RAYITO electron beam accelerator is being designed and built at Sandia National Laboratories and will be used for such investigations. It will be capable of operating in either a 2 or 4 ohm configuration at 1 MV, 50 ns or 0.8 MV, 200 ns. Design details for RAYITO are presented in this paper. Experiments planned for this facility are also discussed

  1. STRUCTURAL ANALYSIS OF RAILWAYS BOLSTER-BEAM UNDER COMMERCIAL OPERATION CONDITIONS: OVER-TRACTION AND OVER-BRAKING

    Directory of Open Access Journals (Sweden)

    Ronald M. MARTINOD

    2016-06-01

    Full Text Available The conditions for the operation of railway systems are closely related to the increase of the commercial demand; as a consequence, the performance of the structural elements of railways changes. The present paper focuses on a study of the structural behaviour of bolster-beams under commercial operation conditions of railway systems, specifically in the dynamic conditions generated in events of over-traction and over-braking on the vehicle running. The proposed work is constructed based on the following phases: (i analysis of the kinematics of the vehicle; (ii development of numerical models, a model based on the multibody theory, and a Finite Elements model; (iii development of experimental field tests; and (iv development of simulations for a detailed analysis of the structural behaviour for a study of the strain distribution in the main bolster-beam. This study is applied to a particular case of a railway system that provides commercial service to passengers.

  2. A phase II study of V-BEAM as conditioning regimen before second auto-SCT for multiple myeloma.

    Science.gov (United States)

    Wang, T-F; Fiala, M A; Cashen, A F; Uy, G L; Abboud, C N; Fletcher, T; Wu, N; Westervelt, P; DiPersio, J F; Stockerl-Goldstein, K E; Vij, R

    2014-11-01

    High-dose melphalan has been the standard conditioning regimen for auto-SCT in multiple myeloma (MM) for decades. A more effective conditioning regimen may induce deeper responses and longer remission duration. It is especially needed in the setting of second auto-SCT, which rarely achieves comparable results with the first auto-SCT using the same conditioning regimen. Here we conducted a phase II study to investigate the efficacy and safety of a conditioning regimen V-BEAM (bortezomib-BEAM) before second auto-SCT for multiple myeloma. Ten patients were enrolled from September 2012 to May 2013. The CR rate at day +100 after auto-SCT was 75%; all except for one patient remained in remission after a median follow-up of 6 months. Three patients developed Clostridium difficile infection. Two patients died within the first 30 days of auto-SCT from neutropenic colitis and overwhelming sepsis, respectively. Due to the high rate of morbidity and mortality, the study was terminated after 10 patients. In summary, although the conditioning regimen V-BEAM before second auto-SCT for MM provided promising responses, it was associated with unexpected treatment-related toxicity and should not be investigated further without modifications.

  3. Screening conditions in a magnetized plasma with electron beam, with application to ripple trapped electron losses

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E.; Heuraux, S. [Nancy-1 Univ. Henri Poincare, LPMIA, UMR CNRS 7040, 54 (France); Colas, L.; Saint-Laurent, F.; Martin, G.; Basiuk, V. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    In Tore Supra, electrons are accelerated by lower hybrid waves in the direction parallel to the confinement magnetic field, in order to drive non-inductive current. But electrons have also on increase of their perpendicular velocity, then 10% of the most energetic electrons get trapped in the magnetic ripple between 2 adjacent toroidal coils, thus forming a beam. The electron beam follows a banana trajectory, the 20 mm wide protection represented by a cooled copper tube is assumed to protect the VP entrance from this energetic flux. Nevertheless, this beam is able to go beyond the copper tube and creates a hot spot on the steel panel edge able to melt the metal. Heat fluxes deposition on the vertical port (VP) can be understood with a beam+sheath theory including the fact that the sheaths can be obstructed when their length becomes greater than flux tube length. By this way, we identify 4 deposition regimes: 2 free sheath regimes and 2 obstructed sheath regimes. Beam flux deposits either at the entrance of the VP along first 2 cm behind the copper tube or until the end of the VP when beam flux is high and for free sheath. Obstructed sheaths make the repulsive, potential for electrons decrease and so accelerate the flux deposition. (authors)

  4. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  5. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Satadru Das [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Li, Bing, E-mail: cbli@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Fujikake, Kazunori [Department of Civil and Environmental Engineering, National Defense Academy, Yokosuka 239 8686 (Japan)

    2013-06-15

    Highlights: ► Effects of wider range of loading rates on dynamic shear behavior of RC deep beams. ► Experimental investigation of RC deep beam with and without shear reinforcements. ► Verification of experimental results with truss model and FE simulation results. ► Empirical equations are proposed to predict the dynamic increase factor of maximum resistance. -- Abstract: Research on reinforced concrete (RC) deep beams has seen considerable headway over the past three decades; however, information on the dynamic shear strength and behavior of RC deep beams under varying rates of loads remains limited. This paper describes the experimental results of 24 RC deep beams with and without shear reinforcements under varying rates of concentrated loading. Results obtained serve as useful data on shear resistance, failure patterns and strain rates corresponding to varying loading rates. An analytical truss model approach proves its efficacy in predicting the dynamic shear resistance under varying loading rates. Furthermore, three-dimensional nonlinear finite element (FE) model is described and the simulation results are verified with the experimental results. A parametric study is then conducted to investigate the influence of longitudinal reinforcement ratio, transverse reinforcement ratio and shear span to effective depth ratio on shear behavior. Subsequently, two empirical equations were proposed by integrating the various parameters to assess the dynamic increase factor (DIF) of maximum resistance under varying rates of concentrated loading.

  6. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  7. Voltage conditioning and beam performance of the 2OUR Pelletron at JAERI

    International Nuclear Information System (INIS)

    Norton, G.A.; Sundquist, M.L.; Daniel, R.E.; Rathmell, R.D.

    1982-01-01

    The Pelletron Model 2OUR was formally accepted by the Japan Atomic Energy Research Institute in Tokai, Japan, on August 10, 1982. The 2OUR is a 20 MV, folded tandem with a 300 kV injector with four ion sources on the injector deck. The 2OUR is equipped with an internal ion source and nanosecond bunching and pulsing system in the high voltage terminal. This ion source and pulsing system is designed to produce intense peak currents of proton and deuteron beams. The accelerator is also equipped with an external nanosecond bunching and pulsing system for nanosecond pulsed beams in the tandem mode for ions up to mass 240. The formal acceptance of the accelerator was based on operation at 18 MV. However, the 2OUR has operated in a very stable fashion, accelerating an oxygen beam with a terminal potential of 18.5 MV. Mechanical deficiencies outside of the accelerating tube presently limit operation below 20 MV

  8. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system

    International Nuclear Information System (INIS)

    Rana, Suresh; Zeidan, Omar; Ramirez, Eric; Rains, Michael; Gao, Junfang; Zheng, Yuanshui

    2013-01-01

    Purpose: The main purposes of this study were to (1) investigate the dependency of lateral penumbra (80%–20% distance) of uniform scanning proton beams on various factors such as air gap, proton range, modulation width, compensator thickness, and depth, and (2) compare the lateral penumbra calculated by a treatment planning system (TPS) with measurements.Methods: First, lateral penumbra was measured using solid–water phantom and radiographic films for (a) air gap, ranged from 0 to 35 cm, (b) proton range, ranged from 8 to 30 cm, (c) modulation, ranged from 2 to 10 cm, (d) compensator thickness, ranged from 0 to 20 cm, and (e) depth, ranged from 7 to 15 cm. Second, dose calculations were computed in a virtual water phantom using the XiO TPS with pencil beam algorithm for identical beam conditions and geometrical configurations that were used for the measurements. The calculated lateral penumbra was then compared with the measured one for both the horizontal and vertical scanning magnets of our uniform scanning proton beam delivery system.Results: The results in the current study showed that the lateral penumbra of horizontal scanning magnet was larger (up to 1.4 mm for measurement and up to 1.0 mm for TPS) compared to that of vertical scanning magnet. Both the TPS and measurements showed an almost linear increase in lateral penumbra with increasing air gap as it produced the greatest effect on lateral penumbra. Lateral penumbra was dependent on the depth and proton range. Specifically, the width of lateral penumbra was found to be always lower at shallower depth than at deeper depth within the spread out Bragg peak (SOBP) region. The lateral penumbra results were less sensitive to the variation in the thickness of compensator, whereas lateral penumbra was independent of modulation. Overall, the comparison between the results of TPS with that of measurements indicates a good agreement for lateral penumbra, with TPS predicting higher values compared to

  9. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek

    2016-01-01

    Roč. 11, May (2016), s. 1-82, č. článku P05013. ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : beam-line instrumentation * data analysis * beam position and profile monitors * beam-intensity monitors * bunch length monitors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.220, year: 2016

  10. Possibilities and conditions of applying PIXE analysis with external proton beam

    International Nuclear Information System (INIS)

    Potocek, V.

    1989-01-01

    The technical and methodological prerequisites are summed up for the use of the PIXE method with an external proton beam. The method is suitable for the preliminary analysis of unknown samples prior to the choice of the best suited analytical method, for the nondestructive analysis of rare samples such as unique works of art, of small amounts of materials which are difficult to access, etc., as well as for calibration and comparing analyses. As for the operators the application of the PIXE method with external proton beam assumes the availability of accelerator operating time, minimization of the length of exposure of the targets, optimization of parameters of the exciting beam and automation of the whole process. Attention is also devoted to technical provisions and organization of laboratory work. The design is described of an analytical unit using the PIXE method with external proton beam, and it is stated that the Van de Graaff accelerator at the Institute of Nuclear Physics in Rez near Prague could be used for the purpose. (Z.M.). 6 refs

  11. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  12. ATLAS IBL operational experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237659; The ATLAS collaboration

    2017-01-01

    The Insertable B-Layer (IBL) is the inner most pixel layer in the ATLAS experiment, which was installed at 3.3 cm radius from the beam axis in 2014 to improve the tracking performance. To cope with the high radiation and hit occupancy due to proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed for the IBL. After the long shut-down period over 2013 and 2014, the ATLAS experiment started data-taking in May 2015 for Run-2 of the Large Hadron Collider (LHC). The IBL has been operated successfully since the beginning of Run-2 and shows excellent performance with the low dead module fraction, high data-taking efficiency and improved tracking capability. The experience and challenges in the operation of the IBL is described as well as its performance.

  13. Beam-phase monitoring with non-destructive pickup

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.

    1995-01-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few open-quotes reference tunesclose quotes for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year's FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for open-quotes old-tuneclose quotes configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction

  14. Neutron-induced damage evolution under Beam Raster Scanner conditions for IFMIF

    International Nuclear Information System (INIS)

    Mota, Fernando; Ortiz, Christophe J.; Ibarra, Angel; Vila, Rafael

    2011-01-01

    The formation and evolution of defects in materials irradiated with a homogeneous neutron source and with the Beam Raster Scanner (BRS) solution was investigated. The intensity neutron source fluctuations inherent to the BRS system were determined using the neutron transport McDeLicious code. Defects generated during irradiation were calculated using the binary collision approximation MARLOWE code, using the primary knock-on atom (PKA) energy spectrum resulting from neutron interactions with the material. In order to predict the evolution of defects during irradiation, a Rate Theory model based on ab initio parameters was developed. Our model accounts for the migration of mobile defects, the formation of clusters and their recombination. As an example, we investigated defect evolution in Fe irradiated at room temperature in both beam configurations. Simulation results clearly indicate that the defect evolution expected in the BRS configuration is nearly the same as the one expected in a homogeneous irradiation system.

  15. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  16. Synthesis of arbitrary Fock states via conditional measurement on beam splitters

    International Nuclear Information System (INIS)

    Escher, B.M.; Baseia, B.; Avelar, A.T.

