WorldWideScience

Sample records for atlantic marine ecosystems

  1. Climate variability and marine ecosystem impacts: a North Atlantic perspective

    Science.gov (United States)

    Parsons, L. S.; Lear, W. H.

    In recent decades it has been recognized that in the North Atlantic climatic variability has been largely driven by atmospheric forcing related to the North Atlantic Oscillation (NAO). The NAO index began a pronounced decline around 1950 to a low in the 1960s. From 1970 onward the NAO index increased to its most extreme and persistent positive phase during the late 1980s and early 1990s. Changes in the pattern of the NAO have differential impacts on the opposite sides of the North Atlantic and differential impacts in the north and south. The changes in climate resulting from changes in the NAO appear to have had substantial impacts on marine ecosystems, in particular, on fish productivity, with the effects varying from region to region. An examination of several species and stocks, e.g. gadoids, herring and plankton in the Northeast Atlantic and cod and shellfish in the Northwest Atlantic, indicates that there is a link between long-term trends in the NAO and the productivity of various components of the marine ecosystem. While broad trends are evident, the mechanisms are poorly understood. Further research is needed to improve our understanding of how this climate variability affects the productivity of various components of the North Atlantic marine ecosystem.

  2. Marine Ecosystem Response to the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Edwards, Martin; Beaugrand, Gregory; Helaouët, Pierre; Alheit, Jürgen; Coombs, Stephen

    2013-01-01

    Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries. PMID:23460832

  3. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    Directory of Open Access Journals (Sweden)

    Martin Edwards

    Full Text Available Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO. Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  4. Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea

    Science.gov (United States)

    Goberville, Eric; Beaugrand, Gregory; Edwards, Martin

    2014-01-01

    Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.

  5. Marine Ecosystem Services

    DEFF Research Database (Denmark)

    Hasler, Berit; Ahtiainen, Heini; Hasselström, Linus

    MARECOS (Marine Ecosystem Services) er et tværfagligt studie, der har haft til formål at tilvejebringe information vedrørende kortlægning og værdisætning af økosystemtjenester, som kan anvendes i forbindelse med udformning af regulering på det marine område såvel nationalt, som regionalt og...

  6. nent of marine ecosystems

    African Journals Online (AJOL)

    spamer

    trophic web of marine ecosystems (Clarke 1980,. 1996, Rodhouse et al. 1987, 1992, Lipinski et al. 1992, Rodhouse and Nigmatullin 1996, Guerra et al. 1993). .... deep in the submucosa and were encapsulated in an amorphous eosinophilic substance. The anterior ex- tremities of nematodes and the vacated hyaline caps.

  7. Abiotic control of phytoplankton blooms in temperate coastal marine ecosystems: A case study in the South Atlantic Ocean.

    Science.gov (United States)

    Bermejo, Paula; Helbling, E Walter; Durán-Romero, Cristina; Cabrerizo, Marco J; Villafañe, Virginia E

    2018-01-15

    Coastal waters of the South Atlantic Ocean (SAO) sustain one of the highest levels of production of the World's ocean, maintained by dense phytoplankton winter blooms that are dominated by large diatoms. These blooms have been associated to calm weather conditions that allow the formation of a shallow and well illuminated upper mixed layer. In Bahía Engaño, a coastal site in Patagonia, Argentina (chosen as a model coastal ecosystem) winter blooms recurrently peaked on June and they were dominated almost entirely by the microplanktonic diatom Odontella aurita. However, during the year 2015, a new wind pattern was observed - with many days of northerly high-speed winds, deviating from the calm winter days observed during a reference period (2001-2014) used for comparison. We determined that this new wind pattern was the most important factor that affected the phytoplankton dynamics, precluding the initiation of a June bloom during 2015 that instead occurred during late winter (August). Furthermore, the 2015 bloom had a higher proportion of nanoplanktonic cells (as compared to the reference period) and it was co-dominated by O. aurita and Thalassiossira spp. Other variables such as nutrient supply and incident solar radiation did not have an important role in limiting and/or initiating the June 2015 bloom, but temperature might have benefited the growth of small cells during August 2015. If these changes in the timing and/or the taxonomic composition of the bloom persist, they may have important consequences for the secondary production and economic services of the coastal SAO. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    DEFF Research Database (Denmark)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.

    2014-01-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from...

  9. Environmental Impacts - Marine Ecosystems

    NARCIS (Netherlands)

    Brander, K.; Ottersen, Geir; Bakker, Jan P.; Beaugrand, G.; Herr, H.; Garthe, S.; Gilles, A.; Kenny, Andrew; Siebert, Ursula; Skjoldal, Hein Rune; Tulp, I.Y.M.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including

  10. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    Science.gov (United States)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  11. Atlantic Marine Mammal Assessment Vessel Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data sets are a compilation of large vessel surveys for marine mammal stock assessments in South Atlantic (Florida to Maryland) waters from 1994 to the...

  12. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...... for the North Sea; written records go back 500 years and archaeological records many thousands of years. The information presented here shows that the composition and productivity of the North Sea marine ecosystem is clearly affected by climate change and that this will have consequences for sustainable levels...... of harvesting and other ecosystem services in the future. Multi-variate ocean climate indicators that can be used to monitor and warn of changes in composition and productivity are now being developed for the North Sea...

  13. Fronts in Large Marine Ecosystems

    Science.gov (United States)

    Belkin, Igor M.; Cornillon, Peter C.; Sherman, Kenneth

    2009-04-01

    Oceanic fronts shape marine ecosystems; therefore front mapping and characterization are among the most important aspects of physical oceanography. Here we report on the first global remote sensing survey of fronts in the Large Marine Ecosystems (LME). This survey is based on a unique frontal data archive assembled at the University of Rhode Island. Thermal fronts were automatically derived with the edge detection algorithm of Cayula and Cornillon (1992, 1995, 1996) from 12 years of twice-daily, global, 9-km resolution satellite sea surface temperature (SST) fields to produce synoptic (nearly instantaneous) frontal maps, and to compute the long-term mean frequency of occurrence of SST fronts and their gradients. These synoptic and long-term maps were used to identify major quasi-stationary fronts and to derive provisional frontal distribution maps for all LMEs. Since SST fronts are typically collocated with fronts in other water properties such as salinity, density and chlorophyll, digital frontal paths from SST frontal maps can be used in studies of physical-biological correlations at fronts. Frontal patterns in several exemplary LMEs are described and compared, including those for: the East and West Bering Sea LMEs, Sea of Okhotsk LME, East China Sea LME, Yellow Sea LME, North Sea LME, East and West Greenland Shelf LMEs, Newfoundland-Labrador Shelf LME, Northeast and Southeast US Continental Shelf LMEs, Gulf of Mexico LME, and Patagonian Shelf LME. Seasonal evolution of frontal patterns in major upwelling zones reveals an order-of-magnitude growth of frontal scales from summer to winter. A classification of LMEs with regard to the origin and physics of their respective dominant fronts is presented. The proposed classification lends itself to comparative studies of frontal ecosystems.

  14. Revisiting the use of δ15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures - The case of an open ecosystem: The Bay of Biscay (North-East Atlantic)

    Science.gov (United States)

    Chouvelon, T.; Spitz, J.; Caurant, F.; Mèndez-Fernandez, P.; Chappuis, A.; Laugier, F.; Le Goff, E.; Bustamante, P.

    2012-08-01

    Most of the recent framework directives and environmental policies argue for the development and the use of indicators - notably trophodynamic indicators - that should be able to follow ecosystems' evolution in space and time, particularly under anthropogenic perturbations. In the last decades, the use of stable carbon and nitrogen isotopes ratios has increased exponentially, particularly in studies of marine ecosystems' trophic structure and functioning. This method is principally based on the assumption that the isotopic composition of a consumer directly reflects that of its food. Nevertheless, few studies have attempted to define the limits of this tool, before using it and drawing ecological conclusions from isotopic analysis. This study aimed to assess the importance of considering spatio-temporal variations in isotopic signatures of consumers when using δ13C and especially δ15N values in open ecosystems with complex food webs, using the Bay of Biscay (North-East Atlantic) as a case study. To this end, more than 140 species from this marine ecosystem were analysed for the isotopic signatures in their muscle tissue. They were sampled from coastal to oceanic and deep-sea areas and at different latitudes, to evaluate spatial variations of isotopic signatures. Selected species were also sampled over several years and in two seasons to account for inter-annual and seasonal variations. In the Bay of Biscay temperate ecosystem, which is subject to both coastal and oceanic influences - two main river inputs and upwelling areas - , δ13C and δ15N values significantly decreased from inshore to offshore species, and to a lesser extent from benthic to pelagic organisms. River discharges appeared to be the first factor influencing δ13C and δ15N values in consumers. From the important spatial variations detected in δ15N values in particular, we suggest that in such contrasted ecosystem, nitrogen isotopic ratios may also be revisited as an indicator of the feeding

  15. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    Energy Technology Data Exchange (ETDEWEB)

    Hetzinger, S. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); Halfar, J. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Mecking, J.V.; Keenlyside, N.S. [Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); University of Bergen, Geophysical Institute and Bjerknes Centre for Climate Research, Bergen (Norway); Kronz, A. [University of Goettingen, Geowissenschaftliches Zentrum, Goettingen (Germany); Steneck, R.S. [University of Maine, Darling Marine Center, Walpole, ME (United States); Adey, W.H. [Smithsonian Institution, Department of Botany, Washington, DC (United States); Lebednik, P.A. [ARCADIS U.S. Inc., Walnut Creek, CA (United States)

    2012-09-15

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data. (orig.)

  16. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic

    DEFF Research Database (Denmark)

    Beaugrand, G.; Edwards, M.; Brander, Keith

    2008-01-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt...... and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod...... in order to minimize social and economic consequences....

  17. A Satellite Imagery, Ecosystem-Based GIS Study of Bluefin Tuna and Right Whale Distribution and Movements in the Gulf of Marine and NW Atlantic

    National Research Council Canada - National Science Library

    Lutcavage, Molly

    2002-01-01

    The goals of this research were to develop a GIS workstation to examine the distribution, relative abundance, and behavior of Atlantic bluefin tuna and the Northern right whale in relation to their environment and prey...

  18. 75 FR 9864 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-03-04

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-AY32 Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based Amendment 1 AGENCY: National Marine...) of pristine deepwater coral ecosystems in the world. Actions in the amendment would prohibit the use...

  19. Marine Heat Waves and Their Impacts on Fisheries and Marine Ecosystems

    Science.gov (United States)

    Bond, N. A.

    2016-12-01

    Recent years have featured some prominent warm ocean events, also known as marine heat waves. Notable examples occurred in the northwest Atlantic in 2012, in the northeast Pacific in 2014-16, and of course, in the tropical Pacific in association with the 2015-16 El Nino. These episodic events can have profound impacts on marine ecosystems, with implications for fisheries. This paper will review the mechanistic linkages between marine heat waves and living marine resources drawing mostly on examples from the Pacific Ocean. Typically these events cause changes at lower-trophic levels that then ripple through the food web, i.e., are cases of bottom-up forcing. But how this happens varies regionally with the background oceanography, and the oceanographic properties crucial to the ecosystem. Because the effects of warm episodes can be substantial, their ramifications on ecosystems and fisheries are important from a host of perspectives (economic, conservation, cultural, etc.). In addition, to a certain extent they can provide insight into how marine ecosystems are liable to respond to global climate change.

  20. Marine Viruses: Key Players in Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Mathias Middelboe

    2017-10-01

    Full Text Available Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

  1. Marine Viruses: Key Players in Marine Ecosystems

    OpenAIRE

    Middelboe, Mathias; Brussaard, Corina P. D.

    2017-01-01

    Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

  2. Marine Viruses: Key Players in Marine Ecosystems.

    Science.gov (United States)

    Middelboe, Mathias; Brussaard, Corina P D

    2017-10-18

    Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...].

  3. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.

    Science.gov (United States)

    Mills, Katherine E; Pershing, Andrew J; Sheehan, Timothy F; Mountain, David

    2013-10-01

    North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river-specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate-driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations. © 2013 John Wiley & Sons Ltd.

  4. Intertemporal Choice of Marine Ecosystem Exploitation

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

    Management, however, requires models that can link the ecosystem level to the operation level, so this paper examines an ecosystem production model and shows that it is suitable for applying ground rent theory. This model is the simplest possible that incorporates the principles of size as the main...... at the ecosystem level in the present management. Therefore, economic predictions for an ecosystem managed as a common pool resource must be that  the exploitation probably are conducted at lower sized than optimum. In addition, given its population stock approach, the present management probably overlooks...... the ability of an ecosystem to sustain total volume of harvest. Given the two aspects of intertemporal choice revealed by the model, the conclusion must be that the Fishing Down Marine Food Webs is probably driven by the current management's inability to conduct adequate intertemporal balancing; therefore...

  5. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  6. Large marine ecosystems: Analysis and management | Pauly ...

    African Journals Online (AJOL)

    Examples of such comparisons, emphasizing the competition between fisheries and marine mammals, are given for the Pacific Ocean. The case is made that methods exist for rigorous descriptions of the trophic fluxes prevailing in such ecosystems, and based thereon, for dynamic modelling of at least the first-order impacts ...

  7. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  8. Marine ecosystem responses to Cenozoic global change.

    Science.gov (United States)

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-02

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  9. Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps.

    Directory of Open Access Journals (Sweden)

    Patricia Miloslavich

    Full Text Available The marine areas of South America (SA include almost 30,000 km of coastline and encompass three different oceanic domains--the Caribbean, the Pacific, and the Atlantic--ranging in latitude from 12∘N to 55∘S. The 10 countries that border these coasts have different research capabilities and taxonomic traditions that affect taxonomic knowledge. This paper analyzes the status of knowledge of marine biodiversity in five subregions along the Atlantic and Pacific coasts of South America (SA: the Tropical East Pacific, the Humboldt Current,the Patagonian Shelf, the Brazilian Shelves, and the Tropical West Atlantic, and it provides a review of ecosystem threats and regional marine conservation strategies. South American marine biodiversity is least well known in the tropical subregions (with the exception of Costa Rica and Panama. Differences in total biodiversity were observed between the Atlantic and Pacific oceans at the same latitude. In the north of the continent, the Tropical East Pacific is richer in species than the Tropical West Atlantic, however, when standardized by coastal length, there is very little difference among them. In the south, the Humboldt Current system is much richer than the Patagonian Shelf. An analysis of endemism shows that 75% of the species are reported within only one of the SA regions, while about 22% of the species of SA are not reported elsewhere in the world. National and regional initiatives focusing on new exploration, especially to unknown areas and ecosystems, as well as collaboration among countries are fundamental to achieving the goal of completing inventories of species diversity and distribution.These inventories will allow accurate interpretation of the biogeography of its two oceanic coasts and latitudinal trends,and will also provide relevant information for science based policies.

  10. Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps.

    Science.gov (United States)

    Miloslavich, Patricia; Klein, Eduardo; Díaz, Juan M; Hernández, Cristián E; Bigatti, Gregorio; Campos, Lucia; Artigas, Felipe; Castillo, Julio; Penchaszadeh, Pablo E; Neill, Paula E; Carranza, Alvar; Retana, María V; Díaz de Astarloa, Juan M; Lewis, Mirtha; Yorio, Pablo; Piriz, María L; Rodríguez, Diego; Yoneshigue-Valentin, Yocie; Gamboa, Luiz; Martín, Alberto

    2011-01-31

    The marine areas of South America (SA) include almost 30,000 km of coastline and encompass three different oceanic domains--the Caribbean, the Pacific, and the Atlantic--ranging in latitude from 12∘N to 55∘S. The 10 countries that border these coasts have different research capabilities and taxonomic traditions that affect taxonomic knowledge. This paper analyzes the status of knowledge of marine biodiversity in five subregions along the Atlantic and Pacific coasts of South America (SA): the Tropical East Pacific, the Humboldt Current,the Patagonian Shelf, the Brazilian Shelves, and the Tropical West Atlantic, and it provides a review of ecosystem threats and regional marine conservation strategies. South American marine biodiversity is least well known in the tropical subregions (with the exception of Costa Rica and Panama). Differences in total biodiversity were observed between the Atlantic and Pacific oceans at the same latitude. In the north of the continent, the Tropical East Pacific is richer in species than the Tropical West Atlantic, however, when standardized by coastal length, there is very little difference among them. In the south, the Humboldt Current system is much richer than the Patagonian Shelf. An analysis of endemism shows that 75% of the species are reported within only one of the SA regions, while about 22% of the species of SA are not reported elsewhere in the world. National and regional initiatives focusing on new exploration, especially to unknown areas and ecosystems, as well as collaboration among countries are fundamental to achieving the goal of completing inventories of species diversity and distribution.These inventories will allow accurate interpretation of the biogeography of its two oceanic coasts and latitudinal trends,and will also provide relevant information for science based policies.

  11. Improving Marine Ecosystem Models with Biochemical Tracers.

    Science.gov (United States)

    Pethybridge, Heidi R; Choy, C Anela; Polovina, Jeffrey J; Fulton, Elizabeth A

    2018-01-03

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  12. Culture fishery resources of the tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    the generation of marine living resources through culture fisheries or mariculture or seafarming. Marine tropical ecosystems, with uniformly high temperature regime, support fast growth, prolonged breeding period and faster turn-over rates. Accordingly...

