WorldWideScience

Sample records for atlas barrel level-1

  1. The ATLAS Barrel Level-1 Muon Trigger Processor Performances

    CERN Document Server

    Bocci, V; Ciapetti, G; De Pedis, D; Di Girolamo, A; Di Mattia, A; Gennari, E; Luci, C; Nisati, A; Pasqualucci, E; Pastore, F; Petrolo, E; Spila, F; Vari,, R; Veneziano, S; Zanelli, L; Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Simone, A; Di Stante, L; Salamon, A; Santonico, R; Aloisio, A; Alviggi, M G; Canale, V; Carlino, G; Conventi, F; De Asmundis, R; Della Pietra, M; Delle Volpe, D; Iengo, P; Izzo, V; Migliaccio, A; Patricelli, S; Sekhniaidze, G; Brambilla, Elena; Cataldi, G; Gorini, E; Grancagnolo, F; Perrino, R; Primavera, M; Spagnolo, S; Aprodo, V; Bartos, D; Buda, S; Constantin, S; Dogaru, M; Magureanu, C; Pectu, M; Prodan, L; Rusu, A; Uroseviteanu, C

    2005-01-01

    The ATLAS level-1 muon trigger will select events with high transverse momentum and tag them to the correct machine bunch-crossing number with high efficiency. Three stations of dedicated fast detectors provide a coarse pT measurement, with tracking capability on bending and non-bending pro jections. In the Barrel region, hits from doublets of Resistive Plate Chambers are processed by custom ASIC, the Coincidence Matrices, which performs almost all the functionalities required by the trigger algorithm and the readout. In this paper we present the performance of the level-1 trigger system studied on a cosmic test stand at CERN, concerning studies on expected trigger rates and efficiencies.

  2. Performance of the ATLAS Level-1 muon barrel trigger during the Run 2 data taking

    CERN Document Server

    Sessa, Marco; The ATLAS collaboration

    2017-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal. The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range |η| < 1.05 for a total surface of more than 4000 m 2 and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates according to their transverse momentum and associates them with the correct bunch-crossing. The trigger system is able to take a decision within a latency of about 2 μs. The measurement of the RPC detector efficiencies and the trigger performance during the ATLAS Run-II data taking are here presented.

  3. Test Beam results and integration of the ATLAS Level-1 Muon Barrel Trigger

    CERN Document Server

    Bianco, M; Cataldi, G; Chiodini, G; Fiore, G; Gorini, E; Grancagnolo, F; Miccoli, A; Perrino, R; Primavera, M; Spagnolo, S; Tassielli, G F; Ventura, A; Aloisio, A; Alviggi, M G; Canale, V; Caprio, M A; Carlino, G; Conventi, F; De Asmundis, R; Della Pietra, M; Della Volpe, D; Iengo, P; Izzo, V; Migliaccio, A; Patricelli, S; Sekhniaidze, G; Bocci, V; Chiodi, G; Gennari, E; Nisati, A; Pasqualucci, E; Pastore, F; Petrolo, E; Vari, R; Veneziano, Stefano; Aielli, G; Camarri, P; Cardarelli, R; Delle Fratte, C; Di Ciaccio, A; Di Simone, A; Di Stante, L; Liberti, B; Salamon, A; Santonico, R; Solfaroli, E; Aprodu, V; Petcu, M; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference

    2005-01-01

    The ATLAS Level-1 Muon Trigger will be crucial for the online selection of events with high transverse momentum muons and for its correct association to the bunch-crossing corresponding to the detected events. This system uses dedicated coarse granularity and fast detectors capable of providing measurements in two orthogonal projections. The Resistive Plate Chambers (RPCs) are used in the barrel region. The associated trigger electronics is based on a custom chip, the Coincidence Matrix, that performs space coincidences within programmable roads and time gates. The system is highly redundant and communicates with the ATLAS Level-1 trigger Processor with the MUCTPI Interface. The trigger electronics provides also the Readout of the RPCs. Preliminary results achieved with a full trigger tower with production detectors in the H8 test beam at CERN will be shown. In particular preliminary results on the integration of the barrel muon trigger electronics with the MUCTPI interface and with the ATLAS DAQ system will ...

  4. Performances of the ATLAS Level-1 Muon barrel trigger during the Run-II data taking

    CERN Document Server

    Sessa, Marco; The ATLAS collaboration

    2017-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal. The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range $|\\eta|<1.05$ for a total surface of more than $4000\\ m^2$ and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates with respect to their transverse momentum and associates them with the correct bunch-crossing number. The trigger system is able to take a decision within a latency of about 2 $\\mu s$. The detailed measurement of the RPC detector efficiencies and of the trigger performance during the ATLAS Run-II data taking is here presented.

  5. Slice Test Results of the ATLAS Barrel Muon Level-1 Trigger

    CERN Document Server

    Aielli, G; Alviggi, M G; Bocci, V; Brambilla, Elena; Canale, V; Caprio, M A; Cardarelli, R; Cataldi, G; De Asmundis, R; Della Volpe, D; Di Ciaccio, A; Di Simone, A; Distante, L; Gorini, E; Grancagnolo, F; Iengo, P; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Salamon, A; Santonico, R; Sekhniaidze, G; Severi, M; Spagnolo, S; Vari, R; Veneziano, Stefano; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The muon spectrometer of the ATLAS experiment makes use of the Resistive Plate Chambers detectors for particle tracking in the barrel region. The level-1 muon trigger system has to measure and discriminate muon transverse momentum, perform a fast and coarse tracking of the muon candidates, associate them to the bunch crossing corresponding to the event of interest, measure the second coordinate in the non-bending projection. The on-detector electronics first collects front-end signals coming from the two inner RPC stations on the low-pT PAD boards, each one covering a region of DetaxDphi=0.2x0.2, and hosting four Coincidence Matrix ASICs. Each CMA performs the low-pT trigger algorithm and data readout on a region of DetaxDphi=0.2x0.1. Data coming from the four CMAs are assembled by the low-pT PAD logic. Each low-pT PAD board sends data to the corresponding high-pT PAD boards, located on the outer RPC station. Four CMA on each board make use of the low-pT trigger result and of the front-end signals coming from...

  6. The coincidence matrix ASIC of the level-1 muon barrel trigger of the ATLAS experiment

    CERN Document Server

    Bocci, V; Salamon, A; Vari, R; Veneziano, Stefano

    2003-01-01

    The ATLAS barrel level-1 muon trigger processes hit information from the resistive plate chamber detector, identifying candidate muon tracks and assigning them to a programmable p/sub T/ range and to a unique bunch crossing number. The trigger system uses up to seven detector layers and seeks hit patterns compatible with muon tracks in the bending and nonbending projection. The basic principle of the algorithm is to demand a coincidence of hits in the different chamber layers within a path. The width of the road is related to the p/sub T / threshold to be applied. The system is split into an on-detector and an off-detector part. The on-detector electronics reduces the information from about 350 k channels to about 400 32-bit data words sent via optical fiber to the so-called sector logic (SL). The off- detector SL electronics collects muon candidates and associates them to detector regions-of-interest of Delta eta * Delta Phi of 0.1*0.1. The core of the on-detector electronics is the coincidence matrix ASIC (...

  7. Upgrade of the Level-1 muon trigger of the ATLAS detector in the barrel-endcap transition region with RPC chambers

    CERN Document Server

    Massa, L; The ATLAS collaboration

    2014-01-01

    This report presents a project for the upgrade of the Level-1 muon trigger in the barrel-endcap transition region (1.01) caused by charged particles originating from secondary interactions downstream of the interaction point. After the LHC phase-1 upgrade, forseen for 2018, the Level-1 muon trigger rate would saturate the allocated bandwidth unless new measures are adopted to improve the rejection of fake triggers. ATLAS is going to improve the trigger selectivity in the region |$\\eta$|>1.3 with the addition of the New Small Wheel detector as an inner trigger plane. To obtain a similar trigger selectivity in the barrel-endcap transition region 1.0<|$\\eta$|<1.3, it is proposed to add new RPC chambers at the edge of the inner layer of the barrel muon spectrometer. These chambers will be based on a three layer structure with thinner gas gaps and electrodes with respect to the ATLAS standard and a new low-profile light-weight mechanical structure that will allow the installation in the limited available spa...

  8. ATLAS TRT barrel

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    On 3 February 2005, members of the US-TRT team proceeded to the installation of the last TRT barrel module for the Transition Radiation Tracker, which will be used for tracking in the Atlas detector. The TRT barrel is made of 96 modules containing around 52 000 4-mm straws, each of them equipped with a 20 microns sense wire. The modules were first designed at CERN, then built in the USA between 1996 and 2003. Duke, Hampton and Indiana Universities, tested in details at CERN between 2003 and 2005 by members of the US-TRT group, and mounted on the support structure in the SR-1 building where this video was taken. During assembly of the last module, one can see Kirill Egorov (PNPI, Gatchina, Russia), Chuck Mahlong (Hampton) as well as John Callahan and Pauline Gagnon (Indiana). (Written by Pauline Gagnon)

  9. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  10. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  11. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  12. ATLAS TRT Barrel in Test Beam

    CERN Multimedia

    Luehring, F

    In July, the TRT group made a highly successful test of 6 Barrel TRT modules in the ATLAS H8 testbeam. Over 3000 TRT straw tubes (4 mm diameter gas drift tubes) were instrumented and found to operate well. The prototype represents 1/16 of the ATLAS TRT barrel and was assembled from TRT modules produced as spares. This was the largest scale test of the TRT to this date and the measured detector performance was as good as or better than what was expected in all cases. The 2004 TRT testbeam setup before final cabling was attached. The readout chain and central DAQ system used in the TRT testbeam is a final prototype for the ATLAS experiment. The TRT electronics used to read out the data were: The Amplifier/Shaper/Discriminator with Baseline Restoration (ASDBLR) chip is the front-end analog chip that shapes and discriminates the electronic pulses generated by the TRT straws. The Digital Time Measurement Read Out Chip (DTMROC) measures the time of the pulse relative to the beam crossing time. The TRT-ROD ...

  13. ATLAS Level-1 Topological Trigger

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-pT leptons, including H->tau tau and J/Psi->mu mu. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize...

  14. The ATLAS Level-1 Central Trigger

    CERN Document Server

    Stockton, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 trigger system is responsible for reducing the anticipated LHC collision rate from 40 MHz to less than 100 kHz. The custom-built electronics of the ATLAS Level-1 Central Trigger receives inputs from the ATLAS Level-1 Triggers and the LHC. The Level-1 calorimeter triggers are based on coarse detector information to identify high-ET jets, electrons/photons and hadrons, along with missing and total energy. In addition there are dedicated muon and forward detectors, providing triggers for different energy thresholds. The Level-1 Central Trigger combines these trigger inputs to form a Level-1 accept. This, along with trigger summary information, is then passed onto the higher levels of the trigger. From the LHC itself the Level-1 Central Trigger passes the bunch clock to all ATLAS sub-detectors. We present how the rigger information, along with dead-time rates, are monitored and logged by the online system for physics analysis, data quality assurance and operational debugging. Also presented are ...

  15. The ATLAS Level-1 Topological Trigger Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371751; The ATLAS collaboration

    2016-01-01

    The LHC will collide protons in the ATLAS detector with increasing luminosity through 2016, placing stringent operational and physical requirements to the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency smaller than 2.5 μs. It consists of a calorimeter trigger, muon trigger and a central trigger processor. During the LHC shutdown after the Run 1 finished in 2013, the Level-1 trigger system was upgraded including hardware, firmware and software updates. In particular, new electronics modules were introduced in the real-time data processing path: the Topological Processor System (L1Topo). It consists of a single AdvancedCTA shelf equipped with two Level-1 topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which...

  16. ATLAS LEVEL-1 CALORIMETER AND TOPOLOGICAL TRIGGER

    CERN Document Server

    Weber, Sebastian Mario; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz with a latency of less than 2.5 μs. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In this talk, we will discuss the improved performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. As the LHC exceeds its design luminosity, it is becoming even more critical to reduce event rates while preserving physics. A new feature of the ATLAS Run 2 trigger system is the Level-1 Topolog...

  17. The ATLAS Level-1 Central Trigger

    CERN Document Server

    Stockton, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Level-1 trigger system is responsible for reducing the anticipated LHC collision rate from 40 MHz to less than 100 kHz. This Level-1 selection identifies, jet, tau/hadron, electron/photon and muon candidates, with additional triggers for missing and total energy. These inputs are used by the Level-1 Central Trigger to form a Level-1 Accept decision. This decision, along with summary information, is then passed into the higher levels of the trigger system and sub-detectors, which also receive the clock from the Level-1 Central trigger. The performance of the Central Trigger during the first collisions will be shown. This includes details of how the trigger information, along with dead-time rates, are monitored and logged by the online system for physics analysis, data quality assurance and operational debugging. Also presented are the software tools used to efficiently display the relevant information in the control room in a way useful for shifters and experts.

  18. The ATLAS level-1 Central Trigger

    CERN Document Server

    Spiwoks, R; Berge, D; Caracinha, D; Ellis, Nick; Farthouat, P; Gällnö, P; Haas, S; Klofver, P; Krasznahorkay, A; Messina, A; Ohm, C; Pauly, T; Perantoni, M; Pessoa Lima Junior, H; Schuler, G; De Seixas, J M; Wengler, T; PH-EP

    2007-01-01

    The ATLAS Level-1 Central Trigger consists of the Muon-to-Central-Trigger-Processor Interface (MUCTPI), the Central Trigger Processor (CTP), and the Timing, Trigger and Control (TTC) partitions of the sub-detectors. The MUCTPI connects the output of the muon trigger system to the CTP. At every bunch crossing it receives information on muon candidates from each of the 208 muon trigger sectors and calculates the total multiplicity for each of six pT thresholds. The CTP combines information from the calorimeter trigger and the MUCTPI and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). The MUCTPI and the CTP provide trigger summary information to the Level-2 trigger and to the data acquisition (DAQ) for every event selected at the Level-1. They further provide accumulated and, for the CTP, bunch-by-bunch counter data for monitoring of the trigger, detector and beam conditions. The TTC partitions send timing, trigger and control signals from the CTP to the...

  19. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  20. Performances of the ATLAS RPC Level-1 Muon trigger during the Run-II data taking

    CERN Document Server

    Alberghi, Gian Luigi; The ATLAS collaboration

    2018-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. Its input stage consists of an array of processors receiving the full granularity of data from Resistive Plate Chambers in the central area of the ATLAS detector ("Barrel"). The RPCs, placed in the barrel region of the ATLAS detector, are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range |η|<1.05 for a total surface of more than 4000 m2 and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates with respect to their transverse momentum and associates them with the correct bunch-crossing number. The trigger system is able to take a decision within a latency of about 2 μs. We illustrate the selections, strategy and validation for an unbiased determination of the efficiency and timing of the RPC and the L1 from data; and show the results w...

  1. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  2. The ATLAS Level-1 Calorimeter Trigger Architecture

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Watkins, P M; Watson, A T; Achenbach, R; Hanke, P; Kluge, E E; Meier, K; Meshkov, P; Nix, O; Penno, K; Schmitt, K; Ay, Cc; Bauss, B; Dahlhoff, A; Jakobs, K; Mahboubi, K; Schäfer, U; Trefzger, T M; Eisenhandler, E F; Landon, M; Moyse, E; Thomas, J; Apostoglou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Perera, V J O; Qian, W; Bohm, C; Hellman, S; Hidvégi, A; Silverstein, S; RT 2003 13th IEEE-NPSS Real Time Conference

    2004-01-01

    The architecture of the ATLAS Level-1 Calorimeter Trigger system (L1Calo) is presented. Common approaches have been adopted for data distribution, result merging, readout, and slow control across the three different subsystems. A significant amount of common hardware is utilized, yielding substantial savings in cost, spares, and development effort. A custom, high-density backplane has been developed with data paths suitable for both the em/tt cluster processor (CP) and jet/energy-summation processor (JEP) subsystems. Common modules also provide interfaces to VME, CANbus and the LHC Timing, Trigger and Control system (TTC). A common data merger module (CMM) uses FPGAs with multiple configurations for summing electron/photon and tau/hadron cluster multiplicities, jet multiplicities, or total and missing transverse energy. The CMM performs both crate- and system-level merging. A common, FPGA-based readout driver (ROD) is used by all of the subsystems to send input, intermediate and output data to the data acquis...

  3. Performance of ATLAS RPC Level-1 Muon trigger during the 2015 data taking

    CERN Document Server

    Corradi, Massimo; The ATLAS collaboration

    2016-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. Its input stage consists of an array of processors receiving the full granularity of data from Resistive Plate Chambers in the central area of the ATLAS detector ("Barrel"). The trigger efficiency and the level of synchronisation of its elements with the rest of ATLAS and the LHC clock are crucial figures of this system: many parameters of the constituent RPC detector and the trigger electronics have to be constantly and carefully checked to assure a correct functioning of the Level-1 selection. Notwithstanding the complexity of such a large array of integrated RPC detectors, the ATLAS Level-1 system has resumed operations successfully after the past 2 year shutdown, with levels similar to those of Run 1. We present the inclusive monitoring of the RPC+L1 system that we have developed to characterise the behaviour of the system, using reconstructed muons in events selected by...

  4. Design of the LHC US ATLAS Barrel Cryostat

    CERN Document Server

    Rehak, M L; Farah, Y; Grandinetti, R; Müller, T; Norton, S; Sondericker, J

    2002-01-01

    One of the experiments of CERN's Large Hadron Collider (LHC) is the ATLAS Liquid Argon detector. The Liquid Argon Barrel Cryostat is part of the United States contribution to the LHC project and its design is presented here. The device is made up of four concentric cylinders: the smallest and largest of which form a vacuum vessel enclosing a cold vessel cryostat filled with liquid argon. The Cryostat serves as the housing for an electromagnetic barrel calorimeter, supports and provides space in vacuum for a solenoid magnet while the toroidal opening furnishes room for a tracker detector. Design requirements are determined by its use in a collider experiment: the construction has to be compact, the material between the interaction region and the calorimeter has to be minimal and made of aluminum to reduce the amount of absorbing material. The design complies with code regulations while being optimized for its use in a physics environment. (2 refs).

  5. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  6. A level-1 track trigger for CMS with double stack detectors and long barrel approach

    Science.gov (United States)

    Salvati, E.

    2012-08-01

    The upgrade of the LHC machine is planned to deliver luminosities 5 to 10 times larger than the design one of 1 × 1034 cm-2s-1. A novel tracking system for the CMS experiment must be designed and built. One main aspect of the current activities consists in understanding the capabilities that different designs such a tracker would have to provide for the Level 1 hardware trigger to complement the muon and calorimeter information. Data rate reduction at hardware level consists in both reducing multiple hits from a single track and rejection of low pt tracks. Pattern-based hit correlation of properly built clusters of hits would provide quality Level 1 primitives to the hardware trigger. These can be combined together in a projective geometry to perform a rough tracking to be implemented online, returning rough pt, direction, and vertex information for a candidate track. The benchmark results from simulations within the official CMS framework are presented for one particular layout based on barrel trigger layers, emphasizing the flexibility of this tool for the design and test of different tracking strategies at level 1 to be compared with the developments in trigger architectures implementation.

  7. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    CERN Document Server

    Aubert, Bernard; Alexa, C; Astesan, F; Augé, E; Aulchenko, V M; Ballansat, J; Barreiro, F; Barrillon, P; Battistoni, G; Bazan, A; Beaugiraud, B; Beck-Hansen, J; Belhorma, B; Belorgey, J; Belymam, A; Ben-Mansour, A; Benchekroun, D; Benchouk, C; Bernard, R; Bertoli, W; Boniface, J; Bonivento, W; Bourdarios, C; Bremer, J; Breton, D; Bán, J; Camard, A; Canton, B; Carminati, L; Cartiglia, N; Cavalli, D; Chalifour, M; Chekhtman, A; Chen, H; Cherkaoui, R; Chevalley, J L; Chollet, F; Citterio, M; Clark, A; Cleland, W; Clément, C; Colas, Jacques; Collot, J; Costa, G; Cros, P; Cunitz, H; de Saintignon, P; Del Peso, J; Delebecque, P; Delmastro, M; Di Ciaccio, Lucia; Dinkespiler, B; Djama, F; Dodd, J; Driouichi, C; Dumont-Dayot, N; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Egdemir, J; El-Kacimi, M; El-Mouahhidi, Y; Engelmann, R; Ernwein, J; Falleau, I; Fanti, M; Farrell, J; Fassnacht, P; Ferrari, A; Fichet, S; Fournier, D; Gallin-Martel, M L; Gara, A; García, G; Gaumer, O; Ghazlane, H; Ghez, P; Gianotti, F; Girard, C; Gordon, H; Gouanère, M; Guilhem, G; Hackenburg, B; Hakimi, M; Hassani, S; Henry-Coüannier, F; Hervás, L; Hinz, L; Hoffman, A; Hoffman, J; Hostachy, J Y; Hoummada, A; Hubaut, F; Idrissi, A; Imbault, D; Jacquier, Y; Jérémie, A; Jevaud, M; Jézéquel, S; Kambara, H; Karst, P; Kazanin, V; Kierstead, J A; Kolachev, G M; Kordas, K; de La Taille, C; Labarga, L; Lacour, D; Lafaye, R; Laforge, B; Lanni, F; Le Coroller, A; Le Dortz, O; Le Maner, C; Le Van-Suu, A; Le Flour, T; Leite, M; Leltchouk, M; Lesueur, J; Lissauer, D; Lund-Jensen, B; Lundqvist, J M; Ma, H; Macé, G; Makowiecki, D S; Malychev, V; Mandelli, L; Mansoulié, B; Marin, C P; Martin, D; Martin, L; Martin, O; Martin, P; Maslennikov, A L; Massol, N; Mazzanti, M; McCarthy, R; McDonald, J; Megner, L; Merkel, B; Mirea, A; Moneta, L; Monnier, E; Moynot, M; Muraz, J F; Nagy, E; Negroni, S; Neukermans, L; Nicod, D; Nikolic-Audit, I; Noppe, J M; Ohlsson-Malek, F; Olivier, C; Orsini, F; Pailler, P; Parrour, G; Parsons, J A; Pearce, M; Perini, L; Perrodo, P; Perrot, G; Pétroff, P; Poggioli, Luc; Pospelov, G E; Pralavorio, Pascal; Prast, J; Przysiezniak, H; Puzo, P; Radeka, V; Rahm, David Charles; Rajagopalan, S; Raymond, M; Renardy, J F; Repetti, B; Rescia, S; Resconi, S; Riccadona, X; Richer, J P; Rijssenbeek, M; Rodier, S; Rossel, F; Rousseau, D; Rydström, S; Saboumazrag, S; Sauvage, D; Sauvage, G; Schilly, P; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seman, M; Serin, L; Shousharo, A; Simion, S; Sippach, W; Snopkov, R; Steffens, J; Stroynowski, R; Stumer, I; Taguet, J P; Takai, H; Talyshev, A A; Tartarelli, F; Teiger, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tocut, V; Tóth, J; Veillet, J J; Vossebeld, Joost Herman; Vuillemin, V; Wielers, M; Willis, W J; Wingerter-Seez, I; Ye, J; Yip, K; Zerwas, D; Zitoun, R; Zolnierowski, Y

    2003-01-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11+-0.07. An energy resolution of better than 9.5% GeV^1/2/sqrt{E} (sampling term) has been obtained with electron beams of up to 245GeV. The uniformity of the response to electrons in an area of Delta_eta x Delta_phi = 1.2 x 0.075 has been measured to be better than 0.8%.

  8. Manufacturing aspects of the ATLAS barrel toroid double pancakes

    CERN Document Server

    Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R

    2002-01-01

    In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...

  9. Assembly and Certification of ATLAS Muon Stations for the Middle and Outer Barrel at CERN

    CERN Document Server

    Aielli, G; Fleischmann, P; Iengo, P; Kovar, S; Wotschack, J; Zimmermann, S

    2006-01-01

    Roughly 400 of the approximately 700 muon stations of the ATLAS barrel belong to the middle and outer layer. Barrel Middle and Barrel Outer stations consist of both an MDT chamber and one or two RPC planes delivering the level-1 trigger information. While MDT chambers and individual RPC units are constructed at their home institutes, the assembly of the RPCs into planes, including the final cabling and the mounting of the trigger electronics, as well as the integration of MDTs and RPCs into muon stations takes place at CERN. MDT chambers, RPC planes and the completed stations have to pass a series of tests before being declared 'ready-for-installation'. Final certification criteria is the passing of a one-day cosmic ray test, for which a special setup has been built in building 899 (BB5). This note gives an overview over the work carried out in BB5, with emphasis on the cosmic ray test. Examples of abnormal chamber behavior will be discussed and a summary of common mistakes in station assembly or chamber cabl...

  10. Installation of the eighth and final coil of the ATLAS barrel toroid magnet

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    In the underground cavern where the ATLAS detector is being constructed, the last of eight 25-m long toroid magnet coils has been put into place, to complete a huge magnetic barrel that forms a major part of the detector.

  11. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Document Server

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  12. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders

    Science.gov (United States)

    Terada, S.; Kobayashi, H.; Sengoku, H.; Kato, Y.; Hara, K.; Honma, F.; Ikegami, Y.; Iwata, Y.; Kohriki, T.; Kondo, T.; Nakano, I.; Takashima, R.; Tanaka, R.; Ujiie, N.; Unno, Y.; Yasuda, S.

    2005-04-01

    More than 2000 silicon modules need to be placed and fastened on the ATLAS SCT barrel tracker. A semi-automatic pick-and-place work robot was designed and developed to cope with the module placement for the SCT barrel assembly. We found that this robot could place modules to a mechanical precision of better than 25 μm.

  13. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders

    CERN Document Server

    Terada, S; Honma, F; Ikegami, Y; Iwata, Y; Kato, Y; Kobayashi, H; Kohriki, T; Kondo, T; Nakano, I; Sengoku, H; Takashima, R; Tanaka, R; Ujiie, N; Unno, Y; Yasuda, S

    2005-01-01

    More than 2000 silicon modules need to be placed and fastened on the ATLAS SCT barrel tracker. A semi-automatic pick-and-place work robot was designed and developed to cope with the module placement for the SCT barrel assembly. We found that this robot could place modules to a mechanical precision of better than 25 mum.

  14. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, F.

    2007-12-19

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  15. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  16. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  17. First data with the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Achenbach, R; Aharrouche, M; Andrei, V; Åsman, B; Barnett, BM; Bauss, B; Bendel, M; Bohm, C; Booth, JRA; Bracinik, J; Brawn, IP; Charlton, DG; Childers, JT; Collins, NC; Curtis, CJ; Davis, AO; Eckweiler, S; Eisenhandler, E F; Faulkner, PJW; Fleckner, J; Föhlisch, F; Gee, CNP; Gillman, AR; Goeringer, C; Groll, M; Hadley, DR; Hanke, P; Hellman, S; Hidvegi, A; Hillier, SJ; Johansen, M; Kluge, E-E; Kühl, T; Landon, M; Lendermann, V; Lilley, JN; Mahboubi, K; Mahout, G; Meier, K; Middleton, RP; Moa, T; Morris, JD; Müller, F; Neusiedl, A; Ohm, C; Oltmann, B; Perera, VJO; Prieur, D; Qian, W; Rieke, S; Rühr, F; Sankey, DPC; Schäfer, U; Schmitt, K; Schultz-Coulon, H-C; Seidler, P; Silverstein, S; Sjölin, J; Staley, RJ; Stamen, R; Stockton, MC; Tan, CLA; Tapprogge, S; Thomas, JP; Thompson, PD; Watkins, PM; Watson, A; Weber, P; Wessels, M; Wildt, M

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger is one of the main elements of the first stage of event selection for the ATLAS experiment at the LHC. The input stage consists of a mixed analogue/digital component taking trigger sums from the ATLAS calorimeters. The trigger logic is performed in a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of physics objects, and energy sums. The final system consists of over 300 custom-built VME modules, of several different types. The installation at ATLAS of these modules, and the necessary infrastructure, was completed at the end of 2007. The system has since undergone intensive testing, both in standalone mode, and in conjunction with the whole of the ATLAS detector in combined running. The final steps of commissioning, and experience with running the full-scale system...

  18. ATLAS Level-1 Calorimeter Trigger Upgrade for Phase-I

    CERN Document Server

    Qian, W; The ATLAS collaboration

    2012-01-01

    The ATLAS Level-1 Trigger requires several upgrades to maintain physics sensitivity as the LHC luminosity is raised. One of the most challenging is the electron trigger, with a major development planned for installation in 2018. New on-detector electronics will be installed to digitize electromagnetic calorimetry signals, providing trigger access to shower profile information. The trigger processing will be ATCA-based, with each multi-FPGA module processing ~1 Tbit/s of calorimeter digits within the current 2.5 microseconds Level-1 Trigger latency limit. This paper will address the system architecture and design, and give the status of a current technology demonstrator.

  19. Proposal of upgrade of the ATLAS muon trigger in the barrel-endcap transition region with RPCs

    CERN Document Server

    Massa, L; The ATLAS collaboration

    2014-01-01

    This report presents a project for the upgrade of the Level-1 muon trigger in the barrel-endcap transition region (1.01) caused by charged particles originating from secondary interactions downstream of the interaction point. After the LHC upgrade forseen for 2018, the Level-1 muon trigger rate would saturate the allocated bandwidth unless new measures are adopted to improve the rejection of fake triggers. ATLAS is going to improve the trigger selectivity in the region |$\\eta$|>1.3 with the New Small Wheel detector upgrade. To obtain a similar trigger selectivity in the barrel-endcap transition region, it is proposed to add new RPC chambers at the edge of the inner layer of the barrel muon spectrometer. These chambers will be based on a three layer structure with thinner gas gaps and electrodes with respect to the ATLAS standard and a new low-profile light-weight mechanical structure that will allow the installation in the limited available space. New front-end electronics, integrating fast TDC capabilities w...

  20. Digital Filter Performance for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Response (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger will be presented, before describing ...

  1. Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, elec- tron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Re- sponse (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless, this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger is presented, before descr...

  2. The Topological Processor for the future ATLAS Level-1 Trigger

    CERN Document Server

    Kahra, C; The ATLAS collaboration

    2014-01-01

    ATLAS is an experiment on the Large Hadron Collider (LHC), located at the European Organization for Nuclear Research (CERN) in Switzerland. By 2015 the LHC instantaneous luminosity will be increased from $10^{34}$ up to $3\\cdot 10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events that contain interesting physics events. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than $2.5 \\mu \\mathrm{s}$. It is composed of the Calorimeter Trigger, the Muon Trigger and the Central Trigger Processor (CTP). In 2014, there will be a new electronics module: the Topological Processor (L1Topo). The L1Topo will make it possible, for the first time, to use detailed information from subdetectors in a single Level-1 module. This allows the determi...

  3. The ATLAS Level-1 Central Trigger System in operation

    Science.gov (United States)

    Pauly, Thilo; ATLAS Collaboration

    2010-04-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking. It receives the 40 MHz bunch clock from the LHC machine and distributes it to all sub-detectors. It initiates the detector read-out by forming the Level-1 Accept decision, which is based on information from the calorimeter and muon trigger processors, plus a variety of additional trigger inputs from detectors in the forward regions. The L1CT also provides trigger-summary information to the data acquisition and the Level-2 trigger systems for use in higher levels of the selection process, in offline analysis, and for monitoring. In this paper we give an overview of the operational framework of the L1CT with particular emphasis on cross-system aspects. The software framework allows a consistent configuration with respect to the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are monitored coherently on all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow to efficiently display the relevant information in the control room in a way useful for shifters and experts. We present the overall performance during cosmic-ray data taking with the full ATLAS detector and the experience with first beam in the LHC.

  4. The ATLAS Level-1 Topological Trigger performance in Run 2

    Science.gov (United States)

    Riu, Imma; ATLAS Collaboration

    2017-10-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compared with the hardware response. An overview of the Level-1 Topological trigger system design, commissioning process and impact on several event selections are illustrated.

  5. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    Science.gov (United States)

    Glatzer, Julian

    2015-12-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of two with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the factor of two increase in the number of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to three different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis on the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition system. Trigger and dead-time rates are monitored coherently at all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow for efficient display of the relevant information in the control room in a way useful for shifters and experts. The design of the framework aims at reliability, flexibility, and robustness of the system and takes into account the operational experience gained during Run 1. The Level-1 Central Trigger was successfully operated with high efficiency during the cosmic-ray, beam-splash and first Run 2 data taking with the full ATLAS detector.

  6. The ATLAS Level-1 Topological Trigger performance in Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00120419; The ATLAS collaboration

    2017-01-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compar...

  7. Topology in the future ATLAS Level-1 Trigger

    CERN Document Server

    Kahra, C; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment examines the decays of high energetic particles produced in proton-proton collisions at the Large Hadron Collider (LHC). Resuming operation at the beginning of 2015 for Run 2 the LHC will work with an increased center-of-mass energy of $13-14 \\mathrm{TeV}$, which will result in an unprecedented luminosity. The first trigger level (Level-1) of the ATLAS trigger system, based on custom-made electronic modules, needs to be upgraded to control the increased trigger rate, while keeping good efficiency for interesting physics events. In Run 1 the Level-1 trigger decisions were mostly based only on multiplicities of trigger objects (such as electrons / photons, jets, hadrons, muons above energy/momentum thresholds) observed in the calorimeters and the muon spectrometer. As part of the Level-1 upgrade a new trigger module, the topological processor (L1Topo) will be included into the trigger chain. It is intended to evaluate the spatial correlations of trigger objects and to perform more complex k...

  8. The ATLAS Level-1 Central Trigger System 012

    CERN Document Server

    Borrego-Amaral, P; Farthouat, Philippe; Gällnö, P; Haller, J; Maeno, T; Pauly, T; Schuler, G; Spiwoks, R; Torga-Teixeira, R; Wengler, T; Pessoa-Lima, H; De Seixas, J M

    2004-01-01

    The central part of the ATLAS Level-1 trigger system consists of the Central Trigger Processor (CTP), the Local Trigger Processors (LTPs), the Timing, Trigger and Control (TTC) system, and the Read-out Driver Busy (ROD_BUSY) modules. The CTP combines information from calorimeter and muon trigger processors, as well as from other sources and makes the final Level-1 Accept decision (L1A) on the basis of lists of selection criteria, implemented as a trigger menu. Timing and trigger signals are fanned out to about 40 LTPs which inject them into the sub-detector TTC partitions. The LTPs also support stand-alone running and can generate all necessary signals from memory. The TTC partitions fan out the timing and trigger signals to the sub-detector front-end electronics. The ROD_BUSY modules receive busy signals from the front-end electronics and send them to the CTP (via an LTP) to throttle the generation of L1As. An overview of the ATLAS Level-1 Central trigger system will be presented, with emphasis on the design...

  9. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are monitored coherently at...

  10. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different sub-detector combinations. In this contribution, we give an overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are m...

  11. The ATLAS Level-1 Central Trigger Processor (CTP)

    CERN Document Server

    Spiwoks, Ralf; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS Level-1 Central Trigger Processor (CTP) combines information from calorimeter and muon trigger processors and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). In addition to the event-selection decision, the CTP also provides trigger summary information to the Level-2 trigger and the data acquisition system. It further provides accumulated and bunch-by-bunch scaler data for monitoring of the trigger, detector and beam conditions. The CTP is presented and results are shown from tests with the calorimeter adn muon trigger processors connected to detectors in a particle beam, as well as from stand-alone full-system tests in the laboratory which were used to validate the CTP.

  12. Upgrade of the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Wessels, M; The ATLAS collaboration

    2014-01-01

    The Level-1 Calorimeter Trigger (L1Calo) of the ATLAS experiment has been operating well since the start of LHC data taking, and played a major role in the Higgs boson discovery. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. The initial upgrade phase in 2013-14 includes substantial improvements to the analogue and digital signal processing to allow more sophisticated digital filters for energy and timing measurement, as well as compensate for pile-up and baseline shifting effects. Two existing digital algorithm processor subsystems will receive substantial hardware and firmware upgrades to increase the real-time data path bandwidth, allowing topological information to be transmitted and processed at Level-1. An entirely new subsystem, the Level-1 Topological Processor, will receive real-time data from both the upgraded L1Calo and Level-1 Muon Trigger to perform trigger algorithms based on entire event topolo...

  13. Construction and Performance of the ATLAS SCT Barrels and Cosmic Tests

    CERN Document Server

    Demirkoz, Bilge Melahat

    2007-01-01

    ATLAS is a multi-purpose detector for the LHC and will detect proton-proton collisions with center of mass energy of $14$TeV. Part of the central inner detector, the Semi-Conductor Tracker (SCT) barrels, were assembled and tested at Oxford University and later integrated at CERN with the TRT (Transition Radiation Tracker) barrel. The barrel SCT is composed of 4 layers of silicon strip modules with two sensor layers with $80 \\mu$m channel width. The design of the modules and the barrels has been optimized for low radiation length while maintaining mechanical stability, bringing services to the detector, and ensuring a cold and dry environment. The high granularity, high detector efficiency and low noise occupancy ($ < 5 \\times 10^{-4}$) of the SCT will enable ATLAS to have an efficient pattern recognition capability. Due to the binary nature of the SCT read-out, a stable read-out system and the calibration system is of critical importance. SctRodDaq is the online software framework for the calibration and a...

  14. Study of a twisted ATLAS SCT Barrel deformation as revealed by a photogrammetric survey

    CERN Document Server

    Dobson, E; Heinemann, F; Karagoz-Unel, M

    2007-01-01

    A photogrammetry survey on the SCT barrels was performed as an engineering check on the structure of the ATLAS Semiconductor Tracker (SCT) shortly after construction. Analysis of the data obtained revealed small scale elliptical deformation as well as a twist of the structure. The results of the survey are presented as well as interpolation of the measured targets to the module positions and a comparison with track based alignment measurements.

  15. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  16. Prototype Strip Barrel Modules for the ATLAS ITk Strip Detector

    CERN Document Server

    Sawyer, Craig; The ATLAS collaboration

    2017-01-01

    The module design for the Phase II Upgrade of the new ATLAS Inner Tracker (ITk) detector at the LHC employs integrated low mass assembly using single-sided flexible circuits with readout ASICs and a powering circuit incorporating control and monitoring of HV, LV and temperature on the module. Both readout and powering circuits are glued directly onto the silicon sensor surface resulting in a fully integrated, extremely low radiation length module which simultaneously reduces the material requirements of the local support structure by allowing a reduced width stave structure to be employed. Such a module concept has now been fully demonstrated using so-called ABC130 and HCC130 ASICs fabricated in 130nm CMOS technology to readout ATLAS12 n+-in-p silicon strip sensors. Low voltage powering for these demonstrator modules has been realised by utilising a DCDC powerboard based around the CERN FEAST ASIC. This powerboard incorporates an HV multiplexing switch based on a Panasonic GaN transistor. Control and monitori...

