WorldWideScience

Sample records for atlantic marine ecosystems

  1. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    Directory of Open Access Journals (Sweden)

    Martin Edwards

    Full Text Available Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO. Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  2. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    DEFF Research Database (Denmark)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.

    2014-01-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from...... for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider...

  3. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    Science.gov (United States)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.; Brewin, Robert; Butenschön, Momme; Harle, James; Huse, Geir; Lehodey, Patrick; Lindemann, Christian; Memery, Laurent; Salihoglu, Baris; Senina, Inna; Yool, Andrew

    2014-12-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

  4. 77 FR 29555 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2012-05-18

    ...; Comprehensive Ecosystem-Based Amendment 2 for the South Atlantic Region; Correction AGENCY: National Marine...: Correcting amendment. SUMMARY: This action corrects the final rule implementing the Comprehensive Ecosystem...

  5. Marine Ecosystem Services

    DEFF Research Database (Denmark)

    Hasler, Berit; Ahtiainen, Heini; Hasselström, Linus

    MARECOS (Marine Ecosystem Services) er et tværfagligt studie, der har haft til formål at tilvejebringe information vedrørende kortlægning og værdisætning af økosystemtjenester, som kan anvendes i forbindelse med udformning af regulering på det marine område såvel nationalt, som regionalt og inter...

  6. 75 FR 39638 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-07-12

    ...; Comprehensive Ecosystem-Based Amendment 1 for the South Atlantic Region; Correction AGENCY: National Marine... Comprehensive Ecosystem-Based Amendment 1 for the South Atlantic region that published in the Federal Register...

  7. Marine ecosystems in alteration under global warming

    International Nuclear Information System (INIS)

    Prestrud, Paal

    2004-01-01

    It is commonly thought among fishermen, researchers and in the fishing industries that the administration and harvesting of the fish resources is more important for the stock of fish than are changes in the climate. However, many scientific investigations now link changes in temperature with changes in the spreading, survival and beginning of life processes. There is solid evidence that there are important changes in progress in the North Atlantic marine ecosystem caused by global warming. If the heating of the water masses continues, it will probably have a large impact on the ocean's productivity and consequently for the fishing industry

  8. Atlantic Marine Mammal Assessment Vessel Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data sets are a compilation of large vessel surveys for marine mammal stock assessments in South Atlantic (Florida to Maryland) waters from 1994 to the...

  9. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    Science.gov (United States)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  10. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including...... the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...

  11. 75 FR 35330 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-06-22

    ...; Comprehensive Ecosystem-Based Amendment for the South Atlantic Region AGENCY: National Marine Fisheries Service...: NMFS issues this final rule to implement the Comprehensive Ecosystem-Based Amendment 1 (CE-BA1) to the... pristine deepwater coral ecosystems in the world while minimizing the effects on traditional fishing in the...

  12. 75 FR 14548 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-03-26

    ...; Comprehensive Ecosystem-Based Amendment for the South Atlantic Region AGENCY: National Marine Fisheries Service... for comments. SUMMARY: NMFS issues this proposed rule to implement the Comprehensive Ecosystem-Based... ecosystems in the world while minimizing the effects on traditional fishing in the Deepwater Coral HAPCs...

  13. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    Energy Technology Data Exchange (ETDEWEB)

    Hetzinger, S. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); Halfar, J. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Mecking, J.V.; Keenlyside, N.S. [Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); University of Bergen, Geophysical Institute and Bjerknes Centre for Climate Research, Bergen (Norway); Kronz, A. [University of Goettingen, Geowissenschaftliches Zentrum, Goettingen (Germany); Steneck, R.S. [University of Maine, Darling Marine Center, Walpole, ME (United States); Adey, W.H. [Smithsonian Institution, Department of Botany, Washington, DC (United States); Lebednik, P.A. [ARCADIS U.S. Inc., Walnut Creek, CA (United States)

    2012-09-15

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data. (orig.)

  14. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic

    DEFF Research Database (Denmark)

    Beaugrand, G.; Edwards, M.; Brander, Keith

    2008-01-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt...... ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity...... and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod...

  15. Improving the implementation of marine monitoring in the northeast Atlantic.

    Science.gov (United States)

    Turrell, W R

    2018-03-01

    Marine monitoring in the northeast Atlantic is delivered within identifiable monitoring themes, established through time and defined by the geographical area and policy drivers they serve, the sampling methodologies they use, their assessment methodologies, their funding and governance structures and the people or organisations involved in their implementation. Within a monitoring theme, essential components for effective monitoring are governance, strategy and work plan, sampling protocols, quality assurance, and data and assessment structures. This simple framework is used to analyse two monitoring theme case studies; national ecosystem health monitoring, and regional fish stock monitoring. Such essential component analyses, within marine monitoring themes, can help improve monitoring implementation by identifying gaps and overlaps. Once monitoring themes are recognised, explicitly defined and streamlined, travel towards integrated monitoring may be made easier as the current lack of clarity in thematic marine monitoring implementation is one barrier to integration at both national and regional scales. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. Events Calendar: Smithsonian Marine Ecosystems Exhibit: Smithsonian Marine

    Science.gov (United States)

    current Smithsonian research on the plants and animals of the Indian River Lagoon and marine environments Station (SMS) at Fort Pierce Smithsonian Marine Station at Fort Pierce Website Search Box History Modeling Ecosystems Virtual Tour Facebook Instagram Twitter SMS Home › Smithsonian Marine

  17. A Satellite Imagery, Ecosystem-Based GIS Study of Bluefin Tuna and Right Whale Distribution and Movements in the Gulf of Marine and NW Atlantic

    National Research Council Canada - National Science Library

    Lutcavage, Molly

    2002-01-01

    The goals of this research were to develop a GIS workstation to examine the distribution, relative abundance, and behavior of Atlantic bluefin tuna and the Northern right whale in relation to their environment and prey...

  18. Marine Viruses: Key Players in Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Mathias Middelboe

    2017-10-01

    Full Text Available Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

  19. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  20. Intertemporal Choice of Marine Ecosystem Exploitation

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

    Management, however, requires models that can link the ecosystem level to the operation level, so this paper examines an ecosystem production model and shows that it is suitable for applying ground rent theory. This model is the simplest possible that incorporates the principles of size as the main......, it is probably detrimental from an economic point of view. The marine ecosystem therefore requires an ecosystem management for economic reasons; in this context, models like the one presented here can serve as useful planning tools....... determinant of the predator--prey interaction, the inclusion of mass balance in the predator--prey allocation, and mortality and somatic growth as consequences of the predator--prey allocation. The model needs to be parameterized for the specific ecosystem and the price and cost functions must be established...

  1. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  2. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  3. Radioecological studies in marine ecosystems

    International Nuclear Information System (INIS)

    Kellermann, H.J.; Kanisch, G.

    1999-01-01

    The bioconcentration factor shows the ratio between concentration of a substance in water or in fish. It is a calculation quantity, used for assessing the possible concentration in fish in proportion to the known concentration in water. Although the element cesium discussed in this report is primarily ingested via the food chain (biomagnification) and not via direct uptake through the gills, but the bioconcentration factor model is nevertheless applicable, because there is a relation between the element's concentration in water and in food. One has to consider, however, the influence on cesium uptake through the quantity of food and species-dependent accumulation. Experimental results obtained for various ecosystems are reported and illustrate the mechanisms involved. (orig./CB) [de

  4. Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil.

    Science.gov (United States)

    Marques, Marcia; da Costa, Monica F; Mayorga, Maria Irles de O; Pinheiro, Patrícia R

    2004-02-01

    Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.

  5. Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps.

    Science.gov (United States)

    Miloslavich, Patricia; Klein, Eduardo; Díaz, Juan M; Hernández, Cristián E; Bigatti, Gregorio; Campos, Lucia; Artigas, Felipe; Castillo, Julio; Penchaszadeh, Pablo E; Neill, Paula E; Carranza, Alvar; Retana, María V; Díaz de Astarloa, Juan M; Lewis, Mirtha; Yorio, Pablo; Piriz, María L; Rodríguez, Diego; Yoneshigue-Valentin, Yocie; Gamboa, Luiz; Martín, Alberto

    2011-01-31

    The marine areas of South America (SA) include almost 30,000 km of coastline and encompass three different oceanic domains--the Caribbean, the Pacific, and the Atlantic--ranging in latitude from 12∘N to 55∘S. The 10 countries that border these coasts have different research capabilities and taxonomic traditions that affect taxonomic knowledge. This paper analyzes the status of knowledge of marine biodiversity in five subregions along the Atlantic and Pacific coasts of South America (SA): the Tropical East Pacific, the Humboldt Current,the Patagonian Shelf, the Brazilian Shelves, and the Tropical West Atlantic, and it provides a review of ecosystem threats and regional marine conservation strategies. South American marine biodiversity is least well known in the tropical subregions (with the exception of Costa Rica and Panama). Differences in total biodiversity were observed between the Atlantic and Pacific oceans at the same latitude. In the north of the continent, the Tropical East Pacific is richer in species than the Tropical West Atlantic, however, when standardized by coastal length, there is very little difference among them. In the south, the Humboldt Current system is much richer than the Patagonian Shelf. An analysis of endemism shows that 75% of the species are reported within only one of the SA regions, while about 22% of the species of SA are not reported elsewhere in the world. National and regional initiatives focusing on new exploration, especially to unknown areas and ecosystems, as well as collaboration among countries are fundamental to achieving the goal of completing inventories of species diversity and distribution.These inventories will allow accurate interpretation of the biogeography of its two oceanic coasts and latitudinal trends,and will also provide relevant information for science based policies.

  6. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  7. Mapping ecosystem services provided by benthic habitats in the European North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Ibon eGalparsoro

    2014-07-01

    Full Text Available Mapping and assessing the ecosystem services provided by benthic habitats are a highly valuable source of information for understanding their current and potential benefits to society. The main objective of this investigation is to assess and map the ecosystem services provided by benthic habitats of the European North Atlantic Ocean, in the context of Mapping and Assessment of Ecosystems and their Services (MAES programme, the European Biodiversity Strategy and the implementation of the Marine Strategy Framework Directive. In total, 62 habitats have been analysed in relation to 12 ecosystem services over 1.7 million km2. Results indicated that more than 90% of the mapped area provides biodiversity maintenance and food provision services; meanwhile grounds providing reproduction and nursery services are limited to half of the mapped area. Benthic habitats generally provide more services closer to shore than offshore and in shallower waters. This gradient is likely to be explained by difficult access (i.e. distance and depth and lack of scientific knowledge for most of the services provided by distant benthic habitats. This research has provided a first assessment of the benthic ecosystem services at Atlantic European scale, with the provision of ecosystem services maps and their general spatial distribution patterns. Related to the objectives of this research, the conclusions are: (i benthic habitats provide a diverse set of ecosystem services, being the food provision and biodiversity maintenance services the ones that are more extensively represented. In addition, other regulating and cultural services are provided in a more limited area; and (ii the ecosystem services assessment categories are significantly related to the distance to the coast and with depth (higher near the coast and in shallow waters.

  8. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics

    Science.gov (United States)

    Gaichas, Sarah; Skaret, Georg; Falk-Petersen, Jannike; Link, Jason S.; Overholtz, William; Megrey, Bernard A.; Gjøsæter, Harald; Stockhausen, William T.; Dommasnes, Are; Friedland, Kevin D.; Aydin, Kerim

    2009-04-01

    Energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community structure. We examined the Gulf of Maine and Georges Bank in the northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups. Several ecosystem indices (e.g., functional group production, consumption and biomass ratios, cumulative biomass, food web macrodescriptors, and network metrics) were compared for each ecosystem. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the combined Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable differences in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions useful for fisheries management.

  9. Can schooling regulate marine populations and ecosystems?

    Science.gov (United States)

    Maury, Olivier

    2017-08-01

    Schools, shoals and swarms are pervasive in the oceans. They have to provide very strong advantages to have been selected and generalized in the course of evolution. Auto-organized groups are usually assumed to provide facilitated encounters of reproduction partners, improved protection against predation, better foraging efficiency, and hydrodynamic gains. However, present theories regarding their evolutionary advantages do not provide an unambiguous explanation to their universality. In particular, the mechanisms commonly proposed to explain grouping provide little support to the formation of very large groups that are common in the sea (e.g. Rieucau et al., 2014). From literature review, data analysis and using a simple mathematical model, I show that large auto-organized groups appear at high population density while only small groups or dispersed individuals remain at low population density. Following, an analysis of tuna tagging data and simple theoretical developments show that large groups are likely to expose individuals to a dramatic decrease of individual foraging success and simultaneous increase of predatory and disease mortality, while small groups avoid those adverse feedbacks and provide maximum foraging success and protection against predation, as it is usually assumed. This would create an emergent density-dependent regulation of marine populations, preventing them from outbursts at high density, and protecting them at low density. This would be a major contribution to their resilience and a crucial process of ecosystems dynamics. A two-step evolutionary process acting at the individual level is proposed to explain how this apparently suicidal behaviour could have been selected and generalized. It explains how grouping would have permitted the emergence of extremely high fecundity life histories, despite their notorious propensity to destabilize populations. The potential implications of the ;grouping feedback; on population resilience, ecosystem

  10. Turtle riders: remoras on marine turtles in Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An overview is presented for a poorly documented relationship between reef vertebrates in Southwest Atlantic: remoras (Echeneidae associated with marine turtles. Two remora species (Echeneis naucrates and Remora remora and four turtle species (Caretta caretta, Chelonia mydas, Eretmochelys imbricata, and Dermochelys coriacea are here recorded in symbiotic associations in the SW Atlantic. Echeneis naucrates was recorded both on the coast and on oceanic islands, whereas R. remora was recorded only at oceanic islands and in the open sea. The remora-turtle association is usually regarded as an instance of phoresis (hitchhiking, albeit feeding by the fish is also involved in this symbiosis type. This association seems to be rare in SW Atlantic.

  11. The marine ecosystem services approach in a fisheries management perspective

    DEFF Research Database (Denmark)

    Pedersen, Søren Anker; Lassen, Hans; Frost, Hans Staby

    that the concept of marine ecosystem services is not helpful for the two first mentioned types of analysis and that a cost-benefit analysis that is implied by the marine ecosystem services concept is inadequate for the third. We argue that the discussion needs to be divided into two: (1) finding the boundaries......This paper reviews the concepts of marine ecosystem services and their economic valuation in a European fisheries management perspective. We find that the concept is at best cumbersome for advising on how best to regulate fisheries even in an ecosystem context. We propose that operational fisheries...... management must consider three different types of analysis, the yield of and the effect of fishing on the commercial species, the effects of fishing on habitats and non-commercial species and finally an overall analysis of the combined impact of all human activities on the marine ecosystem. We find...

  12. 77 FR 5398 - Safety Zone; Atlantic Intracoastal Waterway, Vicinity of Marine Corps Base, Camp Lejeune, NC

    Science.gov (United States)

    2012-02-03

    ...-AA00 Safety Zone; Atlantic Intracoastal Waterway, Vicinity of Marine Corps Base, Camp Lejeune, NC... zone on the Atlantic Intracoastal Waterway (AICW) adjacent to Marine Corps Base (MCB) Camp Lejeune..., Vicinity of Marine Corps Base, Camp Lejeune, NC in the Federal Register (77 FR 1431). We received no...

  13. The Sea Around Us Project: documenting and communicating global fisheries impacts on marine ecosystems.

    Science.gov (United States)

    Pauly, Daniel

    2007-06-01

    The Sea Around Us Project, initiated by the Pew Charitable Trusts in Philadelphia, PA, and located at the Fisheries Centre, University of British Columbia, Vancouver, Canada, started in mid 1999. Its goal was (and still is) to investigate the impact of fisheries on marine ecosystems and to propose policies to mitigate these impacts. Although conceived as a global activity, the project first emphasized the data-rich North Atlantic as a test bed for developing its approaches, which rely on mapping of catch data and indicators of ecosystem health derived from the analysis of long catch time series data. Initial achievements included mapping the decline, throughout the North Atlantic basin, of high-trophic level fishes from 1900 to the present and the presentation of compelling evidence of change in the functioning of the North Atlantic ecosystems, summarized in a 2003 book. The Central and South Atlantic were the next basins to be tackled, with emphasis on the distant-water fleet off West Africa, culminating in a major conference in Dakar, Senegal, in 2002. The project then emphasized the North Pacific, Antarctica, and marine mammals and the multiplicity of tropical Indo-Pacific fisheries before it turned completely global, with all our major analyses and reports (e.g., on the interactions between marine mammals and fisheries, on fuel consumption by fleets, on the catches of small-scale fisheries, on subsidies to fisheries) being based on global studies. Broadly, the work of the project is aimed at a reappraisal of fisheries, from the benign activity that many interested people still perceive them to be, to a realization that they have become the driver for massive loss of biodiversity in the ocean. Moreover, the emphasis on global estimates (rather than local estimates of dubious generality) has allowed the project to contribute to various global initiatives (e.g., developing the Marine Trophic Index for the Convention on Biological Diversity, quantifying marine

  14. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  15. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  16. Mapping Cumulative Impacts of Human Activities on Marine Ecosystems

    OpenAIRE

    , Seaplan

    2018-01-01

    Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Ma...

  17. Reviewing evidence of marine ecosystem change off South Africa ...

    African Journals Online (AJOL)

    Recent changes have been observed in South African marine ecosystems. The main pressures on these ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing ...

  18. Marine Ecosystem Restoration in Changing European Seas

    DEFF Research Database (Denmark)

    Ounanian, Kristen; Delaney, Alyne; Carballo Cárdenas, Eira

    2017-01-01

    and using different narratives of marine restoration, and being confronted with different forms of uncertainties. The paper’s overall contribution is the synthesis of these seemingly disparate components (narratives of restoration, uncertainty in decision making, and governance arrangements) to evaluate...... the impact of existing (maritime and environmental) policies, the governance setting, definitions of restoration and uncertainties on the effectiveness of marine restoration projects. Such a synthesis is a necessary move toward a systematic evaluation of ways to govern and formally institutionalize marine...

  19. marine survival ecosystem indicators - Estimating the ecosystem indicators of anadromous salmonids in the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this project is to develop a simple approach for estimating the marine survival and causes of trends in survival. Data is a summary of ecosystem...

  20. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    Science.gov (United States)

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. © 2016 The Author(s).

  1. Towards ecosystem-based management: Identifying operational food-web indicators for marine ecosystems

    DEFF Research Database (Denmark)

    Tam, Jamie C.; Link, Jason S.; Rossberg, Axel G.

    2017-01-01

    ) are an important aspect of all marine ecosystems and biodiversity. Here we describe and discuss a process to evaluate the selection of operational food-web indicators for use in evaluating marine ecosystem status. This process brought together experts in food-web ecology, marine ecology, and resource management......, to identify available indicators that can be used to inform marine management. Standard evaluation criteria (availability and quality of data, conceptual basis, communicability, relevancy to management) were implemented to identify practical food-web indicators ready for operational use and indicators...... that hold promise for future use in policy and management. The major attributes of the final suite of operational food-web indicators were structure and functioning. Indicators that represent resilience of the marine ecosystem were less developed. Over 60 potential food-web indicators were evaluated...

  2. The Economics of Marine Ecosystem Services – the Fisheries Case

    DEFF Research Database (Denmark)

    Ravensbeck, Lars

    of five papers, but additionally five other documents have been authored or co-authored in relation to the thesis. The first document is a book chapter that surveys the state of art in some main areas related to green accounting and the links to economic value of ecosystem services particularly those......The thesis “The Economics of Marine Ecosystem Services − the Fisheries Case” focuses on some of the issues in marine resources economics that have attracted significant interest in recent years. Historically, the central issue has been fisheries economics and how to management fish stocks to obtain...... in the formation of flows of ecosystem services from the oceans it is possible to integrate classical fisheries economics with a broader ecosystem approach. The core element of the thesis is the combination of fisheries economics, an ecosystem approach and extended, applied bioeconomic models. The thesis consists...

  3. Marine parasites as biological tags in South American Atlantic waters, current status and perspectives.

    Science.gov (United States)

    Cantatore, D M P; Timi, J T

    2015-01-01

    Many marine fisheries in South American Atlantic coasts (SAAC) are threatened by overfishing and under serious risk of collapsing. The SAAC comprises a diversity of environments, possesses a complex oceanography and harbours a vast biodiversity that provide an enormous potential for using parasites as biological tags for fish stock delineation, a prerequisite for the implementation of control and management plans. Here, their use in the SAAC is reviewed. Main evidence is derived from northern Argentine waters, where fish parasite assemblages are dominated by larval helminth species that share a low specificity, long persistence and trophic transmission, parasitizing almost indiscriminately all available fish species. The advantages and constraints of such a combination of characteristics are analysed and recommendations are given for future research. Shifting the focus from fish/parasite populations to communities allows expanding the concept of biological tags from local to regional scales, providing essential information to delineate ecosystem boundaries for host communities. This new concept arose as a powerful tool to help the implementation of ecosystem-based approaches to fisheries management, the new paradigm for fisheries science. Holistic approaches, including parasites as biological tags for stock delineation will render valuable information to help insure fisheries and marine ecosystems against further depletion and collapse.

  4. Study of plutonium cycle in marine ecosystems

    International Nuclear Information System (INIS)

    Merino Pareja, J.; Sanchez Cabeza, J. A.; Molero Savall, J.; Masque Barri, P.

    1998-01-01

    The distribution, transport and accumulation mechanisms of transuranics (and other radionuclides) in the marine environment depend on the source term, biogeochemical cycles, transport with the water masses, sedimentation processes and transfer mechanisms in the trophic chain. The biogeochemical behaviour of plutonium, which has been the focus of our work, was studied using the following approaches: determination of the physico-chemical speciation of plutonium in marine waters, vertical flux in the water column, uptake by marine organisms (phytoplankton and zooplankton) and distribution in dements cores. A preliminary model of the accumulation and distribution of plutonium in the first levels of the marine food chain in the Irish Sea has also been formulated. All this information allowed us to obtain an integrated view of the behaviour of plutonium in the marine environment. (Author) 14 refs

  5. Prevalence of marine debris in marine birds from the North Atlantic.

    Science.gov (United States)

    Provencher, Jennifer F; Bond, Alexander L; Hedd, April; Montevecchi, William A; Muzaffar, Sabir Bin; Courchesne, Sarah J; Gilchrist, H Grant; Jamieson, Sarah E; Merkel, Flemming R; Falk, Knud; Durinck, Jan; Mallory, Mark L

    2014-07-15

    Marine birds have been found to ingest plastic debris in many of the world's oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Review on the Progress of Marine Ecosystem Management

    Institute of Scientific and Technical Information of China (English)

    Yao Xuefen; Zhang Luoping

    2007-01-01

    Along with the industrial development, adverse impacts on the natural environment become more serious, and ecosystem health and ecological security have also been deteriorated.The traditional environment management focused on the shortterm and economic benefits. Such managing pattern is not accommodating to the new situation of increasingly global environment problems and large scale marine environment problems.This paper introduces the advance and definition of a new managing pattern-ecosystem management. Meanwhile, the connotation of ecosystem management was summarized as seven points: Sustainability; Human is an important aspect of ecosystem management; Cooperation is the foundation of ecosystem management; Maintain health and security of ecosystem; Ecological diversity protection characters ecosystem management; Maintain the integrity of ecosystem; Ecosystem management must be founded on scientific theories and precise information. Somebody said Ecosystem Management is "a new label of old ideas". However, there is an essential difference between ecosystem management and traditional environmental management. In the last part of this paper, the differences of the approaches between ecosystem management and traditional environmental management are compared.

  7. Research on intact marine ecosystems: a lost era.

    Science.gov (United States)

    Stachowitsch, Michael

    2003-07-01

    It is proposed that a new, fifth era should be added to the four historical phases of marine research identified by Rupert Riedl, specifically an era devoted to studying and ameliorating disturbed marine ecosystems. In an age of global environmental deterioration, many marine ecosystems and organisms are high on the list of threatened entities. This poor status prompts research that would otherwise have been unnecessary and hinders research that would normally have been conducted. I argue that research into intact marine ecosystems is becoming increasingly difficult, and that most of our future insights into marine habitats will stem from knowledge gained by examining various disfunctions of those systems rather than their functions. The new era will therefore differ from past research in its underlying aim, the range of topics studied, the selection and funding of those topics, the validity of its conclusions, and in its urgency. Sea turtles and cetaceans are cited as case studies at the organismic level, shallow-water benthic communities, including coral reefs, at the ecosystem level.

  8. The marine ecosystem services approach in a fisheries management perspective

    OpenAIRE

    Søren Anker Pedersen; Hans Lassen; Hans Frost

    2015-01-01

    This paper reviews the concepts of marine ecosystem services and their economic valuation in a European fisheries management perspective. We find that the concept is at best cumbersome for advising on how best to regulate fisheries even in an ecosystem context.We propose that operational fisheries management must consider three different types of analysis, the yield of and the effect of fishing on the commercial species, the effects of fishing on habitats and non-commercial species and finall...

  9. Biomanipulation - a tool in marine ecosystem management and restoration?

    DEFF Research Database (Denmark)

    Lindegren, Martin; Möllmann, Christian; Hansson, Lars-Anders

    2010-01-01

    Widespread losses of production and conservation values make large-scale ecosystem restoration increasingly urgent. Ecological restoration by means of biomanipulation, i.e., by fishing out planktivores as to reduce the predation pressure on herbivorous zooplankton, has proven an effective tool...... in restoring degraded lakes and coastal ecosystems. Whether biomanipulation may prove a useful restoration method in open and structurally complex marine ecosystems is however still unknown. To promote a recovery of the collapsed stock of Eastern Baltic cod (Gadus morhua), large-scale biomanipulation of sprat...

  10. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  11. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    These, in turn, created the need for holistic and integrated frameworks within which to design and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in ...

  12. Linking Marine Ecosystem Services to the North Sea’s Energy Fields in Transnational Marine Spatial Planning

    Directory of Open Access Journals (Sweden)

    Christina Vogel

    2018-06-01

    Full Text Available Marine spatial planning temporally and spatially allocates marine resources to different users. The ecosystem approach aims at optimising the social and economic benefits people derive from marine resources while preserving the ecosystem’s health. Marine ecosystem services are defined as the benefits people obtain from marine ecosystems. The aim of this study is to determine which interrelations between marine ecosystem services and the marine energy industry can be identified for use in transnational marine spatial planning exemplified in the North Sea region. As the North Sea is one of the busiest seas worldwide, the risk of impairing the ecosystems through anthropogenic pressures is high. Drawing on a literature-based review, 23 marine ecosystem services provided by the North Sea region were defined and linked to seven offshore energy fields comprising oil and natural gas, wind, tides and currents, waves, salinity gradients, algal biomass, and geothermal heat. The interactions were divided into four categories: dependence, impact, bidirectional, or no interaction. Oil and natural gas, as well as algae biomass, are the fields with the most relations with marine ecosystem services while waves and salinity gradients exhibit the least. Some marine ecosystem services (Conditions for Infrastructure, Regulation of Water Flows, and Cognitive Development are needed for all fields; Recreation and Tourism, Aesthetic and Cultural Perceptions and Traditions, Cognitive Development, and Sea Scape are impacted by all fields. The results of this research provide an improved basis for an ecosystem approach in transnational marine spatial planning.

  13. Extremophiles in an Antarctic Marine Ecosystem

    Directory of Open Access Journals (Sweden)

    Iain Dickinson

    2016-01-01

    Full Text Available Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  14. Optimal foraging in marine ecosystem models: selectivity, profitability and switching

    DEFF Research Database (Denmark)

    Visser, Andre W.; Fiksen, Ø.

    2013-01-01

    ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...... by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions...

  15. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  16. 76 FR 59371 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2011-09-26

    ...-BB26 Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based... Atlantic Fishery Management Council (Council) has submitted the Comprehensive Ecosystem-Based Amendment (CE... were established under the Comprehensive Ecosystem-Based Amendment 1 and include Cape Lookout Coral...

  17. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    Science.gov (United States)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-12-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning

  18. Estuarine Living Marine Resources: Mid-Atlantic Regional Distribution and Abundance (NCEI Accession 0162403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is the Mid-Atlantic regional component of NOAA’s Estuarine Living Marine Resources (ELMR) Project, a national database of ecologically and economically...

  19. Marine and terrigenous lipids in southeast atlantic sediments (leg 175) as paleoenvironmental indicators: initial results

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuss, E.; Versteegh, G.J.M.; Jansen, J.H.F.

    2001-01-01

    Lipid compositions of sediments recovered during Ocean Drilling Program Leg 175 in the eastern South Atlantic reflect a variety of oceanographic and climatological environments. Most of the identified lipids can be ascribed to marine sources, notably haptophytes,

  20. Estuarine Living Marine Resources: North Atlantic Regional Distribution and Abundance (NCEI Accession 0162402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is the North Atlantic regional component of NOAA’s Estuarine Living Marine Resources (ELMR) Project, a national database of ecologically and economically...

  1. Marine ecosystem analysis for wolsung nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.; Cho, T.J.

    1982-01-01

    Environmental surveys to provide base-line data for assessing the potential impact of the operation of Wolseong NPP on marine ecosystems were performed at 3-month intervals in 1981. Physico-chemical properties of seawater and gross beta activities in seawater and marine organisms were examined. The result shows that the ecosystems are non-polluted, typical of near-shore waters. The results of ecological surveys are summarized as follows: A total of 84 taxa of phytoplankton diatom were identified. Of the species, about 70 % are described as neritic species, and the major bloom occurred in September. The analysis of diversity indices shows that the community is very stable. The dominant species of zooplankton were protozoan Noctiluca scintillans and copepods. A total of 83 species of marine algae were identified. The algal community was more diverse in September-December than in March-July, and the dominant species were Chondria crassicaulis and Corallina pilulifera. Total algal production per unit area (0.25 m 2 ) was, on the average, 20 g-dry. The biomass of bacterial population was highest in December, and the result of multiple regression analysis indicates that the important environmental factors are nutrients, salinity and temperature. Primary productivities measured by Carbon-14 method were 1.11 mg C/m 3 /hr at 1 m depth, and 1.45 mg C/m 3 /hr at 6 m depth. As a whole the marine ecosystems adjacent Wolseong NPP site are thought to be stable. (author)

  2. Merging Marine Ecosystem Models and Genomics

    Science.gov (United States)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  3. Marine ecosystem analysis for Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, C.H.; Kim, Y.H.; Cho, T.S.

    1980-01-01

    The effect of both radioactive and thermal effluents discharged from the plant on aquatic ecosystem is one of the primary concerns in evaluating the environmental impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases. There is also another possible synergistic effect, that is, the combination of the above stresses, which may cause an impact severer than that of the sum of the individual impact. This report deals with species diversity and seasonal variations of those numbers of phytoplankton, marine algae and microorganisms, and distribution of radioactivity of marine organisms, as well as those data pertaining to sea water analysis. The present survey is designed to provide a partial baseline information for environmental impact assessment of Kori nuclear plant unit no. 1. (author)

  4. Marine-ecosystem analysis for the Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.

    1979-01-01

    The effects of radioactive effluents and warm water discharged from the plant on aquatic ecosystem is one of the primary considerations in evaluating the impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases; there is also the possible synergistic effect, that is, the combination of the above stresses, which may cause an effect greater than that of the sum of the individual effects. This report deals with species diversity and seasonal vegetation of phytoplankton, marine algae and microorganisms, radioactive contamination of marine organisms, and lateral distribution of sea water temperature from discharge point. The present investigation is designed to provide a partial baseline information for environmental safety against Kori nuclear power plant. (author)

  5. Fate and effects of petroleum hydrocarbons in marine coastal ecosystems

    International Nuclear Information System (INIS)

    Vanderhorst, J.R.

    1977-01-01

    Preliminary results are reported from field and laboratory studies on the effects of petroleum hydrocarbons on marine organisms of Northwest Pacific coastal ecosystems. Chemical methods for the characterization of test solutions for specific hydrocarbons (benzene, toluene, xylene, and heptodecane) were developed concurrently with population and community studies of the effects of short-term and chronic exposures. Results are reported from studies on algae (Ulva), clams (protothaca staminea), crustaceans (Anomyx and Neomysis) and burrowing worms

  6. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability......Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization...

  7. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    Science.gov (United States)

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Polar marine ecosystems: major threats and future change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A. [British Antarctic Survey, Cambridge (United Kingdom); Harris, C.M. [Environmental Research and Assessment, Grantchester (United Kingdom)

    2003-07-01

    This review of polar marine ecosystems covers both the Arctic and Antarctic, identifying the major threats and, where possible, predicting their possible state(s) in 2025. Although the two polar regions are similar in their extreme photoperiod, low temperatures, and in being heavily influenced by snow and ice, in almost all other respects they are very different. The Arctic Ocean is a basin surrounded by continental landmasses close to, and influenced by, large populations and industrial activities. In contrast, the Southern Ocean is contiguous with all the other great oceans and surrounds a single land mass; Antarctica is remote from major centres of population and sources of pollution. Marine environments in both Polar Regions have been highly disturbed by fishing activity, but, in terms of pollution, some areas remain among the most pristine in the world. There are, however, both local and global pressures. Over the 2025 time horizon, the greatest concern for the Arctic is probably the ecological implications of climate change, particularly insofar as sea ice extent and duration are likely to be affected. Such changes are not expected to be as pronounced in the Southern Ocean over this time period, and concerns are related more to direct threats from harvesting of marine living resources, and the ability to manage these fisheries sustainably. In both Polar Regions, the capacity of marine ecosystems to withstand the cumulative impact of a number of pressures, including climate change, pollution and overexploitation, acting synergistically is of greatest concern. (author)

  9. Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  10. Update to the Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  11. Marine Research Infrastructure collaboration in the COOPLUS project framework - Promoting synergies for marine ecosystems studies

    Science.gov (United States)

    Beranzoli, L.; Best, M.; Embriaco, D.; Favali, P.; Juniper, K.; Lo Bue, N.; Lara-Lopez, A.; Materia, P.; Ó Conchubhair, D.; O'Rourke, E.; Proctor, R.; Weller, R. A.

    2017-12-01

    Understanding effects on marine ecosystems of multiple drivers at various scales; from regional such as climate and ocean circulation, to local, such as seafloor gas emissions and harmful underwater noise, requires long time-series of integrated and standardised datasets. Large-scale research infrastructures for ocean observation are able to provide such time-series for a variety of ocean process physical parameters (mass and energy exchanges among surface, water column and benthic boundary layer) that constitute important and necessary measures of environmental conditions and change/development over time. Information deduced from these data is essential for the study, modelling and prediction of marine ecosystems changes and can reveal and potentially confirm deterioration and threats. The COOPLUS European Commission project brings together research infrastructures with the aim of coordinating multilateral cooperation among RIs and identifying common priorities, actions, instruments, resources. COOPLUS will produce a Strategic Research and Innovation Agenda (SRIA) which will be a shared roadmap for mid to long-term collaboration. In particular, marine RIs collaborating in COOPLUS, namely the European Multidisciplinary Seafloor and water column Observatory: EMSO (Europe), the Ocean Observatories Initiative (OOI, USA), Ocean Networks Canada (ONC), and the Integrated Marine Observing System (IMOS, Australia), can represent a source of important data for researchers of marine ecosystems. The RIs can then, in turn, receive suggestions from researchers for implementing new measurements and stimulating cross-cutting collaborations and data integration and standardisation from their user community. This poster provides a description of EMSO, OOI, ONC and IMOS for the benefit of marine ecosystem studies and presents examples of where the analyses of time-series have revealed noteworthy environmental conditions, temporal trends and events.

  12. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  13. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    Directory of Open Access Journals (Sweden)

    Ellen Kenchington

    Full Text Available The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores, and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here

  14. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    Science.gov (United States)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  15. DECISION TOOL FOR RIPARIAN ECOSYSTEM MANAGMENT IN THE MID-ATLANTIC HIGHLANDS

    Science.gov (United States)

    In the Canaan Valley Highlands of the Mid-Atlantic, riparian zone restoration has been identified as a critical watershed management practice not only for the ecosystem services provided but also for the potential socioeconomic growth from environmental investment and job creatio...

  16. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region

    Science.gov (United States)

    Marianne V. Moore; Michael L. Pace; John R. Mather; [and others; [Editor’s note: Patricia A. Flebbe is the SRS co-author for this publication.

    1997-01-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests, and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and...

  17. Identifying marine pelagic ecosystem management objectives and indicators

    DEFF Research Database (Denmark)

    Trenkel, Verena M.; Hintzen, Niels T.; Farnsworth, Keith D.

    2015-01-01

    . Overall 26 objectives were proposed, with 58% agreement in proposed objectives between two workshops. Based on published evidence for pressure-state links, examples of operational objectives and suitable indicators for each of the 26 objectives were then selected. It is argued that given the strong......International policy frameworks such as the Common Fisheries Policy and the European Marine Strategy Framework Directive define high-level strategic goals for marine ecosystems. Strategic goals are addressed via general and operational management objectives. To add credibility and legitimacy...... scale in some cases. In the evidence-based approach used in this study, the selection of species or region specific operational objectives and indicators was based on demonstrated pressure-state links. Hence observed changes in indicators can reliably inform on appropriate management measures. (C) 2015...

  18. Payments for coastal and marine ecosystem services: prospects and principles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Essam Yassin

    2012-05-15

    Coastal and marine resources provide millions of impoverished people across the global South with livelihoods, and provide the world with a range of critical 'ecosystem services', from biodiversity and culture to carbon storage and flood protection. Yet across the world, these resources are fast-diminishing under the weight of pollution, land clearance, coastal development, overfishing, natural disasters and climate change. Traditional approaches to halt the decline focus on regulating against destructive practices, but to little effect. A more successful strategy could be to establish payments for ecosystem services (PES) schemes, or incorporate an element of PES in existing regulatory mechanisms. Examples from across the world suggest that PES can work to protect both livelihoods and environments. But to succeed, these schemes must be underpinned by robust research, clear property rights, equitable benefit sharing and sustainable finance.