  13. Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts

    NARCIS (Netherlands)

    Abelson, Avigdor; Halpern, Benjamin S.; Reed, Daniel C.; Orth, Robert J.; Kendrick, Gary A.; Beck, Michael W.; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J.; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; Blaeij, De Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A.

    2016-01-01

    Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts

  14. Comparing Apples to Oranges: Common Trends and Thresholds in Anthropogenic and Environmental Pressures across Multiple Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Jamie C. Tam

    2017-09-01

    Full Text Available Ecosystem-based management (EBM in marine ecosystems considers impacts caused by complex interactions between environmental and anthropogenic pressures (i.e., oceanographic, climatic, socio-economic and marine communities. EBM depends, in part, on ecological indicators that facilitate understanding of inherent properties and the dynamics of pressures within marine communities. Thresholds of ecological indicators delineate ecosystem status because they represent points at which a small increase in one or many pressure variables results in an abrupt change of ecosystem responses. The difficulty in developing appropriate thresholds and reference points for EBM lies in the multidimensionality of both the ecosystem responses and the pressures impacting the ecosystem. Here, we develop thresholds using gradient forest for a suite of ecological indicators in response to multiple pressures that convey ecosystem status for large marine ecosystems from the US Pacific, Atlantic, sub-Arctic, and Gulf of Mexico. We detected these thresholds of ecological indicators based on multiple pressures. Commercial fisheries landings above approximately 2–4.5 t km−2 and fisheries exploitation above 20–40% of the total estimated biomass (of invertebrates and fish of the ecosystem resulted in a change in the direction of ecosystem structure and functioning in the ecosystems examined. Our comparative findings reveal common trends in ecosystem thresholds along pressure gradients and also indicate that thresholds of ecological indicators are useful tools for comparing the impacts of environmental and anthropogenic pressures across multiple ecosystems. These critical points can be used to inform the development of EBM decision criteria.

  15. Mapping ecosystem services provided by benthic habitats in the European North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Ibon eGalparsoro

    2014-07-01

    Full Text Available Mapping and assessing the ecosystem services provided by benthic habitats are a highly valuable source of information for understanding their current and potential benefits to society. The main objective of this investigation is to assess and map the ecosystem services provided by benthic habitats of the European North Atlantic Ocean, in the context of Mapping and Assessment of Ecosystems and their Services (MAES programme, the European Biodiversity Strategy and the implementation of the Marine Strategy Framework Directive. In total, 62 habitats have been analysed in relation to 12 ecosystem services over 1.7 million km2. Results indicated that more than 90% of the mapped area provides biodiversity maintenance and food provision services; meanwhile grounds providing reproduction and nursery services are limited to half of the mapped area. Benthic habitats generally provide more services closer to shore than offshore and in shallower waters. This gradient is likely to be explained by difficult access (i.e. distance and depth and lack of scientific knowledge for most of the services provided by distant benthic habitats. This research has provided a first assessment of the benthic ecosystem services at Atlantic European scale, with the provision of ecosystem services maps and their general spatial distribution patterns. Related to the objectives of this research, the conclusions are: (i benthic habitats provide a diverse set of ecosystem services, being the food provision and biodiversity maintenance services the ones that are more extensively represented. In addition, other regulating and cultural services are provided in a more limited area; and (ii the ecosystem services assessment categories are significantly related to the distance to the coast and with depth (higher near the coast and in shallow waters.

  16. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem.

    Science.gov (United States)

    Grecian, W James; Witt, Matthew J; Attrill, Martin J; Bearhop, Stuart; Becker, Peter H; Egevang, Carsten; Furness, Robert W; Godley, Brendan J; González-Solís, Jacob; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Patrick, Samantha C; Peter, Hans-Ulrich; Phillips, Richard A; Stenhouse, Iain J; Votier, Stephen C

    2016-08-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. © 2016 The Authors.

  17. Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts.

    Science.gov (United States)

    Abelson, Avigdor; Halpern, Benjamin S; Reed, Daniel C; Orth, Robert J; Kendrick, Gary A; Beck, Michael W; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A

    2016-02-01

    Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social-ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success.

  18. Upgrading Marine Ecosystem Restoration Using Ecological‐Social Concepts

    Science.gov (United States)

    Abelson, Avigdor; Halpern, Benjamin S.; Reed, Daniel C.; Orth, Robert J.; Kendrick, Gary A.; Beck, Michael W.; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J.; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A.

    2015-01-01

    Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social–ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success. PMID:26977115

  19. The marine ecosystem services approach in a fisheries management perspective

    DEFF Research Database (Denmark)

    Pedersen, Søren Anker; Lassen, Hans; Frost, Hans Staby

    This paper reviews the concepts of marine ecosystem services and their economic valuation in a European fisheries management perspective. We find that the concept is at best cumbersome for advising on how best to regulate fisheries even in an ecosystem context. We propose that operational fisheries...... that the concept of marine ecosystem services is not helpful for the two first mentioned types of analysis and that a cost-benefit analysis that is implied by the marine ecosystem services concept is inadequate for the third. We argue that the discussion needs to be divided into two: (1) finding the boundaries...... within which we accept impact on the marine ecosystem and (2) within these boundaries find the optimal fishing pressure, in mathematical terms replacing the unconstrained optimisation implied by the ecosystem services concept with an optimisation with constraints. The constraints are defined...

  20. Can schooling regulate marine populations and ecosystems?

    Science.gov (United States)

    Maury, Olivier

    2017-08-01

    Schools, shoals and swarms are pervasive in the oceans. They have to provide very strong advantages to have been selected and generalized in the course of evolution. Auto-organized groups are usually assumed to provide facilitated encounters of reproduction partners, improved protection against predation, better foraging efficiency, and hydrodynamic gains. However, present theories regarding their evolutionary advantages do not provide an unambiguous explanation to their universality. In particular, the mechanisms commonly proposed to explain grouping provide little support to the formation of very large groups that are common in the sea (e.g. Rieucau et al., 2014). From literature review, data analysis and using a simple mathematical model, I show that large auto-organized groups appear at high population density while only small groups or dispersed individuals remain at low population density. Following, an analysis of tuna tagging data and simple theoretical developments show that large groups are likely to expose individuals to a dramatic decrease of individual foraging success and simultaneous increase of predatory and disease mortality, while small groups avoid those adverse feedbacks and provide maximum foraging success and protection against predation, as it is usually assumed. This would create an emergent density-dependent regulation of marine populations, preventing them from outbursts at high density, and protecting them at low density. This would be a major contribution to their resilience and a crucial process of ecosystems dynamics. A two-step evolutionary process acting at the individual level is proposed to explain how this apparently suicidal behaviour could have been selected and generalized. It explains how grouping would have permitted the emergence of extremely high fecundity life histories, despite their notorious propensity to destabilize populations. The potential implications of the ;grouping feedback; on population resilience, ecosystem

  1. Towards a North Atlantic Marine Radiocarbon Calibration Curve

    Science.gov (United States)

    Austin, William; Reimer, Paula; Blaauw, Maarten; Bryant, Charlotte; Rae, James; Burke, Andrea

    2015-04-01

    Service du dejeuner! Twenty years ago, in 1995, I sailed as a post-doctoral researcher based at the University of Edinburgh (UK) on the first scientific mission of the new Marion Dufresne II. In this presentation, I will provide an update on the work that first quantified North Atlantic marine radiocarbon reservoir ages, highlighting how advances in marine tephrochronology over the last twenty years have significantly improved our understanding (and ability to test) land-ice-ocean linkages. The mechanistic link that connects marine radiocarbon reservoir ages to ocean ventilation state will also be discussed with reference to the Younger Dryas climate anomaly, where models and data have been successfully integrated. I will discuss the use of reference chronologies in the North Atlantic region and evaluate the common practice of climate synchronization between the Greenland ice cores and some of the key MD records that are now available. The exceptional quality of the MD giant piston cores and their potential to capture high-resolution last glacial sediment records from the North Atlantic provides an exciting opportunity to build new regional marine radiocarbon calibration curves. I will highlight new efforts by my co-authors and others to build such curves, setting-out a new agenda for the next twenty years of the IMAGES programme.

  2. Turtle riders: remoras on marine turtles in Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An overview is presented for a poorly documented relationship between reef vertebrates in Southwest Atlantic: remoras (Echeneidae associated with marine turtles. Two remora species (Echeneis naucrates and Remora remora and four turtle species (Caretta caretta, Chelonia mydas, Eretmochelys imbricata, and Dermochelys coriacea are here recorded in symbiotic associations in the SW Atlantic. Echeneis naucrates was recorded both on the coast and on oceanic islands, whereas R. remora was recorded only at oceanic islands and in the open sea. The remora-turtle association is usually regarded as an instance of phoresis (hitchhiking, albeit feeding by the fish is also involved in this symbiosis type. This association seems to be rare in SW Atlantic.

  3. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  4. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum

    OpenAIRE

    Passarini, Michel. R. Z.; Santos, C; Lima, Nelson; Berlinck, Roberto G.S.; Sette, Lara D

    2012-01-01

    Dragmacidon reticulatum is a marine sponge of wide occurrence in the Eastern and Western Atlantic. Little is known about D. reticulatum fungal diversity. Filamentous fungi recovered from D. reticulatum were assessed in the present study using a polyphasic taxonomic approach, including classical morphology, molecular biology and MALDI-TOF ICMS. Ninety-eight fungal strains were isolated from two D. reticulatum samples by using six different culture media, which were identified up to the genus l...

  5. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  6. Biogeochemical Trends and Their Ecosystem Impacts in Atlantic Canada

    Science.gov (United States)

    Fennel, Katja; Rutherford, Krysten; Kuhn, Angela; Zhang, Wenxia; Brennan, Katie; Zhang, Rui

    2017-04-01

    The representation of coastal oceans in global biogeochemical models is a challenge, yet the ecosystems in these regions are most vulnerable to the combined stressors of ocean warming, deoxygenation, acidification, eutrophication and fishing. Coastal regions also have large air-sea fluxes of CO2, making them an important but poorly quantified component of the global carbon cycle, and are the most relevant for human activities. Regional model applications that are nested within large-scale or global models are necessary for detailed studies of coastal regions. We present results from such a regional biogeochemical model for the northwestern North Atlantic shelves and adjacent deep ocean of Atlantic Canada. The model is an implementation of the Regional Ocean Modeling System (ROMS) and includes an NPZD-type nitrogen cycle model with explicit representation of dissolved oxygen and inorganic carbon. The region is at the confluence of the Gulf Stream and Labrador Current making it highly dynamic, a challenge for analysis and prediction, and prone to large changes. Historically a rich fishing ground, coastal ecosystems in Atlantic Canada have undergone dramatic changes including the collapse of several economically important fish stocks and the listing of many species as threatened or endangered. Furthermore it is unclear whether the region is a net source or sink of atmospheric CO2 with estimates of the size and direction of the net air-sea CO2 flux remaining controversial. We will discuss simulated patterns of primary production, inorganic carbon fluxes and oxygen trends in the context of circulation features and shelf residence times for the present ocean state and present future projections.

  7. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas

    Science.gov (United States)

    Beaugrand, Grégory

    2009-04-01

    Climate change is unambiguous and its effects are clearly detected in all functional units of the Earth system. This study presents new analyses of sea-surface temperature changes and show that climate change is affecting ecosystems of the North Atlantic. Changes are seen from phytoplankton to zooplankton to fish and are modifying the dominance of species and the structure, the diversity and the functioning of marine ecosystems. Changes also range from phenological to biogeographical shifts and have involved in some regions of the Atlantic abrupt ecosystem shifts. These alterations reflect a response of pelagic ecosystems to a warmer temperature regime. Mechanisms are complex because they are nonlinear exhibiting tipping points and varying in space and time. Sensitivity of organisms to temperature changes is high, implicating that a small temperature modification can have sustained ecosystem effects. Implications of these changes for biogeochemical cycles are discussed. Two observed changes detected in the North Sea that could have opposite effects on carbon cycle are discussed. Increase in phytoplankton, as inferred from the phytoplankton colour index derived from the Continuous Plankton Recorder (CPR) survey, has been detected in the North Sea. This pattern has been accompanied by a reduction in the abundance of the herbivorous species Calanus finmarchicus. This might have reduced the grazing pressure and increase diatomaceous 'fluff', therefore carbon export in the North Sea. Therefore, it could be argued that the biological carbon pump might increase in this region with sea warming. In the meantime, however, the mean size of organisms (calanoid copepods) has dropped. Such changes have implications for the turnover time of biogenic carbon in plankton organisms and the mean residence time of particulate carbon they produce. The system characterising the warmer period is more based on recycling and less on export. The increase in the minimum turnover time

  8. Ecological Effects of Channelization on a Tropical Marine Ecosystem

    African Journals Online (AJOL)

    USER

    Ecological Effects of Channelization on a Tropical Marine Ecosystem: Impact on Intertidal Fish Communities in the Cross River, Nigeria. I. O. Ewa-Oboho. Marine Biology/Ecological Unit, Institute of Oceanography, University of Calabar, P.M.B 1115, Calabar, Nigeria. Abstract. The impact of bulk density silt/clay sedimentation ...

  9. Preface Society, marine ecosystems, innovation and change: current ...

    African Journals Online (AJOL)

    Preface Society, marine ecosystems, innovation and change: current states of knowledge in South Africa. CL Moloney, VE Coyne, CL Griffiths, D Scott, M Sowman. Abstract. Click on the link to view the praface. African Journal of Marine Science 2013, 35(3): 359–360. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  10. Marine ecosystem services: linking indicators to their classification

    NARCIS (Netherlands)

    Hattam, C.; Atkins, J.P.; Beaumont, N.J.; Boerger, T.; Boehnke-Henrichs, A.; Burdon, D.; Groot, de R.S.; Hoefnagel, E.; Nunes, P.A.L.D.; Piwowarczyk, J.; Sastre, S.; Austen, M.C.

    2015-01-01

    There is a multitude of ecosystem service classifications available within the literature, each with its own advantages and drawbacks. Elements of them have been used to tailor a generic ecosystem service classification for the marine environment and then for a case study site within the North Sea:

  11. Reviewing evidence of marine ecosystem change off South Africa ...

    African Journals Online (AJOL)

    Recent changes have been observed in South African marine ecosystems. The main pressures on these ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing ...

  12. Identifying marine pelagic ecosystem management objectives and indicators

    DEFF Research Database (Denmark)

    Trenkel, Verena M.; Hintzen, Niels T.; Farnsworth, Keith D.

    2015-01-01

    to the development of objectives, for this study stakeholders explored intermediate level ecological, economic and social management objectives for Northeast Atlantic pelagic ecosystems. Stakeholder workshops were undertaken with participants being free to identify objectives based on their own insights and needs...

  13. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show......The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...

  14. Transnational corporations as 'keystone actors' in marine ecosystems.

    Directory of Open Access Journals (Sweden)

    Henrik Österblom

    Full Text Available Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems.

  15. marine survival ecosystem indicators - Estimating the ecosystem indicators of anadromous salmonids in the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this project is to develop a simple approach for estimating the marine survival and causes of trends in survival. Data is a summary of ecosystem...

  16. Towards ecosystem-based management: Identifying operational food-web indicators for marine ecosystems

    DEFF Research Database (Denmark)

    Tam, Jamie C.; Link, Jason S.; Rossberg, Axel G.

    2017-01-01

    ) are an important aspect of all marine ecosystems and biodiversity. Here we describe and discuss a process to evaluate the selection of operational food-web indicators for use in evaluating marine ecosystem status. This process brought together experts in food-web ecology, marine ecology, and resource management......, to identify available indicators that can be used to inform marine management. Standard evaluation criteria (availability and quality of data, conceptual basis, communicability, relevancy to management) were implemented to identify practical food-web indicators ready for operational use and indicators...... that hold promise for future use in policy and management. The major attributes of the final suite of operational food-web indicators were structure and functioning. Indicators that represent resilience of the marine ecosystem were less developed. Over 60 potential food-web indicators were evaluated...

  17. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    Science.gov (United States)

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. © 2016 The Author(s).

  18. The Economics of Marine Ecosystem Services – the Fisheries Case

    DEFF Research Database (Denmark)

    Ravensbeck, Lars

    The thesis “The Economics of Marine Ecosystem Services − the Fisheries Case” focuses on some of the issues in marine resources economics that have attracted significant interest in recent years. Historically, the central issue has been fisheries economics and how to management fish stocks to obtain...... in the formation of flows of ecosystem services from the oceans it is possible to integrate classical fisheries economics with a broader ecosystem approach. The core element of the thesis is the combination of fisheries economics, an ecosystem approach and extended, applied bioeconomic models. The thesis consists...... of five papers, but additionally five other documents have been authored or co-authored in relation to the thesis. The first document is a book chapter that surveys the state of art in some main areas related to green accounting and the links to economic value of ecosystem services particularly those...