    2005-01-01

    In a previous work [Opt. Commun. 138, 71 (1997)] a scheme was proposed to create traveling fields in the Fock state |2 J >. Here we show how to extend this result to arbitrary Fock states. The procedure combines one-photon states impinging on a sequence of distinct beam splitters, each one associated with a (zero detection) single-photon photodetector, with optimization of the success probability to get the desired state. Advantages and disadvantages of this scheme are discussed

  17. Orientation-dependent ion beam sputtering at normal incidence conditions in FeSiAl alloy

    International Nuclear Information System (INIS)

    Batic, Barbara Setina; Jenko, Monika

    2010-01-01

    The authors have performed Ar+ broad ion beam sputtering of a polycrystalline Fe-Si-Al alloy at normal incidence at energies varying from 6 to 10 keV. Sputtering results in the formation of etch pits, which can be classified in three shapes: triangular, rectangular, and square. As each grain of individual orientation exhibits a certain type of pattern, the etch pits were correlated with the crystal orientations by electron backscattered diffraction technique.

  18. Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions

    Directory of Open Access Journals (Sweden)

    W. Miyake

    2002-04-01

    Full Text Available The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polar-orbiting Exos-D (Akebono satellite. We found that both the solar wind velocity and density, as well as IMF By and Bz , affect the occurrence frequency of ion conics. The energy of ion conics also depends on the solar wind velocity, IMF By and Bz . The ion beams around the local noon are not significantly controlled by the interplanetary conditions. The results reveal that ion convection, as well as the energy source, is important to understand the production of dayside ion conics while that of ion beams basically reflects the intensity of local field-aligned currents.Key words. Ionosphere (particle acceleration – magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere ionosphere interaction

  19. Superconducting rf development at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)

    1993-12-31

    The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.

  20. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  1. Experimental study and simulation of the extraction conditions of a multicharged ion beam from an electron cyclotron resonance source

    International Nuclear Information System (INIS)

    Mandin, J.

    1996-01-01

    This thesis concerns the beam extraction studies of ECR Ion Sources for the SPIRAL project at GANIL (France). The optical properties (i.e. the emittances) of the radioactive ion beam production source is a crucial point in this project. We performed emittance measurements with a very high transport efficiency and developed a computer code for simulating the extraction and transport conditions. This simulation takes into account all the parameters acting on the extraction process: the characteristics of the ions and electrons emitted by the plasma, their space and energy distributions, the space charge, the magnetic filed of the source and the accelerating electric field. We explained the evolution of the emittances for two different types of ECR Ion Source. The simulation-experiment comparison showed us that the magnetic field and the intrinsic energy of the ions seem to be the most important parameters for explaining the overall emittance behaviour of the ECRIS. We precise their values and comment them. (author)

  2. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  3. ERCP atlas

    International Nuclear Information System (INIS)

    Pott, G.; Schrameyer, B.

    1989-01-01

    Endoscopic-retrograde cholangio-pancreatography is a diagnostic tool that has become a routine method also in medical centres other than those specializing in the field of gastroenterology. It is estimated that there are about 1000 hospitals in the Federal Republic of Germany applying cholangio-pancreatography as a diagnostic method. Frequently, data interpretation is difficult, because imaging of subsequently detected lesions is found to have been insufficiently differential, or incomplete. The experienced examiner, who knows the pathological processes involved and hence to be expected, will perform the ERCP examination in a specific manner, i.e. purposefully. The ERCP atlas now presents a selection of typical, frequently found conditions, and of rarely encountered lesions. The material has been chosen from a total of 15 000 retrograde cholangio-pancreatographies. The introductory text is relatively short, as it is not so much intended to enhance experienced readers' skill in endoscopic diagnostics, - there is other literature for this purpose -, but rather as a brief survey for less experienced readers. (orig./MG) With 280 figs [de

  4. The Atlas upgrade project

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1988-01-01

    ATLAS is a heavy-ion accelerator system consisting of a 9-MV tandem electrostatic injector coupled to a superconducting linac. A project now well advanced will upgrade the capabilities of ATLAS immensely by replacing the tandem and its negative-ion source with a positive-ion injector that consists of an electron-cyclotron resonance (ECR) ion source and a 12-MV superconducting injector linac of novel design. This project will increase the beam intensity 100 fold and will extend the projectile-mass range up to uranium. Phase 1 of the work, which is nearing completion in late 1988, will provide an injector comprising the ECR source and its 350-kV voltage platform, beam analysis and bunching systems, beam lines, and a prototype 3-MV linac. The ECR source and its voltage platform are operational, development of the new class of low-frequency interdigital superconducting resonators required for the injector linac has been completed, and assembly of the whole system is in progress. Test runs and then routine use of the Phase 1 injector systems are planned for early 1989, and the final 12-MV injector linac will be commissioned in 1990. 12 refs., 6 figs

  5. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  6. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  7. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  8. Cell inactivation studies on yeast cells under euoxic and hypoxic condition using electron beam from microtron accelerator

    International Nuclear Information System (INIS)

    Praveen Joseph; Santhosh Acharya; Ganesh Sanjeev; Narayana, Y.; Bhat, N.N.

    2011-01-01

    In the case of sparsely ionizing radiation such as electron, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, the differences in the cell survival efficiency and dose rate effect in diploid yeast strains Saccharomyces cerevisiae X2180 and Saccharomyces cerevisiae D7 under euoxic and hypoxic condition have been quantified. Irradiation was carried out using 8 MeV pulsed electron beam from Microtron accelerator. The dose per pulse and pulse width of the beam used was 0.6 Gy and 2.3 μs, respectively, which correspond to an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . For survival studies doses were delivered at a rate of 50 pulses per second (an average dose rate of 1,800 Gy s -1 ). Fricke and alanine dosimeters were used to measure the dose delivered to the sample. A significant difference in the dose response has been observed under euoxic and hypoxic condition. Dose rate effect has been studied by changing the pulse repetition rate of the Microtron and the dose rate used was from 180 to 1800 Gy min -1 . A significant dose rate effect was observed under euoxic condition for Saccharomyces cerevisiae X2180 but the same was absent under hypoxic condition. The dose rate effect was absent for Saccharomyces cerevisiae D7 under both irradiation condition. The survival curves are found to be sigmoidal in shape under both condition but with a wider shoulder under hypoxic condition. The D 0 value and the Oxygen Enhancement Ratio (OER) at that point have been derived. (author)

  9. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Science.gov (United States)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  10. The ATLAS positive ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs

  11. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  12. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  13. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Linwen [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Université de Sherbrooke, Quebec (Canada); François, Raoul, E-mail: raoul.francois@insa-toulouse.fr [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Dang, Vu Hiep [Hanoi Architectural University, Faculty of Civil Engineering, Hanoi (Viet Nam); L' Hostis, Valérie [CEA Saclay, CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, Gif-sur-Yvette (France); Gagné, Richard [Université de Sherbrooke, Quebec (Canada)

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order to investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.

  14. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  15. Prime wires for ATLAS

    CERN Multimedia

    2003-01-01

    In an award ceremony on 3 September, ATLAS honoured the French company Axon Cable for its special coaxial cables, which were purpose-built for the Liquid Argon calorimeter modules. Working for CERN since the 1970s, Axon' Cable received the ATLAS supplier award last week for its contribution to the liquid argon calorimeter cables of ATLAS (LAL/Orsay, France and University of Victoria, Canada), started in 1996. Its two sets of minicoaxial cables, called harnesses "A" and "B", are designed to function in the harsh conditions in the liquid argon (at 90 Kelvin or -183°C) and under extreme radiation (up to several Mrads). The cables are mainly used for the readout of the calorimeters, and are connected to the outside world by 114 signal feedthroughs with 1920 channels each. The signal from the detectors is transmitted directly without any amplification, which imposes tight restrictions on the impedance and on the signal propagation time of the cables. Peter Jenni, ATLAS spokesperson, gives the award for best s...

  16. Prospects and Results from the AFP Detector in ATLAS

    CERN Document Server

    Gach, Grzegorz; The ATLAS collaboration

    2017-01-01

    In 2016 one arm of the AFP detector was installed and first data have been taken. In parallel with integration of the AFP subdetector into the ATLAS TDAQ and DCS systems, beam tests and preparations for the installation of the 2$^{\\textrm{nd}}$ arm are performed. In this report, a status of the AFP project in the ATLAS experiment is discussed.

  17. Prospects and Results from the AFP Detector in ATLAS

    CERN Document Server

    Gach, Grzegorz; The ATLAS collaboration

    2016-01-01

    Status of the AFP project in the ATLAS experiment is given. In 2016 one arm of the AFP detector was installed and first data have been taken. In parallel with integration of the AFP subdetector into the ATLAS TDAQ nad DCS, beam tests and preparations for the installation of the 2nd arm are performed.

  18. Atlas positive-ion injector project

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R C; Bollinger, L M; Shepard, K W

    1987-04-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make beams of essentially all elements including uranium available at ATLAS. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides ions of high charge states at microampere currents, and rf superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m resulting in an essentially new method of acceleration for low-energy heavy ions.

  19. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions

    International Nuclear Information System (INIS)

    Zhang Meng; Bhattacharya, Pallab; Guo Wei; Banerjee, Animesh

    2010-01-01

    Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 deg. C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1x10 18 cm -3 . The corresponding doping efficiency and hole mobility are ∼4.9% and 3.7 cm 2 /V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (λ peak =529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 Ω.

  20. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    International Nuclear Information System (INIS)

    Schmidt, M.; Zschornack, G.; Kentsch, U.; Ritter, E.

    2014-01-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup

  1. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com [DREEBIT GmbH, 01109 Dresden (Germany); Zschornack, G.; Kentsch, U.; Ritter, E. [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)

    2014-02-15

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  2. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    Science.gov (United States)

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  3. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Tchernycheva, M; Harmand, J C; Patriarche, G; Travers, L; Cirlin, G E

    2006-01-01

    Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320 deg. C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620 deg. C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires

  4. Long-Term Flexural Behaviors of GFRP Reinforced Concrete Beams Exposed to Accelerated Aging Exposure Conditions

    Directory of Open Access Journals (Sweden)

    Yeonho Park

    2014-06-01

    Full Text Available This study investigates the impact of accelerated aging conditions on the long-term flexural behavior and ductility of reinforced concrete (RC members with glass fiber-reinforced polymer (GFRP bars (RC-GFRP specimen and steel bars (RC-steel specimen. A total of thirty six specimens were designed with different amounts of reinforcement with three types of reinforcing bars (i.e., helically wrapped GFRP, sand-coated surface GFRP and steel. Eighteen specimens were subjected to sustained loads and accelerated aging conditions (i.e., 47 °C and 80% relative humidity in a chamber. The flexural behavior of specimens under 300-day exposure was compared to that of the companion specimens without experiencing accelerated aging conditions. Results indicate that the accelerated aging conditions reduced flexural capacity in not only RC-steel, but also RC-GFRP specimens, with different rates of reduction. Different types of GFRP reinforcement exhibited different rates of degradation of the flexural capacity when embedded in concrete under the same exposure conditions. Several existing models were compared with experimental results for predicting the deflection and deformability index for specimens. Bischoff and Gross’s model exhibited an excellent prediction of the time-dependent deflections. Except for the deformability index proposed by Jaeger, there was no general trend related to the aging duration. This study recommends the need for further investigation on the prediction of the deformability index.

  5. Metadata Aided Run Selection at ATLAS

    CERN Document Server

    Buckingham, RM; The ATLAS collaboration; Tseng, JC-L; Viegas, F; Vinek, E

    2010-01-01

    Management of the large volume of data collected by any large scale sci- entific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user in- terfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called “runBrowser” makes these Conditions Metadata available as a Run based selection service. runBrowser, based on php and javascript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions at...

  6. Metadata aided run selection at ATLAS

    CERN Document Server

    Buckingham, RM; The ATLAS collaboration; Tseng, JC-L; Viegas, F; Vinek, E

    2011-01-01

    Management of the large volume of data collected by any large scale scientific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user interfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called “runBrowser” makes these Conditions Metadata available as a Run based selection service. runBrowser, based on php and javascript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions attrib...