  19. Typology and indicators of ecosystem services for marine spatial planning and management.

    Science.gov (United States)

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Studies on 14C labelled chlorpyrifos in model marine ecosystem

    International Nuclear Information System (INIS)

    Pandit, G.G.; Mohan Rao, A.M.; Kale, S.P.; Murthy, N.B.K.; Raghu, K.

    1997-01-01

    Chlorpyrifos is one of the widely used organophosphorus insecticides in tropical countries. Experiments were conducted with 14 C labelled chlorpyrifos to study the distribution of this compound in model marine ecosystem. Less than 50 per cent of the applied activity remained in water in 24 h. Major portion of the applied chlorpyrifos (about 4.2 % residue per g) accumulated into the clams with sediment containing a maximum of 5 to 6 per cent of applied compound. No degradation of chlorpyrifos was observed in water or sediment samples. However, metabolic products were formed in clams. (author). 4 refs., 3 tabs

  1. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  2. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  3. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?

    Science.gov (United States)

    Luoma, Samuel N.

    1996-01-01

    Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.

  4. 75 FR 9864 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-03-04

    ...-AY32 Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based... thought to be the largest distribution (>23,000 square miles) of pristine deepwater coral ecosystems in... golden crab and deepwater shrimp fisheries while extending protection for deepwater coral ecosystems. CE...

  5. Marine mammal strandings and environmental changes: a 15-year study in the St. Lawrence ecosystem.

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Truchon

    Full Text Available Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994-2008; n = 1,193 and nine environmental parameters known to affect marine mammal survival, from regional (sea ice to continental scales (North Atlantic Oscillation, NAO. Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance. For most species (75%, n = 6 species, a low volume of ice was correlated with increasing frequency of stranding events (e.g. R(2adj = 0.59, hooded seal, Cystophora cristata. This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata and resident species (beluga, Delphinapterus leucas, correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R(2adj = 0.53, 0.81 and 0.34, respectively. This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a

  6. Marine and coastal ecosystem services on the science-policy-practice nexus

    NARCIS (Netherlands)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino; Ruiz-Frau, Ana; Burkhard, Kremena; Lillebø, Ana I.; Oudenhoven, van Alexander P.E.; Ballé-Béganton, Johanna; Rodrigues, João Garcia; Nieminen, Emmi; Oinonen, Soile; Ziemba, Alex; Gissi, Elena; Depellegrin, Daniel; Veidemane, Kristina; Ruskule, Anda; Delangue, Justine; Böhnke-Henrichs, Anne; Boon, Arjen; Wenning, Richard; Martino, Simone; Hasler, Berit; Termansen, Mette; Rockel, Mark; Hummel, Herman; Serafy, El Ghada; Peev, Plamen

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services

  7. Nearshore marine benthic invertebrates moving north along the U.S. Atlantic coast

    Science.gov (United States)

    Numerous species have shifted their ranges north in response to global warming. We examined 21 years (1990-2010) of marine benthic invertebrate data from the National Coastal Assessment’s monitoring of nearshore waters along the US Atlantic coast. Data came from three bioge...

  8. The marine radiocarbon bomb pulse across the temperate North Atlantic: a compilation of Delta

    NARCIS (Netherlands)

    Scourse, J.D.; Wanamaker jr., A.D.; Weidman, C.; Heinemeier, J.; Reimer, P.J.; Butler, P.G.; Witbaard, R.; Richardson, C.A.

    2012-01-01

    Marine radiocarbon bomb-pulse time histories of annually resolved archives from temperate regions have been underexploited. We present here series of Delta C-14 excess from known-age annual increments of the long-lived bivalve mollusk Arctica islandica from 4 sites across the coastal North Atlantic

  9. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  10. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem.

    Science.gov (United States)

    Ellingsen, Kari E; Anderson, Marti J; Shackell, Nancy L; Tveraa, Torkild; Yoccoz, Nigel G; Frank, Kenneth T

    2015-09-01

    1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  11. Bridging the gap between policy and science in assessing the health status of marine ecosystems

    Directory of Open Access Journals (Sweden)

    Angel Borja

    2016-09-01

    Full Text Available Human activities, both established and emerging, increasingly affect the provision of marine ecosystem services that deliver societal and economic benefits. Monitoring the status of marine ecosystems and determining how human activities change their capacity to sustain benefits for society requires an evidence-based Integrated Ecosystem Assessment approach that incorporates knowledge of ecosystem functioning and services. Although there are diverse methods to assess the status of individual ecosystem components, none assesses the health of marine ecosystems holistically, integrating information from multiple ecosystem components. Similarly, while acknowledging the availability of several methods to measure single pressures and assess their impacts, evaluation of cumulative effects of multiple pressures remains scarce. Therefore, an integrative assessment requires us to first understand the response of marine ecosystems to human activities and their pressures and then develop innovative, cost-effective monitoring tools that enable collection of data to assess the health status of large marine areas. Conceptually, combining this knowledge of effective monitoring methods with cost-benefit analyses will help identify appropriate management measures to improve environmental status economically and efficiently. The European project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status specifically addressed these topics in order to support policy makers and managers in implementing the European Marine Strategy Framework Directive. Here, we synthesize our main innovative findings, placing these within the context of recent wider research, and identifying gaps and the major future challenges.

  12. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past.

    Directory of Open Access Journals (Sweden)

    Fabiana Saporiti

    Full Text Available The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs.

  13. Overview of integrative assessment of marine systems: the Ecosystem Approach in practice

    Directory of Open Access Journals (Sweden)

    Angel eBorja

    2016-03-01

    Full Text Available Traditional and emerging human activities are increasingly putting pressures on marine ecosystems and impacting their ability to sustain ecological and human communities. To evaluate the health status of marine ecosystems we need a science-based, integrated Ecosystem Approach, that incorporates knowledge of ecosystem function and services provided that can be used to track how management decisions change the health of marine ecosystems. Although many methods have been developed to assess the status of single components of the ecosystem, few exist for assessing multiple ecosystem components in a holistic way. To undertake such an integrative assessment, it is necessary to understand the response of marine systems to human pressures. Hence, innovative monitoring is needed to obtain data to determine the health of large marine areas, and in an holistic way. Here we review five existing methods that address both of these needs (monitoring and assessment: the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index; the Marine Biodiversity Assessment Tool; and the Nested Environmental status Assessment Tool. We have highlighted their main characteristics and analyzing their commonalities and differences, in terms of: use of the Ecosystem Approach; inclusion of multiple components in the assessment; use of reference conditions; use of integrative assessments; use of a range of values to capture the status; weighting ecosystem components when integrating; determine the uncertainty; ensure spatial and temporal comparability; use of robust monitoring approaches; and address pressures and impacts. Ultimately, for any ecosystem assessment to be effective it needs to be: transparent and repeatable and, in order to inform marine management, the results should be easy to communicate to wide audiences, including scientists, managers and policymakers.

  14. Hydrological services in the Atlantic Forest, Brazil: An ecosystem-based adaptation using ecohydrological monitoring

    Directory of Open Access Journals (Sweden)

    Denise Taffarello

    2017-12-01

    Full Text Available Ecosystem-based Adaptation (EbA involves using services on which human well-being depends to help people adapt to the impacts of climate change. Aiming at strengthening ecosystem resilience and reducing ecosystem and people’s vulnerability, EbA has been encouraged worldwide as an option for climate change. Payments for Ecosystem Services (PES are incentives offered to farmers and landowners to provide an ecological service and are currently proposed as a method for EbA and water resources sustainability on a global scale. However, organized information on PES in Brazil is limited. This paper provides a concise review of PES initiatives in the Brazilian Atlantic Forest, where various PES projects on watershed protection (Water-PES have been set up. We found 16 ongoing Water-PES in the Brazilian Atlantic Forest. The first initiative was launched in 2005 and since then these projects have grown rapidly. In spite of the advances made in many of these initiatives, they seldom have baseline hydrologic data and an implemented strategy for ecohydrological monitoring. Thus, we discuss how PES projects could be more effective by implementing hydrological monitoring based on ecohydrological concepts. Special attention has been given to explaining how the recent Impact-Vulnerability-Adaptation idea could be integrated into Water-PES. As can be seen from the review, these projects contribute as EbA options for climate change, thereby carrying practical implications for environmental policy makers.

  15. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    Science.gov (United States)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism

  16. Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach

    NARCIS (Netherlands)

    Embling, C.B.; Illian, J.; Armstrong, E.; van der Kooij, J.; Sharples, J.; Camphuysen, K.C.J.; Scott, B.E.

    2012-01-01

    1. Spatial management of marine ecosystems requires detailed knowledge of spatio-temporal mechanisms linking physical and biological processes. Tidal currents, the main driver of ecosystem dynamics in temperate coastal ecosystems, influence predator foraging ecology by affecting prey distribution

  17. Archive of Geosample Information from the Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility contributed information on 40,428 cores, grabs, and dredges in their holdings to...

  18. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  19. Comparative analysis of marine ecosystems: workshop on predator-prey interactions

    DEFF Research Database (Denmark)

    Bailey, Kevin M.; Ciannelli, Lorenzo; Hunsicker, Mary

    2010-01-01

    in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16–18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling......Climate and human influences on marine ecosystems are largely manifested by changes in predator–prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator–prey interactions...

  20. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  1. Conserving marine biodiversity: insights from life-history trait candidate genes in Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Therkildsen, Nina Overgaard; Meldrup, Dorte

    2014-01-01

    Recent technological developments have facilitated an increased focus on identifying genomic regions underlying adaptive trait variation in natural populations, and it has been advocated that this information should be important for designating population units for conservation. In marine fishes...... are under selection in natural populations of Atlantic cod. Furthermore, we find that patterns of variation in outlier markers do not align with those observed at selectively neutral markers, and that outlier markers identify conservation units on finer geographical scales than those revealed when analysing...... only neutral markers. Accordingly, results also suggest that information about adaptive genetic variation will be useful for targeted conservation and management in this and other marine species...

  2. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    Saracino-Brown, Jocelyn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Smith, Courtney [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gilman, Patrick [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. The workshop was planned by Federal agency, academic, and private partners to promote collaboration between ongoing offshore ecological survey efforts, and to promote the collaborative development of complementary predictive models and compatible databases. The meeting primarily focused on efforts to establish and predict marine mammal, seabird, and sea turtle abundance, density, and distributions extending from the shoreline to the edge of the Exclusive Economic Zone between Nantucket Sound, Massachusetts and Cape Hatteras, North Carolina.

  3. Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments

    OpenAIRE

    J. D. Lee; G. McFiggans; J. D. Allan; A. R. Baker; S. M. Ball; A. K. Benton; L. J. Carpenter; R. Commane; B. D. Finley; M. Evans; E. Fuentes; K. Furneaux; A. Goddard; N. Good; J. F. Hamilton

    2010-01-01

    The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth...

  4. Multi-Annual Climate Predictions for Fisheries: An Assessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Desiree Tommasi

    2017-06-01

    Full Text Available Decisions made by fishers and fisheries managers are informed by climate and fisheries observations that now often span more than 50 years. Multi-annual climate forecasts could further inform such decisions if they were skillful in predicting future conditions relative to the 50-year scope of past variability. We demonstrate that an existing multi-annual prediction system skillfully forecasts the probability of next year, the next 1–3 years, and the next 1–10 years being warmer or cooler than the 50-year average at the surface in coastal ecosystems. Probabilistic forecasts of upper and lower seas surface temperature (SST terciles over the next 3 or 10 years from the GFDL CM 2.1 10-member ensemble global prediction system showed significant improvements in skill over the use of a 50-year climatology for most Large Marine Ecosystems (LMEs in the North Atlantic, the western Pacific, and Indian oceans. Through a comparison of the forecast skill of initialized and uninitialized hindcasts, we demonstrate that this skill is largely due to the predictable signature of radiative forcing changes over the 50-year timescale rather than prediction of evolving modes of climate variability. North Atlantic LMEs stood out as the only coastal regions where initialization significantly contributed to SST prediction skill at the 1 to 10 year scale.

  5. Marine Ecosystems Analysis (MESA) Program, New York Bight Surficial Sediment Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Ecosystems Analysis (MESA) Program, New York Bight Study was funded by NOAA and the Bureau of Land Management (BLM). The Atlas was a historical...

  6. Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Damare, V.S.

    This review summarizes increasing evidence for the role of Labyrinthulomycetes in marine ecosystems gathered over the last six decades. It focuses on their diversity, habitats, biomass, productivity and overall role in food webs and remineralization...

  7. Barcoding Atlantic Canada's mesopelagic and upper bathypelagic marine fishes.

    Directory of Open Access Journals (Sweden)

    Ellen L Kenchington

    Full Text Available DNA barcode sequences were developed from 557 mesopelagic and upper bathypelagic teleost specimens collected in waters off Atlantic Canada. Confident morphological identifications were available for 366 specimens, of 118 species and 93 genera, which yielded 328 haplotypes. Five of the species were novel to the Barcode of Life Database (BOLD. Most of the 118 species conformed to expectations of monophyly and the presence of a "barcode gap", though some known weaknesses in existing taxonomy were confirmed and a deficiency in published keys was revealed. Of the specimens for which no firm morphological identification was available, 156 were successfully identified to species, and a further 11 to genus, using their barcode sequences and a combination of distance- and character-based methods. The remaining 24 specimens were from species for which no reference barcode is yet available or else ones confused by apparent misidentification of publicly available sequences in BOLD. Addition of the new sequences to those previously in BOLD contributed support to recent taxonomic revisions of Chiasmodon and Poromitra, while it also revealed 18 cases of potential cryptic speciation. Most of the latter appear to result from genetic divergence among populations in different ocean basins, while the general lack of strong horizontal environmental gradients within the deep sea has allowed morphology to be conserved. Other examples of divergence appear to distinguish individuals living under the sub-tropical gyre of the North Atlantic from those under that ocean's sub-polar gyre. In contrast, the available sequences for two myctophid species, Benthosema glaciale and Notoscopelus elongatus, showed genetic structuring on finer geographic scales. The observed structure was not consistent with recent suggestions that "resident" populations of myctophids can maintain allopatry despite the mixing of ocean waters. Rather, it indicates that the very rapid speciation

  8. Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models

    OpenAIRE

    Urtizberea, Agurtzane; Dupont, Nicolas; Rosland, Rune; Aksnes, Dag L.

    2013-01-01

    In marine ecosystem models, the underwater light intensity is commonly characterized by the shading of phytoplankton in addition to a background light attenuation coefficient. Colour dissolved organic matter (CDOM) is an important component of the background light attenuation, and we investigate how variation in CDOM attenuation affects euphotic zone properties in a general marine ecosystem model. Our results suggest that euphotic zone properties are highly sensitive to CDOM variations occurr...

  9. Culture fishery resources of the tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    The exploited marine living resources, through capture fisheries, have their own limitations of resource potential, marine pollution and ever increasing operational cost. A plausible way to fulfil the increasing demand of seafood is through...

  10. Ecosystem Pen Pals: Using Place-Based Marine Science and Culture to Connect Students

    Science.gov (United States)

    Wiener, Carlie S.; Matsumoto, Karen

    2014-01-01

    The marine environment provides a unique context for students to explore both natural and cultural connections. This paper reports preliminary findings on Ecosystem Pen Pals, an ocean literacy program for 4th and 5th graders focused on using a pen pal model for integrating traditional ecological knowledge into marine science. Surveys with…

  11. Typology and indicators of ecosystem services for marine spatial planning and management

    NARCIS (Netherlands)

    Bohnke-Henrichs, A.; Baulcomb, C.; Koss, R.; Hussain, S.; Groot, de R.S.

    2013-01-01

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a

  12. Ecosystem-based marine spatial management: review of concepts, policies, tools and critical issues

    NARCIS (Netherlands)

    Katsanevakis, S.; Stelzenmueller, V.; South, A.; Hoof, van L.J.W.; Hofstede, ter R.

    2011-01-01

    Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather

  13. Ecosystem-based marine spatial management: Review of concepts, policies, tools, and critical issues

    NARCIS (Netherlands)

    Katsanevakis, Stelios; Stelzenmuller, Vanessa; Filatova, Tatiana

    2011-01-01

    Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather

  14. Concepts and approaches for marine ecosystem research with reference to the tropics

    OpenAIRE

    Matthias Wolff

    2002-01-01

    The present article gives an overview on the leading concepts and modelling approaches for marine ecosystems’ research including (1) The trophodynamic theory of pelagic ecosystems, (2) Compartment/network models, (3) Mesocosm experiments and (4) Individual based modelling approaches and virtual ecosystems (VE). The main research questions addressed, as well as the potential and limits of each approach, are summarized and discussed and it is shown how the concept of ecosystem has changed over ...

  15. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    Science.gov (United States)

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  16. Recovery of Carbonate Ecosystems Following the End-Triassic Mass Extinction: Insights from Mercury Anomalies and Their Relationship to the Central Atlantic Magmatic Province

    Science.gov (United States)

    Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.

    2015-12-01

    Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.

  17. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson

    2014-01-01

    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  18. Implementing ecosystem-based marine management as a process of regionalisation

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Raakjær, Jesper; van Tatenhove, Jan

    2015-01-01

    and the Baltic Sea Fisheries Forum, both examples of regionalisation processes in order to implement ecosystem-based marine management. The Helsinki Commission Group for implementation of the ecosystem approach is a joint management body for the implementation of the Baltic Sea Action Plan and the European Union......This article deals with the implementation of ecosystem-based marine management in the Baltic Sea. It explores and documents in particular the preliminary lessons from environmental and fisheries management with reference to the Helsinki Commission Group for implementation of the ecosystem approach......'s Marine Strategy Framework Directive. The Baltic Sea Fisheries Forum is a new governing body to facilitate regional cooperation in fisheries management. The aim of the article is twofold: a) to describe and discuss two different pathways of regionalisation in the Baltic Sea and b) to explore how...

  19. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  20. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    Science.gov (United States)

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  1. Paralytic shellfish toxins in the Atlantic horse mackerel (Trachurus trachurus over a bloom of Gymnodinium catenatum: the prevalence of decarbamoylsaxitoxin in the marine food web

    Directory of Open Access Journals (Sweden)

    Sandra Lage

    2013-03-01

    Full Text Available This study reports the accumulation of paralytic shellfish toxins (PSTs in Atlantic horse mackerel (Trachurus trachurus over a bloom of the toxigenic dinoflagellate Gymnodinium catenatum. High levels of toxins, up to 4800 μg STXeq kg–1, were registered at the peak of the bloom (5.0 103 cells l–1. The suite of individual PSTs was examined. Decarbamoylsaxitoxin (dcSTX and B1 constituted nearly 90% of toxins (on a molar basis determined in mackerel. This profile of toxins markedly differs from the known profile of toxins produced by G. catenatum strains isolated from the Portuguese coast, which is dominated by N-sulfocarbamoyl toxins, in particular the C1+2 toxins. The prevalence of the potent dcSTX in the pelagic environment and its transfer through the marine food web is highlighted in this study. Atlantic horse mackerel is identified as a high potential vector of PSTs along the Portuguese coast. This fish species has a central position in the marine food web, being an important predator of zooplankton and at the same time an important diet item of top predators. This study reveals bioaccumulation values that are important for evaluating potential impacts of blooms of PST-producing dinoflagellates on marine ecosystems or their components, such as fish.

  2. Bathymetric terrain model of the Atlantic margin for marine geological investigations

    Science.gov (United States)

    Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.

    2016-01-01

    A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..

  3. TROPHIC PORTFOLIOS IN MARINE FISHERIES: A STEP TOWARDS ECOSYSTEM MANAGEMENT

    OpenAIRE

    Sanchirico, James N.; Smith, Martin D.

    2003-01-01

    Marine ecologists warn that humans are "fishing down marine food webs." To explore the economic implications of this phenomenon, this paper applies portfolio theory to aggregate fisheries data. It poses two definitions of a sustainable mean-variance catch frontier. It computes a mean-variance frontier for catch using UNFAO historical fisheries data. Finally, the paper discusses the historical trend in inefficiency.

  4. Effectiveness of marine protected areas in managing the drivers of ecosystem change: a case of Mnazi Bay Marine Park, Tanzania.

    Science.gov (United States)

    Machumu, Milali Ernest; Yakupitiyage, Amararatne

    2013-04-01

    Marine protected areas (MPAs) are being promoted in Tanzania to mitigate the drivers of ecosystem change such as overfishing and other anthropogenic impacts on marine resources. The effectiveness of MPAs in managing those drivers was assessed in three ecological zones, seafront, mangrove, and riverine of Mnazi Bay Marine Park, using Participatory Community Analysis techniques, questionnaire survey, checklist and fishery resource assessment methods. Eleven major drivers of ecosystem change were identified. Resource dependence had a major effect in all ecological zones of the park. The results indicated that the park's legislations/regulations, management procedures, and conservation efforts are reasonably effective in managing its resources. The positive signs accrued from conservation efforts have been realized by the communities in terms of increased catch/income, awareness and compliance. However, some natural and anthropogenic drivers continued to threaten the park's sustainability. Furthermore, implementation of resource use and benefit sharing mechanisms still remained a considerable challenge to be addressed.

  5. Resilience and stability of a pelagic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been...

  6. Ocean acidification and warming in the Norwegian and Barents Seas: impacts on marine ecosystems and human uses

    OpenAIRE

    Koenigstein, Stefan; Gößling-Reisemann, Stefan

    2014-01-01

    This report synthesizes the results about the impacts of climate change and ocean acidification on marine ecosystems and ecosystem services in Norway, from interviews and a workshop with stakeholders in 2013.

  7. Spatial Analysis of Conservation Priorities Based on Ecosystem Services in the Atlantic Forest Region of Misiones, Argentina

    Directory of Open Access Journals (Sweden)

    Matthew L. Clark

    2012-08-01

    Full Text Available Understanding the spatial pattern of ecosystem services is important for effective environmental policy and decision-making. In this study, we use a geospatial decision-support tool (Marxan to identify conservation priorities for habitat and a suite of ecosystem services (storage carbon, soil retention and water yield in the Upper Paraná Atlantic Forest from Misiones, Argentina—an area of global conservation priority. Using these results, we then evaluate the efficiency of existing protected areas in conserving both habitat and ecosystem services. Selected areas for conserving habitat had an overlap of carbon and soil ecosystem services. Yet, selected areas for water yield did not have this overlap. Furthermore, selected areas with relatively high overlap of ecosystem services tended to be inside protected areas; however, other important areas for ecosystem services (i.e., central highlands do not have legal protection, revealing the importance of enforcing existing environmental regulations in these areas.

  8. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    Science.gov (United States)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  9. Barriers to gene flow in the marine environment: insights from two common intertidal limpet species of the Atlantic and Mediterranean.

    Directory of Open Access Journals (Sweden)

    Alexandra Sá-Pinto

    Full Text Available Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area.

  10. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    Science.gov (United States)

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a

  11. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  12. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems

    Science.gov (United States)

    Finney, Bruce P.; Alheit, Jürgen; Emeis, Kay-Christian; Field, David B.; Gutiérrez, Dimitri; Struck, Ulrich

    2010-02-01

    The use of historical fishing records to understand relationships between climatic change and fish abundance is limited by the relatively short duration of these records, and complications due to the strong influence of human activity in addition to climatic change. Sedimentary records containing scales, bones or geochemical proxies of variability in fish populations provide unique insights on long-term ecosystem dynamics and relationships with climatic change. Available records from Holocene sediments are summarized and synthesized. The records are from several widespread locations near or along the continental margins of the South Atlantic and Pacific oceans, including Alaska, USA (Pacific salmon), Saanich and Effingham Inlets, British Columbia, Canada (pelagic fish), Santa Barbara Basin, California, USA (Northern anchovies and Pacific sardines), Gulf of California, Mexico (Pacific sardines, Northern anchovies and Pacific hake), Peru upwelling system (sardines, anchovies and hake), and Benguela Current System, South Africa (sardines, anchovies and hake). These records demonstrate that fish population sizes are not constant, and varied significantly over a range of time scales prior to the advent of large-scale commercial fishing. In addition to the decadal-scale variability commonly observed in historical records, the long-term records reveal substantial variability over centennial and millennial time scales. Shifts in abundance are often, but not always, correlated with regional and/or global climatic changes. The long-term perspective reveals different patterns of variability in fish populations, as well as fish-climate relationships, than suggested by analysis of historical records. Many records suggest prominent changes in fish abundance at ca. 1000-1200 AD, during the Little Ice Age, and during the transition at the end of the Little Ice Age in the 19th century that may be correlative, and that were likely driven by major hemispheric or global

  13. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model

    Science.gov (United States)

    Dutkiewicz, S.; Hickman, A. E.; Jahn, O.; Gregg, W. W.; Mouw, C. B.; Follows, M. J.

    2015-07-01

    We present a numerical model of the ocean that couples a three-stream radiative transfer component with a marine biogeochemical-ecosystem component in a dynamic three-dimensional physical framework. The radiative transfer component resolves the penetration of spectral irradiance as it is absorbed and scattered within the water column. We explicitly include the effect of several optically important water constituents (different phytoplankton functional types; detrital particles; and coloured dissolved organic matter, CDOM). The model is evaluated against in situ-observed and satellite-derived products. In particular we compare to concurrently measured biogeochemical, ecosystem, and optical data along a meridional transect of the Atlantic Ocean. The simulation captures the patterns and magnitudes of these data, and estimates surface upwelling irradiance analogous to that observed by ocean colour satellite instruments. We find that incorporating the different optically important constituents explicitly and including spectral irradiance was crucial to capture the variability in the depth of the subsurface chlorophyll a (Chl a) maximum. We conduct a series of sensitivity experiments to demonstrate, globally, the relative importance of each of the water constituents, as well as the crucial feedbacks between the light field, the relative fitness of phytoplankton types, and the biogeochemistry of the ocean. CDOM has proportionally more importance at attenuating light at short wavelengths and in more productive waters, phytoplankton absorption is relatively more important at the subsurface Chl a maximum, and water molecules have the greatest contribution when concentrations of other constituents are low, such as in the oligotrophic gyres. Scattering had less effect on attenuation, but since it is important for the amount and type of upwelling irradiance, it is crucial for setting sea surface reflectance. Strikingly, sensitivity experiments in which absorption by any of the

  14. A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site

    Directory of Open Access Journals (Sweden)

    Reduan Atan

    2016-11-01

    Full Text Available Wave characteristic assessments of wave energy test sites provide a greater understanding of prevailing wave conditions and are therefore extremely important to both wave energy test site operators and clients as they can inform wave energy converter design, optimisation, deployment, operation and maintenance. This research presents an assessment of the wave resource at the Atlantic Marine Energy Test Site (AMETS on the west coast of Ireland based on 12-years of modelled data from January 2004 to December 2015. The primary aim is to provide an assessment of annual and seasonal wave characteristics and resource variability at the two deployment berths which comprise the site. A nested model has been developed using Simulating WAves Nearshore (SWAN to replicate wave propagations from regional to local scale with a 0.05° resolution model covering the northeast Atlantic and a 0.0027° resolution model covering AMETS. The coarse and fine models have been extensively validated against available measured data within Irish waters. 12-year model outputs from the high resolution model were analysed to determine mean and maximum conditions and operational, high and extreme event conditions for significant wave height, energy period and power. Annual and seasonal analyses are presented. The 12-year annual mean P were 68 kW/m at Berth A (BA and 57 kW/m at Berth B (BB. The resource shows strong seasonal and annual variations and the winter mean power levels were found to be strongly correlated with the North Atlantic Oscillation (NAO.

  15. Influence of Surface Processes over Africa on the Atlantic Marine ITCZ and South American Precipitation.

    Science.gov (United States)

    Hagos, Samson M.; Cook, Kerry H.

    2005-12-01

    Previous studies show that the climatological precipitation over South America, particularly the Nordeste region, is influenced by the presence of the African continent. Here the influence of African topography and surface wetness on the Atlantic marine ITCZ (AMI) and South American precipitation are investigated.Cross-equatorial flow over the Atlantic Ocean introduced by north south asymmetry in surface conditions over Africa shifts the AMI in the direction of the flow. African topography, for example, introduces an anomalous high over the southern Atlantic Ocean and a low to the north. This results in a northward migration of the AMI and dry conditions over the Nordeste region.The implications of this process on variability are then studied by analyzing the response of the AMI to soil moisture anomalies over tropical Africa. Northerly flow induced by equatorially asymmetric perturbations in soil moisture over northern tropical Africa shifts the AMI southward, increasing the climatological precipitation over northeastern South America. Flow associated with an equatorially symmetric perturbation in soil moisture, however, has a very weak cross-equatorial component and very weak influence on the AMI and South American precipitation. The sensitivity of the AMI to soil moisture perturbations over certain regions of Africa can possibly improve the skill of prediction.

  16. Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11

    Directory of Open Access Journals (Sweden)

    J. P. Helmke

    2008-09-01

    Full Text Available Proxy records from a core site off Northwest Africa were generated and compared with data from the subpolar Northeast Atlantic to unravel some main climatic features of interglacial marine isotope stage (MIS 11 (423–362 ka. The records point to an almost 25 kyr lasting full interglacial period during stage 11 that was preceded by a considerably long glacial-interglacial transition (Termination V. Off NW Africa, a strong reduction of terrestrially derived iron input is noted after 420 ka suggesting a pronounced increase in continental humidity and vegetation cover over Northwest Africa. In analogy to the Holocene climate of the region, this early wet phase of MIS 11 was likely associated with enhanced influence of the West African monsoon system on the Saharan-Sahel region which led to both a reduction in trade wind intensity off NW Africa and the formation of sapropel S11 in the Mediterranean Sea. A detailed comparison with data from the subpolar North Atlantic indicates a remarkable coherent timing for the main environmental changes in both regions giving evidence for strong interglacial climate connection between the low and high latitude North Atlantic. Although our records of MIS 11 compare well with the Holocene in terms of some major climate characteristics there are distinct differences in the temporal evolution of each peak warm interval. This suggests that care should be taken when using MIS 11 as analogue to forecast future interglacial conditions.

  17. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: a comparative assessment

    DEFF Research Database (Denmark)

    Kirkman, Stephen P.; Yemane, Dawit; Atkinson, Lara J.

    2015-01-01

    Using long‐term survey data, changes in demersal faunal communities in the Benguela Current Large Marine Ecosystem were analysed at community and population levels to provide a comparative overview of the occurrence and timing of regime shifts. For South Africa, the timing of a community‐level sh......Using long‐term survey data, changes in demersal faunal communities in the Benguela Current Large Marine Ecosystem were analysed at community and population levels to provide a comparative overview of the occurrence and timing of regime shifts. For South Africa, the timing of a community...

  18. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    OpenAIRE

    Johnson, Johanna E.; Holbrook, Neil J.

    2014-01-01

    The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temper...

  19. Parasites as biological tags in marine fisheries research: European Atlantic waters.

    Science.gov (United States)

    Mackenzie, K; Hemmingsen, W

    2015-01-01

    Studies of the use of parasites as biological tags for stock identification and to follow migrations of marine fish, mammals and invertebrates in European Atlantic waters are critically reviewed and evaluated. The region covered includes the North, Baltic, Barents and White Seas plus Icelandic waters, but excludes the Mediterranean and Black Seas. Each fish species or ecological group of species is treated separately. More parasite tag studies have been carried out on Atlantic herring Clupea harengus than on any other species, while cod Gadus morhua have also been the subject of many studies. Other species that have been the subjects of more than one study are: blue whiting Micromesistius poutassou, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, Norway pout Trisopterus esmarkii, horse mackerel Trachurus trachurus and mackerel Scomber scombrus. Other species are dealt with under the general headings redfishes, flatfish, tunas, anadromous fish, elasmobranchs, marine mammals and invertebrates. A final section highlights how parasites can be, and have been, misused as biological tags, and how this can be avoided. It also reviews recent developments in methodology and parasite genetics, considers the potential effects of climate change on the distributions of both hosts and parasites, and suggests host-parasite systems that should reward further research.

  20. Atlantic Salmon (Salmo salar L. as a Marine Functional Source of Gamma-Tocopherol

    Directory of Open Access Journals (Sweden)

    David Menoyo

    2014-12-01

    Full Text Available Gamma tocopherol (gT exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.

  1. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  2. Fish mitigate trophic depletion in marine cave ecosystems.

    Science.gov (United States)

    Bussotti, Simona; Di Franco, Antonio; Bianchi, Carlo Nike; Chevaldonné, Pierre; Egea, Lea; Fanelli, Emanuela; Lejeusne, Christophe; Musco, Luigi; Navarro-Barranco, Carlos; Pey, Alexis; Planes, Serge; Vieux-Ingrassia, Jean Vincent; Guidetti, Paolo

    2018-06-15

    Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitats.

  3. Cumulative effects of planned industrial development and climate change on marine ecosystems

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    2015-07-01

    Full Text Available With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different scenarios: climate change and planned developments. At the coast-wide scale, climate change drove the largest change in cumulative effects with both widespread impacts and high vulnerability scores. Where the impacts of planned developments occur, planned industrial and pipeline activities had high cumulative effects, but the footprint of these effects was comparatively localized. Nearshore habitats were at greatest risk from planned industrial and pipeline activities; in particular, the impacts of planned pipelines on rocky intertidal habitats were predicted to cause the highest change in cumulative effects. This method of incorporating planned industrial development in cumulative effects mapping allows explicit comparison of different scenarios with the potential to be used in environmental impact assessments at various scales. Its use allows resource managers to consider cumulative effect hotspots when making decisions regarding industrial developments and avoid unacceptable cumulative effects. Management needs to consider both global and local stressors in managing marine ecosystems for the protection of biodiversity and the provisioning of ecosystem services.

  4. Measurement of changes in marine benthic ecosystem function following physical disturbance by dredging

    OpenAIRE

    Wan Hussin, Wan Mohd Rauhan

    2012-01-01

    Measuring the impact of physical disturbance on macrofaunal communities and sediment composition is important given the increased demand for the exploitation and disturbance of marine ecosystems. The aim of the present investigation was to provide a comprehensive study about the extent to which the disturbance (especially aggregate dredging) may affect benthic ecosystem function. The first part of the thesis concerns a field investigation of the impacts of dredging on the be...

  5. A global mismatch in the protection of multiple marine biodiversity components and ecosystem services

    DEFF Research Database (Denmark)

    Lindegren, Martin; Holt, Ben G.; MacKenzie, Brian R.

    2018-01-01

    spatial scale. We demonstrate a pronounced spatial mismatch between the existing degree of protection and all the conservation priorities above, highlighting that neither the world's most diverse, nor the most productive ecosystems are currently the most protected ecosystems. Furthermore, we show...... more effectively than the existing degree of protection, which at best is only marginally better than a random expectation. Therefore, a holistic perspective is needed when designating an appropriate degree of protection of marine conservation priorities worldwide....

  6. Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    NARCIS (Netherlands)

    Drakou, E.G.; Kermagoret, C.; Liquete, C.; Ruiz-Frau, A.; Burkhard, K.; Lillebø, A.I.; van Oudenhoven, A.P.E.; Ballé-Béganton, J.; Rodrigues, J.G.; Nieminen, E.; Oinonen, S.; Ziemba, A.; Gissi, E.; Depellegrin, D.; Veidemane, K.; Ruskule, A.; Delangue, J.; Böhnke-Henrichs, A.; Boon, A.; Wenning, R.; Martino, S.; Hasler, B.; Termansen, M.; Rockel, M.; Hummel, H.; El Serafy, G.; Peev, P.

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunitiestoward the operationalization of marine and coastal ecosystem service (MCES) assessments inEurope. This work is the output of a panel convened by the Marine Working Group of theEcosystemServices Partnership

  7. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach

    NARCIS (Netherlands)

    Beaumont, N.J.; Austen, M.C.; Atkins, J.P.; Burdon, D.; Degraer, S.; Dentinho, T.P.; Serous, S.; Holm, P.; Horton, T.; Ierland, van E.C.; Marboe, A.H.; Starkey, D.J.; Townsend, M.; Zarzycki, T.

    2007-01-01

    This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to

  8. As multiple fish species in large marine ecosystems are harvested ...

    African Journals Online (AJOL)

    CMPTMAC10

    and of other top predators such as marine mammals. This concern ... whereas single-species fishing theory implies that fishing leads to surplus by removing larger, older, less-productive ...... pools (the “cod is not a tuna” problem, Longhurst.

  9. Ecosystem-based design rules for marine sand extraction sites

    NARCIS (Netherlands)

    Jong, de Maarten F.; Borsje, Bas W.; Baptist, Martin J.; Wal, van der Jan Tjalling; Lindeboom, Han J.; Hoekstra, Piet

    2016-01-01

    The demand for marine sand in the Netherlands as well as globally is increasing. Over the last decades, only shallow sand extraction of 2m below the seabed was allowed on the Dutch Continental Shelf (DCS). To guarantee sufficient supply and to decrease the surface area of direct impact, the Dutch

  10. Ecosystem-based design rules for marine sand extraction sites

    NARCIS (Netherlands)

    de Jong, Maarten F.; Borsje, Bas W.; Baptist, Martin J.; van der Wal, Jan Tjalling; Lindeboom, Han J.; Hoekstra, Piet

    2016-01-01

    The demand for marine sand in the Netherlands as well as globally is increasing. Over the last decades, only shallow sand extraction of 2m below the seabed was allowed on the Dutch Continental Shelf (DCS). To guarantee sufficient supply and to decrease the surface area of direct impact, the Dutch

  11. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region

    Science.gov (United States)

    Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, Peter S.; Howarth, R.W.; Folt, C.L.; Chen, C.-Y.; Hemond, Harold F.; Flebbe, P.A.; Driscoll, C.T.

    1997-01-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 ??CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3-5??C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be

  12. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    Science.gov (United States)

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  13. Marine biodiversity–ecosystem functions under uncertain environmental futures

    Science.gov (United States)

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  14. Handle with Care! Mid-Atlantic Marine Animals That Demand Your Respect. Educational Series No. 26. Third Printing.

    Science.gov (United States)

    Lucy, Jon

    Generally speaking, marine organisms found along middle Atlantic shores are not considered threatening to people. However, some of these animals can cause problems, either upon simple contact with the skin, as in the case of some jellyfish, or through careless handling. In addition, larger inhabitants of coastal waters (such as sharks) must always…

  15. High-frequency climate linkages between the North Atlantic and the Mediterranean during marine oxygen isotope stage 100 (MIS100)

    NARCIS (Netherlands)

    Becker, Julia; Lourens, L.J.; Raymo, M.E.