  19. Marine ecosystems of the North Pacific

    OpenAIRE

    2004-01-01

    Key Messages [pdf, 2.5 Mb] Climate Information Gaps Ocean Productivity Information gaps Living Marine Resources Information gaps Climate [pdf, 1.8 Mb] Productivity [pdf, 5.2 Mb] Nutrients Phytoplankton Zooplankton Living Resources [pdf, 10 Mb] Subarctic coastal systems Central oceanic gyres Temperate coastal and oceanic systems Marine mammals The Human Population [pdf, 5 Mb] Contaminants and Habitat Modifications ...

  20. Marine biodiversity, ecosystem functioning, and carbon cycles

    National Research Council Canada - National Science Library

    Grégory Beaugrand; Martin Edwards; Louis Legendre; David Karl

    2010-01-01

    .... We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller...

  1. Marine parasites as biological tags in South American Atlantic waters, current status and perspectives.

    Science.gov (United States)

    Cantatore, D M P; Timi, J T

    2015-01-01

    Many marine fisheries in South American Atlantic coasts (SAAC) are threatened by overfishing and under serious risk of collapsing. The SAAC comprises a diversity of environments, possesses a complex oceanography and harbours a vast biodiversity that provide an enormous potential for using parasites as biological tags for fish stock delineation, a prerequisite for the implementation of control and management plans. Here, their use in the SAAC is reviewed. Main evidence is derived from northern Argentine waters, where fish parasite assemblages are dominated by larval helminth species that share a low specificity, long persistence and trophic transmission, parasitizing almost indiscriminately all available fish species. The advantages and constraints of such a combination of characteristics are analysed and recommendations are given for future research. Shifting the focus from fish/parasite populations to communities allows expanding the concept of biological tags from local to regional scales, providing essential information to delineate ecosystem boundaries for host communities. This new concept arose as a powerful tool to help the implementation of ecosystem-based approaches to fisheries management, the new paradigm for fisheries science. Holistic approaches, including parasites as biological tags for stock delineation will render valuable information to help insure fisheries and marine ecosystems against further depletion and collapse.

  2. [Effects of fishing on the marine ecosystem of Beibu Gulf].

    Science.gov (United States)

    Chen, Zuo-Zhi; Qiu, Yong-Song; Jia, Xiao-Ping; Zhong, Zhi-Hui

    2008-07-01

    By using Ecopath with Ecosim 5.1 software, the Ecosim model of Beibu Gulf marine ecosystem in 1959-1960 was constructed, which included about 20 functional groups such as fishery, marine mammals, sea-birds, sharks, pelagic fishes, demersal fishes, and benthic crustaceans, etc. Through the comparison with the investigation data in 1997-1999, the effects of fishing on the structure and function of Beibu Gulf marine ecosystem were analyzed. The results indicated that with the increasing fishing pressure in past forty years, the ecosystem structure and function shifted drastically, with the biomass of long-lived, high trophic level and piscivorous fishes declined while short-lived and small fishes and benthic invertebrates dominated gradually. The biomass of piscivorous species in 1999 was only 6% of that in 1960, while cephalopods increased 2.7 times or more. The trophic level of the catch declined from 3.2 in 1960 to 2.98 in 1999, which fitted the rule of "fishing down the food web" and suggested that the present exploitation patterns were unsustainable. Based on the data of the 1990s, the changes of the ecosystem under decreasing fishing pressure were predicted. This study validated the feasibility of Ecosim model in predicting the effects of fishing pressure on marine ecosystem.

  3. Prevalence of marine debris in marine birds from the North Atlantic.

    Science.gov (United States)

    Provencher, Jennifer F; Bond, Alexander L; Hedd, April; Montevecchi, William A; Muzaffar, Sabir Bin; Courchesne, Sarah J; Gilchrist, H Grant; Jamieson, Sarah E; Merkel, Flemming R; Falk, Knud; Durinck, Jan; Mallory, Mark L

    2014-07-15

    Marine birds have been found to ingest plastic debris in many of the world's oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Circadian Rhythms of Retinomotor Movement in a Marine Megapredator, the Atlantic Tarpon, Megalops atlanticus

    Directory of Open Access Journals (Sweden)

    Kristin L. Kopperud

    2017-09-01

    Full Text Available Many ecologically and economically important marine fish species worldwide spend portions of their lives in coastal regions that are increasingly inundated by artificial light at night. However, while extensive research illustrates the harmful effects of inappropriate light exposure on biological timing in humans, rodents and birds, comparable studies on marine fish are virtually nonexistent. This study aimed to assess the effects of light on biological clock function in the marine fish retina using the Atlantic tarpon (Megalops atlanticus as a model. Using anti-opsin immunofluorescence, we observed robust rhythms of photoreceptor outer segment position (retinomotor movement over the course of the daily light–dark cycle: cone outer segments were contracted toward the inner retina and rods were elongated during the day; the opposite occurred at night. Phase shifting the daily light–dark cycle caused a corresponding shift of retinomotor movement timing, and cone retinomotor movement persisted in constant darkness, indicating control by a circadian clock. Constant light abolished retinomotor movements of both photoreceptor types. Thus, abnormally-timed light exposure may disrupt normal M. atlanticus clock function and harm vision, which in turn may affect prey capture and predator avoidance. These results should help inform efforts to mitigate the effects of coastal light pollution on organisms in marine ecosystems.

  5. 75 FR 39638 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-07-12

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-AY32 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based Amendment 1 for the South Atlantic... the final rule to implement Comprehensive Ecosystem-Based Amendment 1 for the South Atlantic region...

  6. 76 FR 82183 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2011-12-30

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BB26 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based Amendment 2 for the South Atlantic... Comprehensive Ecosystem-Based Amendment 2 (CE-BA 2) to implement the following South Atlantic fishery management...

  7. 77 FR 29555 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2012-05-18

    ... Administration 50 CFR Part 622 [Docket No. 110831547-2425-03] RIN 0648-BB26 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based Amendment 2 for the South Atlantic Region... implementing the Comprehensive Ecosystem-Based Amendment 2 (CE-BA 2) for the South Atlantic region, which was...

  8. 77 FR 4493 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2012-01-30

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BB26 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based Amendment 2 for the South Atlantic... Ecosystem-Based Amendment 2 (CE-BA 2) for the South Atlantic region. The final rule adds Appendix E to part...

  9. 75 FR 35330 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-06-22

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-AY32 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based Amendment for the South Atlantic... Comprehensive Ecosystem-Based Amendment 1 (CE-BA1) to the following South Atlantic fishery management plans...

  10. 75 FR 14548 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2010-03-26

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-AY32 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based Amendment for the South Atlantic... to implement the Comprehensive Ecosystem-Based Amendment 1 (CE-BA1) to the following South Atlantic...

  11. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  12. Squid as trophic bridges for parasite flow within marine ecosystems ...

    African Journals Online (AJOL)

    Squid as trophic bridges for parasite flow within marine ecosystems: The case of anisakis simplex (nematoda: Anisakidae), or when the wrong way can be right. E Abollo, C Gestal, A López, AF González, A Guerra, S Pascual ...

  13. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    These, in turn, created the need for holistic and integrated frameworks within which to design and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in ...

  14. Biodiversity in marine ecosystems – European developments towards robust assessments

    Directory of Open Access Journals (Sweden)

    Anna-Stiina Heiskanen

    2016-09-01

    Full Text Available Sustainability of marine ecosystems and their services are dependent on marine biodiversity, which is threatened worldwide. Biodiversity protection is a major target of the EU Marine Strategy Framework Directive, requiring assessment of the status of biodiversity on the level of species, habitats, and ecosystems including genetic diversity and the role of biodiversity in food web functioning and structure. This paper provides a summary of the development of new indicators and refinement of existing ones in order to address some of the observed gaps in indicator availability for marine biodiversity assessments considering genetic, species, habitat, and ecosystem levels. Promising new indicators are available addressing genetic diversity of microbial and benthic communities. Novel indicators to assess biodiversity and food webs associated with habitats formed by keystone species (such as macroalgae as well as to map benthic habitats (such as biogenic reefs using high resolution habitat characterization were developed. We also discuss the advances made on indicators for detecting impacts of non-native invasive species and assessing the structure and functioning of marine food-webs. The latter are based on indicators showing the effects of fishing on trophic level and size distribution of fish and elasmobranch communities well as phytoplankton and zooplankton community structure as food web indicators. New and refined indicators are ranked based on quality criteria. Their applicability for various EU and global biodiversity assessments and the need for further development of new indicators and refinement of the existing ones is discussed.

  15. Fish, human health and marine ecosystem health: policies in collision.

    Science.gov (United States)

    Brunner, Eric J; Jones, Peter J S; Friel, Sharon; Bartley, Mel

    2009-02-01

    Health recommendations advocating increased fish consumption need to be placed in the context of the potential collapse of global marine capture fisheries. Literature overview. In economically developed countries, official healthy eating advice is to eat more fish, particularly that rich in omega-3 oils. In many less economically developed countries, fish is a key human health asset, contributing >20% of animal protein intake for 2.6 billion people. Marine ecologists predict on current trends that fish stocks are set to collapse in 40 years, and propose increased restrictions on fishing, including no-take zones, in order to restore marine ecosystem health. Production of fishmeal for aquaculture and other non-food uses (22 MT in 2003) appears to be unsustainable. Differences in fish consumption probably contribute to within-country and international health inequalities. Such inequalities are likely to increase if fish stocks continue to decline, while increasing demand for fish will accelerate declines in fish stocks and the health of marine ecosystems. Urgent national and international action is necessary to address the tensions arising from increasing human demand for fish and seafood, and rapidly declining marine ecosystem health.

  16. Extremophiles in an Antarctic Marine Ecosystem

    Directory of Open Access Journals (Sweden)

    Iain Dickinson

    2016-01-01

    Full Text Available Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  17. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    Science.gov (United States)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-12-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning

  18. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum.

    Science.gov (United States)

    Passarini, Michel R Z; Santos, Cledir; Lima, Nelson; Berlinck, Roberto G S; Sette, Lara D

    2013-02-01

    Dragmacidon reticulatum is a marine sponge of wide occurrence in the Eastern and Western Atlantic. Little is known about D. reticulatum fungal diversity. Filamentous fungi recovered from D. reticulatum were assessed in the present study using a polyphasic taxonomic approach, including classical morphology, molecular biology and MALDI-TOF ICMS. Ninety-eight fungal strains were isolated from two D. reticulatum samples by using six different culture media, which were identified up to the genus level. Sixty-four distinct fungal ribotypes were obtained, distributed among twenty-four different genera belonging to the Ascomycota and Zygomycota. Representatives of Penicillium and Trichoderma were the most diverse and abundant fungi isolated. Amongst Penicillium spp. three isolates belonged to the same ribotype can be considered as a putative new species. Data derived from the present study highlight the importance of using a polyphasic approach to get an accurate identification in order to structure a reliable culture collection.

  19. Eutrophication of freshwater and marine ecosystems

    Science.gov (United States)

    Smith, Val H.; Joye, Samantha B.; Howarth, Robert W.

    2006-01-01

    Initial understanding of the links between nutrients and aquatic productivity originated in Europe in the early 1900s, and our knowledge base has expanded greatly during the past 40 yr. This explosion of eutrophication-related research has made it unequivocally clear that a comprehensive strategy to prevent excessive amounts of nitrogen and phosphorus from entering our waterways is needed to protect our lakes, rivers, and coasts from water quality deterioration. However, despite these very significant advances, cultural eutrophication remains one of the foremost problems for protecting our valuable surface water resources. The papers in this special issue provide a valuable cross section and synthesis of our current understanding of both freshwater and marine eutrophication science. They also serve to identify gaps in our knowledge and will help to guide future research.

  20. Resilience and stability of a pelagic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been...... reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional...... complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset...

  1. Resilience and stability of a pelagic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been...... complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset...... reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional...

  2. Species- and size-related patterns in stable isotopes and mercury concentrations in fish help refine marine ecosystem indicators and provide evidence for distinct management units for hake in the Northeast Atlantic

    OpenAIRE

    Chouvelon, Tiphaine; Caurant, Florence; Cherel, Yves; Simon-Bouhet, Benoit; Spitz, Jérôme; Bustamante, Paco

    2014-01-01

    International audience; Recent European environmental policies argue for the development of indicators of the ecological status of ecosystems that are easy to implement and powerful enough to detect changes quickly. For instance, some indicators that are currently proposed for monitoring foodweb structure and functioning are based on the size of organisms, using size as a proxy for trophic level. However, these indicators do not necessarily accurately reflect the underlying trophic structure ...

  3. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    Science.gov (United States)

    Hay, Mark E.

    2009-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.

  4. Marine debris ingestion by albatrosses in the southwest Atlantic Ocean.

    Science.gov (United States)

    Jiménez, Sebastián; Domingo, Andrés; Brazeiro, Alejandro; Defeo, Omar; Phillips, Richard A

    2015-07-15

    Plastics and other marine debris affect wildlife through entanglement and by ingestion. We assessed the ingestion of marine debris by seven albatross species in the southwest Atlantic by analyzing stomach contents of birds killed in fisheries. Of the 128 specimens examined, including four Diomedea species (n=78) and three Thalassarche species (n=50), 21 (16.4%) contained 1-4 debris items, mainly in the ventriculus. The most common type was plastic fragments. Debris was most frequent in Diomedea species (25.6%) and, particularly, Diomedea sanfordi (38.9%) and very rare in Thalassarche species (2.0%), presumably reflecting differences in foraging behavior or distribution. Frequency of occurrence was significantly higher in male than female Diomedea albatrosses (39.3% vs. 18.0%). Although levels of accumulated debris were relatively low overall, and unlikely to result in gut blockage, associated toxins might nevertheless represent a health risk for Diomedea albatrosses, compounding the negative impact of other human activities on these threatened species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Marine and terrigenous lipids in southeast atlantic sediments (leg 175) as paleoenvironmental indicators: initial results

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuss, E.; Versteegh, G.J.M.; Jansen, J.H.F.

    2001-01-01

    Lipid compositions of sediments recovered during Ocean Drilling Program Leg 175 in the eastern South Atlantic reflect a variety of oceanographic and climatological environments. Most of the identified lipids can be ascribed to marine sources, notably haptophytes,

  6. Estuarine Living Marine Resources: North Atlantic Regional Distribution and Abundance (NCEI Accession 0162402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is the North Atlantic regional component of NOAA’s Estuarine Living Marine Resources (ELMR) Project, a national database of ecologically and economically...

  7. Estuarine Living Marine Resources: Mid-Atlantic Regional Distribution and Abundance (NCEI Accession 0162403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is the Mid-Atlantic regional component of NOAA’s Estuarine Living Marine Resources (ELMR) Project, a national database of ecologically and economically...

  8. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    Science.gov (United States)

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Biomanipulation - a tool in marine ecosystem management and restoration?

    DEFF Research Database (Denmark)

    Lindegren, Martin; Möllmann, Christian; Hansson, Lars-Anders

    2010-01-01

    Widespread losses of production and conservation values make large-scale ecosystem restoration increasingly urgent. Ecological restoration by means of biomanipulation, i.e., by fishing out planktivores as to reduce the predation pressure on herbivorous zooplankton, has proven an effective tool...... in restoring degraded lakes and coastal ecosystems. Whether biomanipulation may prove a useful restoration method in open and structurally complex marine ecosystems is however still unknown. To promote a recovery of the collapsed stock of Eastern Baltic cod (Gadus morhua), large-scale biomanipulation of sprat...... (Sprattus sprattus), the main planktivore in the Baltic Sea, has been suggested as a possible management approach. We study the effect of biomanipulation on sprat using a statistical food-web model which integrates internal interactions between the main fish species of the Central Baltic Sea with external...

  10. Energy flow and trophic partitioning of contrasting Cold Water Coral ecosystems of the NE Atlantic.

    Science.gov (United States)

    Kiriakoulakis, K.; Smith, E. L.; Dempster, N. M.; Roberts, M.; Hennige, S. J.; Wolff, G. A.