  7. LHCb: Beam and Background Monitoring and the Development of an Online Condition Analysis Tool for the LHCb Experiment at CERN

    CERN Multimedia

    Alessio, F

    2010-01-01

    The LHCb experiment has been taking data since more than half a year at the LHC, recording events from collisions at the highest energy ever achieved. For its physics purposes in the sector of CP violation, the experiment will record data with the best precision achievable. An online and offline beam and background monitoring became therefore essential to understand the performance of the LHC accelerator at CERN, to monitor and study the behavior of the background around the LHCb experiment and to optimize the experimental conditions. During my second year as a Doctoral Student at CERN, I have been working on the timing and readout control as well as on the online Beam, Background, and Luminosity Monitoring of the LHCb experiment in the frame of the LHCb Online group. The group is responsible for the complete data acquisition of the LHCb experiment, from the Front-End Electronics (FEE) to the storage of the data for offline analysis, including the Timing and Fast Control (TFC) system. The latter controls and...

  8. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    OpenAIRE

    Sen, Tara; Reddy, H. N. Jagannatha

    2013-01-01

    The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flex...

  9. Long-term operating experience for the ATLAS superconducting resonators

    International Nuclear Information System (INIS)

    Pardo, R.; Zinkann, G.

    1999-01-01

    Portions of the ATLAS accelerator have been operating now for over 21 years. The facility has accumulated several million resonator-hours of operation at this point and has demonstrated the long-term reliability of RF superconductivity. The overall operating performance of the ATLAS facility has established a level of beam quality, flexibility, and reliability not previously achieved with heavy-ion accelerator facilities. The actual operating experience and maintenance history of ATLAS are presented for ATLAS resonators and associated electronics systems. Solutions to problems that appeared in early operation as well as current problems needing further development are discussed

  10. First LHC beam in 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Impressions from the ATLAS control room while waiting for the very first 2017 LHC beams, from the traditional croissants in the morning to the "beam splashes" in the evening. The shift crew, online experts, run coordinators and management are looking forward to the next steps of the LHC restart.

  11. First LHC beam in 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Impressions from the ATLAS control room while waiting for the very first 2017 LHC beams, from the traditional croissants in the morning to the "beam splashes" in the evening. The shift crew, online experts, run coordinators and management are looking forward the next steps of the LHC restart.

  12. A Comparison of the Conditioning Regimens BEAM and FEAM for Autologous Hematopoietic Stem Cell Transplantation in Lymphoma: an Observational Study on Patients From Fondazione Italiana Linfomi (Fil).

    Science.gov (United States)

    Olivieri, Jacopo; Mosna, Federico; Pelosini, Matteo; Fama, Angelo; Rattotti, Sara; Giannoccaro, Margherita; Carli, Giuseppe; Tisi, Maria Chiara; Ferrero, Simone; Sgherza, Nicola; Mazzone, Anna Maria; Marino, Dario; Calimeri, Teresa; Loseto, Giacomo; Saraceni, Francesco; Tomei, Gabriella; Sica, Simona; Perali, Giulia; Codeluppi, Katia; Billio, Atto; Olivieri, Attilio; Orciuolo, Enrico; Matera, Rossella; Stefani, Piero Maria; Borghero, Carlo; Ghione, Paola; Cascavilla, Nicola; Lanza, Francesco; Chiusolo, Patrizia; Finotto, Silvia; Federici, Irene; Gherlinzoni, Filippo; Centurioni, Riccardo; Fanin, Renato; Zaja, Francesco

    2018-05-29

    Carmustine (BCNU)-Etoposide-Citarabine-Melphalan (BEAM) chemotherapy is the standard conditioning regimen for autologous stem cell transplantation (ASCT) in lymphomas. Owing to BCNU shortages, many centers switched to Fotemustine-substituted BEAM (FEAM), lacking proof of equivalence. We conducted a retrospective cohort study in 18 Italian centers to compare safety and efficacy of BEAM and FEAM regimens for ASCT in lymphomas performed from 2008 to 2015. We enrolled 1038 patients (BEAM n=607, FEAM n=431), of which 27% had Hodgkin's lymphoma (HL), 14% indolent Non-Hodgkin's lymphoma (iNHL) and 59% aggressive NHL (aNHL). Baseline characteristics including age, sex, stage, B-symptoms, extranodal involvement, previous treatments, response before ASCT, overall conditioning intensity, were well balanced between BEAM and FEAM; notable exceptions were: ASCT year (median: BEAM=2011 vs FEAM=2013, p<0.001), Sorror score (≥3: BEAM=15% vs FEAM=10%, p=0.017), radiotherapy use (BEAM=18% vs FEAM=10%, p<0.001). FEAM conditioning resulted in higher rates of gastrointestinal and infectious toxicities, including severe oral mucositis (grade ≥3: BEAM=31% vs FEAM=44%, p<0.001), and sepsis from Gram-negative bacteria (mean isolates/patient: BEAM=0.1 vs FEAM=0.19, p<0.001). Response status at day 100 post-ASCT (overall response: BEAM=91% vs FEAM=88%, p=0.42), 2-years Overall Survival (83.9%, 95%CI:81.5%-86.1%) and Progression-free Survival (70.3%, 95%CI:67.4%-73.1%) were not different in the two groups. Mortality from infection was higher in the FEAM group (SHR 1.99; 95%CI:1.02-3.88, p=0.04). BEAM and FEAM do not appear different in terms of survival and disease control. However, due to concerns of higher toxicity, Fotemustine substitution in BEAM does not seem justified, if not for easier supply. Copyright © 2018. Published by Elsevier Inc.

  13. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J. [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R. [Department of Engineering Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  14. The ATLAS Level-1 Central Trigger Processor (CTP)

    CERN Document Server

    Spiwoks, Ralf; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS Level-1 Central Trigger Processor (CTP) combines information from calorimeter and muon trigger processors and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). In addition to the event-selection decision, the CTP also provides trigger summary information to the Level-2 trigger and the data acquisition system. It further provides accumulated and bunch-by-bunch scaler data for monitoring of the trigger, detector and beam conditions. The CTP is presented and results are shown from tests with the calorimeter adn muon trigger processors connected to detectors in a particle beam, as well as from stand-alone full-system tests in the laboratory which were used to validate the CTP.

  15. Novel uses of a wide beam saddle field ion source for producing targets used in nuclear physics experiments at the Argonne National Laboratory ATLAS facility

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.

    1996-01-01

    The wide beam ion sputter source has several unique characteristics which make it very useful for producing, reducing the thickness or cleaning the surface of targets needed for nuclear physics experiments. A discussion of these techniques as well as the sputter source characteristics will be given. Sputter yields obtained utilizing the source are presented for a variety of materials common to nuclear target production

  16. A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system: detector concept description and first beam test results

    CERN Document Server

    Argyropoulos, Spyridon; The ATLAS collaboration

    2018-01-01

    The expected increase of the particle flux at the high luminosity phase of the LHC (HL-LHC) with instantaneous luminosities up to L ≃ 7.5 × 1034 cm−2 s-1 will have a severe impact on the ATLAS detector performance. The pile-up is expected to increase on average to 200 interactions per bunch crossing. The reconstruction and trigger performance for electrons, photons as well as jets and transverse missing energy will be severely degraded in the end-cap and forward region, where the liquid Argon based electromagnetic calorimeter has coarser granularity compared to the central region. A High Granularity Timing Detector (HGTD) is proposed in front of the liquid Argon end-cap calorimeters for pile-up mitigation at Level-0 (L0) trigger level and in the offline reconstruction. This device should cover the pseudo-rapidity range of 2.4 to about 4.2. Four layers of Silicon sensors are foreseen to provide a precision timing information for minimum ionizing particle with a time resolution better than 50 pico-seconds ...

  17. A High Granular Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system: detector concept description and first beam test results

    CERN Document Server

    Lacour, Didier; The ATLAS collaboration

    2017-01-01

    The expected increase of the particle flux at the high luminosity phase of the LHC (HL-LHC) with instantaneous luminosities up to L ≃ 7.5 × 1034 cm−2 s-1 will have a severe impact on the ATLAS detector performance. The pile-up is expected to increase on average to 200 interactions per bunch crossing. The reconstruction and trigger performance for electrons, photons as well as jets and transverse missing energy will be severely degraded in the end-cap and forward region, where the liquid Argon based electromagnetic calorimeter has coarser granularity compared to the central region. A High Granularity Timing Detector (HGTD) is proposed in front of the liquid Argon end-cap calorimeters for pile-up mitigation at Level-0 (L0) trigger level and in the offline reconstruction. This device should cover the pseudo-rapidity range of 2.4 to about 4.2. Four layers of Silicon sensors are foreseen to provide a precision timing information for minimum ionizing particle with a time resolution better than 50 pico-seconds ...

  18. On the H8 beam line of the SPS in the North Area, a complete slice of the ATLAS detector is taking shape

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The Inner Detector and Calorimetry setup. The Liquid Argon electromagnetic calorimeter in its cryostat, and the tile calorimeter (centre) are mounted such that they can be repositioned in the beam, which travels from left to right. Also visible is the magnet housing the Pixel and SCT detectors (far left), the Transition Radiation Tracker (left) and part of a MDT/RPC Muon chamber (far right).

  19. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  20. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  1. Optimizing the energy measurement of the ATLAS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lampl, W.

    2005-12-01

    This PhD-thesis addresses the calibration of the ATLAS electromagnetic calorimeter. ATLAS is a high-energy physics experiment at the Large Hadron Collider (LHC) which is currently under construction at CERN in Geneva. LHC and ATLAS are foreseen to start up in 2007. In summer 2004, an extensive beam-test was carried out. This means that individual detector modules are exposed to a particle beam of known energy in order to verify the detector performance. At this occasion, all ATLAS subdetectors where operated together for the first time. The thesis contains a comprehensive description of the ATLAS electromagnetic calorimeter, the reconstruction software and the test-beam experiment that was carried out at CERN in 2004. Furthermore, the physics of the electromagnetic shower is discussed in detail. Data from the test beam as well as a detailed Monte-Carlo simulation are used to develop a novel energy-reconstruction method for the ATLAS EM calorimeter that achieves an excellent energy resolution (sampling term ∼ 11 %) as well as a very good linearity (< 0.4 %). Data taken during the beam test is also used to verify the accuracy of the simulation and to test the new energy-reconstruction method. (author)

  2. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    Science.gov (United States)

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  3. Run 2 ATLAS Trigger and Detector Performance

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2018-01-01

    The 2nd LHC run has started in June 2015 with a proton-proton centre-of-mass collision energy of 13 TeV. During the years 2016 and 2017, LHC delivered an unprecedented amount of luminosity under the ever-increasing challenging conditions in terms of peak luminosity, pile-up and trigger rates. In this talk, the LHC running conditions and the improvements made to the ATLAS experiment in the course of Run 2 will be discussed, and the latest ATLAS detector and ATLAS trigger performance results from the Run 2 will be presented.

  4. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, Mark S

    2009-01-01

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies are presented. These include a coherent noise study, a measurement of the quality of the physics pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  5. The ATLAS Inner Detector commissioning and calibration

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation,

  6. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  7. Development, deployment and operations of ATLAS databases

    International Nuclear Information System (INIS)

    Vaniachine, A. V.; von der Schmitt, J. G.