    2006-01-01

    High-resolution records of Mediterranean and North Atlantic deep-sea sediments indicate that rapid changes in hydrology and climate occurred during marine oxygen isotope stage 100 (MIS100) (at ~2.52 Ma), which exhibits characteristics similar to late Pleistocene Dansgaard-Oeschger, Bond cycles and

  16. Appendix E of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the fifth appendix to the report, the bibliography of references.

  17. Appendix C of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the third appendix to the report, the compendium of pre-workshop answers.

  18. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems

    NARCIS (Netherlands)

    Govers, Laura L.; Man in 't Veld, Willem A.; Meffert, Johan P.; Bouma, Tjeerd J.; van Rijswick, Patricia C. J.; Heusinkveld, Jannes H. T.; Orth, Robert J.; van Katwijk, Marieke M.; van der Heide, Tjisse

    2016-01-01

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is

  19. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    OpenAIRE

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Wh...

  20. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience

    OpenAIRE

    Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A.; Chartrand, Kathryn; York, Paul H.; Rasheed, Michael A.; Caley, M. Julian

    2017-01-01

    Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined...

  1. Marine environmental monitoring related to sea disposal of radioactive waste in the NE Atlantic Ocean

    International Nuclear Information System (INIS)

    Bettencourt, A.O.; Elias, M.D.T.; Ferrador, G.C.

    1988-01-01

    Reference is made to the sea disposal of packaged radioactive waste in the NE Atlantic and to the role of the OCDE Nuclear Energy Agency (NEA) since 1967, in the dumping operations. The objectives of marine environmental monitoring in relation to sea disposal of radioactive wastes are described as well as the coordinated research and environmental surveillance programme (CRESP) developed within NEA frame. The Portuguese on-going programme in this field is presented and the results concerning measurements of 239+240 Pu, 238 Pu, 241 Am and 137 Cs in samples of water, sediments and fish collected at Madeira and Continental Portuguese coasts, are discussed. It was observed that these radionuclides concentrations are lower for deep-sea fishes than for the shallow-water ones. The obtained results are compared with those found in the literature. From the observation of the large spectrum of results available, it can be concluded that no generalized contamination of the marine environment due to the sea dumping of radioactive wastes if observed at present. On the other hand, there is an interest in pursuing analyses of deep-sea fish with the aim of early detection of any possible modifications in the actual levels of radioactivity in the marine environment. (author) [pt

  2. Chromosomal stasis in distinct families of marine Percomorpharia from South Atlantic.

    Science.gov (United States)

    Paim, Fabilene Gomes; Almeida, Leandro Aragão da Hora; Affonso, Paulo Roberto Antunes de Mello; Sobrinho-Scudeler, Patrícia Elda; Oliveira, Claudio; Diniz, Débora

    2017-01-01

    The weakness of physical barriers in the marine environment and the dispersal potential of fish populations have been invoked as explanations of the apparent karyotype stasis of marine Percomorpha, but several taxa remain poorly studied cytogenetically. To increase the chromosomal data in this fish group, we analyzed cytogenetically three widespread Atlantic species from distinct families: Chaetodipterus faber Broussonet, 1782 (Ephippidae), Lutjanus synagris Linnaeus, 1758 (Lutjanidae) and Rypticus randalli Courtenay, 1967 (Serranidae). The three species shared a karyotype composed of 2n=48 acrocentric chromosomes, single nucleolus organizer regions (NORs) and reduced amounts of centromeric heterochromatin. A single NOR-bearing pair was identified in all species by physical mapping of 18S rDNA while non-syntenic 5S rRNA genes were located at centromeric region of a single pair. The similar karyotypic macrostructure observed in unrelated groups of Percomorpharia reinforces the conservative karyoevolution of marine teleosteans. Nonetheless, the species could be differentiated based on the pair bearing ribosomal cistrons, revealing the importance of microstructural analyses in species with symmetric and stable karyotypes.

  3. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    International Nuclear Information System (INIS)

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography

  4. Ecosystem model of the entire Beaufort Sea marine ecosystem: a tool for assessing food-web structure and ecosystem changes from 1970 to 2014

    Science.gov (United States)

    Suprenand, P. M.; Hoover, C.

    2016-02-01

    The Beaufort Sea coastal-marine ecosystem is approximately a 476,000 km2 area in the Arctic Ocean, which extends from -112.5 to -158° longitude to 67.5 to 75° latitude. Within this Arctic Ocean area the United States (Alaskan) indigenous communities of Barrow, Kaktovik, and Nuiqsut, and the Canadian (Northwest Territories) indigenous communities of Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Ulukhaktok, and Sachs Harbour, subsist by harvesting marine mammals, fish, and invertebrates from the Beaufort Sea to provide the majority of their community foods annually. The ecosystem in which the indigenous communities harvest is considered a polar habitat that includes many specialized species, such as polar bears that rely on sea-ice for foraging activities and denning, or ice algae that are attached to the cryosphere. However, the polar habitat has been experiencing a diminishing sea-ice extent, age, and seasonal duration, with concomitant increases in sea surface temperatures (SSTs), since the 1970s. Changes in sea-ice and SST have consequences to the Beaufort Sea coastal-marine ecosystem, which includes animal habitat losses, alterations to trophodynamics, and impacts to subsistence community harvesting. The present study was aimed at capturing trophodynamic changes in the Beaufort Sea coastal-marine ecosystem from 1970 to 2014 using a fitted spatial-temporal model (Ecopath with Ecosim and Ecospace) that utilizes forcing and mediation functions to describe animal/trophodynamic relationships with sea-ice and sea surface temperature, as well as individual community harvesting efforts. Model outputs reveals similar trends in animals population changes (e.g., increasing bowhead whale stock), changes in apex predator diets (e.g., polar bears eating less ringed seal), and changes in animal distributions (e.g., polar bears remaining closer to land over time). The Beaufort Sea model is a dynamic tool for Arctic Ocean natural resource management in the years to come.

  5. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  6. ICES and PICES strategies for coordinating research on the impacts of climate change on marine ecosystems

    DEFF Research Database (Denmark)

    Kim, S.; Hollowed, Anne B.; Barange, Manuel

    2014-01-01

    organizations to develop a research initiative that focuses on their shared interests. A phased implementation will ensure that SICCME will be responsive to a rapidly evolving research area while delivering ongoing syntheses of existing knowledge, thereby advancing new science and methodologies......The social, economic, and ecological consequences of projected climate change on fish and fisheries are issues of global concern. In 2012, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES) established a Strategic Initiative...... on Climate Change Effects on Marine Ecosystems (SICCME) to synthesize and to promote innovative, credible, and objective science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. SICCME takes advantage of the unique and complementary strengths of the two...

  7. Coupling ecosystems exposure to nitrogen and species sensitivity to hypoxia: modelling marine eutrophication in LCIA

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) quantifies impacts of anthropogenic emissions by applying substance-specific impact potentials, or Characterisation Factors (CF), to the amount of substances emitted. Nitrogen (N) emissions from human activities enrich coastal marine...... ecosystems and promote planktonic growth that may lead to marine eutrophication impacts. Excessive algal biomass and dissolved oxygen (DO) depletion typify the ecosystem response to the nutrient input. The present novel method couples a mechanistic model of coastal biological processes that determines...... the ecosystem response (exposure) to anthropogenic N enrichment (eXposure Factor, XF [kgO2·kgN-1]) with the sensitivity of species exposed to oxygen-depleted waters (Effect Factor, EF [(PAF)·m3·kgO2-1], expressed as a Potentially Affected Fraction (PAF) of species). Thus, the coupled indicator (XF*EF, [(PAF)·m3...

  8. Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries?

    Science.gov (United States)

    Bonde, R.K.; Aguirre, A.A.; Powell, J.

    2004-01-01

    The order Sirenia is represented by three species of manatees and one species of dugong distributed in tropical and subtropical regions of the world and considered vulnerable to extinction. The sentinel species concept is useful to identify indicators of the environment and may reflect the quality of health in marine ecosystems. The single species approach to evaluate ecological health may provide a series of “snap shots” of environmental changes to determine if animal, human, or ecosystem health may be affected. Under this concept, marine vertebrates may be good integrators of changes over space and time, and excellent sentinels of ecosystem health. Based on their life history, manatees may or may not be ideal sentinels, as they are robust, long-lived species and appear remarkably resilient to natural disease and the effects of human-related injury and trauma. These characteristics might be the result of an efficient and responsive immune system compared to other marine mammals. Although relatively immune to infectious agents, manatees face other potentially serious threats, including epizootic diseases and pollution while in large aggregations. Manatees can serve as excellent sentinels of harmful algal blooms due to their high sensitivity, specifically to brevetoxicosis, which has caused at least two major die-offs in recent times. Threats to manatees worldwide, such as illegal hunting and boat collisions, are increasing. Habitat is being lost at an alarming rate and the full effects of uncontrolled human population growth on the species are unknown. The manatee may serve as a sentinel species, prognosticating the deleterious effects of unhealthy marine and aquatic ecosystems on humans. We have identified a number of critical research needs and opportunities for transdisciplinary collaboration that could help advance the use of the sentinel species concept in marine ecosystem health and monitoring of disease emergence using our knowledge on these magnificent

  9. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Frieling, Joost; Reichart, Gert-Jan; Middelburg, Jack J.; Röhl, Ursula; Westerhold, Thomas; Bohaty, Steven M.; Sluijs, Appy

    2018-01-01

    The Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean-atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a ˜ 3.8 ‰ negative carbon isotope excursion (CIE) and a ˜ 4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which ˜ 1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In

  10. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum

    Directory of Open Access Journals (Sweden)

    J. Frieling

    2018-01-01

    Full Text Available The Paleocene–Eocene Thermal Maximum (PETM, 56 Ma was a phase of rapid global warming associated with massive carbon input into the ocean–atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst assemblage analysis. The PETM at Site 959 was previously found to be marked by a  ∼  3.8 ‰ negative carbon isotope excursion (CIE and a  ∼  4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which  ∼  1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply

  11. Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction.

    Science.gov (United States)

    Martin, Jeremy E; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent

    2017-06-05

    The collapse of marine ecosystems during the end-Cretaceous mass extinction involved the base of the food chain [1] up to ubiquitous vertebrate apex predators [2-5]. Large marine reptiles became suddenly extinct at the Cretaceous-Paleogene (K/Pg) boundary, whereas other contemporaneous groups such as bothremydid turtles or dyrosaurid crocodylomorphs, although affected at the familial, genus, or species level, survived into post-crisis environments of the Paleocene [5-9] and could have found refuge in freshwater habitats [10-12]. A recent hypothesis proposes that the extinction of plesiosaurians and mosasaurids could have been caused by an important drop in sea level [13]. Mosasaurids are unusually diverse and locally abundant in the Maastrichtian phosphatic deposits of Morocco, and with large sharks and one species of elasmosaurid plesiosaurian recognized so far, contribute to an overabundance of apex predators [3, 7, 14, 15]. For this reason, high local diversity of marine reptiles exhibiting different body masses and a wealth of tooth morphologies hints at complex trophic interactions within this latest Cretaceous marine ecosystem. Using calcium isotopes, we investigated the trophic structure of this extinct assemblage. Our results are consistent with a calcium isotope pattern observed in modern marine ecosystems and show that plesiosaurians and mosasaurids indiscriminately fall in the tertiary piscivore group. This suggests that marine reptile apex predators relied onto a single dietary calcium source, compatible with the vulnerable wasp-waist food webs of the modern world [16]. This inferred peculiar ecosystem structure may help explain plesiosaurian and mosasaurid extinction following the end-Cretaceous biological crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Editorial: Global in scope and regionally rich: an IndiSeas workshop helps shape the future of marine ecosystem indicators

    NARCIS (Netherlands)

    Shin, Y.J.; Bundy, A.; Piet, G.J.

    2012-01-01

    This report summarizes the outcomes of an IndiSeas workshop aimed at using ecosystem indicators to evaluate the status of the world’s exploited marine ecosystems in support of an ecosystem approach to fisheries, and global policy drivers such as the 2020 targets of the Convention on Biological

  13. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  14. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic

    Science.gov (United States)

    Mangerud, Jan; Bondevik, Stein; Gulliksen, Steinar; Karin Hufthammer, Anne; Høisæter, Tore

    2006-12-01

    In order to compare radiocarbon dates on marine and terrestrial samples the former have to be corrected for a reservoir age. We present reservoir ages from dating 21 whales collected 1860-1901 and recalculating dates of 23 molluscs collected 1857-1926. Most of the whales were caught along the coast of Norway, but one is from France and one from Iceland. We assume the former mainly lived in the North and equatorial Atlantic and in the Norwegian Sea. Whales feed only on pelagic organisms and will provide the reservoir age for the open ocean surface water. However, they travel long distances and will integrate the reservoir ages of the different water masses along their way. Molluscs (dated from Norway, Spitsbergen and Arctic Canada) are stationary and monitor the sea water passing their dwelling site, but some also take up carbon from particulate food or sediment pore water. Coastal water also often contains some continental carbon. We present two different views on how to analyze and interpret the data. Mangerud recommends to use reservoir ages based on a combination of the whale and mollusc dates, i.e. 380±30 and 360±30 yr relative to Intcal04 and British oak, respectively, and a Δ R value of 20±30 for the surface water in the N-Atlantic and Norwegian Sea. Bondevik and Gulliksen maintain that the reservoir age—and Δ R—along the Norwegian coast is latitude dependant, with Δ R-values increasing from -3±22 in the South to 105±24 at Spitsbergen. Whales, reflecting North Atlantic open ocean surface water have lower Δ R (7±11) than most molluscs.

  15. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  16. Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous North Atlantic marine cyanobacteria?

    Science.gov (United States)

    Frazão, Bárbara; Martins, Rosário; Vasconcelos, Vitor

    2010-06-21

    Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.

  17. A Demonstration Marine Biodiversity Observation Network (MBON): Understanding Marine Life and its Role in Maintaining Ecosystem Services

    Science.gov (United States)

    Muller-Karger, F. E.; Iken, K.; Miller, R. J.; Duffy, J. E.; Chavez, F.; Montes, E.

    2016-02-01

    The U.S. Federal government (NOAA, NASA, BOEM, and the Smithsonian Institution), academic researchers, and private partners are laying the foundation for a Marine Biodiversity Observation Network (MBON). The goals of the network are to: 1) Observe and understand life, from microbes to whales, in different coastal and continental shelf habitats; 2) Define an efficient set of observations required for implementing a useful MBON; 3) Develop technology for biodiversity assessments including emerging environmental DNA (eDNA), remote sensing, and image analysis methods to coordinate with classical sampling; 4) Integrate and synthesize information in coordination with the Integrated Ocean Observing System (IOOS), the international Group on Earth Observations Biodiversity Observation Network(GEO BON), and the Ocean Biogeographic Information System (OBIS) sponsored by UNESCO's Intergovernmental Oceanographic Commission (IOC); and 5) Understand the linkages between marine biodiversity, ecosystem processes, and the social-economic context of a region. Pilot projects have been implemented within three NOAA National Marine Sanctuaries (Florida Keys, Monterey Bay, and Channel Islands), the wider Santa Barbara Channel, in the Chukchi Sea, and through the Smithsonian's Tennenbaum Marine Observatories Network (TMON) at several sites in the U.S. and collaborating countries. Together, these MBON sites encompass a wide range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The present MBON partners are open to growth of the MBON through additional collaborations. Given these initiatives, GEO BON is proposing an MBON effort that spans from pole to pole, with a pathfinder effort among countries in the Americas. By specializing in coastal ecosystems—where marine biodiversity and people are concentrated and interact most—the MBON and TMON initiatives aim to provide policymakers with the science to

  18. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  19. Ant communities (Hymenoptera: Formicidae in an urban ecosystem near the Atlantic Rainforest

    Directory of Open Access Journals (Sweden)

    CM. Kamura

    Full Text Available The relationships between an urban ecosystem located near the Atlantic Rainforest in southeastern Brazil and ant communities were studied with the objective of quantifying the ant richness and abundance in the household environment and its surroundings. Eighty residences were sampled, where 58 species and 28 genera pertaining to 7 sub-families were found to be present. Inside the residences, the species richness was found to be lower (26, although the abundance was greater (10,670, with the wash area and kitchen being the locales that contributed with the greatest number of hits. The opposite was true in the areas outside the residences, where 54 species and 3,747 ants were observed. Inside houses, the species known as Tramp ants were found, in the following order of importance: Solenopsis -saevissima, Tapinoma melanocephalum, Linepithema humile, Paratrechina fulva, Wasmannia -auropunctata, P. -longicornis, Pheidole megacephala, Monomorium pharaonis and M. floricola. Externally, mainly in the yards and gardens, species such as Octostruma rugifera, Heteroponera dolo, Hypoponera sp.1 and sp.6, Gnamptogenys sp. 4, G. striatula, Odontomachus meinerti, Pachycondyla constricta and P. striata were found. In general, a greater number of species and lower abundance of individuals were observed in the neighborhoods nearer the mountains than in those closer to the urban center.

  20. The pace of shifting climate in marine and terrestrial ecosystems

    DEFF Research Database (Denmark)

    Burrows, Michael T.; Schoeman, David S.; Buckley, Lauren B.

    2011-01-01

    Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate...... change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from...... simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts....

  1. Taylor's law and body size in exploited marine ecosystems.

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  2. Marine viruses--major players in the global ecosystem.

    Science.gov (United States)

    Suttle, Curtis A

    2007-10-01

    Viruses are by far the most abundant 'lifeforms' in the oceans and are the reservoir of most of the genetic diversity in the sea. The estimated 10(30) viruses in the ocean, if stretched end to end, would span farther than the nearest 60 galaxies. Every second, approximately 10(23) viral infections occur in the ocean. These infections are a major source of mortality, and cause disease in a range of organisms, from shrimp to whales. As a result, viruses influence the composition of marine communities and are a major force behind biogeochemical cycles. Each infection has the potential to introduce new genetic information into an organism or progeny virus, thereby driving the evolution of both host and viral assemblages. Probing this vast reservoir of genetic and biological diversity continues to yield exciting discoveries.

  3. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  4. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  5. Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge.

    Science.gov (United States)

    Shaw, Susan D; Kannan, Kurunthachalam

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of synthetic halogenated organic compounds used in commercial and household products, such as textiles, furniture, and electronics, to increase their flame ignition resistance and to meet fire safety standards. The demonstrated persistence, bioaccumulation, and toxic potential of these compounds in animals and in humans are of increasing concern. The oceans are considered global sinks for PBDEs, as higher levels are found in marine organisms than in terrestrial biota. For the past three decades, North America has dominated the world market demand for PBDEs, consuming 95% of the penta-BDE formulation. Accordingly, the PBDE concentrations in marine biota and people from North America are the highest in the world and are increasing. Despite recent restrictions on penta- and octa-BDE commercial formulations, penta-BDE containing products will remain a reservoir for PBDE release for years to come, and the deca-BDE formulation is still in high-volume use. In this paper, we review all available data on the occurrence and trends of PBDEs in the marine ecosystems (air, water, sediments, invertebrates, fish, seabirds, and marine mammals) of North and South America. We outline here our concerns about the potential future impacts of large existing stores of banned PBDEs in consumer products, and the vast and growing reservoirs of deca-BDE as well as new and naturally occurring brominated compounds on marine ecosystems.

  6. Contrasts in the marine ecosystem of two Macaronesian islands: A comparison between the remote Selvagens Reserve and Madeira Island.

    Science.gov (United States)

    Friedlander, Alan M; Ballesteros, Enric; Clemente, Sabrina; Gonçalves, Emanuel J; Estep, Andrew; Rose, Paul; Sala, Enric

    2017-01-01

    The islands of Madeira and Selvagens are less than 300 km apart but offer a clear contrast between a densely populated and highly developed island (Madeira), and a largely uninhabited and remote archipelago (Selvagens) within Macaronesia in the eastern Atlantic. The Madeira Archipelago has ~260,000 inhabitants and receives over six million visitor days annually. The Selvagens Islands Reserve is one of the oldest nature reserves in Portugal and comprises two islands and several islets, including the surrounding shelf to a depth of 200 m. Only reserve rangers and a small unit of the maritime police inhabit these islands. The benthic community around Selvagens was dominated by erect and turf algae, while the community at Madeira was comprised of crustose coralline and turf algae, sessile invertebrates, and sea urchin barrens. The sea urchin Diadema africanum was 65% more abundant at Madeira than at Selvagens. Total fish biomass was 3.2 times larger at Selvagens than at Madeira, and biomass of top predators was more than 10 times larger at Selvagens. Several commercially important species (e.g., groupers, jacks), which have been overfished throughout the region, were more common and of larger size at Selvagens than at Madeira. Important sea urchin predators (e.g., hogfishes, triggerfishes) were also in higher abundance at Selvagens compared to Madeira. The effects of fishing and other anthropogenic influences are evident around Madeira. This is in stark contrast to Selvagens, which harbors healthy benthic communities with diverse algal assemblages and high fish biomass, including an abundance of large commercially important species. The clear differences between these two island groups highlights the importance of expanding and strengthening the protection around Selvagens, which harbors one of the last intact marine ecosystems in the North Atlantic, and the need to increase management and protection around Madeira.

  7. Contrasts in the marine ecosystem of two Macaronesian islands: A comparison between the remote Selvagens Reserve and Madeira Island.

    Directory of Open Access Journals (Sweden)

    Alan M Friedlander

    Full Text Available The islands of Madeira and Selvagens are less than 300 km apart but offer a clear contrast between a densely populated and highly developed island (Madeira, and a largely uninhabited and remote archipelago (Selvagens within Macaronesia in the eastern Atlantic. The Madeira Archipelago has ~260,000 inhabitants and receives over six million visitor days annually. The Selvagens Islands Reserve is one of the oldest nature reserves in Portugal and comprises two islands and several islets, including the surrounding shelf to a depth of 200 m. Only reserve rangers and a small unit of the maritime police inhabit these islands. The benthic community around Selvagens was dominated by erect and turf algae, while the community at Madeira was comprised of crustose coralline and turf algae, sessile invertebrates, and sea urchin barrens. The sea urchin Diadema africanum was 65% more abundant at Madeira than at Selvagens. Total fish biomass was 3.2 times larger at Selvagens than at Madeira, and biomass of top predators was more than 10 times larger at Selvagens. Several commercially important species (e.g., groupers, jacks, which have been overfished throughout the region, were more common and of larger size at Selvagens than at Madeira. Important sea urchin predators (e.g., hogfishes, triggerfishes were also in higher abundance at Selvagens compared to Madeira. The effects of fishing and other anthropogenic influences are evident around Madeira. This is in stark contrast to Selvagens, which harbors healthy benthic communities with diverse algal assemblages and high fish biomass, including an abundance of large commercially important species. The clear differences between these two island groups highlights the importance of expanding and strengthening the protection around Selvagens, which harbors one of the last intact marine ecosystems in the North Atlantic, and the need to increase management and protection around Madeira.

  8. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  9. Seaweed as bio indicators for monitoring toxic element pollutants in the marine ecosystem. Progress report

    International Nuclear Information System (INIS)

    Serfor-Armah, Y.; Nyarko, B.J.B.; Osae, E.K.; Carboo, D.; Seku, F.

    1997-01-01

    Twelve seaweed species were sampled from June 1996 to August 1997 along the coast of Southern Ghana which is being washed by the Gulf of Guinea (part of Atlantic ocean). Instrumental neutron activation analysis (INAA) was used to measure the concentration of twenty six chemical elements, with the aim of selecting suitable seaweeds for bio-monitoring. Al, As, Ca, Cl, K, Mg, Mn, Na and V were found in most of the seaweed species. The high values of the metal concentrations in the macro algae suggest that these marine organisms can be used as biological indicators for studying coastal pollution. (author)

  10. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    Science.gov (United States)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  11. Reactive Halogens in the Marine Boundary Layer (RHaMBLe: the tropical North Atlantic experiments

    Directory of Open Access Journals (Sweden)

    J. D. Lee

    2010-02-01

    Full Text Available The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period.

    This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental. Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice. Consistency with

  12. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study.

    Science.gov (United States)

    Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël

    2018-02-01

    Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ 13 C and δ 15 N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms

  13. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Aquilonius, Karin

    2010-12-01

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  14. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin [ed.; Studsvik Nuclear AB (Sweden)

    2010-12-15

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  15. Consumers control diversity and functioning of a natural marine ecosystem.

    Directory of Open Access Journals (Sweden)

    Andrew H Altieri

    Full Text Available BACKGROUND: Our understanding of the functional consequences of changes in biodiversity has been hampered by several limitations of previous work, including limited attention to trophic interactions, a focus on species richness rather than evenness, and the use of artificially assembled communities. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we manipulated the density of an herbivorous snail in natural tide pools and allowed seaweed communities to assemble in an ecologically relevant and non-random manner. Seaweed species evenness and biomass-specific primary productivity (mg O(2 h(-1 g(-1 were higher in tide pools with snails because snails preferentially consumed an otherwise dominant seaweed species that can reduce biomass-specific productivity rates of algal assemblages. Although snails reduced overall seaweed biomass in tide pools, they did not affect gross primary productivity at the scale of tide pools (mg O(2 h(-1 pool(-1 or mg O(2 h(-1 m(-2 because of the enhanced biomass-specific productivity associated with grazer-mediated increases in algal evenness. SIGNIFICANCE: Our results suggest that increased attention to trophic interactions, diversity measures other than richness, and particularly the effects of consumers on evenness and primary productivity, will improve our understanding of the relationship between diversity and ecosystem functioning and allow more effective links between experimental results and real-world changes in biodiversity.

  16. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    Science.gov (United States)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  17. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  18. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    OpenAIRE

    Fabri, Marie-claire; Pedel, Laura; Beuck, L.; Galgani, Francois; Hebbeln, D.; Freiwald, A.

    2014-01-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in...

  19. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Kumar, Sumit [Michigan Technological Univ., Houghton, MI (United States); Wright, Kendra [Michigan Technological Univ., Houghton, MI (United States); Kramer, Louisa [Michigan Technological Univ., Houghton, MI (United States); Mazzoleni, Lynn [Michigan Technological Univ., Houghton, MI (United States); Owen, Robert [Michigan Technological Univ., Houghton, MI (United States); Helmig, Detlev [Univ. of Colorado, Boulder, CO (United States)

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron

  20. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems.

    Science.gov (United States)

    Mieszkowska, N; Sugden, H; Firth, L B; Hawkins, S J

    2014-09-28

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Getting it right for the North Atlantic right whale (Eubalaenaglacialis): a last opportunity for effective marine spatial planning?

    Science.gov (United States)

    Petruny, Loren M; Wright, Andrew J; Smith, Courtney E

    2014-08-15

    The North Atlantic right whale (Eubalaena glacialis) faces increasing pressure from commercial shipping traffic and proposed marine renewable energy developments. Drawing upon the successful Stellwagen Bank National Marine Sanctuary model, we propose a multi-stakeholder marine spatial planning process that considers both appropriate positioning of offshore wind farms and redefining commercial shipping lanes relative to whale migration routes: placement of wind turbines within certain right whale habitats may prove beneficial for the species. To that end, it may be advisable to initially relocate the shipping lanes for the benefit of the whales prior to selecting wind energy areas. The optimal end-state is the commercial viability of renewable energy, as well as a safe shipping infrastructure, with minimal risk of collision and exposure to shipping noise for the whales. This opportunity to manage impacts on right whales could serve as a model for other problematic interactions between marine life and commercial activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Efficient Ensemble State-Parameters Estimation Techniques in Ocean Ecosystem Models: Application to the North Atlantic

    Science.gov (United States)

    El Gharamti, M.; Bethke, I.; Tjiputra, J.; Bertino, L.

    2016-02-01

    Given the recent strong international focus on developing new data assimilation systems for biological models, we present in this comparative study the application of newly developed state-parameters estimation tools to an ocean ecosystem model. It is quite known that the available physical models are still too simple compared to the complexity of the ocean biology. Furthermore, various biological parameters remain poorly unknown and hence wrong specifications of such parameters can lead to large model errors. Standard joint state-parameters augmentation technique using the ensemble Kalman filter (Stochastic EnKF) has been extensively tested in many geophysical applications. Some of these assimilation studies reported that jointly updating the state and the parameters might introduce significant inconsistency especially for strongly nonlinear models. This is usually the case for ecosystem models particularly during the period of the spring bloom. A better handling of the estimation problem is often carried out by separating the update of the state and the parameters using the so-called Dual EnKF. The dual filter is computationally more expensive than the Joint EnKF but is expected to perform more accurately. Using a similar separation strategy, we propose a new EnKF estimation algorithm in which we apply a one-step-ahead smoothing to the state. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. Unlike the classical filtering path, the new scheme starts with an update step and later a model propagation step is performed. We test the performance of the new smoothing-based schemes against the standard EnKF in a one-dimensional configuration of the Norwegian Earth System Model (NorESM) in the North Atlantic. We use nutrients profile (up to 2000 m deep) data and surface partial CO2 measurements from Mike weather station (66o N, 2o E) to estimate

  3. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    Science.gov (United States)

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  4. Regional marine climate scenarios in the NE Atlantic sector close to the Spanish shores

    Directory of Open Access Journals (Sweden)

    Damià Gomis

    2016-09-01

    Full Text Available We present an overview of the changes expected during the 21st century in key marine parameters (sea surface temperature, sea surface salinity, sea level and waves in the sector of the NE Atlantic Ocean close to the Spanish shores. Under the A1B scenario, open-sea surface temperatures would increase by 1°C to 1.5°C by 2050 as a consequence of global ocean warming. Near the continental margin, however, the global temperature rise would be counteracted by an enhancement of the seasonal upwelling. Sea surface salinity is likely to decrease in the future, mainly due to the advection of high-latitude fresher waters from ice melting. Mean sea level rise has been quantified as 15-20 cm by 2050, but two contributions not accounted for by our models must be added: the mass redistribution derived from changes in the large-scale circulation (which in the NE Atlantic may be as large as 15 cm in 2050 or 35 cm by 2100 and the increase in the ocean mass content due to the melting of continental ice (for which estimates are still uncertain. The meteorological tide shows very small changes, and therefore extreme sea levels would be higher in the 21st century, but mostly due to the increase in mean sea level, not to an increase in the storminess. The wave projections point towards slightly smaller significant wave heights, but the changes projected are of the same order as the natural variability.

  5. Assessment of 210Po in agricultural soils and marine sediments of the Atlantic and Pacific oceans of Guatemala

    International Nuclear Information System (INIS)

    Garcia Vela, A.G.

    1999-01-01

    A radiochemical method consisting of 210 Polonium extraction was made to measure radioactivity in samples of soil and marine sediments of Atlantic and Pacific Ocean. The solution of polonium it was treated to obtain the deposition of the metal over a zinc disc and was measured by alpha espectrometry system based on Planar Ion Planted Silice (PIPS) system. The concern about cultivated soils its consuption products from sea and soil come from these sources. The results shows that activity of 210 Polonium in agricultural soils and marine sediments are below of ALI recommended by international standards

  6. Rapid assessment of risks to a mobile marine mammal in an ecosystem-scale marine protected area.

    Science.gov (United States)

    Grech, A; Marsh, H

    2008-06-01

    Ecosystem-scale networks of marine protected areas (MPAs) are important conservation tools, but their effectiveness is difficult to quantify in a time frame appropriate to species conservation because of uncertainties in the data available. The dugong (Dugong dugon) is a mobile marine species that occurs in shallow inshore waters of an ecosystem-scale network of MPAs (the Great Barrier Reef World Heritage Area [GBRWHA]). We developed a rapid approach to assess risk to dugongs in the region and evaluate options to ameliorate that risk. We used expert opinion and a Delphi technique to identify and rank 5 human factors with the potential to adversely affect dugongs and their sea grass habitats: netting, indigenous hunting, trawling, vessel traffic, and poor-quality terrestrial runoff. We then quantified and compared the distribution of these factors with a spatially explicit model of dugong distribution. We estimated that approximately 96% of habitat of high conservation value for dugongs in the GBRWHA is at low risk from human activities. Using a sensitivity analysis, we found that to decrease risk, commercial netting or indigenous hunting had to be reduced in remote areas and the effects of vessel traffic, terrestrial runoff, and commercial netting had to be reduced in urban areas. This approach enabled us to compare and rank risks so as to identify the most severe risks and locate specific sites that require further management attention.

  7. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    Science.gov (United States)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  8. Foreword to the thematic cluster: the Arctic in Rapid Transition—marine ecosystems

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-12-01

    Full Text Available The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.

  9. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  10. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T N; Gabrielsen, G W; Falk-Petersen, S

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  11. When 1+1 can be >2: Uncertainties compound when simulating climate, fisheries and marine ecosystems

    Science.gov (United States)

    Evans, Karen; Brown, Jaclyn N.; Sen Gupta, Alex; Nicol, Simon J.; Hoyle, Simon; Matear, Richard; Arrizabalaga, Haritz

    2015-03-01

    Multi-disciplinary approaches that combine oceanographic, biogeochemical, ecosystem, fisheries population and socio-economic models are vital tools for modelling whole ecosystems. Interpreting the outputs from such complex models requires an appreciation of the many different types of modelling frameworks being used and their associated limitations and uncertainties. Both users and developers of particular model components will often have little involvement or understanding of other components within such modelling frameworks. Failure to recognise limitations and uncertainties associated with components and how these uncertainties might propagate throughout modelling frameworks can potentially result in poor advice for resource management. Unfortunately, many of the current integrative frameworks do not propagate the uncertainties of their constituent parts. In this review, we outline the major components of a generic whole of ecosystem modelling framework incorporating the external pressures of climate and fishing. We discuss the limitations and uncertainties associated with each component of such a modelling system, along with key research gaps. Major uncertainties in modelling frameworks are broadly categorised into those associated with (i) deficient knowledge in the interactions of climate and ocean dynamics with marine organisms and ecosystems; (ii) lack of observations to assess and advance modelling efforts and (iii) an inability to predict with confidence natural ecosystem variability and longer term changes as a result of external drivers (e.g. greenhouse gases, fishing effort) and the consequences for marine ecosystems. As a result of these uncertainties and intrinsic differences in the structure and parameterisation of models, users are faced with considerable challenges associated with making appropriate choices on which models to use. We suggest research directions required to address these uncertainties, and caution against overconfident predictions

  12. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    Science.gov (United States)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist

  13. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R., E-mail: cbern@usgs.gov [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Chadwick, Oliver A. [Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Kendall, Carol [U.S. Geological Survey, Menlo Park, CA (United States); Pribil, Michael J. [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ{sup 34}S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ{sup 34}S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ{sup 34}S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  14. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    International Nuclear Information System (INIS)

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ 34 S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ 34 S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ 34 S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over

  15. Seabirds and marine plastic debris in the northeastern Atlantic: A synthesis and recommendations for monitoring and research.

    Science.gov (United States)

    O'Hanlon, Nina J; James, Neil A; Masden, Elizabeth A; Bond, Alexander L

    2017-12-01

    Marine plastic pollution is an increasing, and global, environmental issue. Numerous marine species are affected by plastic debris through entanglement, nest incorporation, and ingestion, which can lead to lethal and sub-lethal impacts. However, in the northeastern Atlantic Ocean, an area of international importance for seabirds, there has been little effort to date to assess information from studies of wildlife and plastic to better understand the spatiotemporal variation of how marine plastic affects different seabird species. To improve our understanding of seabirds and marine plastic in this region, we completed a synthesis of the published and grey literature to obtain information on all known documented cases of plastic ingestion and nest incorporation by this group. We found that of 69 seabird species that commonly occur in the northeastern Atlantic, 25 had evidence of ingesting plastic. However, data on plastic ingestion was available for only 49% of all species, with 74% of investigated species recorded ingesting plastic. We found only three published studies on nest incorporation, for the Northern Gannet (Morus bassanus) and Black-legged Kittiwake (Rissa tridactyla). For many species, sample sizes were small or not reported, and only 39% of studies were from the 21st century, whilst information from multiple countries and years was only available for 11 species. This indicates that we actually know very little about the current prevalence of plastic ingestion and nest incorporation for many species, several of them globally threatened. Furthermore, in the majority of studies, the metrics reported were inadequate to carry out robust comparisons among locations and species or perform meta-analyses. We recommend multi-jurisdictional collaboration to obtain a more comprehensive and current understanding of how marine plastic is affecting seabirds in the northeastern Atlantic Ocean. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. VECTORS of change in the marine environment: Ecosystem and economic impacts and management implications

    Science.gov (United States)

    Austen, M. C.; Crowe, T. P.; Elliott, M.; Paterson, D. M.; Peck, M. A.; Piraino, S.

    2018-02-01

    Human use of the European marine environment is increasing and diversifying. This is creating new mechanisms for human induced-changes in marine life which need to be understood and quantified as well as the impact of these changes on ecosystems, their structures (e.g. biodiversity) and functioning (e.g. productivity), and the social and economic consequences that arise. The current and emerging pressures are multiple and interacting, arising, for example, from transport, platforms for renewable and non-renewable energy, exploitation of living and non-living resources, agricultural and industrial discharges, together with wider environmental changes (including climate change). Anticipating the future consequences of these pressures and vectors of change for marine life and of adaptation and mitigation measures (such as the introduction of new technologies and structures, new ballast water practices, ocean and offshore wind energy devices and new fishing strategies) is a prerequisite to the development and implementation of strategies, policies and regulations to manage the marine environment, such as the IMO Convention on ballast water management and the EU Maritime Policy and Marine Strategy Framework Directive.

  17. Exploring industry specific social welfare maximizing rates of water pollution abatement in linked terrestrial and marine ecosystems

    NARCIS (Netherlands)

    Roebeling, P.C.; Hendrix, E.M.T.; Grieken, van M.E.