    2016-02-01

    This study investigates the energy flow, trophic positioning and nutritional quality of suspended particulate organic matter (sPOM) that reaches cold-water coral (CWC) ecosystems from two contrasting oceanographic settings of the N. E. Atlantic using molecular (lipid) and stable isotopic analysis. Study sites are the shallow ( 150m) Mingulay Reef on the NW Scotland shelf vs the deeper ( 700m) Logachev Mounds on the eastern slope of the Rockall Bank. Cold water corals are now being realised as abundant, cosmopolitan and biodiverse hotspots of the global ocean. Recent research has shown links between high levels of surface primary productivity and sPOM flux; which when combined with hydrodynamic processes facilitates an almost continuous supply of nutrient rich sPOM to these deep-ocean ecosystems. However, little is understood regarding the exact nutritional requirements of these ecosystems. Fresh marine sPOM is usually rich in proteins and lipids; however during transport into the ocean interior its chemical composition is influenced by a variety of complex transformation, remineralisation and repackaging processes; thus altering its `freshness' and nutritional quality. The study of the bioavailable and nutritional fractions of sPOM in relation to specific oceanographic transport regimes can help further understand the processes, nutritional requirements and energy flow of these ecosystems. Isotopic ratios of carbon and nitrogen were analysed using EA-IR-MS and lipids via GC-MS. Initial results show significant differences in δ15N and δ13C values of sPOM between the two areas, indicating differences in trophic dynamics and sPOM re-working between locations. In addition lipid results highlight differences in trophic contributions to the energy flows of the two locations, yet similarities in molecular nutritional component contributions; thus supporting previous studies regarding the importance of certain lipid classes in the development of these deep and fragile

  11. Introduction to the symposium "New frontiers from marine snakes to marine ecosystems".

    Science.gov (United States)

    Lillywhite, Harvey B; Brischoux, François

    2012-08-01

    Interest in sea snakes and mythological "sea serpents" dates to ancient times and is represented in the writings of Aristotle, early voyagers, and explorers, and references in the Bible. Since then, awareness of the myriad species of snakes inhabiting the oceans has grown at a gradual pace. Scientific investigations into the biology of marine snakes-especially those in behavior, physiology, and other disciplines requiring living animals or tissues-have been comparatively challenging owing to difficulties in acquiring, transporting, handling, and husbanding these secondarily marine vertebrates. A broadening perspective with increasing interest in these animals peaked during the 1960s and 1970s, and literature from this period contributed to a growing knowledge that marine snakes comprise a very diverse fauna and are a significant part of marine ecosystems. Two persons figured prominently as influential drivers of research on sea snakes during this period, namely William Dunson and Harold Heatwole, and this symposium recognizes the contributions of these two individuals. Following a decline in scientific publications on sea snakes during the 1980s and 1990s, there has been a renaissance of scientific interest in recent years, and a wealth of new research findings has improved the understanding of phylogeny and diversity of marine snakes while simultaneously recognizing threats to marine ecosystems arising from climate change and other anthropogenic causes. The purposes of the symposium are to (1) illustrate the importance and relevance of sea snakes as contributors to better understanding a range of issues in marine biology, (2) establish and promote the use of marine systems as models for investigating conceptual issues related to environment, changing climate, and persistence of biological communities, with focus on marine snakes as novel or useful examples, (3) promote interest in sea snakes as useful organisms for study by scientists in a range of disciplines who

  12. Perceptions of rule-breaking related to marine ecosystem health.

    Directory of Open Access Journals (Sweden)

    Matthew J Slater

    Full Text Available Finding effective solutions to manage marine resources is high on political and conservation agendas worldwide. This is made more urgent by the rate of increase in the human population and concomitant resource pressures in coastal areas. This paper links empirical socio-economic data about perceptions of marine resource health to the breaking of marine management rules, using fisheries as a case study. The relationship between perceived rule-breaking (non-compliance with regulations controlling fishing and perceived health of inshore marine environments was investigated through face-to-face interviews with 299 heads of households in three Tanzanian coastal communities in November and December 2011. Awareness of rules controlling fishing activity was high among all respondents. Fishers were able to describe more specific rules controlling fishing practices than non-fishers (t = 3.5, df = 297, p<0.01. Perceived breaking of fishing regulations was reported by nearly half of all respondents, saying "some" (32% of responses or "most" (15% of responses people break fishing rules. Ordinal regression modelling revealed a significant linkage (z= -3.44, p<0.001 in the relationship between respondents' perceptions of deteriorating marine health and their perception of increased rule-breaking. In this paper, inferences from an empirical study are used to identify and argue the potential for using perceptions of ecosystem health and level of rule-breaking as a means to guide management measures. When considering different management options (e.g. Marine Protected Areas, policy makers are advised to take account of and utilise likely egoistic or altruistic decision-making factors used by fishers to determine their marine activities.

  13. Resilience and stability of a pelagic marine ecosystem.

    Science.gov (United States)

    Lindegren, Martin; Checkley, David M; Ohman, Mark D; Koslow, J Anthony; Goericke, Ralf

    2016-01-13

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS. © 2016 The Author(s).

  14. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  15. The role of large marine vertebrates in the assessment of the quality of pelagic marine ecosystems.

    Science.gov (United States)

    Fossi, Maria Cristina; Casini, Silvia; Caliani, Ilaria; Panti, Cristina; Marsili, Letizia; Viarengo, Aldo; Giangreco, Roberto; Notarbartolo di Sciara, Giuseppe; Serena, Fabrizio; Ouerghi, Atef; Depledge, Michael H

    2012-06-01

    The Marine Strategy Framework Directive (MSFD) establishing a framework for community action in the field of marine environmental policy has been developed and is being implemented, with the objective to deliver "Good Environmental Status" by 2020. A pragmatic way forward has been achieved through the development of 11 "qualitative descriptors". In an attempt to identify gaps in MSFD, regarding the data on large marine vertebrates, the SETAC--Italian Branch organised a workshop in Siena (IT). Particular attention was paid to the qualitative descriptors 8 (contaminants and pollution effects) and 10 (marine litter). The specific remit was to discuss the potential use of large marine vertebrates (from large pelagic fish, sea turtles, sea birds and cetaceans) in determining the environmental status of pelagic marine ecosystems. During the workshop it emerged that large pelagic fish may be especially useful for monitoring short- to medium-term changes in pelagic ecosystems, while cetaceans provided a more integrated view over the long-term. A theme that strongly emerged was the broad recognition that biomarkers offer real potential for the determination of good ecological status detecting the "undesirable biological effects" (indicator for descriptor 8). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    Directory of Open Access Journals (Sweden)

    Ellen Kenchington

    Full Text Available The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores, and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here

  17. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry’s highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and Eas...

  18. Large-scale marine ecosystem change and the conservation of marine mammals

    Science.gov (United States)

    O'Shea, T.J.; Odell, D.K.

    2008-01-01

    Papers in this Special Feature stem from a symposium on large-scale ecosystem change and the conservation of marine mammals convened at the 86th Annual Meeting of the American Society of Mammalogists in June 2006. Major changes are occurring in multiple aspects of the marine environment at unprecedented rates, within the life spans of some individual marine mammals. Drivers of change include shifts in climate, acoustic pollution, disturbances to trophic structure, fisheries interactions, harmful algal blooms, and environmental contaminants. This Special Feature provides an in-depth examination of 3 issues that are particularly troublesome. The 1st article notes the huge spatial and temporal scales of change to which marine mammals are showing ecological responses, and how these species can function as sentinels of such change. The 2nd paper describes the serious problems arising from conflicts with fisheries, and the 3rd contribution reviews the growing issues associated with underwater noise. ?? 2008 American Society of Mammalogists.

  19. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses. These cha...... to environmental changes, recommendations are made for the establishment of long-term observatories across the Arctic, in support of sustainable management and conservation actions........ These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors......The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses...

  20. Ecosystem responses in the southern Caribbean Sea to global climate change

    National Research Council Canada - National Science Library

    Gordon T. Taylor; Frank E. Muller-Karger; Robert C. Thunell; Mary I. Scranton; Yrene Astor; Ramon Varela; Luis Troccoli Ghinaglia; Laura Lorenzoni; Kent A. Fanning; Sultan Hameed; Owen Doherty

    2012-01-01

    ... of the Intertropical Convergence Zone (ITCZ) and North Atlantic Oscillation (NAO). Expression of these changes in tropical marine ecosystems is poorly understood because of sparse observational datasets...

  1. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems.

    Science.gov (United States)

    Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl

    2014-06-01

    Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.

  2. Marine reserves help coastal ecosystems cope with extreme weather.

    Science.gov (United States)

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance. © 2014 John Wiley & Sons Ltd.

  3. Optimal foraging in marine ecosystem models: selectivity, profitability and switching

    DEFF Research Database (Denmark)

    Visser, Andre W.; Fiksen, Ø.

    2013-01-01

    their diets towards the most profitable prey items. We present a simple algorithm for plankton feeding on a size-spectrum of prey with particular energetic content, handling times and capture probabilities. We show that the optimal diet breadth changes with relative densities, but in a different way...... ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...

  4. Payments for coastal and marine ecosystem services: prospects and principles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Essam Yassin

    2012-05-15

    Coastal and marine resources provide millions of impoverished people across the global South with livelihoods, and provide the world with a range of critical 'ecosystem services', from biodiversity and culture to carbon storage and flood protection. Yet across the world, these resources are fast-diminishing under the weight of pollution, land clearance, coastal development, overfishing, natural disasters and climate change. Traditional approaches to halt the decline focus on regulating against destructive practices, but to little effect. A more successful strategy could be to establish payments for ecosystem services (PES) schemes, or incorporate an element of PES in existing regulatory mechanisms. Examples from across the world suggest that PES can work to protect both livelihoods and environments. But to succeed, these schemes must be underpinned by robust research, clear property rights, equitable benefit sharing and sustainable finance.

  5. Typology and indicators of ecosystem services for marine spatial planning and management.

    Science.gov (United States)

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cumulative effects of planned industrial development and climate change on marine ecosystems

    OpenAIRE

    Clarke Murray, Cathryn; Agbayani, Selina; Ban, Natalie C.

    2015-01-01

    With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different sce...

  7. Exploring local adaptation and the ocean acidification seascape -- studies in the California Current Large Marine Ecosystem

    National Research Council Canada - National Science Library

    Hofmann, G. E; Evans, T. G; Kelly, M. W; Padilla-Gamiño, J. L; Blanchette, C. A; Washburn, L; Chan, F; McManus, M. A; Menge, B. A; Gaylord, B; Hill, T. M; Sanford, E; LaVigne, M; Rose, J. M; Kapsenberg, L; Dutton, J. M

    2014-01-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification...

  8. DECISION TOOL FOR RIPARIAN ECOSYSTEM MANAGMENT IN THE MID-ATLANTIC HIGHLANDS

    Science.gov (United States)

    In the Canaan Valley Highlands of the Mid-Atlantic, riparian zone restoration has been identified as a critical watershed management practice not only for the ecosystem services provided but also for the potential socioeconomic growth from environmental investment and job creatio...

  9. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbladh, Erik [Swedish Nuclear Fuel and Waste Management Co., Figeholm (Sweden). Site Investigations Oskarshamn; Joensson, Bror Fredrik [Boston Univ., MA (United States). Dept. of Earth Sciences; Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    2006-12-15

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  10. The Mares Conference on Marine ecosystem Health and Conservation 2016: key themes

    OpenAIRE

    Deprez, Tim; Brownlie, Katherine; Officer, Rick A.; Cunha,Marina; Erzini, Karim

    2015-01-01

    Marine environments are generally considered as highly valuable and their health and conservation status are seen as key priorities. However, marine wildlife and habitats are facing multiple threats ranging from eutrophication to overfishing and ocean acidification, all of which directly or indirectly affect the biodiversity of marine ecosystems. The Mares Conference 2016 aims to address the main issues of marine ecosystems health and conservation. To do this, six thematic subjects will be ex...

  11. 78 FR 76807 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Revisions to Dealer Permitting...

    Science.gov (United States)

    2013-12-19

    ... Caribbean, Gulf of Mexico, and South Atlantic; Revisions to Dealer Permitting and Reporting Requirements for... providing food production and recreational opportunities, and protecting marine ecosystems. To further this...

  12. Accelerated warming and emergent trends in fisheries biomass yields of the world's large marine ecosystems.

    Science.gov (United States)

    Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly

    2009-06-01

    Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.

  13. Marine mammal strandings and environmental changes: a 15-year study in the St. Lawrence ecosystem.

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Truchon

    Full Text Available Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994-2008; n = 1,193 and nine environmental parameters known to affect marine mammal survival, from regional (sea ice to continental scales (North Atlantic Oscillation, NAO. Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance. For most species (75%, n = 6 species, a low volume of ice was correlated with increasing frequency of stranding events (e.g. R(2adj = 0.59, hooded seal, Cystophora cristata. This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata and resident species (beluga, Delphinapterus leucas, correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R(2adj = 0.53, 0.81 and 0.34, respectively. This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a

  14. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  15. Statistical Classification of Terrestrial and Marine Ecosystems for Environmental Planning

    Directory of Open Access Journals (Sweden)

    W. Schröder

    2007-10-01

    Full Text Available E nvironmental planning is an instrument for the operationalisation of the precautionary principle in environmental law and, to this end, must rely on maps depicting the spatial patterns of ecological attributes of aquatic and terrestrial ecosystems and of environmental change effects, respectively. In this context, different mapping techniques are presented by example of three case studies covering terrestrial, coastal and marine environments. The first case study was selected to demonstrate how to compute an ecological land classification of Germany by means of CART. The resulting ecoregions were mapped by GIS. This CARTography enables to regionalise metal bioaccumulation data in terms of 21 ecological land categories and to prove the specifity of emission control measures as being part of environmental policies. The second investigation was chosen to applyfor the first time in Germany the regionalisation approach to the research of climate change effects in terms of past, recent and potential future incidences of Anopheles sp. and malaria in Lower Saxony. To investigate whether malaria might be transmitted due to increasing air temperatures, data sets on past and future air temperatures were used to spatially model malaria risk areas. The third example demonstrates the transfer of the CARTography approach presented in the first case study from terrestrial to marine environments. We analysed the statistical relations between data on benthic communities and physical properties of their marine environments by means of CART and applied these rules to geodata which only describe physical characteristics of the benthic habitats. By this, those parts of the sea ground could be predicted where certain benthic communities might occur.

  16. Marine Mammal Impacts in Exploited Ecosystems: Would Large Scale Culling Benefit Fisheries?

    Science.gov (United States)

    Morissette, Lyne; Christensen, Villy; Pauly, Daniel

    2012-01-01

    Competition between marine mammals and fisheries for marine resources—whether real or perceived—has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TLQ) and compared it with the mean trophic level of fisheries' catches (TLC). Our results showed that overall TLQ was lower than TLC (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species. PMID:22970153

  17. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem.

    Science.gov (United States)

    Ellingsen, Kari E; Anderson, Marti J; Shackell, Nancy L; Tveraa, Torkild; Yoccoz, Nigel G; Frank, Kenneth T

    2015-09-01

    1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  18. Bridging the gap between policy and science in assessing the health status of marine ecosystems

    Directory of Open Access Journals (Sweden)

    Angel Borja

    2016-09-01

    Full Text Available Human activities, both established and emerging, increasingly affect the provision of marine ecosystem services that deliver societal and economic benefits. Monitoring the status of marine ecosystems and determining how human activities change their capacity to sustain benefits for society requires an evidence-based Integrated Ecosystem Assessment approach that incorporates knowledge of ecosystem functioning and services. Although there are diverse methods to assess the status of individual ecosystem components, none assesses the health of marine ecosystems holistically, integrating information from multiple ecosystem components. Similarly, while acknowledging the availability of several methods to measure single pressures and assess their impacts, evaluation of cumulative effects of multiple pressures remains scarce. Therefore, an integrative assessment requires us to first understand the response of marine ecosystems to human activities and their pressures and then develop innovative, cost-effective monitoring tools that enable collection of data to assess the health status of large marine areas. Conceptually, combining this knowledge of effective monitoring methods with cost-benefit analyses will help identify appropriate management measures to improve environmental status economically and efficiently. The European project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status specifically addressed these topics in order to support policy makers and managers in implementing the European Marine Strategy Framework Directive. Here, we synthesize our main innovative findings, placing these within the context of recent wider research, and identifying gaps and the major future challenges.

  19. Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans.

    Science.gov (United States)

    Bray, Rodney A; Diaz, Pablo E; Cribb, Thomas H

    2016-03-01

    A brief summary of the early history of the study of Atlantic Ocean marine fish digeneans is followed by a discussion of the occurrence and distribution of these worms in the Atlantic Ocean and adjacent Eastern Pacific Ocean, using the Provinces of the 'Marine Ecoregions' delimited by Spalding et al. (Bioscience 57:573-583, 2007). The discussion is based on a database of 9,880 records of 1,274 species in 430 genera and 45 families. 8,633 of these records are from the Atlantic Ocean, including 1,125 species in 384 genera and 45 families. About 1,000 species are endemic to the Atlantic Ocean Basin. The most species-rich families in the Atlantic Ocean are the Opecoelidae Ozaki, 1925, Hemiuridae Looss, 1899 and Bucephalidae Poche, 1907, and the most wide-spread the Opecoelidae, Hemiuridae, Acanthocolpidae Lühe, 1906, Lepocreadiidae Odhner, 1905 and Lecithasteridae Odhner, 1905. A total of 109 species are shared by the Atlantic Ocean and the Eastern Pacific, made up of cosmopolitan, circum-boreal, trans-Panama Isthmus and Magellanic species. The lack of genetic evaluation of identifications is emphasised and the scope for much more work is stressed.

  20. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone

    OpenAIRE

    Sarmiento, J. L.; R. D. Slater; M. J. R. Fasham; Ducklow, H.W.; J. R. Toggweiler; Evans, G.T.

    2012-01-01

    A seven-component upper ocean ecosystem model of nitrogen cycling calibrated with observations at Bermuda Station “S” has been coupled to a three-dimensional seasonal general circulation model (GCM) of the North Atlantic ocean. The aim of this project is to improve our understanding of the role of upper ocean biological processes in controlling surface chemical distributions, and to develop approaches for assimilating large data sets relevant to this problem. A comparison of model predicted c...