  17. ATLAS Award for Difficult Task : two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week.

    CERN Multimedia

    2004-01-01

    From left to right, V. Riadovikov (IHEP Protvino), N. Voronkov (RSPKrunitchev), J. Margoulis (RSP Krunitchev), D. Froidevaux (CERN), A. Romashin (ORPE Technologiya), J. Callahan (CERN/Indiana University), A. Catinaccio (CERN) and O. Komissar (ORPE Technologiya), stand in front of the ATLAS inner detector barrel support structure, manufactured by ORPE Technologiya and RSP Krunitchev.

  18. Computer Simulation of the Cool Down of the ATLAS Liquid Argon Barrel Calorimeter

    CERN Document Server

    Korperud, N; Fabre, C; Owren, G; Passardi, Giorgio

    2002-01-01

    The ATLAS electromagnetic barrel calorimeter consists of a liquid argon detector with a total mass of 120 tonnes. This highly complicated structure, fabricated from copper, lead, stainless steel and glass-fiber reinforced epoxy will be placed in an aluminum cryostat. The cool down process of the detector will be limited by the maximum temperature differences accepted by the composite structure so as to avoid critical mechanical stresses. A computer program simulating the cool down of the detector by calculating the local heat transfer throughout a simplified model has been developed. The program evaluates the cool down time as a function of different contact gasses filling the spaces within the detector.

  19. Towards a Level-1 tracking trigger for the ATLAS experiment

    CERN Document Server

    Cerri, A; The ATLAS collaboration

    2014-01-01

    The future plans for the LHC accelerator allow, through a schedule of phased upgrades, an increase in the average instantaneous luminosity by a factor 5 with respect to the original design luminosity. The ATLAS experiment at the LHC will be able to maximise the physics potential from this higher luminosity only if the detector, trigger and DAQ infrastructure are adapted to handle the sustained increase in particle production rates. In this paper the changes expected to be required to the ATLAS detectors and trigger system to fulfill the requirement for working in such high luminosity scenario are described. The increased number of interactions per bunch crossing will result in higher occupancy in the detectors and increased rates at each level of the trigger system. The trigger selection will improve the selectivity partly from increased granularity for the sub detectors and the consequent higher resolution. One of the largest challenges will be the provision of tracking information at the first trigger level...

  20. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2014-01-01

    Plans for a physics-driven upgrade of the LHC foresee staged increases of the accelerator's average instantaneous luminosity, of up to a factor of five compared to the original design. In order to cope with the sustained luminosity increase, and the resulting higher detector occupancy and particle interaction rates, the ATLAS experiment is planning phased upgrades of the trigger system and of the DAQ infrastructure. In the new conditions, maintaining an adequate signal acceptance for electro-weak processes will pose unprecedented challenges, as the default solution to cope with the higher rates would be to increase thresholds on the transverse momenta of physics objects (leptons, jets, etc). Therefore the possibility to apply fast processing at the first trigger level in order to use tracking information as early as possible in the trigger selection represents a most appealing opportunity, which can preserve the ATLAS trigger's selectivity without reducing its flexibility. Studies to explore the feasibility o...

  1. Operation and performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC

    CERN Document Server

    Whalen, Kate; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz with a latency of less than 2.5 μs. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In this talk, we will discuss the improved performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. As the LHC exceeds its design luminosity, it is becoming even more critical to reduce event rates while preserving physics. A new feature of the ATLAS trigger system for Run 2 is the Level-1 Top...

  2. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  3. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  4. Certification and commissioning of barrel stations for the ATLAS muon spectrometer

    CERN Document Server

    Zimmermann, S

    2006-01-01

    The muon spectrometer of the ATLAS experiment, which is scheduled to commence data taking at the Large Hadron Collider, LHC at CERN in 2007, comprises more than a thousand muon stations, which have the double purpose of triggering on high-p/sub t/ muon tracks as well as providing precise trajectory reconstruction. While monitored drift tube chambers are used for track reconstruction in all of the muon spectrometer except for a region close to the beam pipe in forward direction, two different technologies are used for triggering, resistive plate chambers in the barrel region and thin gap chambers in the end-caps. Both have in common that the ATLAS geometry allows only limited accessibility after chambers are installed in the detector. A thorough testing and certification prior to installation is therefore crucial. This paper reviews the test procedure at CERN for barrel chambers of type BO and BM, i.e. of stations for which a drift chamber is coupled with one or two resistive plate chambers. The final certific...

  5. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  6. Simulation and Validation of the ATLAS Level-1 Topological Trigger

    CERN Document Server

    Bakker, Pepijn Johannes; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has recently commissioned a new component of its first-level trigger: the L1 topological trigger. This system, using state-of-the-art FPGA processors, makes it possible to reject events by applying topological requirements, such as kinematic criteria involving clusters, jets, muons, and total transverse energy. The data recorded using the L1Topological trigger demonstrates that this innovative trigger strategy allows for an improved rejection rate without efficiency loss. This improvement has been shown for several relevant physics processes leading to low-$p_T$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, an accurate simulation of the L1Topological trigger is used to validate and optimize the performance of this trigger. To reach such an accuracy, this simulation must take into account the fact that the firmware algorithms are executed on a FPGA architecture, while the simulation is executed on a floating point architecture.

  7. Performance of ATLAS RPC Level-1 muon trigger during the 2015 data taking

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00001854; The ATLAS collaboration

    2016-01-01

    RPCs are used in the ATLAS experiment at the LHC for muon trigger in the barrel region, which corresponds to |eta|<1.05. The status of the barrel trigger system during the 2015 data taking is presented, including measurements of the RPC detector efficiencies and of the trigger performance. The RPC system has been active in more than 99.9% of the ATLAS data taking, showing very good reliability. The RPC detector efficiencies were close to Run-1 and to design value. The trigger efficiency for the high-pT thresholds used in single-muon triggers has been approximately 4% lower than in Run 1, mostly because of chambers disconnected from HV due to gas leaks. Two minor upgrades have been performed in preparation of Run 2 by adding the so-called feet and elevator chambers to increase the system acceptance. The feet chambers have been commissioned during 2015 and are included in the trigger since the last 2015 runs. Part of the elevator chambers are still in commissioning phase and will probably need a replacement ...

  8. The common cryogenic test facility for the ATLAS barrel and end-cap toroid magnets

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requ...

  9. The Common Cryogenic Test Facility for the Atlas Barrel and End-Cap Toroid Magnet

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific re...

  10. Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El-Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Tarrade, F; Wingerter-Seez, I; Zitoun, R; Lanni, F; Ma, H; Rajagopalan, S; Rescia, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Barberio, E; Gao, Y S; Lü, L; Stroynowski, R; Aleksa, Martin; Beck-Hansen, J; Carli, T; Efthymiopoulos, I; Fassnacht, P; Follin, F; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Martin, P; Ohlsson-Malek, F; Saboumazrag, S; Leltchouk, M; Parsons, J A; Seman, M; Simion, S; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Bourdarios, C; Fayard, L; Fournier, D; Graziani, G; Hassani, S; Iconomidou-Fayard, L; Kado, M; Lechowski, M; Lelas, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Camard, A; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, P; Ghazlane, H; Cherkaoui-El-Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindling, J; Lund-Jensen, B; Tayalati, Y

    2006-01-01

    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resoluti...

  11. Hardware, firmware and software developments for the upgrade of the ATLAS Level-1 Central Trigger Processor

    CERN Document Server

    Ghibaudi, M; The ATLAS collaboration; Spiwoks, R; Anders, G; Bertelsen, H; Boisen, A; Childers, T; Dam, M; Ellis, N; Farthouat, P; Gabaldon Ruiz, C; Gorini, B; Kaneda, M; Ohm, C; Silva Oliveira, M; Pauly, T; Pottgen, R; Schmieden, K; Xella, S

    2013-01-01

    The Central Trigger Processor (CTP) is the final stage of the ATLAS first level trigger system which reduces the collision rate of 40 MHz to a Level-1 event rate of 100 kHz. An upgrade of the CTP is currently underway to significantly increase the number of trigger inputs and trigger combinations, allowing additional flexibility for the trigger menu.\

  12. Evaluation of IPbus for Control Communication in the ATLAS Level-1 Central Trigger

    CERN Document Server

    Barron, Uriel

    2015-01-01

    Abstract The future upgrade of the ATLAS Level-1 Central Trigger will require a new method of control communication to the MUCTPI. IPbus is suggested as a possible solution to this problem and setup instructions are provided. The functionality of IPbus was tested and its performance was measured for different operations and for different parameters. The Hardware Compiler was modified to support IPbus.

  13. The ATLAS Level-1 Topological Trigger Design and Operation in Run-2

    CERN Document Server

    Igonkina, Olga; The ATLAS collaboration

    2018-01-01

    The ATLAS Level-1 Trigger system performs initial event selection using data from calorimeters and the muon spectrometer to reduce the LHC collision event rate down to about 100 kHz. Trigger decisions from the different sub-systems are combined in the Central Trigger Processor for the final Level-1 decision. A new FPGAs-based AdvancedTCA sub-system was introduced to calculate in real time complex kinematic observables: the Topological Processor System. It was installed during the shutdown and commissioning started in 2015 and continued during 2016. The design and operation of the Level-1 Topological Trigger in Run-2 will be illustrated.

  14. The data path of the ATLAS level-1 calorimeter trigger preprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, George Victor

    2010-10-27

    The PreProcessor of the ATLAS Level-1 Calorimeter Trigger provides digital values of transverse energy in real-time to the subsequent object-finding processors. The input comprises more than 7000 analogue signals of reduced granularity from the calorimeters of the ATLAS detector. The Level-1 trigger decision must be verified. For this, the PreProcessor transmits copies of the real-time digital data to the Data Acquisition (DAQ) system. In addition, the PreProcessor system provides a standard VMEbus interface to the computing infrastructure of the experiment, on which configuration data is loaded and control or monitoring data are read out. A dedicated system that ensures both the transfer of event data to storage in ATLAS and the data transfer over the VME was implemented on the 124 modules of the PreProcessor system in the form of a ''Readout Manager''. The ''Field Programmable Gate Array'' (FPGA) is located on each module. The rst part of this work describes the algorithms developed to meet the functionality of the Readout Manager. The second part deals with the tests that were carried out to ensure the proper functionality of the modules before they were installed at CERN in the ATLAS cavern. (orig.)

  15. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  16. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  17. The ATLAS Level-1 Trigger System with 13TeV nominal LHC collisions

    CERN Document Server

    Helary, Louis; The ATLAS collaboration

    2017-01-01

    The Level-1 (L1) Trigger system of the ATLAS experiment at CERN's Large Hadron Collider (LHC) plays a key role in the ATLAS detector data-taking. It is a hardware system that selects in real time events containing physics-motivated signatures. Selection is purely based on calorimetry energy depositions and hits in the muon chambers consistent with muon candidates. The L1 Trigger system has been upgraded to cope with the more challenging run-II LHC beam conditions, including increased centre-of-mass energy, increased instantaneous luminosity and higher levels of pileup. This talk summarises the improvements, commissioning and performance of the L1 ATLAS Trigger for the LHC run-II data period. The acceptance of muon triggers has been improved by increasing the hermiticity of the muon spectrometer. New strategies to obtain a better muon trigger signal purity were designed for certain geometrically difficult transition regions by using the ATLAS hadronic calorimeter. Algorithms to reduce noise spikes in muon trig...

  18. Test-beam results from the ATLAS level-1 calorimeter trigger demonstrator

    CERN Document Server

    Bohm, C; Bright-Thomas, P G; Connors, A; Edwards, J; Eisenhandler, Eric F; Ellis, Nick; Engström, M; Farthouat, Philippe; Garvey, J; Gee, C N P; Gillman, A R; Hanke, P; Hatley, R; Hellman, S; Hillier, S J; Kluge, E E; Landon, M; Maddox, A J; Pentney, J M; Perera, V J O; Pfeiffer, U; Schuler, G A; Schumacher, C; Shah, T P; Silverstein, S; Staley, R J; Watkins, P M; Watson, A T; Wunsch, M

    1998-01-01

    The ATLAS level-1 calorimeter trigger will utilise a number of advanced technologies, many of which have already been successfully demonstrated. To evaluate the different technologies associated with the important areas of $9 high-speed data transport a large demonstrator system has been designed and operated during the last two years, using signals from prototype calorimeters in the ATLAS test-beam. Using this system, inter-crate data transmission and $9 reception have been demonstrated at over 1.4 Gbyte/s, with individual links running at up to 1.6 Gbaud. Operating with 160 Mbit/s signals across a transmission-line backplane, custom transceiver ASICs have achieved inter-module data $9 fanout at peak rates above 800 Mbyte/s. With the addition of further modules, the system was extended to emulate a vertical slice through the ATLAS level-1 calorimeter trigger. We present here the results from these tests, including $9 measurements of bit-error rates across different data paths. (12 refs).

  19. Upgrade of the ATLAS Level-1 trigger with an FPGA based Topological Processor

    CERN Document Server

    Caputo, R; The ATLAS collaboration; Buescher, V; Degele, R; Kiese, P; Maldaner, S; Reiss, A; Schaefer, U; Simioni, E; Tapprogge, S; Urrejola, P

    2013-01-01

    The ATLAS experiment is located at the European Centre for Nuclear Research (CERN) in Switzerland. It is designed to measure decay properties of high energetic particles produced in the protons collisions at the Large Hadron Collider (LHC). The LHC has a proton collision at a frequency of 40 MHz, and thus requires a trigger system to efficiently select events down to a manageable event storage rate of about 400Hz. Event triggering is therefore one of the extraordinary challenges faced by the ATLAS detector. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5$\\mu$s. It is primarily composed of the Calorimeter Trigger, Muon Trigger, the Central Trigger Processor (CTP). Due to the increase in the LHC instantaneous luminosity up to 3$\\times$10$^{34}$ cm$^{−2}$ s$^{−1}$ from 2015 onwards, a new element will be included in the Level-1 Trigger scheme: the Topological Processor (L1Topo). The L1Topo receives data in a dedicate...

  20. The Topological Processor for the future ATLAS Level-1 Trigger: from design to commissioning

    CERN Document Server

    Simioni, E; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is located at the European Centre for Nuclear Research (CERN) in Switzerland. It is designed to measure decay properties of highly energetic particles produced in the protons collisions at the Large Hadron Collider (LHC). The LHC has a beam collision frequency of 40 MHz, and thus requires a trigger system to efficiently select events, thereby reducing the storage rate to a manageable level of about 400 Hz. Event triggering is therefore one of the extraordinary challenges faced by the ATLAS detector. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5 s. It is primarily composed of the Calorimeter Trigger, Muon Trigger, the Central Trigger Processor (CTP). Due to the increase in the LHC instantaneous luminosity up 3 x 10^34/cm2 s from 2015 onwards, a new element will be included in the Level-1 Trigger scheme: the Topological Processor (L1Topo). The L1Topo receives data in a specialized format from the ...

  1. The ATLAS Level-1 Muon Topological Trigger Information for Run 2 of the LHC

    Science.gov (United States)

    Artz, S.; Bauss, B.; Boterenbrood, H.; Buescher, V.; Cerqueira, A. S.; Degele, R.; Dhaliwal, S.; Ellis, N.; Farthouat, P.; Galster, G.; Ghibaudi, M.; Glatzer, J.; Haas, S.; Igonkina, O.; Jakobi, K.; Jansweijer, P.; Kahra, C.; Kaluza, A.; Kaneda, M.; Marzin, A.; Ohm, C.; Silva Oliveira, M. V.; Pauly, T.; Poettgen, R.; Reiss, A.; Schaefer, U.; Schaeffer, J.; Schipper, J. D.; Schmieden, K.; Schreuder, F.; Simioni, E.; Simon, M.; Spiwoks, R.; Stelzer, J.; Tapprogge, S.; Vermeulen, J.; Vogel, A.; Zinser, M.

    2015-02-01

    For the next run of the LHC, the ATLAS Level-1 trigger system will include topological information on trigger objects from the calorimeters and muon detectors. In order to supply coarse grained muon topological information, the existing MUCTPI (Muon-to-Central-Trigger-Processor Interface) system has been upgraded. The MIOCT (Muon Octant) module firmware has been then modified to extract, encode and send topological information through the existing MUCTPI electrical trigger outputs. The topological information from the muon detectors will be sent to the Level-1 Topological Trigger Processor (L1Topo) through the MUCTPI-to-Level-1-Topological-Processor (MuCTPiToTopo) interface. Examples of physics searches involving muons are: search for Lepton Flavour Violation, Bs-physics, Beyond the Standard Model (BSM) physics and others. This paper describes the modifications to the MUCTPI and its integration with the full trigger chain.

  2. The ATLAS Level-1 Muon Topological Trigger Information for Run 2 of the LHC

    CERN Document Server

    Silva Oliveira, Marcos Vinicius; The ATLAS collaboration; Bauss, Bruno; Boterenbrood, Hendrik; Buescher, Volker; Cerqueira, Augusto Santiago; Degele, Reinold; Dhaliwal, Saminder; Ellis, Nicolas; Farthouat, Philippe; Galster, Gorm Aske Gram; Ghibaudi, Marco; Glatzer, Julian Maximilian Volker; Haas, Stefan; Igonkina, Olga; Jakobi, Katharina Bianca; Jansweijer, Peter Paul Maarten; Kahra, Christian; Kaluza, Adam; Kaneda, Michiru; Marzin, Antoine; Ohm, Christian; Pauly, Thilo; Poettgen, Ruth; Reiss, Andreas; Schaefer, Uli; Schaeffer, Jan; Schipper, Jan David; Schmieden, Kristof; Schreuder, Frans Philip; Simioni, Eduard; Spiwoks, Ralf; Stelzer, Harald Joerg; Tapprogge, Stefan; Vermeulen, Jos; Vogel, Alexander; Zinser, Markus

    2015-01-01

    For the next run of the LHC, the ATLAS Level-1 trigger system will include topological information on trigger objects from the calorimeters and muon detectors. In order to supply coarse grained muon topological information, the existing MUCTPI (Muon-to-Central-Trigger-Processor Interface) system has been upgraded. The MIOCT (Muon Octant) module firmware has been then modified in order to extract, encode and send topological information through the existing MUCTPI electrical trigger outputs. The topological information from the muon detectors will be sent to the Level-1 Topological Trigger Processor (L1Topo) through the MUCTPI-to-Level-1-Topological-Processor (MuCTPiToTopo) interface. Examples of topological algorithms involving muons are: search for Lepton Flavour Violation, Bs-physics, Beyond the Standard Model (BSM) physics and others. This paper describes the modifications to the MUCTPI and its integration with the full trigger chain.

  3. The first integration test of the ATLAS end-cap muon level 1 trigger system

    CERN Document Server

    Hasuko, K; Hasegawa, Y; Ichimiya, R; Ikeno, M; Ishida, Y; Kano, H; Komatsu, S; Kurashige, H; Maeno, T; Matsumoto, Y; Mizouchi, K; Nakamura, Y; Nakayoshi, K; Sakamoto, H; Sasaki, O; Takemoto, T; Tanaka, K; Totsuka, M; Tsuji, S; Yasu, Y

    2003-01-01

    A slice test system has been constructed for the ATLAS end-cap muon level-1 trigger. ATLAS is one of the four Large Hadron Collider (LHC) experiment. Although the system has been constructed using prototype application specific integrated circuits (ASICs) and electronics modules, the design scheme of the trigger, readout as well as control logic applied to the system is the final one. The size is about 1/300 of the whole number of channels. The purpose of the slice test is to demonstrate the system design and performance in detail prior to production commitment. In this paper, we discuss the validity of the logic through the comparison of the simulation results, the latency measurement and long run tests. (11 refs).

  4. The design of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    Allbrooke, Benedict; The ATLAS collaboration

    2016-01-01

    The design of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy. This talk will discuss the projected performance of the system in terms of tracking, timing and physics.

  5. Physics performances with the new ATLAS Level-1 Topological trigger in Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414333; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger system aims at reducing the 40 MHz proton-proton collision event rate to a manageable event storage rate of 1 kHz, preserving events valuable for physics analysis. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system, with an output rate of 100 kHz and decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. During the last upgrade, a new electronics element was introduced to Level-1: The Topological Processor System. It will make it possible to use detailed realtime information from the Level-1 calorimeter and muon triggers, processed in individual state of the art FPGA processors to determine angles between jets and/or leptons and calculate kinematic variables based on lists of selected/sorted objects. More than one hundred VHDL algorithms are producing trigger outputs to be incorporated into the central trigger processor. This information will be essential to improve background reject...

  6. Precision Synchronization of the ATLAS Level-1 Calorimeter Trigger with Collision Data in 2010 and 2011

    CERN Document Server

    Lang, V; The ATLAS collaboration

    2012-01-01

    The ATLAS Level-1 Calorimeter trigger (L1Calo) selects LHC collision events based on the identification of high pT-objects like electrons, jets and taus as well as the determination of total and missing ET in the Tile and Liquid Argon Calorimeters. Operating at 40MHz LHC bunch-crossing frequency, the hardware based L1Calo system processes 7168 so-called Trigger Tower (TT) signals from the calorimeters. Synchronizing these TT signals as well as maintaining and refining the L1Calo synchronization are important measures to ensure a stable and reliable functioning of the ATLAS trigger system, including high Level-1 trigger efficiencies. The fit method for L1Calo precision synchronization emulates the analogue calorimeter signal shape on digitized TT pulses to derive the required synchronization settings. Systematic tests have shown the validity of the method within a statistical and systematical accuracy of +-3 ns, well within the required precision for bunch-crossing identification and Level-1 energy measurement...

  7. Hardware and firmware developments for the upgrade of the ATLAS Level-1 Central Trigger Processor

    CERN Document Server

    Anders, G; Boisen, A; Childers, T; Dam, M; Ellis, N; Farthouat, P; Gabaldon Ruiz, C; Ghibaudi, M; Gorini, B; Haas, S; Kaneda, M; Ohm, C; Silva Oliveira, M; Pauly, T; Pottgen, R; Schmieden, K; Spiwoks, R; Xella, S

    2014-01-01

    The Central Trigger Processor (CTP) is the final stage of the ATLAS first level trigger system which reduces the collision rate of 40 MHz to a Level-1 event rate of 100 kHz. An upgrade of the CTP is currently underway to significantly increase the number of trigger inputs and trigger combinations, allowing additional flexibility for the trigger menu. We present the hardware and FPGA firmware of the newly designed core module (CTPCORE+) module of the CTP, as well as results from a system used for early firmware and software prototyping based on commercial FPGA evaluation boards. First test result from the CTPCORE+ module will also be shown.

  8. Upgrade of the ATLAS Level-1 trigger with an FPGA based Topological Processor

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) in 2015 will collide proton beams with increased luminosity from $10^{34}$ up to $3 \\times 10^{34}cm^{-2}s^{-1}$. ATLAS is an LHC experiment designed to measure decay properties of high energetic particles produced in the protons collisions. The higher luminosity places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events with valuable physics meaning. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than 2.5$\\mu s$. It is composed of the Calorimeter Trigger (L1Calo), the Muon Trigger (L1Muon) and the Central Trigger Processor (CTP). In 2014, there will be a new electronics element in the chain: the Topological Processor System (L1Topo system). The L1Topo system consist of a single AdvancedTCA shelf equipped with three L1Topo processor blades. It w...

  9. Upgrade of the ATLAS Level-1 Trigger with event topology information

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration; Bauss, B; Büscher, V; Jakobi, K; Kaluza, A; Kahra, C; Reiss, A; Schäffer, J; Schulte, A; Simon, M; Tapprogge, S; Vogel, A; Zinser, M; Palka, M

    2015-01-01

    The Large Hadron Collider (LHC) in 2015 will collide proton beams with increased luminosity from \\unit{10^{34}} up to \\unit{3 \\times 10^{34}cm^{-2}s^{-1}}. ATLAS is an LHC experiment designed to measure decay properties of high energetic particles produced in the protons collisions. The higher luminosity places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events with valuable physics meaning. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than 2.5$\\mu s$. It is composed of the Calorimeter Trigger (L1Calo), the Muon Trigger (L1Muon) and the Central Trigger Processor (CTP). In 2014, there will be a new electronics element in the chain: the Topological Processor System (L1Topo system).\\\\ The L1Topo system consist of a single AdvancedTCA shelf equipped with three L1Topo processor ...

  10. The new Level-1 Topological Trigger for the ATLAS experiment at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00047907; The ATLAS collaboration

    2017-01-01

    At the CERN Large Hadron Collider, the world’s most powerful particle accelerator, the ATLAS experiment records high-energy proton collision to investigate the properties of fundamental particles. These collisions take place at a 40 MHz, and the ATLAS trigger system selects the interesting ones, reducing the rate to 1 kHz, allowing for their storage and subsequent offline analysis. The ATLAS trigger system is organized in two levels, with increasing degree of details and of accuracy. The first level trigger reduces the event rate to 100 kHz with a decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. A new component of the first-level trigger was introduced in 2015: the Topological Processor (L1Topo). It allows to use detailed real-time information from the Level-1 calorimeter and muon systems, to compute advanced kinematic quantities using state of the art FPGA processors, and to select interesting events based on several com...

  11. The design of a fast Level-1 track trigger for the high luminosity upgrade of ATLAS.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00413032; The ATLAS collaboration

    2016-01-01

    The high/luminosity upgrade of the LHC will increase the rate of the proton-proton collisions by approximately a factor of 5 with respect to the initial LHC-design. The ATLAS experiment will upgrade consequently, increasing its robustness and selectivity in the expected high radiation environment. In particular, the earliest, hardware based, ATLAS trigger stage ("Level 1") will require higher rejection power, still maintaining efficient selection on many various physics signatures. The key ingredient is the possibility of extracting tracking information from the brand new full-silicon detector and use it for the process. While fascinating, this solution poses a big challenge in the choice of the architecture, due to the reduced latency available at this trigger level (few tens of micro-seconds) and the high expected working rates (order of MHz). In this paper, we review the design possibilities of such a system in a potential new trigger and readout architecture, and present the performance resulting from a d...

  12. The Topological Processor for the future ATLAS Level-1 Trigger: from design to commissioning

    CERN Document Server

    Simioni, E; The ATLAS collaboration

    2014-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) is designed to measure decay properties of high energetic particles produced in the proton-proton collisions. During its first run, the LHC collided proton bunches at a frequency of 20 MHz, and therefore the detector required a Trigger system to efficiently select events down to a manageable event storage rate of about 400 Hz. By 2015 the LHC instantaneous luminosity will be increased up to 3$\\times$$10^{34}cm^{-2}s^{-1}$: this represent an unprecedented challenge faced by the ATLAS Trigger system. To cope with the higher event rate and efficiently select relevant events from physics point of view, a new element will be included in the Level-1 Trigger scheme after 2015: the Topological Processor (L1Topo).\\\\ The L1Topo system, currently developed at CERN, will consist initially of an ATCA crate and two L1Topo modules. A high density opto-electroconverter (AVAGO miniPOD) drives up to 1.6 Tb/s of data from the calorimeter and muon detectors into two high end ...

  13. gFEX, the ATLAS Calorimeter Level-1 Real Time Processor

    CERN Document Server

    AUTHOR|(SzGeCERN)759889; The ATLAS collaboration; Begel, Michael; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Wu, Weihao

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Vertex Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 276 optical fibers with the data transferred at the 40 MHz Large Hadron Collider (LHC) clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor Field-Programmable Gate Array (FPGAs), monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA ...

  14. gFEX, the ATLAS Calorimeter Level 1 Real Time Processor

    CERN Document Server

    Tang, Shaochun; The ATLAS collaboration

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor FPGAs, monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA has been designed for testing and verification. The performance ...

  15. The Topological Processor for the future ATLAS Level-1 Trigger: from design to commissioning

    CERN Document Server

    INSPIRE-00226165

    2014-01-01

    The ATLAS detector at LHC will require a Trigger system to efficiently select events down to a manageable event storage rate of about 400 Hz. By 2015 the LHC instantaneous luminosity will be increased up to 3 x 10^34 cm-2s-1, this represents an unprecedented challenge faced by the ATLAS Trigger system. To cope with the higher event rate and efficiently select relevant events from a physics point of view, a new element will be included in the Level-1 Trigger scheme after 2015: the Topological Processor (L1Topo). The L1Topo system, currently developed at CERN, will consist initially of an ATCA crate and two L1Topo modules. A high density opto-electroconverter (AVAGO miniPOD) drives up to 1.6 Tb/s of data from the calorimeter and muon detectors into two high-end FPGA (Virtex7-690), to be processed in about 200 ns. The design has been optimized to guarantee excellent signal in- tegrity of the high-speed links and low latency data transmission on the Real Time Data Path (RTDP). The L1Topo receives data in a standa...

  16. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Document Server

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  17. ATLAS Level-1 Calorimeter Trigger Subsystem Tests of a Prototype Cluster Processor Module

    CERN Document Server

    Garvey, J; Apostologlou, P; Ay, C; Barnett, B M; Bauss, B; Brawn, I P; Bohm, C; Dahlhoff, A; Davis, A O; Edwards, J; Eisenhandler, E F; Gee, C N P; Gillman, A R; Hanke, P; Hellman, S; Hidévgi, A; Hillier, S J; Jakobs, K; Kluge, E E; Landon, M; Mahboubi, K; Mahout, G; Meier, K; Meshkov, P; Moye, T H; Mills, D; Moyse, E; Nix, O; Penno, K; Perera, V J O; Qian, W; Schmitt, K; Schäfer, U; Silverstein, S; Staley, R J; Thomas, J; Trefzger, T M; Watkins, P M; Watson, A; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The Level-1 Calorimeter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce trigger multiplicity and Region-of-Interest (RoI) information. The trigger will also provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purposes by using Readout Driver (ROD) Modules. The CP Modules (CPM) are designed to find isolated electron/photon and hadron/tau clusters in overlapping windows of trigger towers. Each pipelined CPM processes 8-bit data from a total of 128 trigger towers at each LHC crossing. Four full-specification prototypes of CPMs have been built and results of complete tests on individual boards will be presented. These modules were then integrated with other modules to build an ATLAS Level-1 Calorimeter Trigger subsystem test bench. Realtime data were exchanged between modules, and time-slice readout data were tagged and transferr...

  18. Instrumentation of a Level-1 Track Trigger in the ATLAS detector for the High Luminosity LHC

    CERN Document Server

    Boisvert, V; The ATLAS collaboration

    2012-01-01

    One of the main challenges in particle physics experiments at hadron colliders is to build detector systems that can take advantage of the future luminosity increase that will take place during the next decade. More than 200 simultaneous collisions will be recorded in a single event which will make the task to extract the interesting physics signatures harder than ever before. Not all events can be recorded hence a fast trigger system is required to select events that will be stored for further analysis. In the ATLAS experiment at the Large Hadron Collider (LHC) two different architectures for accommodating a level-1 track trigger are being investigated. The tracker has more readout channels than can be readout in time for the trigger decision. Both architectures aim for a data reduction of 10-100 in order to make readout of data possible in time for a level-1 trigger decision. In the first architecture the data reduction is achieved by reading out only parts of the detector seeded by a high rate pre-trigger ...

  19. Operation and Performance of the ATLAS Level-1 Calorimeter and Topological Triggers in Run 2

    CERN Document Server

    Weber, Sebastian Mario; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz within a latency of less than $2.5$ $\\mu\\text{s}$. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In these proceedings, we discuss improved features and performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. A new dynamic pedestal correction algorithm reduces pile-up effects and the use of variable thresholds and isolation criteria for electromagnetic objects allows for opt...

  20. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    CERN Document Server

    Olcese, M; Castiglioni, G; Cereseto, R; Cuneo, S; Dameri, M; Gemme, C; Glitza, K W; Lenzen, G; Mora, F; Netchaeva, P; Ockenfels, W; Piano, E; Pizzorno, C; Puppo, R; Rebora, A; Rossi, L; Thadome, J; Vernocchi, F; Vigeolas, E; Vinci, A

    2004-01-01

    The design of an ultra light structure, the so-called "stave", to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high- dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed.

  1. Application of Cu-polyimide flex circuit and Al-on-glass pitch adapter for the ATLAS SCT barrel hybrid

    CERN Document Server

    Unno, Y; Ikegami, Y; Iwata, Y; Kohriki, T; Kondo, T; Nakano, I; Ohsugi, T; Takashima, R; Tanaka, R; Terada, S; Ujiie, N

    2005-01-01

    We applied the surface build-up Cu-polyimide flex-circuit technology with laser vias to the ATLAS SCT barrel hybrid to be made in one piece from the connector to the electronics sections including cables. The hybrids, reinforced with carbon-carbon substrates, provide mechanical strength, thermal conductivity, low-radiation length, and stability in application-specific integrated circuit (ASIC) operation. By following the design rules, we experienced little trouble in breaking the traces. The pitch adapter between the sensor and the ASICs was made of aluminum traces on glass substrate. We identified that the generation of whiskers around the wire-bonding feet was correlated with the hardness of metallized aluminum. The appropriate hardness has been achieved by keeping the temperature of the glasses as low as room temperature during the metallization. The argon plasma cleaning procedure cleaned the contamination on the gold pads of the hybrids for successful wire bonding, although it was unsuccessful in the alu...

  2. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  3. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni

    2005-01-01

    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  4. Radiation Qualification of Electronics Components used for the ATLAS Level-1 Muon Endcap Trigger System

    CERN Document Server

    Ichimiya, R; Arai, Y; Ikeno, M; Sasaki, O; Ohshita, H; Takada, N; Hane, Y; Hasuko, K; Nomoto, H; Sakamoto, H; Shibuya, K; Takemoto, T; Fukunaga, C; Toshima, K; Sakuma, T; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference

    2004-01-01

    The ATLAS end-cap muon level-1 trigger system is divided into three parts; one off-detector part and two on-detector parts. Application specific IC (ASIC) and anti-fuse FPGA (Field Programmable Gate Array) are actively used in on-detector parts. Data transfer with Low-Voltage Data Signaling serial link (LVDS link) is used between two on-detector parts (15m apart) and G-Link (Hewlett-Packard 1.4Gbaud high speed data link) with optical transmission(90m) is used from one of the on-detector parts to the off-detector part. These components will suffer for ten years the radiation of approximately 200Gy of total ionizing dose (TID) and a hadron fluence of 2x10^10 hadrons/c^m2. We have investigated systematically the radiation susceptibility to both total ionizing dose and single event effects for ASIC, FPGA, and Commercial Off The Shelf (COTS) serializer and deserializer chipsets for LVDS (two candidates) and G-Link (one) together. In this presentation we report the result of irradiation tests for these devices and ...

  5. ATLAS Tile Calorimeter extended barrel side C, assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  6. ATLAS Tile Calorimeter extended barrel Side A assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  7. Installation of the Liquid Argon Calorimater Barrel in the ATLAS Experimental Cavern

    CERN Multimedia

    Vandoni, G.

    On the 27th of October, the Liquid Argon Barrel cryostat was transported from Building 180 to point 1. The next day, the Barrel was lowered into the cavern, and was placed on jacks close to its final position inside the completed lower half of the Tile calorimeter. After a day of precise adjustment, it was resting within a few millimetres of its nominal final position, waiting for the upper half of the Tile calorimeter to be installed. Tight requests had been issued by the Liquid Argon collaboration for the whole transport. It was foreseen that the cryostat should not see any acceleration larger than 0.15g along its axis, 0.08g transversally and 0.3g in the vertical direction. In addition, no acceleration higher than 0.03g (or even 0.003g for permanent oscillation) would be allowed at 20Hz, to avoid the risk of damaging the absorbers at this spontaneous vibration frequency. The difficulty would arise when coping these demands with the tortuous route, its slopes and curbs, vibration transmission from the engi...

  8. Construction of the inner layer barrel drift chambers of the ATLAS muon spectrometer at the LHC

    CERN Document Server

    Livan, M; Barisonzi, M; Bini, C; Calabro, D; Caloi, R; Cambiaghi, M; Capradossi, G; Cavallari, A; Cecconi, V; Ciapetti, G; Daly, C H; De Salvo, A; De Zorzi, G; Di Domenico, A; Di Mattia, A; Ferrari, R; Fraternali, M; Freddi, A; Gaudio, G; Gauzzi, P; Gentile, S; Iannone, M; Iuvino, G; Lacava, F; Lanza, A; Lubatti, H J; Luci, C; Mattei, A; Nardoni, C; Negri, A; Pelosi, A; Piscitelli, C; Pontecorvo, L; Rebuzzi, D; Scagliotti, C; Scannicchio, D A; Valente, P; Vercellati, F; Zanello, L

    2005-01-01

    We have designed and built the facilities to assemble the inner layer of the precision tracking chambers (Monitored Drift Tubes, MDT) for the Muon Spectrometer of the ATLAS Experiment at LHC. This article describes in detail the tooling, the procedures and the quality control equipment used in the chambers assembly. Data are presented from the X-ray tomograph at CERN showing that the required chamber mechanical precision has been achieved.

  9. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  10. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic rays data

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    Cosmic rays collected in 2008, 2009 and 2010 have been used in the ATLAS experiment to test the calibration of the hadronic barrel calorimeter TileCal. Stable results were obtained for the three periods. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First, the average non uniformity of the response of the cells within a layer was estimated to be about 2%. Second, the average response of different layers is found to be not intercalibrated, considering the sources of error. The largest difference between the responses of two layers is 4%. Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -2% and +2%. The sources of uncertainties in the response measurements are strongly correlated and include the uncertainty in the simulation of the muon response. The overall uncertainty in the energy scale is estimated to be 3%.

  11. The First ATLAS Barrel Toroid Coil Successfully Tested in Hall 180

    CERN Multimedia

    Rabbers, J J

    2004-01-01

    The first Barrel Toroid coil has been successfully tested with magnetic mirror at nominal current I=20.5 kA, up to a maximum current Imax=22 kA. After 14 days of cooling down, BT1 reached 4.5 Kelvin and the test program started on September 2nd. First the instrumentation and safety systems of the coil were tested at relatively low operating currents, up to 5 kA. Since all the systems and the coil were performing well, the current was increased by steps in several runs, while monitoring and evaluating the temperatures, voltages and mechanics. On early Wednesday morning September 8th the current was ramped up to 22 kA, shown by the red curve in the picture shown below: Thereafter the current was ramped down by a slow dump, where the stored energy of about 130 MJ is dissipated in a resistor/diode ramp down unit. This is the regular way of ramping down the current, which takes about one hour. Thereafter the current was ramped up to 22 kA for a second time, this time a so-called fast dump was initiated, ...

  12. ATLAS level-1 jet trigger rates and study of the ATLAS discovery potential of the neutral MSSM Higgs bosons in b-jet decay channels

    CERN Document Server

    Mahboubi, Kambiz

    2001-01-01

    The response of the ATLAS calorimeters to electrons, photons and hadrons, in terms of the longitudinal and lateral shower development, is parameterized using the GEANT package and a detailed detector description (DICE). The parameterizations are implemented in the ATLAS Level-1 (LVL1) Calorimeter Trigger fast simulation package which, based on an average detector geometry, simulates the complete chain of the LVL1 calorimeter trigger system. In addition, pile-up effects due to multiple primary interactions are implemented taking into account the shape and time history of the trigger signals. An interface to the fast physics simulation package (ATLFAST) is also developed in order to perform ATLAS physics analysis, including the LVL1 trigger effects, in a consistent way. The simulation tools, the details of the parameterization and the interface are described. The LVL1 jet trigger thresholds corresponding to the current trigger menus are determined within the framework of the fast simulation, and the LVL1 jet tr...