    2009-01-01

    Marine ecosystems are severely affected by water pollution originating from coastal catchments, while these ecosystems are of vital importance from an environmental as well as an economic perspective. To warrant sustainable economic development of coastal regions, we need to balance the marginal

  18. Marine Geophysical Characterization of the Chain Fracture Zone in the Equatorial Atlantic

    Science.gov (United States)

    Harmon, N.; Rychert, C.; Agius, M. R.; Tharimena, S.; Kendall, J. M.

    2017-12-01

    The Chain Fracture zone is part of a larger system of fracture zones along the Mid Atlantic Ridge that is thought to be one of the original zones of weakness during the break up of Pangea. It is over 300 km long and produces earthquakes as large as Mw 6.9 on segments of the active fault zone. Here we present the results of two marine geophysical mapping campaigns over the active part of the Chain Fracture zone as part of the PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment. We collected swath bathymetry, backscatter imagery, gravity and total field magnetic anomaly. We mapped the fault scarps within the transform fault system using the 50 m resolution swath and backscatter imagery. In addition, a 30-40 mGal residual Mantle Bouguer Anomaly determined from gravity analysis suggests the crust is by up to 1.4-2.0 km beneath the Chain relative to the adjacent ridge segments. However, in the eastern 75 km of the active transform we find evidence for thicker crust. The active fault system cuts through the region of thicker crust and there is a cluster of MW > 6 earthquakes in this region. There is a cluster of similar sized earthquakes on the western end where thinner crust is inferred. This suggests that variations in melt production and crustal thickness at the mid ocean ridge systems may have only a minor effect on the seismicity and longevity of the transform fault system.

  19. Sessile and mobile components of a benthic ecosystem display mixed trends within a temperate marine reserve.

    Science.gov (United States)

    Howarth, Leigh M; Pickup, Sarah E; Evans, Lowri E; Cross, Tim J; Hawkins, Julie P; Roberts, Callum M; Stewart, Bryce D

    2015-06-01

    Despite recent efforts to increase the global coverage of marine protected areas (MPAs), studies investigating the effectiveness of marine protected areas within temperate waters remain scarce. Furthermore, out of the few studies published on MPAs in temperate waters, the majority focus on specific ecological or fishery components rather than investigating the ecosystem as a whole. This study therefore investigated the dynamics of both benthic communities and fish populations within a recently established, fully protected marine reserve in Lamlash Bay, Isle of Arran, United Kingdom, over a four year period. A combination of photo and diver surveys revealed live maerl (Phymatolithon calcareum), macroalgae, sponges, hydroids, feather stars and eyelash worms (Myxicola infundibulum) to be significantly more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the overall composition of epifaunal communities in and outside the reserve was significantly different. Both results are consistent with the hypothesis that protecting areas from fishing can encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats within the reserve appeared to providing nursery habitat for juvenile cod (Gadus morhua) and scallops (Pecten maximus and Aequipecten opercularis). In contrast, there was little difference in the abundance of mobile benthic fauna, such as crabs and starfish, between the reserve and outside. Similarly, the use of baited underwater video cameras revealed no difference in the abundance and size of fish between the reserve and outside. Limited recovery of these ecosystem components may be due to the relatively small size (2.67 km(2)) and young age of the reserve (<5 years), both of which might have limited the extent of any benefits afforded to mobile fauna and fish communities. Overall, this study provides evidence that fully protected marine reserves can encourage seafloor habitats to recover, which in

  20. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    Directory of Open Access Journals (Sweden)

    D. P. Tittensor

    2018-04-01

    Full Text Available Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0, part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size, and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM Coupled Model Intercomparison Project Phase 5 (CMIP5 outputs under prescribed scenarios for historic (from the 1950s and future (to 2100 time periods; it will be adapted to CMIP phase 6 (CMIP6 in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems

  1. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    Science.gov (United States)

    Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.

    2018-04-01

    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the

  2. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea.

    Science.gov (United States)

    Johannesson, Kerstin; André, Carl

    2006-07-01

    Marginal populations are often isolated and under extreme selection pressures resulting in anomalous genetics. Consequently, ecosystems that are geographically and ecologically marginal might have a large share of genetically atypical populations, in need of particular concern in management of these ecosystems. To test this prediction, we analysed genetic data from 29 species inhabiting the low saline Baltic Sea, a geographically and ecologically marginal ecosystem. On average Baltic populations had lost genetic diversity compared to Atlantic populations: a pattern unrelated to dispersal capacity, generation time of species and taxonomic group of organism, but strongly related to type of genetic marker (mitochondrial DNA loci had lost c. 50% diversity, and nuclear loci 10%). Analyses of genetic isolation by geographic distance revealed clinal patterns of differentiation between Baltic and Atlantic regions. For a majority of species, clines were sigmoid with a sharp slope around the Baltic Sea entrance, indicating impeded gene flows between Baltic and Atlantic populations. Some species showed signs of allele frequencies being perturbed at the edge of their distribution inside the Baltic Sea. Despite the short geological history of the Baltic Sea (8000 years), populations inhabiting the Baltic have evolved substantially different from Atlantic populations, probably as a consequence of isolation and bottlenecks, as well as selection on adaptive traits. In addition, the Baltic Sea also acts a refuge for unique evolutionary lineages. This marginal ecosystem is thus vulnerable but also exceedingly valuable, housing unique genes, genotypes and populations that constitute an important genetic resource for management and conservation.

  3. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity

    Science.gov (United States)

    Rode, Karyn D.; Wilson, Ryan R.; Douglas, David C.; Muhlenbruch, Vanessa L; Atwood, Todd C.; Regehr, Eric V.; Richardson, Evan; Pilfold, Nicholas; Derocher, Andrew E.; Durner, George M.; Stirling, Ian; Amstrup, Steven C.; St Martin, Michelle; Pagano, Anthony M.; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983–1999 and 2000–2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in

  4. Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    DEFF Research Database (Denmark)

    Peck, M.A.; Neuenfeldt, Stefan; Essington, V.M.

    2014-01-01

    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium...... on 12–14 November 2012 that was designed to address three key questions regarding the effective management of FF and their ecosystems: (i) how do environmental factors and predator–prey interactions drive the productivity and distribution of FF stocks across ecosystems worldwide, (ii) what...

  5. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  6. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    Science.gov (United States)

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  7. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  8. The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean

    Science.gov (United States)

    Matthias-Maser, Sabine; Brinkmann, Jutta; Schneider, Wilhelm

    The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel "METEOR" crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class ( r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.

  9. Identification, definition and quantification of goods and services provided by marine biodiversity: implications for the ecosystem approach.

    Science.gov (United States)

    Beaumont, N J; Austen, M C; Atkins, J P; Burdon, D; Degraer, S; Dentinho, T P; Derous, S; Holm, P; Horton, T; van Ierland, E; Marboe, A H; Starkey, D J; Townsend, M; Zarzycki, T

    2007-03-01

    This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to validate the definitions of goods and services, and to identify knowledge gaps and likely difficulties of quantifying the goods and services. A validated theoretical framework for the assessment of goods and services is detailed, and examples of the goods and services at a variety of case study areas are documented. These results will enable future assessments of marine ecosystem goods and services. It is concluded that the utilisation of this goods and services approach has the capacity to play a fundamental role in the Ecosystem Approach, by enabling the pressures and demands of society, the economy and the environment to be integrated into environmental management.

  10. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...... biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future......Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed...

  11. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Directory of Open Access Journals (Sweden)

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  12. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes

    International Nuclear Information System (INIS)

    Benner, R.; Moran, M.A.; Hodson, R.E.

    1986-01-01

    The relative contributions of procaryotes and eucaryotes to the degradation of the lignin and polysaccharide components of lignocellulosic detritus in two marine and two freshwater wetland ecosystems were determined. Two independent methods - physical separation of bacteria from fungi and other eucaryotes by size fractionation, and antibiotic treatments - were used to estimate procaryotic and eucaryotic contributions to the degradation of [ 14 C-lignin]lignocelluloses and [ 13 C-polysaccharide]lignocelluloses in samples of water and decaying plant material from each environment. Both methods yielded similar results; bacteria were the predominant degraders of lignocellulose in each of the aquatic ecosystems. These results indicate a basic difference between the microbial degradation of lignocellulosic material in terrestrial and aquatic environments. Fungi have long been considered the predominant degraders of lignocellulose in terrestrial systems; our results indicate that in aquatic systems bacteria are the predominant degraders of lignocellulose

  13. Patterns and drivers of fish community assembly in a large marine ecosystem

    DEFF Research Database (Denmark)

    Pécuchet, Lauréne; Törnroos, Anna; Lindegren, Martin

    2016-01-01

    . To determine assembly rules, ecological similarities of co-occurring species are often investigated. This can be evaluated using trait-based indices summarizing the species’ niches in a given community. In order to investigate the underlying processes shaping community assembly in marine ecosystems, we...... investigated the patterns and drivers of fish community composition in the Baltic Sea, a semi-enclosed sea characterized by a pronounced environmental gradient. Our results showed a marked decline in species- and functional richness, largely explained by decreasing salinities. In addition, habitat complexity...

  14. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  15. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  16. Ocean-Atmosphere Coupling associated with Typhoons/ Hurricane and their impacts on marine ecosystem (Invited)

    Science.gov (United States)

    Tang, D. L.

    2010-12-01

    DanLing TANG South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou, China Phone (86) 13924282728; Fax/Tel: (86) 020 89023203 (off), 020 89023191 (Lab),Email,lingzistdl@126.com, Typhoon / hurricane activities and their impacts on environments have been strengthening in both intensity and spatial coverage, along with global changes in the past several decades; however, our knowledge about impact of typhoon on the marine ecosystem is very scarce. We have conducted a series studies in the South China Sea (SCS), investigating phytoplankton, sea surface temperature (SST), fishery data and related factors before, during, and after typhoon. Satellite remote sensing and in situ observation data obtained from research cruise were applied. Our study showed that typhoon can support nutrients to surface phytoplankton by inducing upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton; both typhoon winds and rain can enhance production of marine phytoplankton. Slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. We conservatively estimate that typhoon periods may account for 3.5% of the annual primary production in the oligotrophic SCS. It indicated that one typhoon may induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phytoplankton bloom by upwelling. We have suggested a new index to evaluate typhoon impact on marine ecosystem and environment. This is the first time to report moving eddies and eddy-shape phytoplankton blooms associated with tropical cyclone, the relationship among tropical cyclone, cold eddy upwelling and eddy-shape phytoplankton bloom may give some viewpoint on the tropical cyclone's affection on the mesoscale circulation. Those studies may

  17. Activation of the marine ecosystem model 3D CEMBS for the Baltic Sea in operational mode

    Science.gov (United States)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a new marine ecosystem model 3D CEMBS designed for the Baltic Sea. The ecosystem model is incorporated into the 3D POPCICE ocean-ice model. The Current Baltic Sea model is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research) which was adapted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The ecosystem model is a biological submodel of the 3D CEMBS. It consists of eleven mass conservation equations. There are eleven partial second-order differential equations of the diffusion type with the advective term for phytoplankton, zooplankton, nutrients, dissolved oxygen, and dissolved and particulate organic matter. This model is an effective tool for solving the problem of ecosystem bioproductivity. The model is forced by 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdańsk.

  18. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  19. Getting it right for the North Atlantic right whale (Eubalaenaglacialis): A last opportunity for effective marine spatial planning?

    International Nuclear Information System (INIS)

    Petruny, Loren M.; Wright, Andrew J.; Smith, Courtney E.

    2014-01-01

    Highlights: • Placement of shipping routes and offshore wind farms are mutually exclusive. • Shipping likely has greater impacts on right whales than operating wind farms. • Siting by Marine Spatial Planning (MSP) would consider impacts of both on whales. • Placing wind farms in right whale migration corridors would exclude shipping. • Effective MSP would benefit right whales, wind energy development and ship safety. - Abstract: The North Atlantic right whale (Eubalaena glacialis) faces increasing pressure from commercial shipping traffic and proposed marine renewable energy developments. Drawing upon the successful Stellwagen Bank National Marine Sanctuary model, we propose a multi-stakeholder marine spatial planning process that considers both appropriate positioning of offshore wind farms and redefining commercial shipping lanes relative to whale migration routes: placement of wind turbines within certain right whale habitats may prove beneficial for the species. To that end, it may be advisable to initially relocate the shipping lanes for the benefit of the whales prior to selecting wind energy areas. The optimal end-state is the commercial viability of renewable energy, as well as a safe shipping infrastructure, with minimal risk of collision and exposure to shipping noise for the whales. This opportunity to manage impacts on right whales could serve as a model for other problematic interactions between marine life and commercial activities

  20. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    Science.gov (United States)

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  1. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  2. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John; Raitsos, Dionysios E.; Krokos, George; Hoteit, Ibrahim

    2018-01-01

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  3. Discussion of skill improvement in marine ecosystem dynamic models based on parameter optimization and skill assessment

    Science.gov (United States)

    Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen

    2016-07-01

    Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.

  4. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John

    2018-01-29

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  5. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  6. Global change in marine ecosystems: implications for semi-enclosed Arabian seas

    KAUST Repository

    Duarte, Carlos M.

    2015-12-07

    Global Change has been defined as the impact of human activities on the key processes that determine the functioning of the Biosphere. Global Change is a major threat for marine ecosystems and includes climate change as well as other global impacts such as inputs of pollutants, overfishing and coastal sprawl. The Semi-enclosed Arabian Seas, including the Arabian Gulf and the Red Sea, have supported human livelihoods in the Arabian Peninsula over centuries and continue to do so, but are also threatened by Global Change. These threats are particularly severe as Semi-enclosed Arabian Seas already present rather extreme conditions, in terms of temperature, salinity and oxygen concentration. The vulnerability of the unique marine ecosystems of the Semi-enclosed Arabian Seas to Global Change vectors is largely unknown, but predictions based on first principles suggest that they may be at or near the tipping point for many pressures, such as warming and hypoxia. There is an urgent need to implement international collaborative research programs to accelerate our understanding of the vulnerability of Semi-enclosed Arabian Seas to Global Change vectors in order to inform conservation and management plans to ensure these Seas continue to support the livelihoods and well-being of the Arab nations.

  7. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the

  8. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  9. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  10. Optimising the use of marine tephrochronology in the North Atlantic: a detailed investigation of the Faroe Marine Ash Zones II, III and IV

    Science.gov (United States)

    Griggs, Adam J.; Davies, Siwan M.; Abbott, Peter M.; Rasmussen, Tine L.; Palmer, Adrian P.

    2014-12-01

    Tephrochronology is central to the INTIMATE goals for testing the degree of climatic synchroneity during abrupt climatic events that punctuated the last glacial period. Since their identification in North Atlantic marine sequences, the Faroe Marine Ash Zone II (FMAZ II), FMAZ III and FMAZ IV have received considerable attention due to their potential for high-precision synchronisation with the Greenland ice-cores. In order to optimise the use of these horizons as isochronous markers, a detailed re-investigation of their geochemical composition, sedimentology and the processes that deposited each ash zone is presented. Shard concentration profiles, geochemical homogeneity and micro-sedimentological structures are investigated for each ash zone preserved within core JM11-19PC, retrieved from the southeastern Norwegian Sea on the central North Faroe Slope. This approach allows a thorough assessment of primary ash-fall preservation and secondary depositional features and demonstrates its value for assessing depositional integrity in the marine environment. Results indicate that the FMAZ II and IV are well-resolved primary deposits that can be used as isochrons for high-precision correlation studies. We outline key recommendations for future marine tephra studies and provide a protocol for optimising the application of tephrochronology to meet the INTIMATE synchronisation goals.

  11. Biodiversity and key ecosystem services in agroforestry coffee systems in the Brazilian Atlantic Rainforest Biome

    NARCIS (Netherlands)

    Souza, de H.N.

    2012-01-01

    The thesis reports the results of long-term experimentation (since 1993) of family farmers with agroforestry (AF) coffee systems in the Brazilian Atlantic Rainforest region, a highly fragmented and threatened biodiversity hotspot. The farmers used native trees from forest fragments during a

  12. Tropical South-East Atlantic response to ENSO as an ecosystem ...

    African Journals Online (AJOL)

    Cases were selected based on indices of Pacific sea surface temperature and South-East African rainfall. ... an El Niño event, and higher sardine Sardinops sagax catches tend to follow a La Niña event, through the northward and southward shift respectively of the South Atlantic anticyclone and attendant coastal upwelling.

  13. Evaluating Threats in Multinational Marine Ecosystems: A Coast Salish First Nations and Tribal Perspective.

    Directory of Open Access Journals (Sweden)

    Joseph K Gaydos

    Full Text Available Despite the merit of managing natural resources on the scale of ecosystems, evaluating threats and managing risk in ecosystems that span multiple countries or jurisdictions can be challenging. This requires each government involved to consider actions in concert with actions being taken in other countries by co-managing entities. Multiple proposed fossil fuel-related and port development projects in the Salish Sea, a 16,925 km2 inland sea shared by Washington State (USA, British Columbia (Canada, and Indigenous Coast Salish governments, have the potential to increase marine vessel traffic and negatively impact natural resources. There is no legal mandate or management mechanism requiring a comprehensive review of the potential cumulative impacts of these development activities throughout the Salish Sea and across the international border. This project identifies ongoing and proposed energy-related development projects that will increase marine vessel traffic in the Salish Sea and evaluates the threats each project poses to natural resources important to the Coast Salish. While recognizing that Coast Salish traditions identify all species as important and connected, we used expert elicitation to identify 50 species upon which we could evaluate impact. These species were chosen because Coast Salish depend upon them heavily for harvest revenue or as a staple food source, they were particularly culturally or spiritually significant, or they were historically part of Coast Salish lifeways. We identified six development projects, each of which had three potential impacts (pressures associated with increased marine vessel traffic: oil spill, vessel noise and vessel strike. Projects varied in their potential for localized impacts (pressures including shoreline development, harbor oil spill, pipeline spill, coal dust accumulation and nearshore LNG explosion. Based on available published data, impact for each pressure/species interaction was rated as

  14. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  15. Climate change and the marine ecosystem of the western Antarctic Peninsula

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K.A; Smith, Raymond C

    2006-01-01

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading. PMID:17405211

  16. Climate change and the marine ecosystem of the western Antarctic Peninsula.

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K A; Smith, Raymond C

    2007-01-29

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.

  17. TRACEing Last Glacial Period (25-80 ka b2k) tephra horizons within North Atlantic marine cores and exploring links to the Greenland ice-cores

    Science.gov (United States)

    Abbott, P. M.; Davies, S. M.; Griggs, A. J.; Bourne, A. J.; Cook, E.; Pearce, N. J. G.; Austin, W. E. N.; Chapman, M.; Hall, I. R.; Purcell, C. S.; Scourse, J. D.; Rasmussen, T. L.

    2015-12-01

    Tephrochronology is a powerful technique for the correlation and synchronisation of disparate palaeoclimatic records from different depositional environments and has considerable potential for testing climatic phasing. For example, the relative timing of atmospheric and marine changes caused by the abrupt climatic events that punctuated the last glacial period within the North Atlantic region. Here we report on efforts to establish a framework of tephra horizons within North Atlantic marine sequences that can correlate these records and if traced in the Greenland ice-cores can act as isochronous tie-lines. Investigations have been conducted on a network of marine cores from a number of sites across the North Atlantic. Tephra horizons have been identified using cryptotephra extraction techniques more commonly applied to the study of terrestrial sequences. There are two main challenges with assessing cryptotephras in the glacial North Atlantic; i) determining the transportation processes and ii) assessing the influence of secondary reworking processes and the stratigraphic integrity of the isochrons. These processes and their influence are investigated for each cryptotephra using shard size variations, major element heterogeneity and co-variance of IRD input for some cores. Numerous Icelandic cryptophras have been successfully identified in the marine records and we will discuss the integration of a number of these with an isochronous nature into a marine tephra framework and how potential correlations to the Greenland ice-core tephra framework are determined. Spatial patterns in the nature of tephra records that are emerging from the core network will be highlighted to outline some of the key areas that could be explored in the future. In addition, the synchronisation of multiple North Atlantic records to the Greenland ice-cores using the North Atlantic Ash Zone II to test the synchroneity of an abrupt cooling in the North Atlantic will be discussed.

  18. Effects of exotic fish farms on bird communities in lake and marine ecosystems

    Science.gov (United States)

    Jiménez, Jaime E.; Arriagada, Aldo M.; Fontúrbel, Francisco E.; Camus, Patricio A.; Ávila-Thieme, M. Isidora

    2013-08-01

    Salmon farming is a widespread activity around the world, also known to promote diverse environmental effects on aquatic ecosystems. However, information regarding the impact of salmon farming on bird assemblages is notably scarce. We hypothesize that salmon farming, by providing food subsidies and physical structures to birds, will change their local community structure. To test this hypothesis, we conducted a seasonal monitoring of bird richness, abundance, and composition at paired salmon pen and control plots in two marine and two lake sites in southern Chile, from fall 2002 to summer 2004. Overall, salmon farming had no significant effects on species richness, but bird abundance was significantly and noticeably higher in salmon pens than in controls. Such aggregation was mainly accounted for by the trophic guilds of omnivores, diving piscivores, carrion eaters, and perching piscivores, but not by invertebrate feeders, herbivores, and surface feeders. Species composition was also significantly and persistently different between salmon pens and controls within each lake or marine locality. The patterns described above remained consistent across environment types and seasons indicating that salmon farming is changing the community structure of birds in both lake and marine habitats by promoting functional and aggregation responses, particularly by favoring species with broader niches. Such local patterns may thus anticipate potential threats from the ongoing expansion of the salmon industry to neighboring areas in Chile, resulting in regional changes of bird communities, toward a less diverse one and dominated by opportunistic, common, and generalist species such as gulls, vultures, and cormorants.

  19. Characterizing driver-response relationships in marine pelagic ecosystems for improved ocean management.

    Science.gov (United States)

    Hunsicker, Mary E; Kappel, Carrie V; Selkoe, Kimberly A; Halpern, Benjamin S; Scarborough, Courtney; Mease, Lindley; Amrhein, Alisan

    2016-04-01

    Scientists and resource managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressors. However, a growing body of literature demonstrates that many relationships are-non-linear, where small changes in a driver prompt a disproportionately large ecological response. We aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focused our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relation- ships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency (on average 11% more). Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socioeconomic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables but are also associated with local stressors, such as overfishing and pollution, that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information

  20. Description of the East Brazil Large Marine Ecosystem using a trophic model

    Directory of Open Access Journals (Sweden)

    Kátia M.F. Freire

    2008-09-01

    Full Text Available The objective of this study was to describe the marine ecosystem off northeastern Brazil. A trophic model was constructed for the 1970s using Ecopath with Ecosim. The impact of most of the forty-one functional groups was modest, probably due to the highly reticulated diet matrix. However, seagrass and macroalgae exerted a strong positive impact on manatee and herbivorous reef fishes, respectively. A high negative impact of omnivorous reef fishes on spiny lobsters and of sharks on swordfish was observed. Spiny lobsters and swordfish had the largest biomass changes for the simulation period (1978-2000; tunas, other large pelagics and sharks showed intermediate rates of biomass decline; and a slight increase in biomass was observed for toothed cetaceans, large carnivorous reef fishes, and dolphinfish. Recycling was an important feature of this ecosystem with low phytoplankton-originated primary production. The mean transfer efficiency between trophic levels was 11.4%. The gross efficiency of the fisheries was very low (0.00002, probably due to the low exploitation rate of most of the resources in the 1970s. Basic local information was missing for many groups. When information gaps are filled, this model may serve more credibly for the exploration of fishing policies for this area within an ecosystem approach.

  1. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    Science.gov (United States)

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  2. The status of marine biodiversity in the Eastern Central Atlantic (West and Central Africa)

    DEFF Research Database (Denmark)

    Polidoro, Beth A.; Ralph, Gina M.; Strongin, Kyle

    2017-01-01

    . This study provides the first comprehensive documentation of the presence, status, and level of extinction risk, based on IUCN Red List assessment methodology, for more than 1800 marine species, including all taxonomically described marine vertebrates (marine mammals, sea turtles, seabirds, fishes); complete...... clades of selected marine invertebrates (sea cucumbers, cone snails, cephalopods, lobsters, reef-building corals); and marine plants (mangroves, seagrasses). Approximately 8% of all marine species assessed in the ECA are in threatened categories, while 4% are listed as Near Threatened, 73% are Least...

  3. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  4. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  5. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review.

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.

  6. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  7. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    OpenAIRE

    Erik Olsen; Isaac C. Kaplan; Cameron Ainsworth; Gavin Fay; Sarah Gaichas; Robert Gamble; Raphael Girardin; Cecilie H. Eide; Thomas F. Ihde; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Kelli F. Johnson; Marie Savina-Rolland; Howard Townsend

    2018-01-01

    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the glo...

  8. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.

    Science.gov (United States)

    Gobler, Christopher J; Baumann, Hannes

    2016-05-01

    There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. © 2016

  9. Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics

    Science.gov (United States)

    Chen, Z.

    2013-12-01

    Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw

  10. Soil-to-plant transfer of 137Cs and 40K in an Atlantic blanket bog ecosystem

    International Nuclear Information System (INIS)

    Moran-Hunter, C.; O'Dea, J.

    2008-01-01

    The transfer of 137 Cs and 40 K from soil to vegetation was studied in an Atlantic blanket bog ecosystem along the Atlantic coast of Ireland where the dominant vegetation is a mixture of Calluna vulgaris, Eriophorum vaginatum and Sphagnum mosses. The impact of soil chemistry and nutritional status of vegetation on the uptake of both radionuclides was also examined. Cesium-137 transfer factors values ranged from 1.9 to 9.6 and accumulation of 137 Cs was higher in the leaves of C. vulgaris than in the stems. Transfer factors values for 137 Cs in both C. vulgaris and E. vaginatum were similar indicating that for the vegetation studied, uptake is not dependent on plant species. The uptake of 137 Cs in bog vegetation was found to be positively correlated with the nutrient status of vegetation, in particular the secondary nutrients, calcium and magnesium. Potassium-40 transfer factors ranged from 0.9 to 13.8 and uptake was higher in E. vaginatum than in C. vulgaris, however, unlike 137 Cs, the concentrations of 40 K within the leaves and stems of C. vulgaris were similar. The concentration of both 137 Cs and 40 K found in moss samples were in general lower than those found in vascular plants. (author)

  11. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  12. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  13. Connectivity, persistence, and loss of high abundance areas of a recovering marine fish population in the Northwest Atlantic Ocean.

    Science.gov (United States)

    Boudreau, Stephanie A; Shackell, Nancy L; Carson, Stuart; den Heyer, Cornelia E

    2017-11-01

    In the early 1990s, the Northwest Atlantic Ocean underwent a fisheries-driven ecosystem shift. Today, the iconic cod ( Gadus morhua ) remains at low levels, while Atlantic halibut ( Hippoglossus hippoglossus ) has been increasing since the mid-2000s, concomitant with increasing interest from the fishing industry. Currently, our knowledge about halibut ecology is limited, and the lack of recovery in other collapsed groundfish populations has highlighted the danger of overfishing local concentrations. Here, we apply a Bayesian hierarchical spatiotemporal approach to model the spatial structure of juvenile Atlantic halibut over 36 years and three fisheries management regimes using three model parameters to characterize the resulting spatiotemporal abundance structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). Two areas of high juvenile abundance persisted through three decades whereas two in the northeast are now diminished, despite the increased abundance and landings throughout the management units. The persistent areas overlap with full and seasonal area closures, which may act as refuges from fishing. Connectivity was estimated to be 250 km, an order of magnitude less than the distance assumed by the definition of the Canadian management units (~2,000 km). The underlying question of whether there are distinct populations within the southern stock unit cannot be answered with this model, but the smaller ~250 km scale of coherent temporal patterns suggests more complex population structure than previously thought, which should be taken into consideration by fishery management.

  14. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    Science.gov (United States)

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  15. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience.

    Science.gov (United States)

    Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A; Chartrand, Kathryn; York, Paul H; Rasheed, Michael A; Caley, M Julian

    2017-11-02

    Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.

  16. Sampling frequency of ciliated protozoan microfauna for seasonal distribution research in marine ecosystems.

    Science.gov (United States)

    Xu, Henglong; Yong, Jiang; Xu, Guangjian

    2015-12-30

    Sampling frequency is important to obtain sufficient information for temporal research of microfauna. To determine an optimal strategy for exploring the seasonal variation in ciliated protozoa, a dataset from the Yellow Sea, northern China was studied. Samples were collected with 24 (biweekly), 12 (monthly), 8 (bimonthly per season) and 4 (seasonally) sampling events. Compared to the 24 samplings (100%), the 12-, 8- and 4-samplings recovered 94%, 94%, and 78% of the total species, respectively. To reveal the seasonal distribution, the 8-sampling regime may result in >75% information of the seasonal variance, while the traditional 4-sampling may only explain sampling frequency, the biotic data showed stronger correlations with seasonal variables (e.g., temperature, salinity) in combination with nutrients. It is suggested that the 8-sampling events per year may be an optimal sampling strategy for ciliated protozoan seasonal research in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic

    Science.gov (United States)

    Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut

    2018-02-01

    Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link

  18. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    Directory of Open Access Journals (Sweden)

    Pamela L Reynolds

    Full Text Available Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs, while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms generally emerged in communities with greater predator to prey richness (the more top-rich food webs. These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  19. Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies. Vol. I. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Humanity is facing many water related challenges, including access to safe water, pollution of continental and coastal waters and ocean acidification, as well as the growing impact of climate change on the hydrological cycle. Many countries are confronted by increasingly stressed water resources due to rapidly growing populations, increasing agricultural and energy production demands, industrial development, and pollution. The greatest issues of the 21st century, including competition for resources and possible related conflicts, may well focus on the role of water in food and energy security. For more than 50 years, the IAEA has played a key role in advancing and promoting the development and use of isotope techniques to address global environmental issues, such as water resources assessment and management, the study of marine ecosystems, and more recently the impact of climate change. This symposium was jointly organized by theWater Resources Programme and IAEA Environment Laboratories to commemorate the 50th anniversary of the establishment of the IAEA laboratory in the P rincipality of Monaco, and represented the 13th edition of the quadrennial symposium on isotope hydrology and water resources management, which has been regularly organized by the IAEA since 1963. The main objectives of the symposium were to review the state of the art in isotope hydrology, the use of isotopes in the study of climatic systems and in marine ecosystems and to outline recent developments in the application of isotope techniques, as well as to identify future trends and developments for research and applications. The contributions submitted by the authors are included in two volumes of proceedings with editorial corrections. These proceedings are intended to serve as an aid for those using isotopes for applied problems in hydrology as well as for the research community.

  20. Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies, Vol. 2. Proceedings of the International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Humanity is facing many water related challenges, including access to safe water, pollution of continental and coastal waters and ocean acidification, as well as the growing impact of climate change on the hydrological cycle. Many countries are confronted by increasingly stressed water resources due to rapidly growing populations, increasing agricultural and energy production demands, industrial development, and pollution. The greatest issues of the 21st century, including competition for resources and possible related conflicts, may well focus on the role of water in food and energy security. For more than 50 years, the IAEA has played a key role in advancing and promoting the development and use of isotope techniques to address global environmental issues, such as water resources assessment and management, the study of marine ecosystems, and more recently the impact of climate change. This symposium was jointly organized by the Water Resources Programme and IAEA Environment Laboratories to commemorate the 50th anniversary of the establishment of the IAEA laboratory in the Principality of Monaco, and represented the 13th edition of the quadrennial symposium on isotope hydrology and water resources management, which has been regularly organized by the IAEA since 1963. The main objectives of the symposium were to review the state of the art in isotope hydrology, the use of isotopes in the study of climatic systems and in marine ecosystems and to outline recent developments in the application of isotope techniques, as well as to identify future trends and developments for research and applications. The contributions submitted by the authors are included in two volumes of proceedings with editorial corrections. These proceedings are intended to serve as an aid for those using isotopes for applied problems in hydrology as well as for the research community.

  1. Assessing the state of pelagic fish communities within an ecosystem approach and the European Marine Strategy Framework Directive

    DEFF Research Database (Denmark)

    Shephard, Samuel; Rindorf, Anna; Dickey-Collas, Mark

    2014-01-01

    Pelagic fish are key elements in marine foodwebs and thus comprise an important part of overall ecosystem health. We develop a suite of ecological indicators that track pelagic fish community state and evaluate state of specific objectives against Good Environmental Status (GES) criteria. Indicator...

  2. Biogeochemical studies of technetium in marine and estuarine ecosystems. Progress report, 1 July 1980-31 July 1981

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1981-01-01

    This report summarizes progress from July 1980 through July 1981 on studies dealing with the biogeochemical behavior of technetium in marine and estuarine ecosystems. While the duration of the research has been slightly over two years, the results of our experiments have substantially extended our understanding of the environmental behavior of Tc

  3. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  4. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Mittelholzer Christian

    2009-12-01

    Full Text Available Abstract Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs for evidence of selection in local populations of Atlantic cod (Gadus morhua L. across the species distribution. Results Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. Conclusion These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of

  5. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    Science.gov (United States)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  6. Food-web and ecosystem structure of the open-ocean and deep-sea environments of the Azores, NE Atlantic

    Directory of Open Access Journals (Sweden)

    Telmo Morato

    2016-12-01

    Full Text Available The Marine Strategy Framework Directive intends to adopt ecosystem-based management for resources, biodiversity and habitats that puts emphasis on maintaining the health of the ecosystem alongside appropriate human use of the marine environment, for the benefit of current and future generations. Within the overall framework of ecosystem-based management, ecosystem models are tools to evaluate and gain insights in ecosystem properties. The low data availability and complexity of modelling deep-water ecosystems has limited the application of ecosystem models to few deep-water ecosystems. Here, we aim to develop an ecosystem model for the deep-sea and open ocean in the Azores exclusive economic zone with the overarching objective of characterising the food-web and ecosystem structure of the ecosystem. An ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built. Overall data quality measured by the pedigree index was estimated to be higher than the mean value of all published models. Therefore, the model was built with source data of an overall reasonable quality, especially considering the normally low data availability for deep-sea ecosystems. The total biomass (excluding detritus of the modelled ecosystem for the whole area was calculated as 24.7 t km-². The mean trophic level for the total marine catch of the Azores was estimated to be 3.95, similar to the trophic level of the bathypelagic and medium-size pelagic fish. Trophic levels for the different functional groups were estimated to be similar to those obtained with stable isotopes and stomach contents analyses, with some exceptions on both ends of the trophic spectra. Omnivory indices were in general low, indicating prey speciation for the majority of the groups. Cephalopods, pelagic sharks and toothed whales were identified as groups with

  7. Modeling the role and impact of alien species and fisheries on the Israeli marine continental shelf ecosystem

    Science.gov (United States)

    Corrales, X.; Ofir, E.; Coll, M.; Goren, M.; Edelist, D.; Heymans, J. J.; Gal, G.

    2017-06-01

    The ecosystems of the Israeli Mediterranean coast have undergone significant changes in recent decades mainly due to species invasions and fishing. In order to characterize the structure and functioning of the marine continental shelf of the Israeli Mediterranean coast and assess temporal changes, we developed a food web model representing two time periods: 1990-1994 and 2008-2012. The 1990-1994 and 2008-2012 food web models were composed of 39 and 41 functional groups, respectively. Functional groups ranged from primary producers to top predators, and included six and eight alien functional groups, respectively, encompassing several crustacean and fish species. Input data included local surveys and fishery statistics, published data on stomach content analyses, and the application of empirical equations to estimate consumption and production rates. Results of the competitive interactions between alien and native species and changes in trophic flows between food web components highlight the increasing impact of alien species over time. Fishing had noticeable impacts in both time periods and played an important role in the ecosystem. Despite different productivity rates and other environmental differences, the Israeli marine ecosystem shared common structural and functional traits with other Mediterranean marine ecosystems. This is the first attempt to study the ecosystem of the Levant region using mass-balance models and to integrate such a large amount of alien species into food web analyses.

  8. International Symposium on Isotopes in Hydrology, Marine Ecosystems, and Climate Change Studies. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    Human activities have had a far-reaching impact on the aquatic environments - both marine and freshwater systems. The protection of these systems against further deterioration and the promotion of sustainable use are vital. In order to deepen understanding about the main processes affecting the present situation, as well as possible developments in the future, further investigation is required. The oceans play a major role in climate change, for example, and ocean acidification by increased CO2 release is one major threat to the world's oceans. Isotope methods can play a critical role in identifying and quantifying key processes within aquatic environments. Addressing the problems of global water resources has become a matter of urgency. Water resources are subject to multiple pressures for various reasons, including increasing populations, climate change, rising food and energy costs, the global economic crisis and pollutant loading. Isotope hydrology provides the unique and critical tools required to address complex water problems and helps managers and policy makers understand the closely intertwined relationship between water resources and the various pressures affecting them, as well as the issue of sustainability. The symposium will be an important forum for the exchange of knowledge on the present state of marine and freshwater environments, use of isotopes in water resources investigations and management, and climate change studies. The meeting will involve leading scientists in the field of climate change and hydrology, as well as representatives from other United Nations bodies and international organizations that focus on climate change and other important environmental issues. TOPICS: The role of isotopes in understanding and modelling climate change, marine ecosystems and the water cycle; Carbon dioxide sequestration and related aspects of the carbon cycle, such as ocean acidification; Isotopes in groundwater flow modelling for large aquifers

  9. 52 Million Points and Counting: A New Stratification Approach for Mapping Global Marine Ecosystems

    Science.gov (United States)

    Wright, D. J.; Sayre, R.; Breyer, S.; Butler, K. A.; VanGraafeiland, K.; Goodin, K.; Kavanaugh, M.; Costello, M. J.; Cressie, N.; Basher, Z.; Harris, P. T.; Guinotte, J. M.