  1. 3D Corporate Tourism in the Marine Sciences: Application-Oriented Problem Solving in Marine and Coastal Ecosystems

    CERN Document Server

    Gebeshuber, Ille Christine; Esichaikul, Ranee; Macqueen, Mark; Majlis, Burhanuddin Yeop

    2010-01-01

    3D corporate tourism in the marine sciences is a solution-based approach to innovation in science, engineering and design. Corporate international scientists, engineers and designers work with local experts in Malaysian marine and coastal environments: they jointly discover, develop and design complex materials and designs inspired by nature directly on site (e.g. at the UKM Marine Ecosystem Research Centre EKOMAR and Malaysian Marine Parks) and construct initial biomimetic prototypes and novel designs. Thereby, new links, networks and collaborations are established between communities of thinkers in different countries. 3D tourism aims at mapping new frontiers in emerging engineering and design fields. This provides a novel way to foster and promote innovative thinking in the sciences, and considers the need for synergy and collaboration between marine sciences, engineering and design rather than segmentation and isolation. With the concept of 3D corporate tourism the potential of Malaysian marine ecosystems...

  2. Nearshore marine benthic invertebrates moving north along the U.S. Atlantic coast

    Science.gov (United States)

    Numerous species have shifted their ranges north in response to global warming. We examined 21 years (1990-2010) of marine benthic invertebrate data from the National Coastal Assessment’s monitoring of nearshore waters along the US Atlantic coast. Data came from three bioge...

  3. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past.

    Directory of Open Access Journals (Sweden)

    Fabiana Saporiti

    Full Text Available The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs.

  4. Longer and Less Overlapping Food Webs in Anthropogenically Disturbed Marine Ecosystems: Confirmations from the Past

    Science.gov (United States)

    Saporiti, Fabiana; Bearhop, Stuart; Silva, Laura; Vales, Damián G.; Zenteno, Lisette; Crespo, Enrique A.; Aguilar, Alex; Cardona, Luis

    2014-01-01

    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs. PMID:25076042

  5. Overview of integrative assessment of marine systems: the Ecosystem Approach in practice

    Directory of Open Access Journals (Sweden)

    Angel eBorja

    2016-03-01

    Full Text Available Traditional and emerging human activities are increasingly putting pressures on marine ecosystems and impacting their ability to sustain ecological and human communities. To evaluate the health status of marine ecosystems we need a science-based, integrated Ecosystem Approach, that incorporates knowledge of ecosystem function and services provided that can be used to track how management decisions change the health of marine ecosystems. Although many methods have been developed to assess the status of single components of the ecosystem, few exist for assessing multiple ecosystem components in a holistic way. To undertake such an integrative assessment, it is necessary to understand the response of marine systems to human pressures. Hence, innovative monitoring is needed to obtain data to determine the health of large marine areas, and in an holistic way. Here we review five existing methods that address both of these needs (monitoring and assessment: the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index; the Marine Biodiversity Assessment Tool; and the Nested Environmental status Assessment Tool. We have highlighted their main characteristics and analyzing their commonalities and differences, in terms of: use of the Ecosystem Approach; inclusion of multiple components in the assessment; use of reference conditions; use of integrative assessments; use of a range of values to capture the status; weighting ecosystem components when integrating; determine the uncertainty; ensure spatial and temporal comparability; use of robust monitoring approaches; and address pressures and impacts. Ultimately, for any ecosystem assessment to be effective it needs to be: transparent and repeatable and, in order to inform marine management, the results should be easy to communicate to wide audiences, including scientists, managers and policymakers.

  6. Effects of gill-net fishing on marine birds in a biological hotspot in the northwest Atlantic.

    Science.gov (United States)

    Davoren, Gail K

    2007-08-01

    Marine biological hotspots, or areas where high abundances of species overlap in space and time, are ecologically important areas because energy flow through marine food webs, a key ecosystem process, is maximized in these areas. I investigated whether top predators aggregated at persistent spawning sites of a key forage fish species, capelin (Mallotus villosus), on the NE coast of Newfoundland during July and August 2000-2003. By examining the distributional patterns of top predators through ship-based surveys at multiple spatial and temporal scales, I found that the biomasses of birds-dominated by Common Murres (Uria aalge)-and mammals-dominated by whale species-were concentrated along the coast, with a biological hotspot forming near two persistent spawning sites of capelin in all years. The formation of this hotspot was well defined in space and time from middle of July to middle of August, likely coinciding with the spawning chronology of capelin. Within this hotspot, there was a high spatial and temporal overlap of Common Murres and gill nets set to capture Atlantic cod (Gadus morhua). This resulted in breeding murres becoming entangled in gill nets while feeding on spawning capelin. Despite an acknowledged uncertainty of bycatch mortality, estimates for the larger regional-scale area (1936-4973 murres/year; 0.2-0.6% of the breeding population) underestimated mortality relative to estimates within the hotspot (3053-14054 murres/year; 0.4-1.7%). Although fishing effort for Atlantic cod has declined substantially since the groundfish moratorium in 1992, chronic, unnatural, and additive mortality through bycatch continues in coastal Newfoundland. Restricted use of gill nets within this and other biological hotspots during the capelin spawning period appears to be a straightforward application of the "ecological and biologically significant area" management framework in Canada's Oceans Act. This protection would minimize murre bycatch and maintain ecosystem

  7. Hydrological services in the Atlantic Forest, Brazil: An ecosystem-based adaptation using ecohydrological monitoring

    Directory of Open Access Journals (Sweden)

    Denise Taffarello

    2017-12-01

    Full Text Available Ecosystem-based Adaptation (EbA involves using services on which human well-being depends to help people adapt to the impacts of climate change. Aiming at strengthening ecosystem resilience and reducing ecosystem and people’s vulnerability, EbA has been encouraged worldwide as an option for climate change. Payments for Ecosystem Services (PES are incentives offered to farmers and landowners to provide an ecological service and are currently proposed as a method for EbA and water resources sustainability on a global scale. However, organized information on PES in Brazil is limited. This paper provides a concise review of PES initiatives in the Brazilian Atlantic Forest, where various PES projects on watershed protection (Water-PES have been set up. We found 16 ongoing Water-PES in the Brazilian Atlantic Forest. The first initiative was launched in 2005 and since then these projects have grown rapidly. In spite of the advances made in many of these initiatives, they seldom have baseline hydrologic data and an implemented strategy for ecohydrological monitoring. Thus, we discuss how PES projects could be more effective by implementing hydrological monitoring based on ecohydrological concepts. Special attention has been given to explaining how the recent Impact-Vulnerability-Adaptation idea could be integrated into Water-PES. As can be seen from the review, these projects contribute as EbA options for climate change, thereby carrying practical implications for environmental policy makers.

  8. Is the Gulf of Cadiz ready for the ecosystem approach? A perspective from the southernmost European Atlantic regional sea

    OpenAIRE

    Llope, M.

    2016-01-01

    This study considers the major milestones in history, current situation and prospects of developing an ecosystem approach to management in the Gulf of Cadiz ecosystem. This particular socio-ecosystem is characterised by a clear focal ecosystem component –the role of the estuary of the Guadalquivir River as a nursery area– that have an influence on the marine ecosystem and at the same time concentrates a great number of sectoral human activities. This nursery role particularly affects the anch...

  9. Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems

    Science.gov (United States)

    Hunt, George L.; Drinkwater, Kenneth F.; Arrigo, Kevin; Berge, Jørgen; Daly, Kendra L.; Danielson, Seth; Daase, Malin; Hop, Haakon; Isla, Enrique; Karnovsky, Nina; Laidre, Kristin; Mueter, Franz J.; Murphy, Eugene J.; Renaud, Paul E.; Smith, Walker O.; Trathan, Philip; Turner, John; Wolf-Gladrow, Dieter

    2016-12-01

    We compare and contrast the ecological impacts of atmospheric and oceanic circulation patterns on polar and sub-polar marine ecosystems. Circulation patterns differ strikingly between the north and south. Meridional circulation in the north provides connections between the sub-Arctic and Arctic despite the presence of encircling continental landmasses, whereas annular circulation patterns in the south tend to isolate Antarctic surface waters from those in the north. These differences influence fundamental aspects of the polar ecosystems from the amount, thickness and duration of sea ice, to the types of organisms, and the ecology of zooplankton, fish, seabirds and marine mammals. Meridional flows in both the North Pacific and the North Atlantic oceans transport heat, nutrients, and plankton northward into the Chukchi Sea, the Barents Sea, and the seas off the west coast of Greenland. In the North Atlantic, the advected heat warms the waters of the southern Barents Sea and, with advected nutrients and plankton, supports immense biomasses of fish, seabirds and marine mammals. On the Pacific side of the Arctic, cold waters flowing northward across the northern Bering and Chukchi seas during winter and spring limit the ability of boreal fish species to take advantage of high seasonal production there. Southward flow of cold Arctic waters into sub-Arctic regions of the North Atlantic occurs mainly through Fram Strait with less through the Barents Sea and the Canadian Archipelago. In the Pacific, the transport of Arctic waters and plankton southward through Bering Strait is minimal. In the Southern Ocean, the Antarctic Circumpolar Current and its associated fronts are barriers to the southward dispersal of plankton and pelagic fishes from sub-Antarctic waters, with the consequent evolution of Antarctic zooplankton and fish species largely occurring in isolation from those to the north. The Antarctic Circumpolar Current also disperses biota throughout the Southern Ocean

  10. Large Marine Ecosystems and coastal water archetypes implemented in LCIA methods for marine eutrophication and metals ecotoxicity

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Dong, Yan; Hauschild, Michael Zwicky

    The marine eutrophication (MEu) and marine ecotoxicity (MEc) indicators in Life Cycle Impact Assessment (LCIA) respectively express the eutrophying impact of nitrogen (N) and the toxic impact of metals emissions to the marine environment. Characterisation Factors (CF) are calculated to translate...... on biota (EF). In both impact categories there is a need for spatial differentiation according to the receiving ecosystems, and the parameterisation of the characterisation models requires the adoption of suitable spatial units out of the global receiving coastal marine ecosystem. The Large Marine......, Archetype 2 (medium dynamics and exposure) with RT=2 yr, Archetype 3 (low dynamics) with RT=25 yr, and Archetype 4 (very low dynamics, embayed, often stratified) with RT=90 yr. It is assumed that the system dynamics is determining the RT of both N and metals in the photic zone in each LME. The LME...

  11. The importance of deep-sea vulnerable marine ecosystems for demersal fish in the Azores

    Science.gov (United States)

    Pham, Christopher K.; Vandeperre, Frederic; Menezes, Gui; Porteiro, Filipe; Isidro, Eduardo; Morato, Telmo

    2015-02-01

    Cold-water corals and sponges aggregations are important features of the deep sea, recently classified as vulnerable marine ecosystems (VMEs). VMEs increase habitat complexity, believed to act as feeding, reproductive, nursery and refuge areas for a high number of invertebrates and fish species. In the Azores archipelago (NE Atlantic), VMEs are prevalent but their ecological role has not received much attention. The objective of this study was to investigate the importance of VMEs in influencing the distribution of demersal fish in the Azores. With data collected during experimental longline surveys , we modeled the catch of six demersal fish species of commercial value (Helicolenus dactylopterus, Pagellus bogaraveo, Mora moro, Conger conger, Phycis phycis, Pontinus kuhlii) in relation to the presence of VMEs and other environmental factors using General Additive Models (GAMs). Our study demonstrated that total fish catch was higher inside VMEs but the relationship between fish and VMEs varied among fish species. Species specific models showed that catch was strongly influenced by environmental factors, mainly depth, whilst the presence of VMEs was only important for two rockfish species; juvenile and adult P. kuhlii and juvenile H. dactylopterus. Although the association between deep-sea demersal fish and VMEs may be an exception to the rule, we suggest that VMEs act as an important habitat for two commercially important species in the Azores.

  12. Signatures of the collapse and incipient recovery of an overexploited marine ecosystem

    Science.gov (United States)

    Thompson, Patrick L.; Ball, R. Aaron; Fortin, Marie-Josée; Gouhier, Tarik C.; Link, Heike; Moritz, Charlotte; Nenzen, Hedvig; Stanley, Ryan R. E.; Taranu, Zofia E.; Gonzalez, Andrew; Guichard, Frédéric; Pepin, Pierre

    2017-01-01

    The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems. PMID:28791149

  13. Signatures of the collapse and incipient recovery of an overexploited marine ecosystem.

    Science.gov (United States)

    Pedersen, Eric J; Thompson, Patrick L; Ball, R Aaron; Fortin, Marie-Josée; Gouhier, Tarik C; Link, Heike; Moritz, Charlotte; Nenzen, Hedvig; Stanley, Ryan R E; Taranu, Zofia E; Gonzalez, Andrew; Guichard, Frédéric; Pepin, Pierre

    2017-07-01

    The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems.

  14. Mesophotic fishes of the Abrolhos Shelf, the largest reef ecosystem in the South Atlantic.

    Science.gov (United States)

    Simon, T; Pinheiro, H T; Moura, R L; Carvalho-Filho, A; Rocha, L A; Martins, A S; Mazzei, E; Francini-Filho, R B; Amado-Filho, G M; Joyeux, J-C

    2016-07-01

    Fishes inhabiting rhodolith beds and reefs at mesophotic depths on the Abrolhos Shelf, which encompasses the largest and richest coral reef formation in the South Atlantic Ocean, were assessed through technical diving and remotely operated vehicles (ROVs). A total of 74 fish species were recorded, including at least one new species, one new record for the south-western Atlantic and six new records for the Abrolhos region. Overfishing, mining and port activities are already threatening many endangered and commercially important species recorded on the mesophotic reefs of Abrolhos Shelf, and the establishment of marine protected areas and off-reserve fisheries regulations are urgently needed. © 2016 The Fisheries Society of the British Isles.

  15. Archive of Geosample Information from the Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility contributed information on 40,428 cores, grabs, and dredges in their holdings to...

  16. Marine Ecosystems Analysis (MESA) Program, New York Bight Surficial Sediment Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Ecosystems Analysis (MESA) Program, New York Bight Study was funded by NOAA and the Bureau of Land Management (BLM). The Atlas was a historical...

  17. Environmental impact assessment - A management tool for conservation of large marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    disposal, sea transport and exploitation of living and non-living resources. Mitigation actions to reduce stress on marine ecosystem especially the living resources of the coastal watrs are required to ensure long term sustainability of biomass yields...

  18. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  19. Archaeology meets marine ecology: the antiquity of maritime cultures and human impacts on marine fisheries and ecosystems.

    Science.gov (United States)

    Erlandson, Jon M; Rick, Torben C

    2010-01-01

    Interdisciplinary study of coastal archaeological sites provides a wealth of information on the ecology and evolution of ancient marine animal populations, the structure of past marine ecosystems, and the history of human impacts on coastal fisheries. In this paper, we review recent methodological developments in the archaeology and historical ecology of coastal regions around the world. Using two case studies, we examine (a) a deep history of anthropogenic effects on the marine ecosystems of California's Channel Islands through the past 12,000 years and (b) geographic variation in the effects of human fishing on Pacific Island peoples who spread through Oceania during the late Holocene. These case studies--the first focused on hunter-gatherers, the second on maritime horticulturalists-provide evidence for shifting baselines and timelines, documenting a much deeper anthropogenic influence on many coastal ecosystems and fisheries than considered by most ecologists, conservation biologists, and fisheries managers.

  20. Seals, cod and forage fish: A comparative exploration of variations in the theme of stock collapse and ecosystem change in four Northwest Atlantic ecosystems

    Science.gov (United States)

    Bundy, Alida; Heymans, Johanna J.; Morissette, Lyne; Savenkoff, Claude

    2009-04-01

    The facts: four Northwest Atlantic ecosystems, three cod stock collapses 15 years ago (plus one severely depleted), seals now top predator in all ecosystems, all had cod as a top predator before collapse, groundfish declines in all areas, forage base increased in most systems. No recovery in any system. Have these ecosystems fundamentally changed? Why? The challenge: compare and contrast these four ecosystems. The answer: using mass balance models, empirical data and a suite of ecosystem indicators, we explore how and why these systems have changed over time. At the ecosystem and community level, we see broad similarities between ecosystems. However, structurally and functionally these systems have shifted to an alternate state, with changes in predator structure, trophic structure and flow.

  1. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    Saracino-Brown, Jocelyn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Smith, Courtney [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gilman, Patrick [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. The workshop was planned by Federal agency, academic, and private partners to promote collaboration between ongoing offshore ecological survey efforts, and to promote the collaborative development of complementary predictive models and compatible databases. The meeting primarily focused on efforts to establish and predict marine mammal, seabird, and sea turtle abundance, density, and distributions extending from the shoreline to the edge of the Exclusive Economic Zone between Nantucket Sound, Massachusetts and Cape Hatteras, North Carolina.

  2. Embedding ecosystem services into the Marine Strategy Framework Directive: illustrated by eutrophication in the North Sea

    NARCIS (Netherlands)

    O'Higgins, T.; Gilbert, A.J.