    2008-01-01

    In preparation for ATLAS data taking, a coordinated shift from development towards operations has occurred in ATLAS database activities. In addition to development and commissioning activities in databases, ATLAS is active in the development and deployment (in collaboration with the WLCG 3D project) of the tools that allow the worldwide distribution and installation of databases and related datasets, as well as the actual operation of this system on ATLAS multi-grid infrastructure. We describe development and commissioning of major ATLAS database applications for online and offline. We present the first scalability test results and ramp-up schedule over the initial LHC years of operations towards the nominal year of ATLAS running, when the database storage volumes are expected to reach 6.1 TB for the Tag DB and 1.0 TB for the Conditions DB. ATLAS database applications require robust operational infrastructure for data replication between online and offline at Tier-0, and for the distribution of the offline data to Tier-1 and Tier-2 computing centers. We describe ATLAS experience with Oracle Streams and other technologies for coordinated replication of databases in the framework of the WLCG 3D services

  8. The ATLAS Level-1 Trigger System with 13TeV nominal LHC collisions

    CERN Document Server

    Helary, Louis; The ATLAS collaboration

    2017-01-01

    The Level-1 (L1) Trigger system of the ATLAS experiment at CERN's Large Hadron Collider (LHC) plays a key role in the ATLAS detector data-taking. It is a hardware system that selects in real time events containing physics-motivated signatures. Selection is purely based on calorimetry energy depositions and hits in the muon chambers consistent with muon candidates. The L1 Trigger system has been upgraded to cope with the more challenging run-II LHC beam conditions, including increased centre-of-mass energy, increased instantaneous luminosity and higher levels of pileup. This talk summarises the improvements, commissioning and performance of the L1 ATLAS Trigger for the LHC run-II data period. The acceptance of muon triggers has been improved by increasing the hermiticity of the muon spectrometer. New strategies to obtain a better muon trigger signal purity were designed for certain geometrically difficult transition regions by using the ATLAS hadronic calorimeter. Algorithms to reduce noise spikes in muon trig...

  9. Factors affecting the possibility to detect buccal bone condition around dental implants using cone beam computed tomography

    DEFF Research Database (Denmark)

    Liedke, Gabriela S; Spin-Neto, Rubens; da Silveira, Heloisa E D

    2016-01-01

    OBJECTIVES: To evaluate factors with impact on the conspicuity (possibility to detect) of the buccal bone condition around dental implants in cone beam computed tomography (CBCT) imaging. MATERIAL AND METHODS: Titanium (Ti) or zirconia (Zr) implants and abutments were inserted into 40 bone blocks...... in a way to obtain variable buccal bone thicknesses. Three combinations regarding the implant-abutment metal (TiTi, TiZr, or ZrZr) and the number of implants (one, two, or three) were assessed. Two CBCT units (Scanora 3D - Sc and Cranex 3D - Cr) and two voxel resolutions (0.2 and 0.13 mm) were used...... variable. Odds ratio (OR) were calculated separately for each CBCT unit. RESULTS: Implant-abutment combination (ZrZr) (OR Sc = 19.18, OR Cr = 11.89) and number of implants (3) (OR Sc = 12.10, OR Cr = 4.25) had major impact on buccal bone conspicuity. The thinner the buccal bone, the higher the risk...

  10. ATLAS Muon Drift Tube Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y [KEK, High Energy Accelerator Research Organisation, Tsukuba (Japan); Ball, B; Chapman, J W; Dai, T; Ferretti, C; Gregory, J [University of Michigan, Department of Physics, Ann Arbor, MI (United States); Beretta, M [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Boterenbrood, H; Jansweijer, P P M [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Brandenburg, G W; Fries, T; Costa, J Guimaraes da; Harder, S; Huth, J [Harvard University, Laboratory for Particle Physics and Cosmology, Cambridge, MA (United States); Ceradini, F [INFN Roma Tre and Universita Roma Tre, Dipartimento di Fisica, Roma (Italy); Hazen, E [Boston University, Physics Department, Boston, MA (United States); Kirsch, L E [Brandeis University, Department of Physics, Waltham, MA (United States); Koenig, A C [Radboud University Nijmegen/Nikhef, Dept. of Exp. High Energy Physics, Nijmegen (Netherlands); Lanza, A [INFN Pavia, Pavia (Italy); Mikenberg, G [Weizmann Institute of Science, Department of Particle Physics, Rehovot (Israel)], E-mail: brandenburg@physics.harvard.edu (and others)

    2008-09-15

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 {mu}m, which corresponds to a momentum accuracy of about 10% at p{sub T}= 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  11. ATLAS Muon Drift Tube Electronics

    CERN Document Server

    Arai, Y; Beretta, M; Boterenbrood, H; Brandenburg, G W; Ceradini, F; Chapman, J W; Dai, T; Ferretti, C; Fries, T; Gregory, J; Guimarães da Costa, J; Harder, S; Hazen, E; Huth, J; Jansweijer, P P M; Kirsch, L E; König, A C; Lanza, A; Mikenberg, G; Oliver, J; Posch, C; Richter, R; Riegler, W; Spiriti, E; Taylor, F E; Vermeulen, J; Wadsworth, B; Wijnen, T A M

    2008-01-01

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 microns, which corresponds to a momentum accuracy of about 10% at pT = 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  12. The ATLAS Detector Control System

    International Nuclear Information System (INIS)

    Lantzsch, K; Braun, H; Hirschbuehl, D; Kersten, S; Arfaoui, S; Franz, S; Gutzwiller, O; Schlenker, S; Tsarouchas, C A; Mindur, B; Hartert, J; Zimmermann, S; Talyshev, A; Oliveira Damazio, D; Poblaguev, A; Martin, T; Thompson, P D; Caforio, D; Sbarra, C; Hoffmann, D

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  13. The ATLAS Detector Control System

    Science.gov (United States)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  14. ATLAS construction: A status report

    CERN Document Server

    Sfyrla, Anna

    2006-01-01

    ATLAS is a general purpose p-p collider detector being constructed for the CERN Large Hadron Collider (LHC). It is located in one of the two high luminosity bunch crossing points (peak luminosity of 1 0 3 4 c m - 2 s _ 1 ) of the LHC. It consists of 3 main sections. Located close to the beam axis, the tracking system employs pixel detectors, silicon microstrip modules and transition radiation straws, all within a 2 Tesla superconducting solenoid. The tracker is surrounded by the electromagnetic and hadronic calorimeters. In the outer part of the detector, 8 superconducting coils define an open toroidal magnetic field for muon detection. The construction status of the ATLAS detector towards being ready for the first collisions in 2007 will be presented, with particular emphasis on the construction and projected performance of the tracking system.

  15. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    Science.gov (United States)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  16. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  17. Optimization and Calibration of the Drift-Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2067746

    2000-01-01

    The final phase of preparations for the ATLAS experiment at the future Large Hadron Collider (LHC) has begun. In the last decade the collaboration has carried out various test-beam experiments to study and optimize prototypes of all subdetectors under more and more realistic conditions. To enhance the detector-physical understanding, these hardware activities were complemented by detailed simulations. In parallel the development of reconstruction software has made important progress. The present work focusses on some advanced aspects of optimizing the Monitored Drift Tube Chambers (MDT) for operation as precision chambers in the Muon Spectrometer. It will be shown how this system has been tuned for maximum performance in order to meet the ambitious goals defined by the objectives of LHC particle physics. After defining the basic detector parameters, the tubes' capability of running in ATLAS's high-rate gamma radiation background was verified. Both tasks necessitated several years of gathering experience in mu...

  18. Targets for the APEX experiment at ATLAS

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.; Leonard, R.H.

    1994-01-01

    Targets of lead, tantalum, thorium and uranium have been produced for experiments with the APEX (Argonne Positron Experiment) apparatus at ATLAS (Argonne Tandem Linac Accelerator System). APEX is a device built at Argonne National Laboratory to investigate the anomalous positrons observed in collisions of very heavy ion beams on heavy targets. Both fixed and rotating targets have been used. The rotating target system involves a 4-quadrant wheel rotating at speeds up to 700 rpm with the position encoded into the data stream. In addition to the hundreds of targets produced for the heavy-ion reactions studied, a wide variety of targets were employed for beam diagnostics, detector calibration and target wheel development. The experiment used very heavy ion beams ( 238 U, 206 Pb and 208 Pb) from ATLAS and targets of 206 Pb, 208 Pb, 232 Th and 238 U produced in the laboratory

  19. The ALFA Roman Pot Detectors of ATLAS

    CERN Document Server

    Abdel Khalek, S.

    2016-11-23

    The ATLAS Roman Pot system is designed to determine the total proton-proton cross-section as well as the luminosity at the Large Hadron Collider (LHC) by measuring elastic proton scattering at very small angles. The system is made of four Roman Pot stations, located in the LHC tunnel in a distance of about 240~m at both sides of the ATLAS interaction point. Each station is equipped with tracking detectors, inserted in Roman Pots which approach the LHC beams vertically. The tracking detectors consist of multi-layer scintillating fibre structures readout by Multi-Anode-Photo-Multipliers.

  20. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2009-01-01

    Since the first modules of the ATLAS LAr calorimeters were read out in situ in 2006, commissioning studies have been performed. These studies include the testing of the electronics calibration system, surveys for dead or problematic channels, investigations of the quality of the physics pulse shape prediction , and tests of energy and time reconstruction with cosmic or single beam induced signals. The results of these commissioning studies indicate the LAr calorimeters are prepared for LHC collisions and positioned to meet the physics objectives of the ATLAS experiment.

  1. Behaviour of high purity UO2/H2O interfaces under helium beam irradiation in deaerated conditions

    International Nuclear Information System (INIS)

    Mendes, E.

    2005-11-01

    A question put within the framework of the nuclear fuel storage worn in geological site is what become to them in the presence of water. The aim of a fundamental program, of PRECCI project (ECA), is to highlight the behaviour of interfaces which can be used as models for the interfaces nuclear spent fuel/water if the fuel is uranium UO 2 dioxide. This doctorate is interested in the effect of the alpha activity which is the only one that exist in the spent fuel after long periods. The aim is to identify the mechanisms of alteration and of leaching of surfaces under alpha irradiation. A method is developed to irradiate UO 2 /H 2 O interfaces in deaerated conditions with the beam of He 2+ produced by a cyclotron. The He 2+ ions cross an UO 2 disc and emerge in water with an energy of 5 MeV. Leachings under irradiation are carried with a large range of particles flux. The post-irradiation characterization of the surface of the discs realised by micro-Raman spectroscopy allowed to identify the alteration layer. It is made up of studtite UO 2 (O 2 ),4H 2 O, and of schoepite UO 3 ,xH 2 O. The analysis of the solutions shows that the uranium release strongly increases. The electrochemical properties of the interfaces under irradiation strongly differ from those before irradiation. This work allows to propose that the radiolytic species seen by the interface are it during the heterogeneous phase of evolution of the traces and are species of short lives. Modeling show that the radiolytic radicals species can migrate toward the interface and react with the UO 2 surface. (author)

  2. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  3. ATLAS Level-1 Muon Barrel Trigger robustness study at X5 test facility

    CERN Document Server

    Di Mattia, A; Nisati, A; Pastore, F C; Vari, R; Veneziano, Stefano; Aielli, G; Camarri, P; Cardarelli, R; Di Ciaccio, A; Di Simone, A; Liberti, B; Santonico, R

    2004-01-01

    The present paper describes the Level-1 Barrel Muon Trigger performance as expected with the current configuration of the RPC detectors, as designed for the Barrel Muon Spectrometer of ATLAS. Results of a beam test performed at the X5-GIF facility at CERN are presented in order to show the trigger efficiency with different conditions of RPC detection efficiency and several background rates. Small RPC chambers with part of the final trigger electronics are used, while the trigger coincidence logic is applied off-line using a detailed simulation model. copy 2003 Published by Esevier B.V. 3 Refs.

  4. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  5. Physics with Tau Lepton Final States in ATLAS

    Directory of Open Access Journals (Sweden)

    Pingel Almut M.

    2013-05-01

    Full Text Available The ATLAS detector records collisions from two high-energetic proton beams circulating in the LHC. An integral part of the ATLAS physics program are analyses with tau leptons in the final state. Here an overview is given over the studies done in ATLAS with hadronically-decaying final state tau leptons: Standard Model cross-section measurements of Z → ττ, W → τν and tt̅ → bb̅ e/μν τhadν; τ polarization measurements in W → τν decays; Higgs searches and various searches for physics beyond the Standard Model.