  13. Thermal analysis of the airflow around ATLAS muon barrel in view of the active ventilation conditions

    CERN Document Server

    Vila-Nova-Goncalves, L

    2004-01-01

    A thermal analysis of the airflow around the ATLAS muon detector, taking into consideration the real ventilation state of affairs inside the UX15 cavern and the electronic equipment disseminated in the region of the muon chambers (which leads to the development of temperature gradients in the air surrounding the detector), is presented. Thorough studies on a 2D model of the structure and its variants were elaborated by means of a CFD (Computational Fluid Dynamics) code and the most significant results are shown via the temperature and velocity charts available in the final sections of the current report. The first two sections furnish a synopsis of the structural components and the objectives of the study; the third illustrates the parameters of study and the fourth and fifth sections are devoted to the model and the results of the simulations.

  14. Physics performances with the new ATLAS Level-1 Topological trigger in the LHC High-Luminosity Era

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414333; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger system aim at reducing the 40 MHz protons collision event rate to a manageable event storage rate of 1 kHz, preserving events with valuable physics meaning. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system, with an output rate of 100 kHz and decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. During the last upgrade, a new electronics element was introduced to Level-1: L1Topo, the Topological Processor System. It will make it possible to use detailed realtime information from the Level-1 calorimeter and muon triggers, processed in individual state of the art FPGA processors to determine angles between jets and/or leptons and calculate kinematic variables based on lists of selected/sorted objects. Over hundred VHDL algorithms are producing trigger outputs to be incorporated into the central trigger processor. Such information will be essential to improve background rejection and ...

  15. Simulation of the ATLAS SCT barrel module response to LHC beam loss scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2014-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beam line may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth in the sensors which results in less collected charge. These effects provide a larger measure of safety during beam loss events than ...

  16. Simulation of the ATLAS SCT Barrel Module Response to LHC Beam Loss Scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2013-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth which results in less collected charge. These effects provide a larger measure of safety during beam loss events than we have previous...

  17. The Phase-1 Upgrade of the ATLAS Level-1 Endcap Muon Trigger

    CERN Document Server

    Akatsuka, Shunichi; The ATLAS collaboration

    2017-01-01

    Talk slides for TIPP 2017, on Phase-1 Upgrade of the Level-1 Endcap Muon trigger. The first part of this presentation will describe the hardware and firmware development status of the level-1 Endcap Muon trigger system, especially on the new trigger processor board, New Sector Logic. The second part describes the performance of the new trigger algorithm.

  18. Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2016-01-01

    The Level-1 Data Driver Card (L1DDC) will be designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with a large number of front-end electronics. It collects the Level-1 data along with monitoring data and transmits them to a network interface through a single bidirectional fiber link. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach 1 MHz. This paper describes the overall scheme of the data acquisition process and especially the L1DDC board. Finally, the electronics layout on the chamber is also mentioned

  19. The Phase-1 Upgrade of the ATLAS Level-1 Endcap Muon Trigger

    CERN Document Server

    Akatsuka, Shunichi; The ATLAS collaboration

    2017-01-01

    Proceedings for TIPP 2017, on Phase-1 Upgrade of the Level-1 Endcap Muon trigger. The document describes the requirements, strategy, hardware development/test status and the results on trigger performance study.

  20. Performance of the ATLAS Muon Trigger and Phase-1 Upgrade of Level-1 Endcap Muon Trigger

    CERN Document Server

    Mizukami, Atsushi; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment utilises a trigger system to efficiently record interesting events. It consists of first-level and high-level triggers. The first-level trigger is implemented with custom-built hardware to reduce the event rate from 40 MHz to100 kHz. Then the software-based high-level triggers refine the trigger decisions reducing the output rate down to 1 kHz. Events with muons in the final state are an important signature for many physics topics at the LHC. An efficient trigger on muons and a detailed understanding of its performance are required. Trigger efficiencies are, for example, obtained from the muon decay of Z boson, with a Tag&Probe method, using proton-proton collision data collected in 2016 at a centre-of-mass energy of 13 TeV. The LHC is expected to increase its instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$ after the phase-1 upgrade between 2018-2020. The upgrade of the ATLAS trigger system is mandatory to cope with this high-luminosity. In the phase-1 upgrade, new det...

  1. ATLAS

    CERN Multimedia

    2002-01-01

    Barrel and END-CAP Toroids In order to produce a powerful magnetic field to bend the paths of the muons, the ATLAS detector uses an exceptionally large system of air-core toroids arranged outside the calorimeter volumes. The large volume magnetic field has a wide angular coverage and strengths of up to 4.7tesla. The toroids system contains over 100km of superconducting wire and has a design current of 20 500 amperes. (ATLAS brochure: The Technical Challenges)

  2. The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00235773; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.

  3. The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade

    Science.gov (United States)

    Miller Allbrooke, Benedict Marc; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.

  4. Barrels XXIX: Barrels go Hollywood.

    Science.gov (United States)

    Evans, Mathew H; Brumberg, Joshua C

    2017-03-01

    Barrels XXIX brought together researchers focusing on the rodent barrel cortex and associated systems. The meeting revolved around three themes: thalamocortical interactions in motor control, touch in rodent, monkey, and humans, and the nature of the multisensory computations the brain makes. Over two days these topics were covered as well as many more presentations that focused on the physiology, behavior, and development of the rodent whisker-to-barrel cortex system.

  5. An FPGA based demonstrator for a topological processor in the future ATLAS Level1-Calo trigger

    Energy Technology Data Exchange (ETDEWEB)

    Simioni, Eduard; Ebling, Andreas; Bauss, Bruno; Schaefer, Ulrich; Buescher, Volker; Degele, Reinhold; Ji, Weina; Meyer, Carsten; Moritz, Sebastian; Tapprogge, Stefan; Wenzel, Volker [Universitaet Mainz (Germany)

    2012-07-01

    In 2014 LHC will collide proton bunches at the nominal energy of 14 TeV with an increased luminosity up to 3 x 10{sup 34} cm{sup -2} s{sup -1}. To keep the trigger efficiency high in spite of the increase in event rate, an extra electronics module will be added in the L1-Calo trigger chain: the Topological Processor (TP). With the TP, topological event information currently processed at Level2 will be available within the L1-Calo latency budget. Information on angles between jets and/or leptons can be used to reduce the trigger rates. From a hardware point of view the TP requires fast optical I/O and large bandwidth. This is provided by the most advanced FPGAs on the market (with embedded multi Gb/s transceivers) and multi Gb/s opto converters. These technologies have been implemented into an advancedTCA form factor board, ''GOLD'', as a demonstrator for the ATLAS TP. In this presentation the tests performed on the ''GOLD'' demonstrator are summarized, including a characterization of the high speed links (opto converters and transceivers) and tests of topological algorithms in their firmware incarnation for measuring latency and performance.

  6. The design of a fast Level-1 track trigger for the High Luminosity Upgrade of ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00413032; The ATLAS collaboration

    2016-01-01

    To increase the number of proton-proton collisions the Large Hadron Collider at CERN aims to increase its instantaneuos luminosity to around five times the nominal value for run four, set to begin in 2026. This will force the experiments, including ATLAS, to adapt to the increased event rate which will require substantial hardware upgrades. The current trigger system will not be able to cope with these rates without raised thresholds wich would mean loosing many of the events. To increase the rejection rate without loosing signal efficiency tracking information could be utilized in the first level hardware trigger. This document presents results from simulating a track trigger seeded by regions of interest. It is shown that with this approach we can reach a five times rejection of background events while keeping the single lepton efficiency above 95%. To reduce the amount of track fits needed per event the L1Track trigger is not only seeded by regions of interest corresponding to 10% of the tracking volume, b...

  7. ATLAS Level-1 Topological Trigger : Commissioning and Validation in Run 2

    CERN Document Server

    Aukerman, Andrew Todd; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has recently commissioned a new hardware component of its first-level trigger: the topological processor (L1Topo). This innovative system, using state-of-the-art FPGA processors, selects events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Since the first-level trigger is a synchronous pipelined system, such requirements are applied within a latency of 200ns. We will present the first results from data recorded using the L1Topo trigger; these demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-$P_{T}$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize the performance of this new trigger system. To reach ...

  8. Commissioning and Validation of the ATLAS Level-1 Topological Trigger in Run 2

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for rate reduction with minimal efficiency loss. This improvement has been shown for several physics processes leading to low-$p_T$ leptons, including $H\\rightarrow\\tau \\tau$ and $J/\\psi \\rightarrow \\mu \\mu$. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a pow...

  9. The Development of Global Feature eXtractor (gFEX) – the ATLAS Calorimeter Level 1 Trigger for ATLAS at High Luminosity LHC

    CERN Document Server

    Tang, Shaochun; The ATLAS collaboration; Chen, Hucheng; Chen, Kai

    2017-01-01

    As part of ATLAS Phase-I Upgrade, the gFEX is designed to help maintain the ATLAS Level-1 trigger acceptance rate with the increasing LHC luminosity. The gFEX identifies patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the 40MHz LHC bunch crossing rate. The prototype v1 and v2 were designed and fully tested in 2015 and 2016 respectively. A pre-production gFEX board has been manufactured, which is an ATCA module consisting of three UltraScale+ FPGAs and one ZYNQ UltraScale+, and 35 MiniPODs are implemented in an ATCA module. This board receives coarse-granularity (0.2x0.2) information from the entire ATLAS calorimeters on up to 300 optical fibers and 96 links to the L1Topo at the speed up to 12.8 Gb/s.

  10. Production Test Rig for the ATLAS Level-1 Calorimeter Trigger Digital Processors

    CERN Document Server

    Mahout, Gilles; Andrei, V; Bauss, B; Barnett, B M; Bohm, C; Booth, J R A; Brawn, I P; Charlton, D G; Curtis, C J; Davis, A O; Edwards, J; Eisenhandler, E F; Faulkner, P J W; Föhlisch, F; Gee, C N P; Geweniger, C; Gillman, A R; Hanke, P; Hellman, S; Hidvégi, A; Hillier, S J; Kluge, E E; Landon, M; Mahboubi, K; Meier, K; Perera, V J O; Qian, W; Rieke, S; Rühr, F; Sankey, D P C; Staley, R J; Schäfer, U; Schmitt, K; Schultz-Coulon, H C; Silverstein, S; Stamen, R; Tapprogge, S; Thomas, J P; Trefzger, T; Typaldos, D; Watkins, P M; Watson, A; Weber, P; Woerling, E E

    2007-01-01

    The Level-1 Calorimeter Trigger is a digital pipelined system, reducing the 40 MHz bunch-crossing rate down to 75 kHz. It consists of a Preprocessor, a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce electron/photon, tau, and jet trigger multiplicities, total and missing transverse energies, and Region-of-Interest (RoI) information. Data are read out to the data acquisition (DAQ) system to monitor the trigger by using readout driver modules (ROD). A dedicated backplane has been designed to cope with the demanding requirements of the CP and JEP sub-systems. A number of pre-production boards were manufactured in order to fully populate a crate and test the robustness of the design on a large scale. Dedicated test modules to emulate digitised calorimeter signals have been used. All modules, cables and backplanes on test are final versions for use at the LHC. This test rig represents up to one third of the Level-1 ...

  11. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  12. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T.P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart-Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso-Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Di Girolamo, B; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, C; Drohan, J; Ebenstein, W L; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Idrissi Fakhr-Eddine, A; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Glonti, G; Gottfert, T.; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Hartel, R.; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, J D; Hansen, P H; Hara, K; Harvey, A., Jr; Hawkings, R J; Heinemann, F.E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P.D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K.; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Loureiro, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i Garcia, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E.W J; Munar, A; Myagkov, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitski, S; Pasqualucci, E; Passmore, S M; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P.A.; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Rohne, O.; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C.Santamarina; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S.Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C.J.W P; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoz Unel, M.; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; de Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiesmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  13. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O. K.; Banfi, D.; Baron, S.; Barr, A. J.; Beccherle, R.; Beck, H. P.; Belhorma, B.; Bell, P. J.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H. O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A. I.; Fabich, A.; Facius, K.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B. J.; Gameiro, S.; Gan, K. K.; Garcia, R.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Goettfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.-J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Harvey, A., Jr.; Hawkings, R. J.; Heinemann, F. E. W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J. C.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klingenberg, R.; Klinkby, E. B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.-C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C. G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Loureiro, K. F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Garcia, S. Marti i.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K. W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Moyse, E. W. J.; Munar, A.; Myagkov, A.; Nadtochi, A. V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S. M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Phillips, P. W.; Pilcher, J.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P. A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Timmermans, C. J. W. P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J. A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J. B.; Volpi, M.; Anh, T. Vu; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-04-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  14. Analysis of the discharge of the ATLAS barrel toroid and end cap toroids with different configurations of the protection circuit

    CERN Document Server

    Acerbi, E; Broggi, F; Sorbi, M; Volpini, G

    2001-01-01

    An analysis of the discharge of the barrel toroid and end cap toroids with different protection circuits has been carried out in order to verify the possibility of a new simplified and cheaper configuration of the components of the circuit. In the study also the presence of short circuits has been considered. The comparison of the results and the analysis of the advantages and risks of the different configurations should allow the choice of the best solution for the economy and safety of the toroids. (4 refs).

  15. Development of the detector control system for the ATLAS Level-1 trigger and measurement of the single top production cross section

    CERN Document Server

    Curtis, Christopher J

    This thesis discusses the development of the Detector Control System (DCS) for the ATLAS Level-1 Trigger. Microcontroller code has been developed to read out slow controls data from the Level-1 Calorimeter Trigger modules into the wider DCS. Back-end software has been developed for archiving this data. A Finite State Machine (FSM) has also been developed to offer remote access to the L1 Trigger hardware from the ATLAS Control Room. This Thesis also discusses the discovery potential for electroweak single top production during early running. Using Monte Carlo data some of the major systematics are discussed. A potential upper limit on the production cross section is calculated to be 45.2 pb. If the Standard Model prediction is assumed, a measured signal could potentially have a significance of up to 2.23¾ using 200 pb−1 of data.

  16. Development of the new Trigger Processor Board for the ATLAS Level-1 Endcap Muon Trigger for Run-3

    CERN Document Server

    Mizukami, Atsushi; The ATLAS collaboration

    2017-01-01

    The ATLAS first-level Endcap Muon trigger in LHC Run-3 will identify muons by combining data from the Thin-Gap chamber detector (TGC) and a new detector, called the New-Small-Wheel (NSW). In order to handle data from both TGC and NSW, a new trigger processor board has been developed. The board has a modern FPGA to make use of Multi-Gigabit transceiver technology. The readout system for trigger data has also been implemented with TCP/IP instead of a dedicated ASIC. This letter presents the electronics and its firmware of the ATLAS first-level Endcap Muon trigger processor board for LHC Run-3.

  17. ID Barrel installed in cryostat

    CERN Multimedia

    Apsimon, R.; Romaniouk, A.

    Wednesday 23rd August was a memorable day for the Inner Detector community as they witnessed the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the outer two detectors (TRT and SCT) of the ID barrel were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Accelerometers were fitted to the barrel to provide real-time monitoring and no values greater than 0.1 g were recorded, fully satisfying the transport specification for this extremely precise and fragile detector. Muriel, despite her fear of heights, bravely volunteered to keep a close eye on the detector. Swapping cranes to cross the entire parking lot, while Mur...

  18. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic-ray muon data

    CERN Document Server

    Weng, Z

    2012-01-01

    The ATLAS iron-scintillator hadronic calorimeter (TileCal) provides precision measurements of jets and missing transverse energy produced in the LHC proton-proton collisions. Results assessing the calorimeter calibration obtained using cosmic ray muons collected in 2008, 2009 and 2010 are presented. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First the average non-uniformity of the response of the cells within a layer was estimated to be about ±2% . Second, the average response of different layers is found to be not inter-calibrated, considering the sources of error. The largest difference between the responses of two layers is ±4% . Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -3% and +1%. The sources of uncertainties in the response measurements are strongly correlated, including the uncertainty in the simulation. The tot...

  19. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic rays data

    CERN Document Server

    Weng, Z; The ATLAS collaboration

    2011-01-01

    The ATLAS iron-scintillator hadronic calorimeter (TileCal) provides precision measurements of jets and missing transverse energy produced in the LHC proton-proton collisions. Results assessing the calorimeter calibration obtained using cosmic ray muons collected in 2008, 2009 and 2010 are presented. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First the average non-uniformity of the response of the cells within a layer was estimated to be about ±2%. Second, the average response of different layers is found to be not inter-calibrated, considering the sources of error. The largest difference between the responses of two layers is 4%. Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -3% and +1%. The sources of uncertainties in the response measurements are strongly correlated, and include the uncertainty in the simulation of the muo...

  20. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  1. Response and Shower Topology of 2 to 180 GeV Pions Measured with the ATLAS Barrel Calorimeter at the CERN Test-beam and Comparison to Monte Carlo Simulations

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, G; Drohan, J; Ebenstein, W L; Eerola, P; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Di Girolamo, B; Glonti, G; Goettfert, T; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Haertel, R; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, D J; Hansen, P H; Hara, K; Harvey Jr, A; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Le Bihan, A C; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Latorre, S; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i García, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Miagkov, A; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmore, M S; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Rohne, O; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; De Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2010-01-01

    The response of the ATLAS barrel calorimeter to pions with momenta from $2$ to $180$~GeV~ is studied in a test--beam at the CERN H8 beam line. %Various methods to reconstruct the deposited pion energies are studied. The mean energy, the energy resolution and the longitudinal and radial shower profiles, and, various observables characterising the shower topology in the calorimeter are measured. The data are compared to Monte Carlo simulations based on a detailed description of the experimental set--up and on various models describing the interaction of particles with matter based on Geant4.

  2. Development of the jet Feature EXtractor (jFEX) for the ATLAS Level 1 Calorimeter Trigger Upgrade at the LHC

    CERN Document Server

    Bauss, Bruno; The ATLAS collaboration; Buescher, Volker

    2017-01-01

    To cope with the enhanced luminosity delivered by the Large Hadron Collider from 2021 onwards, the ATLAS experiment has planned several upgrades. The first level trigger based on calorimeter data will be upgraded to exploit fine-granularity readout using a new system of Feature EXtractors (FEXs, FPGA-based trigger boards), each optimized to trigger on different physics objects. This contribution is focused on the jet FEX. The main challenges of such a board are the input bandwidth of up to 3.1 Tbps, dense routing of high-speed signals and power consumption. The design, PCB simulations and results of integrated tests of a prototype are shown in this document.

  3. Level-1 Data Driver Card of the ATLAS New Small Wheel Upgrade Compatible with the Phase II 1 MHz Readout Scheme

    CERN Document Server

    AUTHOR|(SzGeCERN)756498; The ATLAS collaboration

    2016-01-01

    The Level-1 Data Driver Card (L1DDC) will be fabricated for the needs of the future upgrades of the ATLAS experiment at CERN. Specifically, these upgrades will be performed in the innermost stations of the muon spectrometer end-caps. The L1DDC is a high speed aggregator board capable of communicating with a large number of front-end electronics. It collects the Level-1 along with monitoring data and transmits them to a network interface through a single bidirectional fiber link. Finally, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with phase II upgrade where the trigger rate is 1 MHz. This paper describes the overall scheme of the data acquisition process and especially the L1DDC board for the upgrade of the New Small Wheel. Finally, the electronics layout on the chamber is also mentioned.

  4. Irradiation tests of ROHM 0.35um ASIC and Actel Anti-fuse FPGA for the ATLAS Muon Endcap Level-1 Trigger System

    CERN Document Server

    Ichimiya, R; Arai, Y; Ikeno, M; Sasaki, O; Ohshita, H; Takada, N; Hane, Y; Hasuko, K; Nomoto, H; Sakamoto, H; Shibuya, K; Takemoto, T; Fukunaga, C; Toshima, K; Sakuma, T; 10th Workshop on Electronics for LHC and Future Experiments

    2004-01-01

    In order to implement a level-1 trigger logic in an efficient manner from timing and space consumption point of view, application specific IC chips (ASIC) as well as FPGA ones are vitally used in the ATLAS muon end-cap level-1 trigger system. Various subsidiary logics are implemented in FPGAs while the core trigger logic is implemented in ASICs. These components will suffer for ten years the radiation of approximately 100Gy of total ionizing dose (TID) and a hadron fluence of 2x10^10hadrons/cm^2, which will cause single event upset (SEU) or single event latch up (SEL). We intend to use Rohm 0.35um gate width CMOS technology for ASIC and Actel anti-fuse based FPGA. In this presentation we report the result of irradiation test of devices made with these technologies and discuss validity of them to use in the system.

  5. Level-1 Data Driver Card of the ATLAS New Small Wheel upgrade compatible with the Phase II 1 MHz readout scheme

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00549793; The ATLAS collaboration

    2016-01-01

    The Level-1 Data Driver Card (L1DDC) will be designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with a large number of front-end electronics. It collects the Level-1 data along with monitoring data and transmits them to a network interface through a single bidirectional fiber link. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach 1 MHz. This paper describes the overall scheme of the data acquisition process and especially the three different L1DDC boards that will be fabricated. Moreover the L1DDC prototype-1 is also described.

  6. The design and simulated performance of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    Martensson, Mikael; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the High Luminosity LHC will face a fivefold increase in the number of interactions per bunch crossing relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper trigger turn-on curves can be achieved, and b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, custom electronic device integrated in the hardware based first trigger level of the experiment. This article will discuss the requirements, architecture and projected performance of the system in terms of tracking, timing and physics, based on detailed simulations. Studies are carried out using data from the strip subsystem only or both strip and pixel subsystems.

  7. The design and simulated performance of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    Science.gov (United States)

    Mårtensson, Mikael

    2017-08-01

    The ATLAS experiment at the High Luminosity LHC will face a fivefold increase in the number of interactions per bunch crossing relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper trigger turn-on curves can be achieved, and b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, custom electronic device integrated in the hardware based first trigger level of the experiment. This article will discuss the requirements, architecture and projected performance of the system in terms of tracking, timing and physics, based on detailed simulations. Studies are carried out using data from the strip subsystem only or both strip and pixel subsystems.

  8. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  9. Barrels XXIII: Barrels by the shore.

    Science.gov (United States)

    Zhang, Wanying; Brumberg, Joshua C

    2011-01-01

    The 23rd annual Barrels meeting was held on the University of California, San Diego campus and highlighted the latest advances in the whisker-to-barrel pathway and beyond. The annual meeting brought together investigators from a dozen countries to present their data in posters and short talks. The meeting focused on several themes, first the barrel system was used as a model to study the consequences that result from alterations in the normal pattern(s) of development. A second session focused on what happens to whisker information once it leaves the layer IV barrel. A third session addressed issues of coding within the barrel system and a final session highlighted the latest advances in the engineering of transgenic mouse lines. The meeting highlighted the utility of the barrel system to study cortical circuitry in the normal and pathological state.

  10. The design and simulated performance of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    Martensson, Mikael; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper trigger turn-on curves can be achieved, and b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy. This talk will discuss the requirements, architecture and projected performance of the system in terms of tracking, timing and physics, based on detailed simulations. Studies are carried out comparing two detector geometries and using...

  11. RPCs as trigger detector for the ATLAS experiment performances, simulation and application to the level-1 di-muon trigger

    CERN Document Server

    Di Simone, A; Di Ciaccio, A

    2005-01-01

    In the muon spectrometer different detectors are used to provide trigger functionality and precision momentum measurements. In the pseudorapidity range |eta|<1 the first level muon trigger is based on Resistive Plate Chambers, gas ionization detectors which are characterized by a fast response and an excellent time resolution (<1.5ns). The working principles of the Resistive Plate Chambers will be illustrated in chapter 3. Given the long time of operation expected for the ATLAS experiment (~10 years), ageing phenomena have been carefully studied, in order to ensure stable long-term operation of all the subdetectors. Concerning Resistive Plate Chambers, a very extensive ageing test has been performed at CERN's Gamma Irradiation Facility on three production chambers. The results of this test are presented in chapter 4. One of the most commonly used gases in RPCs operation is C2H2F4, which during the gas discharge can produce fluorine ions. Being F one of the most aggressive elements in nature, the presenc...

  12. The ATLAS LAr Calorimeter Level 1 Trigger Signal pre-Processing System: Installation, Commissioning and Calibration Results.

    CERN Document Server

    Boulahouache, C; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The calorimeter information is a key ingredient in the first level (L1) trigger decision to reduce the 40 MHz p-p bunch crossing rate to few 100 kHz of accepted events waiting to be readout in full precision, in the system pipelines. This presentation covers the LAr calorimeter electronics used to prepare signals for the L1 trigger. After exiting the cryostat, part of the current signal, at the front end, is directly split off the main readout path and summed with neighbouring channels forming trigger towers which are transmitted in analog form over 50 to 70 meters to the counting room. There, the signals are calibrated, reordered and futher summed for fast digitization using the L1 trigger hardware. Many factors like calorimeter capacitances and pulse shapes have to be taken into accoun...

  13. First SCT Barrel arrives at CERN

    CERN Multimedia

    Apsimon, R

    Mid-January saw the arrival at CERN of Barrel #3, the first of four SCT barrels. The barrels are formed as low-mass cylinders of carbon fibre skins on a honeycomb carbon core. They are manufactured in industry and then have all the final precision supports added and the final geometric metrology carried out at Geneva University. Barrel #3, complete with its 384 silicon detector modules, arrived by road from Oxford University in England where the modules were mounted using a purpose-built robot. The modules had been selected from the output of all four barrel module building clusters (in Japan, Scandinavia, USA and the UK). Since Barrel #3 will be exposed to high radiation levels within the tracker volume, these modules, representing over half a million readout channels, have been extensively tested at their operational temperature of around -25 degrees Celcius and at voltages of up to 500V. The dangers of shipping such a fragile component of ATLAS were apparent to all and considerable attention was focused...

  14. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  15. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  16. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  17. Celebrating the Barrel Toroid commissioning

    CERN Multimedia

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  18. Barrels by the sea: Barrels XX meeting report.

    Science.gov (United States)

    Ramos, Raddy L; Brumberg, Joshua C

    2008-03-01

    The 20th annual Barrels meeting brought together researchers who utilize behavioral, physiological, anatomical, and molecular techniques to understand the structure and function of the barrel system. Barrels XX featured talks on the role inhibition has in shaping cortical responses within the barrel system, the molecular cues that influence the development of the whisker-to-barrel system, and the synaptic plasticity that can shape responses within the system. The meeting highlighted why the whisker-to-barrel system is an ideal model to investigate the development of cortical circuitry and how its functioning can influence behavioral responses.

  19. TRT Barrel milestones passed

    CERN Multimedia

    Ogren, H

    2004-01-01

    The barrel TRT detector passed three significant milestones this spring. The Barrel Support Structure (BSS) was completed and moved to the SR-1 building on February 24th. On March 12th the first module passed the quality assurance testing in Building 154 and was transported to the assembly site in the SR-1 building for barrel assembly. Then on April 21st the final production module that had been scanned at Hampton University was shipped to CERN. TRT Barrel Module Production The production of the full complement of barrel modules (96 plus 9 total spares) is now complete. This has been a five-year effort by Duke University, Hampton University, and Indiana University. Actual construction of the modules in the United States was completed in the first part of 2004. The production crews at each of the sites in the United States have now completed their missions. They are shown in the following pictures. Duke University: Production crew with the final completed module. Indiana University: Module producti...

  20. Barrelled locally convex spaces

    CERN Document Server

    Pérez Carreras, P

    1987-01-01

    This book is a systematic treatment of barrelled spaces, and of structures in which barrelledness conditions are significant. It is a fairly self-contained study of the structural theory of those spaces, concentrating on the basic phenomena in the theory, and presenting a variety of functional-analytic techniques.Beginning with some basic and important results in different branches of Analysis, the volume deals with Baire spaces, presents a variety of techniques, and gives the necessary definitions, exploring conditions on discs to ensure that they are absorbed by the barrels of the sp

  1. The MDT Barrel Organ

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    Have you ever looked for an interesting use for the spare detector parts once the construction phase was finished? Henk Tiecke, with the help of Oscar van Petten and Marco Kraan, all from NIKHEF, came up with a great idea for leftover MDT tubes. They simply built a pipe organ! See the MDT Barrel Organ in action, as recorded during a party thrown on the occasion of the first shipment of MDT chambers from NIKHEF to CERN. Want to know more about the organ? Please contact Henk Tiecke. Henk Tiecke playing the MDT Barrel Organ.

  2. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  3. ATLAS starts moving in

    CERN Multimedia

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1 March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day.

  4. Search for a High Mass Higgs Boson in the Channel H - ZZ - llbb and digital filtering for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Hadley, David Richard; Thompson, Paul

    The Standard Model of particle physics predicts the existence of a new massive state: the Higgs Boson. The discovery or exclusion of this particle is one of the main goals of the ATLAS experiment. One of the greatest experimental challenges at the LHC is to achieve efficient triggering. The ATLAS rst level calorimeter trigger uses reduced granularity information from the calorimeters to search for high ET e, y,t and jets as well as identifying high Emiss T and total ET events. A Finite Impulse Response (FIR) lter combined with a peak nder is applied to identify signals, determine their correct bunch-crossing and improve the energy measurement. A study to determine the optimum lter coecients is presented. The performance of these lters is investigated with commissioning data and cross-checks of the calibration with initial beam data are shown. In this thesis a study of the search sensitivity in the channel H - ZZ - llbb is presented. This channel can contribute to the Higgs search in the high mass region tha...

  5. Construction and tests of the Atlas barrel pre sampler and study of the photon/pion rejection in the electromagnetic calorimeter; Realisation du pre-echantillonneur central d'ATLAS et etude de la separation {gamma}/{pi}{sup 0} dans le calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Saboumazrag, S

    2004-02-01

    ATLAS is one of the detectors which will equip the future proton-proton collider LHC at CERN. The main motivation for the ATLAS experiment is the quest for the Higgs boson. The observation of this particle would be an important step in the understanding of particle physics in the context of the standard model, with or without supersymmetry. This thesis aims to present the construction of the barrel pre-sampler which will equip the front face of the ATLAS electromagnetic calorimeter. The construction and tests of sectors were achieved at the Laboratory of Subatomic Physics and Cosmology of Grenoble. Two of these sectors were mounted on one module of the electromagnetic calorimeter and tested with electron, photon and muon beams at CERN. I participated in these tests and analysed the data. The results were compared to a Monte-Carlo simulation GEANT3. One of the difficulties lies in the necessity to discard photons coming from {pi}{sup 0} {yields} {gamma}{gamma} events because they can be mistaken for photons released in gamma channels of Higgs boson decay. In the mass range spreading from 95 MeV to 150 MeV, H{sup 0} {yields} {gamma}{gamma} is the most adequate process to detect the Higgs boson. A study of the discard parameter {gamma}/{pi}{sup 0} has been performed. For a photon detection efficiency of 90%, the average discard parameter has been assessed to be 2.5 which is slightly lower than the value given by the simulation.

  6. LEAR Crystal Barrel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Braune, K.; Keh, S.; Montanet, L.; Zoll, J.; Beckmann, R.; Friedrich, J.; Heinsius, H.; Kiel, T.; Lewendel, B.; Pegel, C.; and others

    1988-11-20

    The features of the Crystal Barrel Detector which is in preparation for LEAR at CERN, are discussed. The physics aims include q-barq- and exotics-spectroscopy and a detailed investigation of yet unknown p-barp-anihilation channels. An eventual later use on the PSI-B-Meson-Factory is discussed. The paper finishes with a description of the present status of the project.

  7. ATLAS detector records its first curved muon

    CERN Multimedia

    2007-01-01

    The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet. This was an important test of the chambers in their final configurations, and marked the first triggering and measurement of curved cosmic ray muons in ATLAS.

  8. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  9. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  10. First ATLAS Barrel Toroid Coil Passes Test

    CERN Multimedia

    2004-01-01

    First they secured anything magnetic: metal tools, nuts and bolts, tables. Then they cleared the magnet assembly building, as big as an airplane hangar, and locked it tight. Before turning on the magnet for its maiden test, they waited till the dead of night so no one else would be around.

  11. Wheels lining up for ATLAS

    CERN Document Server

    2003-01-01

    On 30 October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It is the second wheel for the Tilecal completely assembled this year.

  12. Cosmic Ray Data in TRT Barrel

    CERN Multimedia

    M. Hance

    "I had a great day in August when I went into SR1," said Daniel Froidevaux, former project leader of the ATLAS Transition Radiation Tracker, "not only had all SCT barrels arrived at CERN, but there were cosmic ray tracks seen in the TRT!" Daniel's excitement was mirrored by the rest of the TRT collaboration when, on July 29, the first cosmic ray tracks were seen in the barrel. Along with many others in the community, Daniel was quick to point out that this is the cumulative result of years of R&D, test beam work, and an intense installation and integration schedule. Indeed, the cosmic ray readout is only possible through the coordination of many efforts, from detector mechanics to module assembly, power and high voltage control, cooling, gas systems, electronics and cabling, data acquisition, and monitoring. "Many people have worked very hard on the the TRT, some of them for more than 10 years," said Brig Williams, the leader of the UPenn group responsible for much of the TRT front end electronics. He ...

  13. Barrels come of age: Barrels XXI meeting report.

    Science.gov (United States)

    Chen, Chia-Chien; Steger, Robert; Brumberg, Joshua C

    2009-03-01

    The twenty-first annual Barrels meeting, sponsored by NINDS, was held on 12-14 November 2008 on the campus of Johns Hopkins University, near the site of the original discovery of barrels almost 40 years ago. The longest running satellite meeting to the Society for Neuroscience Annual Meeting focuses on the development, physiology, and behavior of the rodent whisker-to-barrel sensorimotor system. This year's event focused on what aspects of the sensory world are encoded by neurons within the system and how specifically the posterior medial nucleus can play a role in information processing. Other highlighted topics included the possible role(s) the cerebellum may have and the cues governing the patterning and development of thalamocortical inputs into the barrel cortex.

  14. The PANDA Barrel DIRC

    Science.gov (United States)

    Dzhygadlo, R.; Schwarz, C.; Belias, A.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2016-05-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. Experiments concerning charmonium spectroscopy, the search for hybrids and glueballs and the interaction of hidden and open charm particles with nucleons and nuclei will be performed with antiproton beams impinging on hydrogen or nuclear targets. Cooled beams allow the precision scan of resonances in formation experiments. The momentum range of the antiproton beam between 1.5 GeV/c and 15 GeV/c tests predictions by perturbation theory and will reveal deviations originating from strong QCD . An excellent hadronic particle identification will be accomplished by DIRC (Detection of Internally Reflected Cherenkov light) counters. The design for the barrel region is based on the successful BaBar DIRC with several key improvements, such as fast photon timing and a compact imaging region. DIRC designs based on different radiator geometries with several focusing options were studied in simulation. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN.

  15. Barrels XXVII meeting report: Barrels in the monument city.

    Science.gov (United States)

    Bajnath, Adesh; Chu, Philip; Steger, Robert; Brumberg, Joshua C

    2015-01-01

    The 27th annual Barrels meeting highlighted the latest advances in this rapidly growing field. The Barrels meeting annually focuses on the role of the posterior medial thalamus in somatosensation, dendritic processing, and the cortical dynamics involved during touch perception. Speakers utilized diverse molecular, physiological, computational techniques to understand the development, sensory processing, and motor commands that are involved with the rodent mystacial vibrissae. The meeting was held Thursday, 13 November through Friday, 14 November 2014 on the Homewood campus of Johns Hopkins University, Baltimore, MD.

  16. An ocean full of BARRELS: Barrels XXVI meeting report.

    Science.gov (United States)

    Chu, Philip; Chen, Chia-Chien; Brumberg, Joshua C

    2014-06-01

    The 26th annual Barrels meeting was convened on the campus of the University of California San Diego, not far from the shores of the Pacific Ocean. The meeting focused on three main themes: the structure and function of the thalamic reticular nucleus, the neurovasculature system and its role in brain metabolism, and the origins and functions of cortical GABAergic interneurons. In addition to the major themes, there were short talks, a data blitz, and a poster session which highlighted the diversity and quality of the research ongoing in the rodent whisker-to-barrel system.

  17. Calibration of the electromagnetic barrel calorimeter. Identification of the tau leptons and search for a Higgs boson in the channel qqH {yields} qq {tau}{tau} in the Atlas experiment at LHC; Etalonnage du calorimetre electromagnetique tonneau. Identification des leptons taus et recherche d'un boson de Higgs dans le canal qqH {yields} qq {tau}{tau} dans l'experience ATLAS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tarrade, F

    2006-09-15

    The Standard Model is the theory which describes the fundamental interactions most accurately. However, the Higgs mechanism and its associated boson have not yet been discovered. The ATLAS electromagnetic calorimeter will play an important role in its discovery if it exists. In the first part of this work, a final mapping of all barrel electromagnetic calorimeter cells, and in particular the problematic ones, was made. Then, the code for the calorimeter calibration was migrated into the ATLAS software environment (ATHENA), where it was tested and validated with the 2004 test beam data. In this code, the optimal filtering coefficients, which enable to reconstruct the energy deposited in the calorimeter while minimizing the electronic and pile-up noises, are calculated. For this, a model was developed to predict the physics signal waveform from the calibration waveform. In a third part, two algorithms for reconstructing and identifying {tau} leptons in their hadronic decay mode were studied and compared. Finally in a fourth part, one amongst the most important Standard Model Higgs production and decay channels was investigated, namely the weak boson fusion production followed by the Higgs decay into a tau lepton pair, for a low mass Higgs (115 < m{sub Higgs} < 145 GeV/c{sup 2}). This study was performed for 30 fb{sup -1} of integrated luminosity using fast and fully simulated data. A study of the dominant background Z + n jets (n {<=} 5) was also performed. (author)

  18. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  19. ATLAS rewards two Japanese suppliers of major detector components.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ATLAS supplier award in recognition of excellence has just been attributed to Kawasaki Heavy Industries, who produced the liquid-argon barrel cryostat. Kawasaki received its award in Hall 189 on the Meyrin site, where the cryostat is currently located. Toshiba Corporation's award for the superconducting central solenoid was presented two months ago at the Toshiba headquarters in Japan. Photo 01: P. Pailler, project leader for the ATLAS liquid-argon cryostats, addressing the Kawasaki delegation. Photo 04: H. Oberlack, project leader for the ATLAS liquid-argon system, addressing the Kawasaki delegation. Photo 11: P. Jenni (left), ATLAS Collaboration spokesperson, presenting the ATLAS supplier award for the barrel cryostat for the liquid-argon calorimeter to Mr. S. Nose, General Manager of Kawasaki Heavy Industries Ltd. Photo 18: J. Sondericker (left), liquid-argon barrel cryostat project engineer (BNL), presenting Mr. Nose (Kawasaki) an award from Brookhaven for the barrel cryostat for the ATLAS liquid-argo...