    2014-01-01

    The introduction of the Marine Strategy Framework Directive (MSFD) with its focus on an Ecosystem Approach places an emphasis on the human dimensions of environmental problems. Human activities may be the source of marine degradation, but may also be adversely affected should degradation compromise

  3. Integrated, Ecosystem-based Marine Spatial Planning : First Results from International Simulation-Game Experiment

    NARCIS (Netherlands)

    Mayer, I.S.; Zhou, Q.; Lo, J.; Abspoel, L.; Keijser, X.; Olsen, E.; Nixon, E.; Kannen, A.

    2012-01-01

    Marine ecosystems around the globe are increasingly affected by human activities such as fisheries, shipping, offshore petroleum developments, wind farms, recreation, tourism and more. Whereas the necessity and urgency to regulate and plan competing marine spatial claims is growing, the planning and

  4. Ecosystem-based marine spatial management: Review of concepts, policies, tools, and critical issues

    NARCIS (Netherlands)

    Katsanevakis, Stelios; Stelzenmuller, Vanessa; Filatova, Tatiana

    2011-01-01

    Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather

  5. Ecosystem-based marine spatial management: review of concepts, policies, tools and critical issues

    NARCIS (Netherlands)

    Katsanevakis, S.; Stelzenmueller, V.; South, A.; Hoof, van L.J.W.; Hofstede, ter R.

    2011-01-01

    Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather

  6. Typology and indicators of ecosystem services for marine spatial planning and management

    NARCIS (Netherlands)

    Bohnke-Henrichs, A.; Baulcomb, C.; Koss, R.; Hussain, S.; Groot, de R.S.

    2013-01-01

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a

  7. Skin microbiome of marine vertebrates : variability, drivers and role in the ecosystem

    OpenAIRE

    Chiarello, Marlène

    2017-01-01

    Oceans contain thousands of microbial species playing crucial roles for the functioning of the marine ecosystem. These microorganisms are present everywhere in the water column. Some microorganisms also colonize the surface and the digestive tract of marine macro-organisms, forming communities called microbiomes. These microbiomes have positive effects for their host’s fitness. The diversity of these marine animal surface microbiome is still largely understudied, despite recent progress in mo...

  8. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries?

    Directory of Open Access Journals (Sweden)

    Lyne Morissette

    Full Text Available Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q and compared it with the mean trophic level of fisheries' catches (TL(C. Our results showed that overall TL(Q was lower than TL(C (2.88 versus 3.42. As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.

  9. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries?

    Science.gov (United States)

    Morissette, Lyne; Christensen, Villy; Pauly, Daniel

    2012-01-01

    Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q)) and compared it with the mean trophic level of fisheries' catches (TL(C)). Our results showed that overall TL(Q) was lower than TL(C) (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.

  10. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    Science.gov (United States)

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  11. Barcoding Atlantic Canada's mesopelagic and upper bathypelagic marine fishes.

    Directory of Open Access Journals (Sweden)

    Ellen L Kenchington

    Full Text Available DNA barcode sequences were developed from 557 mesopelagic and upper bathypelagic teleost specimens collected in waters off Atlantic Canada. Confident morphological identifications were available for 366 specimens, of 118 species and 93 genera, which yielded 328 haplotypes. Five of the species were novel to the Barcode of Life Database (BOLD. Most of the 118 species conformed to expectations of monophyly and the presence of a "barcode gap", though some known weaknesses in existing taxonomy were confirmed and a deficiency in published keys was revealed. Of the specimens for which no firm morphological identification was available, 156 were successfully identified to species, and a further 11 to genus, using their barcode sequences and a combination of distance- and character-based methods. The remaining 24 specimens were from species for which no reference barcode is yet available or else ones confused by apparent misidentification of publicly available sequences in BOLD. Addition of the new sequences to those previously in BOLD contributed support to recent taxonomic revisions of Chiasmodon and Poromitra, while it also revealed 18 cases of potential cryptic speciation. Most of the latter appear to result from genetic divergence among populations in different ocean basins, while the general lack of strong horizontal environmental gradients within the deep sea has allowed morphology to be conserved. Other examples of divergence appear to distinguish individuals living under the sub-tropical gyre of the North Atlantic from those under that ocean's sub-polar gyre. In contrast, the available sequences for two myctophid species, Benthosema glaciale and Notoscopelus elongatus, showed genetic structuring on finer geographic scales. The observed structure was not consistent with recent suggestions that "resident" populations of myctophids can maintain allopatry despite the mixing of ocean waters. Rather, it indicates that the very rapid speciation

  12. Implementing ecosystem-based marine management as a process of regionalisation

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Raakjær, Jesper; van Tatenhove, Jan

    2015-01-01

    This article deals with the implementation of ecosystem-based marine management in the Baltic Sea. It explores and documents in particular the preliminary lessons from environmental and fisheries management with reference to the Helsinki Commission Group for implementation of the ecosystem approach...... these forms of regionalisation could contribute to the implementation of governance structures needed to implement ecosystem-based marine management at the level of a regional sea – efficiently, legitimately and effectively. We conclude that a nested governance structure could be developed by building upon...

  13. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson

    2014-01-01

    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  14. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective.

    Science.gov (United States)

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-10-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.

  15. 76 FR 4637 - Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training

    Science.gov (United States)

    2011-01-26

    .... Navy's Atlantic Fleet Active Sonar Training AGENCY: National Marine Fisheries Service (NMFS), National... monitored using an onboard fisheries acoustic system and measured physical features of the water column... use. Reconstruction of the event and the determination of the possible exposure(s) of marine species...

  16. Climate change and marine benthos: a review of existing research and future directions in the North Atlantic

    NARCIS (Netherlands)

    Birchenough, S.N.R.; Reiss, H.; Degraer, S.; Craeymeersch, J.A.M.; Mesel, de I.G.

    2015-01-01

    There is growing evidence that climate change could affect marine benthic systems. This review provides information of climate change-related impacts on the marine benthos in the North Atlantic. We cover a number of related research aspects, mainly in connection to two key issues. First, is the

  17. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  18. Carcass analog provides marine subsidies for macroinvertebrates and juvenile Atlantic 8 salmon in temperate oligotrophic streams

    Science.gov (United States)

    Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph D.; Cunjak, Richard

    2014-01-01

    Anadromous fish populations entering freshwater ecosystems provide organic matter and marine-derived nutrients during spawning and subsequent mortalities of adults. Dams and other impediments to connectivity in rivers and streams have affected anadromous fish populations in many regions and prevented or reduced this influx of organic materials and nutrients.

  19. Metal toxicity characterization factors for marine ecosystems: considering the importance of the estuary for freshwater emissions

    DEFF Research Database (Denmark)

    Dong, Yan; Rosenbaum, Ralph K.; Hauschild, Michael Zwicky

    2017-01-01

    The study develops site-dependent characterization factors (CFs) for marine ecotoxicity of metals emitted to freshwater, taking their passage of the estuary into account. To serve life cycle assessment (LCA) studies where emission location is often unknown, site-generic marine CFs were developed...... for metal emissions to freshwater and coastal seawater, respectively. The new CFs were applied to calculate endpoint impact scores for the same amount of metal emission to each compartment, to compare the relative ecotoxicity damages in freshwater and marine ecosystems in LCA. Site-dependent marine CFs...... for emission to freshwater were calculated for 64 comparatively independent seas (large marine ecosystems, LMEs). The site-dependent CF was calculated as the product of fate factor (FF), bioavailability factor (BF), and effect factor (EF). USEtox modified with site-dependent parameters was extended...

  20. Achieving a paradigm shift in environmental and living resources management in the Gulf of Guinea: the large marine ecosystem approach.

    Science.gov (United States)

    Ukwe, C N; Ibe, C A; Alo, B I; Yumkella, K K

    2003-01-01

    The Gulf of Guinea is situated in the narrow protrusion of eastern Equatorial Atlantic between latitudes 2 degrees S and 5 degrees N and longitudes 8 degrees W to 12 degrees E, spanning a coastline length of approximately 130 nautical miles. The dominant feature of this shallow ocean off the coast of countries in Western Africa is the Guinea Current. The distinctive bathymetry, hydrography, productivity and trophodynamics of this shallow ocean qualify it as a large marine ecosystem (LME) and is indeed recognized as the number 28 of the 64 delineated LMEs globally. This area is one of the world's productive marine areas that is rich in fishery resources, oil and gas reserves, precious minerals and an important global reservoir of marine biological diversity. Unfortunately, pollution from residential and industrial sources has affected the waters of the Gulf of Guinea resulting in habitat degradation, loss of biological diversity and productivity, and degenerating human health. In reversing this trend of marine environmental degradation, the countries of the region adopted an integrated and holistic approach using the LME concept to sustainably manage the environmental and living resources of the region. The concept is predicated on the fact that marine environmental pollution and living resources respect no political or geographical boundaries and so require a holistic and regional approach for its management. The Gulf of Guinea countries through the Global Environment facility funded regional/communal project on water pollution control and biodiversity conservation achieved a paradigm shift in living resources and environmental management in the region using the LME concept.

  1. As multiple fish species in large marine ecosystems are harvested ...

    African Journals Online (AJOL)

    CMPTMAC10

    agement even in cases where human demand is con- trolled by current “best” fisheries management prac- tice: the questions have led on the one hand to public calls for specific set-asides of marine forage species for top predators (e.g. Greenpeace vs National Marine. Fisheries Service 80 F. Supp. 2d 1137 WD. Wash.,.

  2. Effectiveness of marine protected areas in managing the drivers of ecosystem change: a case of Mnazi Bay Marine Park, Tanzania.

    Science.gov (United States)

    Machumu, Milali Ernest; Yakupitiyage, Amararatne

    2013-04-01

    Marine protected areas (MPAs) are being promoted in Tanzania to mitigate the drivers of ecosystem change such as overfishing and other anthropogenic impacts on marine resources. The effectiveness of MPAs in managing those drivers was assessed in three ecological zones, seafront, mangrove, and riverine of Mnazi Bay Marine Park, using Participatory Community Analysis techniques, questionnaire survey, checklist and fishery resource assessment methods. Eleven major drivers of ecosystem change were identified. Resource dependence had a major effect in all ecological zones of the park. The results indicated that the park's legislations/regulations, management procedures, and conservation efforts are reasonably effective in managing its resources. The positive signs accrued from conservation efforts have been realized by the communities in terms of increased catch/income, awareness and compliance. However, some natural and anthropogenic drivers continued to threaten the park's sustainability. Furthermore, implementation of resource use and benefit sharing mechanisms still remained a considerable challenge to be addressed.

  3. Modeling of the nearshore marine ecosystem with the AQUATOX model

    Science.gov (United States)

    Process-based models can be used to forecast the responses of coastal ecosystems to changes under future scenarios. However, most models applied to coastal systems do not include higher trophic levels, which are important providers of ecosystem services. AQUATOX is a mechanistic...

  4. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities.

    Directory of Open Access Journals (Sweden)

    Fiorenza Micheli

    Full Text Available Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60-99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification, demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems.

  5. Tracing Marine Cryptotephras in the North Atlantic during the Last Glacial Period

    Science.gov (United States)

    Abbott, Peter; Davies, Siwan; Griggs, Adam; Bourne, Anna

    2017-04-01

    Tephrochronology is a powerful technique that can be utilised for the independent correlation and synchronisation of disparate palaeoclimatic records from different depositional environments. There is a high potential to utilise this technique to integrate ice, marine and terrestrial records to study climatic phasing within the North Atlantic region due to the high eruptive frequency of Icelandic volcanic systems. However, until now North Atlantic marine records have been relatively understudied. Here we report on investigations to define a tephra framework integrating new studies of cryptotephra horizons within a wide network of North Atlantic marine cores with horizons identified in prior work. This framework has the potential to underpin the correlation of the marine records to the Greenland ice-core records and European terrestrial sequences. Tephrochronological investigations were conducted on 13 marine sequences from a range of locations and depositional settings using cryptotephra extraction techniques, including density and magnetic separation, to gain high resolution glass shard concentration profiles and rigorous single-shard major element geochemical analysis to characterise identified deposits. Cryptotephras with an Icelandic source were identified in many records and displayed diversity in shard concentration profiles and the geochemical homo/heterogeneity of shards within the deposits. These differences reflect spatial and temporal variability in the operation of a range of transport processes, e.g. airfall, sea-ice and iceberg rafting, and post-depositional processes, e.g. bioturbation and secondary redeposition. The operation of these processes within the marine environment can potentially impart a temporal delay on tephra deposition and hamper the placement of the isochron, therefore, it is crucial to assess their influence. To aid this assessment a range of deposit types with common transport and depositional histories have been defined. Spatial

  6. Conserving marine biodiversity: insights from life-history trait candidate genes in Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Therkildsen, Nina Overgaard; Meldrup, Dorte

    2014-01-01

    Recent technological developments have facilitated an increased focus on identifying genomic regions underlying adaptive trait variation in natural populations, and it has been advocated that this information should be important for designating population units for conservation. In marine fishes......, phenotypic studies have suggested adaptation through divergence of life-history traits among natural populations, but the distribution of adaptive genetic variation in these species is still relatively poorly known. In this study, we extract information about the geographical distribution of genetic...... variation for 33 single nucleotide polymorphisms (SNPs) associated with life-history trait candidate genes, and compare this to variation in 70 putatively neutral SNPs in Atlantic cod (Gadus morhua). We analyse samples covering the major population complexes in the eastern Atlantic and find strong evidence...

  7. Spatial Analysis of Conservation Priorities Based on Ecosystem Services in the Atlantic Forest Region of Misiones, Argentina

    Directory of Open Access Journals (Sweden)

    Matthew L. Clark

    2012-08-01

    Full Text Available Understanding the spatial pattern of ecosystem services is important for effective environmental policy and decision-making. In this study, we use a geospatial decision-support tool (Marxan to identify conservation priorities for habitat and a suite of ecosystem services (storage carbon, soil retention and water yield in the Upper Paraná Atlantic Forest from Misiones, Argentina—an area of global conservation priority. Using these results, we then evaluate the efficiency of existing protected areas in conserving both habitat and ecosystem services. Selected areas for conserving habitat had an overlap of carbon and soil ecosystem services. Yet, selected areas for water yield did not have this overlap. Furthermore, selected areas with relatively high overlap of ecosystem services tended to be inside protected areas; however, other important areas for ecosystem services (i.e., central highlands do not have legal protection, revealing the importance of enforcing existing environmental regulations in these areas.

  8. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  9. Using integrated, ecosystem-level management to address intensifying ocean acidification and hypoxia in the California Current large marine ecosystem

    Directory of Open Access Journals (Sweden)

    Terrie Klinger

    2017-03-01

    Full Text Available Ocean acidification is intensifying and hypoxia is projected to expand in the California Current large marine ecosystem as a result of processes associated with the global emission of CO2. Observed changes in the California Current outpace those in many other areas of the ocean, underscoring the pressing need to adopt management approaches that can accommodate uncertainty and the complicated dynamics forced by accelerating change. We argue that changes occurring in the California Current large marine ecosystem provide opportunities and incentives to adopt an integrated, systems-level approach to resource management to preserve existing ecosystem services and forestall abrupt change. Practical options already exist to maximize the benefits of management actions and ameliorate impending change in the California Current, for instance, adding ocean acidification and hypoxia to design criteria for marine protected areas, including consideration of ocean acidification and hypoxia in fisheries management decisions, and fully enforcing existing laws and regulations that govern water quality and land use and development.

  10. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    Science.gov (United States)

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  11. Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?

    Science.gov (United States)

    Cavanagh, Rachel D; Broszeit, Stefanie; Pilling, Graham M; Grant, Susie M; Murphy, Eugene J; Austen, Melanie C

    2016-12-14

    Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions. © 2016 The Authors.

  12. Distribution and Characterization of Armillaria Complex in Atlantic Forest Ecosystems of Spain

    Directory of Open Access Journals (Sweden)

    Nebai Mesanza

    2017-06-01

    Full Text Available Armillaria root disease is a significant forest health concern in the Atlantic forest ecosystems in Spain. The damage occurs in conifers and hardwoods, causing especially high mortality in young trees in both native forests and plantations. In the present study, the distribution of Armillaria root disease in the forests and plantations of the Basque Country is reported. Armillaria spp. were more frequently isolated from stands with slopes of 20–30% and west orientation, acid soils with high permeability, deciduous hosts, and a rainfall average above 1800 mm. In a large-scale survey, 35% of the stands presented Armillaria structures and showed disease symptoms. Of the isolated Armillaria samples, 60% were identified using molecular methods as A. ostoyae, 24% as A. mellea, 14% as A. gallica, 1% as A. tabescens, and 1% as A. cepistipes. In a small scale sampling, population diversity was defined by somatic compatibility tests and Universally Primed-PCR technique. Finally, the pathogenicity of A. mellea, the species with the broadest host range, was determined on different tree species present in the Atlantic area of Spain in order to determine their resistance levels to Armillaria disease. A significant difference in disease severity was observed among tree species (p < 0.001, with Pinus radiata being the most susceptible tree species and Cryptomeria japonica the most resistant to A. mellea.