  6. Production and integration of the ATLAS Insertable B-Layer

    Science.gov (United States)

    Abbott, B.; Albert, J.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L. S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R. G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C. C.; Chauveau, J.; Chen, S. P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G. F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K. K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M. P.; Giugni, D.; Gjersdal, H.; Glitza, K. W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N. P.; Hetmánek, M.; Hinman, R. R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S. C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J. M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H. J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; McGoldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; RØhne, O.; Rossi, C.; Rossi, L. P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M. S.; Rummler, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D. S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M. S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-01

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  7. The ATLAS liquid argon calorimeter--status and expected performance

    International Nuclear Information System (INIS)

    Schacht, Peter

    2004-01-01

    For the ATLAS detector at the LHC, the liquid argon technique is exploited for the electromagnetic calorimetry in the central part and for the electromagnetic and hadronic calorimetry in the forward and backward regions. The construction of the calorimeter is well advanced with full cold tests of the barrel calorimeter and first endcap calorimeter only months away. The status of the project is discussed as well as the related results from beam test studies of the various calorimeter subdetectors. The results show that the expected performance meets the ATLAS requirements as specified in the ATLAS Technical Design Report

  8. Status of the uranium upgrade of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 KV platform and a very low-velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .007c to .05c. the PII project is approximately 75% complete. Beam tests and experiments using the partially completed PII have demonstrated that the technical design goals are being met. The design, construction status, and results of recent operational experience using the PII will be discussed. 10 refs., 2 figs., 1 tab

  9. ATLAS MDT neutron sensitivity measurement and modeling

    International Nuclear Information System (INIS)

    Ahlen, S.; Hu, G.; Osborne, D.; Schulz, A.; Shank, J.; Xu, Q.; Zhou, B.

    2003-01-01

    The sensitivity of the ATLAS precision muon detector element, the Monitored Drift Tube (MDT), to fast neutrons has been measured using a 5.5 MeV Van de Graaff accelerator. The major mechanism of neutron-induced signals in the drift tubes is the elastic collisions between the neutrons and the gas nuclei. The recoil nuclei lose kinetic energy in the gas and produce the signals. By measuring the ATLAS drift tube neutron-induced signal rate and the total neutron flux, the MDT neutron signal sensitivities were determined for different drift gas mixtures and for different neutron beam energies. We also developed a sophisticated simulation model to calculate the neutron-induced signal rate and signal spectrum for ATLAS MDT operation configurations. The calculations agree with the measurements very well. This model can be used to calculate the neutron sensitivities for different gaseous detectors and for neutron energies above those available to this experiment

  10. Status of the ATLAS experiment at CERN

    International Nuclear Information System (INIS)

    Taylor, G.

    2000-01-01

    Full text: The ATLAS experiment, to operate at CERN's Large Hadron Collider (LHC), from 2005 is currently under construction. The Australian HEP Consortium is participating in the development and construction of the semi-conductor tracker (SCT) sub-system of ATLAS. Australian scientists play significant roles in many aspects of the SCT detector module development, including design, prototyping, measurement, beam tests and simulation. Production facilities for construction of two hundred high precision detector modules for the SCT Forward region are well advanced in Melbourne and Sydney laboratories. This talk will give an overview of ATLAS experiment goals and status. It will concentrate on the Australian contribution. The talk will conclude with an outline of the future schedule and plans

  11. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  12. ATLAS distributed computing: experience and evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  13. Status of the uranium upgrade of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 KV platform and a very low-velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .007c to .05c. the PII project is approximately 75% complete. Beam tests and experiments using the partially completed PII have demonstrated that the technical design goals are being met. The design, construction status, and results of recent operational experience using the PII will be discussed. 10 refs., 2 figs., 1 tab.

  14. The ATLAS detector control system

    International Nuclear Information System (INIS)

    Schlenker, S.; Arfaoui, S.; Franz, S.

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of more that 130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 10 6 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. First, this contribution describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years and the LHC high luminosity upgrades are outlined. (authors)

  15. The ATLAS multi-user upgrade and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.

    2017-12-01

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.

  16. Time-resolved Shielded-Pickup Measurements and Modeling of Beam Conditioning Effects on Electron Cloud Buildup at CesrTA

    CERN Document Server

    Crittenden, J A; Liu, X; Palmer, M A; Santos, S; Sikora, J P; Kato, S; Calatroni, S; Rumolo, G

    2012-01-01

    The Cornell Electron Storage Ring Test Accelerator program includes investigations into electron cloud buildup in vacuum chambers with various coatings. Two 1.1-mlong sections located symmetrically in the east and west arc regions are equipped with BPM-like pickup detectors shielded against the direct beam-induced signal. They detect cloud electrons migrating through an 18-mm-diameter pattern of 0.76 mm-diameter holes in the top of the chamber. A digitizing oscilloscope is used to record the signals, providing time-resolved information on cloud development. We present new measurements of the effect of beam conditioning on a newly-installed amorphous carbon coated chamber, as well as on an extensively conditioned chamber with a diamond-like carbon coating. The ECLOUD modeling code is used to quantify the sensitivity of these measurements to model parameters, differentiating between photoelectron and secondary-electron production processes.

  17. Beam test of a grid-less multi-harmonic buncher

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Barcikowski, A.; Clifft, B.; Pardo, R.; Sharamentov, S.I.; Sengupta, M.

    2008-01-01

    The Argonne Tandem Linear Accelerator System (ATLAS) is the first superconducting heavy-ion linac in the world. Currently ATLAS is being upgraded with the Californium Rare Ion Breeder Upgrade (CARIBU). The latter is a funded project to expand the range of shortlived, neutron-rich rare isotope beams available for nuclear physics research at ATLAS. To avoid beam losses associated with the existing gridded multi-harmonic buncher (MHB), we have developed and built a grid-less four-harmonic buncher with fundamental frequency of 12.125 MHz. In this paper, we report the results of the MHB commissioning and ATLAS beam performance with the new buncher.

  18. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  19. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  20. External audits of therapeutic photon beams in non-reference conditions. Mailed dosimetry checks with the EC multipurpose phantom

    International Nuclear Information System (INIS)

    Gomola, I.; Huyskens, D.; Dutreix, A.

    2001-01-01

    In this paper various methods for dosimetric calculation using the multipurpose solid phantom are presented. The present study indicates that the mailed multipurpose solid phantom is a useful tool to check the dose calculation of treatment planning systems, because a large number of dosimetric parameters per beam can be checked. (authors)

  1. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    Science.gov (United States)

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .

  2. A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging

    International Nuclear Information System (INIS)

    He Haifeng; Nelson, Chris

    2007-01-01

    We describe a method of combining STEM imaging functionalities with nanoarea parallel beam electron diffraction on a modern TEM. This facilitates the search for individual particles whose diffraction patterns are needed for diffractive imaging or structural studies of nanoparticles. This also lays out a base for 3D diffraction data collection

  3. Condition assessment and methods of abatement of prestressed concrete box-beam deterioration, phase II : volume 1.

    Science.gov (United States)

    2009-04-13

    Side-by-side box-beam bridge constitutes approximately 17 percent of bridges built or replaced annually on : public roads and there is a renewed thrust to use this bridge type for rapid construction under the Highway for : LIFE program. Further, fail...

  4. Condition assessment and methods of abatement of prestressed concrete box-beam deterioration, phase II : volume 2.

    Science.gov (United States)

    2009-04-13

    Side-by-side box-beam bridge constitutes approximately 17 percent of bridges built or replaced annually on public roads and there is a renewed thrust to use this bridge type for rapid construction under the Highway for LIFE program. Further, failure ...

  5. First operation of the ATLAS positive-ion injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shephard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate that all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system. (Author) 5 refs., tab., fig

  6. Status of the ATLAS Positive-Ion Injector Project

    International Nuclear Information System (INIS)

    Pardo, R.C.; Benaroya, R.; Billquist, P.J.

    1987-01-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make available at ATLAS essentially all beams including uranium. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides high charge state ions at microampere currents, and RF superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m, resulting in an essentially new method of acceleration for low-energy heavy ions. 5 refs., 7 figs., 1 tabs

  7. First operation of the ATLAS Positive-Ion Injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate tat all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system

  8. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  9. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Guthoff, Moritz; Dabrowski, Anne; De Boer, Wim; Stickland, David; Lange, Wolfgang; Lohmann, Wolfgang

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector ef fi ciency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, becaus...

  10. Commissioning of the ATLAS Reconstruction Software with First Data

    CERN Document Server

    Gibson, A

    2008-01-01

    Looking towards first LHC collisions, the ATLAS detector is being commissioned using all types of physics data available: cosmic rays, beam-halo and beam-gas events produced during the expected LHC single beam operation period prior to proton collisions. In addition to putting in place the trigger and data acquisition chains, commissioning of the full software chain is a main goal. This is interesting not only to ensure that the reconstruction, monitoring and simulation chains are ready to deal with LHC physics data, but also to understand the detector performance in view of achieving the physics requirements. Cosmic rays have allowed us to study the ATLAS detector in terms of efficiencies, resolutions, channel integrity and alignment and calibrations. They have also allowed us to test and optimize the muon combined performance algorithms. Single beam events will allow increasing the statistics in the endcap region and to study the detector performance at the expected LHC beam crossing rate.

  11. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  12. A program for monitor unit calculation for high energy photon beams in isocentric condition based on measured data

    International Nuclear Information System (INIS)

    Gesheva-Atanasova, N.

    2008-01-01

    The aim of this study is: 1) to propose a procedure and a program for monitor unit calculation for radiation therapy with high energy photon beams, based on data measured by author; 2) to compare this data with published one and 3) to evaluate the precision of the monitor unit calculation program. From this study it could be concluded that, we reproduced with a good agreement the published data, except the TPR values for dept up to 5 cm. The measured relative weight of upper and lower jaws - parameter A was dramatically different from the published data, but perfectly described the collimator exchange effect for our treatment machine. No difference was found between the head scatter ratios, measured in a mini phantom and those measured with a proper brass buildup cap. Our monitor unit calculation program was found to be reliable and it can be applied for check up of the patient's plans for irradiation with high energy photon beams and for some fast calculations. Because of the identity in the construction, design and characteristics of the Siemens accelerators, and the agreement with the published data for the same beam qualities, we hope that most of our experimental data and this program can be used after verification in other hospitals

  13. Optimisation of the ATLAS Track Reconstruction Software for Run-2

    CERN Document Server

    Salzburger, Andreas; The ATLAS collaboration

    2015-01-01

    The reconstruction of particle trajectories in the tracking detectors of experiments at the Large Hadron Collider (LHC) is one of the most complex parts in analysing the collected data from beam-beam collisions. To achieve the desired integrated luminosity during Run-1 of the LHC data taking period, the number of simultaneous proton-proton interactions per beam crossing (pile-up) was steadily increased. The track reconstruction is the most time consuming reconstruction component and scales non-linear in high luminosity environments. Flat budget projections (at best) for computing resources during the upcoming Run-2 of the LHC together with the demands of reconstructing higher pile-up collision data at rates more than double compared to Run-1 have put pressure on the track reconstruction software to stay within the available computing resources. The ATLAS experiment has thus performed a two year long software campaign which led to a reduction of the reconstruction time for Run-2 conditions by a factor of four:...

  14. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in

  15. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    Hempel, Maria

    2013-04-01

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in the LHC, especially near each quadrupole and next to

  16. 18 December 2012 - British University of Edinburgh Principal T. O’Shea and delegation (see list below) visiting the CERN Control Centre with Beams Department D. Nisbet, the LHC superconducting magnet test hall with Beams Department R. Veness, in the ATLAS Visitor Centre and experimental cavern with Collaboration Spokesperson F. Gianotti, in LHCb experimental cavern with Collaboration Spokesperson P. Campana and signing the guest book with CERN Director-General R. Heuer

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    The delegation was throughout accompanied by Beams Department R. Veness and Physics Department and ATLAS Collaboration P. Wells 1.\tProf. Sir Timothy O'Shea, Principal, University of Edinburgh 2.\tProf. Lesley Yellowlees, Vice Principal, Head of College of Science and Engineering 3.\tProf Jeff Haywood, Vice Principal for Knowledge Management 4.\tProf. Peter Higgs, Professor of Theoretical Physics 5.\tMr Bruce Minto, Supporter of the University 6.\tProf. Walter Nimmo, Supporter of the University 7.\tProf. Arthur Trew, Head of School of Physics and Astronomy 8.\tProf David Robertson, Head of School of Informatics 9.\tProf Stefano Brandani, Head of School of Engineering 10.\tMr Alan Walker, accompanying Prof. Higgs 11.\tProf. Peter Clarke, LHCb Collaboration, School of Physics and Astronomy

  17. 2017 LHC test collisions in ATLAS

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Test collisions are one of the many steps on the way to the LHC restart. The beams are neither quiet nor stable enough to ramp up the pixel and SCT, but other subsystems are on. On 10.05.2017 the ATLAS shift crew counted many women responsible for overall coordination, run control, high level trigger, data quality, safety and subsystems such as LAr calorimeter and muon spectrometer.