  20. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  1. The CMS tracker outer barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Final preparations are made to the CMS tracker outer barrel (TOB), ready for insertion in the tracker support tube. The TOB consists of 688 rods containing a total of 5208 silicon detector modules. The silicon tracker will measure the paths of particles produced in the proton-proton collisions at the CMS detector as they travel in the detector's magnetic field.

  2. Completion of the TRT Barrel

    CERN Multimedia

    Gagnon, P

    On February 3, the US-TRT team proudly completed the installation of the 96th barrel TRT module on its support structure in the SR building at CERN. This happy event came after many years of R&D initiated in the nineties by the TA1 team at CERN, followed by the construction of the modules in three American institutes (Duke, Hampton and Indiana Universities) from 1996 to 2003. In total, the 96 barrel modules contain 52544 kapton straws, each 4 mm in diameter and strung with a 30 micron gold-plated tungsten wire. Each wire was manually inserted, a feat in itself! The inner layer modules contain 329 straws, the middle layer modules have 520 straws and the outer layer, 793 straws. Thirty- two modules of each type form a full layer. Their special geometry was designed such as to leave no dead region. On average, a particle will cross 36 straws. Kirill Egorov, Chuck Mahlon and John Callahan inserted the last module in the Barrel Support Structure. After completion in the US, all modules were transferred...

  3. ATLAS Award for Difficult Task

    CERN Multimedia

    2004-01-01

    Two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week. On 23 March the Russian company ORPE Technologiya and its subcontractor, RSP Khrunitchev, were jointly presented with an ATLAS Supplier Award. Since 1998, ORPE Technologiya has been actively involved in the development of the carbon-fibre reinforced plastic elements of the ATLAS Inner Detector barrel support structure. After three years of joint research and development, CERN and ORPE Technologiya launched the manufacturing contract. It had a tight delivery schedule and very demanding specifications in terms of mechanical tolerance and stability. The contract was successfully completed with the arrival of the last element of the structure at CERN on 8 January 2004. The delivery of this key component of the Inner Detector deserves an ATLAS Award given the difficulty of manufacturing the end-frames, which very few companies in the world would have been able to do at an ...

  4. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  5. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  6. Data analysis at Level-1 Trigger level

    CERN Document Server

    Wittmann, Johannes; Aradi, Gregor; Bergauer, Herbert; Jeitler, Manfred; Wulz, Claudia; Apanasevich, Leonard; Winer, Brian; Puigh, Darren Michael

    2017-01-01

    With ever increasing luminosity at the LHC, optimum online data selection is getting more and more important. While in the case of some experiments (LHCb and ALICE) this task is being completely transferred to computer farms, the others - ATLAS and CMS - will not be able to do this in the medium-term future for technological, detector-related reasons. Therefore, these experiments pursue the complementary approach of migrating more and more of the offline and High-Level Trigger intelligence into the trigger electronics. This paper illustrates how the Level-1 Trigger of the CMS experiment and in particular its concluding stage, the Global Trigger, take up this challenge.

  7. TRT and SCT barrels merge

    CERN Multimedia

    Wells, P S

    2006-01-01

    The SCT barrel was inserted in the TRT on 17 February, just missing Valentine's day. This was a change of emphasis for the two detectors. In the preceeding months there had been a lot of focus on testing their performance. The TRT had been observing cosmic rays through several sectors of the barrel, and all the modules on each of the four layers of the SCT had been characterised prior to integration. In parallel, the engineering teams, lead by Marco Olcese, Andrea Catinaccio, Eric Perrin, Neil Dixon, Iourii Gusakov, Gerard Barbier and Takashi Kohriki, had been preparing for this critical operation. Figure 1: Neil Dixon and Marco Olcese verifying the final alignment The two detectors had to be painstakingly aligned to be concentric to within a millimetre. The SCT was held on a temporary cantilever stand, and the TRT in the ID trolley had to inch over it. Finally the weight of the SCT was transferred to the rails on the inside of the TRT itself. The SCT services actually protruded a little outside the oute...

  8. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  9. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  10. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  11. Prototyping the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, C., E-mail: C.Schwarz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  12. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  13. CALIFA Barrel prototype detector characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Pietras, B., E-mail: benjamin.pietras@usc.es [Universidade de Santiago de Compostela, E-15782 (Spain); Gascón, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. Berkeley, CA 94701 (United States); Álvarez-Pol, H. [Universidade de Santiago de Compostela, E-15782 (Spain); Bendel, M. [Technische Universität München, 80333 (Germany); Bloch, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Casarejos, E. [Universidade de Vigo, E-36310 (Spain); Cortina-Gil, D.; Durán, I. [Universidade de Santiago de Compostela, E-15782 (Spain); Fiori, E. [Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Gernhäuser, R. [Technische Universität München, 80333 (Germany); González, D. [Universidade de Santiago de Compostela, E-15782 (Spain); Kröll, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Le Bleis, T. [Technische Universität München, 80333 (Germany); Montes, N. [Universidade de Santiago de Compostela, E-15782 (Spain); Nácher, E. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Robles, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Perea, A. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Vilán, J.A. [Universidade de Vigo, E-36310 (Spain); Winkel, M. [Technische Universität München, 80333 (Germany)

    2013-11-21

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R{sup 3}B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator – photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma–ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations. -- Highlights: •Prototypes corresponding to different sections of the forthcoming CALIFA Barrel calorimeter were tested. •The response to both high energy gamma rays and high energy protons was observed. •This response was reproduced by use of R3BROOT simulations, the geometry extrapolated to predict performance of the complete calorimeter. •Effects such as energy straggling of wrapping

  14. ATLAS TV PROJECT

    CERN Multimedia

    OMNI communication

    2005-01-01

    CAMERA ON TOROID The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The video is about the slow lowering of the toroid down to the cavern of ATLAS. It is very demanding task. The camera is placed on top of the toroid.

  15. ATLAS starts moving in

    CERN Multimedia

    Della Mussia, S

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1st March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day. Two road trailers each with 64 wheels, positioned side by side. This was the solution chosen to transport the lower part of the central barrel of ATLAS' tile hadronic calorimeter from Building 185 to the PX16 shaft at Point 1 (see Figure 1). The transportation, and then the installation of the component in the experimental cavern, which took place over three days were, to say the least, rather spectacular. On 25 February, the component, consisting of eight 6-metre modules, was loaded on to the trailers. The segment of the barrel was transported on a steel support so that it wouldn't move an inch during the journey. On 26 February, once all the necessary safety checks had been carried out, the convoy was able to leave Buildi...

  16. Resource Review Board Celebrates the Magnet and Liquid Argon Barrel Tests in Hall 180

    CERN Multimedia

    Jenni, P.

    2004-01-01

    Address by the Director-General, R. Aymar, in front of the barrel cryostat. On 25th October 2004 many RRB delegates and guests, ATLAS National Contact Physicists, and colleagues from far and from CERN working on the Liquid Argon calorimeter and the magnet system were gathering in Hall 180 to celebrate the major milestones reached during the past months in this hall: the successful cold tests of the first barrel toroid coil, of the solenoid, and of the barrel Liquid Argon calorimeter. About 250 people spent a relaxing evening after the speeches by the Director-General R. Aymar and by the spokesperson who gave the following address: 'It is a great pleasure for me to welcome you all here in Hall 180 in the name of the ATLAS Collaboration! With a few words I would like to recall why we are actually here today to share, what I hope, is a relaxed and joyful moment. To concentrate it all in one sentence I could say: To thank cordially all the main actors for the enormous work accomplished here over many years,...

  17. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  18. Clean tracks for ATLAS

    CERN Multimedia

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  19. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  20. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  1. Results from ATLAS Calorimeter Combined Test Beam

    CERN Document Server

    Tarrade, F

    2007-01-01

    Beam tests of combinations of ATLAS calorimeters have been performed both for the barrel and end cap parts. During a combined test beam in summer 2004 a slice of the ATLAS barrel detector - including all detector sub systems from the inner tracker, the calorimetry to the muon system - was exposed to particle beams (electrons, pions, photons, muons) with different energies (1GeV to 350GeV). The aim was to study the combined performance of the different detector sub systems in ATLAS-like conditions. We will present the electronics calibration scheme of the electromagnetic calorimeter and its implementation. The following studies on the combined testbeam data have been performed and will be presented: performance of the electromagnetic calorimetry down to very low energies (> GeV), photon reconstruction including converted photons and position measurements using the very precise ATLAS tracker and the electromagnetic calorimeter. These measurements have been compared to Monte Carlo simulations showing the good de...

  2. Significant genetic differentiation among meroplanktonic barrel ...

    African Journals Online (AJOL)

    ... in the barrel jellyfish investigated could be attributed to either intrinsic and/or extrinsic barriers to genetic exchange between different populations that may have adapted to different environmental conditions. Keywords: haplotype variation, mtDNA COI gene, northern Adriatic, phylogeography, true jellyfish, Tunisian waters, ...

  3. DELPHI Barrel Ring Imaging Cherenkov Detector

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. This is a piece of the Barrel Ring Imaging Cherenkov detector which was used to identify particles in DELPHI.It measured the Cherenkov light emitted when particles travelled faster than the speed of light through the material of the detector. The photo shows the complete Cherenkov detector.

  4. Adapting to Pork-Barrel Science.

    Science.gov (United States)

    Walsh, John

    1987-01-01

    Discusses the increasing trend toward the pork-barrel funding of science projects, particularly for grants to academic institutions. Addresses the new strategies being employed by opponents of such funding. Describes some of the possible ramifications of the various strategies and the perceived link between science funding and economic growth. (TW)

  5. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  6. Progress on the Level-1 Calorimeter Trigger

    CERN Multimedia

    Eric Eisenhandler

    The Level-1 Calorimeter Trigger (L1Calo) has recently passed a number of major hurdles. The various electronic modules that make up the trigger are either in full production or are about to be, and preparations in the ATLAS pit are well advanced. L1Calo has three main subsystems. The PreProcessor converts analogue calorimeter signals to digital, associates the rather broad trigger pulses with the correct proton-proton bunch crossing, and does a final calibration in transverse energy before sending digital data streams to the two algorithmic trigger processors. The Cluster Processor identifies and counts electrons, photons and taus, and the Jet/Energy-sum Processor looks for jets and also sums missing and total transverse energy. Readout drivers allow the performance of the trigger to be monitored online and offline, and also send region-of-interest information to the Level-2 Trigger. The PreProcessor (Heidelberg) is the L1Calo subsystem with the largest number of electronic modules (124), and most of its fu...

  7. Expected performance of the ATLAS Inner Tracker

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2016-01-01

    These slides present the expected tracking performance of the ATLAS Inner Tracker, based on the latest available public results (scoping document). More recent layout designs currently under consideration are also shown. The extended inner pixel barrel concept is discussed in more detail, along with test beam results demonstrating the proof-of-principle.

  8. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  9. ATLAS recognises its best suppliers

    CERN Multimedia

    Jenni, P

    The ATLAS Collaboration has recently rewarded two of its suppliers in the construction of very major detector components, fabricated in Japan. The ATLAS Supplier Award in recognition of excellent supplier performance was attributed on 2nd September 2002 during a ceremony in Hall 180 to Kawasaki Heavy Industries, while Toshiba Corporation received the award two months before at their headquarters in Japan. The ATLAS experiment will become a reality thanks to a large international collaboration partnership. The industrial suppliers for the components all over the world play a major role in the construction of this gigantic jigsaw for the LHC. And sometimes they perform so well, that their work deserves specially to be recognised. This is the case for Kawasaki Heavy Industries and Toshiba Corporation, producers of the Liquid Argon Barrel Cryostat and of the Superconducting Central Solenoid, respectively. With these awards, the ATLAS Collaboration wants to congratulate Kawasaki and Toshiba for fulfilling the hi...

  10. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  11. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  12. First half of CMS inner tracker barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first half of the CMS inner tracker barrel is seen in this image consisting of three layers of silicon modules which will be placed at the centre of the CMS experiment at the LHC in CERN. Laying close to the interaction point of the 14 TeV proton-proton collisions, the silicon used here must be able to survive high doses of radiation and a 4 T magnetic field without damage.

  13. Artificial Neural Networks for reconstruction of energy losses in dead materials between barrel LAr and Tile calorimeters exploration and results

    CERN Document Server

    Budagov, Yu A; Kulchitskii, Yu A; Rusakovitch, N A; Shigaev, V N; Tsiareshka, P V

    2008-01-01

    In the course of computational experiments with Monte-Carlo events for ATLAS Combined Test Beam 2004 setup Artificial Neural Networks (ANN) technique was applied for reconstruction of energy losses in dead materials between barrel LAr and Tile calorimeters (Edm). The constructed ANN procedures exploit as their input vectors the information content of different sets of variables (parameters) which describe particular features of the hadronic shower of an event in ATLAS calorimeters. It was shown that application of ANN procedures allows one to reach 40% reduction of the Edm reconstruction error compared to the conventional procedure used in ATLAS collaboration. Impact of various features of a shower on the precision of $Edm$ reconstruction is presented in detail. It was found that longitudinal shower profile information brings greater improvement in $Edm$ reconstruction accuracy than cell energies information in LAr3 and Tile1 samplings.

  14. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  15. Tile/hadronic Calorimeter design viewed from ATLAS

    CERN Document Server

    Santoni, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. In the barrel part of ATLAS, together with the electromagnetic barrel calorimeter, TileCal provides precise measurements of hadrons, jets, taus and the missing transverse energy. To understand the detail of the response of the detector, 11% of the 192 calorimeter modules were exposed to test beams of electrons, muons, and hadrons. Results were also obtained in the experimental hall using random triggers, calibration data and data from muons, isolated pions, and inclusive p-p events. This talk gives an overview of the TileCal performance.

  16. 2001, the ATLAS Cryostat Odyssey

    CERN Multimedia

    2001-01-01

    After a journey of several thousand kilometres, over sea and land, by canal and highway, the cryogenics barrel of the ATLAS electromagnetic calorimeter finally arrived at CERN last week. Installed in Hall 180, the cryogenics barrel of the ATLAS electromagnetic calorimeter will be fitted out to take the central superconducting solenoid and the electromagnetic calorimeter. On Monday 2 July, different French police units and EDF officials were once again keeping careful watch around the hairpin bends of the road twisting down from the Col de la Faucille: a special load weighing 100 tonnes, 7 metres high, 5.8 metres wide and 7.2 metres long was being brought down into the Pays de Gex to the Meyrin site of CERN. This time the destination was the ATLAS experiment. A huge blue tarpaulin cover concealed the cryogenics barrel of the experiment's liquid argon electromagnetic calorimeter. The cryostat consists of a vacuum chamber, a cylinder that is 5.5 metres in diameter, 7 metres long, and a concentric cold chamber ...

  17. Comparison between the contribution of ellagitannins of new oak barrels and one-year-used barrels

    Directory of Open Access Journals (Sweden)

    Navarro María

    2016-01-01

    Full Text Available The influence of the botanical origin (French oak: Quercus petraea and American oak: Quercus alba, toasting level and if the barrel were new of previously used during one year have been studied. Results indicate that French oak released significant higher amounts of ellagitannins than American oak. Toasting level also exert a great influence. The higher the toasting level the lower the ellagitannin concentration in wines. Finally, the use during one year of the barrels drastically decreases the ellagitannin concentration in wines. Consequently, it can be concluded that the origin of oak, the toasting level and especially the previous use of the barrels have a very significant influence on the final ellagitannin concentration in wine, and probably on its sensory impact.

  18. ATLAS Review Office

    CERN Multimedia

    Szeless, B

    The ATLAS internal reviews, be it the mandatory Production Readiness Reviews, the now newly installed Production Advancement Reviews, or the more and more requested different Design Reviews, have become a part of our ATLAS culture over the past years. The Activity Systems Status Overviews are, for the time being, a one in time event and should be held for each system as soon as possible to have some meaning. There seems to a consensus that the reviews have become a useful project tool for the ATLAS management but even more so for the sub-systems themselves making achievements as well as possible shortcomings visible. One other recognized byproduct is the increasing cross talk between the systems, a very important ingredient to make profit all the systems from the large collective knowledge we dispose of in ATLAS. In the last two months, the first two PARs were organized for the MDT End Caps and the TRT Barrel Modules, both part of the US contribution to the ATLAS Project. Furthermore several different design...

  19. ATLAS's inner detector installed in the heart of the experiment

    CERN Multimedia

    2006-01-01

    The ATLAS collaboration recently celebrated a major engineering milestone, namely the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Right: Engineers and technicians work to carefully align and install the inner detector in the centre of ATLAS.Left: The crane used in the carefully coordinated effort by the ATLAS collaboration to lower down the fragile inner detector 100 metres underground to its new home. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the two outer detectors (TRT and SCT) of the inner detector barrel (ID-barrel) were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from Building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Special measures were in place to minimize shock and vibration during transportati...

  20. Progress of the EM Barrel Presampler Assembly

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a separate detector which will be placed in front of the electromagnetic barrel calorimeter, in the same cryostat. It is made of 32×2 sectors, each of them being 3.1 m long, about 28 cm large and a few cm thick. Three countries are involved in its construction: France (ISN-Grenoble), Sweden (KTH-Stockholm) and Morocco (Universities: Hassan II Ain Chock-Casablanca and Mohamed V-Rabat, and CNESTEN-Rabat). The design of the presampler started ten years ago and the series production began at the end of the year 2000. Today two-thirds of the sectors are produced and validated. In November 2002, half the detector (i.e. 32 sectors), was inserted on the internal face of the first EM calorimeter wheel (see pictures). Despite the fact that only 0.4 mm was available between sectors, it was possible to insert them all without meeting major difficulties. This operation was led by a team of four people, the sectors being systematically tested after insertion in the wheel. The inserti...

  1. Pixel electronics for the ATLAS experiment

    CERN Document Server

    Fischer, P

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2*5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm*60.8 mm which include an n/sup +/ on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode...

  2. Two ATLAS trackers become one

    CERN Multimedia

    2006-01-01

    The ATLAS inner detector barrel comes one step closer to completion as the semiconductor tracker is merged with the transition radiation tracker. ATLAS collaborators prepare for the insertion of the semiconductor tracker (SCT, behind) into the transition radiation tracker (TRT, in front). Some had hoped it would fall on Valentine's Day. But despite the slight delay, Friday 17 February was lovingly embraced as 'Conception Day,' when dozens of physicists and engineers from the international collaboration gathered to witness the insertion of the ATLAS semiconductor tracker into the transition radiation tracker, a major milestone in the assembly of the experiment's inner detector. With just millimeters of room for error, the cylindrical trackers were slid into each other as inner detector integration coordinator Heinz Pernegger issued commands and scientists held out flashlights, lay on their backs and stood on ladders to take careful measurements. Each tracker is the result of about 10 years of international ...

  3. ATLAS solenoid operates underground

    CERN Document Server

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  4. 27 CFR 25.141 - Barrels and kegs.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.141 Barrels and kegs. (a) General requirements. The brewer's name or trade name and the place of production (city and, if necessary for identification, State) shall be permanently marked on each barrel or keg. If the place of production is clearly...

  5. Analysis of gun barrel rifling twist

    Science.gov (United States)

    Sun, Jia; Chen, Guangsong; Qian, Linfang; Liu, Taisu

    2017-05-01

    Aiming at the problem of gun barrel rifling twist, the constraint relation between rifling and projectile is investigated. The constraint model of rifling and projectile is established and the geometric relation between the twist and the motion of projectile is analyzed. Based on the constraint model, according to the rotating band that is fired, the stress and the motion law of the rotating band in bore are analyzed. The effects to rotating band (double rotating band or wide driving band) caused by different rifling (rib rifling, increasing rifling and combined rifling) are also investigated. The model is demonstrated by several examples. The results of numerical examples and the constraint mode show that the uncertainty factors will be brought in the increasing rifling and combined rifling during the projectile move in the bore. According to the amplitude and the strength of the twist acting on rotating band, the steady property of rotational motion of the projectile, the rib rifling is a better choose.

  6. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    AUTHOR|(CDS)2080489; Flouris, Gianis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis,Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance shown during the LHCs Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer.An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). B...

  7. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Rabady, Dinyar; Carlin, Roberto; Codispoti, Giuseppe; Dallavalle, Marco; Erö, Janos; Flouris, Giannis; Foudas, Costas; Fulcher, Jonathan; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikos; Papadopoulos, Ioannis; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Sphicas, Paris; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger (µGMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the µGMT i...

  8. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Battilana, Carlo; Codispoti, Giuseppe; Dallavalle, Gaetano-Marco; Ero, Janos; Flouris, Giannis; Fountas, Konstantinos; Fulcher, Jonathan Richard; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes; Sphicas, Paraskevas; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the $\\m...

  9. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  10. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  11. Software development for the P¯ANDA barrel DIRC

    Science.gov (United States)

    Dutta, Dipanwita; P¯ANDA Cherenkov Group

    2011-05-01

    The charged particle identification in the barrel region of the P¯ANDA detector in the future FAIR facility at GSI is planned with a very thin Cherenkov detector using the DIRC principle. Due to a very compact design of the barrel DIRC with focusing optics, the reconstruction of the Cherenkov angle is quite challenging. In this contribution, the possible reconstruction algorithm of the barrel DIRC will be discussed, with emphasis on the possibility to include the DIRC in the trigger decision and the correction of the chromatic dispersion with fast timing information.

  12. Qualification Procedures of the CMS Pixel Barrel Modules

    CERN Document Server

    Starodumov, A; Horisberger, R.; Kastli, H.Chr.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Trueb, P.

    2006-01-01

    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.

  13. Common barrel and forward CA tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mykhailo, Pugach [Goethe-Universitaet, Frankfurt (Germany); Frankfurt Institute for Advanced Studies, Frankfurt (Germany); KINR, Kyiv (Ukraine); Gorbunov, Sergey; Kisel, Ivan [Goethe-Universitaet, Frankfurt (Germany); Frankfurt Institute for Advanced Studies, Frankfurt (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    There are complex detector setups which consist of barrel (cylindrical) and forward parts, and such systems require a special approach in the registered charged particles track finding procedure. Currently the tracking procedure might be performed in both parts of such detector independently from each other, but the final goal on this direction is a creation of a combined tracking, which will work in both parts of the detector simultaneously. The basic algorithm is based on Kalman Filter (KF) and Cellular Automata (CA). And the tracking procedure in such a complex system is rather extraordinary as far as it requires 2 different models to describe the state vector of segments of the reconstructed track in the mathematical apparatus of the KF-algorithm. To overcome this specifics a mathematical apparatus of transition matrices must be developed and implemented, so that one can transfer from one track model to another. Afterwards the work of the CA is performed, which reduces to segments sorting, their union into track-candidates and selection of the best candidates by the chi-square criteria after fitting of the track-candidate by the KF. In this report the algorithm, status and perspectives of such combined tracking are described.

  14. Arrival of the ATLAS solenoid from Japan

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 01: L. to r.: Photo 01: L. to r.: Herman ten Kate (Magnet Project Leader), Takahiko Kondo (KEK, Solenoid Project Leader), Peter Jenni (Spokesperson). Photo 02: (truck on the right side) with the LAr barrel calorimeter cryostat (also built in Japan) on the left side. From left to right are the following ATLAS people: Herman ten Kate (Magnet Project Leader), Marzio Nessi (Technical Coordinator), Takahiko Kondo (KEK, Solenoid Project Leader), Peter Jenni (Spokesperson)

  15. ATLAS with six of its torodial coils

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS experiment at the LHC at CERN has received six of its eight torodial magnets in this photo taken in mid-July 2005. These torodial magnets will generate the magnetic field within the detector causing charged particles to follow curved paths that will allow their momentum to be measured. Also the barrel hadronic calorimeter can be seen in the background, which recorded its first cosmic ray hits in early July.

  16. ATLAS and its eight torodial magnets

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS detector is a huge device. Standing at 25 m tall, when complete it will be the largest detector of its type in the world. The main barrel is yet to be installed giving impressive views of the eight torodial magnets while scaffolding is still in place to allow technicians to work on the detector as it is assembled in its cathedral-like cavern.

  17. Tri-Service Green Gun Barrel (PP 1074)

    National Research Council Canada - National Science Library

    Rusch, Lawrence F

    2003-01-01

    ...) PP 1074 Tri-Service Green Gun Barrel. The program's goal was to develop an environmentally friendly process for depositing wear and erosion resistant materials onto gun bores replacing the current hazardous aqueous electro-deposition...

  18. EXTERNAL BARREL TEMPERATURE OF A SMALL BORE OLYMPIC RIFLE

    Directory of Open Access Journals (Sweden)

    Bozena Gladyszewska

    2013-01-01

    Full Text Available Investigations on changes in a rifle’s barrel temperature during shooting in a rhythm typical for practitioners of Olympic shooting sports are presented. Walther KK300 (cal. 5.6 mm, a typical rifle often used in Olympic competitions, R50 RWS ammunition and a high speed thermographic camera were used in the study. Altair version 5 software was used to process thermal images and a stationary wavelet transform was applied to denoise signals for all the studied points. It was found that the temperature of the rifle barrel does not exceed 0.3°C after one shot whereas the total temperature increase does not exceed 5°C after taking 40 shots and does not affect the position of the hitting point on a target. In fact, contrary to popular belief, the so-called “warming shots” are not done for barrel heating but for cleaning of remnants in the barrel.

  19. Processing of Niobium-Lined M240 Machine Gun Barrels

    Science.gov (United States)

    2014-11-01

    metals. In particular, cobalt - chromium alloys offer a great deal of potential as liner materials.12,19 Nevertheless, the current results represents...12. Montgomery JS, Garner J, Keppinger R, Eichhorst C, de Rosset WS. Tests of M249 barrels made with a cobalt - chromium alloy . Aberdeen Proving...Pittsburgh, PA. 19. Leto VE, Klimm BD, Hespos MR, Garron RF. Flowformed cobalt alloy barrel testing on the M240 machine gun. Picatinny Arsenal (NJ

  20. [Hemicorporectomy with double barreled wet colostomy: an extremely rare procedure].

    Science.gov (United States)

    Ricci, Marco Antonio; Duarte, Enio Lucio Coelho; Souza, Renato Costa Amaral; Albuquerque-Peres, Carlos Michel; Guimaraes, Gustavo Cardoso; Lopes, Ademar

    2009-12-01

    The Hemicorporectomy associated to Double-barreled wet colostomy is a high complex and heroic procedure and is to be used only exceptionally, when it is the last resource for treating locally advanced pelvic diseases in the absence of evidences of distant metastasis. We retrospectively analyzed the surgical technical details and the results from a hemicorporectomy with double-barreled wet colostomy in a single surgical time in a case of epidermoide carcinoma from a coetaneous pressure ulcer.

  1. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Strandberg, S

    2009-01-01

    The ATLAS pixel detector is a high resolution, silicon based, tracking detector with its innermost layer located only 5 cm away from the ATLAS interaction point. It is designed to provide good hit resolution and low noise, both important qualities for pattern recognition and for finding secondary vertices originating from decays of long-lived particles. The pixel detector has 80 million readout channels and is built up of three barrel layers and six disks, three on each side of the barrel. The detector was installed in the center of ATLAS in June 2007 and is currently being calibrated and commissioned. Details from the installation, commissioning and calibration are presented together with the current status.

  2. Spanish Minister of Science and Technology visits ATLAS

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, pictured in front of a barrel toroid cryostat vessel in the ATLAS assembly hall. The air-core ATLAS barrel toroid magnet system will consist of eight large superconducting coils, each in its own vacuum vessel, built by Spanish company Felguera Construcciones Mecanicas SA under the responsibility of IFAE (Institute for High Energy Physics), Barcelona. Photo 01: The Minister in front of the cryostat vessel. Photo 02: The Minister (right) with H.E. Mr Joaquin Pérez-Villanueva y Tovar, Spanish Ambassador to the United Nations in Geneva. Photo 03: (left to right) Manuel Delfino, leader of the Information Technology division at CERN; Matteo Cavalli-Sforza of CERN; Juan Antonio Rubio, leader of the Education and Technology Transfer division at CERN; The Minister; and Peter Jenni, ATLAS spokesperson.

  3. MOPITT Beta Level 1 Radiances V107

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOPITT Beta Level 1 data product consists of the geolocated, calibrated earth scene radiances, associated instrument engineering data summaries, and inflight...

  4. MOPITT Level 1 Radiances V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOPITT Level 1 data product consists of the geolocated, calibrated earth scene radiances, associated instrument engineering data summaries, and inflight...

  5. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    CERN Audiovisual Unit

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system.

  6. Upgrade of the CMS muon trigger system in the barrel region

    Energy Technology Data Exchange (ETDEWEB)

    Rabady, Dinyar, E-mail: dinyar.rabady@cern.ch [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Ero, Janos [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Flouris, Giannis [University of Ioannina, 45110 Ioannina (Greece); Fulcher, Jonathan [CERN, 1211 Geneve 23 (Switzerland); Loukas, Nikitas; Paradas, Evangelos [University of Ioannina, 45110 Ioannina (Greece); Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth [CERN, 1211 Geneve 23 (Switzerland)

    2017-02-11

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  7. COMPARISON OF THE HEMOCYANIN BETA-BARREL WITH OTHER GREEK KEY BETA-BARRELS - POSSIBLE IMPORTANCE OF THE BETA-ZIPPER IN PROTEIN-STRUCTURE AND FOLDING

    NARCIS (Netherlands)

    HAZES, B; HOL, WGJ

    The Greek key beta-barrel topology is a folding motif observed in many proteins of widespread evolutionary origin. The arthropodan hemocyanins also have such a Greek key beta-barrel, which forms the core of the third domain of this protein. The hemocyanin beta-barrel was found to be structurally

  8. Aroma potential of oak battens prepared from decommissioned oak barrels.

    Science.gov (United States)

    Li, Sijing; Crump, Anna M; Grbin, Paul R; Cozzolino, Daniel; Warren, Peter; Hayasaka, Yoji; Wilkinson, Kerry L

    2015-04-08

    During barrel maturation, volatile compounds are extracted from oak wood and impart aroma and flavor to wine, enhancing its character and complexity. However, barrels contain a finite pool of extractable material, which diminishes with time. As a consequence, most barrels are decommissioned after 5 or 6 years. This study investigated whether or not decommissioned barrels can be "reclaimed" and utilized as a previously untapped source of quality oak for wine maturation. Oak battens were prepared from staves of decommissioned French and American oak barrels, and their composition analyzed before and after toasting. The oak lactone glycoconjugate content of untoasted reclaimed oak was determined by liquid chromatography-tandem mass spectrometry, while the concentrations of cis- and trans-oak lactone, guaiacol, 4-methlyguaiacol, vanillin, eugenol, furfural, and 5-methylfurfural present in toasted reclaimed oak were determined by gas chromatography-mass spectrometry. Aroma potential was then evaluated by comparing the composition of reclaimed oak with that of new oak. Comparable levels of oak lactone glycoconjugates and oak volatiles were observed, demonstrating the aroma potential of reclaimed oak and therefore its suitability as a raw material for alternative oak products, i.e., chips or battens, for the maturation of wine. The temperature profiles achieved during toasting were also measured to evaluate the viability of any yeast or bacteria present in reclaimed oak.

  9. First modules of ATLAS's great accordion

    CERN Multimedia

    2001-01-01

    The first CERN-built module of the barrel section of ATLAS's electromagnetic calorimeter has just been completed. This is the second in a series of 32 modules that will make up the final detector. These accordion-shaped structures will give precise measurements of the energy of particles produced in the LHC. The first CERN-built module of the barrel section of ATLAS's electromagnetic calorimeter nearing completion. Behind the module, from left to right: Ralf Huber, Andreas Bies and Jorgen Beck Hansen. In front of the module, from left to right: Philippe Lançon and Edward Wood. The builders of the ATLAS electromagnetic calorimeter are masters in the art of folding! To find out why, just take a look inside Hall 184, where the first CERN-built module of ATLAS's electromagnetic calorimeter has just been completed. It is the second in a long series, the first having been completed at the Saclay Laboratory of France's Commissariat à l'Energie Atomique just a few weeks ago. Thirty more remain...

  10. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight, weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.

  11. First two barrel ECAL supermodules inserted in CMS HCAL

    CERN Multimedia

    K.Bell

    2006-01-01

    The first two barrel "supermodules" for the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. The barrel ECAL will consist of 36 supermodules, many of which have already been produced (see CERN Bulletin 17-18, 2006). Team from CMS ECAL, CMS Integration and CEA-DAPNIA were involved in the insertion, with the production/integration of the supermodules themselves involving many technicians, engineers and physicists from many institutes. From left to right: Olivier Teller, Maf Alidra and Lucien Veillet.

  12. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  13. A Methodology for Characterizing Gun Barrel Flexure due to Vehicle Motion

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available Barrel centerline curvature is known to influence the location of projectile shot impacts. Superimposed on the unique manufactured barrel centerline is the flexed barrel shape that can occur prior to firing while the vehicle is on the move. In order to understand and quantify the effects of barrel flexure on gun accuracy, it is necessary to determine what combination of fundamental mode shapes is most likely to occur. A method to accomplish this task is described in this paper. The method is demonstrated by enumerating the 10 most likely flexed barrel shapes that were found to occur in a tank-mounted gun barrel while it traversed a bump course.

  14. barrel temperature emperature emperature effects on the ffects

    African Journals Online (AJOL)

    eobe

    PVC, PP, and HDPE are 6.10N/mm2, 21.67N/mm2, and 12.94N/mm2 at barrel temperature of 2700C, 2700C, 2100C;. Maximum proof stress. Maximum proof stress was 3.44N/mm2, 20.63N/mm2, and 13.65N/mm2 at barrel temperature of 2400C, 2500C and. 1600C; Maximum percentage elongation. Maximum percentage ...

  15. Atlas barrel electromagnetic calorimeter performance study. Measurement of the Forward-Backward asymmetry in the qq-bar {yields} Z/{gamma}{sup *} {yields} e{sup +}e{sup -} events; Etude des performances du calorimetre electromagnetique tonneau d'ATLAS. Mesure de l'asymetrie Avant-Arriere dans les evenements qq-bar {yields} Z/{gamma}{sup *} {yields} e{sup +}e{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Aharrouche, M

    2006-12-15

    The start up of the ATLAS experiment at the CERN LHC is planned for the year 2007. The physics program of the experiment covers a wide field, going from tests of Standard Model (Higgs boson discovery) to new theories beyond the Standard Model (Supersymmetry, extra dimensions... etc). The work presented in this thesis has been made within the framework of the preparation of this experiment. After having presented the 2004 combined run, its installation, pedestal data and calibration data analysis, we develop a method for calibrating the energy measurement based on Geant4 Monte-Carlo simulation of the combined run. These simulations are done in the general framework developed for the analysis of the ATLAS data. We present then the performance studies of the electromagnetic calorimeter as well as the results obtained: a sampling term of the energy resolution of 10.6% GeV and local constant term of 0.43%, a non-uniformity of response of 0.44% giving a total constant term of 0.6% and a linearity better than 0.2% for electrons energies between 20 and 250 GeV. Concerning the 'physics' side of this thesis, we show a first study on the determination of the effective weak mixing angle, sin{sup 2}({theta}(lept,eff) with one precision better than the current results, 10{sup -4}. To reach such a precision it has been necessary to identify the electrons in the forward regions of the detector. This point is the subject of the last part of this manuscript, it shows that one can reach an electron-jet rejection of 100 with an efficiency of the electrons reconstruction of 50%, by using a discriminating analysis based on the methods of Fisher, the likelihood and the neural networks. (author)

  16. Configuration of the ATLAS Trigger System

    CERN Document Server

    Elsing, M; Armstrong, S; Baines, J T M; Bee, C P; Biglietti, M; Bogaerts, A; Boisvert, V; Bosman, M; Brandt, S; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Corso-Radu, A; Di Mattia, A; Díaz-Gómez, M; Dos Anjos, A; Drohan, J; Ellis, Nick; Epp, B; Etienne, F; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kaczmarska, A; Karr, K M; Khomich, A; Konstantinidis, N P; Krasny, W; Li, W; Lowe, A; Luminari, L; Ma, H; Meessen, C; Mello, A G; Merino, G; Morettini, P; Moyse, E; Nairz, A; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Parodi, F; Pérez-Réale, V; Pinfold, J L; Pinto, P; Polesello, G; Qian, Z; Rajagopalan, S; Resconi, S; Rosati, S; Scannicchio, D A; Schiavi, C; Segura, E; De Seixas, J M; Shears, T G; Sivoklokov, S Yu; Smizanska, M; Soluk, R A; Stanescu, C; Tapprogge, Stefan; Touchard, F; Vercesi, V; Watson, A; Wengler, T; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; CHEP 2003 Computing in High Energy Physics

    2003-01-01

    In this paper a conceptual overview is given of the software foreseen to configure the ATLAS trigger system. Two functional software prototypes have been developed to configure the ATLAS Level-1 emulation and the High-Level Trigger software. Emphasis has been put so far on following a consistent approach between the two trigger systems and on addressing their requirements, taking into account the specific use-case of the `Region-of-Interest' mechanism for the ATLAS Level-2 trigger. In the future the configuration of the two systems will be combined to ensure a consistent selection configuration for the entire ATLAS trigger system.

  17. New results in meson spectroscopy from the crystal barrel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1994-04-01

    Recent observations by the Crystal Barrel experiment of two scalar resonances, f{sub o}(1365) and a{sub o}(1450) have allowed the authors to clarify the members of the scalar nonet. In addition, a third scalar, f{sub o}(1500), appears to be supernumerary, and is a candidate for the scalar glueball expected near 1500 MeV.

  18. End of the EM Barrel Presampler Construction and Insertion

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a thin detector placed in front of the electromagnetic barrel calorimeter, made up of two half barrels also, but with 32 sectors per half barrel instead of 16. Each of these 64 sectors is 3.1 m long, 28 cm large and 2.9 cm thick. Three countries took part in its construction: France (LPSC-Grenoble), Sweden (KTH-Stockholm) and Morocco (Hassan II Ain Chock-Casablanca and Mohamed V-Rabat universities, and CNESTEN-Rabat). The design of the presampler started 11 years ago and the series production began at the end of 2000. Cabling, mechanical and electronic tests of the anodes were achieved in Morocco. Forty-one sectors were assembled and validated at the LPSC-Grenoble and 25 at the KTH-Stockholm. In November 2002, the first half was inserted on the inner face of the first EM calorimeter wheel. The insertion of the other 32 sectors in the second EM calorimeter wheel was achieved in July 2003 (see pictures). The production of two additional sectors will allow us to study the p...

  19. Background neutron in the endcap and barrel regions of resistive ...

    Indian Academy of Sciences (India)

    The detector response calculations taken as a function of the neutron energy in the range of 0.01 eV–1 GeV have been simulated through RPC set-up. In order to evaluate the response of detector in the LHC background environment, the neutron spectrum expected in the CMS muon endcap and barrel region were taken ...

  20. Increasing the load bearing capacity of barrel vaults

    NARCIS (Netherlands)

    Kamerling, M.W.