  13. Cumulative effects of planned industrial development and climate change on marine ecosystems

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    2015-07-01

    Full Text Available With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different scenarios: climate change and planned developments. At the coast-wide scale, climate change drove the largest change in cumulative effects with both widespread impacts and high vulnerability scores. Where the impacts of planned developments occur, planned industrial and pipeline activities had high cumulative effects, but the footprint of these effects was comparatively localized. Nearshore habitats were at greatest risk from planned industrial and pipeline activities; in particular, the impacts of planned pipelines on rocky intertidal habitats were predicted to cause the highest change in cumulative effects. This method of incorporating planned industrial development in cumulative effects mapping allows explicit comparison of different scenarios with the potential to be used in environmental impact assessments at various scales. Its use allows resource managers to consider cumulative effect hotspots when making decisions regarding industrial developments and avoid unacceptable cumulative effects. Management needs to consider both global and local stressors in managing marine ecosystems for the protection of biodiversity and the provisioning of ecosystem services.

  14. The use of science in understanding the marine environment of the Atlantic margin

    Science.gov (United States)

    Shimmield, Graham

    2001-05-01

    In taking this overview, it is clearly necessary to identify some major contributions that have helped us understand the complexity of the marine environment that embodies the Atlantic Margin to the west of Scotland. Here, I attempt to provide a point of view that spans the wide spatial scale that we can obtain from satellites, right down the way to the behaviour of materials and substances as they transit through the water column and across the sediment-water interface. It is in this latter context that man's impact in this frontier region needs to be assessed and in particular, any potential impact that the exploration of oil and gas may have.

  15. Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems – a review

    OpenAIRE

    Neuhauser, Sigrid; Kirchmair, Martin; Gleason, Frank H.

    2011-01-01

    Phytomyxea (plasmodiophorids) is an enigmatic group of obligate biotrophic parasites. Most of the known 41 species are associated with terrestrial and freshwater ecosystems. However, the potential of phytomyxean species to influence marine ecosystems either directly by causing diseases of their hosts or indirectly as vectors of viruses is enormous, although still unexplored. In all, 20% of the currently described phytomyxean species are parasites of some of the key primary producers in the oc...

  16. Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Science.gov (United States)

    Foster, William J.; Twitchett, Richard J.

    2014-03-01

    The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

  17. Barriers to gene flow in the marine environment: insights from two common intertidal limpet species of the Atlantic and Mediterranean.

    Directory of Open Access Journals (Sweden)

    Alexandra Sá-Pinto

    Full Text Available Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area.

  18. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization...

  19. Mercury in Arctic Marine Ecosystems: Sources, Pathways, and Exposure

    Science.gov (United States)

    Kirk, Jane L.; Lehnherr, Igor; Andersson, Maria; Braune, Birgit M.; Chan, Laurie; Dastoor, Ashu P.; Durnford, Dorothy; Gleason, Amber L.; Loseto, Lisa L.; Steffen, Alexandra; St. Louis, Vincent L.

    2014-01-01

    Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods has many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication. PMID:23102902

  20. Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    DEFF Research Database (Denmark)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino

    2018-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services Partne...

  1. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach

    NARCIS (Netherlands)

    Beaumont, N.J.; Austen, M.C.; Atkins, J.P.; Burdon, D.; Degraer, S.; Dentinho, T.P.; Serous, S.; Holm, P.; Horton, T.; Ierland, van E.C.; Marboe, A.H.; Starkey, D.J.; Townsend, M.; Zarzycki, T.

    2007-01-01

    This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to

  2. Climate-mediated changes in marine ecosystem regulation during El Niño

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Koslow, J. Anthony

    2017-01-01

    The degree to which ecosystems are regulated through bottom-up, top-down or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown...... Current System (SCCS) using a generalized food web model. This statistical approach is based on non-linear threshold models and a long-term data set (~60 year) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation...

  3. Mass Spectrometry-Based Metabolomics to Elucidate Functions in Marine Organisms and Ecosystems

    Directory of Open Access Journals (Sweden)

    Sophie Goulitquer

    2012-04-01

    Full Text Available Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated.

  4. Analysis of trait-based models in marine ecosystems

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe

    The overarching theme for this thesis is spatial and temporal variations in ecosystems. The focus is on describing mechanisms that are responsible for generating the spatial and temporal patterns. The thesis contains two separate projects, each exploring a possible mechanism for pattern formation...

  5. The importance of marine sediment biodiversity in ecosystem precesses

    NARCIS (Netherlands)

    Snelgrove, P.V.R.; Blackburn, T.H.; Hutchings, P.; Alongi, D.M.; Grassle, J.F.; Hummel, H.; King, G.; Koike, I.; Lambshead, P.J.D.; Ramsing, N.B.; Solis-Weiss, V.

    1997-01-01

    Sedimentary habitats cover most of the ocean bottom and therefore constitute the largest. single ecosystem on earth in spatial coverage, Although only a small fraction of the micro-, meio- and macroscopic benthic organisms that reside in and on sediments have been described and few estimates of

  6. Marine biodiversity–ecosystem functions under uncertain environmental futures

    Science.gov (United States)

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  7. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    Science.gov (United States)

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  8. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone

    Science.gov (United States)

    Sarmiento, J. L.; Slater, R. D.; Fasham, M. J. R.; Ducklow, H. W.; Toggweiler, J. R.; Evans, G. T.

    1993-06-01

    A seven-component upper ocean ecosystem model of nitrogen cycling calibrated with observations at Bermuda Station "S" has been coupled to a three-dimensional seasonal general circulation model (GCM) of the North Atlantic ocean. The aim of this project is to improve our understanding of the role of upper ocean biological processes in controlling surface chemical distributions, and to develop approaches for assimilating large data sets relevant to this problem. A comparison of model predicted chlorophyll with satellite coastal zone color scanner observations shows that the ecosystem model is capable of responding realistically to a variety of physical forcing environments. Most of the discrepancies identified are due to problems with the GCM model. The new production predicted by the model is equivalent to 2 to 2.8 mol m-2 yr-1 of carbon uptake, or 8 to 12 GtC/yr on a global scale. The southern half of the subtropical gyre is the only major region of the model with almost complete surface nitrate removal (nitrate<0.1 mmol m-3). Despite this, almost the entire model is nitrate limited in the sense that any addition of nitrate supply would go predominantly into photosynthesis. The only exceptions are some coastal upwelling regions and the high latitudes during winter, where nitrate goes as high as ˜10 mmol m-3.

  9. Microplastics in coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean.

    Science.gov (United States)

    Costa, Monica F; Barletta, Mário

    2015-11-01

    Microplastic pollution is a global issue. It is present even in remote and pristine coastal and marine environments, likely causing impacts of unknown scale. Microplastics are primary- and secondary-sourced plastics with diameters of 5 mm or less that are either free in the water column or mixed in sandy and muddy sediments. Since the early 1970s, they have been reported to pollute marine environments; recently, concern has increased as soaring amounts of microplastics in the oceans were detected and because the development of unprecedented processes involving this pollutant at sea is being unveiled. Coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean (WTAO) are contaminated with microplastics at different quantities and from a variety of types. The main environmental compartments (water, sediments and biota) are contaminated, but the consequences are still poorly understood. Rivers and all scales of fishery activities are identified as the most likely sources of this pollutant to coastal waters; however, based on the types of microplastics observed, other maritime operations are also possible sources. Ingestion by marine biota occurs in the vertebrate groups (fish, birds, and turtles) in these environments. In addition, the presence of microplastics in plankton samples from different habitats of estuaries and oceanic islands is confirmed. The connectivity among environmental compartments regarding microplastic pollution is a new research frontier in the region.

  10. A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site

    Directory of Open Access Journals (Sweden)

    Reduan Atan

    2016-11-01

    Full Text Available Wave characteristic assessments of wave energy test sites provide a greater understanding of prevailing wave conditions and are therefore extremely important to both wave energy test site operators and clients as they can inform wave energy converter design, optimisation, deployment, operation and maintenance. This research presents an assessment of the wave resource at the Atlantic Marine Energy Test Site (AMETS on the west coast of Ireland based on 12-years of modelled data from January 2004 to December 2015. The primary aim is to provide an assessment of annual and seasonal wave characteristics and resource variability at the two deployment berths which comprise the site. A nested model has been developed using Simulating WAves Nearshore (SWAN to replicate wave propagations from regional to local scale with a 0.05° resolution model covering the northeast Atlantic and a 0.0027° resolution model covering AMETS. The coarse and fine models have been extensively validated against available measured data within Irish waters. 12-year model outputs from the high resolution model were analysed to determine mean and maximum conditions and operational, high and extreme event conditions for significant wave height, energy period and power. Annual and seasonal analyses are presented. The 12-year annual mean P were 68 kW/m at Berth A (BA and 57 kW/m at Berth B (BB. The resource shows strong seasonal and annual variations and the winter mean power levels were found to be strongly correlated with the North Atlantic Oscillation (NAO.

  11. Experimental susceptibility of Atlantic salmon Salmo salar and turbot Scophthalmus maximus to European freshwater and marine isolates of viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    King, J.A.; Snow, M.; Skall, Helle Frank

    2001-01-01

    pathogenicity to Atlantic salmon. Virus was detected in some mortalities, however, demonstrating viral entry and replication. European marine VHS virus isolates do not appear to pose an imminent threat to the Atlantic salmon culture industry. Turbot were found to be refractive or of low susceptibility to marine...... of turbot culture to the VHS virus isolates that are enzootic to the European marine environment.......A number of viral haemorrhagic septicaemia (VHS) virus isolates of European marine origin were shown to be of low pathogenicity or non-pathogenic to Atlantic salmon parr by waterborne infection. A reference freshwater VHS virus isolate known to be highly pathogenic to rainbow trout was also of low...

  12. Atlantic Salmon (Salmo salar L. as a Marine Functional Source of Gamma-Tocopherol

    Directory of Open Access Journals (Sweden)

    David Menoyo

    2014-12-01

    Full Text Available Gamma tocopherol (gT exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.

  13. Parasites as biological tags in marine fisheries research: European Atlantic waters.

    Science.gov (United States)

    Mackenzie, K; Hemmingsen, W

    2015-01-01

    Studies of the use of parasites as biological tags for stock identification and to follow migrations of marine fish, mammals and invertebrates in European Atlantic waters are critically reviewed and evaluated. The region covered includes the North, Baltic, Barents and White Seas plus Icelandic waters, but excludes the Mediterranean and Black Seas. Each fish species or ecological group of species is treated separately. More parasite tag studies have been carried out on Atlantic herring Clupea harengus than on any other species, while cod Gadus morhua have also been the subject of many studies. Other species that have been the subjects of more than one study are: blue whiting Micromesistius poutassou, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, Norway pout Trisopterus esmarkii, horse mackerel Trachurus trachurus and mackerel Scomber scombrus. Other species are dealt with under the general headings redfishes, flatfish, tunas, anadromous fish, elasmobranchs, marine mammals and invertebrates. A final section highlights how parasites can be, and have been, misused as biological tags, and how this can be avoided. It also reviews recent developments in methodology and parasite genetics, considers the potential effects of climate change on the distributions of both hosts and parasites, and suggests host-parasite systems that should reward further research.

  14. Utilizing Ecosystem Information to Improve Decision Support Systems for Marine Fisheries (Invited)

    Science.gov (United States)

    Chavez, F.; Chai, F.; Chao, Y.; Wells, B.; Safari Team

    2010-12-01

    Successful ecological forecasting of fishery yields has eluded resource managers for decades. However, recent advances in observing systems, computational power and understanding of ecosystem function offer credible evidence that the variability of the ocean ecosystem and its impact on fishery yield can be forecast accurately enough and with enough lead time to be useful to society. Advances in space-based real time sensors, high performance computing, very high-resolution physical models, and robust ecosystem theory make possible operational forecasts of both fish availability and ecosystem health. Accurate and timely forecasts can provide the information needed to maintain the long-term sustainability of fish stocks and protect the ecosystem of which the fish are an integral part, while maximizing social and economic benefits and preventing wasteful overinvestment of economic resources. Here we review progress in improving the decision support systems by forecasting two marine fisheries: 1) the coastal Peru small pelagic fishery and 2) the central California salmon fishery.

  15. Integrating ecosystem services into coastal and marine governance : An economic institutionalist perspective based on Chinese practice

    NARCIS (Netherlands)

    Li, Ruiqian

    2017-01-01

    This thesis aims to provide a comprehensive institutional understanding of the extent to which ecosystem services (ES) thinking is integrated in Chinese coastal and marine governance. It draws on a multi-level case study analysis (local, municipal, and national levels) and attempts to clarify the

  16. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators

    NARCIS (Netherlands)

    Philippart, C.J.M.; Anadón, R.; Danovaro, R.; Dippner, J.W.; Drinkwater, K.F.; Hawkins, S.J.; Oguz, T.; O'Sullivan, G.; Reid, P.C.

    2011-01-01

    The Northern Hemisphere has been warmer since 1980 than at any other time during the last 2000 years. The observed increase in temperature has been generally higher in northern than in southern European seas, and higher in enclosed than in open seas. Although European marine ecosystems are

  17. Ecosystem model of the entire Beaufort Sea marine ecosystem: a tool for assessing food-web structure and ecosystem changes from 1970 to 2014

    Science.gov (United States)

    Suprenand, P. M.; Hoover, C.

    2016-02-01

    The Beaufort Sea coastal-marine ecosystem is approximately a 476,000 km2 area in the Arctic Ocean, which extends from -112.5 to -158° longitude to 67.5 to 75° latitude. Within this Arctic Ocean area the United States (Alaskan) indigenous communities of Barrow, Kaktovik, and Nuiqsut, and the Canadian (Northwest Territories) indigenous communities of Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Ulukhaktok, and Sachs Harbour, subsist by harvesting marine mammals, fish, and invertebrates from the Beaufort Sea to provide the majority of their community foods annually. The ecosystem in which the indigenous communities harvest is considered a polar habitat that includes many specialized species, such as polar bears that rely on sea-ice for foraging activities and denning, or ice algae that are attached to the cryosphere. However, the polar habitat has been experiencing a diminishing sea-ice extent, age, and seasonal duration, with concomitant increases in sea surface temperatures (SSTs), since the 1970s. Changes in sea-ice and SST have consequences to the Beaufort Sea coastal-marine ecosystem, which includes animal habitat losses, alterations to trophodynamics, and impacts to subsistence community harvesting. The present study was aimed at capturing trophodynamic changes in the Beaufort Sea coastal-marine ecosystem from 1970 to 2014 using a fitted spatial-temporal model (Ecopath with Ecosim and Ecospace) that utilizes forcing and mediation functions to describe animal/trophodynamic relationships with sea-ice and sea surface temperature, as well as individual community harvesting efforts. Model outputs reveals similar trends in animals population changes (e.g., increasing bowhead whale stock), changes in apex predator diets (e.g., polar bears eating less ringed seal), and changes in animal distributions (e.g., polar bears remaining closer to land over time). The Beaufort Sea model is a dynamic tool for Arctic Ocean natural resource management in the years to come.

  18. Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Marine Ecosystems

    Science.gov (United States)

    2009-12-03

    percentage of biomass of any spe- cies in the Bering Sea1 and are an important predator that feed on smaller fish and also cannibalize their juveniles...mediary between phytoplankton and large predatory fish, such as hake and horse mackerel. The diets and livelihood of seabirds , marine mammals...lions, as well as sea-birds, including the yellow-eyed penguin and black-browed albatross (Thompson et al. 1998, Cherel et al. 1999, Jackson et al. 2000

  19. Potential Effects of Climate Change on Freshwater Ecosystems of the New Mid-Atlantic Region

    Science.gov (United States)

    Moore, Marianne V.; Pace, Michael L.; Mather, John R.; Murdoch, Peter S.; Howarth, Robert W.; Folt, Carol L.; Chen, Celia Y.; Hemond, Harold F.; Flebbe, Patricia A.; Driscoll, Charles T.

    1997-06-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 × CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3-5°C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity.The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be

  20. Marine Food Provision Ecosystem Services Assessment Using EO Products

    Science.gov (United States)

    Valentini, Emiliana; Filipponi, Federico; Nguyen Xuan, Alessandra; Taramelli, Andrea

    2016-08-01

    Physical, chemical and biological characteristics of seawaters are primary descriptors to assess the spatial and temporal dimensions of ecopotential productivity performances in terms of fish vitality, growth and stress. Among these characteristics, temperature can be considered the key descriptor, i.e. the Essential Variable (EV) to characterize fish vitality and thus marine food provision potential, because it influences the variation of many other parameters and as consequence the entire life cycle of marine organisms.We developed a method to identify suitable fish growth conditions sites scenario in the Mediterranean Sea and, among these sites, to estimate the potential fish growth rate. For the assessment of fish growth conditions from the Copernicus Marine Environment Monitoring Service (CMEMS) products, we consider the spatial and temporal distribution of water quality variables derived from satellite , such as Sea Surface Temperature (SST) and Chlorophyll-a concentration, together with other modeled variables like currents, dissolved oxygen (DO), etc.The final result is an integrated toolbox oriented towards the development of an EO downstreaming service, that collects the workflows of processing procedures to support the planning of maritime uses.