    2016-12-01

    We report progress on the Ecological Marine Units (EMU) project, a new undertaking commissioned by the Group on Earth Observations (GEO) as a means of developing a standardized and practical global ecosystems classification and map for the oceans, and thus a key outcome of the GEO Biodiversity Observation Network (GEO BON). The project is one of four components of the new GI-14 GEO Ecosystems Initiative within the GEO 2016 Transitional Work plan, and for eventual use by the Global Earth Observation System of Systems (GEOSS). The project is also the follow-on to a comprehensive Ecological Land Units project (ELU), also commissioned by GEO. The EMU is comprised of a global point mesh framework, created from 52,487,233 points from the NOAA World Ocean Atlas; spatial resolution is ¼° by ¼° by varying depth; temporal resolution is currently decadal; each point has x, y, z, as well as six attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many ecosystem responses. We implemented a k-means statistical clustering of the point mesh (using the pseudo-F statistic to help determine the numbers of clusters), allowing us to identify and map 37 environmentally distinct 3D regions (candidate `ecosystems') within the water column. These units can be attributed according to their productivity, direction and velocity of currents, species abundance, global seafloor geomorphology (from Harris et al.), and much more. A series of data products for open access will share the 3D point mesh and EMU clusters at the surface, bottom, and within the water column, as well as 2D and 3D web apps for exploration of the EMUs and the original World Ocean Atlas data. Future plans include a global delineation of Ecological Coastal Units (ECU) at a much finer spatial resolution (not yet commenced), as well as global ecological freshwater ecosystems (EFUs; in earliest planning stages). We will

  10. Bioremediation in marine ecosystems: a computational study combining ecological modelling and flux balance analysis

    Directory of Open Access Journals (Sweden)

    Marianna eTaffi

    2014-09-01

    Full Text Available The pressure to search effective bioremediation methodologies for contaminated ecosystems has led to the large-scale identification of microbial species and metabolic degradation pathways. However, minor attention has been paid to the study of bioremediation in marine food webs and to the definition of integrated strategies for reducing bioaccumulation in species. We propose a novel computational framework for analysing the multiscale effects of bioremediation at the ecosystem level, based on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The combination of techniques from synthetic biology and ecological network analysis allows the specification of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or synthetic microbial strains.In this study, we derive a bioaccumulation model of polychlorinated biphenyls (PCBs in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida KT2440 (iJN746 with the aerobic pathway of PCBs degradation. We assess the effectiveness of different bioremediation scenarios in reducing PCBs concentration in species and we study indices of species centrality to measure their importance in the contaminant diffusion via feeding links.The analysis of the Adriatic sea case study suggests that our framework could represent a practical tool in the design of effective remediation strategies, providing at the same time insights into the ecological role of microbial communities within food webs.

  11. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China.

    Science.gov (United States)

    Song, Debin; Gao, Zhiqiang; Zhang, Hua; Xu, Fuxiang; Zheng, Xiangyu; Ai, Jinquan; Hu, Xiaoke; Huang, Guopei; Zhang, Haibo

    2017-12-15

    According to 2014-2016 monitoring data, an assessment index system including water quality, depositional environment and ecosystem was built to evaluate the health statue of marine ecosystem in the Laizhou Bay using analytic hierarchy process (AHP) method. The results, spatialized in ArcGIS software, show: while the comprehensive ecological health index is 0.62, the ecological environmental quality in the Laizhou Bay is in a sub-healthy state; the unhealthy area is mainly concentrated in southwestern inshore region, and impacted by serious environmental problems, such as water eutrophication and heavy metal pollution; the northwestern and southeastern inshore regions are in a sub-healthy state, while the eastern inshore and northern areas are in the healthiest state. The land-based pollutants that discharge into the sea may be the leading factors that are causing ecological environment deterioration in the Laizhou Bay, and the reclamation work ongoing around the port has exacerbated the ecological risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.

    Science.gov (United States)

    Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S

    2012-03-01

    Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A marine eutrophication impacts assessment method in LCIA coupling coastal ecosystems exposure to nitrogen and species sensitivity to hypoxia

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) aims at quantifying potential impacts of anthropogenic emissions. It delivers substance-specific Characterisation Factors (CF) expressing ecosystem responses to marginal increments in emitted quantities. Nitrogen (N) emissions from e.......g. agriculture and industry enrich coastal marine ecosystems. Excessive algal growth and dissolved oxygen (DO) depletion typify the resulting marine eutrophication. LCIA modelling frameworks typically encompass fate, exposure and effect in the environment. The present novel method couples relevant marine...... biological processes of ecosystem’s N exposure (Exposure Factor, XF) with the sensitivity of select species to hypoxia (Effect Factor, EF). The XF converts N-inputs into a sinking carbon flux from planktonic primary production and DO consumed by bacterial respiration in bottom waters, whereas EF builds...

  14. Ballast water management that adapts to climate changes and reduces harmful bio-invasions in marine eco-systems

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2015-01-01

    food-webs and eco-systems. Economic impacts include reductions in fisheries production and algae blooms harmful for fish farms, tourism and human health. Due to the rising temperatures of the Oceans, organisms that prefer a warm climate may take roots in marine ecosystems that were previously too cold...... in marine ecosystem of changed factors in the shipping sector, for instance change of number, size, and design of vessels as well as treatment technologies of ballast water. New areas for shipping due to climate changes are also included. Our study would contribute to improve decision support tools, usable...... for them. In addition, future changes of temperature, storm patterns and sea-currents may also change shipping routes and ballast water management practices. Based on methods like stock taking, trend tracking and scenario modeling the paper aims to evaluate possible ecological and economic impacts...

  15. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  16. Appendix D of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data. Workshop to Establish Coordination and Communication

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the fourth appendix to the report, the presentations from the workshop.

  17. Fish Species in a Changing World: The Route and Timing of Species Migration between Tropical and Temperate Ecosystems in Eastern Atlantic.

    Directory of Open Access Journals (Sweden)

    Awaluddin Halirin Kaimuddin

    2016-09-01

    Full Text Available The presence of tropical species has been reported in Atlantic-European waters with increasing frequency in recent years. Unfortunately, the history of their migrations is not well understood. In this study, we examined the routes and timing of fish migrations in several ecosystems of the East Atlantic Ocean, combining several publicly available and unpublicized datasets on species occurrences. The species studied were those noted as exotic or rare outside their previous known area of distribution. We used sea surface temperature (SST data obtained from 30 years of satellite observation to define three distinct time periods. Within these periods, temperature trends were studied in six ecosystems: the North Sea, the Celtic Sea, the South European Atlantic Waters, the Mediterranean Sea, the Canary Current and the Guinea Current. We also incorporated bathymetry data to describe the distribution of species. Measurement across a relatively large spatial extent was made possible by incorporating the capabilities of GIS.While SST increased consistently over time in all of the ecosystems observed, the change in number of species differed among ecosystems. The number of species in the middle regions, such as the South European Atlantic Shelf and the Western Mediterranean Sea, tended to increase over time. These regions received numbers of species from the lower or the upper latitudes according to season. Of all of the species observed in the recent period, 7 species from the Canary Current tended to be found in the Western Mediterranean Sea, and 6 species from these two regions extended their distributions to the South European Atlantic Shelf. Twelve species from the Canary Current moved seasonally to the Guinea Current. In the northern regions, 13 species moved seasonally in the North Sea and the Celtic Seas, and 12 of these species reached the South European Atlantic Shelf.This study presents a picture of routes and timing of species migration at the

  18. The North Atlantic marine reservoir effect in the Early Holocene: Implications for defining and understanding MRE values

    Energy Technology Data Exchange (ETDEWEB)

    Ascough, P.L. [School of Geography and Geosciences, Irvine Building, University of St. Andrews, St. Andrews, Fife KY16 9AL (United Kingdom)]. E-mail: pla1@st-andrews.ac.uk; Cook, G.T. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride G75 OQF (United Kingdom); Dugmore, A.J. [Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh EH8 9XP (United Kingdom); Scott, E.M. [Department of Statistics, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2007-06-15

    The marine reservoir effect (MRE) is a {sup 14}C age offset between the oceanic and atmospheric carbon reservoirs. The MRE is neither spatially nor temporally constant and values may deviate significantly from the global model average provided by the Marine04 curve. Such a deviation is calculated as a {delta}R value and modern (pre-bomb) values show considerable spatial variations. There is also considerable evidence for temporal variability linked to paleoenvironmental changes identified in paleoclimatic proxy records. Seven new {delta}R values are presented for the North Atlantic, relating to the period c. 8430-3890 cal. BP (c. 6480-1940 BC). These were obtained from {sup 14}C analysis of multiple samples of terrestrial and marine material derived from seven individual archaeological deposits from Mainland Scotland, the Outer Hebrides and the Orkney Isles. The {delta}R values vary between 143 {+-} 20 {sup 14}C yr and -100 {+-} 15 {sup 14}C yr with the positive values all occurring in the earlier period (8430-5060 cal. BP), and the negative values all coming from later deposits (4820-3890 cal. BP). The nature of MRE values and the potential for spatial and temporal variation in values is the subject of current research interest and these data are placed in the context of (i) other estimates for UK coastal waters and (ii) important questions concerning current approaches to quantifying the MRE.

  19. Toxoplasma gondii in stranded marine mammals from the North Sea and Eastern Atlantic Ocean

    NARCIS (Netherlands)

    Velde, van de Norbert; Devleesschauwer, Brecht; Leopold, Mardik; Begeman, Lineke; IJsseldijk, Lonneke; Hiemstra, Sjoukje; IJzer, Jooske; Brownlow, Andrew; Davison, Nicholas; Haelters, Jan

    2016-01-01

    The occurrence of the zoonotic protozoan parasite Toxoplasma gondii in marine mammals remains a poorly understood phenomenon. In this study, samples from 589 marine mammal species and 34 European otters (Lutra lutra), stranded on the coasts of Scotland, Belgium, France, The Netherlands and

  20. Fishing impact and environmental status in European seas: A diagnosis from stock assessments and ecosystem indicators

    DEFF Research Database (Denmark)

    Gascuel, Didier; Coll, Marta; Fox, Clive

    2016-01-01

    Stock-based and ecosystem-based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North-east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses...

  1. Concentration of thorium and uranium in the ecosystem of Atlantic Forest (Mata Atlantica) of Pernambuco state

    International Nuclear Information System (INIS)

    Ferreira, Fabiano S.; Silva, Waldecy A.; Lira, Marcelo B.G.; Souza, Ebenezer M. de; França, Elvis de

    2017-01-01

    Thorium (Th) and Uranium (U) are distributed throughout the earth's crust. The mean thorium concentration ranges from 6 to 15 ppm, which makes it 3 times more abundant than uranium. These radionuclides in their natural form, and in low amounts, do not present a risk to the population because they have low activity, but the effects caused by the accumulation in living beings have not yet been fully elucidated. This work aims to evaluate the concentration of Th and U in the soils of an excerpt in the Atlantic Forest in the State of Pernambuco. Soil sampling (depth 0-20 cm) occurred in the projection of tree crowns of the predominant species in the studied areas. After drying and comminution, samples of 0.1 g of soil were submitted to chemical treatment to enable the analysis. This treatment consisted in the addition of 9 ml of HNO 3 (nitric acid) and 3 ml of HF (hydrofluoric acid) with subsequent heating of the sample and reference materials in a digester oven. The concentrations of Th and U were quantified by Inductively Coupled Plasma Mass Spectrometry - ICP-MS. The mean concentrations found were: 10.5 mg kg -1 for thorium and 2.18 mg.kg -1 for uranium, with values of 35 mg.kg -1 and 26 mg.kg -1 quantified in a thorium sample and uranium respectively. In this region, uranium and thorium hotspot were found, which reinforces the need for greater attention to these radionuclides in the Atlantic Forest of the State of Pernambuco

  2. Litterfall mercury deposition in Atlantic forest ecosystem from SE – Brazil

    International Nuclear Information System (INIS)

    Teixeira, Daniel C.; Montezuma, Rita C.; Oliveira, Rogério R.; Silva-Filho, Emmanoel V.

    2012-01-01

    Litterfall is believed to be the major flux of Hg to soils in forested landscapes, yet much less is known about this input on tropical environment. The Hg litterfall flux was measured during one year in Atlantic Forest fragment, located within Rio de Janeiro urban perimeter, in the Southeastern region of Brazil. The results indicated a mean annual Hg concentration of 238 ± 52 ng g −1 and a total annual Hg deposition of 184 ± 8.2 μg m −2 y −1 . The negative correlation observed between rain precipitation and Hg concentrations is probably related to the higher photosynthetic activity observed during summer. The total Hg concentration in leaves from the most abundant species varied from 60 to 215 ng g −1 . Hg concentration showed a positive correlation with stomatal and trichomes densities. These characteristics support the hypothesis that Tropical Forest is an efficient mercury sink and litter plays a key role in Hg dynamics. - Highlights: ► The litter production from an Atlantic Forest was measured by one year. ► Concentration and flux of mercury was measured from these litter samples. ► The Hg concentrations from 5 trees were taken. ► Correlations between the data found and meteorological and anatomical plant parameters were confronted. ► The high Hg values found and their distribution points to a great sequester potential from this biome. - Hg high values in litter are a pattern found at Tropical Forest, it seems to be correlated with physio-anatomical plant characteristics from this biome.

  3. Invasive Lionfish Drive Atlantic Coral Reef Fish Declines

    OpenAIRE

    Green, Stephanie; Akins, John; Maljković, Aleksandra; Cote, Isabelle

    2012-01-01

    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Isl...

  4. Assessment of 238Pu and 239+240Pu, in marine sediments of the oceans Atlantic and Pacific of Guatemala

    International Nuclear Information System (INIS)

    Mendez Ochaita, L.

    2000-01-01

    In this investigation samples of marine sediments were taken from 14 places representatives of the oceans coast of Guatemala. For the assesment of 238 Pu and 239+240 Pu in sediments a radiochemical method was used to mineralize sediments and by ionic interchange it was separated from other elements, after that an electrodeposition of plutonium was made in metallic discs. The radioactivity of plutonium was measured by alpha spectrometry system and the alpha spectrums were obtained. The levels of plutonium are not higher than other countries that shown contamination. The contamination of isotope of 239+240 Pu is higher than 238 Pu and the contamination by two isotopes of plutonium is higher in the Atlantic than the Pacific ocean

  5. Concepts and approaches for marine ecosystem research with reference to the tropics

    Directory of Open Access Journals (Sweden)

    Matthias Wolff

    2002-06-01

    Full Text Available The present article gives an overview on the leading concepts and modelling approaches for marine ecosystems’ research including (1 The trophodynamic theory of pelagic ecosystems, (2 Compartment/network models, (3 Mesocosm experiments and (4 Individual based modelling approaches and virtual ecosystems (VE. The main research questions addressed, as well as the potential and limits of each approach, are summarized and discussed and it is shown how the concept of ecosystem has changed over time. Aquatic biomas spectra (derived from the theory of pelagic ecosystems can give insight into the trophic structure of different systems, and can show how organism sizes are distributed within the system and how different size groups participate in the system’s metabolism and production. Compartment/network models allow for a more detailed description of the trophic structure of ecosystems and of the energy/biomass fluxes through the explicit modelling of P/B-and food consumption rates and biomasses for each system compartment. Moreover, system indices for a characterization and comparison with other systems can be obtained such as average trophic efficiency, energy throughput, and degree of connectivity, degree of maturity, and others. Recent dynamic extensions of trophic network models allow for exploring past and future impacts of fishing and environmental disturbances as well as to explore policies such as marine protected areas. Mesocosm experiments address a multitude of questions related to aquatic processes (i.e. primary production, grazing, predation, energy transfer between trophic levels etc. and the behaviour of organisms (i.e. growth, migration, response to contaminants etc. under semi-natural conditions. As processes within mesocosms often differ in rate and magnitude from those occurring in nature, mesocosms should be viewed as large in vitro experiments designed to test selected components of the ecosystem and not as an attempt to enclose

  6. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    Science.gov (United States)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  7. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer

    Science.gov (United States)

    Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy

    2018-04-01

    This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.

  8. Behavioural changes of Atlantic cod (Gadus morhua) after marine boulder reef restoration: Implications for coastal habitat management and Natura 2000 areas

    DEFF Research Database (Denmark)

    Støttrup, Josianne Gatt; Svendsen, Jon Christian; Stenberg, Claus

    2017-01-01

    While marine reefs are degraded globally, the responses of fish to marine reef restoration remain uncertain, particularly in temperate waters. This study measured the effect of marine boulder reef restoration on the behaviour of Atlantic cod, Gadus morhua L., in a Natura 2000 area using acoustic...... telemetry. Cod were tagged and released in the study area before and after the restoration and tracked continuously for six months. A larger fraction of the released fish remained in the study area after restoration (94%) than before (53%). Moreover, throughout the study period, cod spent significantly more...... hours per day and prolonged their residence time in the study area after the restoration. The study indicates that marine reefs subjected to boulder extraction can be restored and function as favourable cod habitats. Temperate marine boulder reef restoration represents a valuable management tool...

  9. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  10. Predation and Ecology in Deep-Time: How Modern Marine Ecosystems Develop and Deteriorate

    Science.gov (United States)

    Tackett, L.

    2017-12-01

    Anti-predator adaptations in shelly prey and specialized feeding-capture structures in predators can be observed nearly everywhere in modern oceans. The conditions in which these adaptive "arms-races" between predators and prey developed in the oceans can yield important insights to predict how these relationships are affected by environmental change. However, in the fossil record it can be difficult to determine if an adaptation in a shelly animal is related to predation, or some other factor, such as competition for nutrients or space. To address (1) the problem of interpreting the function of shelly invertebrate adaptations, and (2) to identify environmental factors in the development of modern predator-prey interactions, I carefully study the relative abundances of shelly prey animals and microfossil remains of their predators in marine sediments. In the Late Triassic (220-204 million years ago), a dramatic paleoecological shift occurred among shelly marine animals—immobile surface-dwelling animals that had been abundant in the oceans for 300 million years became rare, and were replaced by burrowing clams, swimming scallops, cementing oysters, and many other new taxa with surprising adaptations. This proliferation of adaptive strategies seems to be synchronous with the appearance of many predator taxa specialized for shell-crushing that mainly moved along the seafloor. To test this hypothesis, I examine microfossils of these predators in the sediments containing macrofossils of their shelly prey, to find teeth or claw features that can exhibit specializations for shell-crushing or other predation modes. With the development of this very modern system of predator-prey interactions, we can better understand how these food-webs were disrupted by climatic perturbations later in the Triassic, and make meaningful comparisons to modern ocean ecosystems.

  11. Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts

    Science.gov (United States)

    Bănaru, D.; Mellon-Duval, C.; Roos, D.; Bigot, J.-L.; Souplet, A.; Jadaud, A.; Beaubrun, P.; Fromentin, J.-M.

    2013-02-01

    The Gulf of Lions ecosystem was described using the Ecopath mass-balance model to characterise its structure and functioning and to examine the effects of the multispecific fisheries operating in this area. The model is composed of 40 compartments, including 1 group of seabirds, 2 groups of cetaceans, 18 groups of fish, 12 groups of invertebrates, 5 groups of primary producers, detritus and discards. Input data were based on several recurrent scientific surveys, two alternative datasets for fishing data, stock assessment outputs, stomach content analyses and published information. Results showed that the functional groups were organised into five trophic levels with the highest one represented by dolphins, anglerfish, Atlantic bluefin tuna, European hake and European conger. European pilchard and European anchovy dominated in terms of fish biomass and catch. Other fish with high biomass such as Atlantic mackerel and blue whiting were highly important in the food web. Seabirds, dolphins and cuttlefish-squids represented keystone species. Important coupled pelagic-demersal-benthic interactions were described. The 7 different fisheries analysed were operating at mean trophic levels situated between 2.6 for small artisanal boats, and 4.1 for purse seines (> 24 m) targeting large pelagic fish, indicating an intensively exploited ecosystem. Large trawlers (24-40 m) had the highest impact on most of the groups considered; while purse seines (12-24 m) targeting small pelagic fish had the lowest impact. Preliminary results highlighted the importance of data sources for further ecosystem and fisheries analyses and management scenarios.

  12. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Directory of Open Access Journals (Sweden)

    Erik Olsen

    2018-03-01

    Full Text Available Ecosystem-based management (EBM of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass, while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups. Changing fishing pressure (doubling or halving had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks to taking into account competing

  13. 78 FR 42653 - Taking of Marine Mammals Incidental to Commercial Fishing Operations; Atlantic Large Whale Take...

    Science.gov (United States)

    2013-07-16

    ... defines a strategic stock of marine mammals as a stock: (1) For which the level of direct human-caused... Whales, Eubalaena australis. Behaviour 88(1/2):42-60. BILLING CODE 3510-22-P [GRAPHIC] [TIFF OMITTED...

  14. Tracking the Fate of Explosive-Trinitrotriazine (RDX) in Coastal Marine Ecosystems Using Stable Isotopic Tracer

    Science.gov (United States)

    Ariyarathna, T. S.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Bohlke, J. K.; Tobias, C. R.; Fallis, S.; Groshens, T.; Cooper, C.

    2017-12-01

    It has been estimated that there are hundreds of explosive-contaminated sites all over the world and managing these contaminated sites is an international challenge. As coastal zones and estuaries are commonly impacted zones, it is vital to understand the fate and transport of munition compounds in these environments. The demand for data on sorption, biodegradation and mineralization of trinitrotriazine (RDX) in coastal ecosystems is the impetus for this study using stable nitrogen isotopes to track its metabolic pathways. Mesocosm experiments representing subtidal vegetated, subtidal unvegetated and intertidal marsh ecocosms were conducted. Steady state concentrations of RDX were maintained in the systems throughout two-week time duration of experiments. Sediment, pore-water and overlying water samples were analyzed for RDX and degradation products. Isotope analysis of the bulk sediments revealed an initial rising inventory of 15N followed by a decay illustrating the role of sediments on sorption and degradation of RDX in anaerobic sediments respectively. Both pore-water and overlying water samples were analyzed for 15N inventories of different inorganic nitrogen pools including ammonium, nitrate, nitrite, nitrous oxide and nitrogen gases. RDX is mineralized to nitrogen gas through a series of intermediates leaving nitrous oxide as the prominent metabolite of RDX. Significant differences in RDX metabolism were observed in the three different ecosystems based on sediment characteristics and redox conditions in the systems. Fine grained organic carbon rich sediments show notably higher mineralization rates of RDX in terms of production of its metabolites. Quantification of degradation and transformation rates leads to mass balances of RDX in the systems. Further analysis of results provides insights for mineralization pathways of RDX into both organic and inorganic nitrogen pools entering the marine nitrogen cycle.

  15. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    Science.gov (United States)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    species richness for a given habitat, in the characterization of communities of differentially impacted coastal marine ecosystems.

  16. Climate change impacts on U.S. coastal and marine ecosystems

    Science.gov (United States)

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  17. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes

    DEFF Research Database (Denmark)

    Weitz, Joshua S.; Stock, Charles A.; Wilhelm, Steven W.

    2015-01-01

    Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities......, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic...

  18. A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model

    Directory of Open Access Journals (Sweden)

    I. Hoteit

    2003-01-01

    Full Text Available A singular evolutive extended Kalman (SEEK filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM, while the physical forcing is described by the Princeton Ocean Model (POM. In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs. The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior. Key words. Oceanography: general (ocean prediction; numerical modelling – Oceanography: biological and chemical (ecosystems and ecology

  19. 76 FR 69230 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2011-11-08

    ...: PART 622--FISHERIES OF THE CARIBBEAN, GULF, AND SOUTH ATLANTIC 1. The authority citation for part 622... and styles used in the South Atlantic snapper- grouper fishery. (b) Extended reach handle. The... appropriate to secure the range of hook sizes and styles used in the South Atlantic snapper-grouper fishery...

  20. 77 FR 4493 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2012-01-30

    ... CARIBBEAN, GULF, AND SOUTH ATLANTIC 0 1. The authority citation for part 622 continues to read as follows... and styles used in the South Atlantic snapper- grouper fishery. (b) Extended reach handle. The... appropriate to secure the range of hook sizes and styles used in the South Atlantic snapper-grouper fishery...

  1. Environmental Factors and Natural Resource Stock: Atlantic Herring case

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.H. [Korea Maritime Institute, Seoul (Korea); John, M. Gate [University of Rhode Island, Kingston (United States)

    2001-12-01

    Atlantic herrings have held the important position as fish-baits in the marine ecosystem such as major baits in fishing lobsters. The Atlantic herring is sensitively influenced by the environmental factors of the marine ecosystem, such as the temperature of seawater, the amount of planktons, and the submarine deposit of the habitat. In the immature phase of herrings, especially, they are very sensitive of the low temperature of seawater. This study analyzes the correlation between two-year-old imported herring resources and the temperature of seawater, measured by a satellite. The area of measuring temperature is limited to the spawning ground of Atlantic herrings. As results of the analysis, the coefficient is 0.69, which means that the environmental factors should be very seriously considered in explaining the change of fishing resources. 12 refs., 4 figs., 1 tab.

  2. Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region

    Science.gov (United States)

    Loeb, Valerie; Hofmann, Eileen E.; Klinck, John M.; Holm-Hansen, Osmund

    2010-04-01

    The South Shetland-Elephant Island and Bransfield Strait region of the West Antarctic Peninsula is an important spawning and nursery ground of Antarctic krill ( Euphausia superba) and is an important source of krill to the Southern Ocean. Krill reproductive and recruitment success, hence supply of krill to predator populations locally and in downstream areas, are extremely variable on interannual and longer time scales. Interannual ecosystem variability in this region has long been recognized and thought related to El Niño Southern Oscillation (ENSO) events, but understanding of how has been limited by the hydrographic complexity of the region and lack of appropriate ocean-atmosphere interaction models. This study utilizes multidisciplinary data sets collected in the region from 1990 to 2004 by the U.S. Antarctic Living Marine Resources (AMLR) Program. We focus on hydrographic conditions associated with changes in the distribution, abundance and composition of salp- and copepod-dominated zooplankton assemblages during 1998 and 1999, years characterized respectively by a strong El Niño event and La Niña conditions. We provide detailed analyses of hydrographic, biological and ecological conditions during these dichotomous years in order to identify previously elusive oceanographic processes underlying ecosystem variability. We found that fluctuations between salp-dominated coastal zooplankton assemblages and copepod-dominated oceanic zooplankton assemblages result from the relative influence of Weddell Sea and oceanic waters and that these fluctuations are associated with latitudinal movement of the Southern Antarctic Circumpolar Current Front (sACCf). Latitudinal movements of the sACCf can be explained by meridional atmosphere teleconnections instigated in the western tropical Pacific Ocean by ENSO variability and are consistent with out-of-phase forcing in the South Pacific and South Atlantic Oceans by the Antarctic Dipole high-latitude climate mode. During El

  3. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  4. A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Science.gov (United States)

    Ardron, Jeff A.; Clark, Malcolm R.; Penney, Andrew J.; Hourigan, Thomas F.; Rowden, Ashley A.; Dunstan, Piers K.; Watling, Les; Shank, Timothy M.; Tracey, Di M.; Dunn, Matthew R.; Parker, Steven J.

    2014-01-01

    The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: (1) Comparatively assess potential VME indicator taxa and habitats in a region; (2) determine VME thresholds; (3) consider areas already known for their ecological importance; (4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; (5) develop predictive distribution models for VME indicator taxa and habitats; (6) compile known or likely fishing impacts; (7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); (8) identify areas of higher value to user groups; (9) conduct management strategy evaluations to produce trade-off scenarios; (10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.

  5. Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.

    Science.gov (United States)

    Caswell, Bryony A; Frid, Christopher L J

    2017-01-01

    Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.

  6. Methods for Marine Ecosystems Research through the Use of PDAs with Preservice Teachers

    Directory of Open Access Journals (Sweden)

    Antoinette Bruciati

    2005-10-01

    Full Text Available Science teachers are charged with the task of providing students in grades K-12 with opportunities that will enable them to make sense of science and develop habits of mind. One goal of science education is to prepare well-rounded citizens who are scientifically literate. Through inquiry-based learning, students formulate questions, perform investigations, and construct new understandings. It is important for preservice science teachers to be introduced to current techniques, discoveries, and debates in the field of science. The use of personal digital assistants (PDAs can provide K-12 students with increased opportunities for exploring and learning through scientific investigations. In order for these devices to be successfully integrated into classroom instruction, changes in teaching methodologies must be adopted. This paper presents a model lesson that can be used to guide preservice teachers in the use of PDAs for studying a marine ecosystem. The field experience takes place on the shoreline of Long Island Sound at Stratford Point, in Stratford Connecticut.

  7. Projections of change in key ecosystem indicators for planning and management of marine protected areas: An example study for European seas

    Science.gov (United States)

    Kay, Susan; Butenschön, Momme

    2018-02-01

    Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.

  8. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  9. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  10. Discovery of the oldest .i.Gobius./i. (Teleostei, Gobiiformes) from a marine ecosystem of Early Miocene age

    Czech Academy of Sciences Publication Activity Database

    Reichenbacher, B.; Gregorová, R.; Holcová, K.; Šanda, R.; Vukić, J.; Přikryl, Tomáš

    2018-01-01

    Roč. 16, č. 6 (2018), s. 493-513 ISSN 1477-2019 R&D Projects: GA ČR(CZ) GA16-21523S Institutional support: RVO:67985831 Keywords : Gobiidae * Miocene * comparative anatomy * marine ecosystem * Outer Carpathian flysh zone * Outer Carpathian flysch zone * Ždánice-Hustopeče Formation Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 2.963, year: 2016

  11. Marine ecosystem acoustics (MEA): Quantifying processes in the sea at the spatio-temporal scales on which they occur

    KAUST Repository

    Godøl, Olav Rune

    2014-07-22

    Sustainable management of fisheries resources requires quantitative knowledge and understanding of species distribution, abundance, and productivity-determining processes. Conventional sampling by physical capture is inconsistent with the spatial and temporal scales on which many of these processes occur. In contrast, acoustic observations can be obtained on spatial scales from centimetres to ocean basins, and temporal scales from seconds to seasons. The concept of marine ecosystem acoustics (MEA) is founded on the basic capability of acoustics to detect, classify, and quantify organisms and biological and physical heterogeneities in the water column. Acoustics observations integrate operational technologies, platforms, and models and can generate information by taxon at the relevant scales. The gaps between single-species assessment and ecosystem-based management, as well as between fisheries oceanography and ecology, are thereby bridged. The MEA concept combines state-of-the-art acoustic technology with advanced operational capabilities and tailored modelling integrated into a flexible tool for ecosystem research and monitoring. Case studies are presented to illustrate application of the MEA concept in quantification of biophysical coupling, patchiness of organisms, predator-prey interactions, and fish stock recruitment processes. Widespread implementation of MEA will have a large impact on marine monitoring and assessment practices and it is to be hoped that they also promote and facilitate interaction among disciplines within the marine sciences.

  12. Influence of the submarine orography on the distribution of long-lived radionuclides in the Palomares marine ecosystem

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1997-01-01

    To trace the consequences of the Palomares accident which occurred in southeastern Spain in 1966, a number of studies were performed upon sediments collected in the adjacent marine ecosystem in 1985. The research revealed a land-to-sea transport of part of the transuranics residual contamination still remaining in the affected area after the clean-up operations. The transfer routes to the Mediterranean sea (via river flooding and airborne relocation) were elucidated through the reconstruction of the sediment cores' depositional history. Present investigations focus on the distribution of Pu, Am and Cs along the complex system of submarine canyons shaping the orography of the Palomares marine environment. Marine samples were collected in 1991 to evaluate the possible removal of the radionuclides deposited in the continental shelf towards the deep sea, favoured by the strong turbidity currents and/or the topography of the canyon itself. (Author)

  13. Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases.

    Science.gov (United States)

    de Moura, Jailson Fulgencio; Hauser-Davis, Rachel Ann; Lemos, Leila; Emin-Lima, Renata; Siciliano, Salvatore

    2014-01-01

    Guiana dolphins (Sotalia guianensis) are small cetaceans that inhabit coastal regions down to a 50 m depth. As a coastally distributed species, they are exposed to a variety of human-induced risks that include passive fishing nets, persistent environmental pollution, and emerging diseases. As a top predatorS. guianensis occupies an important ecological niche in marine ecosystems. However, this niche also exposes this dolphin to extensive biomagnification of marine contaminants that may accumulate and be stored throughout their life of about 30 years.In this paper, we have compiled available data on the Guiana dolphin as regards its exposure to chemical pollutants, pathogenic microbes, infectious diseases, and injuries caused by interactions with passive fishing gears. Our analysis of the data shows that Guiana dolphins are particularly sensitive to environmental changes.Although the major mortal threat to dolphins results from contact with fishing other human-related activities in coastal zones also pose risks and need more attention.Such human-related risks include the presence of persistent toxicants in the marine environment, such as PCBs and PBDEs. Residues of these chemicals have been detected in Guiana dolphin's tissues at similar or higher levels that exist in cetaceans from other known polluted areas. Another risk encountered by this species is the non lethal injuries caused by fishing gear. Several incidents of this sort have occurred along the Brazilian coast with this species. When injuries are produced by interaction with fishing gear, the dorsal fin is the part of the dolphin anatomy that is more affected, commonly causing severe laceration or even total loss.The Guiana dolphins also face risks from infectious diseases. The major ones thus far identified include giardiasis, lobomycosis, toxoplasmosis, skin and skeletal lesions. Many bacterial pathogens from the family Aeromonadaceae and Vibrionaceae have been isolated from Guiana dolphins. Several

  14. Towards ecosystem based management and monitoring of the deep Mediterranean, North-East Atlantic and Beyond

    Science.gov (United States)

    Grehan, Anthony J.; Arnaud-Haond, Sophie; D'Onghia, Gianfranco; Savini, Alessandra; Yesson, Chris

    2017-11-01

    The deep sea covers 65% of the earth's surface and 95% of the biosphere but only a very small fraction (less than 0.0001%) of this has been explored (Rogers et al., 2015; Taylor and Roterman, 2017). However, current knowledge indicates that the deep ocean is characterized by a high level of biodiversity and by the presence of important biological and non-renewable resources. As well as vast flat and muddy plains, the topography of the deep ocean contains a variety of complex and heterogeneous seafloor features, such as canyons, seamounts, cold seeps, hydrothermal vents and biogenic (deep-water coral) reefs and sponge bioherms that harbour an unquantified and diverse array of organisms. The deep sea, despite its remoteness, provides a variety of supporting, provisioning, regulating and cultural, ecosystem goods and services (Thurber et al., 2014). The recent push for 'Blue Growth', to unlock the potential of seas and oceans (European Commission, 2017) has increased the focus on the potential to exploit resources in the deep-sea and consequently the need for improved management (Thurber et al., 2014).

  15. UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean

    NARCIS (Netherlands)

    Boelen, P; de Boer, MK; Kraay, GW; Veldhuis, MJW; Buma, AGJ

    2000-01-01

    UVBR (ultraviolet-B radiation: 280 to 315 nm)-induced DNA damage, measured as cyclobutane pyrimidine dimers (CPDs), was determined in size fractions of natural populations of bacterio- and phytoplankton collected in marine tropical waters. Mean biologically effective UVBR doses in the wind-mixed

  16. Assessment of Marine Litter in the Barents Sea, a Part of the Joint Norwegian–Russian Ecosystem Survey

    Directory of Open Access Journals (Sweden)

    Bjørn E. Grøsvik

    2018-03-01

    Full Text Available This study presents a large-scale monitoring of marine litter performed in the joint Norwegian–Russian ecosystem monitoring surveys in the period from 2010 to 2016 and contribute to documentation of the extent of marine litter in the Barents Sea. The distribution and abundance of marine litter were calculated by recordings of bycatch from the pelagic trawling in upper 60 m, from bottom trawling close to the sea floor, and floating marine debris at surface by visual observations. The study is comprehensive regarding coverage and number with registrations from 2,265 pelagic trawls and 1,860 bottom trawls, in addition to surface registration between the stations. Marine litter has been recorded from 301 pelagic and 624 of the bottom trawl catches. In total, 784 visual observations of floating marine debris were recorded during the period. Marine litter has been categorized according to volume or weight of the material types plastic, wood, metal, rubber, glass, paper, and textile. Marine litter is observed in the entire Barents Sea and distribution vary with material densities, ocean currents and depth. Plastic dominated number of observations with marine litter, as 72% of surface observations, 94% of pelagic trawls, and 86% of bottom trawls contained plastic. Observations of wood constituted 19% of surface observations, 1% of pelagic trawls, and 17% of bottom trawls with marine litter. Materials from other categories such as metal, rubber, paper, textile, and glass were observed sporadically. Recordings of wood dominated surface observations (61.9 ± 21.6% by volume and on seafloor (59.4 ± 35.0% by weight, while plastic dominated marine litter observations in upper 60 m depth (86.4 ± 16.5% by weight over these 7 years. Based on recordings and volume or area covered, mean levels of plastic in the upper 60 m of the Barents Sea were found to 0.011 mg m−3 (pelagic and 2.9 kg km−2 at sea floor over the study period. Average levels of marine

  17. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    Directory of Open Access Journals (Sweden)

    S. Shalin

    2018-03-01

    Full Text Available The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a data from the northern Arabian Sea (50–75° E and 15–30° N during the winter months (November–March. Principal component analysis (PCA and cluster analysis (CA were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD, wind speed, sea-surface temperature (SST, photosynthetically active radiation (PAR, nitrate and dust optical thickness (DOT as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening

  18. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    Science.gov (United States)

    Shalin, Saleem; Samuelsen, Annette; Korosov, Anton; Menon, Nandini; Backeberg, Björn C.; Pettersson, Lasse H.

    2018-03-01

    The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50-75° E and 15-30° N) during the winter months (November-March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The

  19. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    several months after the mixing event, together with anoxic stress conditions, additionally influence already stressed ecosystem, hence shifting the community structure and food/web interactions in this marine system.

  20. Development of a decision support system to manage contamination in marine ecosystems.

    Science.gov (United States)

    Dagnino, A; Viarengo, A

    2014-01-01

    In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of

  1. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    Science.gov (United States)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-11-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  2. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake

    Science.gov (United States)

    Malaquias, Manuel António E.

    2016-01-01

    The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt), a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy) and molecular methods (COI gene phylogeny). Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown. PMID:27248835

  3. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake.

    Directory of Open Access Journals (Sweden)

    Edwin Cruz-Rivera

    Full Text Available The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt, a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy and molecular methods (COI gene phylogeny. Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown.