    2011-01-01

    Just after World War II many barrel vaults and domes were built with a structural system, known as Fusée Ceramique. This paper analyses the load bearing capacity of these vaults. Schemes, theories, idealizations and assumptions are analysed, validated and discussed. Methods to increase the load

  1. Experimental investigation on shore hardness of barrel-finished ...

    Indian Academy of Sciences (India)

    Barrel finishing (BF) process is widely used to improve the surface finish and dimensional features of metallic and non-metallic parts using different types of media. As a matter of fact the change in shore hardness (SH) features of fused deposition modelling (FDM)-based master pattern is one of the important considerations ...

  2. Barrel Temperature Effects on the Mechanical Properties of Injection ...

    African Journals Online (AJOL)

    An existing mould was used for the production of tension and deflection test specimen. Then a plunger type of injection machine was used to mould test specimens at various barrel temperatures ranging from 1600C to 2800C, keeping all other process variables constant. The tensile and deflection test carried out on the ...

  3. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    Unscrewing sections of container wall 02.57 Reveal SCT Barrel Various shots of Barrel as container is opened. 05.18 Inspecting Barrel, shot of Barrel rotating. 12.40 CU faces. 12.50 Close container (simulating action at RAL). 17.50 Pizza boxes and men in overalls.

  4. Shear numbers of protein beta-barrels: definition refinements and statistics.

    Science.gov (United States)

    Liu, W M

    1998-01-30

    The original definition of shear number for a beta-barrel is not unique if it contains one or more uneven beta-bulges. We define the shear number of a beta-barrel as the minimal change of residue numbers in the backbone direction for all closed paths on the beta-barrel. We also discuss how to overcome some computational difficulties. It is pointed out that some closed beta-sheets should not be considered as beta-barrels. The pertinent statistics obtained from a representative list of the Protein Data Bank entries are summarized. All beta-barrels have positive shear numbers, i.e. they are right-twisted. The shear numbers of most beta-barrels are even, but exceptions do exist. The sizes of beta-ladders in a beta-barrel vary significantly. Most beta-barrels contain uneven beta-bulges, which may have important biological functions.

  5. Commissioning of the magnetic field in the ATLAS muon spectrometer

    CERN Document Server

    Arnaud, M; Bergsma, F; Bobbink, G; Bruni, A; Chevalier, L; Ennes, P; Fleischmann, P; Fontaine, M; Formica, A; Gautard, V; Groenstege, H; Guyot, C; Hart, R; Kozanecki, W; Iengo, P; Legendre, M; Nikitina, T; Perepelkin, E; Ponsot, P; Richardson, A; Vorozhtsov, A; Vorozthsov, S

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to 1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations.

  6. Algorithm and implementation of muon trigger and data transmission system for barrel-endcap overlap region of the CMS detector

    CERN Document Server

    AUTHOR|(CDS)2072021; Byszuk, Adrian Pawel

    2016-01-01

    The CMS experiment is currently undergoing upgrade of its trigger, including the Level-1 muon trigger. In the barrel-endcap transition region it is necessary to merge data from 3 types of detectors - RPC, DT and CSC. The Overlap Muon Track Finder (OMTF) uses the novelty approach to concentrate and process those data in an uniform manner. The paper presents the algorithm and FPGA firmware implementation of the OMTF and its data transmission system in CMS. The OMTF is subject to significant changes during optimizations based on physical simulations. Therefore a special, high level, parametrized HDL implementation is necessary.

  7. Level 1 Daq System for Kloe

    Science.gov (United States)

    Aloisio, A.; Cavaliere, S.; Cevenini, F.; Della Volpe, D.; Merola, L.; Anastasio, A.; Fiore, D. J.

    KLOE is a general purpose detector optimized to observe CP violation in K0 decays. This detector will be installed at the DAΦNE Φ-factory, in Frascati (Italy) and it is expected to run at the end of 1997. The KLOE DAQ system can be divided mainly into the front-end fast readout section (the Level 1 DAQ), the FDDI Switch and the processor farm. The total bandwidth requirement is estimated to be of the order of 50 Mbyte/s. In this paper, we describe the Level 1 DAQ section, which is based on custom protocols and hardware controllers, developed to achieve high data transfer rates and event building capabilities without software overhead.

  8. The ATLAS tracker Pixel detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00214676; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current Inner Detector will be replaced with an all-silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected dense tracking environment and high radiation levels require the development of higher granularity radiation hard silicon sensors and a new front-end readout chip. The data rates require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLAS Pixel detector developments as well as the various layout options are presented in this paper.

  9. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  10. ATLAS RPC Quality Assurance results at INFN Lecce

    CERN Document Server

    INSPIRE-00211509; Borjanovic, I.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, M. R.; Creti, P.; Gorini, E.; Grancagnolo, F.; Perrino, R.; Primavera, M.; Spagnolo, S.; Tassielli, G.; Ventura, A.

    2006-01-01

    The main results of the quality assurance tests performed on the Resistive Plate Chamber used by the ATLAS experiment at LHC as muon trigger chambers are reported and discussed. Since July 2004, about 270 RPC units has been certified at INFN Lecce site and delivered to CERN, for being integrated in the final muon station of the ATLAS barrel region. We show the key RPC characteristics which qualify the performance of this detector technology as muon trigger chamber in the harsh LHC enviroments. These are dark current, chamber efficiency, noise rate, gas volume tomography, and gas leakage.

  11. Design of symmetric TIM barrel proteins from first principles.

    Science.gov (United States)

    Nagarajan, Deepesh; Deka, Geeta; Rao, Megha

    2015-08-12

    Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (α/β)8 TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a Tm of 44 °C and a Gibbs free energy of unfolding (ΔG°) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a Cm of 1.6 M and a ΔG° of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra

  12. Electronics Evaluation, Jet reconstruction and a Study of GMSB in ATLAS

    CERN Document Server

    Sjölin, J

    2000-01-01

    The ATLAS detector is described. Emphasis is put on the Tile calorimeter and its fast readout electronics. An overview of the charge calibration of the electronics tested during the test-beam periods in 1996-98 is given. The evaluation guided a decision concerning methods of signal compression and dynamical range of the Analog to Digital Converter for the final version. An introduction to the topic of jet reconstruction in the ATLAS barrel calorimeter is given. Also included is a study of the sensitivity to model parameters for Gauge Mediated Supersymmetry Breaking with stau as the NLSP using fast simulations of the ATLAS detector.

  13. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  14. The barrel DIRC of the P¯ANDA experiment

    Science.gov (United States)

    Schwarz, C.; Bettoni, D.; Branford, D.; Carassiti, V.; Cecchi, A.; Dodokhof, V. Kh.; Düren, M.; Föhl, K.; Hohler, R.; Kaiser, R.; Lehmann, A.; Lehmann, D.; Marton, H.; Peters, K.; Schepers, G.; Schmitt, L.; Schönmeier, P.; Seitz, B.; Sfienti, C.; Teufel, A.; Vodopianov, A. S.

    2008-09-01

    Cooled antiproton beams of unprecedented intensities in the energy range of 1-15 GeV/ c will be used at the P¯ANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The charged particle identification in the barrel region needs a thin detector operating in a strong magnetic field. Both requirements can be met by a Cherenkov detector using the DIRC principle. Combining the time of arrival of the photons with their spatial image determines not only the particles velocity, but also the wavelength of the photons. Therefore, dispersion correction at the lower and upper detection thresholds is possible. Special care has to be taken to couple the photon detector to the barrel radiator bars.

  15. Experiences developing socially acceptable interactions for a robotic trash barrel

    DEFF Research Database (Denmark)

    Yang, Stephen; Mok, Brian Ka Jun; Sirkin, David

    2015-01-01

    Service robots in public places need to both understand environmental cues and move in ways that people can understand and predict. We developed and tested interactions with a trash barrel robot to better understand the implicit protocols for public interaction. In eight lunch-time sessions sprea...... as having intentions and desires; c) mistakes in navigation are indicators of autonomous control, rather than a remote operator; and d) repeated mistakes and struggling behavior polarized responses as either ignoring or endearing....... strategies that seemed to evoke clear engagement and responses, both positive and negative. Observations and interviews show that a) people most welcome the robot's presence when they need its services and it actively advertises its intent through movement; b) people create mental models of the trash barrel...

  16. The bar PANDA Barrel-TOF Detector at FAIR

    Science.gov (United States)

    Zimmermann, S.; Suzuki, K.; Steinschaden, D.; Chirita, M.; Ahmed, G.; Dutta, K.; Kalita, K.; Lehmann, A.; Böhm, M.; Schwarz, K.; Orth, H.; Brinkmann, K.-Th.

    2017-08-01

    The barrel-Time-of-Flight subdetector is one of the outer layers of the multi-layer design of the \\panda target spectrometer. It is designed with a minimal material budget in mind mainly consisting of 90×30×5 mm3 thin plastic scintillator tiles read out on each end by a serial connection of 4 SiPMs. 120 such tiles are placed on 16 2460 × 180 mm2 PCB boards forming a barrel covering an azimuthal angle from 22.5o to 150o. The detector is designed to achieve a time resolution below σ< 100 ps which allows to distinguish events in the constant stream of hits, as well as particle identification below the Cherenkov threshold via the time-of-flight; simultaneously providing the interaction times of events. The current prototype achieved a time resolution of ~54 ps, well below the design goal.

  17. Barrels XXVIII take the Windy City by storm.

    Science.gov (United States)

    Gour, Anjali; Lyall, Evan H; Naka, Alexander; Brumberg, Joshua C

    2016-03-01

    The 28th annual Barrels meeting was held prior to the Society for Neuroscience meeting in October 2015 at the Northwestern University School of Law in Chicago, Illinois. The meeting brought together researchers focused on the rodent sensorimotor system. The meeting focused on modern techniques to decipher cortical circuits, social interactions among rodents, and decision-making. The meeting allowed investigators to share their work via short talks, poster presentations, and a data blitz.

  18. Level-1 Jets and Sums Trigger Performance

    CERN Document Server

    CMS Collaboration

    2016-01-01

    After the first long shutdown, the LHC has restarted at a centre-of-mass energy of 13 TeV. The LHC is expected to achieve an instantaneous luminosity larger than $10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$ and an average number of pile-up interactions of at least 40. The CMS Level-1 trigger architecture has undergone a full upgrade in order to maintain and improve the trigger performance under these new conditions. It will allow CMS to keep the trigger rate under control and to avoid a significant increase in trigger thresholds that would have a negative impact on the CMS physics programme. First studies of the performance of the calorimeter trigger upgrade for jets and energy sums are shown. Details of the algorithms and commissioning may be found in CMS-DP-2015-051 and the CMS Technical Design Report for the Level-1 Trigger upgrade: CERN-LHCC-2013-011, CMS-TDR-12 (2013)

  19. Members of the Science and Technology Commission, Spanish Senate visit ATLAS

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Members of the Science and Technology Commission, Spanish Senate, in front of a barrel toroid cryostat vessel in the ATLAS assembly hall. The air-core ATLAS barrel toroid magnet system will consist of eight large superconducting coils, each in its own vacuum vessel, built by Spanish company Felguera Construcciones Mecanicas SA under the responsibility of IFAE (Institute for High Energy Physics), Barcelona. Standing (left to right): Dr Peter Jenni, ATLAS spokesperson; Dr Manuel Aguilar-Benitez, delegate for Spain to CERN Council; Mrs Mercedes Senen, Lawyer of the Commission; Mr Alonso Arroyo, President of the Commission; Mr Ramon Antonio Socias, Second Vice-President of the Commission; Mr Francisco Xabier Albistur, Senator; H.E. Mr Joaquin Pérez-Villaneuva Y Tovar, Ambassador, Permanent Representative of Spain to the Office of the United Nations in Geneva and other international organisations in Switzerland, Spanish delegate to CERN Council; and Miguel Gomez. Seated (left to right): Mr Adolfo Abejon...

  20. SWATCH Common software for controlling and monitoring the upgraded CMS Level-1 trigger

    CERN Document Server

    Lazaridis, Christos; Bunkowski, Karol; Codispoti, Giuseppe; Dirkx, Glenn; Ghabrous Larrea, Carlos; Lingemann, Joschka; Kreczko, Lukasz; Thea, Alessandro; Williams, Tom

    2017-01-01

    The Large Hadron Collider at CERN restarted in 2015 with a higher centre-of-mass energy of 13 TeV. The instantaneous luminosity is expected to increase significantly in the coming years. An upgraded Level-1 trigger system is being deployed in the CMS experiment in order to maintain the same efficiencies for searches and precision measurements as those achieved in the previous run. This system must be controlled and monitored coherently through software, with high operational efficiency.The legacy system is composed of approximately 4000 data processor boards, of several custom application-specific designs. These boards are organised into several subsystems; each subsystem receives data from different detector systems (calorimeters, barrel/endcap muon detectors), or with differing granularity. These boards have been controlled and monitored by a medium-sized distributed system of over 40 computers and 200 processes. Only a small fraction of the control and monitoring software was common between the different s...

  1. Application of dry-ice blasting for barrels treatment

    Directory of Open Access Journals (Sweden)

    Costantini Antonella

    2015-01-01

    Full Text Available The main aim of this work was to test a dry-ice basting method to regenerate the barriques in order to prolong their life. In addition, this treatment for barrels can also represent an alternative to the use of sulfur dioxide for the barrique sanitization, in line with the guidelines of oenological practices for sustainable development proposed by the OIV (International Organization of Vine and Wine (sustainable development, food security: reduction the content of sulfites in wine. The effect of the blasting with dry ice for the treatment of barrique has been studied from a microbiological and sensory point of view. Microbiological analyses were carried out using wine contaminated with Brettanomyces and Lactobacillus; results showed a reduction of contaminant of 98–100%. Finally, it was evaluated the impact of this treatment on the sensory profile of wine. In this regard the wine aged in a barrique dry-ice blasted was compared with a wine aged in a barrique treated with sulfur dioxide. From the sensory analysis emerged that the dry-ice blasting treatment can regenerate the barriques, this confers to the wine increased notes of vanilla and boisé. The benefits that derive from the use of this method are: a good sanitization of the barrel, a positive impact on the organo- leptic characteristics of the wine and the ability to regenerate and reuse a barrel, with a positive effect on sustainability.

  2. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414625; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for the ATLAS Phase-0 upgrade program (2013-2014) was the activation of the TileCal outermost D-layer signal for assisting the Level-1 Muon Trigger at 1.0<|η|<1.3. This report describes the Tile-Muon Trigger within the TileCal upgrade activities, focusing on the new on-detector electronics such as the Tile Muon Digitizer Board (TMDB) providing (receive and digitize) the signal from eight TileCal modules to three Level-1 muon end-cap sector logic blocks.

  3. ATLAS's superconducting solenoid takes up position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid was moved to its final destination on 16 January. It has taken up position opposite the ATLAS liquid argon barrel cryostat, which will house the electromagnetic calorimeter. All that remains to do now is to slide it into the insulation vacuum, this will be done in the next few weeks. Built by Toshiba, under responsibility of KEK in Japan, the central solenoid is 2.4 metres in diameter, 5.3 metres long and weighs 5.5 tonnes. "It will provide an axial magnetic field of 2 Tesla that will deflect particles inside the inner detector," as Roger Ruber, on-site project coordinator, explains. The inner detector, which consists of three sub-detectors, will be installed inside the solenoid later. The solenoid during one of the transport operations. Securely attached to the overhead travelling crane, the solenoid is situated in front of the opening to the liquid argon calorimeter, it will be inserted soon.

  4. The LHCb level 1 vertex trigger

    CERN Document Server

    Koratzinos, M

    1999-01-01

    Summary form only given. The Level 1 Vertex trigger of LHCb has certain features that make it unique amongst the LHC experiment trigger schemes: The problem it addresses is a reduction factor of 25 for minimum bias events while retaining good efficiency for signal B events. The best way to achieve such reduction factors is to rely on the most striking property of those B events, the long decay time of the B particles. The trigger therefore has to reconstruct the event around the interaction region and tag signal events using topological criteria. An accurate vertex detector is one of the key components of LHCb and a natural choice for providing the data for such a triggering scheme. The algorithm for the reconstruction of the event is complicated and not readily parallelisable in its totality. We are therefore proposing an architecture that resembles a high-level trigger architecture, where the event building function is performed by a switch network and each event is processed by a single processor, part of ...

  5. The big wheels of ATLAS

    CERN Multimedia

    2006-01-01

    The ATLAS cavern is filling up at an impressive rate. The installation of the first of the big wheels of the muon spectrometer, a thin gap chamber (TGC) wheel, was completed in September. The muon spectrometer will include four big moving wheels at each end, each measuring 25 metres in diameter. Of the eight wheels in total, six will be composed of thin gap chambers for the muon trigger system and the other two will consist of monitored drift tubes (MDTs) to measure the position of the muons (see Bulletin No. 13/2006). The installation of the 688 muon chambers in the barrel is progressing well, with three-quarters of them already installed between the coils of the toroid magnet.

  6. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0......The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...

  7. Oak wine barrel as an active vessel: A critical review of past and current knowledge.

    Science.gov (United States)

    Del Alamo-Sanza, Maria; Nevares, Ignacio

    2017-05-30

    We review the role of the oak barrel as an active vessel for wine maturation. We present a historical background to highlight that previously established aspects of processes occurring with wine inside the oak barrel are still without confirmation. We argue that recently published new findings on the topic are determining factors in defining the manner in which the oak barrel works with wine. Several studies have been published reviewing how the wine barrel functions as an active vessel that releases chemical compounds into the wine, improving its physical, chemical, and sensory properties. Nevertheless, there are hardly any studies that describe how a wine barrel functions as an active vessel. The present review details the main factors affecting the gas exchange capacity of the barrel, such as the pressure drop generated within the barrel, the formation of a headspace, the effect of wood anatomy, the different oxygen entry routes, the role of wood moisture content and soluble ellagitannins, and the effect of barrel toasting on cooperage. Finally, a hypothesis is proposed regarding the function of the barrel as an active vessel, which determines the manner in which it interacts with the wine that it contains during aging.

  8. The ATLAS/TILECAL Detector Control System

    CERN Document Server

    Santos, H; The ATLAS collaboration

    2010-01-01

    Tilecal, the barrel hadronic calorimeter of ATLAS, is a sampling calorimeter where scintillating tiles are embedded in an iron matrix. The tiles are optically coupled to wavelength shifting fibers that carry the optical signal to photo-multipliers. It has a cylindrical shape and is made out of 3 cylinders, the Long Barrel with the LBA and LBC partitions, and the two Extended Barrel with the EBA and EBC partitions. The main task of the Tile calorimeter Detector Control System (DCS) is to enable the coherent and safe operation of the calorimeter. All actions initiated by the operator, as well as all errors, warnings and alarms concerning the hardware of the detector are handled by DCS. The Tile calorimeter DCS controls and monitors mainly the low voltage and high voltage power supply systems, but it is also interfaced with the infrastructure (cooling system and racks), the laser and cesium calibration systems, the data acquisition system, configuration and conditions databases and the detector safety system. In...

  9. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  10. Spanish Minister of Science and Technology visits ATLAS

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, came to CERN in November. He is seen here visiting the ATLAS assembly hall. Photo 01: The Minister (left) is greeted by Peter Jenni, spokesperson for the ATLAS collaboration. In the centre is Matteo Cavalli-Sforza, Spanish scientist at CERN. Photo 02: The Minister (left) in discussion with Peter Jenni. Photo 03: Peter Jenni shows the visitors one of eight vacuum vessels being built by Spanish company Felguera Construcciones Mecanicas SA for the superconducting coils of the air-core ATLAS barrel toroid magnet system: (left to right) Matteo Cavalli-Sforza of CERN; the Minister; M. Aguilar-Benitez, Spanish delegate to CERN Council; G. Léon; and Peter Jenni.

  11. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  12. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  13. Measuring intracellular ion concentrations with multi-barrelled microelectrodes.

    Science.gov (United States)

    Miller, Anthony J; Smith, Susan

    2012-01-01

    Ion-selective microelectrodes can be used to measure intracellular ion concentrations. The use of multi-barrelled electrodes enables the identification of the cellular compartment. For example, the inclusion of a pH-selective electrode enables the cytoplasm and vacuole to be distinguished. The ion-selective barrels of microelectrodes are filled with a sensor cocktail containing several different components. An ion-selective molecule, sensor or exchanger. Membrane solvent or plasticizer. Additives, e.g., lipophilic cation/anion. Membrane matrix to solidify the ion-selective membrane; essential for measurements in plant cells with a cell wall and turgor. For many ions, the ready-made membrane cocktail can be purchased, but the individual chemical components can be bought from suppliers and mixing the cocktail oneself is cheaper. For commercially available liquid membrane cocktails, the membrane matrix is not normally included. A matrix is needed if the microelectrodes are to be used in plants because cell turgor will displace a liquid membrane from the electrode tip, thereby changing or eliminating the sensitivity to the measuring ion. The matrix used is usually a high molecular weight poly(vinyl chloride), but can include other polymers, such as nitrocellulose for additional strength.

  14. Performance of a Rain Barrel Sharing Network under Climate Change

    Directory of Open Access Journals (Sweden)

    Seong Jin Noh

    2015-07-01

    Full Text Available Rain barrels can be technically shared through social practices or mutual agreement between individual households. This study proposes the evaluation system for a rain barrel sharing network (RBSN considering three performance criteria of reliability, resiliency, and vulnerability, under plausible climate change scenarios. First, this study shows how the system can be improved in terms of the performance criteria using historical daily rainfall data based on the storage-reliability-yield relationship. This study then examined how the benefits from RBSN are affected by climate change after 100 years. Three climate change scenarios (A1B, A2 and B2 and three global circulation models were used for this purpose. The results showed that the reliability and vulnerability are improved due to sharing and their improvements become larger under climate change conditions. In contrast, the resiliency reduces slightly due to sharing and its reduction is attenuated under climate change conditions. In particular, vulnerability will be reduced significantly under climate change. These results suggest that the sharing of various water resources systems can be an effective climate change adaptation strategy that reduces vulnerability and increases the reliability of the system.

  15. ATLAS TRT 2002 Workshop

    CERN Multimedia

    Capeans, M.

    Starting on 17th May, the ATLAS TRT 2002 Workshop was organised by Ken MacFarlane and his team at Hampton University, Virginia, USA. During a welcome break in the very dense workshop programme, the group enjoyed a half-day long boat trip along the waterways, offering a first-hand look at the history and heritage of this part of America. The attendance during the six-day workshop was about 50 people representing most of the collaborating institutes, although many Russian colleagues had stayed in their institutes to pursue the start-up of end-cap wheel production at PNPI and DUBNA. The meeting clearly showed that, during the year 2002, the TRT community is focusing on final design issues and module/wheel construction, while moving at the same time towards acceptance testing and integration, including the front-end electronics. The two main topics treated at the workshop were the preparation for beginning full production of the FE electronics, and the wire-joint problem that the US barrel colleagues have been fa...

  16. The ATLAS semiconductor tracker

    CERN Document Server

    Mikuz, Marko

    2003-01-01

    The ATLAS Semiconductor Tracker (SCT) is presented. About 16000 silicon micro-strip sensors with a total active surface of over 60 m **2 and with 6.3 million read-out channels are built into 4088 modules arranged into four barrel layers and nine disks covering each of the forward regions up to an eta of 2.5. Challenges are imposed by the hostile radiation environment with particle fluences up to 2 multiplied by 10**1**4 cm**-**2 1 MeV neutron NIEL equivalent and 100 kGy TID, the 25 ns LHC bunch crossing time and the need for a hermetic, lightweight tracker. The solution adopted is carefully designed strip detectors operated at -7 degree C, biased up to 500 V and read out by binary radhard fast BiCMOS electronics. A zero-CTE carbon fibre structure provides mechanical support. 30 kW of power are supplied on aluminiutn/Kapton tapes and cooled by C//3F//8 evaporative cooling. Data and commands are transferred by optical links. Prototypes of detector modules have been built, irradiated to the maximum expected flue...

  17. ATLAS Transition Region Upgrade at Phase-1

    CERN Document Server

    Song, H; The ATLAS collaboration

    2014-01-01

    This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...

  18. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector (ID) of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules with a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each side of the barrel). The SCT silicon microstrip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICs ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational ever since. Calibration data has been taken regularly and analysed to determine the noise performance of the system. ...

  19. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Johansson, Per; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analyzed to determine the noise performance of the ...

  20. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analysed to determine the noise performance of the ...

  1. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's last radial layer can assist in muon tagging using Level-1 muon trigger. It can help in the rejection of fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for Phase-0 upgrade ATLAS program (2013-2014) was the activation of the TileCal third layer signal for assisting the muon trigger at 1.0<|η|<1.3 (Tile-Muon Trigger). This report describes the Tile-Muon Trigger at TileCal upgrade activities, focusing on the new on-detector electronics such as Tile Muon Digitizer Board (TMDB) to provide (receive and digitize) the signal from eight TileCal modules to three Level-1 muon endcap sector logic blocks.

  2. Studies of the ATLAS Inner Detector material using $\\sqrt{s}=$13 TeV $pp$ collision data

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The ATLAS Inner Detector comprises three different technologies: the Pixel detector (Pixel), the silicon strip tracker (SCT), and the transition radiation drift tube tracker (TRT). The material in the ATLAS Inner Detector is studied with several methods, using the $pp$ collision sample collected at $\\sqrt{s}=$13 TeV in 2015. The material within the innermost barrel regions of the ATLAS Inner Detector is studied using reconstructed hadronic interaction and photon conversion vertices from samples of minimum bias events. It was found that the description of the Insertable B-Layer, which is the new, innermost Pixel layer installed in 2014, in the geometry model was missing some material components. After updating the model, data and simulation show good agreement at the barrel region. The Pixel services (cables, cooling pipes, support trays) were modified between the Pixel and SCT detectors in 2014. The material in this region is also studied by investigating the efficiency with which tracks reconstructed only in...

  3. Level 1 Tau trigger performance in 2016 data and VBF seeds at Level 1 trigger

    CERN Document Server

    CMS Collaboration

    2017-01-01

    After the first long shutdown, the LHC has restarted at a centre-of-mass energy of 13 TeV. In 2016, the LHC achieved an instantaneous luminosity larger than $10^{34}$ $\\mathrm{cm}^{-2}\\cdot \\mathrm{s}^{-1}$ and a peak average pile-up of more than 40. The CMS Level-1 trigger architecture has undergone a full upgrade in order to maintain and improve the trigger performance under these new conditions. It allows CMS to keep the trigger rate under control and to avoid a significant increase in trigger thresholds that would have a negative impact on the CMS physics program. Studies of the performance of the calorimeter trigger upgrade for tau leptons, using the full 2016 dataset (35.9 $\\mathrm{fb}^{-1}$), are shown. Details of the Level-1 trigger algorithms and commissioning may be found in CMS-DP-2015-009, CMS-DP-2015-003, CMS-DP-2015-051 and the CMS Technical Design Report for the Level-1 Trigger upgrade: CERN-LHCC-2013-011, CMS-TDR-12 (2013). Previous performance results, based on the ICHEP 2016 dataset (12.9 ...

  4. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    Ken Bell, RAL

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. See also the document CMS-PHO-OREACH-2006-019. The first two pictures show the two supermodules in their final position. Fig. 3: the "enfourneur" in position on the HB Cradle. Fig. 4: supermodule n. 5 and extension rails being lifted to the enforneur. Figs. 5-6: supermodule approaching the enforneur. Fig. 7: rotating the Enfourneur to the correct phi direction Figs. 8-9: aligning the extension rails with the rails inside HB and view from inside HB, once the rails are aligned. Figs. 10-12: insertion of supermodule n. 5. Fig. ...

  5. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  6. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  7. The ATLAS cryostat comes into the lime-light

    CERN Multimedia

    2002-01-01

    Jean-Jacques Aubert, director of IN2P3, addresses the teams involved in the ATLAS electromagnetic calorimeter. At the rear, the barrel cryostat being equipped. In response to an invitation from IN2P3, the French national institute for nuclear and particle physics, the ATLAS experiment teams have celebrated progress made in the construction of their Liquid Argon Detector. In particular they wanted to salute the arrival of the cryostat for one of the end-caps, built by the company Simic in Italy. The second is expected at the end of January 2003. The cryostats are the fruit of a collaboration between IN2P3, the Max Planck Institute in Munich and the German Ministry for education and research (BMBF). The barrel cryostat arrived from Japan last year. The three cryostats will contain four types of different detectors made by the collaboration. They will contain in total nearly 400 modules including electromagnetic modules. More than half the modules for one of the two electromagnetic calorimeter barrels have bee...

  8. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Conveyor for moving and draining block or barrel... and Grading Service 1 Equipment and Utensils § 58.425 Conveyor for moving and draining block or barrel cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be easily...

  9. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits.

    NARCIS (Netherlands)

    Schubert, D.; Kotter, R.; Staiger, J.F.

    2007-01-01

    Synaptic circuits bind together functional modules of the neocortex. We aim to clarify in a rodent model how intra- and transcolumnar microcircuits in the barrel cortex are laid out to segregate and also integrate sensory information. The primary somatosensory (barrel) cortex of rodents is the ideal

  10. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Science.gov (United States)

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti.

  11. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    Science.gov (United States)

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  12. Elastic Surface Model For Beta-Barrels: Geometric, Computational, And Statistical Analysis.

    Science.gov (United States)

    Toda, Magdalena; Zhang, Fangyuan; Athukorallage, Bhagya

    2018-01-01

    Over the past 2 decades, many different geometric models were created for beta barrels, including, but not limited to: cylinders, 1-sheeted hyperboloids, twisted hyperboloids, catenoids, and so forth. We are proponents of an elastic surface model for beta-barrels, which includes the minimal surface model as a particular case, but is a lot more comprehensive. Beta barrel models are obtained as numerical solutions of a boundary value problem, using the COMSOL Multiphysics Modeling Software. We have compared them against the best fitting statistical models, with positive results. The geometry of each individual beta barrel, as a rotational elastic surface, is determined by the ratio between the exterior diameter and the height. Through our COMSOL computational modeling, we created a rather large variety of generalized Willmore surfaces that may represent models for beta barrels. The catenoid is just a particular solution among all these shapes. © 2017 Wiley Periodicals, Inc.

  13. Comparison between Malolactic Fermentation Container and Barrel Toasting Effects on Phenolic, Volatile, and Sensory Profiles of Red Wines.

    Science.gov (United States)

    González-Centeno, María Reyes; Chira, Kleopatra; Teissedre, Pierre-Louis

    2017-04-26

    Ellagitannin and anthocyanin profiles, woody volatile composition, and sensory properties of wines in which malolactic fermentation (MLF) took place in barrels or stainless steel tanks, have been compared after 12 months of barrel aging. Three different barrel toastings were evaluated. Barrel-fermented wines generally presented 1.2-fold higher total phenolics, whereas tank-fermented wines exhibited 1.1- and 1.2-fold greater total proanthocyanidin and anthocyanin contents, respectively. Concerning ellagitannin composition, the barrel toasting effect seemed to be more important than differences due to MLF container. Certain woody and fruity volatiles varied significantly (p wines were preferred in the mouth, whereas olfactory preference depended on barrel toasting. This is the first study that evaluates the impact of oak wood during MLF on ellagitannin wine composition, as well as the barrel toasting effect on wine attributes during aging when MLF occurred whether in barrels or in tanks.

  14. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  15. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    CERN Document Server

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...

  16. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    CERN Document Server

    Clark, A G; Donega, M; Ferrère, D; Fortin, R; García, J E; González, S; Hirt, C; Ikegami, Y; Kagan, H; Kohriki, T; Kondo, T; Lindsay, S; MacPherson, A; Mangin-Brinet, M; Mikulec, B; Moorhead, G F; Niinikoski, T O; Pernegger, H; Perrin, E; Roe, S; Taylor, G N; Terada, S; Unno, Y; Vos, M; Wallny, R; Weber, M

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued.

  17. Response Uniformity of the ATLAS Liquid Argon Electromagnetic Calorimeter

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Wingerter-Seez, I; Zitoun, R; Lanni, F; Lü, L; Ma, H; Rajagopalan, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Gao, Y; Stroynowsk, R; Aleksa, M; Carli, T; Fassnacht, P; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Malek, F; Martin, P; Viret, S; Leltchouk, M; Parsons, J A; Simion, S; Barreiro, F; Del Peso, J; Labarga, L; Oliver, C; Rodier, S; Barrillon, P; Benchouk, C; Djama, F; Hubaut, F; Monnier, E; Pralavorio, P; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandell, L; Mazzanti, M; Tartarelli, F; Kotov, K; Maslennikov, A; Pospelov, G; Tikhonov, Yu; Bourdarios, C; Fayard, L; Fournier, D; Iconomidou-Fayard, L; Kado, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Dekhissi, B; Derkaoui, J; EL Kharrim, A; Maaroufi, F; Cleland, W; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, Ph; Ghazlane, H; Cherkaoui El Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindlingy, J; Lund-Jensen, B

    2007-01-01

    The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.

  18. Status of the ATLAS tile hadronic calorimeter production

    CERN Document Server

    Henriques, A

    2002-01-01

    The status of the construction of the ATLAS TILECAL hadron calorimeter is reported. The various aspects of the construction started at the end of 1998: mechanics, optics, instrumentation, certification and final integration will be presented. At present 80% of the 3 cylinders: 1 barrel and 2 extended barrels is fully instrumented and stored at CERN. Various quality control steps are done during the components production and during the modules instrumentation. An evaluation of the modules uniformity extracted during the final certification using a radioactive /sup 137/Cs source is shown. The status of the electronics production and the modules performance extracted during the calibration with particle beams are described in other talks of this conference presented by M. Varanda, F. Martin and S. Nemecek. (2 refs).

  19. Level 1 Electric Vehicle Charging Stations at the Workplace

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Margaret [Energetics Incorporated, Columbia, MD (United States)

    2016-07-29

    Level 1 charging (110-120 V) can be a good fit for many workplace charging programs. This document highlights the experiences of a selection of Workplace Charging Challenge partners that use Level 1 charging.

  20. Radiation induced effects in the \\\\ATLAS Insertable B-Layer readout chip

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The ATLAS Insertable B-Layer is the innermost pixel barrel layer of the ATLAS detector installed in 2014. During the first year of $pp$ collisions at $\\sqrt{s} = 13~{\\rm TeV}$ in 2015, an unusual increase was observed in the low voltage currents of the readout chips. This increase was found to be due to radiation damage to the chips. The dependence of the current on the total ionising dose and temperature has been studied using X-ray and proton beam sources, and will be presented in this note together with its possible parametrisation and operation guidelines for the detector.

  1. Dynamics of inner ear pressure release, measured with a double-barreled micropipette in the guinea pig

    NARCIS (Netherlands)

    Wit, HP; Thalen, EO; Albers, FWJ

    The inner ear, fluid pressure was measured in scala media of the guinea pig through one barrel of a double-barreled micropipette after a sudden volume increase or decrease, caused by injection or withdrawal of artificial endolymph through the other barrel. During injection or withdrawal, the inner

  2. A proposal to upgrade the ATLAS RPC system for the High Luminosity LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    The architecture of the present trigger system in the ATLAS Muon Barrel was designed according to a reference luminosity of 10^34 cm-2 s-1 with a safety factor of 5, with respect to the simulated background rates, now confirmed by LHC Run-1 data. HL-LHC will provide a luminosity 5 times higher and an order of magnitude higher background. As a result, the performance demand increases, while the detector being susceptible to ageing effects. Moreover, the present muon trigger acceptance in the barrel is just above 70%, due to the presence of the barrel toroid structures. This scenario induced the ATLAS muon Collaboration to propose an appropriate upgrade plan, involving both detector and trigger-readout electronics, to guarantee the performance required by the physics program for the 20 years scheduled. This consists in installing a layer of new generation RPCs in the inner barrel, to increase the redundancy, the selectivity, and provide almost full acceptance. The first 10% of the system, corresponding to the e...

  3. Fluorocarbon evaporative cooling developments for the ATLAS pixel and semiconductor tracking detectors

    CERN Document Server

    Anderssen, E; Berry, S; Bonneau, P; Bosteels, Michel; Bouvier, P; Cragg, D; English, R; Godlewski, J; Górski, B; Grohmann, S; Hallewell, G D; Hayler, T; Ilie, S; Jones, T; Kadlec, J; Lindsay, S; Miller, W; Niinikoski, T O; Olcese, M; Olszowska, J; Payne, B; Pilling, A; Perrin, E; Sandaker, H; Seytre, J F; Thadome, J; Vacek, V

    1999-01-01

    Heat transfer coefficients 2-5.103 Wm-2K-1 have been measured in a 3.6 mm I.D. heated tube dissipating 100 Watts - close to the full equivalent power (~110 W) of a barrel SCT detector "stave" - over a range of power dissipations and mass flows in the above fluids. Aspects of full-scale evaporative cooling circulator design for the ATLAS experiment are discussed, together with plans for future development.

  4. Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities.

    Directory of Open Access Journals (Sweden)

    Bard Ermentrout

    2009-10-01

    Full Text Available Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains.

  5. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation.

    Science.gov (United States)

    Barrera, Kyrstle; Chu, Philip; Abramowitz, Jason; Steger, Robert; Ramos, Raddy L; Brumberg, Joshua C

    2013-04-01

    In rodents, the barrel cortex is a specialized area within the somatosensory cortex that processes signals from the mystacial whiskers. We investigated the normal development of myelination in the barrel cortex of mice, as well as the effects of sensory deprivation on this pattern. Deprivation was achieved by trimming the whiskers on one side of the face every other day from birth. In control mice, myelin was not present until postnatal day 14 and did not show prominence until postnatal day 30; adult levels of myelination were reached by the end of the second postnatal month. Unbiased stereology was used to estimate axon density in the interbarrel septal region and barrel walls as well as the barrel centers. Myelin was significantly more concentrated in the interbarrel septa/barrel walls than in the barrel centers in both control and sensory-deprived conditions. Sensory deprivation did not impact the onset of myelination but resulted in a significant decrease in myelinated axons in the barrel region and decreased the amount of myelin ensheathing each axon. Visualization of the oligodendrocyte nuclear marker Olig2 revealed a similar pattern of myelin as seen using histochemistry, but with no significant changes in Olig2+ nuclei following sensory deprivation. Consistent with the anatomical results showing less myelination, local field potentials revealed slower rise times following trimming. Our results suggest that myelination develops relatively late and can be influenced by sensory experience. Copyright © 2012 Wiley Periodicals, Inc.