  18. Last ATLAS transition radiation tracker module installed

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS transition radiation tracker consists of 96 modules and will join the pixel detector and silicon tracker at the heart of the experiment to map the trajectories of particles and identify electrons produced when proton beams collide. In the last image the team responsible for assembly are shown from left to right: Kirill Egorov (Petersburg Nuclear Physics Institute), Pauline Gagnon (Indiana University), Ben Legeyt (University of Pennsylvania), Chuck Long (Hampton University), John Callahan (Indiana University) and Alex High (University of Pennsylvania).

  19. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  20. ATLAS gets its own luminosity detector

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    During the winter shutdown, the ATLAS collaboration has completed the installation of ALFA, the detector system that aims at the LHC absolute luminosity at Point 1 analysing the elastic scattering of protons at small angles.   Upper and lower ALFA Roman Pots as installed in sector 8-1 of the LHC tunnel, 240 metres from the ATLAS Interaction Point. The detectors of the ALFA system are installed at ± 240 meters from the interaction point 1, on either side of the ATLAS detector. The whole system consists of four stations, two on each side of the interaction point. Each station is equipped with two Roman Pots; each pot – that is separated from the vacuum of the accelerator by a thin window but is connected with bellows to the beam-pipe – can be moved very close to the beam. “The Roman Pot technique has been used successfully in the past for the measurement of elastic scattering very close to the circulating beam,” says Patrick Fassn...

  1. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  2. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  3. Future ATLAS Higgs Studies

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC will prove a challenging environment to work in, with for example $=200$ expected. It will however also provide great opportunities for advancing studies of the Higgs boson. The ATLAS detector will be upgraded, and Higgs prospects analyses have been performed to assess the reach of ATLAS Higgs studies in the HL-LHC era. These analyses are presented, as are Run-2 ATLAS di-Higgs analyses for comparison.

  4. Quality Assurance and Functionality Tests on Electrical Components during the ATLAS IBL Production

    CERN Document Server

    Bassalat, A; The ATLAS collaboration

    2014-01-01

    During the shutdown of 2013-2014, for the enhancement of the current ATLAS Pixel Detector, a fourth layer (Insertable B Layer, IBL) is being built and will be installed between the innermost layer and a new beam pipe. A new generation of readout chip has been developed, and two different sensor designs, a rather conventional planar and a 3D design, have been bump bonded to the Front Ends. Additionally, new staves and module flex circuits have been developed. A production QA test bench was therefore established to test all production staves before integration with the new beam pipe. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are being performed on the individual components during the various production steps of the IBL; namely, connectivity tests, electrical tests and signal probing on individual parts and assembled subsystems. This paper discusses the pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results fr...

  5. Step-flow anisotropy of the m-plane GaN (1100) grown under nitrogen-rich conditions by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Sawicka, Marta; Siekacz, Marcin; Skierbiszewski, Czeslaw; Turski, Henryk; Krysko, Marcin; DziePcielewski, Igor; Grzegory, Izabella; Smalc-Koziorowska, Julita

    2011-01-01

    The homoepitaxial growth of m-plane (1100) GaN was investigated by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions. The surface morphologies as a function of sample miscut were studied, providing evidence for a strong growth anisotropy that is a consequence of the anisotropy of Ga adatom diffusion barriers on the m-plane surface recently calculated ab initio[Lymperakis and Neugebauer, Phys. Rev. B 79, 241308(R) (2009)]. We found that substrate miscut toward [0001] implies a step flow toward while substrate miscut toward [0001] causes formation of atomic steps either perpendicular or parallel to the [0001] direction, under N-rich conditions at 730 deg C. We describe the growth conditions for achieving atomically flat m-plane GaN layers with parallel atomic steps.

  6. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    Directory of Open Access Journals (Sweden)

    Kishan Andre Liyanage

    Full Text Available Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap to 1 (complete overlap. For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  7. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  8. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  9. ATLAS@Home: Harnessing Volunteer Computing for HEP

    International Nuclear Information System (INIS)

    Adam-Bourdarios, C; Cameron, D; Filipčič, A; Lancon, E; Wu, W

    2015-01-01

    A recent common theme among HEP computing is exploitation of opportunistic resources in order to provide the maximum statistics possible for Monte Carlo simulation. Volunteer computing has been used over the last few years in many other scientific fields and by CERN itself to run simulations of the LHC beams. The ATLAS@Home project was started to allow volunteers to run simulations of collisions in the ATLAS detector. So far many thousands of members of the public have signed up to contribute their spare CPU cycles for ATLAS, and there is potential for volunteer computing to provide a significant fraction of ATLAS computing resources. Here we describe the design of the project, the lessons learned so far and the future plans. (paper)

  10. ATLAS@Home: Harnessing Volunteer Computing for HEP

    CERN Document Server

    Bourdarios, Claire; Filipcic, Andrej; Lancon, Eric; Wu, Wenjing

    2015-01-01

    A recent common theme among HEP computing is exploitation of opportunistic resources in order to provide the maximum statistics possible for Monte-Carlo simulation. Volunteer computing has been used over the last few years in many other scientific fields and by CERN itself to run simulations of the LHC beams. The ATLAS@Home project was started to allow volunteers to run simulations of collisions in the ATLAS detector. So far many thousands of members of the public have signed up to contribute their spare CPU cycles for ATLAS, and there is potential for volunteer computing to provide a significant fraction of ATLAS computing resources. Here we describe the design of the project, the lessons learned so far and the future plans.

  11. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Science.gov (United States)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  12. X-ray and pressure conditions on the first wall of a particle beam inertial confinement reactor

    International Nuclear Information System (INIS)

    Magelssen, G.R.

    1979-01-01

    Because of the presence of a chamber gas in a particle beam reactor cavity, nonneutron target debris created from thermonuclear burn will be modified or stopped before it reaches the first reactor wall. The resulting modified spectra and pulse lengths of the debris need to be calculated to determine first wall effects. Further, the cavity overpressure created by the momentum and energy exchange between the debris and gas must also be calculated to determine its effect. The purpose of this paper is to present results of the debris-background gas problem obtained with a one fluid, two temperature plasma hydrodynamic computer code model which includes multifrequency radiation transport. Spherical symmetry, ideal gas equation of state, and LTE for each radiation frequency group were assumed. The transport of debris ions was not included and all the debris energy was assumed to be in radiation. The calculated x-ray spectra and pulse lengths and the background overpressure are presented

  13. The ATLAS online High Level Trigger framework: Experience reusing offline software components in the ATLAS trigger

    International Nuclear Information System (INIS)

    Wiedenmann, Werner

    2010-01-01

    Event selection in the ATLAS High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The ATLAS High Level Trigger (HLT) framework based on the GAUDI and ATLAS ATHENA frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of ATLAS, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking periods with cosmic events and in a short period with proton beams from LHC. The contribution discusses the architectural aspects of the HLT framework, its performance and its software environment within the ATLAS computing, trigger and data flow projects. Emphasis is also put on the architectural implications for the software by the use of multi-core processors in the computing farms and the experiences gained with multi-threading and multi-process technologies.

  14. 3 May 2014 - His Excellency Dr Karolos Papoulias President of the Hellenic Republic in the LHC tunnel at Point 1 and in ATLAS experimental cavern with Director-General R. Heuer.

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    In the LHC tunnel at Point 1: Beams Department, Controls Group Leader E. Hatziangeli and Technology Department, Cryogenics Group Deputy Leader D. Delikaris. In the ATLAS cavern: ATLAS Deputy Spokesperson B. Heinemann and ATLAS Collaboration National contact person and CAST Collaboration National Technical University of Athens Team Leader E. Gazis.

  15. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger performance in Run 2 will be presented, including both the role of the ATLAS calorimeter in electron and photon identification and details of new techniques developed to maintain high performance even in high pile-up conditions.

  16. Effects of oxygen gas flow rate and ion beam plasma conditions on the opto-electronic properties of indium molybdenum oxide films fabricated by ion beam-assisted evaporation

    International Nuclear Information System (INIS)

    Kuo, C.C.; Liu, C.C.; Lin, C.C.; Liou, Y.Y.; He, J.L.; Chen, F.S.

    2008-01-01

    The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage. Experimental results show that the IMO films consist of a cubic bixbyite B-In 2 O 3 single phase with its crystal preferred orientation alone B(222). Mo 6+ ions are therefore considered to partially substitute In 3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 x 10 -4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate

  17. Report to users of Atlas

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1996-06-01

    This report contains the following topics: Status of the ATLAS Accelerator; Highlights of Recent Research at ATLAS; Program Advisory Committee; ATLAS User Group Executive Committee; FMA Information Available On The World Wide Web; Conference on Nuclear Structure at the Limits; and Workshop on Experiments with Gammasphere at ATLAS

  18. First operation of ATLAS using the PII linac and a comparison to tandem injection

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs

  19. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-12-31

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  20. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  1. Search for high mass resonances in the dimuon channel using the muon spectrometer of the atlas experiment at CERN

    International Nuclear Information System (INIS)

    Helsens, C.

    2009-06-01

    This thesis covers the search of new neutral gauge bosons decaying into a pair of muons in the ATLAS detector. The Large Hadron Collider (LHC) at CERN will produce parton collisions with very high center of mass energy and may produce Z' predicted by many theories beyond the standard model. Such a resonance should be detected by the ATLAS experiment. For the direct search of Z' decaying into two muons, a small number of events is enough for its discovery, which is possible with the first data. We shall study in particular the effects of the muon spectrometer alignment on high p T tracks and on the Z' discovery potential in the ATLAS experiment. The discovery potentials computed with this method have been officially approved by the ATLAS collaboration and published. At the start of the LHC operation, the muon spectrometer alignment will not have reached the nominal performances. This analysis aims at optimizing the discovery potential of ATLAS for a Z' boson in this degraded initial conditions. The impact on track reconstruction of a degraded alignment is estimated with simulated high p T tracks. Results are given in terms of reconstruction efficiency, momentum and invariant mass resolutions, charge identification and sensitivity to discovery or exclusion. With the first data, an analysis using only the muon spectrometer in stand alone mode will be very useful. Finally, a study on how to determine the initial geometry of the spectrometer (needed for its absolute alignment) is performed. This study uses straight tracks without a magnetic field and also calculates the beam time necessary for reaching a given accuracy of the alignment system. (author)

  2. ATLAS distributed computing: experience and evolution

    International Nuclear Information System (INIS)

    Nairz, A

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb −1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, energies and event complexities. An essential requirement will be the efficient utilisation of current and future processor technologies as well as a broad range of computing platforms, including supercomputing and cloud resources. We will report on experience gained thus far and our progress in preparing ATLAS computing for the future

  3. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  4. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Daniltsev, V. M.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  5. Initial use of the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Den Hartog, P.K.; Munson, F.H. Jr.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    The positive-ion injector of ATLAS consists of an ECR heavy-ion source coupled to a 12-MV superconducting injector linac. The ECR source and a 3-MV version of the partially completed linac have been used to accelerate successfully several species of heavy ions. The operating experience is summarized, with emphasis on the excellent beam quality of beams from the new injector. Two new fast-timing detectors are described. 9 refs., 5 figs., 1 tab

  6. ATLAS Brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  7. ATLAS brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  8. ATLAS brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  9. ATLAS brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  10. ATLAS brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  11. ATLAS Thesis Awards 2015

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on Thursday 25 February. The winners also presented their work in front of members of the ATLAS Collaboration. Winners: Javier Montejo Berlingen, Barcelona (Spain), Ruth Pöttgen, Mainz (Germany), Nils Ruthmann, Freiburg (Germany), and Steven Schramm, Toronto (Canada).