  4. Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?

    Directory of Open Access Journals (Sweden)

    Scott Bennett

    2017-09-01

    Full Text Available Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE. Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.

  5. Enabling the Integrated Assessment of Large Marine Ecosystems: Informatics to the Forefront of Science-Based Decision Support

    Science.gov (United States)

    Di Stefano, M.; Fox, P. A.; Beaulieu, S. E.; Maffei, A. R.; West, P.; Hare, J. A.

    2012-12-01

    Integrated assessments of large marine ecosystems require the understanding of interactions between environmental, ecological, and socio-economic factors that affect production and utilization of marine natural resources. Assessing the functioning of complex coupled natural-human systems calls for collaboration between natural and social scientists across disciplinary and national boundaries. We are developing a platform to implement and sustain informatics solutions for these applications, providing interoperability among very diverse and heterogeneous data and information sources, as well as multi-disciplinary organizations and people. We have partnered with NOAA NMFS scientists to facilitate the deployment of an integrated ecosystem approach to management in the Northeast U.S. (NES) and California Current Large Marine Ecosystems (LMEs). Our platform will facilitate the collaboration and knowledge sharing among NMFS natural and social scientists, promoting community participation in integrating data, models, and knowledge. Here, we present collaborative software tools developed to aid the production of the Ecosystem Status Report (ESR) for the NES LME. The ESR addresses the D-P-S portion of the DPSIR (Driver-Pressure-State-Impact-Response) management framework: reporting data, indicators, and information products for climate drivers, physical and human (fisheries) pressures, and ecosystem state (primary and secondary production and higher trophic levels). We are developing our tools in open-source software, with the main tool based on a web application capable of providing the ability to work on multiple data types from a variety of sources, providing an effective way to share the source code used to generate data products and associated metadata as well as track workflow provenance to allow in the reproducibility of a data product. Our platform retrieves data, conducts standard analyses, reports data quality and other standardized metadata, provides iterative

  6. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    Directory of Open Access Journals (Sweden)

    Marie Savina

    Full Text Available We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia. The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure, and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives.

  7. Assimilation of the Observational Data in the Marine Ecosystem Adaptive Model at the Known Mean Values of the Processes in the Marine Environment

    Directory of Open Access Journals (Sweden)

    I.Е. Тimchenko

    2017-10-01

    Full Text Available Assimilation of observational data in the marine ecosystem adaptive models constructed by the adaptive balance of causes method is considered. It is shown that the feedback balance between the ecosystem variables and the rates of their change used in the method equations, permits to introduce a stationary state of the ecosystem characterized by the observed mean values of the variables. The method for assessing the normalized coefficients of influences based on application of the Euler theorem on homogeneous functions to the functions representing material balances of biochemical reactions of the substance transformation is proposed. It is shown that the normalized ratios of the modeled process mean values can be used as the estimates of the reaction product derivatives obtained on the basis of their resources included in the equations of material balances. One-dimensional adaptive model of the sea upper layer ecosystem is constructed as an example; it is based on the scheme of cause-effect relations of the Fasham, Dacklow and McKelvie model of plankton dynamics and nitrogen cycle It is shown that in such a model, observational data is assimilated by automatic adaptation of the model variables to the assimilated information providing that the substance material balance are preserved in the transformation reactions. The data simulating both observations of the chlorophyll a concentrations and the marine environment dynamics are assimilated in the model. Time scenarios of the biochemical processes are constructed; they confirm applicability of the proposed method for assessing the effect coefficients based on the ratios of the simulated process mean values.

  8. Marine debris ingestion by the South American Fur Seal from the Southwest Atlantic Ocean.

    Science.gov (United States)

    Denuncio, Pablo; Mandiola, María Agustina; Pérez Salles, Sofía Belén; Machado, Rodrigo; Ott, Paulo H; De Oliveira, Larissa Rosa; Rodriguez, Diego

    2017-09-15

    In this paper, we examined the ingestion of marine debris (MD) in South American fur seals (SAFS), Arctocephalus australis, found dead in coastal beaches of northern Argentina and southern Brazil. Seven percent of 133 SAFS analyzed presented marine debris in their stomach (n=10), with no differences between sampling countries (Brazil n=7, Argentina n=3) and sexes (female=3; male=6). However, significant differences were observed between ages classes, with MD exclusively present in stomach contents of young specimens. Plastics represents 90% of MD ingested by the SAFS, whereas regarding the source, fishery-related items (e.g. monofilament lines) were the main MD (70%), with a lesser proportion of packaging (e.g. pieces of bags). Low numbers but large size pieces of MD were found in each stomach affected. Negative effects on the individuals could not be fully evaluated. Therefore, the potential impacts of the marine debris to the SAFS deserve further elucidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic

    Science.gov (United States)

    Prado, Jonatas H. F.; Mattos, Paulo H.; Silva, Kleber G.; Secchi, Eduardo R.

    2016-01-01

    Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change

  10. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic.

    Directory of Open Access Journals (Sweden)

    Jonatas H F Prado

    Full Text Available Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574, South American fur seal, (n = 3,419, South American sea lion (n = 2,049, bottlenose dolphins (n = 293 and subantarctic fur seal (n = 219 were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal and warm-water (e.g. rough-toothed dolphin species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to

  11. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management

    Directory of Open Access Journals (Sweden)

    M. SALOMIDI

    2012-02-01

    Full Text Available The goal of ecosystem-based marine spatial management is to maintain marine ecosystems in a healthy, productive and resilient condition; hence, they can sustainably provide the needed goods and services for human welfare. However, the increasing pressures upon the marine realm threaten marine ecosystems, especially seabed biotopes, and thus a well-planned approach of managing use of marine space is essential to achieve sustainability. The relative value of seabed biotopes, evaluated on the basis of goods and services, is an important starting point for the spatial management of marine areas. Herein, 56 types of European seabed biotopes and their related goods, services, sensitivity issues, and conservation status were compiled, the latter referring to management and protection tools which currently apply for these biotopes at European or international level. Fishing activities, especially by benthic trawls, and marine pollution are the main threats to European seabed biotopes. Increased seawater turbidity, dredged sediment disposal, coastal constructions, biological invasions, mining, extraction of raw materials, shipping-related activities, tourism, hydrocarbon exploration, and even some practices of scientific research, also exert substantial pressure. Although some first steps have been taken to protect the European sea beds through international agreements and European and national legislation, a finer scale of classification and assessment of marine biotopes is considered crucial in shaping sound priorities and management guidelines towards the effective conservation and sustainability of European marine resources.

  12. Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile

    Science.gov (United States)

    Friedlander, Alan M.; Ballesteros, Enric; Beets, Jim; Berkenpas, Eric; Gaymer, Carlos F.; Gorny, Matthias; Sala, Enric

    2013-01-01

    1. An expedition to Salas y Gómez and Easter islands was conducted to develop a comprehensive baseline of the nearshore marine ecosystem, to survey seamounts of the recently created Motu Motiro Hiva Marine Park (MMHMP) – a no-take marine reserve of 150 000 km2 – and to compare these results with Easter Island where the marine ecosystem is similar but has no marine protection. 2. Live coral cover was surprisingly high at both Easter Island (53%) and Salas y Gómez (44%), especially considering their sub-tropical location, high wave energy environments, and geographic isolation. 3. Endemic and regionally-endemic species comprised 77% of the fish abundance at Easter Island and 73% at Salas y Gómez. Fish biomass at Salas y Gómez was relatively high (1.2 t ha-1) and included a large proportion of apex predators (43%), whereas at Easter Island it was almost three times lower (0.45 t ha-1) with large predators accounting for less than 2% of the biomass, despite good habitat quality. 4. The large cohort of small sharks and the absence of larger sharks at Salas y Gómez suggest mesopredator release consistent with recent shark fishing. The fish fauna at the seamounts between Easter Island and Salas y Gómez, outside of MMHMP, harboured 46% endemic species, including a new species of damselfish (Chromis sp. nov.) and probably a new species of Chimaera (Hydrolagus). Numerous seamounts adjacent to Salas y Gómez are currently not included in the MMHMP. 5. This expedition highlights the high biodiversity value of this remote part of the Pacific owing to the uniqueness (endemicity) of the fauna, large apex predator biomass, and geographic isolation.

  13. 76 FR 82183 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2011-12-30

    ... THE CARIBBEAN, GULF, AND SOUTH ATLANTIC 0 1. The authority citation for part 622 continues to read as... appropriate to secure the range of hook sizes and styles used in the South Atlantic snapper- grouper fishery.... The device must be of a size appropriate to secure the range of hook sizes and styles used in the...

  14. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  15. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology

    Directory of Open Access Journals (Sweden)

    Millard Andrew D

    2010-10-01

    Full Text Available Abstract From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.

  16. The marine ecosystems of the South Pacific coast of Costa Rica: state of knowledge and management perspectives

    International Nuclear Information System (INIS)

    Quesada Alpizar, Marco A.; Cortes, Jorge

    2006-01-01

    A review of the existing scientific literature on marine ecosystems in the South Pacific of Costa Rica is presented. Most of the information generated to date concentrates on the Golfo Dulce area, a tropical fiord and only anoxic basin in the American pacific coast. Even thought there is a considerable amount of information available, there are still many aspects of the marine ecosystems of the region that remain unstudied. Among these, those concerning circulation patterns, mangrove dynamics, biodiversity of soft sediments and deep waters, and the ecology of commercially important species of mollusks, crustaceans and fish, stand out. Special attention should be placed on the study of Golfo Dulce, Isla del Cano and the Terraba-Sierpe mangrove system, give their biological importance and unique regional character. Coastal management in the region should be based on the best scientific information available integrating biological, social and economic criteria; and seeking the improvement of inter-institutional coordination in order to achieve integrative solutions to the existing threats to marine resources. (author) [es

  17. Abundance and fragmentation patterns of the ecosystem engineer Lithophyllum byssoides (Lamarck) Foslie along the Iberian Peninsula Atlantic coast. Conservation and management implications

    Science.gov (United States)

    Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-10-01

    The crustose calcareous red macroalgae Lithophyllum byssoides (Lamarck) Foslie is a common ecosystem engineer along the Atlantic and Mediterranean coast of the Iberian Peninsula. This species is threatened by several anthropogenic impacts acting at different spatial scales, such as pollution or global warming. The aim of this study is to identify scales of spatial variation in the abundance and fragmentation patterns of L. byssoides along the Atlantic coast of the Iberian Peninsula. For this aim we used a hierarchical sampling design considering four spatial scales (from metres to 100s of kilometres). Results of the present study indicated no significant variability among regions investigated whereas significant variability was found at the scales of shore and site in spatial patterns of abundance and fragmentation of L. byssoides. Variance components were higher at the spatial scale of shore for abundance and fragmentation of L. byssoides with the only exception of percentage cover and thus, processes acting at the scale of 10s of kilometres seem to be more relevant in shaping the spatial variability both in abundance and fragmentation of L. byssoides. These results provided quantitative estimates of abundance and fragmentation of L. byssoides at the Atlantic coast of the Iberian Peninsula establishing the observational basis for future assessment, monitoring and experimental investigations to identify the processes and anthropogenic impacts affecting L. byssoides populations. Finally we have also identified percentage cover and patch density as the best variables for long-term monitoring programs aimed to detect future anthropogenic impacts on L. byssoides. Therefore, our results have important implications for conservation and management of this valuable ecosystem engineer along the Atlantic coast of the Iberian Peninsula.

  18. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    Science.gov (United States)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  19. Phylogeography of a Marine Insular Endemic in the Atlantic Macaronesia: The Azorean Barnacle, Megabalanus azoricus (Pilsbry, 1916)

    Science.gov (United States)

    González, José A.; Almeida, Corrine; Lopes, Evandro; Araújo, Ricardo; Carreira, Gilberto P.

    2015-01-01

    The Azorean barnacle, Megabalanus azoricus (Pilsbry, 1916), is a Macaronesian endemic whose obscure taxonomy and the unknown relationships among forms inhabiting isolated Northern Atlantic oceanic islands is investigated by means of molecular analysis herein. Mitochondrial data from the 16S rRNA and COX1 genes support its current species status, tropical ancestry, and the taxonomic homogeneity throughout its distribution range. In contrast, at the intraspecific level and based on control region sequences, we detected an overall low level of genetic diversity and three divergent lineages. The haplogroups α and γ were sampled in the Azores, Madeira, Canary, and Cabo Verde archipelagos; whereas haplogroup β was absent from Cabo Verde. Consequently, population analysis suggested a differentiation of the Cabo Verde population with respect to the genetically homogenous northern archipelagos generated by current oceanographic barriers. Furthermore, haplogroup α, β, and γ demographic expansions occurred during the interglacial periods MIS5 (130 Kya - thousands years ago -), MIS3 (60 Kya), and MIS7 (240 Kya), respectively. The evolutionary origin of these lineages is related to its survival in the stable southern refugia and its demographic expansion dynamics are associated with the glacial-interglacial cycles. This phylogeographic pattern suggests the occurrence of genetic discontinuity informative to the delimitation of an informally defined biogeographic entity, Macaronesia, and its generation by processes that delineate genetic diversity of marine taxa in this area. PMID:25919141

  20. Influences of Scavenging and Removal of Surfactants by Bubble Processing on Primary Marine Aerosol Production from North Atlantic Seawater

    Science.gov (United States)

    Duplessis, P.; Chang, R.; Frossard, A. A.; Keene, W. C.; Maben, J. R.; Long, M. S.; Beaupre, S. R.; Kieber, D. J.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    Primary marine aerosol particles (PMA) are produced by bursting bubbles from breaking waves at the air-sea interface and significantly modulate atmospheric chemical transformations and cloud properties. Surfactants in bulk seawater rapidly (seconds) adsorb onto fresh bubble surfaces forming organic films that influence size, rise velocity, bursting behavior, and associated PMA emissions. During a cruise on the R/V Endeavor in September and October 2016, PMA production from biologically productive and oligotrophic seawater was investigated at four stations in the western North Atlantic Ocean. PMA were produced in a high-capacity generator via turbulent mixing of seawater and clean air in a Venturi nozzle. When the flow of fresh seawater through the generator was turned off, surfactant depletion via bubble processing resulted in greater PMA mass production efficiencies per unit air detrained but had no consistent influence on number production efficiencies. The greater (factor of 3) production efficiencies of organic matter associated with PMA generated with the Venturi relative to those generated with frits during previous campaigns contributed to a faster depletion of surfactants from the seawater reservoir and corresponding divergence in response.

  1. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast.

    Science.gov (United States)

    Brito, Ângela; Ramos, Vitor; Mota, Rita; Lima, Steeve; Santos, Arlete; Vieira, Jorge; Vieira, Cristina P; Kaštovský, Jan; Vasconcelos, Vitor M; Tamagnini, Paula

    2017-06-01

    Aiming at increasing the knowledge on marine cyanobacteria from temperate regions, we previously isolated and characterized 60 strains from the Portuguese foreshore and evaluate their potential to produce secondary metabolites. About 15% of the obtained 16S rRNA gene sequences showed less than 97% similarity to sequences in the databases revealing novel biodiversity. Herein, seven of these strains were extensively characterized and their classification was re-evaluated. The present study led to the proposal of five new taxa, three genera (Geminobacterium, Lusitaniella, and Calenema) and two species (Hyella patelloides and Jaaginema litorale). Geminobacterium atlanticum LEGE 07459 is a chroococcalean that shares morphological characteristics with other unicellular cyanobacterial genera but has a distinct phylogenetic position and particular ultrastructural features. The description of the Pleurocapsales Hyella patelloides LEGE 07179 includes novel molecular data for members of this genus. The filamentous isolates of Lusitaniella coriacea - LEGE 07167, 07157 and 06111 - constitute a very distinct lineage, and seem to be ubiquitous on the Portuguese coast. Jaaginema litorale LEGE 07176 has distinct characteristics compared to their marine counterparts, and our analysis indicates that this genus is polyphyletic. The Synechococcales Calenema singularis possess wider trichomes than Leptolyngbya, and its phylogenetic position reinforces the establishment of this new genus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mineral Resource Assessment of Marine Sand Resources in Cape- and Ridge-Associated Marine Sand Deposits in Three Tracts, New York and New Jersey, United States Atlantic Continental Shelf

    Science.gov (United States)

    Bliss, James D.; Williams, S. Jeffress; Arsenault, Matthew A.

    2009-01-01

    Demand is growing in the United States and worldwide for information about the geology of offshore continental shelf regions, the character of the seafloor, and sediments comprising the seafloor and subbottom. Interest in locating sand bodies or high quality deposits that have potential as sources for beach nourishment and ecosystem restoration is especially great in some regions of the country. The Atlantic coast, particularly New York and New Jersey, has been the focus of these studies for the past 40 years with widely varying results. This study is the first attempt at applying probability statistics to modeling Holocene-age cape-and ridge-associated sand deposits and thus focuses on distinct sand body morphology. This modeling technique may have application for other continental shelf regions that have similar geologic character and late Quaternary sea-level transgression history. An estimated volume of 3.9 billion m3 of marine sand resources is predicted in the cape-and ridge-associated marine sand deposits in three representative regions or tracts on the continental shelf offshore of New York and New Jersey. These estimates are taken from probabilistic distributions of sand resources and are produced using deposit models and Monte Carlo Simulation (MCS) techniques. The estimated sand resources presented here are for only three tracts as described below and for Holocene age sand resources contained in cape-and ridge-associated marine sand deposit types within this area. Other areas may qualify as tracts for this deposit type and other deposit types and geologic ages (for example, paleo-stream channels, blanket and outwash deposits, ebb-tide shoals, and lower sea level-stand deltas), which are present on the New Jersey and New York continental shelf area but are not delineated and modeled in this initial evaluation. Admittedly, only a portion of these probable sand resources will ultimately be available and suitable for production, dependent largely on

  3. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    the Gulf of Alaska influence ocean conditions in central and southern California via these wind relaxations. The ocean response within a few km of the coast involves poleward-flowing currents that transport warm water out of the lees of capes and headlands and counter to the direction of the California Current [Send et al. 1987, Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. A similar response occurs in the Benguela and Canary Current coastal upwelling systems. The ocean response involves both barotropic and baroclinic dynamics and is consistent with existing geophysical models of buoyant, coastally-trapped plumes [Washburn et al., in prep]. Our ongoing work includes i) studying the regional ocean response to determine its spatial extent, time evolution, and ocean-atmosphere coupling dynamics; ii) developing an atmospheric index to predict wind relaxations in southern California based on pressure in the Gulf of Alaska; iii) examining the strength and frequency of wind relaxations over the past 30 years for connections to El Niño and the Pacific Decadal Oscillation; and iv) predicting future variations in wind relaxations and the response of the California Current Large Marine Ecosystem.

  4. Importance of spatial factors and temporal scales in environmental risk assessment in marine ecosystems

    International Nuclear Information System (INIS)

    Grebenkov, A.; Linkov, I.; Andrizhievski, A.; Lukashevich, A.; Trifonov, A.

    2004-01-01

    Coastal areas adjacent to the Black Sea, particularly in Crimea, have suffered from inappropriate human activities, poorly regulated industry and former naval bases. Industrial and municipal wastewater pollutants draining into the three major European rivers (the Danube, Dniestr, and Dnieper) and dumping in the open sea result in an enormous increase in contamination level of ecosystems of the Black Sea. In spite of this, Crimea and its adjacent waters is still a globally important center of biological diversity, with an enormous and exciting range of habitats within a comparatively small area. The problem now is to evaluate economically feasible remediation and ecologically sustainable cleanup/reuse alternatives for the most contaminated sites of this area. One of the principal methodological components of such evaluation is a risk-based decision protocol that provides support in analysis of ecological value and reuse options for a chosen site. This paper presents the results of development of a spatially explicit risk assessment technique to be implemented as a part of the decision-making process and gives an example of its application to contaminated marine ecosystems. The model is suggested that takes into account several principal assumptions: (i) spatial heterogeneity of contamination of forage is known and mapped within known location of receptor's habitat, and (ii) the receptor movement and timescale are determined by location, volume and attractiveness of local habitat and forage resources. This implies two models: Spatially Explicit Exposure Assessment Model that calculates internal exposure resulting from ingestion of contaminated feeds, and Probabilistic Receptor Migration Model that generates motivation of behaviour of a receptor while feeding. In the first model, time-dependent accumulation of contamination in receptor tissue is defined by the differential balance equation that takes into account forage consumption rate and excretion rate. In the

  5. Fukushima Daiichi - delivery of contaminated water into the Pacific ocean and possible consequences for the marine ecosystem

    International Nuclear Information System (INIS)

    Nies, Hartmut

    2015-01-01

    The nuclear power plant Fukushima Daiichi is sited at the coast of the Japanese island Honshu. Most of the cooling water for the three destroyed reactors units 1-3 and the nuclear fuel in the spent fuel pool of unit-4 were uncontrolled delivered into the groundwater and the Pacific Ocean. As a consequence high concentrations of I-131, Cs-134 and Cs-137 in the coastal waters have to be assumed. The contribution analyzed the possible consequences for the marine ecosystem. A drift time of 5 to 7 years toward the coast of North America is expected. The planning of the marine monitoring program MEXT is described. Radiation measurements in the coastal water up to 200 km distance from Daiichi were performed. The highest radionuclide concentrations of Cs-137 and Cs-134 were found in the fine grained sediments. No increased radioactivity in seafood is expected.

  6. Radiochronology of marine sediments and its application to the knowledge of the process of environmental pollution in coastal Cuban ecosystems

    International Nuclear Information System (INIS)

    Alonso-Hernández, Carlos M.; Díaz-Asencio, Misael; Gómez-Batista, Miguel; Bolaños-Alvares, Yoelvis; Muñoz-Caravaca, Alain; Morera-Gómez, Yasser

    2016-01-01

    The results achieved in the implementation of the radiochronology of marine sediments for the reconstruction of databases and knowledge of the evolution of environmental pollution in four coastal ecosystems of national significance are presented in this paper Fluxes of selected heavy metals and persistent organic compounds are discussed for the Cienfuegos and Havana bays and Sagua and La Coloma estuaries. Finally, is showed the effectiveness of radiochronology of sediments as a useful tool for environmental management and knowledge of temporal processes of pollution in the aquatic environment. (author)

  7. Nutrient reduction and climate change cause a potential shift from pelagic to benthic pathways in a eutrophic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Blenckner, T.; Stenseth, N.C.

    2012-01-01

    The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger...... variables across all trophic levels, we here propose a potential regime shift from pelagic to benthic regulatory pathways; a possible first sign of recovery from eutrophication likely triggered by drastic nutrient reductions (involving both nitrogen and phosphorus), in combination with climate...

  8. Management strategies of marine food resources under multiple stressors with particular reference of the Yellow Sea large marine ecosystem

    Directory of Open Access Journals (Sweden)

    Qisheng TANG

    2014-02-01

    Full Text Available In this study two main management strategies are discussed: one is to develop resource conservation-based capture fisheries, and the other is to develop environmentally friendly aquaculture. During the resource recovery period, the development of environmentally friendly aquaculture should be encouraged, especially in integrated multi-trophic aquaculture, which is adaptive, efficient and sustainable. For future development and better understanding the ecosystem, it is necessary to further strengthen basic research.

  9. Spatial and Temporal Variability of Ground and Satellite Column Measurements of NO2 and O3 over the Atlantic Ocean During the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment

    Science.gov (United States)

    Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.

    2016-01-01

    In situ measurements of O3 and nitrogen oxides (NO + NO2=NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July August 2014,100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements(r 0.96), but satellite measurements were 3 systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.

  10. Polybrominated diphenyl ethers (PBDEs) in marine mammals from Arctic and North Atlantic regions, 1986-2009.

    Science.gov (United States)

    Rotander, Anna; van Bavel, Bert; Polder, Anuschka; Rigét, Frank; Auðunsson, Guðjón Atli; Gabrielsen, Geir Wing; Víkingsson, Gísli; Bloch, Dorete; Dam, Maria

    2012-04-01

    A selection of PBDE congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography, and the analysis was performed on a GC-MS system operating in the NCI mode. The highest PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, and the lowest levels in fin whales and ringed seals. One-sided analyses of variance (ANOVA) followed by Tukey comparisons of means were applied to test for differences between years and sampling areas. Due to inter-year sampling variability, only general comparisons of PBDE concentrations between different sampling areas could be made. Differences in PBDE concentrations between three sampling periods, from 1986 to 2007, were evaluated in samples of pilot whales, ringed seals, white-sided dolphins and hooded seals. The highest PBDE levels were found in samples from the late 1990s or beginning of 2000, possibly reflecting the increase in the global production of technical PBDE mixtures in the 1990s. The levels of BDE #153 and #154 increased relative to the total PBDE concentration in some of the species in recent years, which may indicate an increased relative exposure to higher brominated congeners. In order to assess the effect of measures taken in legally binding international agreements, it is important to continuously monitor POPs such as PBDEs in sub-Arctic and Arctic environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    Science.gov (United States)

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  12. Evaluation of mangrove ecosystem service functions of Ximen Island Marine Specially Protected Areas in Yueqing Bay, China

    Science.gov (United States)

    Wang, D. G.; Sun, L.; Tan, Y. H.; Shi, A. Q.; Cheng, J.

    2017-08-01

    Taking the mangrove ecosystem of Ximen Island National Marine Specially Protected Areas as the research object, the ecological service value of the mangrove forest was evaluated and analyzed using a market value method, an ecological value method and a carbon tax method. The results showed that the ecosystem service value of the mangrove forest on Ximen Island is worth a total of 16,104,000 CNY/a. Among the value of individual ecosystem services, the direct value of material production function and leisure function reached 1,385,000 CNY/a, with a ratio of 8.6%. The indirect value of disturbance regulation, gas regulation, water purification, habitat function and culture research reached 14,719,000 CNY/a, with a ratio of 91.4%. Among the above sub-items, the proportion of disturbance regulation value, habitat function value and cultural research function value reached 78.8%, which reflects the important scientific value and ecological value of the Ximen Island mangrove ecosystem, especially its vital importance in providing a habitat for birds and playing a role in disaster prevention and mitigation.

  13. Reconstructing Past Seasonal to Multicentennial-Scale Variability in the NE Atlantic Ocean Using the Long-Lived Marine Bivalve Mollusk Glycymeris glycymeris

    Science.gov (United States)

    Reynolds, D. J.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Halloran, P. R.; Sayer, M. D. J.

    2017-11-01

    The lack of long-term, highly resolved (annual to subannual) and absolutely dated baseline records of marine variability extending beyond the instrumental period (last 50-100 years) hinders our ability to develop a comprehensive understanding of the role the ocean plays in the climate system. Specifically, without such records, it remains difficult to fully quantify the range of natural climate variability mediated by the ocean and to robustly attribute recent changes to anthropogenic or natural drivers. Here we present a 211 year (1799-2010 C.E.; all dates hereafter are Common Era) seawater temperature (SWT) reconstruction from the northeast Atlantic Ocean derived from absolutely dated, annually resolved, oxygen isotope ratios recorded in the shell carbonate (δ18Oshell) of the long-lived marine bivalve mollusk Glycymeris glycymeris. The annual record was calibrated using subannually resolved δ18Oshell values drilled from multiple shells covering the instrumental period. Calibration verification statistics and spatial correlation analyses indicate that the δ18Oshell record contains significant skill at reconstructing Northeast Atlantic Ocean mean summer SWT variability associated with changes in subpolar gyre dynamics and the North Atlantic Current. Reconciling differences between the δ18Oshell data and corresponding growth increment width chronology demonstrates that 68% of the variability in G. glycymeris shell growth can be explained by the combined influence of biological productivity and SWT variability. These data suggest that G. glycymeris can provide seasonal to multicentennial absolutely dated baseline records of past marine variability that will lead to the development of a quantitative understanding of the role the marine environment plays in the global climate system.

  14. Metal toxicity characterization factors for marine ecosystems: considering the importance of the estuary for freshwater emissions

    DEFF Research Database (Denmark)

    Dong, Yan; Rosenbaum, Ralph K.; Hauschild, Michael Zwicky

    2017-01-01

    The study develops site-dependent characterization factors (CFs) for marine ecotoxicity of metals emitted to freshwater, taking their passage of the estuary into account. To serve life cycle assessment (LCA) studies where emission location is often unknown, site-generic marine CFs were developed...... with an estuary removal process to calculate FF. BF and EF were taken from Dong et al. Environ Sci Technol 50:269–278 (2016). Site-generic marine CFs were derived from site-dependent marine CFs. Different averaging principles were tested, and the approach representing estuary discharge rate was identified...... between both methods. Accounting for estuary removal particularly influences marine ecotoxicity CFs for emission to freshwater of metals that have a strong tendency to complex-bind to particles. It indicates the importance of including estuary in the characterization modelling when dealing with those...

  15. Marine spatial planning (MSP: A first step to ecosystem-based management (EBM in the Wider Caribbean

    Directory of Open Access Journals (Sweden)

    John C Ogden

    2010-10-01

    Full Text Available The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC. Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 71-79. Epub 2010 October 01.La rápida disminución de los ecosistemas costeros del Mar Caribe está entrando en su quinta década. Algunos de los mejores aportes científicos que documentan este descenso y sus causas han sido realizados por los laboratorios de la Asociación de Laboratorios Marinos del Caribe (ALMC. Alarmados por las tendencias, los pioneros de la conservación del Caribe establecieron áreas marinas protegidas (MPAs que se extendieron por toda la región. Desafortunadamente, muchas de estas áreas tienen poca o ninguna protección y ahora se conoce que son demasiado pequeñas para ser efectivas en el mantenimiento de los ecosistemas costeros. La planificación espacial marina (MSP es promisoria para englobar las grandes escalas geográficas de los procesos ecológicos y los impactos humanos que influyen en los ecosistemas costeros y las

  16. North Atlantic ecosystem shifts revealed by cod otolith δ15N and δ13C chronologies

    DEFF Research Database (Denmark)

    Pedersen, Jens Brøgger; Nielsen, Jens Munk; Steingrund, Petur

    . To study the link between environmental changes and ecosystem trophic structure we developed δ15N and δ13C chronologies by analyzing the organic matrix of cod otoliths from the Faroe Shelf cod population (1950-2010) and the Nuuk Fjord cod population (1927-2009). Significant correlations between δ15N & δ13C...... of organic matrix of otolith core material (Nuuk Fjord) and annual growth increments in Ocean Quahog (A. Islandica) shells will be included.......Changes in climate and exploitation have caused large fluctuations in the productivity of many North Atlantic cod populations and the collapse of many cod fisheries. These fluctuations are most likely due to a combined effect of physical processes and changes in ecosystem trophic structure...

  17. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems

    NARCIS (Netherlands)

    Ostman, Orjan; Eklof, Johan; Eriksson, Britas Klemens; Olsson, Jens; Moksnes, Per-Olav; Bergstrom, Ulf

    Seagrass and seaweed habitats constitute hotspots for diversity and ecosystem services in coastal ecosystems. These habitats are subject to anthropogenic pressures, of which eutrophication is one major stressor. Eutrophication favours fast-growing ephemeral algae over perennial macroalgae and

  18. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto......Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...

  19. Preferences for Management of Near-Shore Marine Ecosystems: A Choice Experiment in New Zealand

    Directory of Open Access Journals (Sweden)

    Sophal Chhun

    2013-09-01

    Full Text Available There is considerable interest in New Zealand in establishing “Customary Management Areas” (taiāpure and mātaitai and Marine Reserves to support Māori cultural practices and restore declining biodiversity and fish stocks. Allocation of near-shore marine areas for these management systems potentially benefits the larger public, but it has often been vigorously opposed by recreational and commercial fishers. This paper reports estimates of the relative values held by the public toward four potentially conflicting uses of near-shore marine areas. These estimates come from a web-based choice survey completed by 1055 respondents recruited from throughout New Zealand. The response rate was especially high at 60%. We present results weighted to the characteristics of the population and test the results against a variety of well-known sources of survey bias. Scenario development suggests that some reallocation of near-shore marine areas to any of the management systems under discussion alternative to the status quo is likely to yield a welfare gain. A combination of marine reserves and taiāpure is most preferred. The exercise supports the use of discrete choice experiments to provide crucial information about difficult-to-quantify public values for aspects of management of near-shore marine areas, such as proposed taiāpure, mātaitai, or marine reserves.

  20. Integrating the provision of ecosystem services and trawl fisheries for the management of the marine environment.

    Science.gov (United States)

    Muntadas, Alba; de Juan, Silvia; Demestre, Montserrat

    2015-02-15

    The species interaction and their biological traits (BT) determine the function of benthic communities and, hence, the delivery of ecosystem services. Therefore, disturbance of benthic communities by trawling may compromise ecosystem service delivery, including fisheries' catches. In this work, we explore 1) the impact of trawling activities on benthic functional components (after the BTA approach) and 2) how trawling impact may affect the ecosystem services delivered by benthic communities. To this aim, we assessed the provision of ecosystem services by adopting the concept of Ecosystem Service Providers (ESP), i.e. ecological units that perform ecosystem functions that will ultimately deliver ecosystem services. We studied thirteen sites subjected to different levels of fishing effort in the Mediterranean. From a range of environmental variables included in the study, we found ESPs to be mainly affected by fishing effort and grain size. Our results suggested that habitat type has significant effects on the distribution of ESPs and this natural variability influences ESP response to trawling at a specific site. In order to summarize the complex relationships between human uses, ecosystem components and the demand for ecosystem services in trawling grounds, we adapted a DPSIR (Drivers-Pressures-State Change-Impact-Response) framework to the study area, emphasizing the role of society as Drivers of change and actors demanding management Responses. This integrative framework aims to inform managers about the interactions between all the elements involved in the management of trawling grounds, highlighting the need for an integrated approach in order to ensure ecosystem service provision. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Larval dispersion of the estuarine crab Neohelice granulata in coastal marine waters of the Southwest Atlantic

    Science.gov (United States)

    Bas, Claudia; Luppi, Tomás; Spivak, Eduardo; Schejter, Laura

    2009-08-01

    The estuarine brachyuran crab Neohelice granulata export their larvae from the parental intertidal population of the Mar Chiquita coastal lagoon, and probably other populations, to marine waters. The degree of larval dispersion or self-recruitment of populations is unknown. We evaluated the presence of all larval stages of N. granulata in coastal waters of Argentina between 37.9° and 35.8° S, at two different spatial scales: a broad scale of tens to hundreds of kilometers from the Río de la Plata estuary in the north, to Mar Chiquita lagoon in the south, and a small scale of hundreds of meters to some kilometers around the mouth of Mar Chiquita, during spring and summer. Additionally, we registered the larval composition and density at San Clemente creek population, in Samborombon Bay (Río de la Plata estuary), every 3 h along a 30-hour period. Evidence indicates that larval release of N. granulata is temporally synchronized with nocturnal ebb tides and all development from Zoea I to Zoea IV occur in areas close to the parental population, even with very different oceanographic characteristics. A possible mechanism based on salinity selection and wind-driven transport is proposed for such behavior, and some considerations related to the connectivity of present populations are made.

  2. Radiocarbon (14C) Constraints On The Fraction Of Refractory Dissolved Organic Carbon In Primary Marine Aerosol From The Northwest Atlantic

    Science.gov (United States)

    Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Long, M. S.; Frossard, A. A.; Kinsey, J. D.; Duplessis, P.; Chang, R.; Maben, J. R.; Lu, X.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Nearly all organic carbon in seawater is dissolved (DOC), with more than 95% considered refractory based on modeled average lifetimes ( 16,000 years) and characteristically old bulk radiocarbon (14C) ages (4000 - 6000 years) that exceed the timescales of overturning circulation. Although this refractory dissolved organic carbon (RDOC) is present throughout the oceans as a major reservoir of the global carbon cycle, its sources and sinks are poorly constrained. Recently, RDOC was proposed to be removed from the oceans through adsorption onto the surfaces of rising bubble plumes produced by breaking waves, ejection into the atmosphere via bubble bursting as a component of primary marine aerosol (PMA), and subsequent oxidation in the atmosphere. To test this mechanism, we used natural abundance 14C (5730 ± 40 yr half-life) to trace the fraction of RDOC in PMA produced in a high capacity generator at two biologically-productive and two oligotrophic hydrographic stations in the Northwest Atlantic Ocean during a research cruise aboard the R/V Endeavor (Sep - Oct 2016). The 14C signatures of PMA separately generated day and night from near-surface (5 m) and deep (2500 m) seawater were compared with corresponding 14C signatures in seawater of near-surface dissolved inorganic carbon (DIC, a proxy for recently produced organic matter), bulk deep DOC (a proxy for RDOC), and near-surface bulk DOC. Results constrain the selectivity of PMA formation from RDOC in natural mixtures of recently produced and refractory DOC. The implications of these results for PMA formation and RDOC biogeochemistry will be discussed.

  3. Methodological challenges in assessing the environmental status of a marine ecosystem: case study of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Henn Ojaveer

    Full Text Available Assessments of the environmental status of marine ecosystems are increasingly needed to inform management decisions and regulate human pressures to meet the objectives of environmental policies. This paper addresses some generic methodological challenges and related uncertainties involved in marine ecosystem assessment, using the central Baltic Sea as a case study. The objectives of good environmental status of the Baltic Sea are largely focusing on biodiversity, eutrophication and hazardous substances. In this paper, we conduct comparative evaluations of the status of these three segments, by applying different methodological approaches. Our analyses indicate that the assessment results are sensitive to a selection of indicators for ecological quality objectives that are affected by a broad spectrum of human activities and natural processes (biodiversity, less so for objectives that are influenced by a relatively narrow array of drivers (eutrophications, hazardous substances. The choice of indicator aggregation rule appeared to be of essential importance for assessment results for all three segments, whereas the hierarchical structure of indicators had only a minor influence. Trend-based assessment was shown to be a useful supplement to reference-based evaluation, being independent of the problems related to defining reference values and indicator aggregation methodologies. Results of this study will help in setting priorities for future efforts to improve environmental assessments in the Baltic Sea and elsewhere, and to ensure the transparency of the assessment procedure.