  6. An R&D programme on alternative technologies for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Appelquist, G; Bohm, C; Engström, M; Hellman, S; Holmgren, S O; Johansson, E; Yamdagni, N; Zhao, X; Sundblad, R; Ödmark, A; Bodo, P; Elderstig, H; Hentzell, H; Lindgren, S; Tober, M; Johansson, H; Svensson, C; Yuan, J R; Mohktari, M; Ellis, Nick

    1995-01-16

    This note describes a first-level calorimeter trigger processor designed to take advantage of new possibilities that arise as a consequence of modern design techniques and components such as optical interconnections, application specific integrated circuits (ASICs) and multi-chip modules (MCMs). The design is homogeneous down to the trigger cell level. This means that no boundary effects occur due to the system partitioning. The construction presented relies mainly on two different types of highly complex ASICs for processing and an MCM for opto-electrical conversion of input data. The trigger processor performs electron/photon identification, jet detection and missing ET calculations for the central first-level trigger and region of interest (RoI) selection for the second-level trigger. Exploring the possibilities given by advanced technologies leads to a first-level trigger architecture with advantages over more traditional designs, allowing, for example, higher precision calculations. Remaining degrees of ...

  7. A compact pre-processor system for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Pfeiffer, U

    1999-01-01

    This thesis describ es the researc h whose aim is to dev elop a compact Pre-Pro cessor system for the A TLAS Lev el-1 Calorimeter T rigger. Con tributions to the p erformance and the arc hitecture of the Pre-Pro cessor w ere made. A demonstrator Multi-Chip Mo dule (PPrD- MCM) w as dev elop ed and assem bled whic h p erforms most of the prepro cessing of four analogue trigger-to w er signals. The prepro cessing includes digitisation to 8-bit precision, iden ti cation of the corresp onding bunc h-crossing in time (BCID), calibration of the transv erse energy , readout of ra w trigger data, and high-sp eed serial data transmission to the trigger pro cessors. The demonstrator Multi-Chip Mo dule has a size of 15.9 cm 2 and it consists of 9 dies. The MCM w as designed with a smallest feature size of 100 m and it w as fabricated in a laminated MCM-L pro cess o ered b yW urth Elektronik. A Flip-Chip in terconnection ASIC (Finco) w as dev elop ed for the PPrD-MCM and fabricated in a 0.8 m BiCMOS- pro cess o ered b ...

  8. Vertex finding performance studies for the Phase II CMS Level-1 Trigger

    CERN Document Server

    Udrescu, Silviu Marian

    2017-01-01

    At the HL-LHC, a significant increase in the luminosity delivered to CMS will result in a pileup per bunch crossing of 140-200. This provides a difficult environment to obtain reliable physics results and keep trigger rates manageable. In order to mitigate this problem, tracker information will be used, for the first time, at the Level-1 (L1) trigger. This will allow the primary vertex reconstruction at L1. In this report, an investigation into the vertex finding performance of a potential algorithm is presented. The vertex finding efficiency was measured as a function of several variables, such as the percentage of tracks associated to the primary vertex within the barrel and the pT of the tracks. The efficiency was found to not depend significantly on the pileup for the samples analyzed, however, a strong dependence was observed on the number of tracks associated with the primary vertex.

  9. Geometry optimization of a barrel silicon pixelated tracker

    Science.gov (United States)

    Liu, Qing-Yuan; Wang, Meng; Winter, Marc

    2017-08-01

    We have studied optimization of the design of a barrel-shaped pixelated tracker for given spatial boundaries. The optimization includes choice of number of layers and layer spacing. Focusing on tracking performance only, momentum resolution is chosen as the figure of merit. The layer spacing is studied based on Gluckstern’s method and a numerical geometry scan of all possible tracker layouts. A formula to give the optimal geometry for curvature measurement is derived in the case of negligible multiple scattering to deal with trajectories of very high momentum particles. The result is validated by a numerical scan method, which could also be implemented with any track fitting algorithm involving material effects, to search for the optimal layer spacing and to determine the total number of layers for the momentum range of interest under the same magnetic field. The geometry optimization of an inner silicon pixel tracker proposed for BESIII is also studied by using a numerical scan and these results are compared with Geant4-based simulations. Supported by National Natural Science Foundation of China (U1232202)

  10. Lens barrel design of the NIRST IR Camera

    Science.gov (United States)

    Côté, Patrice; Leclerc, Mélanie; Châteauneuf, François; Marraco, Hugo

    2009-08-01

    The use of uncooled microbolometer detectors for space infrared (IR) imaging application requires high optical throughput, which leads to very fast optical design (~f/1). This directly translates into stringent requirements for components, assembly and alignment. The Institut National d'Optique (INO) in Quebec City, Canada, designed such a system for the NIRST IR Camera. The instrument is part of the Aquarius/SAC-D satellite, a cooperative mission conducted jointly by NASA and the Comisión Nacional de Actividades Espaciales (CONAE) of Argentina. Due to the tight volume and mass allocation, the NIRST camera module is an all refractive design. Since the Camera is made of two lens barrels co-registered to cover the same ground area at different wavelength bands, it also adds coregistration alignment constraints. This paper presents the optomechanical solutions and alignment scheme that enabled the successful design and flight qualification. Trade-off study between thermally induced stress and structural stiffness of the lens RTV bond is discussed. Special attention is given to lens subcell alignment integrity under random vibration encountered during launch. Detailed Finite Element Analysis (FEA) is used to check early design assumptions. Test results of the final vibration campaign are also presented.

  11. Double barreled wet colostomy: initial experience and literature review.

    Science.gov (United States)

    Salgado-Cruz, Luis; Espin-Basany, Eloy; Vallribera-Valls, Francesc; Sanchez-Garcia, Jose; Jimenez-Gomez, Luis Miguel; Marti-Gallostra, Marc; Garza-Maldonado, Ana

    2014-01-01

    Pelvic exenteration and multivisceral resection in colorectal have been described as a curative and palliative intervention. Urinary tract reconstruction in a pelvic exenteration is achieved in most cases with an ileal conduit of Bricker, although different urinary reservoirs have been described. A retrospective and observational study of six patients who underwent a pelvic exenteration and urinary tract reconstruction with a double barreled wet colostomy (DBWC) was done, describing the preoperative diagnosis, the indication for the pelvic exenteration, the complications associated with the procedure, and the followup in a period of 5 years. A literature review of the case series reported of the technique was performed. Six patients had a urinary tract reconstruction with the DBWC technique, 5 male patients and one female patient. Age range was from 20 to 77 years, with a medium age 53.6 years. The most frequent complication presented was a pelvic abscess in 3 patients (42.85%); all complications could be resolved with a conservative treatment. In the group of our patients with pelvic exenteration and urinary tract reconstruction with a DBWC, it is a safe procedure and well tolerated by the patients, and most of the complications can be resolved with conservative treatment.

  12. Open heavy flavour reconstruction in the ALICE central barrel

    CERN Document Server

    Prino, Francesco

    2008-01-01

    The ALICE experiment will be able to detect open charm and beauty hadrons in proton-proton and heavy ion collisions in the new energy regime of the CERN Large Hadron Collider (LHC). Heavy flavours are a powerful tool to investigate the medium created in high energy nucleus--nucleus interactions because they are produced in the hard scatterings occurring at early times and, thanks to their long lifetime on the collision timescale, they probe all the stages of the system evolution. The detectors of the ALICE central barrel ($-0.9 < \\eta < 0.9$) will allow to track charged particles down to low transverse momentum ($\\approx$ 100 MeV/$c$) and will provide hadron and electron identification as well as an accurate measurement of the positions of primary and secondary vertices. It will therefore be possible to measure the production of open heavy flavours in the central rapidity region down to low transverse momentum, exploiting the semi-electronic and the hadronic decay channels. Here we present a general ove...

  13. Morphological heterogeneity of layer VI neurons in mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Abrams, Svetlana; Pinhas, Alex; Brumberg, Joshua C

    2009-02-20

    Understanding the basic neuronal building blocks of the neocortex is a necessary first step toward comprehending the composition of cortical circuits. Neocortical layer VI is the most morphologically diverse layer and plays a pivotal role in gating information to the cortex via its feedback connection to the thalamus and other ipsilateral and callosal corticocortical connections. The heterogeneity of function within this layer is presumably linked to its varied morphological composition. However, so far, very few studies have attempted to define cell classes in this layer using unbiased quantitative methodologies. Utilizing the Golgi staining technique along with the Neurolucida software, we recontructed 222 cortical neurons from layer VI of mouse barrel cortex. Morphological analyses were performed by quantifying somatic and dendritic parameters, and, by using principal component and cluster analyses, we quantitatively categorized neurons into six distinct morphological groups. Additional systematic replication on a separate population of neurons yielded similar results, demonstrating the consistency and reliability of our categorization methodology. Subsequent post hoc analyses of dendritic parameters supported our neuronal classification scheme. Characterizing neuronal elements with unbiased quantitative techniques provides a framework for better understanding structure-function relationships within neocortical circuits in general.

  14. High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons.

    Directory of Open Access Journals (Sweden)

    Vicente Reyes-Puerta

    2015-06-01

    Full Text Available The manner in which populations of inhibitory (INH and excitatory (EXC neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels the activity of cell ensembles (of up to 74 neurons distributed along all layers of 3-4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency we show that individual INH neurons--classified as such according to their distinct extracellular spike waveforms--discriminate better between restricted sets of stimuli (≤6 stimulus classes than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy - a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity.

  15. Barrel Toroid fully charged to nominal field, and it works!

    CERN Document Server

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  16. Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Baillon, Paul; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Bialas, Wojciech; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton, David; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Del Re, Daniele; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl, James; Gras, Philippe; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel De Montechenault, G; Hansen, Magnus; Heath, Helen F; Hill, Jack; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, M A; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman, Harvey B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Y; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; Triantis, F A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Jia-Wen; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2007-01-01

    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.

  17. Double Barreled Wet Colostomy: Initial Experience and Literature Review

    Directory of Open Access Journals (Sweden)

    Luis Salgado-Cruz

    2014-01-01

    Full Text Available Background. Pelvic exenteration and multivisceral resection in colorectal have been described as a curative and palliative intervention. Urinary tract reconstruction in a pelvic exenteration is achieved in most cases with an ileal conduit of Bricker, although different urinary reservoirs have been described. Methods. A retrospective and observational study of six patients who underwent a pelvic exenteration and urinary tract reconstruction with a double barreled wet colostomy (DBWC was done, describing the preoperative diagnosis, the indication for the pelvic exenteration, the complications associated with the procedure, and the followup in a period of 5 years. A literature review of the case series reported of the technique was performed. Results. Six patients had a urinary tract reconstruction with the DBWC technique, 5 male patients and one female patient. Age range was from 20 to 77 years, with a medium age 53.6 years. The most frequent complication presented was a pelvic abscess in 3 patients (42.85%; all complications could be resolved with a conservative treatment. Conclusion. In the group of our patients with pelvic exenteration and urinary tract reconstruction with a DBWC, it is a safe procedure and well tolerated by the patients, and most of the complications can be resolved with conservative treatment.

  18. The LECCE cosmic ray testing facility for the ATLAS RPC

    Science.gov (United States)

    Bianco, M.; Cataldi, G.; Chiodini, G.; Coluccia, M. R.; Gorini, E.; Grancagnolo, F.; Perrino, R.; Primavera, M.; Spagnolo, S.; Tassielli, G.

    2006-09-01

    A detailed description of a dedicated facility built in the Lecce INFN and Physics Department High Energy Laboratory to test part of the Resistive Plate Counters (RPCs) of the ATLAS barrel muon spectrometer is presented. In this cosmic ray test stand the chambers are operated for the first time, after being assembled and equipped with all required services for gas and electrical connections. A complete set of measurements is performed on each chamber in order to certificate its quality and performances before the installation in the experiment.

  19. Construction of the ATLAS B0 model coil

    CERN Document Server

    Daël, A; Alessandria, F; Berriaud, C; Berthier, R; Broggi, F; Mayri, C; Pabot, Y; Rey, J M; Reytier, M; Rossi, L; Sorbi, M; Van Hille, H; Volpini, G; Sun, Z

    2001-01-01

    The B0 coil is a technological model for the ATLAS Barrel Toroid coils. The major concepts and the construction procedures are the same as those specified for the BT coils. So the manufacturing feasibility has been extensively proved and the technological developments have been carried out for the industrial production of the conductor, the welding technique of the coil casing, the prestress of the coil with bladders, the cold to warm supports, the construction and assembly of the cryostat. The paper illustrates all these phases. (4 refs).

  20. Carbon fiber plates production for the CMS tracker outer barrel detector

    Energy Technology Data Exchange (ETDEWEB)

    Lanfranco, Giobatta; /Fermilab

    2001-03-01

    The production methods together with the achieved flatness and thickness of the composite support structures of the CMS tracker outer barrel (TOB) detector are presented. Possible areas of improvement in the process and in the materials used are also suggested.

  1. External barrel temperature of a small bore olympic rifle and shooting precision.

    Science.gov (United States)

    Gladyszewska, B; Baranowski, P; Mazurek, W; Wozniak, J; Gladyszewski, G

    2013-03-01

    Investigations on changes in a rifle's barrel temperature during shooting in a rhythm typical for practitioners of Olympic shooting sports are presented. Walther KK300 (cal. 5.6 mm), a typical rifle often used in Olympic competitions, R50 RWS ammunition and a high speed thermographic camera were used in the study. Altair version 5 software was used to process thermal images and a stationary wavelet transform was applied to denoise signals for all the studied points. It was found that the temperature of the rifle barrel does not exceed 0.3°C after one shot whereas the total temperature increase does not exceed 5°C after taking 40 shots and does not affect the position of the hitting point on a target. In fact, contrary to popular belief, the so-called "warming shots" are not done for barrel heating but for cleaning of remnants in the barrel.

  2. Dynamics and Stability of Stepped Gun-Barrels with Moving Bullets

    Directory of Open Access Journals (Sweden)

    Mohammad Tawfik

    2008-01-01

    reintroduced using simple eigenvalue analysis of a finite element model. The eigenvalues of the beam change with the mass, speed, and position of the projectile, thus, the eigenvalues are evaluated for the system with different speeds and masses at different positions until the lowest eigenvalue reaches zero indicating the instability occurrence. Then a map for the stability region may be obtained for different boundary conditions. Then the dynamics of the beam will be investigated using the Newmark algorithm at different values of speed and mass ratios. Finally, the effect of using stepped barrels on the stability and the dynamics is going to be investigated. It is concluded that the technique used to predict the stability boundaries is simple, accurate, and reliable, the mass of the barrel on the dynamics of the problem cannot be ignored, and that using the stepped barrels, with small increase in the diameter, enhances the stability and the dynamics of the barrel.

  3. First half-barrel of the CMS hadron calorimeter successfully asembled

    CERN Multimedia

    2001-01-01

    The first half barrel of the CMS hadron calorimeter has been assembled in the CMS construction hall in Cessy (neighbouring France), called SX5, in October 2001. The picture sequence shows the insertion of the last (the keystone) wedge. It is lifted up to the top of the structure and carefully inserted into the half barrel. Photos 6 and 7 show the HB- in SX5.

  4. Energy calibration of the barrel calorimeter of the CMD-3 detector

    Science.gov (United States)

    Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Bondar, A. E.; Grebenuk, A. A.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Mikhailov, K. Yu.; Logashenko, I. B.; Razuvaev, G. P.; Ruban, A. A.; Shebalin, V. E.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2017-04-01

    The VEPP-2000 e+e- collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  5. Short barrel DHS plates for the treatment of intertrochanteric hip fractures in Indian population

    Directory of Open Access Journals (Sweden)

    Agrawala Sanjay

    2006-01-01

    Full Text Available Background : The dynamic hip screw has appeared to be a reliable answer for intertrochanteric fractures. Intertrochanteric fractures are composed of different anatomic patterns that vary in their degree of stability. However insufficient impaction allowed by the implant may have an adverse effect on fracture healing. Methods : One hundred and four patients were divided in two groups and followed up for one year, mean age was 78.2 years. The ninety patients in group I were fixed with short barrel plate and screws of 75mm or less while fourteen patients in group II were treated with standard barrel plate and screws of 80mm or more. Results : In patients treated with short barrel DHS four out of 90 fractures in group 1 did not heal while in group 2 one out of fourteen did not heal due to failure of standard barrel plate to accommodate the collapse of the fracture fragments. We observed a healing rate of 100% at 3 months. Conclusion : The DHS is reliable for intertrochanteric fractures. However the results of our study support the use of short barrel plates rather than standard barrel plates in Indian population with shorter femoral head and neck length to allow sufficient slide when using dynamic screws of 75 mm or less.

  6. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels.

    Science.gov (United States)

    Ye, Dong-Qing; Zheng, Xiao-Tian; Xu, Xiao-Qing; Wang, Yun-He; Duan, Chang-Qing; Liu, Yan-Lin

    2016-07-01

    The evolution of volatile sulfur compounds (VSCs) in Cabernet Sauvignon wines from seven regions of China during maturation in oak barrels was investigated. The barrels were made of different wood grains (fine and medium) and toasting levels (light and medium). Twelve VSCs were quantified by GC/FPD, with dimethyl sulfide (DMS) and methionol exceeding their sensory thresholds. Most VSCs tended to decline during the aging, while DMS was found to increase. After one year aging, the levels of DMS, 2-methyltetrahy-drothiophen-3-one and sulfur-containing esters were lower in the wines aged in oak barrels than in stainless steel tanks. The wood grain and toasting level of oak barrels significantly influenced the concentration of S-methyl thioacetate and 2-methyltetrahy-drothiophen-3-one. This study reported the evolution of VSCs in wines during oak barrel aging for the first time and evaluated the influence of barrel types, which would provide wine-makers with references in making proposals about wine aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Research on vibration characteristics of gun barrel based on contact model

    Science.gov (United States)

    Zhao, Yang; Zhou, Qizheng; Yue, Pengfei

    2017-04-01

    In order to study vibration characteristics of the gun barrel under the action of moving projectile, the gun barrel is simplified to cross sectional cantilever beam such as Euler. Considering contact conditions of inertia effect and projectile with the gun barrel, the equation of lateral vibration of the gun barrel is established under the projectile-gun coupling effect; the modal analysis method is used to give the analytic solutions of equation series. The effect of the motion parameters the projectile on the vibration of gun barrel is discussed, and characteristics of vibration of gun barrel are further studied under two conditions of repeating and projectile with mass eccentricity. The research results show that reasonable control of the acceleration of the projectile in the gun bore, and reduction of projectile mass eccentricity can help reduce the muzzle vibration at the gun firing. The research results can provide reference for overall design of the gun, and the modeling and analysis method used in the paper can be promoted for the solution of vibration of other related projects under the moving excitation.

  8. Analysis of barrel support saddles and forces between modules during assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, V. J.; High Energy Physics

    2003-04-23

    As the Barrel Tile Calorimeter is constructed, the support saddles and the modules will be subjected to different forces, stresses, and deflections than when completely assembled. The purpose of this analysis is to examine the forces, stresses, and deflections acting on the support saddles and modules at various stages of assembly. The nominal weight of a barrel module is 20 tons. CERN Document number ATL-LB-EA-0001 'Summary of the Structural Analysis of the Barrel Support Saddles' describes in detail the structural analysis of the saddles and the completed barrel assembly. These calculations followed Eurocode 3. This paper examined several load cases which occur during the assembly of the Barrel. The following are the main conclusions: (1) The assembly is not stable until 18 modules are in place, and only then can the support cradle be removed; (2) The forces between modules are nominal and are far less that the forces in the completed cylinder with 64 modules in place and the cryostat load applied; (3) All of the stresses in the connections between modules are within acceptable limits; and (4) The interface between the cryostat supports and the cryostat move approximately 1.0 mm in the X and Y directions when the load of the cryostat is transferred to the Barrel.

  9. Functional diversity of supragranular GABAergic neurons in the barrel cortex

    Directory of Open Access Journals (Sweden)

    Luc J Gentet

    2012-08-01

    Full Text Available Although the neocortex forms a distributed system comprised of several functional areas, its vertical columnar organization is largely conserved across areas and species, suggesting the existence of a canonical neocortical microcircuit. In order to elucidate the principles governing the organization of such a cortical diagram, a detailed understanding of the dynamics binding different types of cortical neurons into a coherent algorithm is essential. Within this complex circuitry, GABAergic interneurons, while forming approximately only 15-20% of all cortical neurons, appear critical in maintaining a dynamic balance between excitation and inhibition. Despite their importance, cortical GABAergic neurons have not been extensively studied in vivo and their precise role in shaping the local microcircuit sensory response still remains to be determined. Their paucity, combined with their molecular, anatomical and physiological diversity, has made it difficult to even establish a consensual nomenclature.However, recent technological advances in microscopy and mouse genetics have fostered a renewed interest in neocortical interneurons by putting them within visible reach of experimenters. The anatomically well-defined whisker-to-barrel pathway of the rodent is particularly amenable to studies attempting to link cortical circuit dynamics to behavior. To each whisker corresponds a discrete cortical unit equivalent to a single column, specialized in the encoding and processing of the sensory information it receives. In this review, we will focus on the functional role that each subtype of supragranular GABAergic neuron embedded within such a single neocortical unit may play in shaping the dynamics of the local circuit during somatosensory integration.

  10. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  11. The Simulation of the ATLAS Liquid Argon Calorimetry

    CERN Document Server

    Archambault, J P; Carli, T; Costanzo, D; Dell'Acqua, A; Djama, F; Gallas, M; Fincke-Keeler, M; Khakzad, M; Kiryunin, A; Krieger, P; Leltchouk, M; Loch, P; Ma, H; Menke, S; Monnier, E; Nairz, A; Niess, V; Oakham, G; Oram, C; Pospelov, G; Rajagopalan, S; Rimoldi, A; Rousseau, D; Rutherfoord, J; Seligman, W; Soukharev, A; Strízenec, P; Tóth, J; Tsukerman, I; Tsulaia, V; Unal, G; Grahn, K J

    2008-01-01

    In ATLAS, all of the electromagnetic calorimetry and part of the hadronic calorimetry is performed by a calorimeter system using liquid argon as the active material, together with various types of absorbers. The liquid argon calorimeter consists of four subsystems: the electromagnetic barrel and endcap accordion calorimeters; the hadronic endcap calorimeters, and the forward calorimeters. A very accurate geometrical description of these calorimeters is used as input to the Geant 4-based ATLAS simulation, and a careful modelling of the signal development is applied in the generation of hits. Certain types of Monte Carlo truth information ("Calibration Hits") may, additionally, be recorded for calorimeter cells as well as for dead material. This note is a comprehensive reference describing the simulation of the four liquid argon calorimeteter components.

  12. Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers

    CERN Document Server

    Levin, DS; The ATLAS collaboration; Dai, T; Diehl, EB; Ferretti, C; Hindes, JM; Zhou, B

    2009-01-01

    The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase.

  13. The ATLAS ITk Strip Detector. Status of R&D

    CERN Document Server

    AUTHOR|(SzGeCERN)727037; The ATLAS collaboration

    2016-01-01

    While the LHC at CERN is ramping up luminosity after the discovery of the Higgs Boson in the ATLAS and CMS experiments in 2012, upgrades to the LHC and experiments are planned. The major upgrade is foreseen for 2024, with a roughly tenfold increase in luminosity, resulting in corresponding increases in particle rates and radiation doses. In ATLAS the entire Inner Detector will be replaced for Phase-2 running with an all-silicon system. This paper concentrates on the strip part. Its layout foresees low-mass and modular yet highly integrated double-sided structures for the barrel and forward region. The design features conceptually simple modules made from electronic hybrids glued directly onto the silicon. Modules will then be assembled on both sides of large carbon-core structures with integrated cooling and electrical services.

  14. SUSY (ATLAS)

    CERN Document Server

    Sopczak, Andre; The ATLAS collaboration

    2017-01-01

    During the data-taking period at LHC (Run-II), several searches for supersymmetric particles were performed. The results from searches by the ATLAS collaborations are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.

  15. ATLAS Story

    CERN Multimedia

    AUTHOR|(CDS)2108663

    2012-01-01

    This film produced in July 2012 explains how fundamental research connects to Society and what benefits collaborative way of working can and may generate in the future, using ATLAS Collaboration as a case study. The film is intellectually inspired by the book "Collisions and Collaboration" (OUP) by Max Boisot (ed.), see: collisionsandcollaboration.com. The film is directed by Andrew Millington (OMNI Communications)

  16. SUSY (ATLAS)

    CERN Document Server

    Sopczak, Andre; The ATLAS collaboration

    2017-01-01

    During the LHC Run-II data-taking period, several searches for supersymmetric particles were performed by the ATLAS collaboration. The results from these searches are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.

  17. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  18. The Tilecal/ATLAS detector control system

    CERN Document Server

    Tomasio Pina, João Antonio

    2004-01-01

    Tilecal is the barrel hadronic calorimeter of the ATLAS detector that is presently being built at CERN to operate at the LHC accelerator. The main task of the Tilecal detector control system (DCS) is to enable the coherent and safe operation of the detector. All actions initiated by the operator and all errors, warnings, and alarms concerning the hardware of the detector are handled by DCS. The DCS has to continuously monitor all operational parameters, give warnings and alarms concerning the hardware of the detector. The DCS architecture consists of a distributed back-end (BE) system running on PC's and different front-end (FE) systems. The implementation of the BE will he achieved with a commercial supervisory control and data acquisition system (SCADA) and the FE instrumentation will consist on a wide variety of equipment. The connection between the FE and BE is provided by fieldbus or L

  19. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  20. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  1. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  2. ATLAS Data Preservation Policy

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The principal intent of this document is to describe the ATLAS policy ensuring that its data are maintained reliably in a form accessible to ATLAS members. A separate document describes the ATLAS policy for making its data available, and potentially useful, to scientists who are not members of ATLAS.

  3. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    CLEAN ROOM TESTING - SET END CAPS Includes woman physics graduate from Oxford. 13.29 Lewis Batchelor putting on overall etc. Then entering SCT BARREL workshop. 16.20 Work on SCT BARREL: Testing for leaks. 25.54 CU Door opening, shoes. 27.10 Assembly transport container (seen later at CERN) 28.49 Exteriors 3 people walking, entering lab.

  4. The ATLAS Semiconductor tracker: operations and performance

    CERN Document Server

    Pani, P; The ATLAS collaboration

    2013-01-01

    Tracker After more than 3 years of successful operation at the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is part of the ATLAS experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibers. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very cl...

  5. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  6. The ATLAS semiconductor tracker: operations and performance

    CERN Document Server

    D'Auria, S; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar {it p}-in-{it n} technology. The signals are processed in the front-end ASICS ABCD3TA, working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current results from the successful operation of the SCT Detector at the LHC and its status af...

  7. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). In the talk the current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. We will report on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk damage due to non-ionising radiation. The main emphasis will be given to the tracking performance of the SCT and the data quality during the >2 ye...

  8. Tests of Local Hadron Calibration approaches in ATLAS Combined Beam Tests

    CERN Document Server

    Pospelov, G; The ATLAS collaboration

    2010-01-01

    The three Atlas calorimeter systems in the region of the forward crack at |eta| = 3.2 in the nominal Atlas setup and a typical section of the two barrel calorimeters at |eta| = 0.45 of Atlas have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap testbeam. The local hadronic calibration approach as used in the full Atlas setup has been applied to the endcap test beam data. An extension of it using layer correlations has been tested on the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to MC simulations are presented.

  9. Tests of Local Hadron Calibration Approaches in ATLAS Combined Beam Tests

    CERN Document Server

    Grahn, KJ; The ATLAS collaboration; Pospelov, G

    2010-01-01

    Three ATLAS calorimeters in the region of the forward crack at $|eta| = 3.2$ in the nominal ATLAS setup and a typical section of the two barrel calorimeters at $|eta| = 0.45$ of ATLAS have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap testbeam. The local hadronic calibration approach as used in the full Atlas setup has been applied to the endcap testbeam data. An extension of it using layer correlations has been tested with the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to Monte-Carlo simulations are presented.

  10. Level-1 Data Driver Card - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2017-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with multiple front-end electronic boards. It collects the Level-1 data along with monitoring data and transmits them to a network interface through bidirectional and/or unidirectional fiber links at 4.8 Gbps each. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach the 1 MHz. Three different types of L1DDC boards will be fabricated handling up to 10.080 Gbps of user data. It consist of custom made radiation tolerant ASICs: the GigaBit Transceiver (GBTx), the FEAST DC-DC converter, the Slow Control Adapter (SCA), and the Versatile Tranceivers (VTRX) and transmitters (VTTX). The overall scheme of the data acquis...

  11. Level-1 $\\tau$ trigger performance in 2017 data

    CERN Document Server

    CMS Collaboration

    2018-01-01

    In 2017, the LHC achieved an instantaneous luminosity of 2.06x10$^{34}$cm$^{-2}$s$^{-1}$, and a peak average pile-up of more than 50. This document describes the performance of the CMS Level-1 calorimeter trigger for $\\tau$ leptons using 40.9 fb$^{-1}$ of 2017 data. Details of the Level-1 trigger algorithms can be found in CMS-DP-2015-009. The previous Level-1 $\\tau$ performance report can be found in CMS-DP-2017-022.

  12. The Phase-II ATLAS ITk Pixel Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349918; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase~2 shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 $\\mathrm{m^2}$ of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| $<4$. Supporting structures will be based on low mass, highly stabl...

  13. MISR Level 1A Navigation Data V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Reformatted Annotated Level 1A Product for the Navigation Data, which contains samples of the EOS-AM1 Platform position and attitude data. (Suggested...

  14. MISR Level 1B1 Radiance Data V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The MISR Level 1B1 Radiance data product contains spectral radiances for all MISR channels. Each radiance value represents the incident radiance averaged over the...

  15. AIRS/Aqua Level 1B Calibration subset V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level-1B calibration subset including clear cases, special calibration sites, random nadir spots, and high clouds. The Atmospheric Infrared Sounder (AIRS)...

  16. MODIS/Terra Granule Level 1B RGB Jpeg image

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOBRGB is a thermal composit Jpeg image product generated using parameters from Terra Level 1B Subsampled Calibrated Radiances product (MOD02SSH). For more...

  17. MODIS/Aqua Granule Level 1B RGB Jpeg image

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYBRGB is a thermal composit Jpeg image product generated using parameters from Aqua Level 1B Subsampled Calibrated Radiances product (MYD02SSH). For more...

  18. Combined performance studies for electrons at the 2004 ATLAS combined test-beam

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O. K.; Banfi, D.; Baron, S.; Barr, A. J.; Beccherle, R.; Beck, H. P.; Belhorma, B.; Bell, P. J.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H. O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A. I.; Fabich, A.; Facius, K.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B. J.; Gameiro, S.; Gan, K. K.; Garcia, R.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Goettfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.-J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Harvey, A., Jr.; Hawkings, R. J.; Heinemann, F. E. W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J. C.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klingenberg, R.; Klinkby, E. B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.-C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C. G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Lourerio, K. F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Garcia, S. Marti i.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K. W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Moyse, E. W. J.; Munar, A.; Myagkov, A.; Nadtochi, A. V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S. M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Phillips, P. W.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; RØhne, O.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P. A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Timmermans, C. J. W. P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J. A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J. B.; Volpi, M.; Anh, T. Vu; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2010-11-01

    In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.

  19. Cosmic ray runs acquired with ATLAS muon stations

    CERN Multimedia

    Cerutti, F.

    Starting in the fall 2005 several cosmic ray runs have been acquired in the ATLAS pit with six muon stations. These were three large outer and three large middle chambers of the feet sector (sector 13) that have been readout in the ATLAS cavern. In the first data taking period the trigger was based on two large scintillators (~300x30 cm2) positioned in sector 13 just below the large chambers. In this first run the precision chambers (the Monitored Drift Tubes) were operated in a close to final configuration. Typical trigger rates with this setup were of the order of 1 Hz. Several data sets of 10k events were acquired with final electronics up to the muon ROD and analysed with ATHENA-based software. These data allowed the first checks of the functionality and efficiency of the MDT stations in the ATLAS pit and the first measurement of the FE electronics noise in the ATLAS environment. A few event were also collected in a combined run with the TILE barrel calorimeter. An event display of a cosmic ray a...

  20. Alignment of the ATLAS Inner Detector tracking system

    CERN Document Server

    Moles-Valls, R; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the products of the LHC collisions. In order to reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built on silicon planar sensors (Pixels and microstrips) and drift-tube based detectors. They constitute the ATLAS Inner Detector. It contains 1744 pixel modules (1456 in 3 barrel layers and 288 in 6 end cap disks). The pixel size is 50x400 squared microns. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determination of its almost 36000 degrees of freedom (DoF) with high accuracy. Thus the demanded precision for the alignment of the pixel and microstrip sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment if they cross the pixel detector vo...

  1. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the products of the LHC collisions. In order to reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built on silicon planar sensors (Pixels and micro-trips) and drift-tube based detectors. They constitute the ATLAS Inner Detector. It contains 1744 pixel modules (1456 in 3 barrel layers and 288 in 6 end cap discs). The pixel size is 50x400 µm2 . In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determination of its almost 36000 degrees of freedom (DoF) with high accuracy. Thus the demanded precision for the alignment of the pixel and micro-trip sensors is below 10 µm. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment if they cross the pixel detector volume. The impleme...

  2. HL LHC perspectives for the ATLAS RPC system

    CERN Document Server

    Aielli, G; The ATLAS collaboration

    2014-01-01

    The architecture of the present muon trigger detector was conceived in the early nineties having in mind a fast, robust and simple device. According to the Atlas requirements the ageing qualification were done taking a reference luminosity of 1034 cm-2 s-1included a safety factor of 5 with respect to the simulated background rates. The experience made so far has shown that the average rate measured in 2012 LHC run is very close to the predicted one, however it is unevenly distributed in the barrel: the chambers at the barrel edge (i.e. higher eta values) show rates of about a factor of 2.5 higher than the average thus absorbing part of the safety factor. In the next decade, ATLAS will run with an increasing luminosity and beam energy resulting in much higher background rate, up to almost one order of magnitude with respect to the present condition. This will affect both the detector rate capability and robustness against the ageing effects and the demand of trigger performance to increase the muon momentum se...

  3. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  4. ATLAS Recordings

    CERN Multimedia

    Steven Goldfarb; Mitch McLachlan; Homer A. Neal

    Web Archives of ATLAS Plenary Sessions, Workshops, Meetings, and Tutorials from 2005 until this past month are available via the University of Michigan portal here. Most recent additions include the Trigger-Aware Analysis Tutorial by Monika Wielers on March 23 and the ROOT Workshop held at CERN on March 26-27.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal.Feedback WelcomeOur group is making arrangements now to record plenary sessions, tutorials, and other important ATLAS events for 2007. Your suggestions for potential recording, as well as your feedback on existing archives is always welcome. Please contact us at wlap@umich.edu. Thank you.Enjoy the Lectures!

  5. ATLAS FTK: Fast Track Trigger

    CERN Document Server

    Amerio, S; The ATLAS collaboration; Andreazza, A; Annovi, A; Beretta, M; Bevacqua, V; Bogdan, M; Bossini, E; Boveia, A; Cavaliere, V; Canelli, F; Blazey, G; Cervigni, F; Cheng, Y; Citterio, M; Crescioli, F; Dell’Orso, M; Drake, G; Dunford, M; Giannetti, P; Giorgi, F; Hoff, J; Kapliy, A; Kasten, M; Kim, Y K; Kimura, N; Lanza, A; Liberali, V; Liu, T; Magalotti, D; McCarn, A; Melachrinos, C; Meroni, C; Negri, A; Neubauer, M; Penning, B; Piendibene, M; Proudfoot, J; Riva, M; Roda, C; Sabatini, F; Sacco, I; Shochet, M; Stabile, A; Tang, F; Tang, J; Tripiccione, R; Tuggle, J; Vercesi, V; Verzocchi, M; Villa, M; Vitillo, R A; Volpi, G; Webster, J; Wu, J; Yorita, K; Zhang, J

    2011-01-01

    A track reconstruction system for the trigger of the ATLAS detector at the Large Hadron Collider is described. The Fast Tracker is a highly parallel hardware system designed to operate at the Level-1 trigger output rate. It will provide high-quality tracks reconstructed over the entire inner detector by the start of processing in the Level-2 trigger. The system is based on associative memories for pattern recognition and fast FPGA’s for track reconstruction. Its design and expected performance under instantaneous luminosities up to 3 × 10^34/cm^2/s are discussed.

  6. The Phase-II ATLAS ITk pixel upgrade

    Science.gov (United States)

    Terzo, S.

    2017-07-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase-II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 m2 of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| chip. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gb/s per data link will be needed in the innermost layers going down to 640 Mb/s for the outermost. Because of the very high radiation level inside the detector, the first part of the transmission has to be implemented electrically, with signals converted for optical transmission at larger radii. Extensive tests are being carried out to prove the feasibility of implementing serial powering, which has been chosen as the baseline for the ITk pixel system due to the reduced material in the servicing cables foreseen for this option.

  7. CHANGES IN VOLATILE COMPOSITION AND SENSORY PROPERTIES OF VUGAVA WINES AGED IN CROATIA OAK BARRELS

    Directory of Open Access Journals (Sweden)

    Stanka HERJAVEC

    2001-09-01

    Full Text Available Vugava musts were fermented in medium-toasted Croatian barrique barrels (225 L made from Quercus petrea and Q. robur oak wood. The oak species used in this research infl uenced the specifi c change of the aroma structure of Vugava wines. During the age period the increase in the concentration of cis and trans oaklactons, guaiacol, eugenol, furfural and 5-methylfurfural was noted. Wines fermented and aged in Q. petrea barrels have higher concentrations of most volatile phenols compared to wines from Q. robur oak wood. From the organoleptic point of view this study suggested that fermentation and on the lees ageing production method in Croatian oak barrels positively infl uenced the quality of Vugava wines where best results were achieved by use of Q. petrea oak wood.

  8. Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation

    Science.gov (United States)

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.

    2013-01-01

    This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain. PMID:23351712

  9. Early stages in the biogenesis of eukaryotic β-barrel proteins.

    Science.gov (United States)

    Jores, Tobias; Rapaport, Doron

    2017-09-01

    The endosymbiotic organelles mitochondria and chloroplasts harbour, similarly to their prokaryotic progenitors, β-barrel proteins in their outer membrane. These proteins are encoded on nuclear DNA, translated on cytosolic ribosomes and imported into their target organelles by a dedicated machinery. Recent studies have provided insights into the import into the organelles and the membrane insertion of these proteins. Although the cytosolic stages of their biogenesis are less well defined, it is speculated that upon their synthesis, chaperones prevent β-barrel proteins from aggregation and keep them in an import-competent conformation. In this Review, we summarize the current knowledge about the biogenesis of β-barrel proteins, focusing on the early stages from the translation on cytosolic ribosomes to the recognition on the surface of the organelle. © 2017 Federation of European Biochemical Societies.

  10. Science Highlights from the Balloon Array for Radiation belt Electron Losses (BARREL)

    Science.gov (United States)

    Millan, R. M.

    2016-12-01

    In the inner magnetosphere where the plasmasphere, ring current and radiation belts overlap, energy and momentum are exchanged between different plasma populations by plasma waves. Resonant interaction with these waves can lead to rapid loss of radiation belt and ring current electrons to the atmosphere. Over the past four years, more than 50 BARREL balloons have been launched, making observations of energetic ( 20 keV - 10 MeV) electron precipitation in both hemispheres. The combination of BARREL multi-point balloon measurements with measurements from equatorial spacecraft (e.g. Van Allen Probes, LANL, THEMIS, GOES), LEO spacecraft (POES, CSSWE, FIREBIRD, AC-6), and ground-based instruments is providing a unique opportunity to quantify the spatial scale of energetic precipitation and to study the wave-particle interactions that cause precipitation. This presentation will focus on science results from recent BARREL campaigns, shedding light on outstanding questions about energetic electron precipitation.