  12. ATLAS OF EUROPEAN VALUES

    NARCIS (Netherlands)

    M Ed Uwe Krause

    2008-01-01

    Uwe Krause: Atlas of Eurpean Values De Atlas of European Values is een samenwerkingsproject met bijbehorende website van de Universiteit van Tilburg en Fontys Lerarenopleiding in Tilburg, waarbij de wetenschappelijke data van de European Values Study (EVS) voor het onderwijs toegankelijk worden

  13. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  14. ATLAS Colouring Book

    CERN Multimedia

    Anthony, Katarina

    2016-01-01

    The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  15. ATLAS brochure (Catalan version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  16. ATLAS Brochure (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  17. ATLAS brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  18. ATLAS brochure (Norwegian version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter. Français

  19. ATLAS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  20. ATLAS Brochure (english version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  1. ATLAS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  2. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  3. ATLAS rewards industry

    CERN Document Server

    Maximilien Brice

    2006-01-01

    For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Picture 30 : representatives of the three award-wining companies after the ceremony

  4. The ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV. This was followed by collisions at the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is a precision tracking device in ATLAS made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICs working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experiment. Since then the detector was operated for two years under realistic conditions. Calibration data has been taken and analysed to determine the performance of the system. In addition, extensive commissioning with cosmic ray events has been performed both with and without magnetic field. The sensor behaviour in magnetic field was studied by measurements of the Lorentz angle. After ...

  5. Moving one of the ATLAS end-cap calorimeters

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the end-cap calorimeters for the ATLAS experiment is moved using a set of rails. This calorimeter will measure the energy of particles that are produced close to the axis of the beam when two protons collide. It is kept cool inside a cryostat to allow the detector to work at maximum efficiency.

  6. ATLAS Open Data project

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The current ATLAS model of Open Access to recorded and simulated data offers the opportunity to access datasets with a focus on education, training and outreach. This mandate supports the creation of platforms, projects, software, and educational products used all over the planet. We describe the overall status of ATLAS Open Data (http://opendata.atlas.cern) activities, from core ATLAS activities and releases to individual and group efforts, as well as educational programs, and final web or software-based (and hard-copy) products that have been produced or are under development. The relatively large number and heterogeneous use cases currently documented is driving an upcoming release of more data and resources for the ATLAS Community and anyone interested to explore the world of experimental particle physics and the computer sciences through data analysis.

  7. Dear ATLAS colleagues,

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  8. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  9. Software Validation in ATLAS

    International Nuclear Information System (INIS)

    Hodgkinson, Mark; Seuster, Rolf; Simmons, Brinick; Sherwood, Peter; Rousseau, David

    2012-01-01

    The ATLAS collaboration operates an extensive set of protocols to validate the quality of the offline software in a timely manner. This is essential in order to process the large amounts of data being collected by the ATLAS detector in 2011 without complications on the offline software side. We will discuss a number of different strategies used to validate the ATLAS offline software; running the ATLAS framework software, Athena, in a variety of configurations daily on each nightly build via the ATLAS Nightly System (ATN) and Run Time Tester (RTT) systems; the monitoring of these tests and checking the compilation of the software via distributed teams of rotating shifters; monitoring of and follow up on bug reports by the shifter teams and periodic software cleaning weeks to improve the quality of the offline software further.

  10. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  11. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  12. Mechanisms Controlling Hypoxia Data Atlas: High-resolution hydrographic and chemical observations from 2003-2014

    Science.gov (United States)

    Zimmerle, H.; DiMarco, S. F.

    2016-02-01

    The Mechanisms Controlling Hypoxia (MCH) project consisted of 31 cruises from 2003-2014 with an objective to investigate the physical and biogeochemical processes that control the hypoxic zone on the Texas-Louisiana shelf in the northern Gulf of Mexico. The known seasonal low oxygen conditions in this region are the result of river-derived nutrients, freshwater input, and wind. The MCH Data Atlas showcases in situ data and subsequent products produced during the duration of the project, focusing on oceanographic observations from 2010-2014. The Atlas features 230 high-resolution vertical sections from nine cruises using the Acrobat undulating towed vehicle that contained a CTD along with sensors measuring oxygen, fluorescence, and turbidity. Vertical profiles along the 20-meter isobaths section feature temperature, salinity, chlorophyll, and dissolved oxygen from the Acrobat towfish and CTD rosette as well as separate selected profiles from the CTD. Surface planview maps show the horizontal distribution of temperature, salinity, chlorophyll, beam transmission, and CDOM observed by the shipboard flow-through system. Bottom planview maps present the horizontal distribution of dissolved oxygen as well as temperature and salinity from the CTD rosette and Acrobat towfish along the shelf's seafloor. Informational basemaps display the GPS cruise track as well as individual CTD stations for each cruise. The shelf concentrations of CTD rosette bottle nutrients, including nitrate, nitrite, phosphate, ammonia, and silicate are displayed in select plots. Shipboard ADCP current velocity fields are also represented. MCH datasets and additional products are featured as an electronic version to compliment the published atlas. The MCH Data Atlas provides a showcase for the spatial and temporal variability of the environmental parameters associated with the annual hypoxic event and will be a useful tool in the continued monitoring and assessment of Gulf coastal hypoxia.

  13. Hydrochemical Atlas of the Arctic Ocean (NODC Accession 0044630)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present Hydrochemical Atlas of the Arctic Ocean is a description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical...

  14. Quality Assurance and Functionality Tests on Electrical Components during the ATLAS IBL Production

    CERN Document Server

    Jentzsch, J

    2013-01-01

    To improve performance of the ATLAS inner tracker, a fourth Pixel layer, called the Insertable B-layer (IBL), will be installed in 2014 on a new beam pipe. A new read out chip generation, FE-I4, has been developed and two different sensor designs, a rather conventional planar and a 3D design, have been flip chipped to these front ends. New staves holding new stave and module flex circuits have been developed as well. Therefore, a production QA test bench has been established to test all production staves before integration with the new beam pipe. This setup combines former ATLAS Pixel services and a new readout system, namely the RCE (Reconfigurable Cluster Element) system developed at SLAC. With this setup all production staves will be tested to ensure the installation of only those staves which fulfill the IBL criteria. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are performed on the individual components during the various production steps of the I...

  15. Quality assurance and functionality tests on electrical components during the ATLAS IBL production

    International Nuclear Information System (INIS)

    Jentzsch, J

    2013-01-01

    To improve performance of the ATLAS inner tracker, a fourth Pixel layer, called the Insertable B-layer (IBL), will be installed in 2014 on a new beam pipe. A new read out chip generation, FE-I4, has been developed and two different sensor designs, a rather conventional planar and a 3D design, have been flip chipped to these front ends. New staves holding new stave and module flex circuits have been developed as well. Therefore, a production QA test bench has been established to test all production staves before integration with the new beam pipe. This setup combines former ATLAS Pixel services and a new readout system, namely the RCE (Reconfigurable Cluster Element) system developed at SLAC. With this setup all production staves will be tested to ensure the installation of only those staves which fulfill the IBL criteria. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are performed on the individual components during the various production steps of the IBL, namely connectivity as well as electrical tests and signal probing on individual parts and assembled subsystems. The pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results from testing a prototype stave are presented and discussed.

  16. Quality assurance and functionality tests on electrical components during the ATLAS IBL production

    Science.gov (United States)

    Jentzsch, J.

    2013-02-01

    To improve performance of the ATLAS inner tracker, a fourth Pixel layer, called the Insertable B-layer (IBL), will be installed in 2014 on a new beam pipe. A new read out chip generation, FE-I4, has been developed and two different sensor designs, a rather conventional planar and a 3D design, have been flip chipped to these front ends. New staves holding new stave and module flex circuits have been developed as well. Therefore, a production QA test bench has been established to test all production staves before integration with the new beam pipe. This setup combines former ATLAS Pixel services and a new readout system, namely the RCE (Reconfigurable Cluster Element) system developed at SLAC. With this setup all production staves will be tested to ensure the installation of only those staves which fulfill the IBL criteria. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are performed on the individual components during the various production steps of the IBL, namely connectivity as well as electrical tests and signal probing on individual parts and assembled subsystems. The pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results from testing a prototype stave are presented and discussed.

  17. A proposal for the GridPixel Tracker for the ATLAS sLHC upgrade.

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    A proposal for GridPix Tracker for the ATLAS sLHC upgrade. F. Hartjes, M.Fransen, W. Koppert, K.Konovalov, S.Morozov, A.Romaniouk, M. Rogers, H. van der Graaf. A concept of the GridPix detector as a tracker for the ATLAS Inner Detector proposed for SLHC upgrade is presented. The detector can combine precise vector tracking function and particle identification features using a transition radiation and dE/dX measurements. Test beam and MC studies of the tracking and the particle identification properties have been performed with the dedicated GridPix prototype. Data was taken with the different gas mixtures. Special accuracy achieved in the test beam is ~30 m. For one layer of the GridPix detector a vector angular accuracy of about 10 mrad was obtained. It was shown that for one layer of the real detector at very realistic conditions one should expect angular accuracy better than 5 mrad. For particle identification studies detector was filled with a Xe/CO2(70/30) mixture. A block of a transition radiation ra...

  18. Comparaison of Atlas Tilecal module

    CERN Document Server

    Batusov1, V; Gayde, J C; Khubua, J I; Lasseur, C; Lyablin, M V; Miralles-Verge, L; Nessi, Marzio; Rusakovitch, N A; Sissakian, A N; Topilin, N D

    2002-01-01

    The high precision assembly of a large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research program in the TeV-beams. The creation of an adequate Survey&Control METROLOGY METHODs are an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE#8 (6m long, 22tons) which were obtained by LASER and by PHOTOGRAMMETRY methods. The comparative data analysis demonstrates the measurements agreement within ±70mm. It means these two clearly independent methods can be combined and lead to the rise of a new generation engineering culture: high precision metrology when precision assembly of large scale massive objects.

  19. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Pedraza Lopez, S; The ATLAS collaboration

    2012-01-01

    In order to reconstruct trajectories of charged particles, ATLAS is equipped with a tracking system built using different technologies embedded in a 2T solenoidal magnetic field. ATLAS physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters in order to assure accurate invariant mass reconstruction and interaction and decay vertex finding. These critically depend on the systematic effects related to the alignment of the tracking system. In order to eliminate malicious systematic deformations, various advanced tools and techniques have been put in place. These include information from known mass resonances, energy of electrons and positrons measured by the electromagnetic calorimeters, etc. Despite being stable under normal running conditions, ATLAS tracking system responses to sudden environ-mental changes (temperature, magnetic field) by small collective deformations. These have to be identified and corrected in order to assure uniform, highest quality tracking...

  20. Non-equilibrium surface conditions and microstructural changes following pulsed laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC

    International Nuclear Information System (INIS)

    More, K.L.; Davis, R.F.