  4. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    Science.gov (United States)

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  5. Contribution of waterborne nitrogen emissions to hypoxia-driven marine eutrophication: modelling of damage to ecosystems in life cycle impact assessment (LCIA)

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias

    Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia) in...... and atmospheric deposition as a consequence of fossil fuels combustion.......Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia......) in bottom waters. Hypoxia is identified as an important and widespread cause of disturbance to marine ecosystems and has been linked to the increasing anthropogenic pressure. This is driven by environmental emissions of reactive nitrogen, mainly from N-containing fertilizers used in agriculture...

  6. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-05-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week). Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Large Marine Ecosystems and coastal water archetypes implemented in LCIA methods for marine eutrophication and metals ecotoxicity

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Dong, Yan; Hauschild, Michael Zwicky

    LMEs expressing the system’s flushing through local hydrodynamics is required for the parameterisation of the FF term to estimate the loss of N or metals from the LME through advection. The RT was found in literature for 36% of the LMEs, whereas 4 archetypes were built for the remaining, for which...... no data was found (47%) or to settle high variability of found sources (17%). The 4 archetypes were defined by the exposure to currents and regional marine circulation, depth and profile of the continental shelf, and stratification. Archetype 1 (high dynamics and exposure) with estimated RT=3 months......, Archetype 2 (medium dynamics and exposure) with RT=2 yr, Archetype 3 (low dynamics) with RT=25 yr, and Archetype 4 (very low dynamics, embayed, often stratified) with RT=90 yr. It is assumed that the system dynamics is determining the RT of both N and metals in the photic zone in each LME. The LME...

  8. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  9. Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of Arsenic in a marine ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J S; Francesconi, K A

    1981-02-12

    The high concentration (relative to seawater) of arsenic in many marine animals eaten as human food has stimulated interest in the cycling of arsenic in the marine environment. Although arsenic is present in arsenobetaine ((CH/sub 3/)/sub 3/As/sup +/CH/sub 2/COO/sup -/) in the wester rock lobster (Panulirus cygnus), the dusky shark (Carcharhinus obscurus) and the school whiting (Sillago bassensis) it is not clear what intermediate stages are involved in the biosynthesis of this compound from arsenate, the major form of arsnenic in seawater. We now report the isolation of the two main arsenical constituents of the brown kelp, Ecklonia radiata, and their identification as a 2-hydroxy-3-sulphopropyl-5-deoxy-5-(dimethylarsenoso)furanoside and a 2,3-dihydroxypropyl-5-deoxy-5-(dimethylarsenoso)furanoside. A ..beta..-ribo structure for the sugar system is strongly indicated in each case. Ecklonia is the major organisms that concentrates arsenic in the coastal ecosystem to which the western rock lobster and school whiting belong. It is clear that the compounds described here could readily be further metabolized to arsenobetaine and may well be the source of arsenobetaine in marine fauna associated with the region.

  10. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  11. Monitoring and evaluation of spatially managed areas: A generic framework for implementation of ecosystem based marine management and its application

    DEFF Research Database (Denmark)

    Stelzenmüller, Vanessa; Breen, Patricia; Stamford, Tammy

    2013-01-01

    This study introduces a framework for the monitoring and evaluation of spatially managed areas (SMAs), which is currently being tested by nine European case studies. The framework provides guidance on the selection, mapping, and assessment of ecosystem components and human pressures, the evaluati...... on qualitative information are addressed. The lessons learned will provide a better insight into the full range of methods and approaches required to support the implementation of the ecosystem approach to marine spatial management in Europe and elsewhere.......This study introduces a framework for the monitoring and evaluation of spatially managed areas (SMAs), which is currently being tested by nine European case studies. The framework provides guidance on the selection, mapping, and assessment of ecosystem components and human pressures, the evaluation...... of management effectiveness and potential adaptations to management. Moreover, it provides a structured approach with advice on spatially explicit tools for practical tasks like the assessment of cumulative impacts of human pressures or pressure-state relationships. The case studies revealed emerging challenges...

  12. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning.

    Directory of Open Access Journals (Sweden)

    Michelle E Portman

    Full Text Available Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.

  13. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  14. Seasonal variation of nutrients and hydrological conditions in the State Marine Park of Laje de Santos (SMPLS and adjacent continental shelf areas (South Atlantic Ocean - Brazil

    Directory of Open Access Journals (Sweden)

    Elisabete de Santis Braga

    Full Text Available Abstract Marine parks constitute important areas for the conservation of marine life and the genetic heritage around the world. The creation of such marine parks must be accompanied by careful measures to guarantee the coexistence of natural biota and human activities in these systems. The State Marine Park of Laje de Santos (SMPLS is so close to an industrial pole and urban area that its creation and maintenance is an example for humanity. However, no program has yet been installed for the monitoring of its biotic and abiotic water parameters. Thus, the objective of this study is to provide hydrological and hydrochemical parameters with emphasis on dissolved nutrients to establish a starting point for the monitoring of these waters. The presence of the South Atlantic Central Water (SACW in the marine park during the spring and summer sampling periods was evidenced by the observation of low temperatures ( 7.00 µmol L-1, while the concentration of N-ammonium (maximum 9.86 µmol L-1 demonstrated a rapid regeneration of the organic matter, mainly in the euphotic zone. Analysis of the data from summer periods revealed an annual difference, showing January 2014 to be drier than January 2015, which influenced the availability of some nutrients and the standard distribution of hydrochemical parameters in this region. The results of the distribution of hydrochemical parameters in the marine park confirms the preserved conditions of the seawater around the Laje de Santos, demonstrated by the excellent water quality, concluding the need to implant monitoring actions based on these reference data to preserve this important reserve of marine life.

  15. Biogeochemical studies of technetium in marine and estuarine ecosystems. Progress report, 1 July 1979-30 June 1980

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1980-01-01

    Progress is reported in research dealing with the biogeochemical behavior of technetium in marine and estuarine ecosystems. Studies were planned to elaborate the biokinetic behavior of Tc as TcO 4 - in selected marine and estuarine organisms and to determine the affinity of TcO 4 - for different marine sediments under oxygenated conditions. It is concluded that concentration factors for TcO 4 - in bivalve molluscs (oysters and mussels) do not exceed 2 when calculated for whole animals and when uptake is directly from water. Direct uptake from water by limpets (archeogastropod) are very much lower than have been reported for red abalone (archeogastropod). Whole body concentration factors for TcO 4 - in the plaice, Pleuronectes platessa, where uptake is directly from labeled seawater, do not exceed 10 at equilibrium. Both the lobster, Homarus gammaris and the polychaete, Nereis diversicolor appear to concentrate Tc efficiently from water labelled intially with TcO 4 - . Both plaice and rays (Raja clavata) fed /sup 95m/Tc labeled Nereis show an initial rapid loss of the isotope for approximately five days. Thereafter, loss is much reduced. Shrimp (Palaemon elegans), Cragnon sp.) and Crab (Cancer pagurus) show concentration factors similar to plaice (C.F. is less than 10). Isopods, however, have concentration factors of only 3 following four weeks exposure to labeled seawater. Uptake of TcO 4 - by phytoplankton is extremely low, which precludes experiments in which TcO 4 - labeled phytoplankton can be fed to either bivalve molluscs or microzooplankton. Sediment distribution coefficients for TcO 4 - are essentially zero and are independent of sediment type in well oxygenated seawater. Experiments to date have shown that it is not possible to make generalizations concerning the bioavailability of TcO 4 - to marine organisms

  16. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China

    Directory of Open Access Journals (Sweden)

    Nian-Zhi Jiao

    2015-06-01

    Full Text Available The ecosystems of China seas and coasts are undergoing rapid changes under the strong influences of both global climate change and anthropogenic activities. To understand the scope of these changes and the mechanisms behind them is of paramount importance for the sustainable development of China, and for the establishment of national policies on environment protection and climate change mitigation. Here we provide a brief review of the impacts of global climate change and human activities on the oceans in general, and on the ecosystems of China seas and coasts in particular. More importantly, we discuss the challenges we are facing and propose several research foci for China seas/coasts ecosystem studies, including long-term time series observations on multiple scales, facilities for simulation study, blue carbon, coastal ecological security, prediction of ecosystem evolution and ecosystem-based management. We also establish a link to the Future Earth program from the perspectives of two newly formed national alliances, the China Future Ocean Alliance and the Pan-China Ocean Carbon Alliance.

  17. Pollutant threshold concentration determination in marine ecosystems using an ecological interaction endpoint

    International Nuclear Information System (INIS)

    Wang, Changyou; Liang, Shengkang; Guo, Wenting; Yu, Hua; Xing, Wenhui

    2015-01-01

    The threshold concentrations of pollutants are determined by extrapolating single-species effect data to community-level effects. This assumes the most sensitive endpoint of the life cycle of individuals and the species sensitivity distribution from single-species toxic effect tests, thus, ignoring the ecological interactions. The uncertainties due to this extrapolation can be partially overcome using the equilibrium point of a customized ecosystem. This method incorporates ecological interactions and integrates the effects on growth, survival, and ingestion into a single effect measure, the equilibrium point excursion in the customized ecosystem, in order to describe the toxic effects on plankton. A case study showed that the threshold concentration of copper calculated with the endpoint of the equilibrium point was 10 μg L −1 , which is significantly different from the threshold calculated with a single-species endpoint. The endpoint calculated using this method provides a more relevant measure of the ecological impact than any single individual-level endpoint. - Highlights: • Ecotoxicological effect of exposure to copper was tested on a customized ecosystem. • Equilibrium point of biomasses in the customized ecosystem was used as an endpoint. • Exposure–response relationship in a community level was built on equilibrium point. • A threshold concentration incorporating ecological interactions was derived. - The equilibrium biomass incorporating ecological interactions in a customized ecosystem was used as an endpoint to calculate the threshold concentration at a community level

  18. Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter

    Science.gov (United States)

    Simon, Ehouarn; Samuelsen, Annette; Bertino, Laurent; Mouysset, Sandrine

    2015-12-01

    A sequence of one-year combined state-parameter estimation experiments has been conducted in a North Atlantic and Arctic Ocean configuration of the coupled physical-biogeochemical model HYCOM-NORWECOM over the period 2007-2010. The aim is to evaluate the ability of an ensemble-based data assimilation method to calibrate ecosystem model parameters in a pre-operational setting, namely the production of the MyOcean pilot reanalysis of the Arctic biology. For that purpose, four biological parameters (two phyto- and two zooplankton mortality rates) are estimated by assimilating weekly data such as, satellite-derived Sea Surface Temperature, along-track Sea Level Anomalies, ice concentrations and chlorophyll-a concentrations with an Ensemble Kalman Filter. The set of optimized parameters locally exhibits seasonal variations suggesting that time-dependent parameters should be used in ocean ecosystem models. A clustering analysis of the optimized parameters is performed in order to identify consistent ecosystem regions. In the north part of the domain, where the ecosystem model is the most reliable, most of them can be associated with Longhurst provinces and new provinces emerge in the Arctic Ocean. However, the clusters do not coincide anymore with the Longhurst provinces in the Tropics due to large model errors. Regarding the ecosystem state variables, the assimilation of satellite-derived chlorophyll concentration leads to significant reduction of the RMS errors in the observed variables during the first year, i.e. 2008, compared to a free run simulation. However, local filter divergences of the parameter component occur in 2009 and result in an increase in the RMS error at the time of the spring bloom.

  19. Climate-mediated changes in marine ecosystem regulation during El Niño

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Koslow, J. Anthony

    2017-01-01

    concentrations and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases......, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down and physical forcing during changing climate conditions on ecosystem regulation in the Southern California...

  20. Validation and application of fossil DNA as a recorder of past marine ecosystems and environmental conditions

    NARCIS (Netherlands)

    Boere, A.C.

    2010-01-01

    The majority of planktonic species, including those that are informative in the reconstructions of past marine environmental conditions, do not produce diagnostic features (e.g., cysts, spores, or lipid biomarkers) and would therefore escape identification from the fossil record using traditional

  1. Marine Mammals :: NOAA Fisheries

    Science.gov (United States)

    Resources Habitat Conservation Science and Technology International Affairs Law Enforcement Aquaculture Application Types Apply Online (APPS) Endangered Species Permits Marine Mammal Permits Public Display of : NMFS Pacific Islands Fisheries Science Center North Atlantic right whales North Atlantic Right whales

  2. Participation of CIEMAT in studies of radioecology in european marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Meral, J.; Anton, M.P.; Gonzalez, A. M.

    1999-01-01

    In this report the different objectives and results achieved through the participation of the Aquatic Radioecology Laboratory for CIEMAT in some European Projects from 1994 up to now are detailed. A Description of the studied ecosystems, the sampling campaigns performed, and the analytical methods developed are presented as well. Finally the main results and conclusions obtained are summarized. (Author)

  3. Marine Governance in a European context: Regionalization, integration and cooperation for ecosystem-based management

    NARCIS (Netherlands)

    Soma, K.; Tatenhove, van J.P.M.; Leeuwen, van J.

    2015-01-01

    New EU policy initiatives within the Maritime Strategy Framework Directive, the Integrated Maritime Policy, the reform of the Common Fisheries Policy, the offshore Energy policy and the Blue Growth Strategy, are in different manners aiming at implementing Ecosystem Based Management (EBM). EBM

  4. Marine debris in beaches of the Southwestern Atlantic: An assessment of their abundance and mass at different spatial scales in northern coastal Argentina.

    Science.gov (United States)

    Becherucci, Maria Eugenia; Rosenthal, Alan Federico; Seco Pon, Juan Pablo

    2017-06-15

    Argentina is currently undergoing an intensive development of coastal-oriented tourism due to the temperate climate and coastal sceneries of the Southwestern Atlantic and particularly its wide ocean-open sandy beaches, which may turn into an important contributor of marine debris to the beaches. This study was designed to assess at four spatial scales (i) the variation of the abundance and mass of marine debris and (ii) the composition and sources of these items in sandy-tourist beaches of coastal zones of the province of Buenos Aires, in northern Argentina. The abundance and mass of marine debris shifted between sampling localities (separated by ~1.5×10 5 m) and beaches (~3×10 4 m). Debris was primarily from recreational and fishing activities and over 20mm in size. Tackling the complications associated with marine debris in northern Argentina may include intensive educational and advertising campaigns oriented chiefly to beach users and fisherman. Copyright © 2017. Published by Elsevier Ltd.

  5. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    Science.gov (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  6. A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models

    Science.gov (United States)

    Radtke, H.; Burchard, H.

    2015-01-01

    In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.

  7. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D.; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S.; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-01-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable

  8. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Lundebye, Anne-Katrine, E-mail: aha@nifes.no [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway); Lock, Erik-Jan; Rasinger, Josef D.; Nøstbakken, Ole Jakob; Hannisdal, Rita [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway); Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S. [Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen (Norway); Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway)

    2017-05-15

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable

  9. 77 FR 6080 - Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training

    Science.gov (United States)

    2012-02-07

    ... research, development, testing, and evaluation (RDT&E) activities to be conducted within the Atlantic Fleet... research activities conducted within the AFAST Study Area under regulations issued on January 22, 2009 (74... [[Page 6082

  10. Geostatistical modelling of the spatial life history of post-larval deepwater hake Merluccius paradoxus in the Benguela Current Large Marine Ecosystem

    DEFF Research Database (Denmark)

    Jansen, T; Kristensen, K; Fairweather, T. P.

    2017-01-01

    paradoxus are not reflected in the current assessment and management practices for the Benguela Current Large Marine Ecosystem. In this study, we compiled data from multiple demersal trawl surveys from the entire distribution area and applied state-of the-art geostatistical population modelling (Geo...

  11. Migration, distribution and population (stock) structure of shallow-water hake (Merluccius capensis) in the Benguela Current Large Marine Ecosystem inferred using a geostatistical population model

    DEFF Research Database (Denmark)

    Jansen, Teunis; Kristensen, Kasper; Kainge, Paulus Inekela

    2016-01-01

    Shallow-water hake (Merluccius capensis) is of considerable ecological and economic importance in the Benguela Current Large Marine Ecosystem in South Africa and Namibia. Optimal management of the resource is currently constrained by the limited understanding of migration patterns and population...

  12. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    Science.gov (United States)

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. Copyright © 2011 SETAC.

  13. Environmental impact of the minero-metallurgic industry on the marine ecosystem in Moa, Cuba

    International Nuclear Information System (INIS)

    Martinez Canals, M.; Pedro Garcia, L.

    1999-01-01

    One of the biggest nickel mineral deposits of the world is located in Moa; therefore two plants are installed for the extraction of this metal in the region, and another is in its construction phase. During the technological processes, residuals that contain great quantity of metallic elements, and high acidity level are discharged into the environment. The objectives of this research were to establish the levels of pollution of eleven metals, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in the superficial bottom sediments, sea water and organisms of the marine aquatorium (green and white sea urchins, blue crabs, oysters and mangrove leaves). The dynamics of pollution in superficial sediments was also determined in the course of a 9-year study. As complementary analyses, pH and salinity were determined for the supradjacent water to the marine bottom, as well as the content of organic carbon, and granulometry of the sediment

  14. Spread, Behavior, and Ecosystem Consequences of Conventional Munitions Compounds in Coastal Marine Waters

    Directory of Open Access Journals (Sweden)

    Aaron J. Beck

    2018-04-01

    Full Text Available Coastal marine environments are contaminated globally with a vast quantity of unexploded ordnance and munitions from intentional disposal. These munitions contain organic explosive compounds as well as a variety of metals, and represent point sources of chemical pollution to marine waters. Most underwater munitions originate from World Wars at the beginning of the twentieth century, and metal munitions housings have been impacted by extensive corrosion over the course of the following decades. As a result, the risk of munitions-related contaminant release to the water column is increasing. The behavior of munitions compounds is well-characterized in terrestrial systems and groundwater, but is only poorly understood in marine systems. Organic explosive compounds, primarily nitroaromatics and nitramines, can be degraded or transformed by a variety of biotic and abiotic mechanisms. These reaction products exhibit a range in biogeochemical characteristics such as sorption by particles and sediments, and variable environmental behavior as a result. The reaction products often exhibit increased toxicity to biological receptors and geochemical controls like sorption can limit this exposure. Environmental samples typically show low concentrations of munitions compounds in water and sediments (on the order of ng/L and μg/kg, respectively, and ecological risk appears generally low. Nonetheless, recent work demonstrates the possibility of sub-lethal genetic and metabolic effects. This review evaluates the state of knowledge on the occurrence, fate, and effect of munition-related chemical contaminants in the marine environment. There remain a number of knowledge gaps that limit our understanding of munitions-related contaminant spread and effect, and the need for additional work is made all the more urgent by increasing risk of release to the environment.

  15. Microplastic pollution, a threat to marine ecosystem and human health: a short review.

    Science.gov (United States)

    Sharma, Shivika; Chatterjee, Subhankar

    2017-09-01

    Human populations are using oceans as their household dustbins, and microplastic is one of the components which are not only polluting shorelines but also freshwater bodies globally. Microplastics are generally referred to particles with a size lower than 5 mm. These microplastics are tiny plastic granules and used as scrubbers in cosmetics, hand cleansers, air-blasting. These contaminants are omnipresent within almost all marine environments at present. The durability of plastics makes it highly resistant to degradation and through indiscriminate disposal they enter in the aquatic environment. Today, it is an issue of increasing scientific concern because these microparticles due to their small size are easily accessible to a wide range of aquatic organisms and ultimately transferred along food web. The chronic biological effects in marine organisms results due to accumulation of microplastics in their cells and tissues. The potential hazardous effects on humans by alternate ingestion of microparticles can cause alteration in chromosomes which lead to infertility, obesity, and cancer. Because of the recent threat of microplastics to marine biota as well as on human health, it is important to control excessive use of plastic additives and to introduce certain legislations and policies to regulate the sources of plastic litter. By setup various plastic recycling process or promoting plastic awareness programmes through different social and information media, we will be able to clean our sea dustbin in future.

  16. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    Science.gov (United States)

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.

  17. Public preferences for ecosystem services on exurban landscapes: A case study from the Mid-Atlantic, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Duke

    2016-07-01

    Full Text Available This paper reports data from a residential landscape preference study conducted in Delaware, USA. The researchers constructed an ecologically designed exurban residential landscape, which delivered 20 new environmental and human-related impacts, including 7 that delivered ecosystem services. Ecosystem services included impacts such as improved flood control and enhanced plant diversity. Using pictures before and after the intervention, an intercept survey of 105 non-neighboring residents estimated whether the 20 impacts positively, negatively, or did not affect the respondents’ household wellbeing. The public found that most landscape-intervention impacts had a positive effect on their quality of life, especially those impacts involving ecosystem services. All but one ecosystem service were found to be strong amenities and the other (moving indoor activities outside was an amenity. However, the landscape intervention delivered one clear disamenity: increased undesirable wildlife. Respondents also identified what impacts were the most important in affecting their welfare: undesirable wildlife (negative; flood control (positive; and water quality (positive. Ecosystem services accounted for 41.6% of the public’s importance rating, while undesirable wildlife was 12.9%. A planning process seeking more ecosystem services from residential landscapes should focus on all the most important drivers of preference, if it is to be accepted by residents.

  18. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

    DEFF Research Database (Denmark)

    Griffiths, Jennifer R.; Kadin, Martina; Nascimento, Francisco J. A.

    2017-01-01

    and function is strongly affected by anthropogenic pressures, however there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling...... processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study, and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic......Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure...

  19. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1996-01-01

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  20. The effect of the global warming on marine ecosystems in the Arctic

    International Nuclear Information System (INIS)

    Wassmann, Paul

    2007-01-01

    The article discusses various results from studies of development in the ecosystems in the Arctic region and the effect the global warming may have. The warming in these areas is larger than in the central Europe and influence the economic and social development of the region. The focus is on the fisheries, exploitation of oil and gas, transport, diversity in species, acidification of the oceans, meteorological phenomena etc.. Some environmental and energy related aspects are mentioned. (tk)

  1. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.

    Science.gov (United States)

    Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika

    2017-06-01

    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Multi-proxy reconstructions and the power of integration across marine, terrestrial, and freshwater ecosystems. (Invited)

    Science.gov (United States)

    Black, B.

    2013-12-01

    Over the past decade, dendrochronology (tree-ring analysis) techniques have been increasingly applied to growth increments of various bivalve, fish, and coral species. In particular, the use of crossdating ensures that all increments in a dataset have assigned the correct calendar year of formation and that the resulting chronology is exactly placed in time. Such temporal alignment facilitates direct comparisons among chronologies that span diverse taxa and ecosystems, illustrating the pervasive, synchronizing influence of climate from alpine forests to the continental slope. Such an approach can be particularly beneficial to reconstructions in that each species captures climate signals from its unique 'perspective' of life history and habitat. For example, combinations of tree-ring data and chronologies for the long-lived bivalve Pacific geoduck (Panopea generosa) capture substantially more variance in regional sea surface temperatures than either proxy could explain alone. Just as importantly, networks of chronologies spanning multiple trophic levels can help identify climate variables critical to ecosystem functioning, which can then be targeted to generate most biologically relevant reconstructions possible. Along the west coast of North America, fish and bivalve chronologies in combination with records of seabird reproductive success indicate that winter sea-level pressure is closely associated with California Current productivity, which can be hind-cast over the past six centuries using coastal tree-ring chronologies. Thus, multiple proxies not only increase reconstruction skill, but also help isolate climate variables most closely linked to ecosystem structure and functioning.

  3. Sea Spray Aerosol Production over the North Atlantic

    Science.gov (United States)

    Bates, T. S.; Quinn, P.

    2017-12-01

    Breaking waves on the ocean surface generate air bubbles that scavenge organic matter from the surrounding seawater. When injected into the atmosphere, these bubbles burst, yielding sea spray aerosol (SSA), a mixture of organic and inorganic compounds with the organic matter enriched relative to seawater. SSA mass is well documented as the dominant component of aerosol light scattering over the remote oceans. The importance of SSA number to marine boundary layer cloud condensation nuclei (CCN) is much less certain. During the Western Atlantic Climate Study cruises (WACS-1 - August 2012 and WACS-2 - May-June 2014) and the North Atlantic Aerosols and Marine Ecosystem Study cruises (NAAMES-1 - November 2015, NAAMES-2 - May 2016, and NAAMES-3 - September 2017), we generated and measured freshly emitted SSA using the Sea Sweep SSA generator. During the 2017 cruise we also generated SSA with a Marine Aerosol Reference Tank (MART). Using the data generated on these 5 cruises and a large database of remote marine boundary layer aerosol measurements we will address three questions during this presentation: 1 - Do phytoplankton ecosystems affect the organic enrichment of freshly emitted SSA?, 2 - Do plankton ecosystems affect the number production flux of SSA?, and 3 - Is SSA a significant source of atmospheric CCN?

  4. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf.

    Science.gov (United States)

    Tomašových, Adam; Kidwell, Susan M

    2017-06-14

    The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods ( Laqueus ) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. © 2017 The Author(s).

  5. Risks for marine coastal ecosystems from anthropogenic loading in the Leningrad NPP environs

    International Nuclear Information System (INIS)

    Zimina, L.; Zimin, V.; Shchukina, T.; Pomiluiko, G.; Ryabova, V.

    1998-01-01

    Data on conditions and variations in phytoplankton, zooplankton and fish communities, chlorophyll 'a' and hydrochemical parameters in the coastal waters of Koporskaya Bay (cooling water body of the Leningrad NPP) were analyzed. The most significant anthropogenic factors issued from the Leningrad nuclear power plant activity are of non-radioactive character, as it was recognized during long-time (20 years) ecological monitoring. Main factors influenced ecosystem of the NPP cooling water body are thermal water discharge and nutrient outflows from the bay catchment area. (authors)

  6. Implications of Climate Change for Northern Canada: Freshwater, Marine, and Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Prowse, Terry D.; Wrona, Fred J. (Water and Climate Impacts Research Centre, Environment Canada, Dept. of Geography, Univ. of Victoria, Victoria, BC (Canada)). e-mail: terry.prowse@ec.gc.caa; Furgal, Chris (Indigenous Environmental Studies Program, Trent Univ., Peterborough, ON (Canada)); Reist, James D. (Fisheries and Oceans Canada, 501 Univ. Crescent, Winnipeg, MB (Canada))

    2009-07-15

    Climate variability and change is projected to have significant effects on the physical, chemical, and biological components of northern Canadian marine, terrestrial, and freshwater systems. As the climate continues to change, there will be consequences for biodiversity shifts and for the ranges and distribution of many species with resulting effects on availability, accessibility, and quality of resources upon which human populations rely. This will have implications for the protection and management of wildlife, fish, and fisheries resources; protected areas; and forests. The northward migration of species and the disruption and competition from invading species are already occurring and will continue to affect marine, terrestrial, and freshwater communities. Shifting environmental conditions will likely introduce new animal-transmitted diseases and redistribute some existing diseases, affecting key economic resources and some human populations. Stress on populations of iconic wildlife species, such as the polar bear, ringed seals, and whales, will continue as a result of changes in critical sea-ice habitat interactions. Where these stresses affect economically and culturally important species, they will have significant effects on people and regional economies. Further integrated, field-based monitoring and research programs, and the development of predictive models are required to allow for more detailed and comprehensive projections of change to be made, and to inform the development and implementation of appropriate adaptation, wildlife, and habitat conservation and protection strategies

  7. Speciation and bioavailability of plutonium and americium in the Irish Sea and other marine ecosystems

    International Nuclear Information System (INIS)

    Vives i Batlle, J.

    1993-12-01

    Since the late 1960s, the Irish Sea has become a repository for a variety of radio-elements originating mainly in discharges from the British Nuclear Fuels (BNF) plc. Sellafield reprocessing complex located on the Cumbrian coast. In particular, transuranium nuclides such as plutonium, americium and curium (the main constituents of the α-emitting discharges) have become incorporated into every marine compartment by a variety of mechanisms, many of which are not well understood. Although extensive studies have been carried out in the near-field (eastern Irish Sea, especially in the vicinity of the discharge point and collateral muddy sediments), comparatively little had been done to assess the long-term behaviour and bioavailability of plutonium and americium in the far-field, e.g., the western Irish Sea, prior to the present study. In this dissertation, the results of an extensive research programme, undertaken in order to improve and refine our understanding of the behaviour of plutonium and americium in the marine environment, are presented. Specifically, the thesis details the results of (and conclusions deduced from) a series of experiments in which the physical and chemical speciation, colloidal association, mobility and bioavailability of plutonium and americium were examined in diverse environments including the Irish Sea and the Mediterranean. (author)

  8. The Bolivar Channel Ecosystem of the Galapagos Marine Reserve: Energy flow structure and role of keystone groups

    Science.gov (United States)

    Ruiz, Diego J.; Wolff, Matthias

    2011-08-01

    The Bolivar Channel Ecosystem (BCE) is among the most productive zones in the Galapagos Marine Reserve (GMR). It is exposed to relatively cool, nutrient-rich waters of the Cromwell current, which are brought to the photic zone through topographic upwelling. The BCE is characterized by a heterogeneous rocky reef habitat covered by dense algae beds and inhabited by numerous invertebrate and fish species, which represent the food for higher predators including seals and sharks and exploited fish species. In addition, plankton and detritus based food chains channel large amounts of energy through the complex food web. Important emblematic species of the Galapagos archipelagos reside in this area such as the flightless cormorant, the Galapagos penguin and the marine iguanas. A trophic model of BCE was constructed for the habitats < 30 m depth that fringe the west coast of Isabela and east coast of Fernandina islands covering 14% of the total BCE area (44 km 2). The model integrates data sets from sub tidal ecological monitoring and marine vertebrate population monitoring (2004 to 2008) programs of the Charles Darwin Foundation and consists of 30 compartments, which are trophically linked through a diet matrix. Results reveal that the BCE is a large system in terms of flows (38 695 t km - 2 yr - 1 ) comparable to Peruvian Bay Systems of the Humboldt upwelling system. A very large proportion of energy flows from the primary producers (phytoplankton and macro-algae) to the second level and to the detritus pool. Catches are high (54.3 t km - 2 yr - 1 ) and are mainly derived from the second and third trophic levels (mean TL of catch = 2.45) making the fisheries gross efficiency high (0.3%). The system's degree of development seems rather low as indicated by a P/R ratio of 4.19, a low ascendency (37.4%) and a very low Finn's cycling index (1.29%). This is explained by the system's exposure to irregular changes in oceanographic conditions as related to the EL Niño Southern

  9. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific.

    Science.gov (United States)

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2006-03-22

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.

  10. Pollutant threshold concentration determination in marine ecosystems using an ecological interaction endpoint.

    Science.gov (United States)

    Wang, Changyou; Liang, Shengkang; Guo, Wenting; Yu, Hua; Xing, Wenhui

    2015-09-01

    The threshold concentrations of pollutants are determined by extrapolating single-species effect data to community-level effects. This assumes the most sensitive endpoint of the life cycle of individuals and the species sensitivity distribution from single-species toxic effect tests, thus, ignoring the ecological interactions. The uncertainties due to this extrapolation can be partially overcome using the equilibrium point of a customized ecosystem. This method incorporates ecological interactions and integrates the effects on growth, survival, and ingestion into a single effect measure, the equilibrium point excursion in the customized ecosystem, in order to describe the toxic effects on plankton. A case study showed that the threshold concentration of copper calculated with the endpoint of the equilibrium point was 10 μg L(-1), which is significantly different from the threshold calculated with a single-species endpoint. The endpoint calculated using this method provides a more relevant measure of the ecological impact than any single individual-level endpoint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genomic signatures of local directional selection in a high gene flow marine organism, the Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Jakob Hemmer; Poulsen, Nina Aagaard

    2009-01-01

    -associated single nucleotide polymorphisms (SNPs) for evidence of selection in local populations of Atlantic cod (Gadus morhua L.) across the species distribution. Results: Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional...... selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread...

  12. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    Science.gov (United States)

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  13. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    Science.gov (United States)

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf

    Science.gov (United States)

    Alexeev, Denis K.; Galtsova, Valentina V.

    2012-07-01

    This study is the result of many years of research on the ecology of the marine benthos of Russian Arctic seas. We used samples collected at various locations from the Russian continental shelf during 1993-2009 as the basis of our study. Our main aim was to analyze the spatial distribution of taxonomic and quantitative characteristics of the meiobenthos (small bottom-dwelling animals, 0.1-3.0 mm in size). Statistical analysis of the data revealed that the factors determining the spatial distribution of meiobenthic organisms under natural conditions, and conditions impacted upon by human activity, were salinity, water depth, hydrocarbons, heavy metals and radiocaesium volumetric activity. The possible use of the meiobenthos as a tool for environmental impact assessment is proposed and discussed on the level of higher taxa.

  15. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data.

    Science.gov (United States)

    Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U

    2014-07-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  16. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data

    International Nuclear Information System (INIS)

    Konovalenko, L.; Bradshaw, C.; Kumblad, L.; Kautsky, U.

    2014-01-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  17. Local ecological knowledge related with marine ecosystems in two coastal communities: El Valle and Sapzurro

    International Nuclear Information System (INIS)

    Correa, Sandra Liliana; Turbay, Sandra; Velez, Madelene

    2012-01-01

    The inhabitants of the Colombian coastal populations of El Valle, in the Pacific, and Sapzurro, in the Caribbean Darien, have ecological knowledge about coastal ecosystems that is a result of their constant relation with the sea, through fishing and navigation. The sea is a source of food and economical resources, but it is also the sphere where the male personality is forged. The accurate knowledge about mangrove, coral, coral reef, beaches and fishing grounds has been enriched through the dialog between local inhabitants and researchers in the conservation biology field. However, the tensions with researchers and environmental authorities still exist. The paper suggests that local ecological knowledge studies could be a starting point for maintaining a more horizontal dialogue between environmentalist and the populations with livelihoods derived of fishing.

  18. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem.

    Science.gov (United States)

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  19. Nr 470 - Report on the behalf of the Commission of foreign affairs, defence and armed forces on the bill project authorizing the approval of amendments of appendices II and III to the OSPAR convention for the protection of the marine environment of the North-East Atlantic related to the storage of carbon dioxide fluxes in geological structures

    International Nuclear Information System (INIS)

    Aichi, Leila

    2013-01-01

    This report first discusses the necessity to protect the marine environment of the north-east Atlantic Ocean. It briefly recalls the content and objectives of the OSPAR convention, and outlines the need of a permanent update of this convention to take measures of struggle against climate change into account. Notably, two amendments introduced the interdiction of storage of carbon dioxide fluxes. It highlights the need to protect the Arctic Ocean area. In a second part, the report discusses the emergence of a new technique for the storage of CO 2 (the injection in geological structures), and shows that this technique complies with the objective of struggle against climate change. However, the authors also mention the worrying potential risk for the ecosystem, and the fact that this technique should complement but not replace other measures against climate change

  20. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea.

    Science.gov (United States)

    Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M

    2017-08-14

    Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.

  1. Characterization of Francisella sp., GM2212, the first Francisella isolate from marine fish, Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Ottem, Karl F; Nylund, Are; Karlsbakk, Egil

    2007-01-01

    A Francisella sp., isolate GM2212(T), previously isolated from diseased farmed Atlantic cod Gadus morhua in Norway is characterized. The complete 16S rDNA, 16S-23S intergenic spacer, 23S rDNA, 23S-5S intergenic spacer, 5S rDNA, FopA, lipoprotein TUL4 (LpnA), malate dehydrogenase and a hypothetica...

  2. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling

    International Nuclear Information System (INIS)

    Green, Dannielle Senga; Boots, Bas; Sigwart, Julia; Jiang, Shan; Rocha, Carlos

    2016-01-01

    Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats. - Highlights: • Effects of conventional and biodegradable microplastics on lugworm habitats. • 0.2–2% microplastics (by weight) reduced microalgal biomass of sediment. • Biodegradable (PLA) and conventional (HDPE, PVC) microplastics had similar effects. • High doses (2% by sediment weight) of PVC altered metabolism of lugworms. • Microplastics altered burrowing activity of lugworms measured as casts. - Biodegradable and conventional microplastics altered activities of a key marine ecosystem engineer and reduced primary productivity of sandy sediments.

  3. Benthic indicators to use in Ecological Quality classification of Mediterranean soft bottom marine ecosystems, including a new Biotic Index

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2002-12-01

    Full Text Available A general scheme for approaching the objective of Ecological Quality Status (EcoQ classification of zoobenthic marine ecosystems is presented. A system based on soft bottom benthic indicator species and related habitat types is suggested to be used for testing the typological definition of a given water body in the Mediterranean. Benthic indices including the Shannon-Wiener diversity index and the species richness are re-evaluated for use in classification. Ranges of values and of ecological quality categories are given for the diversity and species richness in different habitat types. A new biotic index (BENTIX is proposed based on the relative percentages of three ecological groups of species grouped according to their sensitivity or tolerance to disturbance factors and weighted proportionately to obtain a formula rendering a five step numerical scale of ecological quality classification. Its advantage against former biotic indices lies in the fact that it reduces the number of the ecological groups involved which makes it simpler and easier in its use. The Bentix index proposed is tested and validated with data from Greek and western Mediterranean ecosystems and examples are presented. Indicator species associated with specific habitat types and pollution indicator species, scored according to their degree of tolerance to pollution, are listed in a table. The Bentix index is compared and evaluated against the indices of diversity and species richness for use in classification. The advantages of the BENTIX index as a classification tool for ECoQ include independence from habitat type, sample size and taxonomic effort, high discriminative power and simplicity in its use which make it a robust, simple and effective tool for application in the Mediterranean Sea.

  4. Biological and climate controls on North Atlantic marine carbon dynamics over the last millennium: Insights from an absolutely-dated shell based record from the North Icelandic Shelf

    Science.gov (United States)

    Hall, I. R.; Reynolds, D.; Scourse, J. D.; Richardson, C.; Wanamaker, A. D.; Butler, P. G.