  11. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.

    2015-01-01

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  12. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels.

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K; Monro, Tanya M; Taylor, Dennis

    2015-08-10

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine's properties or storage conditions allows for a more precise control of the final wine quality.

  13. System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    CERN Document Server

    Etzion, Erez; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference; Etzion, Erez

    2004-01-01

    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisi...

  14. A Layer Correlation Technique for ATLAS Calorimetry Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Carli, T; Spanò, F; Speckmayer, P

    2008-01-01

    A method for calibrating the response of a segmented calorimeter to hadrons is developed. The ansatz is that information on longitudinal shower fluctuations gained from a principal component analysis of the layer energy depositions can improve energy resolution by correcting for hadronic invisible energy and dead material losses: projections along the eigenvectors of the correlation matrix are used as input for the calibration. The technique is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are used to derive corrections for invisible energy lost in nuclear reactions and in dead material in front and in between the calorimeters. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by about 20%.

  15. Interconnection Test Framework for the CMS Level-1 Trigger System

    CERN Document Server

    Hammer, J; Wulz, C-E

    2011-01-01

    The Level-1 Trigger Control and Monitoring System is a software package designed to configure, monitor and test the Level-1 Trigger System of the Compact Muon Solenoid (CMS) experiment at CERN's Large Hadron Collider. It is a large and distributed system that runs over 50 PCs and controls about 200 hardware units. The objective of this paper is to describe and evaluate the architecture of a distributed testing framework – the Interconnection Test Framework (ITF). This generic and highly flexible framework for creating and executing hardware tests within the Level-1 Trigger environment is meant to automate testing of the 13 major subsystems interconnected with more than 1000 links. Features include a web interface to create and execute tests, modeling using finite state machines, dependency management, automatic configuration, and loops. Furthermore, the ITF will replace the existing heterogeneous testing procedures and help reducing both maintenance and complexity of operation tasks.

  16. Folding DNA into a lipid-conjugated nano-barrel for controlled reconstitution of membrane proteins.

    Science.gov (United States)

    Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian; Sodroski, Joseph; Yang, Zhongqiang; Liu, Dongsheng; Mao, Youdong

    2017-12-20

    Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nano-barrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nano-barrels in the structural analysis of membrane proteins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of the SSTL-300-S1 Composite Imager Barrel Structure

    Science.gov (United States)

    Hamar, Chris; Wood, Trevor; Alsami, Sami; Hallett, Ben

    2014-06-01

    The SSTL-300-S1 is the latest in the family of highly capable SSTL-300 platforms, providing high resolution imagery with all the existing mission performance of the heritage platform. In developing the product, SSTL has had to undertake the development of a composite imager barrel assembly, which forms the payload instrument's primary structure. Working to a nominal schedule of 24 months from requirements definition to structural qualification, the barrel's development philosophy has had to carefully balance the interdependent optical, structural and programmatic requirements. This paper provides a brief summary description of that development.

  18. Ectopic anus with barrel gun perineum rare type of anorectal anomaly.

    Science.gov (United States)

    Chamaria, Komal; Shetty, Roshan

    2013-06-01

    Perineal ectopic anus in female infants is not a very uncommon congenital anorectal anomaly with opening into the low vaginal or vulvar region. However, ectopic anus with barrel gun perineum is a less common variety. Patients generally present with frequent history of constipation, but may seek medical help for just aesthetic reasons. We present here one such case of an asymptomatic seven years old female with the rare form of anterior ectopic anus with barrel gun perineum without any fistulous communications with an innovative method of demonstration of the anomaly by using ultrasound gel as rectal contrast in MRI pelvis.

  19. Level 1 Processing of MODIS Direct Broadcast Data From Terra

    Science.gov (United States)

    Lynnes, Christopher; Smith, Peter; Shotland, Larry; El-Ghazawi, Tarek; Zhu, Ming

    2000-01-01

    In February 2000, an effort was begun to adapt the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1 production software to process direct broadcast data. Three Level 1 algorithms have been adapted and packaged for release: Level 1A converts raw (level 0) data into Hierarchical Data Format (HDF), unpacking packets into scans; Geolocation computes geographic information for the data points in the Level 1A; and the Level 1B computes geolocated, calibrated radiances from the Level 1A and Geolocation products. One useful aspect of adapting the production software is the ability to incorporate enhancements contributed by the MODIS Science Team. We have therefore tried to limit changes to the software. However, in order to process the data immediately on receipt, we have taken advantage of a branch in the geolocation software that reads orbit and altitude information from the packets themselves, rather than external ancillary files used in standard production. We have also verified that the algorithms can be run with smaller time increments (2.5 minutes) than the five-minute increments used in production. To make the code easier to build and run, we have simplified directories and build scripts. Also, dependencies on a commercial numerics library have been replaced by public domain software. A version of the adapted code has been released for Silicon Graphics machines running lrix. Perhaps owing to its origin in production, the software is rather CPU-intensive. Consequently, a port to Linux is underway, followed by a version to run on PC clusters, with an eventual goal of running in near-real-time (i.e., process a ten-minute pass in ten minutes).

  20. ATLAS SCT - Progress on the Silicon Modules

    CERN Multimedia

    Tyndel, M.

    The ATLAS SCT consists of 4088 silicon modules. Each module is made up of 4 silicon sensors with 1536 readout strips. Individual strips are connected to FE amplifiers, discriminators and pipelines on the module, i.e. there are 12 radiation hard ASICs, each containing 128 channels on the module. The sensors and the ASICs were developed for the ATLAS experiment and production is proceeding smoothly with over half the components delivered. The components of a module - 4 silicon sensors, a Cu/polyimide hybrid and pitch adaptor, and 12 ASICs - need to be carefully and precisely assembled onto a carbon and ceramic framework, which supports the module and removes the heat. Eleven production clusters are preparing to carry this out over the next two years. An important milestone for the barrel modules has been passed with the first cluster (KEK) now in production (~40 modules produced). A second cluster UK-B has qualified by producing five modules within specification (see below) and is about to start production. T...

  1. The ATLAS Trigger Commissioning with cosmic rays

    CERN Document Server

    Abolins, M; Adragna, P; Aielli, G; Aleksandrov, E; Aleksandrov, I; Aloisio, A; Alviggi, M G; Amorim, A; Anderson, K; Andrei, V; Anduaga, X; Antonelli, S; Aracena, I; Ask, S; Asquith, L; Avolio, G; Backlund, S; Badescu, E; Bahat Treidel, O; Baines, J; Barnett, B M; Barria, P; Bartoldus, R; Batreanu, S; Bauss, B; Beck, H P; Bee, C; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Ya; Benslama, K; Berge, D; Berger, N; Berry, T; Bianco, M; Biglietti, M; Blair, R R; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Boscherini, D; Bosman, M; Boyd, J; Brawn, I P; Brelier, B; Bressler, S; Bruni, A; Bruni, G; Buda, S; Burckhart-Chromek, D; Buttar, C; Camarri, P; Campanelli, M; Canale, V; Caprini, M; Caracinha, D; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cataldi, G; Cerri, A; Charlton, D G; Chiodini, G; Ciapetti, G; Cimino, D; Ciobotaru, M; Clements, D; Coccaro, A; Coluccia, M R; Conde-Muíño, P; Constantin, S; Conventi, F; Corso-Radu, A; Costa, M J; Coura Torres, R; Cranfield, R; Cranmer, K; Crone, G; Curtis, C J; Dam, M; Damazio, D; Davis, A O; Dawson, I; Dawson, J; De Almeida Simoes, J; De Cecco, S; De Pedis, D; De Santo, A; DeAsmundis, R; DellaPietra, M; DellaVolpe, D; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Di Ciaccio, A; Di Girolamo, A; Dionisi, C; Djilkibaev, R; Dobinson, Robert W; Dobson, M; Dogaru, M; Dotti, A; Dova, M; Drake, G; Dufour, M -A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E F; Ellis, Nick; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Eschrich, I; Etzion, E; Facius, K; Falciano, S; Farthouat, P; Faulkner, P J W F; Feng, E; Ferland, J; Ferrari, R; Ferrer, M L; Fischer, G; Fonseca-Martin, T; Francis, D; Fukunaga, C; Föhlisch, F; Gadomski, S; Garitaonandia Elejabarrieta, H; Gaudio, G; Gaumer, O; Gee, C N P; George, S; Geweniger, C; Giagu, S; Gillman, A R; Giusti, P; Goncalo, R; Gorini, B; Gorini, E; Gowdy, S; Grabowska-Bold, I; Grancagnolo, F; Grancagnolo, S; Green, B; Galllno, P; Haas, S; Haberichter, W; Hadavand, H; Haeberli, C; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, Y; Hauschild, M; Hauser, R; Head, S; Hellman, S; Hidvegi, A; Hillier, S J; Höcker, A; Hrynóva, T; Hughes-Jones, R; Huston, J; Iacobucci, G; Idarraga, J; Iengo, P; Igonkina, O; Ikeno, M; Inada, M; Ishino, M; Iwasaki, H; Izzo, V; Jain, V; Johansen, M; Johns, K; Joos, M; Kadosaka, T; Kajomovitz, E; Kama, S; Kanaya, N; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Khoriauli, G; Kieft, G; Kilvington, G; Kirk, J; Kiyamura, H; Klofver, P; Klous, S; Kluge, E E; Kobayashi, T; Kolos, S; Kono, T; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Krasznahorkay, A; Kubota, T; Kugel, A; Kuhn, D; Kurashige, H; Kurasige, H; Kuwabara, T; Kwee, R; Landon, M; Lankford, A; LeCompte, T; Leahu, L; Leahu, M; Ledroit, F; Lehmann-Miotto, G; Lei, X; Lellouch, D; Lendermann, V; Levinson, L; Leyton, M; Li, S; Liberti, B; Lifshitz, R; Lim, H; Lohse, T; Losada, M; Luci, C; Luminari, L; Lupu, N; Mahboubi, K; Mahout, G; Mapelli, L; Marchese, F; Martin, B; Martin, B T; Martínez, A; Marzano, F; Masik, J; McMahon, T; McPherson, R; Medinnis, M; Meessen, C; Meier, K; Meirosu, C; Messina, A; Migliaccio, A; Mikenberg, G; Mincer, A; Mineev, M; Misiejuk, A; Mönig, K; Monticelli, F; Moraes, A; Moreno, D; Morettini, P; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Negri, A; Némethy, P; Neusiedl, A; Nisati, A; Niwa, T; Nomachi, M; Nomoto, H; Nozaki, M; Nozicka, M; Ochi, A; Ohm, C; Okumura, Y; Omachi, C; Osculati, B; Oshita, H; Osuna, C; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Pectu, M; Perantoni, M; Perera, V; Perera, V J O; Pérez, E; Pérez-Réale, V; Perrino, R; Pessoa Lima Junior, H; Petersen, J; Petrolo, E; Piegaia, R; Pilcher, J E; Pinto, F; Pinzon, G; Polini, A; Pope, B; Potter, C; Prieur, D P F; Primavera, M; Qian, W; Radescu, V; Rajagopalan, S; Renkel, P; Rescigno, M; Rieke, S; Risler, C; Riu, I; Robertson, S; Roda, C; Rodríguez, D; Rogriquez, Y; Roich, A; Romeo, G; Rosati, S; Ryabov, Yu; Ryan, P; Rühr, F; Sakamoto, H; Salamon, A; Salvatore, D; Sankey, D P C; Santamarina, C; Santamarina-Rios, C; Santonico, R; Sasaki, O; Scannicchio, D; Scannicchio, D A; Schiavi, C; Schlereth, J L; Schmitt, K; Scholtes, I; Schooltz, D; Schuler, G; Schultz-Coulon, H -C; Schäfer, U; Scott, W; Segura, E; Sekhniaidze, G; Shimbo, N; Sidoti, A; Silva, L; Silverstein, S; Siragusa, G; Sivoklokov, S; Sloper, J E; Smizanska, M; Solfaroli, E; Soloviev, I; Soluk, R; Spagnolo, S; Spila, F; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stradling, A; Strom, D; Strong, J; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M; Szymocha, T; Takahashi, Y; Takeda, H; Takeshita, T; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Teixeira-Dias, P; Thomas, J P; Tokoshuku, K; Tomoto, M; Torrence, E; Touchard, F; Trefzger, T; Tremblet, L; Tripiana, M; Usai, G; Vachon, B; Vandelli, W; Vari, R; Veneziano, S; Ventura, A; Vercesi, V; Vermeulen, J; Von Der Schmitt, J; Wang, M; Watkins, P M; Watson, A; Weber, P; Wengler, T; Werner, P; Wheeler-Ellis, S; Wickens, F; Wiedenmann, W; Wielers, M; Wilkens, H; Winklmeier, F; Woerling, E E; Wu, S -L; Wu, X; Xella, S; Yamaguchi, Y; Yamazaki, Y; Yasu, Y; Yu, M; Zanello, L; Zema, F; Zhang, J; Zhao, L; Zobernig, H; De Seixas, J M; Dos Anjos, A; Zur Nedden, M; Ozcan, E; Ünel, G; International Conference on Computing in High Energy and Nuclear Physics

    2008-01-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity there are roughly 23 collisions per bunch crossing. ATLAS has designed a three-level trigger system to select potentially interesting events. The first-level trigger, implemented in custom-built electronics, reduces the incoming rate to less than 100 kHz with a total latency of less than 2.5$\\mu$s. The next two trigger levels run in software on commercial PC farms. They reduce the output rate to 100-200 Hz. In preparation for collision data-taking which is scheduled to commence in May 2008, several cosmic-ray commissioning runs have been performed. Among the first sub-detectors available for commissioning runs are parts of the barrel muon detector including the RPC detectors that are used in the first-level trigger. Data have been taken with a full slice of the muon trigger and readout chain, from the detectors in one sector of the RPC system, to the second-level trigger algorit...

  2. Fast Dump of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  3. Fast Shower Simulation in the ATLAS Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Barberio, E.; /Melbourne U.; Boudreau, J.; /Pittsburgh U.; Butler, B.; /SLAC; Cheung, S.L.; /Toronto U.; Dell' Acqua, A.; /CERN; Di Simone, A.; /CERN; Ehrenfeld, W.; /Hamburg U. /DESY; Gallas, M.V.; /CERN; Glazov, A.; /DESY; Marshall, Z.; /Caltech /Nevis Labs, Columbia U.; Mueller, J.; /Pittsburgh U.; Placakyte, R.; /DESY; Rimoldi, A.; /Pavia U. /INFN, Pavia; Savard, P.; /Toronto U.; Tsulaia, V.; /Pittsburgh U.; Waugh, A.; /Sydney U.; Young, C.C.; /SLAC

    2011-11-08

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterization is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to {approx} 1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper.

  4. OMI/Aura Level 1B Solar Irradiances V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Level-1B (L1B) Radiance Product OML1BIRR (Version-3) from the Aura-OMI is now available (http://disc.gsfc.nasa.gov/Aura/OMI/oml1birr_v003.shtml) to public from...

  5. Psychological sequelae following ICU admission at a level 1 ...

    African Journals Online (AJOL)

    Purpose. The purpose of this research was to determine the extent to which anxiety symptoms, depressive symptoms and post-traumatic stress (PTS) symptoms were experienced by a sample of patients after discharge from intensive care units (ICUs). The participants had a mean stay of 3 days in ICUs in a level 1 academic ...

  6. A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

    NARCIS (Netherlands)

    K.T. Huber; L.J.J. van Iersel (Leo); S.M. Kelk (Steven); R. Suchecki

    2010-01-01

    htmlabstractRecently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of

  7. Level-1 muon trigger performance with the full 2017 dataset

    CERN Document Server

    CMS Collaboration

    2018-01-01

    This document describes the performance of the CMS Level-1 Muon Trigger with the full dataset of 2017. Efficiency plots are included for each track finder (TF) individually and for the system as a whole. The efficiency is measured to be greater than 90% for all track finders.

  8. 27 CFR 25.160 - Tax adjustment for brewers who produce more than 2,000,000 barrels of beer.

    Science.gov (United States)

    2010-04-01

    ... who produce more than 2,000,000 barrels of beer. 25.160 Section 25.160 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Determination of Tax § 25.160 Tax adjustment for brewers who produce more than 2,000,000 barrels of beer. Each...

  9. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  10. ATLAS experimentet

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    Filmen innehåller mycket information om fysik och varför LHC behövs tilsammans med stora detektorer och specielt om behovet av ATLAS Experimentet. Mycket bra film för att förklara det okända- som man undersöker i CERN för att ge svar på frågor som människor har försökt förklara under flere tusen år.

  11. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  12. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  13. 27 CFR 478.113a - Importation of firearm barrels by nonlicensees.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Importation of firearm barrels by nonlicensees. 478.113a Section 478.113a Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN...

  14. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    Science.gov (United States)

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  15. Electrostatic design of the barrel CRID (Cherenkov Ring Imaging Detector) and associated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. (Tohoku Univ., Sendai (Japan). Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va' Vra, J. Williams, H. (Stanford Linear Accelerator Center, Menlo Park, CA (US

    1990-04-01

    We report on the electrostatic design and related measurements of the barrel Cherenkov Ring Imaging Detector for the Stanford Large Detector experiment at the Stanford Linear Accelerator Center Linear Collider. We include test results of photon feedback in TMAE-laden gas, distortion measurements in the drift boxes and corona measurements. 13 refs., 21 figs.

  16. Fire testing and infrared thermography of oak barrels filled with distilled spirits (Conference Presentation)

    Science.gov (United States)

    de Vries, Jaap

    2017-05-01

    Adequate fire protection of distilled spirits stored in oak barrels requires understanding the failure mode of these barrels, including quantifying the leak rate. In this study, the use of a custom-calibrated, long-wave microbolometer camera is demonstrated to seek new protection methods for rack-stored distilled spirits. Individual oak barrels ranging between 200 L and 500 L filled with 75%/25% ethanol/water were exposed to both propane gas fires and pure ethanol pool fires. The IR camera was used to see through the smoke and flames showing the location of the leaks. The increase in HRR due to the leaked content was measured using gas calorimetry of the combustion products. This study showed that barrels leaked at a rate of approximately 4-8 lpm, resulting in heat release rates ranging between 1.2 and 2.4 MW. These numbers are confirmed by the quantitative measurements of gaseous H2O and CO¬2 in the exhaust. Surface temperature of the exposed oak could reach temperatures up to 750ºC.

  17. 15 CFR 241.6 - Classes of barrels for tolerance application.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Classes of barrels for tolerance application. 241.6 Section 241.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... other dry commodities other than cranberries, are hereby divided into two classes as follows: (a) Class...

  18. Using electronic odor sensors to discriminate among oak barrel toasting levels.

    Science.gov (United States)

    Chatonnet, P; Dubourdieu, D

    1999-10-01

    Toasting changes both the quantity and the quality of the extractable substances in oak wood of barrels used for the aging of fine wines and spirits. Mastery and repeatability of toasting are vital in the production of quality barrels to be used for aging wines and spirits. Toasted wood components, which can be extracted by the wines or spirits during the aging process, are normally analyzed by maceration in standard alcohol solutions at concentrations adapted to the various products and can be used to control the intensity of the wood toasting. These kinds of analyses are accurate but time-consuming and need specialized laboratories. In this work, the feasibility of monitoring barrel toasting levels using an electronic nose with a metal oxide odor sensor array (MOS) was studied. The results of oak toasting level differentiation obtained via the MOS network were identical to those obtained by analyzing extractable compounds in liquid or gas phase as described in a previous paper. The results presented in this work at the laboratory scale could be used to implement a nondestructive monitoring system based on the analysis of headspace of barrels under industrial conditions.

  19. Monitoring toasting intensity of barrels by chromatographic analysis of volatile compounds from toasted oak wood.

    Science.gov (United States)

    Chatonnet, P; Cutzach, I; Pons, M; Dubourdieu, D

    1999-10-01

    Toasting changes both the quantity and the quality of the extractable substances in the oak wood of barrels used for the aging of fine wines and spirits. Mastery and repeatability of toasting are vital in the production of quality barrels to be used for the aging of wines and spirits. In this study, we show that it is possible for a given cooperage to differentiate barrel toasting levels by analyzing a certain number of volatile and semivolatile compounds resulting from the thermal degradation of oak. Toasted wood components, which can be extracted by the wines or spirits during the aging process, are normally analyzed after the wood has soaked in standard alcoholic solutions and can be used to control the intensity of the wood toasting. The results of the comparative analysis presented in this work show that headspace analysis with a microextractive method using a stationary polydimethylsiloxane type phase is a promising technique for analyzing toasted oak wood from barrels. It is easier to use than the traditional maceration and extraction method and provides similar information.

  20. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels.

    Science.gov (United States)

    Sanz, Miriam; Fernández de Simón, Brígida; Esteruelas, Enrique; Muñoz, Angel Ma; Cadahía, Estrella; Hernández, Ma Teresa; Estrella, Isabel; Martinez, Juana

    2012-06-30

    Polyphenolic composition of two Syrah wines aged during 6 or 12 months in medium toasting acacia and oak 225L barrels was studied by LC-DAD-ESI/MS. A total of 43 nonanthocyanic phenolic compounds were found in all wines, and other 15 compounds only in the wines from acacia barrels. Thus, the nonanthocyanic phenolic profile could be a useful tool to identify the wines aged in acacia barrels. Among all of them the dihydrorobinetin highlights because of its high levels, but also robinetin, 2,4-dihydroxybenzaldehyde, a tetrahydroxydihydroflavonol, fustin, butin, a trihydroxymethoxydihydroflavonol and 2,4-dihydroxybenzoic acid were detected at appreciable levels in wines during aging in acacia barrels, and could be used as phenolic markers for authenticity purposes. Although longer contact time with acacia wood mean higher concentrations of phenolic markers found in wines, the identification of these wines will also be easy after short aging times due the high levels reached by these compounds, even after only 2 months of aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Dependence of Oak-Related Volatile Compounds on the Physicochemical Characteristics of Barrel-Aged Wines

    Directory of Open Access Journals (Sweden)

    Pedro Rodríguez-Rodríguez

    2012-01-01

    Full Text Available This paper focuses on the effect of some of the physicochemical characteristics of wines such as volatile acidity, titratable acidity, pH, free SO2 and alcohol content on the accumulation of oak-related volatile compounds in barrel-aged wines, in order to give more light on the contradictory results found by other authors in this respect. For this, three different single variety wines were aged for twelve months in barrels with the same characteristics (same cooperage, wood origin, toasting level and volume, repeating the experiment in two consecutive years. Our results show that the percentage of wine alcohol and its titratable acidity positively correlated with the final concentration of vanillin and guaiacyl compounds in the oak-matured wines and negatively with the cis- and trans-β-methyl-γ-octalactone concentration. Therefore, when studying the effect of oak barrel variables (oak origin and seasoning, size of the barrel, number of uses, etc. on the concentration of oak-related volatile compounds in wine, the effect of the physicochemical variables of the wine, especially titratable acidity and alcohol content, should also be taken into account since the final wine aroma composition will also depend on these characteristics.

  2. Inverse determination of heat flux into a gun barrel using temperature sensors

    Science.gov (United States)

    Jablonski, Jonathan A.; Jablonski, Melissa N.

    2017-05-01

    A mathematical model is developed to describe the thermal response of a temperature sensor located within a gun barrel, which accounts for the time-constant of the sensor and a measurement bias. The model is inversely solved to estimate the total heat flux applied to the bore surface as well as the transient history of the applied heat flux for a given thermal response of a temperature sensor. A parametric study is conducted to determine the influence of sensor time-constant, sensor location within the gun barrel, and measurement bias on the accuracy of the estimated heat flux as applied to a 155mm gun barrel. It is found that the accuracy of the estimated heat flux improves as the time-constant of the sensor decreases, the sensor is located closer to the bore surface, and the measurement bias decreases. A regression model is provided to estimate that accuracy and it is shown how a typical thermocouple would perform at various locations through the thickness of the gun barrel.

  3. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    Directory of Open Access Journals (Sweden)

    Anna Posluszny

    Full Text Available Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS. We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA, an inhibitor of glutamic acid decarboxylase (GAD, into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  4. Evaluation of mRNA Localization Using Double Barrel Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Nashimoto, Yuji; Takahashi, Yasufumi; Zhou, Yuanshu; Ito, Hidenori; Ida, Hiroki; Ino, Kosuke; Matsue, Tomokazu; Shiku, Hitoshi

    2016-07-26

    Information regarding spatial mRNA localization in single cells is necessary for a better understanding of cellular functions in tissues. Here, we report a method for evaluating localization of mRNA in single cells using double-barrel scanning ion conductance microscopy (SICM). Two barrels in a nanopipette were filled with aqueous and organic electrolyte solutions and used for SICM and as an electrochemical syringe, respectively. We confirmed that the organic phase barrel could be used to collect cytosol from living cells, which is a minute but sufficient amount to assess cellular status using qPCR analysis. The water phase barrel could be used for SICM to image topography with subcellular resolution, which could be used to determine positions for analyzing mRNA expression. This system was able to evaluate mRNA localization in single cells. After puncturing the cellular membrane in a minimally invasive manner, using SICM imaging as a guide, we collected a small amount cytosol from different positions within a single cell and showed that mRNA expression depends on cellular position. In this study, we show that SICM imaging can be utilized for the analysis of mRNA localization in single cells. In addition, we fully automated the pipet movement in the XYZ-directions during the puncturing processes, making it applicable as a high-throughput system for collecting cytosol and analyzing mRNA localization.

  5. Inference of core barrel motion from neutron noise spectral density. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.C.; Shahrokhi, F.; Kryter, R.C.

    1977-03-15

    A method was developed for inference of core barrel motion from the following statistical descriptors: cross-power spectral density, autopower spectral density, and amplitude probability density. To quantify the core barrel motion in a typical pressurized water reactor (PWR), a scale factor was calculated in both one- and two-dimensional geometries using forward, variational, and perturbation methods of discrete ordinates neutron transport. A procedure for selection of the proper frequency band limits for the statistical descriptors was developed. It was found that although perturbation theory is adequate for the calculation of the scale factor, two-dimensional geometric effects are important enough to rule out the use of a one-dimensional approximation for all but the crudest calculations. It was also found that contributions of gamma rays can be ignored and that the results are relatively insensitive to the cross-section set employed. The proper frequency band for the statistical descriptors is conveniently determined from the coherence and phase information from two ex-core power range neutron monitors positioned diametrically across the reactor vessel. Core barrel motion can then be quantified from the integral of the band-limited cross-power spectral density of two diametrically opposed ex-core monitors or, if the coherence between the pair is greater than or equal to 0.7, from a properly band-limited amplitude probability density function. Wide-band amplitude probability density functions were demonstrated to yield erroneous estimates for the magnitude of core barrel motion.

  6. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review

    Directory of Open Access Journals (Sweden)

    Sara Canas

    2017-11-01

    Full Text Available The freshly distilled wine spirit has a high concentration of ethanol and many volatile compounds, but is devoid of phenolic compounds other than volatile phenols. Therefore, an ageing period in the wooden barrel is required to attain sensory fullness and high quality. During this process, several phenomena take place, namely the release of low molecular weight phenolic compounds and tannins from the wood into the wine spirit. Research conducted over the last decades shows that they play a decisive role on the physicochemical characteristics and relevant sensory properties of the beverage. Their contribution to the antioxidant activity has also been emphasized. Besides, some studies show the modulating effect of the ageing technology, involving different factors such as the barrel features (including the wood botanical species, those imparted by the cooperage technology, and the barrel size, the cellar conditions, and the operations performed, on the phenolic composition and related properties of the aged wine spirit. This review aims to summarize the main findings on this topic, taking into account two featured barrel characteristics—the botanical species of the wood and the toasting level.

  7. Npas4 Expression in Two Experimental Models of the Barrel Cortex Plasticity

    Directory of Open Access Journals (Sweden)

    Aleksandra Kaliszewska

    2015-01-01

    Full Text Available Npas4 has recently been identified as an important factor in brain plasticity, particularly in mechanisms of inhibitory control. Little is known about Npas4 expression in terms of cortical plasticity. In the present study expressions of Npas4 and the archetypal immediate early gene (IEG c-Fos were investigated in the barrel cortex of mice after sensory deprivation (sparing one row of whiskers for 7 days or sensory conditioning (pairing stimulation of one row of whiskers with aversive stimulus. Laser microdissection of individual barrel rows allowed for analysis of IEGs expression precisely in deprived and nondeprived barrels (in deprivation study or stimulated and nonstimulated barrels (in conditioning study. Cortex activation by sensory conditioning was found to upregulate the expression of both Npas4 and c-Fos. Reorganization of cortical circuits triggered by removal of selected rows of whiskers strongly affected c-Fos but not Npas4 expression. We hypothesize that increased inhibitory synaptogenesis observed previously after conditioning may be mediated by Npas4 expression.

  8. The ATLAS Trigger Algorithms for General Purpose Graphics Processor Units

    CERN Document Server

    Tavares Delgado, Ademar; The ATLAS collaboration

    2016-01-01

    The ATLAS Trigger Algorithms for General Purpose Graphics Processor Units Type: Talk Abstract: We present the ATLAS Trigger algorithms developed to exploit General­ Purpose Graphics Processor Units. ATLAS is a particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system has two levels, hardware-­based Level 1 and the High Level Trigger implemented in software running on a farm of commodity CPU. Performing the trigger event selection within the available farm resources presents a significant challenge that will increase future LHC upgrades. are being evaluated as a potential solution for trigger algorithms acceleration. Key factors determining the potential benefit of this new technology are the relative execution speedup, the number of GPUs required and the relative financial cost of the selected GPU. We have developed a trigger demonstrator which includes algorithms for reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Cal...

  9. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J.F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M D M; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Doan, T.K.O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M.A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L R; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J.C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.J.; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A M; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernández Jiménez, Y; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.Y.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez-Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.R.; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J A; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J.P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa Romero, D A; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Roda Dos Santos, D; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F.W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B M; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra Suay, L; Soukharev, A.; Spagnolo, S.; Spanó, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F J; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C.L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W.M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  10. Impact of toasting oak barrels on the presence of polycyclic aromatic hydrocarbons in wine.

    Science.gov (United States)

    Chatonnet, Pascal; Escobessa, Julien

    2007-12-12

    Toasting Quercus sp. oak wood is one of the key stages in manufacturing barrels intended for aging wines and spirits. During this operation, the increase in temperature causes variable modifications in the physical structure and, more importantly, the chemical composition of the wood. Polycyclic aromatic hydrocarbons (PAH) are high-risk molecules likely to be formed during toasting of the wood and later extracted by wine or spirits in direct contact with the barrel. In the context of an analysis of all potential sources of risk associated with the manufacture of barrels for winery use [prevention policy defined using a Hazard Analysis Critical Control Point (HACCP) approach], we carried out a preliminary study to provide a more accurate assessment of potential risks related to the presence of PAH in cooperage and winemaking. Wood toasted to different levels under different conditions, as well as wines aged in barrels made using different methods, was analyzed by gas chromatography and mass spectrometry (GC-MS) for the identification of the main PAH present, quantification of each of the molecules extracted, and estimation of any possible toxicological risks, via a comparison of values with those measured in other types of food. The results clearly showed that the heating processes associated with barrel production actually resulted in the formation of various molecules in the PAH family. However, only a minority of the target PAH presented high toxicity, particularly carcinogenic potential. Because of the specific toasting process used, benzo[a]pyrene, the best-known, and one of the most dangerous, contaminants, was not significantly present in toasted barrel wood. In view of the PAH concentrations in wood and the low solubility of these compounds, their extraction in wine is apparently relatively slow and limited. Finally, comparing the overall PAH concentrations, and particularly those of the most toxic compounds, with estimated absorption from food or the

  11. ATLAS Recordings

    CERN Multimedia

    Jeremy Herr; Homer A. Neal; Mitch McLachlan

    The University of Michigan Web Archives for the 2006 ATLAS Week Plenary Sessions, as well as the first of 2007, are now online. In addition, there are a wide variety of Software and Physics Tutorial sessions, recorded over the past couple years, to chose from. All ATLAS-specific archives are accessible here.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal. Shaping Collaboration 2006The Michigan group is happy to announce a complete set of recordings from the Shaping Collaboration conference held last December at the CICG in Geneva.The event hosted a mix of Collaborative Tool experts and LHC Users, and featured presentations by the CERN Deputy Director General, Prof. Jos Engelen, the President of Internet2, and chief developers from VRVS/EVO, WLAP, and other tools...

  12. Staves and Petals: Multi-module Local Support Structures of the ATLAS ITk Strips Upgrade

    CERN Document Server

    Rodriguez Rodriguez, Daniel; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Tracker (ITk) is an all-silicon tracker that will replace the existing inner detector at the Phase-II Upgrade of ATLAS. The outermost part of the tracker consists of the strips tracker, in which the sensor elements consist of silicon micro-strip sensors with strip lengths varying from 1.7 to up to 10 cm. The current design is part of the ATLAS ITk Strip Detector Technical Design Report (TDR) and envisions a four-layer barrel and two six-disk end-cap regions. The sensor and readout units (``modules'') are directly glued onto multi-module, low-mass, high thermal performance carbon fibre structures, called “staves” for the barrel and ``petals'' for the end-cap. They provide cooling, power, data and control lines to the modules with a minimal amount of external services. An extensive prototyping program was put in place over the last years to fully characterise these structures mechanically, thermally, and electrically. Thermo-mechanical stave and petal prototypes have recently been built and ...

  13. Upgrades of the ATLAS Muon Spectrometer with sMDT Chambers

    CERN Document Server

    Ferretti, C

    2016-01-01

    With half the drift-tube diameter of the Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer and otherwise unchanged operating parameters, small-diameter Muon Drift Tube (sMDT) chambers provide an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit. The chamber assembly time has been reduced by a factor of seven to one working day and the sense wire positioning accuracy improved by a factor of two to better than ten microns. Two sMDT chambers have been installed in ATLAS in 2014 to improve the momentum resolution in the barrel part of the spectrometer. The construction of an additional twelve chambers covering the feet regions of the ATLAS detector has started. It will be followed by the replacement of the MDT chambers at the ends of the barrel inner layer by sMDTs improving the Performance at the high expected background rates and providing space for additional RPC trigger chambers.

  14. Upgrades of the ATLAS Muon Spectrometer with sMDT Chambers

    CERN Document Server

    Ferretti, Claudio; The ATLAS collaboration

    2015-01-01

    With half the drift-tube diameter of the Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer and otherwise unchanged operating parameters, small-diameter Muon Drift Tube (sMDT) chambers provide an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit. The chamber assembly time has been reduced by a factor of seven to one working day and the sense wire positioning accuracy improved by a factor of two to better than ten microns. Two sMDT chambers have been installed in ATLAS in 2014 to improve the momentum resolution in the barrel part of the spectrometer. The construction of additional twelve chambers covering the feet regions of the ATLAS detector has started. It will be followed by the replacement of the MDT chambers at the ends of the barrel inner layer by sMDTs improving the Performance at the high expected background rates and providing space for additional RPC trigger chambers.

  15. A Level 1 Tracking Trigger for the CMS Experiment

    Science.gov (United States)

    Pozzobon, Nicola

    2012-08-01

    The LHC machine is planned to be upgraded in the next decade in order to deliver a luminosity about 5 to 10 times lager than the design one of 1034 cm-2s-1. In this scenario, a novel tracking system for the CMS experiment is required to be conceived and built. The main requirements on the CMS tracker are presented. Particular emphasis will be given to the challenging capability of the tracker to provide useful information for the Level 1 hardware trigger, complementary to the muon system and calorimeter ones. Different approaches based on pattern hit correlation within closely placed sensors are currently under evaluation, making use of either strips or macro-pixels. A proposal to optimize the data flow at the front-end ASIC and develop a tracking algorithm to provide tracks at Level 1 will be presented.

  16. Double-Barrel STA-MCA Bypass: Can It Be Considered "High-Flow?"

    Science.gov (United States)

    Cherian, Jacob; Srinivasan, Visish; Kan, Peter; Duckworth, Edward A M

    2017-08-18

    Traditionally, superficial temporal artery-middle cerebral artery (STA-MCA) bypass uses one STA branch. Its augmentation of flow has classically been described as "low flow." In a double-barrel STA-MCA bypass, however, both branches of the STA are utilized. Here we hypothesize that this should not be considered "low flow." To review quantitative flow data from our cases and investigate the impact of double-barrel STA-MCA bypass on total flow augmentation, and to assess whether double-barrel STA-MCA bypass might be useful in situations that traditionally demand more complex bypass strategies. Intraoperative flow probe measurements from STA-MCA bypass cases were retrospectively tabulated and compared. Cut flow and bypass flow measurements were, respectively, taken before and after completion of anastomoses. The higher value was labeled best observed flow (BOF). We identified 21 STA-MCA bypass cases with available intraoperative flow probe measurements, of which 17 utilized double-barrel technique. Only 1 STA branch was available in 4 cases. Significantly higher average BOF was seen when utilizing 2 STA branches (69 vs 39 cc/min, P bypasses provided BOF ≥ 65 cc/min (120 cc/min maximum). The single branch bypass maximum BOF was 40 cc/min. Double-barrel bypass technique significantly enhances STA-MCA flow capacity and may be useful in situations in which a high-flow bypass is needed. The 2 efferent limbs allow flexibility in distributing flow across separate at-risk territories. The method compares favorably to other descriptions of high-flow bypass without the morbidity of graft harvest or an additional cervical incision.

  17. Tracheobronchoscopic Assessment of Exercise-Induced Pulmonary Hemorrhage and Airway Inflammation in Barrel Racing Horses.

    Science.gov (United States)

    Léguillette, R; Steinmann, M; Bond, S L; Stanton, B

    2016-07-01

    Poor performance is often suspected to be associated with EIPH in barrel racing horses; however, there are no published reports of EIPH for this discipline. The prevalence of EIPH in barrel racing horses is also unknown. This study was performed to determine the prevalence of EIPH and signs of airway inflammation in barrel racing horses under normal racing conditions in Alberta. About 170 barrel racing horses. Observational cross-sectional study. Tracheobronchoscopic examinations were performed at least 30 minutes postrace. Video recordings were scored off-site independently by two observers for EIPH and tracheal mucus accumulation (TMA). Horses with an EIPH score ≥2 were not assessed for TMA. Interobserver agreement was calculated by weighted κ statistics. Run times, environmental variables, and clinical information were also recorded for analysis. 77/170 (45.3%) of horses examined showed evidence of EIPH (grade ≥ 1). Interobserver agreement was 0.94. 140/141 (99.3%) of horses assessed for TMA showed evidence of tracheal mucus accumulation (grade ≥ 1) with 104/141 (73.8%) having a TMA score ≥ 2. Interobserver agreement was 0.73. A weak positive association was found between EIPH scores and average run speed, the presence of cough at rest reported by the riders, increased recovery time, exercise intolerance, and outdoor pattern. The high prevalence of EIPH observed in the sampled population indicates that barrel racing induces substantial stress on the lungs. The presence of EIPH did not impact negatively on performance. Factors such as environmental dust and frequent traveling might have contributed to the high prevalence of TMA observed. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  18. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.