    1986-01-01

    Pulsed laser irradiation and ion beam mixing of thin Ni overlayers on sintered alpha-SiC have been investigated as potential surface modification techniques for the enhancement of the mechanical properties of the SiC. Each of these surface processing methods are nonequilibrium techniques; materials interactions can be induced at the specimen surface which are not possible with conventional thermal techniques. As a result of the surface modification, the physical properties of the ceramic can be altered under the correct processing conditions. Following laser irradiation using a pulsed ruby or krypton fluoride (KrF) excimer laser, the fracture strength of the SiC was increased by approximately 50 percent and 20 percent, respectively. However, ion-beam mixing of Ni on SiC resulted in no change in fracture strength. Cross-sectional transmission electron microscopy, scanning electron microscopy, secondary ion mass spectroscopy, and Rutherford backscattering techniques, have been used to characterize the extent of mixing between the Ni and SiC as a result of the surface modification and to determine the reason(s) for the observed changes in fracture strength. 19 references

  1. ATLAS Forward Detectors: present and future

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2017-01-01

    In addition to the main central detectors, the ATLAS experiment has also four subdetectors situated in a forward region hundreds of meters far from the interaction point and dedicated to measure particles leaving under very small angles the ATLAS proton-proton impact point. Particularly, LUCID is dedicated to luminosity measurement while ALFA, ZDC and AFP are committed to forward physics studies. ALFA is devoted to the measurement of proton elastic scattering, ZDC is dedicated to detect proton and neutral particles travelling along the beam axis and AFP aims to measure momenta and angles of diffractively scattered protons. This presentation will give an overview on the detectors status, the results obtained during the RUN 2 period of data taking and the future plans for the next years.

  2. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  3. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz, E-mail: moritz.guthoff@cern.ch [CERN, 1211 Genève 23 (Switzerland); Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Afanaciev, Konstantin [DESY, Platanenallee 6, 15738 Zeuthen (Germany); NC PHEP BSU, Minsk (Belarus); Dabrowski, Anne [CERN, 1211 Genève 23 (Switzerland); Boer, Wim de [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Lange, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Lohmann, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universität, Postfach 101344, 03013 Cottbus (Germany); Stickland, David [Princeton University, Princeton, NJ 08544-0708 (United States)

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  4. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    International Nuclear Information System (INIS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; Boer, Wim de; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  5. Test-beam with Python

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The talk will show the current implementation of the software tool developed by Silab (Bonn) and Oxford University to analyze test beam data with Mimosa telescope. Data collected from the telescope are merged with hits recorded on pixel detectors with a FE-I4 chips, the official read-out chip of the Atlas Pixel Detector. The software tool used to collect data, pyBAR, is developed with Python as well. The test-beam analysis tool parses the data-sets, recreates the tracks, aligns the telescope planes and allows to investigate the detectors spatial properties with high resolution. This has just allowed to study the properties of brand new devices that stand as possible candidate to replace the current pixel detector in Atlas.

  6. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  7. Integrating Networking into ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2018-01-01

    Networking is foundational to the ATLAS distributed infrastructure and there are many ongoing activities related to networking both within and outside of ATLAS. We will report on the progress in a number of areas exploring ATLAS's use of networking and our ability to monitor the network, analyze metrics from the network, and tune and optimize application and end-host parameters to make the most effective use of the network. Specific topics will include work on Open vSwitch for production systems, network analytics, FTS testing and tuning, and network problem alerting and alarming.

  8. The new European wind atlas

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib; Ejsing Jørgensen, Hans

    2014-01-01

    , from insufficient input data to deficient physics and resolution in any of the models, model linking issues, insufficient resolution or errors in surface topographical data such as terrain heights, land cover data etc. Therefore it has been decided on a European Union level to launch a project “The New...... European Wind Atlas” aiming at reducing overall uncertainties in determining wind conditions; standing on three legs: A data bank from a series of intensive measuring campaigns; a thorough examination and redesign of the model chain from global, mesoscale to microscale models and creation of the wind atlas...

  9. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2018-01-01

    After the long shut-down, the LHC Run2 has started with new running conditions with respect to Run1: in particular the centre of mass energy has reached 13 TeV and the bunch-spacing is now 25 ns. In order to cope with these changes, the ATLAS luminosity monitor LUCID and its electronics have been completely rebuilt. This note describes the new detector and electronics, the new luminosity algorithms and the new calibration systems, with a brief review of the first results about the stability of the measurement and evaluation of systematic uncertainties for the 2015 data-taking.

  10. Status of the ATLAS Liquid Argon Calorimeter and its performance after one year of LHC operation

    CERN Document Server

    "March, L; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry and partly for hadronic calorimetry. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The different parts of the LAr calorimeter have been installed inside the ATLAS cavern between October 2004 and April 2006. Since October 2006 the detector has been operated with liquid argon at nominal high voltage, and fully equipped with readout electronics including a LVL1 calorimeter trigger system. First cosmic runs were recorded and used in various stages of commissioning. Starting in September 2008 beam related events were collected for the first time with single beams circulating in the LHC ring providing first beam-gas interactions and then beam-collimator splash events. The fir...

  11. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. Copyright © 2014. Published by Elsevier B.V.

  12. Performance evaluation of a drag-disc turbine transducer and three-beam gamma densitometer under transient two-phase flow conditions

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chen, L.L.; Solbrig, C.W.

    1979-01-01

    One of the primary variables measured in the Loss-of-Fluid Test (LOFT) Program is mass flow rate. LOFT uses drag-disc turbine tranducers (DTT) and a three-beam gamma densitometer to measure parameters from which mass flow may be computed. The transducer combination was performance tested under transient conditions in the blowdown loop at the LOFT Test Support Facility (LTSF). The performance tests consisted of three partial blowdowns of different durations starting from the same initial conditions. The reference mean mass flow rate was determined by measuring the amount of water required to reestablish initial conditions after each partial blowdown. The average mass flow rates computed from the output of the drag disc, turbine, and gamma densitometer were compared to the reference mean mass flow rates over three blowdown intervals. The tests indicated that the equal phase velocity mass measurement model provided excellent results through the use of the turbine and densitometer, and drag disc and densitometer when the phase velocities were nearly equal

  13. The Latest from ATLAS

    CERN Multimedia

    2009-01-01

    Since November 2008, ATLAS has undertaken detailed maintenance, consolidation and repair work on the detector (see Bulletin of 20 July 2009). Today, the fraction of the detector that is operational has increased compared to last year: less than 1% of dead channels for most of the sub-systems. "We are going to start taking data this year with a detector which is even more efficient than it was last year," agrees ATLAS Spokesperson, Fabiola Gianotti. By mid-September the detector was fully closed again, and the cavern sealed. The magnet system has been operated at nominal current for extensive periods over recent months. Once the cavern was sealed, ATLAS began two weeks of combined running. Right now, subsystems are joining the run incrementally until the point where the whole detector is integrated and running as one. In the words of ATLAS Technical Coordinator, Marzio Nessi: "Now we really start physics." In parallel, the analysis ...

  14. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.

  15. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  16. Apollo Image Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Apollo Image Atlas is a comprehensive collection of Apollo-Saturn mission photography. Included are almost 25,000 lunar images, both from orbit and from the...

  17. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  18. ATLAS fast physics monitoring

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... laboration has set up a framework to automatically process the ... ing (FPM) is complementary to data quality monitoring as problems may ... the full power of the ATLAS software framework Athena [4] and the availability of the.

  19. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  20. ATLAS Distributed Computing

    CERN Document Server

    Schovancova, J; The ATLAS collaboration

    2011-01-01

    The poster details the different aspects of the ATLAS Distributed Computing experience after the first year of LHC data taking. We describe the performance of the ATLAS distributed computing system and the lessons learned during the 2010 run, pointing out parts of the system which were in a good shape, and also spotting areas which required improvements. Improvements ranged from hardware upgrade on the ATLAS Tier-0 computing pools to improve data distribution rates, tuning of FTS channels between CERN and Tier-1s, and studying data access patterns for Grid analysis to improve the global processing rate. We show recent software development driven by operational needs with emphasis on data management and job execution in the ATLAS production system.

  1. ATLAS Metadata Task Force

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  2. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  3. Status of the positive ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P K; Benaroya, R; Bogaty, J M; Bollinger, L M; Clifft, B E; Craig, S L; Henderson, D; Markovich, P; Munson, F; Nixon, J M; Pardo, R C; Phillips, D; Shepard, K W; Tilbrook, I; Zinkann, G [Argonne National Lab., IL (USA). Physics Div.

    1989-04-01

    The positive ion injector project will replace a High Voltage Engineering Corp. model FN 9 MV tandem electrostatic accelerator as the injector into the ATLAS superconducting heavy ion linear accelerator. It consists of an electron cyclotron resonance (ECR) ion source on a 350-kV platform injecting into a linac of individually phased superconducting resonators which have been optimized for ions with velocities as low as {beta} = 0.009. The resulting combination will extend the useful mass range of ATLAS to projectiles as heavy as uranium, while increasing the beam currents available by a factor of 100. (orig.).

  4. Status of the positive ion injector for ATLAS

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Benaroya, R.; Bogaty, J.M.

    1988-01-01

    The positive ion injector project will replace a High Voltage Engineering Corp. model FN 9 MV tandem electrostatic accelerator as the injector into the ATLAS superconducting heavy ion linear accelerator. It consists of an electron cyclotron resonance (ECR) ion source on a 350-kV platform injecting into a linac of individually phased superconducting resonators which have been optimized for ions with velocities as low as β = 0.009. The resulting combination will extend the useful mass range of ATLAS to projectiles as heavy as uranium, while increasing the beam currents available by a factor of 100. (2 refs., 2 figs., 1 tab.)

  5. Ageing test of the ATLAS RPCs at X5-GIF

    International Nuclear Information System (INIS)

    Aielli, G.; Alviggi, M.; Ammosov, V.

    2004-01-01

    An ageing test of three ATLAS production RPC stations is in course at X5-GIF, the CERN irradiation facility. The chamber efficiencies are monitored using cosmic rays triggered by a scintillator hodoscope. Higher statistics measurements are made when the X5 muon beam is available. We report here the measurements of the efficiency versus operating voltage at different source intensities, up to a maximum counting rate of about 700 Hz/cm 2 . We describe the performance of the chambers during the test up to an overall ageing of 4 ATLAS equivalent years corresponding to an integrated charge of 0.12 C/cm 2 , including a safety factor of 5

  6. Electron signals in the Forward Calorimeter prototype for ATLAS

    International Nuclear Information System (INIS)

    Armitage, J C; Artamonov, A; Babukhadia, L; Dixit, M; Embry, T M; Epshteyn, V; Estabrooks, P; Gravelle, P; Hamm, J; Khovansky, V; Koolbeck, D A; Krieger, P; Loch, P; Losty, M; Mayer, J; Mazini, R; Oakham, F Gerald; O'Neill, M; Orr, R S; Rutherfoord, J P; Ryabinin, M; Savine, A; Seely, C Jason; Shatalov, P; Shaver, L S; Shupe, M A; Stairs, G; Tompkins, D; Trischuk, W; Vincent, K; Zaitsev, V

    2007-01-01

    A pre-production prototype of the Forward Calorimeter (FCal) for the ATLAS detector presently under construction at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland, was exposed to electrons in the momentum range from 20 to 200 GeV/c in a test beam experiment at CERN in 1998. The measured performance, including a signal linearity within about ±1% and a high energy limit in the relative energy resolution of about 4%, meets the expectations for this kind of calorimeter, and exceeds the physics requirements for successful application in ATLAS

  7. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  8. ATLAS accelerator laboratory report

    International Nuclear Information System (INIS)

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector

  9. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  10. Budker INP in ATLAS

    CERN Multimedia

    2001-01-01

    The Novosibirsk group has proposed a new design for the ATLAS liquid argon electromagnetic end-cap calorimeter with a constant thickness of absorber plates. This design has signifi- cant advantages compared to one in the Technical Proposal and it has been accepted by the ATLAS Collaboration. The Novosibirsk group is responsible for the fabrication of the precision aluminium structure for the e.m.end-cap calorimeter.

  11. ATLAS construction status

    International Nuclear Information System (INIS)

    Jenni, P.

    2006-01-01

    The ATLAS detector is being constructed at the LHC, in view of a data-taking startup in 2007. This report concentrates on the progress and the technical challenges of the detector construction, and summarizes the status of the work as of August 2004. The project is on track to allow the highly motivated ATLAS Collaboration to enter into a new exploratory domain of high-energy physics in 2007. (author)

  12. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    OpenAIRE

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bednar, P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at t...

  13. ATLAS Facility Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loo