    2017-12-01

    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era there is a pressing need to construct longterm records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the historical biological and climatic controls on the carbon isotopic (δ13C-shell) composition of the North Icelandic shelf waters over the last millennium derived from the shells of the long-lived marine bivalve mollusc Arctica islandica. Variability in the annually resolved δ13C-shell record is dominated by multi-decadal variability with a negative trend (-0.003±0.002‰yr-1) over the industrial era (1800-2000). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13C-shell record with contemporary proxy archives, over the last millennium, and instrumental data over the 20th century, suggests that primary productivity and climate conditions over the sub-polar North Atlantic region played a vital role in driving inter-annual to multi-decadal scale variability in the δ13C-shell record. Our results highlight that relative shifts in the proportion of sub-polar mode waters and Arctic intermediate waters entrained onto the North Icelandic shelf, coupled with atmospheric circulation patterns associated with the winter North Atlantic Oscillation (wNAO), are the likely physical mechanisms that drive natural variations in seawater δ13C variability on the North Icelandic shelf.

  5. Distribution and evolution of sterols and aliphatic hydrocarbons in dated marine sediment cores from the Cabo Frio upwelling region, SW Atlantic, Brazil.

    Science.gov (United States)

    Lourenço, Rafael André; Martins, César C; Taniguchi, Satie; Mahiques, Michel Michaelovitch; Montone, Rosalinda Carmela; Magalhães, Caio Augusto; Bícego, Márcia Caruso

    2017-08-01

    We report the distribution of selected lipid biomarkers specifically sterols and aliphatic hydrocarbons in sediment cores from Cabo Frio, SW Atlantic continental shelf, Brazil, corresponding approximately to the last 700 years. In the Cabo Frio region, a costal upwelling occurs as a quasi-seasonal phenomenon characterized by nutrient-rich bottom waters that intrude on the continental shelf and promote relatively high biological productivity compared to other Brazilian continental shelf areas. The results for sterols indicate the predominance of organic matter (OM) inputs related to marine organisms, mainly plankton, in all of the cores along the time scale studied. Principal component analyses show three different groups of variables, which may be associated with (i) the more effective intrusion of the nutrient-rich South Atlantic Central Water, resulting in the increase of marine lipid biomarkers such as sterols and short-chain n-alkanes; (ii) the influence of the Coastal Water with higher surface water temperature and subsequently lower primary productivity; and (iii) OM characterized by high total organic carbon and long-chain n-alkanes related to an allochthonous source. Relatively high concentrations of sterols and n-alkanes between 1450 and 1700 AD, chronologically associated with the Little Ice Age, suggest a period associated with changes in the local input of specific sources of these compounds. The concentrations of lipid biomarkers vary over core depth, but this does not suggest a notably high or low intensity of upwelling processes. It is possible that the climatic and sea surface temperature changes reported in previous studies did not affect the input of the sedimentary lipid biomarkers analyzed here.

  6. A proposed ecosystem-based management system for marine waters: linking the theory of environmental policy to the practice of environmental management

    Directory of Open Access Journals (Sweden)

    Rafael Sardà

    2014-12-01

    Full Text Available New coastal and marine management strategies have recently been developed in many countries and regions. From an ecosystem approach perspective, the aim of such strategies is the maintenance of ecosystem integrity while enabling the sustainable use of ecosystem goods and services. There is, however, a need for harmonized definitions and standardized processes to deal not only with the interjurisdictional and multidisciplinary complexities that are associated with such strategies but also with the extensive timelines and resources implicated in the planning and implementation of these strategies. The ecosystem-based management system proposed here is based on three pillars that facilitate the integration of an ecosystem approach to coastal and oceans policy development, regardless of the ecosystem or administrative scales. The managerial pillar is based on classical risk-management systems that incorporate environmental considerations and objectives within a continuous improvement cycle of adaptive management. The managerial pillar is supported by governance structures that provide oversight and thereby ensure that planning and implementation activities adhere to modern environmental principles. The information pillar ensures that data and scientific advice are based on current knowledge, and the participation pillar brings together communication and consultation requirements as indicated by the principles of the ecosystem approach.

  7. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    Science.gov (United States)

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  8. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Sangeetha Devi, Rajendran; Rajesh Kannan, Velu; Nivas, Duraisamy; Kannan, Kanthaiah; Chandru, Sekar; Robert Antony, Arokiaswamy

    2015-07-15

    High density polyethylene (HDPE) is the most commonly found non-degradable solid waste among the polyethylene. In this present study, HDPE degrading various fungal strains were isolated from the polyethylene waste dumped marine coastal area and screened under in vitro condition. Based on weight loss and FT-IR Spectrophotometric analysis, two fungal strains designated as VRKPT1 and VRKPT2 were found to be efficient in HDPE degradation. Through the sequence analysis of ITS region homology, the isolated fungi were identified as Aspergillus tubingensis VRKPT1 and Aspergillus flavus VRKPT2. The biofilm formation observed under epifluorescent microscope had shown the viability of fungal strains even after one month of incubation. The biodegradation of HDPE film nature was further investigated through SEM analysis. HDPE poses severe environmental threats and hence the ability of fungal isolates was proved to utilize virgin polyethylene as the carbon source without any pre-treatment and pro-oxidant additives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health.

    Science.gov (United States)

    Anderson, Donald M; Alpermann, Tilman J; Cembella, Allan D; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-02-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.

  10. Recent changes in the marine ecosystems of the northern Adriatic Sea

    Science.gov (United States)

    Giani, Michele; Djakovac, Tamara; Degobbis, Danilo; Cozzi, Stefano; Solidoro, Cosimo; Umani, Serena Fonda

    2012-12-01

    This review of studies on long term series on river discharges, oceanographic features, plankton, fish and benthic compartments, collected since the 1970s revealed significant changes of mechanisms and trophic structures in the northern Adriatic ecosystems. A gradual increase of eutrophication pressure occurred during the 1970s until the mid 1980s, followed by a reversal of the trend, particularly marked in the 2000s. This trend was ascribed to the combination of a reduction of the anthropogenic impact, mainly due to a substantial decrease of the phosphorus loads, and of climatic modifications, resulting in a decline of atmospheric precipitations and, consequently, of the runoff in the northern Adriatic Sea. Significant decreases of the phytoplankton abundances were observed after the mid 1980s, concurrently with changes in the species composition of the communities, with an evident shift toward smaller cells or organism sizes. Moreover, changes in the zooplankton community were also observed. A decrease of demersal fishes, top predators and small pelagic fishes was ascribed to both overfishing and a demise of eutrophication. Macrozoobenthic communities slowly recovered in the last two decades after the anoxia events of the 1970s and 1980s. An increasing number of non-autochthonous species has been recorded in the last decades moreover the increasing seawater temperature facilitated the spreading of thermophilic species.

  11. Deep-water chemosynthetic ecosystem research during the Census of Marine Life decade and beyond: A proposed deep-ocean road map.

    Digital Repository Service at National Institute of Oceanography (India)

    German, C.R.; Ramirez-Llodra, E.; Baker, M.C.; Tyler, P.A.; Baco-Taylor, A.; Boetius, A.; Bright, M.; de Siqueira, L.C.; Cordes, E.E.; Desbruyeres, D.; Dubilier, N.; Fisher, C.R.; Fujiwara, Y.; Gaill, F.; Gebruk, A.; Juniper, K.; Levin, L.A.; Lokabharathi, P.A.; Metaxas, A.; Rowden, A.A.; Santos, R.S.; Shank, T.M.; Smith, C.R.; Van Dover, C.L.; Young, C.M.; Waren, A.

    West Africa, encompassing a very large region around the Equator, from 15uS to 30uN. The key sites include the Costa Rica cold seeps, the Gulf of Mexico cold seeps, the ultra-slow spreading Mid Cayman Rise, the Barbados Accretionary Prism, hydrothermal... and those present in the Americas – along the Atlantic margin, the Barbados Accretionary Prism, the Gulf of Mexico and, in the extreme, along the Pacific margin of Costa Rica which would also have Census Chemosynthetic Ecosystem Research & Beyond PLoS ONE...

  12. The Mental Demands of Marine Ecosystem-Based Management: A Constructive Developmental Lens (by V. G. DeLauer, 2009

    Directory of Open Access Journals (Sweden)

    Thomas Jordan

    2013-02-01

    Full Text Available Reviewed by Thomas Jordan Our societies face a number of challenging issues that are both important, because of their impact on the wellbeing of people and nature, and complex, because many causal and conditioning factors and diverse stakeholders are involved. We find such issues in many areas, such as climate change, biodiversity, environmental pollution, intractable conflicts, crime, unhealthy lifestyles, drug abuse, mobbing, etc. Arguably, building capacities to skillfully manage complex societal issues should be a central concern for many of us. I believe most readers of this journal share a belief that the field of adult development sits on a treasure of insight that could contribute very significantly to our understanding of how we could build such capacities. However, the number of solid empirical studies using a developmental perspective on meaning-making among people with crucial roles in organizations and initiatives working on issues of great societal significance is still small. I was therefore very satisfied, not to say thrilled, when I stumbled upon Verna DeLauer’s doctoral dissertation The Mental Demands of Marine Ecosystem-Based Management: A Constructive Developmental Lens. DeLauer has, in my view, written a doctoral dissertation

  13. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area

    Science.gov (United States)

    Berov, Dimitar; Todorova, Valentina; Dimitrov, Lubomir; Rinde, Eli; Karamfilov, Ventzislav

    2018-01-01

    The distribution and abundance of macroalgal communities in a Marine Protected Area (MPA) along the Bulgarian Black Sea coast were mapped and quantified, with particular focus on the previously unstudied P. crispa lower-infralittoral communities on Ostrea edulis biogenic reefs. Data from high resolution geophysical substrate mapping were combined with benthic community observations from georeferenced benthic photographic surveys and sampling. Multivariate analysis identified four distinct assemblages of lower-infralittoral macroalgal communities at depths between 10 and 17 m, dominated by Phyllophora crispa, Apoglossum ruscifoluim, Zanardinia typus and Gelidium spp. Maxent software analysis showed distinct preferences of the identified communities to areas with specific ranges of depth, inclination and curvature, with P. crispa more frequently occurring on vertical oyster biogenic reef structures. By combining production rates from literature, biomass measurements and the produced habitat maps, the highest proportion of primary production and DOC release was shown for the upper infralittoral Cystoseira barbata and Cystoseira bosphorica, followed by the production of the lower-infralittoral macroalgae. The observed distribution of P. crispa within the studied MPA was related to the network of Natura 2000 maritime MPAs along the Bulgarian Black Sea coast, which indicated that the connectivity of the populations of the species within the established network is insufficient within this cell of ecosystem functioning.

  14. Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem.

    Science.gov (United States)

    Hilderbrand, G V; Hanley, Thomas A; Robbins, Charles T; Schwartz, C C

    1999-12-01

    We quantified the amount, spatial distribution, and importance of salmon (Oncorhynchus spp.)-derived nitrogen (N) by brown bears (Ursus arctos) on the Kenai Peninsula, Alaska. We tested and confirmed the hypothesis that the stable isotope signature (δ 15 N) of N in foliage of white spruce (Picea glauca) was inversely proportional to the distance from salmon-spawning streams (r=-0.99 and Pbrown bears, relative to their distance from a stream, were highly correlated with δ 15 N depletion of foliage across the same gradient (r=-0.98 and -0.96 and Pbrown bears were 37.2±2.9 kg/year per bear (range 23.1-56.3), of which 96% (35.7±2.7 kg/year per bear) was excreted in urine, 3% (1.1±0.1 kg/year per bear) was excreted in feces, and bear) was retained in the body. On an area basis, salmon-N redistribution rates were as high as 5.1±0.7 mg/m 2 per year per bear within 500 m of the stream but dropped off greatly with increasing distance. We estimated that 15.5-17.8% of the total N in spruce foliage within 500 m of the stream was derived from salmon. Of that, bears had distributed 83-84%. Thus, brown bears can be an important vector of salmon-derived N into riparian ecosystems, but their effects are highly variable spatially and a function of bear density.

  15. 78 FR 59878 - Atlantic Highly Migratory Species; Commercial Atlantic Aggregated Large Coastal Shark (LCS...

    Science.gov (United States)

    2013-09-30

    ... Coastal Shark (LCS), Atlantic Hammerhead Shark, Atlantic Blacknose Shark, and Atlantic Non-Blacknose Small Coastal Shark (SCS) Management Groups AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... closing the commercial management groups for aggregated LCS and hammerhead sharks in the Atlantic region...

  16. 76 FR 72383 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures

    Science.gov (United States)

    2011-11-23

    ...-BA17 Atlantic Highly Migratory Species; Atlantic Shark Management Measures AGENCY: National Marine... plan (FMP) amendment that would consider catch shares for the Atlantic shark fisheries. The comment... potential catch shares programs in the Atlantic shark fisheries. Additionally, NMFS is extending the comment...

  17. Enhancing the Understanding of Marine Ecosystems through Teleducation and Field Experiences

    Science.gov (United States)

    Macko, S.

    2006-12-01

    This project is an outreach and education program with a partner in the K-12 schools at Accomack County on the Eastern Shore of Virginia. It endeavors to build a community more knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. It is an program built in stages that: 1) Establish high speed teleducation linkages with Eastern Shore of Virginia High Schools, for live interactive, classes (teleducation) for earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography (designed on a faculty development basis or acquire NSTA certification in Earth Science Education, as well as participation by seniors in the Accomack Schools; 2) Establish field experiences for teachers and selected students that involve travel to both the Virginia Coast Reserve Long Term Ecological Research (VCR/LTER) Center, UVA and the NOAA Beaufort, NC Laboratory to observe first- hand the science programs at those locations and participate in cutting edge coastal marine research efforts. These experiences will not only improve student understanding of the ocean-atmosphere biogeophysical system, but also encourage students to explore the sciences as a field of study and possible vocation. Advanced high school students and science teachers from Accomack County Public Schools participated in an experience involving field and laboratory methods employed in a NSF-sponsored study of the coupled natural-human dynamics on the Eastern Shore of Virginia over the past 500 years (NSF-Biocomplexity). Students and teachers worked with researchers of the VCR facility in Oyster, VA, collected sediment cores from Chesapeake Bay tributaries, and traveled to the Organic Geochemistry Laboratory at UVA, in Charlottesville, VA to prepare and analyze samples for isotopic and palynological information. In a first of its kind connectivity, in June/July, 2006, using high speed internet connections, a summer class in

  18. Unravelling source regions of ice rafted debris within three NE Atlantic marine sediment cores during the deglacial interval: a multi-proxy approach

    Science.gov (United States)

    Small, David; Hibbert, Fiona; Austin, Bill

    2010-05-01

    Ice-rafted debris (IRD) within marine sediments of the North Atlantic provide an important archive of glacial activity on adjacent landmasses and attest to the activity of multiple calving ice margins during the last glacial cycle. IRD records therefore provide a means to reconstruct ice sheet dynamics and their interaction with the climate system, providing evidence of both the source of the ice and the location of melting (e.g. Ruddiman, 1977; Bond and Lotti, 1995). The complex interaction of the circum-Atlantic ice sheets and limitations of individual techniques often hinders firm source designations (i.e. IRD may be derived from multiple sources which cannot be differentiated by, for example, visual characterisation). Initial work identified diagnostic grain types that could be attributed to source areas of palaeo ice-sheets (eg: Bond & Lotti 1995) however, for the BIS, "diagnostic" basalt may be derived from sources to the east and west of the cores (Hibbert et al 2009, Scourse et al 2009). We therefore, utilise a multi-proxy approach to investigate the deglacial dynamics of the last British Ice Sheet (BIS) using inter alia lithic characterisation, fluxes of IRD to the core sites, magnetic susceptibility and a magnetic un-mixing model. A novel application of major element geochemistry of garnets contained within ice-rafted debris of the three high resolution marine sediment cores is presented. Garnets can be used to infer provenance (e.g. Oliver 2001) as major element composition may be assigned to specific metamorphic terranes. The IRD present within these cores is believed to be predominantly sourced from the BIS (cf: Knutz et al 2001, Hibbert et al 2009). This assertion is tested through multiple analytical techniques used and replication of records across the Hebridean shelf into the deep ocean. References • Bond, G.C. & Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science 267. pp. 1005

  19. Microbe-mediated transformations of marine dissolved organic matter during 2,100 years of natural incubation in the cold, oxic crust of the Mid-Atlantic Ridge.

    Science.gov (United States)

    Shah Walter, S. R.; Jaekel, U.; Huber, J. A.; Dittmar, T.; Girguis, P. R.

    2015-12-01

    On the western flank of the Mid-Atlantic Ridge, oxic seawater from the deep ocean is downwelled into the basaltic crust, supplying the crustal aquifer with an initial inoculum of organic matter and electron acceptors. Studies have shown that fluids circulating within the crust are minimally altered from original seawater, making this subsurface environment a unique natural experiment in which the fate of marine organic matter and the limitations of microbial adaptability in the context of reduced carbon supply can be examined. To make the subsurface crustal aquifer accessible, two CORK (Circulation Obviation Retrofit Kit) observatories have been installed at North Pond, a sediment-filled depression beneath the oligotrophic Sargasso Sea. Radiocarbon analysis of dissolved inorganic (DIC) and organic carbon (DOC) in samples recovered from these observatories show uncoupled aging between DOC and DIC with Δ14C values of DOC as low as -933‰ despite isolation from the open ocean for, at most, 2,100 years. This extreme value is part of a general trend of decreasing DOC δ13C and Δ14C values with increasing incubation time within the aquifer. Combined with reduced concentrations of DOC, our results argue for selective microbial oxidation of the youngest, most 13C-enriched components of downwelled DOC, possibly identifying these as characteristics of the more bioavailable fractions of deep-ocean dissolved organic matter. They also suggest that microbial oxidation during low-temperature hydrothermal circulation could be an important sink for aged marine dissolved organic matter.

  20. Distribution of marine birds on the mid- and North-Atlantic US outer continental shelf. Technical progress report, January 1978-July 1980

    Energy Technology Data Exchange (ETDEWEB)

    Powers, K.D.; Pittman, G.L.; Fitch, S.J.

    1980-09-01

    The species composition, distribution, and abundance of marine birds on continental shelf waters from Cape Hatteras to the Bay of Fundy were examined using ships-of-opportunity. Northern Fulmar, Cory's Shearwater, Greater Shearwater, Sooty Shearwater, Wilson's Storm-Petrel, Gannet, Red Phalarope, Great Black-backed Gull, Herring Gull, and Black-legged Kittiwake were the most abundant and common species. These species were ecologically dominant within the bird community in numbers and biomass. Georges Bank and Gulf of Marine regions generally had greatest estimates of standing stock and biomass; whereas, in the Middle Atlantic region these estimates were consistently lowest. Species diversity throughout the study area was greatest in spring and least in fall. Oceanic fronts at the continental shelf break and at Nantucket Shoals influenced the distribution of Wilson's Storm-Petrels and Red Phalaropes. Fishing activities were particularly important to Larus gull distribution. Fishes, squids, and crustaceans were the most important groups of prey items in diets of nine bird species. An oiled bird or pollution index was developed. According to the index, frequency of oiled birds was greatest in winter and spring, and gulls made up the majority of species with oiled plumages.

  1. Carbon cycling in a high-arctic marine ecosystem - Young Sound, NE Greenland

    Science.gov (United States)

    Rysgaard, Søren; Nielsen, Torkel Gissel

    2006-10-01

    Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of ∼1.5 m topped with 0-40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice-water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August-September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7-11 g C m -2) is similar to phytoplankton production (6-10 g C m -2). Furthermore, the carbon demand of pelagic bacteria amounts to 7-12 g C m -2 yr -1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem. In the shallow parts of the fjord (dominate primary production. As a minimum estimate, a total of 41 g C m -2 yr -1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae dominated by polychaetes and bivalves exists in these shallow-water sediments (accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate

  2. Biological and Climate Controls on North Atlantic Marine Carbon Dynamics Over the Last Millennium: Insights From an Absolutely Dated Shell-Based Record From the North Icelandic Shelf

    Science.gov (United States)

    Reynolds, D. J.; Hall, I. R.; Scourse, J. D.; Richardson, C. A.; Wanamaker, A. D.; Butler, P. G.

    2017-12-01

    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era, there is a pressing need to construct long-term records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the past biological and climate controls on the carbon isotopic (δ13Cshell) composition of the North Icelandic shelf waters over the last millennium, derived from the shells of the long-lived marine bivalve mollusk Arctica islandica. Variability in the annually resolved δ13Cshell record is dominated by multidecadal variability with a negative trend (-0.003 ± 0.002‰ yr-1) over the industrial era (1800-2000 Common Era). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13Cshell record with Contemporaneous proxy archives, over the last millennium, and instrumental data over the twentieth century, highlights that both biological (primary production) and physical environmental factors, such as relative shifts in the proportion of Subpolar Mode Waters and Arctic Intermediate Waters entrained onto the North Icelandic shelf, atmospheric circulation patterns associated with the winter North Atlantic Oscillation, and sea surface temperature and salinity of the subpolar gyre, are the likely mechanisms that contribute to natural variations in seawater δ13C variability on the North Icelandic shelf. Contrasting δ13C fractionation processes associated with these biological and physical mechanisms likely cause the attenuated marine Suess effect signal at this locality.

  3. Microbial community production, respiration, and structure of the microbial food web of an ecosystem in the northeastern Atlantic Ocean

    Science.gov (United States)

    Maixandeau, Anne; LefèVre, Dominique; Karayanni, Hera; Christaki, Urania; van Wambeke, France; Thyssen, Melilotus; Denis, Michel; FernáNdez, Camila I.; Uitz, Julia; Leblanc, Karine; QuéGuiner, Bernard

    2005-07-01

    Gross community production (GCP), dark community respiration (DCR), and the biomass of the different size classes of organisms in the microbial community were measured in the northeastern Atlantic basin as part of the Programme Océan Multidisciplinaire Méso Echelle (POMME) project. The field experiment was conducted during three seasons (winter, spring, and late summer-fall) in 2001. Samples were collected from four different mesoscale structures within the upper 100 m. GCP rates increased from winter (101 ± 24 mmol O2 m-2 d-1) to spring (153 ± 27 mmol O2 m-2 d-1) and then decreased from spring to late summer (44 ± 18 mmol O2 m-2 d-1). DCR rates increased from winter (-47 ± 18 mmol O2 m-2 d-1) to spring (-97 ± 7 mmol O2 m-2 d-1) and then decreased from spring to late summer (50 ± 7 mmol O2 m-2 d-1). The onset of stratification depended on latitude as well as on the presence of mesoscale structures (eddies), and this largely contributed to the variability of GCP. The trophic status of the POMME area was defined as net autotrophic, with a mean annual net community production rate of +38 ± 18 mmol O2 m-2 d-1, exhibiting a seasonal variation from +2 ± 20 mmol O2 m-2 d-1 to +57 ± 20 mmol O2 m-2 d-1. This study highlights that small organisms (picoautotrophs, nanoautotrophs, and bacteria) are the main organisms contributing to biological fluxes throughout the year and that episodic blooms of microphytoplankton are related to mesoscale structures.

  4. Genome architecture enables local adaptation of Atlantic cod despite high connectivity

    DEFF Research Database (Denmark)

    Barth, Julia M I; Berg, Paul R; Jonsson, Per R.

    2017-01-01

    Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species...... characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single......-nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless...

  5. 75 FR 33531 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries

    Science.gov (United States)

    2010-06-14

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 635 RIN 0648-XW79 Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries AGENCY: National Marine..., recent Large Pelagics Survey estimates indicate that charter/headboat BFT landings constitute...

  6. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model

    Science.gov (United States)

    Yoshikawa, C.; Sasai, Y.; Wakita, M.; Honda, M. C.; Fujiki, T.; Harada, N.; Makabe, A.; Matsushima, S.; Toyoda, S.; Yoshida, N.; Ogawa, N. O.; Suga, H.; Ohkouchi, N.

    2016-02-01

    Based on the observed inverse relationship between the dissolved oxygen and N2O concentrations in the ocean, previous models have indirectly predicted marine N2O emissions from the apparent oxygen utilization (AOU), In this study, a marine ecosystem model that incorporates nitrous oxide (N2O) production processes (i.e., ammonium oxidation during nitrification and nitrite reduction during nitrifier denitrification) was newly developed to estimate the sea-air N2O flux and to quantify N2O production processes. Site preference of 15N (SP) in N2O isotopomers (14N15N16O and 15N14N16O) and the average nitrogen isotope ratio (δ15N) were added to the model because they are useful tracers to distinguish between ammonium oxidation and nitrite reduction. This model was applied to two contrasting time series sites, a subarctic station (K2) and a subtropical station (S1) in the western North Pacific. The model was validated with observed nitrogen concentration and nitrogen isotopomer datasets, and successfully simulated the higher N2O concentrations, higher δ15N values, and higher site preference values for N2O at K2 compared with S1. The annual mean N2O emissions were estimated to be 34 mg N m-2 yr-1 at K2 and 2 mg N m-2 yr-1 at S1. Using this model, we conducted three case studies: 1) estimating the ratio of in-situ biological N2O production to nitrate (NO3-) production during nitrification, 2) estimating the ratio of N2O production by ammonium oxidation to that by nitrite reduction, and 3) estimating the ratio of AOA ammonium oxidation to AOB ammonium oxidation. The results of case studies estimated the ratios of in situ biological N2O production to nitrate production during nitrification to be 0.22% at K2 and 0.06% at S1. It is also suggested that N2O was mainly produced via ammonium oxidation at K2 but was produced via both ammonium oxidation and nitrite reduction at S1. It is also revealed that 80% of the ammonium oxidation at K2 was caused by archaea in the subsurface

  7. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    Science.gov (United States)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    Non target high resolution organic structural spectroscopy of marine dissolved organic matter (DOM) isolated on 27 November 2008 by means of solid phase extraction (SPE) from four different depths in the South Atlantic Ocean off the Angola coast (3.1° E; -17.7° S; Angola basin) provided molecular level information of complex unknowns with unprecedented coverage and resolution. The sampling was intended to represent major characteristic oceanic regimes of general significance: 5 m (FISH; near surface photic zone), 48 m (FMAX; fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 800 MHz proton (1H) nuclear magnetic resonance (NMR) 1H NMR, spectra were least affected by fast and differential transverse NMR relaxation and produced at first similar looking, rather smooth bulk NMR envelopes reflecting intrinsic averaging from massive signal overlap. Visibly resolved NMR signatures were most abundant in surface DOM but contributed at most a few percent to the total 1H NMR integral and were mainly limited to unsaturated and singly oxygenated carbon chemical environments. The relative abundance and variance of resolved signatures between samples was maximal in the aromatic region; in particular, the aromatic resolved NMR signature of the deep ocean sample at 5446 m was considerably different from that of all other samples. When scaled to equal total NMR integral, 1H NMR spectra of the four marine DOM samples revealed considerable variance in abundance for all major chemical environments across the entire range of chemical shift. Abundance of singly oxygenated CH units and acetate derivatives declined from surface to depth whereas aliphatics and carboxyl-rich alicyclic molecules (CRAM) derived molecules increased in abundance. Surface DOM contained a remarkably lesser abundance of methyl esters than all other marine DOM, likely a consequence of photodegradation from direct exposure to sunlight. All DOM showed similar overall 13C NMR

  8. Introduction - The impacts of the 2008 eruption of Kasatochi Volcano on terrestrial and marine ecosystems in the Aleutian Islands, Alaska

    Science.gov (United States)

    DeGange, Anthony R.; Byrd, G. Vernon; Walker, Lawrence R.; Waythomas, C.F.

    2010-01-01

    The Aleutian Islands are situated on the northern edge of the so-called “Pacific Ring of Fire,” a 40,000-km-long horseshoe-shaped assemblage of continental landmasses and islands bordering the Pacific Ocean basin that contains many of the world's active and dormant volcanoes. Schaefer et al. (2009) listed 27 historically active volcanoes in the Aleutian Islands, of which nine have had at least one major eruptive event since 1990. Volcanic eruptions are often significant natural disturbances, and ecosystem responses to volcanic eruptions may vary markedly with eruption style (effusive versus explosive), frequency, and magnitude of the eruption as well as isolation of the disturbed sites from potential colonizing organisms (del Moral and Grishin, 1999). Despite the relatively high frequency of volcanic activity in the Aleutians, the response of island ecosystems to volcanic disturbances is largely unstudied because of the region's isolation. The only ecological studies in the region that address the effects of volcanic activity were done on Bogoslof Island, a remote, highly active volcanic island in the eastern Aleutians, which grew from a submarine eruption in 1796 (Merriam, 1910; Byrd et al., 1980; Byrd and Williams, 1994). Nevertheless, in the 214 years of Bogoslof's existence, the island has been visited only intermittently.Kasatochi Island is a small (2.9 km by 2.6 km, 314 m high) volcano in the central Aleutian Islands of Alaska (52.17°N latitude, 175.51°W longitude; Fig. 1) that erupted violently on 7-8 August 2008 after a brief, but intense period of precursory seismic activity (Scott et al., 2010 [this issue]; Waythomas et al., in review). The island is part of the Aleutian arc volcanic front, and is an isolated singular island. Although the immediate offshore areas are relatively shallow (20–50 m water depth), the island is about 10 km south of the 2000 m isobath, north of which, ocean depths increase markedly. Kasatochi is located between the

  9. Assessment of cadmium, copper and lead in marine species of the atlantic and pacific oceans of Guatemala by voltametry techniques

    International Nuclear Information System (INIS)

    Chun, Evelyn

    2000-01-01

    In this thesis results of measurements of cooper, lead, and cadmium were made using voltametry. Three points in the pacific ocean and one in the atlantic were selected to obtain samples of fish and shrimp as species that are contaminated with toxic metals. The samples were treated by physical and chemical methods to turn soluble the metals and the chemical determination could be done using voltametry or differential polarography of pulse. The results shown that copper, lead and cadmium are present in the samples in traces level. The precision of measurements was verified measuring certified by the National Institute of Standard and Technology NIST of the Commerce Departmento of the United States

  10. Comparing pristine and depleted ecosystems: The Sørfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems

    Science.gov (United States)

    Morissette, Lyne; Pedersen, Torstein; Nilsen, Marianne

    2009-04-01

    The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach ( Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. Cod was the keystone species in both ecosystems, and forage fish were also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to its equilibrium.

  11. Incongruent genetic connectivity patterns for VME indicator taxa: implications for the management of New Zealand's vulnerable marine ecosystems

    Science.gov (United States)

    Clark, M. R.; Gardner, J.; Holland, L.; Zeng, C.; Hamilton, J. S.; Rowden, A. A.

    2016-02-01

    In the New Zealand region vulnerable marine ecosystems (VMEs) are at risk from commercial fishing activity and future seabed mining. Understanding connectivity among VMEs is important for the design of effective spatial management strategies, i.e. a network of protected areas. To date however, genetic connectivity in the New Zealand region has rarely been documented. As part of a project developing habitat suitability models and spatial management options for VMEs we used DNA sequence data and microsatellite genotyping to assess genetic connectivity for a range of VME indicator taxa, including the coral Desmophyllum dianthus, and the sponges Poecilastra laminaris and Penares palmatoclada. Overall, patterns of connectivity were inconsistent amonst taxa. Nonetheless, genetic data from each taxon were relevant to inform management at a variety of spatial scales. D. dianthus populations in the Kermadec volcanic arc and the Louisville Seamount Chain were indistinguishable, highlighting the importance of considering source-sink dynamics between populations beyond the EEZ in conservation planning. Poecilastra laminaris populations showed significant divergence across the Chatham Rise, in contrast to P. palmatoclada, which had a uniform haplotypic distribution. However, both sponge species exhibited the highest genetic diversity on the Chatham Rise, suggesting that this area is a genetic hotspot. The spatial heterogeneity of genetic patterns of structure suggest that inclusion of several taxa is necessary to facilitate understanding of regional connectivity patterns, variation in which may be attributed to alternate life history strategies, local hydrodynamic regimes, or in some cases, suboptimal sample sizes. Our findings provide important information for use by environmental managers, including summary maps of genetic diversity and barriers to gene flow, which will be used in spatial management decision-support tools.

  12. A New Perspective on Changing Arctic Marine Ecosystems: Panarchy Adaptive Cycles in Pan-Arctic Spatial and Temporal Scales

    Science.gov (United States)

    Wiese, F. K.; Huntington, H. P.; Carmack, E.; Wassmann, P. F. J.; Leu, E. S.; Gradinger, R.

    2016-02-01

    Changes in the physical/biological interactions in the Arctic are occurring across a variety of spatial and temporal scales and may be mitigated or strengthened based on varying rates of evolutionary adaptation. A novel way to view these interactions and their social relevance is through the systems theory perspective of "Panarchy" proposed by Gunderson and Holling. Panarchy is an interdisciplinary approach in which structures, scales and linkages of complex-adaptive systems, including those of nature (e.g. ocean), humans (e.g. economics), and combined social-ecological systems (e.g. institutions that govern natural resource use), are mapped across multiple space and time scales in continual and interactive adaptive cycles of growth, accumulation, restructuring and renewal. In complex-adaptive systems the dynamics at a given scale are generally dominated by a small number of key internal variables that are forced by one or more external variables. The stability of such a system is characterized by its resilience, i.e. its capacity to absorb disturbance and re-organize while undergoing change, so as to retain essentially similar function, structure, identity and feedbacks. It is in the capacity of a system to cope with pressures and adversities such as exploitation, warming, governance restrictions, competition, etc. that resilience embraces human and natural systems as complex entities continually adapting through cycles of change. In this paper we explore processes at four linked spatial domains in the Arctic Ocean and link it to ecosystem resilience and re-organization characteristics. From this we derive a series of hypotheses concerning the biological responses to future physical changes and suggest ways how Panarchy theory can be applied to observational strategies to help detect early signs of environmental shifts affecting marine system services and functions. We close by discussing possible implications of the Panarchy framework for policy and governance.

  13. Runoff thresholds and land-to-marine ecosystem connectivity in a dry tropical setting: St. John, US Virgin Islands

    Science.gov (United States)

    Ramos-Scharron, C. E.; LaFevor, M. C.; Roy, J.

    2017-12-01

    Developing a conceptually sound yet practical understanding of runoff and sediment delivery from human occupied lands to tropical ocean waters still represents a pivotal need of coral reef management worldwide. In the dry tropical and ephemeral streamflow setting that typifies the small watersheds ( 1s km2) draining the US Virgin Islands, changes in hydrologic and sediment delivery dynamics provoked by unsurfaced road networks represent a major threat to coral reefs and other sensitive marine ecosystems. Through a combined empirical and modeling approach, this study evaluates how road building and associated stormflow restoration strategies affect rainfall thresholds for runoff generation at varying spatial scales and their impact on land-to-sea connectivity. Rainfall thresholds and runoff coefficients for precipitation excess on unpaved roads are 2-3 mm and 22-30% (respectively) or a full order of magnitude different from those for undisturbed hillslopes and watersheds. Here we discuss the use of a `volume-to-breakthrough' inspired index to predict the potential of road runoff to reach downslope portions of the watershed and the coastline as runon. The index integrates the effects of storm-by-storm runoff accumulation for every road drainage point with its flow distance to specific locations along the stream network. While large runoff volumes and short flow distances imply a relatively high connectivity potential, small volumes and long distances are associated to low delivery potential. The index has proven able to discern observed runoff responses under a variety of road-stream network scenarios and rainfall conditions. These results enhance our understanding of ephemeral stream hydrology and are serving to improve coral reef management strategies throughout the Northeastern Caribbean.

  14. Antimicrobial activity of untenospongin B, a metabolic from the marine sponge Hippospongia communis collected from the Atlantic coast of Morocco

    NARCIS (Netherlands)

    Rifai, S.; Kijjoa, A.; van Soest, R.W.M.

    2004-01-01

    (-)-Untenospongin B isolated from the marine sponge Hippospongia communis has been tested for its antimicrobial activity against bacteria and human pathogenic fungi using agar disk method and was found to possess a broad and strong activity toward the test organisms. Its antifungal activity was

  15. Predicting Human Mobility Patterns in Marine Ecosystems: Entropy and Home Range Calculations Based on High-Resolution Fishing Vessel Tracking Data

    Science.gov (United States)

    Murawski, S. A.

    2016-02-01

    A number of recent studies have developed metrics of human mobility patterns based on georeferenced cell phone records. The studies generally indicate a high degree of predictability in human location and relatively narrow home ranges for most people. In marine ecosystems there are a number of important uses for such calculations including marine spatial planning and predicting the impacts of marine management options such as establishing marine protected areas (MPAs). In this study we use individual fishing vessel satellite tracking (VMS) records ( 30 million records) obtained from commercial reef fish fishing vessels in the Gulf of Mexico during 2006-2014. This period witnessed the establishment of a variety of new regulations including individual fishing quotas (IFQs) for snapper, grouper, and tilefish, establishment of spatial-area closures, and the temporary closure of as much as 85,000 nautical miles of productive fishing grounds associated with the Deepwater Horizon oil spill accident. Vessel positions were obtained, with a location frequency of one hour. From these VMS data we calculated three measures of entropy (degree of repeatability in spatial use), as well as calculated the axis of gyration (home range) for each vessel in the data set. These calculations were related to a variety of descriptor variables including vessel size, distance from home port to predominant fishing grounds, revenue generated on fishing trips, and fishing regulations. The applicability of these calculations to marine resource management applications is discussed.

  16. Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; DeFlorio, Michael J.

    2018-02-01

    Climate modes of variability over the Atlantic and Pacific may be amplified by a positive feedback between sea-surface temperature (SST) and marine boundary layer clouds. However, it is well known that climate models poorly simulate this feedback. Does this deficiency contribute to model-to-model differences in the representation of climate modes of variability? Over both the North Atlantic and Pacific, typical summertime interannual to interdecadal SST variability exhibits horseshoe-like patterns of co-located anomalies of shortwave cloud radiative effect (CRE), low-level cloud fraction, SST, and estimated inversion strength over the subtropics and midlatitudes that are consistent with a positive cloud feedback. During winter over the midlatitudes, this feedback appears to be diminished. Models participating in the Coupled Model Intercomparison Project phase 5 that simulate a weak feedback between subtropical SST and shortwave CRE produce smaller and less realistic amplitudes of summertime SST and CRE variability over the northern oceans compared to models with a stronger feedback. The change in SST amplitude per unit change in CRE amplitude among the mode