    Science.gov (United States)

    Hayat, Sikander; Sander, Chris; Marks, Debora S; Elofsson, Arne

    2015-04-28

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand-strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases.

  19. Performance analysis for the CALIFA Barrel calorimeter of the R{sup 3}B experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Pol, H., E-mail: hector.alvarez@usc.es [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Ashwood, N. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Aumann, T. [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bertini, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Cabanelas, P. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Casarejos, E. [Universidade de Vigo, E-36310 Vigo (Spain); Cederkall, J. [Department of Physics, Lund University, SE 221 00 Lund (Sweden); Cortina-Gil, D.; Díaz Fernández, P.; Duran, I. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Fiori, E. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Galaviz, D. [Centro de Fsica Nuclear da Universidade de Lisboa, 1649-003 Lisbon (Portugal); Labiche, M. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Nacher, E. [Instituto de Estructura de la Materia CSIC, Madrid (Spain); Pietras, B. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); and others

    2014-12-11

    The CALIFA calorimeter is an advanced detector for gamma rays and light charged particles, accordingly optimized for the demanding requirements of the physics programme proposed for the R{sup 3}B facility at FAIR. The multipurpose character of CALIFA is required to fulfil challenging demands in energy resolution (5–6% at 1 MeV for gamma rays) and efficiency. Charged particles, e.g. protons of energies up to 320 MeV in the Barrel section, should also be identified with an energy resolution better to 1%. CALIFA is divided into two well-separated sections: a “Forward EndCap” and a cylindrical “Barrel” covering an angular range from 43.2° to 140.3°. The Barrel section, based on long CsI(Tl) pyramidal frustum crystals coupled to large area avalanche photodiodes (LAAPDs), attains the requested high efficiency for calorimetric purposes. The construction of the CALIFA Demonstrator, comprising 20% of the total detector, has already been initiated, and commissioning experiments are expected for 2014. The assessment of the capabilities and expected performance of the detector elements is a crucial step in their design, along with the prototypes evaluation. For this purpose, the Barrel geometry has been carefully implemented in the simulation package R3BRoot, including easily variable thicknesses of crystal wrapping and carbon fibre supports. A complete characterization of the calorimeter response (including efficiency, resolution, evaluation of energy and reconstruction losses) under different working conditions, with several physics cases selected to probe the detector performance over a wide range of applications, has been undertaken. Prototypes of different sections of the CALIFA Barrel have been modeled and their responses have been evaluated and compared with the experimental results. The present paper summarizes the outcome of the simulation campaign for the entire Barrel section and for the corresponding prototypes tested at different European installations.

  20. EnviroAtlas - Green Bay, WI - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Green Bay, WI Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  1. EnviroAtlas - Paterson, NJ - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Paterson, NJ Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  2. EnviroAtlas - Portland, ME - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Portland, ME Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  3. Level-1 E/Gamma performance on 2017 data

    CERN Document Server

    CMS Collaboration

    2018-01-01

    In $2017$, the LHC achieved an instantaneous luminosity of $2\\times10^{34}cm^{-2}s^{-1}$ with an average peak number of pile-up interactions of over $50$. This document includes studies of the performance of the CMS Level-1 Calorimeter Trigger for electrons and photons. The plots are made using the full dataset of $2017$ with $41.3$ $fb^{-1}$.

  4. Dimuon Level-1 invariant mass in 2017 data

    CERN Document Server

    CMS Collaboration

    2018-01-01

    This document shows the Level-1 (L1) dimuon invariant mass with and without L1 muon track extrapolation to the collision vertex and how it compares with the offline reconstructed dimuon invariant mass. The plots are made with the data sample collected in 2017. The event selection, the matching algorithm and the results of the L1 dimuon invariant mass are described in the next pages.

  5. Comparing Different Approaches for Processing GRACE Level-1 Data

    Science.gov (United States)

    Naeimi, Majid

    2010-05-01

    Three different approaches for determining global gravity field solutions from GRACE satellites are presented and compared. Gravity field solutions - the so-called GRACE level-2 data - are mainly spherical harmonic expansions of the Earth's gravitational potential and are widely used by the geosciences community. Level-2 data are obtained via the functional modeling of GRACE level-1 data which are in principle the GRACE orbit, observed by GPS high-low and K-band low-low satellite-to-satellite tracking as well as on-board accelerometry. There are several approaches to connect the Earth's gravitational potential to the level-1 observations. In this research study we compare three different approaches using simulated GRACE level-1 data. The methods being considered here are the acceleration approach, the energy balance approach and the integral equation method. This work is part of the cooperation between Institut für Erdmessung (IfE) and Albert Einstein Institut (AEI) at Leibniz Universität Hannover, Deutsches Geodätisches Forschungsinstitut (DGFI) and Bayerische Kommission für die Internationale Erdmessung (BEK) in Munich and Deutsches GeoforschungsZentrum (GFZ) in Potsdam. Each institution will apply one of the above mentioned methods. Features and typical characteristics of each approach are discussed.

  6. Academic performance and student engagement in level 1 physics undergraduates

    Energy Technology Data Exchange (ETDEWEB)

    Casey, M M; McVitie, S [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)], E-mail: m.casey@physics.gla.ac.uk

    2009-09-15

    At the beginning of academic year 2007-08, staff in the Department of Physics and Astronomy at the University of Glasgow started to implement a number of substantial changes to the administration of the level 1 physics undergraduate class. The main aims were to improve the academic performance and progression statistics. With this in mind, a comprehensive system of learning support was introduced, the main remit being the provision of an improved personal contact and academic monitoring and support strategy for all students at level 1. The effects of low engagement with compulsory continuous assessment components had already been observed to have a significant effect on students sitting in the middle of the grade curve. Analysis of data from the 2007-08 class showed that even some nominally high-achieving students achieved lowered grades due to the effects of low engagement. Nonetheless, academic and other support measures put in place during 2007-08 played a part in raising the passrate for the level 1 physics class by approximately 8% as well as raising the progression rate by approximately 10%.

  7. Academic performance and student engagement in level 1 physics undergraduates

    Science.gov (United States)

    Casey, M. M.; McVitie, S.

    2009-09-01

    At the beginning of academic year 2007-08, staff in the Department of Physics and Astronomy at the University of Glasgow started to implement a number of substantial changes to the administration of the level 1 physics undergraduate class. The main aims were to improve the academic performance and progression statistics. With this in mind, a comprehensive system of learning support was introduced, the main remit being the provision of an improved personal contact and academic monitoring and support strategy for all students at level 1. The effects of low engagement with compulsory continuous assessment components had already been observed to have a significant effect on students sitting in the middle of the grade curve. Analysis of data from the 2007-08 class showed that even some nominally high-achieving students achieved lowered grades due to the effects of low engagement. Nonetheless, academic and other support measures put in place during 2007-08 played a part in raising the passrate for the level 1 physics class by approximately 8% as well as raising the progression rate by approximately 10%.

  8. Frontier use in ATLAS

    CERN Document Server

    Smith, D A; The ATLAS collaboration; DeStefano, J; Dewhurst, A; Donno, F; Dykstra, D; Front, D; Gallas, E; Hawkings, R; Luehring, F; Walker, R

    2010-01-01

    Frontier is a distributed database access system, including data caching, that was developed originally for the CMS experiment. This system has been in production for CMS for some time, providing world-wide access to the experiment's conditions data for all user jobs. The ATLAS experiment, which has had similar problems with global data distribution, investigated the use of the system for ATLAS jobs. After months of trials and verification, ATLAS put the Frontier system into production late in 2009. Frontier now supplies database access for ATLAS jobs at over 50 computing sites. This successful deployment of Frontier in ATLAS will be described, along with the scope of the system and necessary resources.

  9. ATLAS25: Facebook Live Events

    CERN Multimedia

    CERN

    2017-01-01

    This video is a montage of the 5 Facebook Live events that were broadcast on 2nd October 2017, to celebrate ATLAS25. For more details visit: http://atlas.cern/updates/atlas-news/celebrating-25-years-discovery

  10. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  11. Effect of oak wood barrel capacity and utilization time on phenolic and sensorial profile evolution of an Encruzado white wine.

    Science.gov (United States)

    Nunes, Paulo; Muxagata, Sara; Correia, Ana C; Nunes, Fernando M; Cosme, Fernanda; Jordão, António M

    2017-11-01

    Several studies have reported the influence of diverse winemaking technologies in white wine characteristics. However, the impact of the use of different oak wood barrel capacities and utilization time on the evolution of white wine phenolic content and sensorial characteristics are not usually considered. Thus the aim of this work was to evaluate the effect of oak wood barrel capacity and utilization time on the evolution of phenolic compounds, browning potential index and sensorial profile of an Encruzado white wine. For the 180 aging days considered, the use of new oak wood barrels induced a greater increase in global phenolic composition, including several individual compounds, such as gallic and ellagic acid, independently of the barrel capacity. Tendency for a lesser increase of the browning potential index values was detected for white wines aged in new oak wood barrels. The sensorial profile evolution, showed significant differences only for the aroma descriptors, namely for 'wood aroma' and 'aroma intensity', white wine aged in 225 L new oak wood barrels being the highest scored. The results show that, in general, the use of different capacities and utilization time of oak wood barrels used for white wine aging could play an important role in white wine quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Consumer demand for green stormwater management technology in an urban setting: The case of Chicago rain barrels

    Science.gov (United States)

    Ando, Amy W.; Freitas, Luiz P. C.

    2011-12-01

    Hydrological disruption and water pollution from urbanization can be reduced if households in urban areas adopt decentralized storm water controls. We study a citywide municipal subsidized rain-barrel program in the third biggest city in the United States, Chicago, to explore what factors influence whether households purchase this sort of green storm water management technology in an urban setting. Specifically, we regress census-tract level data on the number of rain barrels adopted in different parts of the city on socioeconomic variables, data on local flood frequency, and features of the housing stock. We find that rain-barrel purchases are not correlated with local levels of flooding, even though city residents were told by program managers that rain barrels could alleviate local flooding. Instead, rain barrels are heavily concentrated in places with high-income attitudinally green populations. We do find more rain barrels were adopted in places close to rain-barrel distribution points and near sites of hydrological information campaigns; thus, policy makers might increase green-technology adoption in areas where they can do the most good by reducing transaction costs and providing education programs to those areas. Finally, our results indicate that owner occupancy is positively correlated with green-technology adoption. Low-rise rental housing may have inefficiently low levels of adoption, such that city managers might want to develop programs to encourage storm water management investments by landlords who do not live in their own properties.

  13. SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES

    Directory of Open Access Journals (Sweden)

    S. J. Baillarin

    2012-07-01

    Full Text Available In partnership with the European Commission and in the frame of the Global Monitoring for Environment and Security (GMES program, the European Space Agency (ESA is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. While ensuring data continuity of former SPOT and LANDSAT multi-spectral missions, Sentinel-2 will also offer wide improvements such as a unique combination of global coverage with a wide field of view (290 km, a high revisit (5 days with two satellites, a high resolution (10 m, 20 m and 60 m and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains. In this context, the Centre National d'Etudes Spatiales (CNES supports ESA to define the system image products and to prototype the relevant image processing techniques. This paper offers, first, an overview of the Sentinel-2 system and then, introduces the image products delivered by the ground processing: the Level-0 and Level-1A are system products which correspond to respectively raw compressed and uncompressed data (limited to internal calibration purposes, the Level-1B is the first public product: it comprises radiometric corrections (dark signal, pixels response non uniformity, crosstalk, defective pixels, restoration, and binning for 60 m bands; and an enhanced physical geometric model appended to the product but not applied, the Level-1C provides ortho-rectified top of atmosphere reflectance with a sub-pixel multi-spectral and multi-date registration; a cloud and land/water mask is associated to the product. Note that the cloud mask also provides an indication about cirrus. The ground sampling distance of Level-1C product will be 10 m, 20 m or 60 m according to the band. The final Level-1C product is tiled following a pre-defined grid of 100x100 km2, based on UTM/WGS84 reference frame

  14. Critical Design Decisions of The Planck LFI Level 1 Software

    Science.gov (United States)

    Morisset, N.; Rohlfs, R.; Türler, M.; Meharga, M.; Binko, P.; Beck, M.; Frailis, M.; Zacchei, A.

    2010-12-01

    The PLANCK satellite with two on-board instruments, a Low Frequency Instrument (LFI) and a High Frequency Instrument (HFI) has been launched on May 14th with Ariane 5. The ISDC Data Centre for Astrophysics in Versoix, Switzerland has developed and maintains the Planck LFI Level 1 software for the Data Processing Centre (DPC) in Trieste, Italy. The main tasks of the Level 1 processing are to retrieve the daily available scientific and housekeeping (HK) data of the LFI instrument, the Sorption Cooler and the 4k Cooler data from Mission Operation Centre (MOC) in Darmstadt; to sort them by time and by type (detector, observing mode, etc...); to extract the spacecraft attitude information from auxiliary files; to flag the data according to several criteria; and to archive the resulting Time Ordered Information (TOI), which will then be used to produce maps of the sky in different spectral bands. The output of the Level 1 software are the TOI files in FITS format, later ingested into the Data Management Component (DMC) database. This software has been used during different phases of the LFI instrument development. We started to reuse some ISDC components for the LFI Qualification Model (QM) and we completely rework the software for the Flight Model (FM). This was motivated by critical design decisions taken jointly with the DPC. The main questions were: a) the choice of the data format: FITS or DMC? b) the design of the pipelines: use of the Planck Process Coordinator (ProC) or a simple Perl script? c) do we adapt the existing QM software or do we restart from scratch? The timeline and available manpower are also important issues to be taken into account. We present here the orientation of our choices and discuss their pertinence based on the experience of the final pre-launch tests and the start of real Planck LFI operations.

  15. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  16. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  17. The construction of the ATLAS semi-conductor tracker

    Science.gov (United States)

    Jones, Tim

    2006-12-01

    The ATLAS (A Toroidal LHC ApparatuS) experiment at the Large Hadron Collider (LHC) at CERN has been designed to explore physics at the TeV energy scale and will be commissioned in 2007. In the innermost region of the experiment is a charged particle tracker, the Inner Detector of which the Semiconductor Tracker (SCT) is a major component. The SCT comprises a central barrel section enclosed by two endcaps (A and C). The construction of the major components of the ATLAS Semi-conductor tracker (SCT) is now nearing completion. Following a brief description of the design of the SCT, the logistics and organisation of the construction phase of the project are discussed. Central to the delivery of a high quality detector is the testing of large numbers of modules both during assembly and after they are mounted on their final support structures. The results of these tests for endcap C are presented showing that the electrical performance of the 988 modules to be installed in ATLAS is compatible with the specifications required.

  18. Cobalamin-independent methionine synthase (MetE: a face-to-face double barrel that evolved by gene duplication.

    Directory of Open Access Journals (Sweden)

    Robert Pejchal

    2005-02-01

    Full Text Available Cobalamin-independent methionine synthase (MetE catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH, both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (betaalpha(8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys(3Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E.Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  19. Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant.

    Science.gov (United States)

    Carstensen, Linn; Sperl, Josef M; Bocola, Marco; List, Felix; Schmid, Franz X; Sterner, Reinhard

    2012-08-01

    The (βα)(8)-barrel is among the most ancient, frequent, and versatile enzyme structures. It was proposed that modern (βα)(8)-barrel proteins have evolved from an ancestral (βα)(4)-half-barrel by gene duplication and fusion. We explored whether the mechanism of protein folding has remained conserved during this long-lasting evolutionary process. For this purpose, potential primordial (βα)(8)-barrel proteins were constructed by the duplication of a (βα)(4) element of a modern (βα)(8)-barrel protein, imidazole glycerol phosphate synthase (HisF), followed by the optimization of the initial construct. The symmetric variant Sym1 was less stable than HisF and its crystal structure showed disorder in the contact regions between the half-barrels. The next generation variant Sym2 was more stable than HisF, and the contact regions were well resolved. Remarkably, both artificial (βα)(8)-barrels show the same refolding mechanism as HisF and other modern (βα)(8)-barrel proteins. Early in folding, they all equilibrate rapidly with an off-pathway species. On the productive folding path, they form closely related intermediates and reach the folded state with almost identical rates. The high energy barrier that synchronizes folding is thus conserved. The strong differences in stability between these proteins develop only after this barrier and lead to major changes in the unfolding rates. We conclude that the refolding mechanism of (βα)(8)-barrel proteins is robust. It evolved early and, apparently, has remained conserved upon the diversification of sequences and functions that have taken place within this large protein family.

  20. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Robert; Ludwig, Martha L. (Michigan)

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  1. The CMS Level-1 Trigger system for LHC Run II

    CERN Document Server

    Tapper, Alexander

    2017-01-01

    During LHC Run II the centre-of-mass energy of pp collisions has increased up to 13 TeV and the instantaneous luminosity has progressed towards $2 \\times 10^{34} \\rm{cm}^{-2}\\rm{s}^{-1}$. In order to guarantee a successful and ambitious physics programme under these conditions, the CMS trigger system has been upgraded. The upgraded CMS Level-1 trigger is designed to improve performance at high luminosity and large number of simultaneous inelastic collisions per crossing. The trigger design, implementation and commissioning are summarised and performance results are described.

  2. Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    CERN Document Server

    Kreis, B.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.; Apanasevich, L.; Zhang, J.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Foudas, C.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J.B.; Strebler, T.; Zabi, A.; Barbieri, R.; Cali, I.A.; Innocenti, G.M.; Lee, Y.J.; Roland, C.; Wyslouch, B.; Guilbaud, M.; Li, W.; Northup, M.; Tran, B.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2016-01-21

    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.

  3. MODIS. Volume 1: MODIS level 1A software baseline requirements

    Science.gov (United States)

    Masuoka, Edward; Fleig, Albert; Ardanuy, Philip; Goff, Thomas; Carpenter, Lloyd; Solomon, Carl; Storey, James

    1994-01-01

    This document describes the level 1A software requirements for the moderate resolution imaging spectroradiometer (MODIS) instrument. This includes internal and external requirements. Internal requirements include functional, operational, and data processing as well as performance, quality, safety, and security engineering requirements. External requirements include those imposed by data archive and distribution systems (DADS); scheduling, control, monitoring, and accounting (SCMA); product management (PM) system; MODIS log; and product generation system (PGS). Implementation constraints and requirements for adapting the software to the physical environment are also included.

  4. Quantitative/Statistical Approach to Bullet-to-Firearm Identification with Consecutively Manufactured Barrels

    Energy Technology Data Exchange (ETDEWEB)

    Peter Striupaitis; R.E. Gaensslen

    2005-01-30

    Efforts to use objective image comparison and bullet scanning technologies to distinguish bullets from consecutively manufactured handgun barrels from two manufacturers gave mixed results. The ability of a technology to reliably distinguish between matching and non-matching bullets, where the non-matching bullets were as close in pattern to the matching ones as is probably possible, would provide evidence that the distinctions could be made ''objectively'', and independently of human eyes. That evidence is identical or very close to what seems to be needed to satisfy Daubert standards. It is fair to say that the FTI IBIS image comparison technology correctly distinguished between all the Springfield barrel bullets, and between most but not all of the HiPoint barrel bullets. In the HiPoint cases that were not distinguished 100% of the time, they would he distinguished correctly at least 83% of the time. These results, although obviously limited to the materials used in the comparisons, provide strong evidence that barrel-to-bullet matching is objectively reliable. The results with SciClops were less compelling. The results do not mean that bullet-to-barrel matching is not objectively reliable--rather, they mean that this version of the particular technology could not quite distinguish between these extremely similar yet different bullets as well as the image comparison technology did. In a number of cases, the numerical results made the correct distinctions, although they were close to one another. It is hard to say from this data that this technology differs in its ability to make distinctions between the manufacturers, because the results are very similar with both. The human examiner results were as expected. We did not expect any misidentifications, and there were not any. It would have been preferable to have a higher return rate, and thus more comparisons in the overall sample. As noted, the ''consecutively manufactured barrel

  5. The CMS Trigger Supervisor: Control and Hardware Monitoring System of the CMS Level-1 Trigger at CERN

    CERN Document Server

    Ildefons Magrans de Abril

    2008-01-01

    The experiments CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC ApparatuS) at the LargeHadron Collider (LHC) are the greatest exponents of the rising complexity in High Energy Physics (HEP) datahandling instrumentation. Tens of millions of readout channels, tens of thousands of hardware boards and thesame order of connections are figures of merit. However, the hardware volume is not the only complexitydimension, the unprecedented large number of research institutes and scientists that form the internationalcollaborations, and the long design, development, commissioning and operational phases are additional factorsthat must be taken into account.The Level-1 (L1) trigger decision loop is an excellent example of these difficulties. This system is based on apipelined logic destined to analyze without deadtime the data from each LHC bunch crossing occurring every25_ns, using special coarsely segmented trigger data from the detectors. The L1 trigger is responsible forreducing the rate of accepted crossings to...

  6. Study of ZZ to four leptons events in ATLAS at the LHC and upgrade of the ATLAS Muon Spectrometer

    CERN Multimedia

    Kouskoura, V

    2014-01-01

    The study of the ZZ and ZZ* production in proton-proton collisions at the Large Hadron Collider (LHC) at CERN is presented. The data analyzed in this study were recorded by the ATLAS experiment at a centre-of-mass energy of 7 TeV and of 8 TeV. The selected events are consistent with fully leptonic ZZ decays, in particular to electrons and muons. The total ZZ production cross section is measured and is found to be in agreement with the Standard Model (SM) prediction. The ZZ production allows the study of the anomalous neutral Triple Gauge Couplings. No deviation from the SM prediction is found that could indicate the presence of New Physics. In view of the forthcoming increase of the instantaneous luminosity of the LHC, the ATLAS Collaboration foresees upgrades of the detector. An upgrade of the Muon Spectrometer is presented. The integration of the new detection elements in the ATLAS Geometry is illustrated, as well as the increase in the total Barrel acceptance.

  7. The CMS Level-1 Calorimeter Trigger for LHC Run II

    Science.gov (United States)

    Sinthuprasith, Tutanon

    2017-01-01

    The phase-1 upgrades of the CMS Level-1 calorimeter trigger have been completed. The Level-1 trigger has been fully commissioned and it will be used by CMS to collect data starting from the 2016 data run. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Design, which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Intelligent, more complex, and innovative algorithms are now the core of the first decision layer of CMS: the upgraded trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger processors for pT assignment, pile up subtraction, and isolation requirements for electrons, and taus. The performance of the TMT design and the latency measurements and the algorithm performance which has been measured using data is also presented here.

  8. The CMS Level-1 trigger system for LHC Run II

    Science.gov (United States)

    Cadamuro, L.

    2017-03-01

    The Compact Muon Solenoid (CMS) experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 105. During Run II, the LHC has increased the centre-of-mass energy of proton-proton collisions up to 13 TeV and may progressively reach an instantaneous luminosity of 2×1034 cm-2 s-1 or higher. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition system has been upgraded. The upgraded CMS Level-1 (L1) trigger benefits from the recent μTCA technology and is designed to maintain the performance under high instantaneous luminosity conditions. More sophisticated, innovative algorithms are now the core of the first decision layer of CMS: this drastically reduces the trigger rate and improves the trigger efficiency for a wide variety of physics processes. In this document, we present the overall architecture of the upgraded Level-1 trigger system. The performance of single object triggers, measured on collision data recorded during the 2016 running period, are also summarised.

  9. The CMS Level-1 Calorimeter Trigger for LHC Run II

    CERN Document Server

    Zabi, Alexandre; Cadamuro, Luca; Davignon, Olivier; Romanteau, Thierry; Strebler, Thomas; Cepeda, Maria Luisa; Sauvan, Jean-baptiste; Wardle, Nicholas; Aggleton, Robin Cameron; Ball, Fionn Amhairghen; Brooke, James John; Newbold, David; Paramesvaran, Sudarshan; Smith, D; Taylor, Joseph Ross; Fountas, Konstantinos; Baber, Mark David John; Bundock, Aaron; Breeze, Shane Davy; Citron, Matthew; Elwood, Adam Christopher; Hall, Geoffrey; Iles, Gregory Michiel; Laner Ogilvy, Christian; Penning, Bjorn; Rose, A; Shtipliyski, Antoni; Tapper, Alexander; Durkin, Timothy John; Harder, Kristian; Harper, Sam; Shepherd-Themistocleous, Claire; Thea, Alessandro; Williams, Thomas Stephen; Dasu, Sridhara Rao; Dodd, Laura Margaret; Klabbers, Pamela Renee; Levine, Aaron; Ojalvo, Isabel Rose; Ruggles, Tyler Henry; Smith, Nicholas Charles; Smith, Wesley; Svetek, Ales; Forbes, R; Tikalsky, Jesra Lilah; Vicente, Marcelo

    2017-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was completed in two stages, with the first running in 2015 for proton and Heavy Ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Large Hadron Collider (LHC) Run II. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger p...

  10. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  11. ATLAS ITk Short-Strip Stave Prototype Module with Integrated DCDC Powering and Control

    CERN Document Server

    Greenall, Ashley; The ATLAS collaboration

    2017-01-01

    During the Phase II upgrade, the ATLAS detector at the LHC will be upgraded with a new Inner Tracker (ITk) detector. The ITk prototype barrel module design has adopted an integrated low mass assembly featuring single-sided flexible circuits, with readout ASICs, glued to the silicon strip sensor. Further integration has been achieved by the attachment of module DCDC powering, a HV sensor biasing switch and autonomous monitoring and control to the sensor. This low mass integrated module approach benefits further in a reduced width stave structure to which the modules are attached. The results of preliminary electrical tests of such an integrated module are presented.

  12. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and the results of the electrical tests of the first full-size module of the innermost forward region, named Ring 0 in the ATLAS ITk strip detector nomenclature. This module...

  13. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and results of the electrical tests of the first full-size module of the innermost forward region, named \\textit{Ring 0} in the ATLAS ITk strip detector nomenclature. This m...

  14. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  15. Results from the USIP_UH contribution to the BARREL-4 campaign

    Science.gov (United States)

    Behrend, C. C.; Bering, E. A., III; Ehteshami, A.; Fenton, A.; Gamblin, R.; Greer, M.; Mathur, S.; Glennie, C. L.; Velasquez, B.; Marpaung, J.; Lalata, M. C.

    2016-12-01

    The Undergraduate Student Instrumentation Project (USIP) at the University of Houston sent a team to Kiruna, Sweden to participate with NASA/Dartmouth's BARREL-4 campaign in August 2016. BARREL-4's primary instrument is an MeV x-ray scintillation counter. The team has provided two different experiments to be flown, a dual frequency GPS receiver to calculate total electron content and a Very Low Frequency (VLF) receiver to measure the VLF emissions associated with electron precipitation. TEC is calculated via finding pseudo-ranges comparing the sent and received signals from passing satellites. The VLF receiver has an air-core magnetic loop antenna that utilizes a transformer coupled with an integrating pre-amp which is then recorded to a standard music recorder. The presentation will include a summary of observations.

  16. Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    CERN Document Server

    Adzic, Petar; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Baccaro, Stefania; Baffioni, Stephanie; Balazs, Michael; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Benetta, Robert; Bercher, Michel; Bernet, Colin; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bornheim, Adolf; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Bühler, M; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cussans, David; Dafinei, Ioan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; Descamps, Julien; Diemoz, Marcella; Di Marco, Emanuele; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dutta, Dipanwita; Dzelalija, Mile; Peisert, A; El-Mamouni, H; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Geerebaert, Yannick; Gentit, François-Xavier; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Greenhalgh, R J S; Guevara Riveros, Luz; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel de Monchenault, Gautier; Hansen, Magnus; Heath, Helen F; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Husejko, Michal; Ille, Bernard; Imlay, Richard; Ingram, Quentin; Jarry, Patrick; Jessop, Colin; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kailas, Swaminathan; Kataria, Sushil Kumar; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Kolberg, Ted; Krasnikov, Nikolai; Krpic, Dragomir; Kubota, Yuichi; Kumar, P; Kuo, Chen-Cheng; Kyberd, Paul; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Leshev, Georgi; Lethuillier, Morgan; Lin, Sheng-Wen; Lin, Willis; Lintern, A L; Litvine, Vladimir; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, Paul David; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Mahlke-Krüger, H; Malberti, Martina; Malcles, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marone, Matteo; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mohanty, Ajit Kumar; Moortgat, Filip; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Organtini, Giovanni; Orimoto, Toyoko; Paganoni, Marco; Paganini, Pascal; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patterson, Juliet Ritchie; Pauss, Felicitas; Petrakou, Eleni; Phillips, D G; Piroué, Pierre; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Ragazzi, Stefano; Rahatlou, Shahram; Rander, John; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogan, Christopher; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Sala, Leonardo; Salerno, Roberto; Santanastasio, Francesco; Schinzel, Dietrich; Seez, Christopher; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Smith, Brian; Smith, Vincent J; Sproston, Martin; Stöckli, Fabian; Suter, Henry; Swain, John; Tabarellide Fatis, T; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Theofilatos, Konstantinos; Thiebaux, Christophe; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Verrecchia, Patrice; Veverka, Jan; Vichoudis, Paschalis; Virdee, Tejinder; Vlassov, E; Von Gunten, Hans Peter; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Williams, Jennifer C; Yang, Yong; Yaselli, Ignacio; Yohay, Rachel; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished before installation with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3\\%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5\\% over most of the ECAL. The best intercalibration precision is expected to come from the analysis of events collected {\\it in situ} during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were in...

  17. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography.

    Science.gov (United States)

    Weiler, Nicholas C; Collman, Forrest; Vogelstein, Joshua T; Burns, Randal; Smith, Stephen J

    2014-01-01

    A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.

  18. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Yazgan, Elfe

    2009-01-01

    The response of the combined CMS barrel calorimeters to hadrons, electrons and muons over a range from 2 to 350 GeV/$c$ has been measured. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a discussion of the underlying phenomena are presented. Techniques to correct the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons are also presented. Above 5 GeV/$c$, these corrections improve the energy resolution of the combined system where the stochastic term equals $84.7$\\% and the constant term is $7.4$\\%. The corrected mean response remains constant within 1.3\\% {\\it rms}.

  19. A patient with a traumatic brain injury due to barrel bomb tertiary blast effect

    Directory of Open Access Journals (Sweden)

    Mustafa Bolatkale

    2017-06-01

    Full Text Available Preparing to manage weapons of mass destruction events challenges emergency services systems neighboring Syria every day. Understanding injury from explosives is essential for all providers of emergency care in both civilian and military settings. In this case, the authors present a 22-year-old man who was admitted to the emergency department with displaced skull fracture, epidural hemorrhage and cerebral contusion due to barrel bomb tertiary blast effect. A 22-year-old man who complained of pain in the right temporal head region after barrel bomb explosion was admitted in the emergency department. The patient could not remember the explosion and found himself on the ground. In his medical history, there was not a record of any diseases, operations or traumas. Examination of the head revealed scalp hematoma and slump in the skull on the right temporal region. Patients computed tomography (CT scan showed a displaced skull fracture, epidural hematoma and cerebral contusion.

  20. Double-barrelled wet colostomy formation after pelvic exenteration for locally advanced or recurrent rectal cancer.

    Science.gov (United States)

    Bloemendaal, A L A; Kraus, R; Buchs, N C; Hamdy, F C; Hompes, R; Cogswell, L; Guy, R J

    2016-11-01

    In advanced pelvic cancer it may be necessary to perform a total pelvic exenteration. In such cases urinary tract reconstruction is usually achieved with the creation of an ileal conduit with a urinary stoma on the right side of the patient's abdomen and an end colostomy separately on the left. The potential morbidity from a second stoma may be avoided by the use of a double-barrelled wet colostomy (DBWC), as a single stoma. Another advantage is the possibility of using a vertical rectus abdominis muscle flap for perineal reconstruction. All patients undergoing formation of a DBWC were included. A DBWC was formed in 10 patients. One patient underwent formation of a double-barrelled wet ileostomy. In this technical note we present our early experience in 11 cases and a video of DBWC formation in a male patient. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  1. The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

    CERN Document Server

    Gras, Philippe

    2015-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstatecrystals forming the barrel part of the CMS Electromagnetic Calorimeter (ECAL) will still perform well, even after theexpected 3000$\\,$fb$^{-1}$ at the end of HL-LHC. The scintillation light is measured with avalanche photodiodes (APDs).Although the APDs will continue to be operational, there will be some increase in noise due to radiation-induceddark-currents. Triggering on electromagnetic objects with $\\sim$140 pileup events necessitates a change of the front-endelectronics. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgradedoff-detector processors, allowing maximum flexibility and enhanced triggering possibilities. The very-front-end system willalso be upgraded, to provide improved rejection of anomalous signals in the APDs as well as to mitigate the increase in APDnoise. We are also considering lowering the ECAL barrel operating temperature...

  2. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints

    Science.gov (United States)

    Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert

    2017-01-01

    Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665

  3. The ATLAS Trigger algorithms upgrade and performance in Run 2

    CERN Document Server

    Bernius, Catrin; The ATLAS collaboration

    2017-01-01

    Title: The ATLAS Trigger algorithms upgrade and performance in Run 2 (TDAQ) The ATLAS trigger has been used very successfully for the online event selection during the first part of the second LHC run (Run-2) in 2015/16 at a center-of-mass energy of 13 TeV. The trigger system is composed of a hardware Level-1 trigger and a software-based high-level trigger; it reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of about 1 kHz. The excellent performance of the ATLAS trigger has been vital for the ATLAS physics program of Run-2, selecting interesting collision events for wide variety of physics signatures with high efficiency. The trigger selection capabilities of ATLAS during Run-2 have been significantly improved compared to Run-1, in order to cope with the higher event rates and pile-up which are the result of the almost doubling of the center-of-mass collision energy and the increase in the instantaneous luminosity of the LHC. At the Level-1 trigger the undertaken impr...

  4. Right and left support feet of the Central Barrel Yoke of the CMS Detector

    CERN Multimedia

    Franz Leher, DWE

    2000-01-01

    Fully loaded the Central Barrel will weigh 3000 tonnes. Those feet have tosupport this weight. Therefore they are made of 120 mm thick steel plates.To guarantee a maximum coverage for the muon detctor they will house a muon detector just benaeth the top plate. Weight of 1 foot is 35 tonnes.Its height is 3.5 m and it is 2.5 m large

  5. Performance Study of the CMS Barrel Resistive Plate Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.

  6. Dropped head and man-in-barrel syndrome in amyotrophic lateral sclerosis

    OpenAIRE

    Almeida, Rui; Felix, Ana Catarina; Andr?, Ana Lu?sa; Nzwalo, Hip?lito

    2017-01-01

    Abstract We report a case of progressive symmetric brachial weakness followed by cervical muscle weakness. The electromyogram confirmed the diagnosis of amyotrophic lateral sclerosis. After 3 years the patient remained able to walk unassisted and without significant bulbar manifestations or upper neuron signs. The concomitant presence of dropped head syndrome and man-in-barrel syndrome in an amyotrophic lateral sclerosis patient makes our case unique.

  7. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  8. Design, Manufacture, and Operation of a Core Barrel for the Iceland Deep Drilling Project (IDDP

    Directory of Open Access Journals (Sweden)

    Guðmundur Ómar Friðleifsson

    2010-10-01

    Full Text Available The science program of the Iceland Deep Drilling Project (IDDP requires as much core as possible in the transition zone to supercritical and inside the supercritical zone (>374°C, in the depth interval 2400–4500 m. The spot coring system selected has a 7 ¼" (184.15 mm OD at 10 m length and collects a 4" (101.6 mm diameter core using an 8 ½" (215.9 mm OD core bit. It incorporates design characteristics, materials, clearances and bearings compatible with operation of the core barrel at temperatures as high as 600°C. Special attention was given to the volume of flushing which could be applied to the core barrel and through the bit while running in and out of the borehole and while coring. In November 2008 a successful spot coring test using the new core barrel was performed at 2800 m depth in the production well RN-17 B at Reykjanes, Iceland, where the formation temperature is 322°C. A 9.3-m hydrothermally altered hyaloclastite breccia was cored with 100% core recovery, in spite of it being highly fractured. A core tube data logger was also designed and placed inside the inner barrel to monitor the effectiveness of cooling. The temperature could be maintained at 100°C while coring, but it reached 170°C for a very short period while tripping in. The effective cooling is attributed to the high flush design and a top drive being employed, which allows circulation while tripping in or out, except for the very short time when a new drill pipe connectionis being made.

  9. The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis▿

    OpenAIRE

    Volokhina, Elena B.; Beckers, Frank; Tommassen, Jan; Bos, Martine P.

    2009-01-01

    The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysi...

  10. Dissociating processes underlying level-1 visual perspective taking in adults.

    Science.gov (United States)

    Todd, Andrew R; Cameron, C Daryl; Simpson, Austin J

    2017-02-01

    Although reasoning about other people's mental states has typically been thought to require effortful deliberation, evidence from indirect measures suggests that people may implicitly track others' perspectives, spontaneously calculating what they see and know. We used a process-dissociation approach to investigate the unique contributions of automatic and controlled processes to level-1 visual perspective taking in adults. In Experiment 1, imposing time pressure reduced the ability to exert control over one's responses, but it left automatic processing of a target's perspective unchanged. In Experiment 2, automatic processing of a target's perspective was greater when the target was a human avatar versus a non-social entity, whereas controlled processing was relatively unaffected by the specific target. Our findings highlight the utility of a process-dissociation approach for increasing theoretical precision and generating new questions about the nature of perspective taking. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Performance of Prototypes for the Barrel Part of the ANDA Electromagnetic Calorimeter

    Science.gov (United States)

    Rosenbaum, Christoph; Diehl, S.; Dormenev, V.; Drexler, P.; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Zaunick, H.-G.; P¯ANDA Collaboration

    2016-08-01

    The performance of the most recent prototypes of the ANDA barrel electromagnetic calorimeter (EMC) will be compared. The first large scale prototype PROTO60 was designed to test the performance of the improved tapered lead tungstate crystals (PWO-II). The PROTO60 which consists of 6 × 10 crystals was tested at various accelerator facilities over the complete envisaged energy range fulfilling the requirements of the TDR of the ANDA EMC in terms of energy, position and time resolution. To realize the final barrel geometry and to test the final front end electronics, a second prototype PROTO120 has been constructed. It represents a larger section of a barrel slice, containing the most tapered crystals and the close to final components for the ANDA EMC. The performance of both prototypes will be compared with a focus on the analysis procedure including the signal extraction, noise rejection, calibration and the energy resolution. In addition, the influence of the non-uniformity of the crystal on the energy resolution will be discussed.

  12. Identification of Clearance and Contact Stiffness in a Simplified Barrel-Cradle Structure of Artillery System