  1. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  2. Marine Biogeochemistry Under The Influence of Fish And Fisheries: An Ecosystem Modeling Study

    Science.gov (United States)

    Disa, Deniz; Akoglu, Ekin; Salihoglu, Baris

    2017-04-01

    The ocean and the marine ecosystems are important controllers of the global carbon cycle. They play a pivotal role in capturing atmospheric carbon into the ocean body, transforming it into organic carbon through photosynthesis and transporting it to the depths of the ocean. Fish, which has a significant role in the marine food webs, is thought to have a considerable impact on carbon export. More specifically, fish has a control on plankton dynamics as a predator, it provides nutrient to the ecosystem by its metabolic activities and it has the ability of moving actively and transporting materials. Fishing is also expected to impact carbon cycle because it directly changes the fish biomasses. However, how fish impacts the biogeochemistry of marine ecosystems is not studied extensively. The aim of this study is to analyze the impact of fish and fisheries on marine biogeochemical processes by setting up an end-to-end model, which simulates lower and higher tropic levels of marine ecosystems simultaneously. For this purpose, a one dimensional biogeochemical model simulating lower tropic level dynamics (e.g. carbon export, nutrient cycles) and an food web model simulating fisheries exploitation and higher tropic level dynamics were online and two-way coupled. Representing the marine ecosystem from one end to the other, the coupled model served as a tool for the analysis of fishing impacts on marine biogeochemical dynamics. Results obtained after incorporation of higher trophic level model changed the plankton compositions and enhanced detritus pools and increased carbon export. Additionally, our model showed that active movement of fish contributed to transport of carbon from surface to the deeper parts of the ocean. Moreover, results after applying different fishing intensities indicated that changes in fisheries exploitation levels directly influence the marine nutrient cycles and hence, the carbon export. Depending on the target and the intensity of fisheries

  3. Contribution to the Themed Section: Scaling from individual plankton to marine ecosystems HORIZONS Small bugs with a big impact: linking plankton ecology with ecosystem processes

    DEFF Research Database (Denmark)

    Menden-Deuer, Susanne; Kiørboe, Thomas

    2016-01-01

    of these microscopic organisms shape plankton population dynamics, distributions, and ecosystem functions. Key features of the marine environment place constraints on the ecology and evolution of plankton. Understanding these constraints is critical in developing a mechanistic understanding and predictive capacity...

  4. Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries?

    Science.gov (United States)

    Bonde, R.K.; Aguirre, A.A.; Powell, J.

    2004-01-01

    The order Sirenia is represented by three species of manatees and one species of dugong distributed in tropical and subtropical regions of the world and considered vulnerable to extinction. The sentinel species concept is useful to identify indicators of the environment and may reflect the quality of health in marine ecosystems. The single species approach to evaluate ecological health may provide a series of “snap shots” of environmental changes to determine if animal, human, or ecosystem health may be affected. Under this concept, marine vertebrates may be good integrators of changes over space and time, and excellent sentinels of ecosystem health. Based on their life history, manatees may or may not be ideal sentinels, as they are robust, long-lived species and appear remarkably resilient to natural disease and the effects of human-related injury and trauma. These characteristics might be the result of an efficient and responsive immune system compared to other marine mammals. Although relatively immune to infectious agents, manatees face other potentially serious threats, including epizootic diseases and pollution while in large aggregations. Manatees can serve as excellent sentinels of harmful algal blooms due to their high sensitivity, specifically to brevetoxicosis, which has caused at least two major die-offs in recent times. Threats to manatees worldwide, such as illegal hunting and boat collisions, are increasing. Habitat is being lost at an alarming rate and the full effects of uncontrolled human population growth on the species are unknown. The manatee may serve as a sentinel species, prognosticating the deleterious effects of unhealthy marine and aquatic ecosystems on humans. We have identified a number of critical research needs and opportunities for transdisciplinary collaboration that could help advance the use of the sentinel species concept in marine ecosystem health and monitoring of disease emergence using our knowledge on these magnificent

  5. Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction.

    Science.gov (United States)

    Martin, Jeremy E; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent

    2017-06-05

    The collapse of marine ecosystems during the end-Cretaceous mass extinction involved the base of the food chain [1] up to ubiquitous vertebrate apex predators [2-5]. Large marine reptiles became suddenly extinct at the Cretaceous-Paleogene (K/Pg) boundary, whereas other contemporaneous groups such as bothremydid turtles or dyrosaurid crocodylomorphs, although affected at the familial, genus, or species level, survived into post-crisis environments of the Paleocene [5-9] and could have found refuge in freshwater habitats [10-12]. A recent hypothesis proposes that the extinction of plesiosaurians and mosasaurids could have been caused by an important drop in sea level [13]. Mosasaurids are unusually diverse and locally abundant in the Maastrichtian phosphatic deposits of Morocco, and with large sharks and one species of elasmosaurid plesiosaurian recognized so far, contribute to an overabundance of apex predators [3, 7, 14, 15]. For this reason, high local diversity of marine reptiles exhibiting different body masses and a wealth of tooth morphologies hints at complex trophic interactions within this latest Cretaceous marine ecosystem. Using calcium isotopes, we investigated the trophic structure of this extinct assemblage. Our results are consistent with a calcium isotope pattern observed in modern marine ecosystems and show that plesiosaurians and mosasaurids indiscriminately fall in the tertiary piscivore group. This suggests that marine reptile apex predators relied onto a single dietary calcium source, compatible with the vulnerable wasp-waist food webs of the modern world [16]. This inferred peculiar ecosystem structure may help explain plesiosaurian and mosasaurid extinction following the end-Cretaceous biological crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters.

    Science.gov (United States)

    Timi, Juan T

    2007-06-01

    The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature-salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host-parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.

  7. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  8. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  9. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum

    Directory of Open Access Journals (Sweden)

    J. Frieling

    2018-01-01

    Full Text Available The Paleocene–Eocene Thermal Maximum (PETM, 56 Ma was a phase of rapid global warming associated with massive carbon input into the ocean–atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst assemblage analysis. The PETM at Site 959 was previously found to be marked by a  ∼  3.8 ‰ negative carbon isotope excursion (CIE and a  ∼  4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which  ∼  1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply

  10. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Frieling, Joost; Reichart, Gert-Jan; Middelburg, Jack J.; Röhl, Ursula; Westerhold, Thomas; Bohaty, Steven M.; Sluijs, Appy

    2018-01-01

    The Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean-atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a ˜ 3.8 ‰ negative carbon isotope excursion (CIE) and a ˜ 4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which ˜ 1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In

  11. Appendix C of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the third appendix to the report, the compendium of pre-workshop answers.

  12. Appendix A of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the first appendix to the report, the workshop agenda.

  13. Appendix E of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the fifth appendix to the report, the bibliography of references.

  14. [Values of marine ecosystem services in Sanggou Bay].

    Science.gov (United States)

    Zhang, Zhao-hui; Lü, Ji-bin; Ye, Shu-feng; Zhu, Ming-yuan

    2007-11-01

    A valuation study was conducted in Sanggou Bay, a typical and intensive coastal aquaculture area in China Yellow Sea. The results showed that the total value of ecosystem services (VES) in Sanggou Bay was 6.07 x 10(8) Yen in 2003, with an average unit VES being 4.24 x 10(6) Yen x km(-2). Within the total VES, the provision services, regulation services, and culture services accounted for 51.29%, 17.34%, and 31.37%, respectively. Among the eight primary and secondary services valuated in Sanggou Bay, food provision services held the highest value (50.45%), followed by tourism and entertainment services (29.89%) and climate regulation services (9.18%). Harmful organism and disease control services have the lowest value (0.0017%). The aquaculture activities had greater contributions to the local social economy, environmental regulation, and social culture. Aquaculture activities, especially macro-algae farming, are of significance in maintaining and enhancing the ecosystem services.

  15. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  16. Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem.

    Science.gov (United States)

    Daskalov, Georgi M; Boicenco, Laura; Grishin, Alexandre N; Lazar, Luminita; Mihneva, Vesselina; Shlyakhov, Vladislav A; Zengin, Mustafa

    2017-04-01

    By the late 20th century, a series of events or 'natural experiments', for example the depletion of apex predators, extreme eutrophication and blooms of invasive species, had suggested that the Black Sea could be considered as a large ecosystem 'laboratory'. The events resulted in regime shifts cascading through all trophic levels, disturbing ecosystem functioning and damaging the water environment. Causal pathways by which the external (hydroclimate, overfishing) and internal (food web interactions) drivers provoke regime shifts are investigated. Statistical data analyses supported by an interpretative framework based on hierarchical ecosystem theory revealed mechanisms of hierarchical incorporation of environmental factors into the ecosystem. Evidence links Atlantic teleconnections to Black Sea hydroclimate, which together with fishing shapes variability in fish stocks. The hydroclimatic signal is conveyed through the food web via changes in productivity at all levels, to planktivorous fish. Fluctuating fish abundance is believed to induce a lagged change in competitor jelly plankton that cascades down to phytoplankton and influences water quality. Deprived of the stabilising role of apex predators, the Black Sea's hierarchical ecosystem organisation is susceptible to both environmental and anthropogenic stresses, and increased fishing makes fish stock collapses highly probable. When declining stocks are confronted with burgeoning fishing effort associated with the inability of fishery managers and decision-makers to adapt rapidly to changes in fish abundance, there is overfishing and stock collapse. Management procedures are ineffective at handling complex phenomena such as ecosystem regime shifts because of the shortage of suitable explanatory models. The proposed concepts and models reported here relate the hydroclimate, overfishing and invasive species to shifts in ecosystem functioning and water quality, unravelling issues such as the causality of ecosystem

  17. Taylor's law and body size in exploited marine ecosystems.

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  18. Interactions of microplastic debris throughout the marine ecosystem.

    Science.gov (United States)

    Galloway, Tamara S; Cole, Matthew; Lewis, Ceri

    2017-04-20

    Marine microscopic plastic (microplastic) debris is a modern societal issue, illustrating the challenge of balancing the convenience of plastic in daily life with the prospect of causing ecological harm by careless disposal. Here we develop the concept of microplastic as a complex, dynamic mixture of polymers and additives, to which organic material and contaminants can successively bind to form an 'ecocorona', increasing the density and surface charge of particles and changing their bioavailability and toxicity. Chronic exposure to microplastic is rarely lethal, but can adversely affect individual animals, reducing feeding and depleting energy stores, with knock-on effects for fecundity and growth. We explore the extent to which ecological processes could be impacted, including altered behaviours, bioturbation and impacts on carbon flux to the deep ocean. We discuss how microplastic compares with other anthropogenic pollutants in terms of ecological risk, and consider the role of science and society in tackling this global issue in the future.

  19. The pace of shifting climate in marine and terrestrial ecosystems.

    Science.gov (United States)

    Burrows, Michael T; Schoeman, David S; Buckley, Lauren B; Moore, Pippa; Poloczanska, Elvira S; Brander, Keith M; Brown, Chris; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Holding, Johnna; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Schwing, Franklin B; Sydeman, William J; Richardson, Anthony J

    2011-11-04

    Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts.

  20. Taylor's law and body size in exploited marine ecosystems

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-01-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught. PMID:23301181

  1. Rapid emergence of climate change in environmental drivers of marine ecosystems

    Science.gov (United States)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  2. Tropical Marginal Seas: Priority Regions for Managing Marine Biodiversity and Ecosystem Function

    Science.gov (United States)

    McKinnon, A. David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J. W.; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J.

    2014-01-01

    Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems - coral reefs and emergent atolls, deep benthic systems, and pelagic biomes - and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence - from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas - but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.

  3. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  4. Ant communities (Hymenoptera: Formicidae in an urban ecosystem near the Atlantic Rainforest

    Directory of Open Access Journals (Sweden)

    CM. Kamura

    Full Text Available The relationships between an urban ecosystem located near the Atlantic Rainforest in southeastern Brazil and ant communities were studied with the objective of quantifying the ant richness and abundance in the household environment and its surroundings. Eighty residences were sampled, where 58 species and 28 genera pertaining to 7 sub-families were found to be present. Inside the residences, the species richness was found to be lower (26, although the abundance was greater (10,670, with the wash area and kitchen being the locales that contributed with the greatest number of hits. The opposite was true in the areas outside the residences, where 54 species and 3,747 ants were observed. Inside houses, the species known as Tramp ants were found, in the following order of importance: Solenopsis -saevissima, Tapinoma melanocephalum, Linepithema humile, Paratrechina fulva, Wasmannia -auropunctata, P. -longicornis, Pheidole megacephala, Monomorium pharaonis and M. floricola. Externally, mainly in the yards and gardens, species such as Octostruma rugifera, Heteroponera dolo, Hypoponera sp.1 and sp.6, Gnamptogenys sp. 4, G. striatula, Odontomachus meinerti, Pachycondyla constricta and P. striata were found. In general, a greater number of species and lower abundance of individuals were observed in the neighborhoods nearer the mountains than in those closer to the urban center.

  5. Ant communities (Hymenoptera: Formicidae) in an urban ecosystem near the Atlantic Rainforest.

    Science.gov (United States)

    Kamura, C M; Morini, M S C; Figueiredo, C J; Bueno, O C; Campos-Farinha, A E C

    2007-11-01

    The relationships between an urban ecosystem located near the Atlantic Rainforest in southeastern Brazil and ant communities were studied with the objective of quantifying the ant richness and abundance in the household environment and its surroundings. Eighty residences were sampled, where 58 species and 28 genera pertaining to 7 sub-families were found to be present. Inside the residences, the species richness was found to be lower (26), although the abundance was greater (10,670), with the wash area and kitchen being the locales that contributed with the greatest number of hits. The opposite was true in the areas outside the residences, where 54 species and 3,747 ants were observed. Inside houses, the species known as Tramp ants were found, in the following order of importance: Solenopsis saevissima, Tapinoma melanocephalum, Linepithema humile, Paratrechina fulva, Wasmannia auropunctata, P. longicornis, Pheidole megacephala, Monomorium pharaonis and M. floricola. Externally, mainly in the yards and gardens, species such as Octostruma rugifera, Heteroponera dolo, Hypoponera sp.1 and sp.6, Gnamptogenys sp. 4, G. striatula, Odontomachus meinerti, Pachycondyla constricta and P. striata were found. In general, a greater number of species and lower abundance of individuals were observed in the neighborhoods nearer the mountains than in those closer to the urban center.

  6. Climate change, coral reef ecosystems, and management options for marine protected areas.

    Science.gov (United States)

    Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmore, Rikki; Johnson, Johanna E; Miller, Steven L; Steneck, Robert S

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  7. The Mar Piccolo of Taranto: an interesting marine ecosystem for the environmental problems studies.

    Science.gov (United States)

    Cardellicchio, Nicola; Annicchiarico, Cristina; Di Leo, Antonella; Giandomenico, Santina; Spada, Lucia

    2016-07-01

    The National Project RITMARE (la Ricerca ITaliana per il MARE-Italian Research for the sea) started from 1 January 2012. It is one of the national research programs funded by the Italian Ministry of University and Research. RITMARE is coordinated by the National Research Council (CNR) and involves an integrated effort of most of the scientific community working on marine and maritime issues. Within the project, different marine study areas of strategic importance for the Mediterranean have been identified: Among these, the coastal area of Taranto (Ionian Sea, Southern Italy) was chosen for its different industry settlements and the relative impact on the marine environment. In particular, the research has been concentrated on the Mar Piccolo of Taranto, a complex marine ecosystem model important in terms of ecological, social, and economic activities for the presence also of extensive mussel farms. The site has been selected also because the Mar Piccolo area is a characteristic "on field" laboratory suitable to investigate release and diffusion mechanisms of contaminants, evaluate chemical-ecological risks towards the marine ecosystem and human health, and suggest and test potential remediation strategies for contaminated sediments. In this context, within the project RITMARE, a task force of researchers has contributed to elaboration a functioning conceptual model with a multidisciplinary approach useful to identify anthropogenic forcings, its impacts, and solutions of environmental remediation. This paper describes in brief some of the environmental issues related to the Mar Piccolo basin.

  8. Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Science.gov (United States)

    Keller, Brian D.; Gleason, Daniel F.; McLeod, Elizabeth; Woodley, Christa M.; Airamé, Satie; Causey, Billy D.; Friedlander, Alan M.; Grober-Dunsmore, Rikki; Johnson, Johanna E.; Miller, Steven L.; Steneck, Robert S.

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  9. Contribution to the Themed Section: Scaling from individual plankton to marine ecosystems HORIZONS Small bugs with a big impact: linking plankton ecology with ecosystem processes

    DEFF Research Database (Denmark)

    Menden-Deuer, Susanne; Kiørboe, Thomas

    2016-01-01

    As an introduction to the following Themed Section on the significance of planktonic organisms to the functioning of marine ecosystems and global biogeochemical cycles we discuss the ramifications size imparts on the biology of plankton. We provide examples of how the characteristics...... of these microscopic organisms shape plankton population dynamics, distributions, and ecosystem functions. Key features of the marine environment place constraints on the ecology and evolution of plankton. Understanding these constraints is critical in developing a mechanistic understanding and predictive capacity...... of how planktonic ecosystems function, render their capacities in terms of biogeochemical cycling and trophic transfer, and how planktonic communities might respond to changing climate conditions....

  10. Critical vulnerabilities of marine and sea ice–based ecosystems in the high Arctic

    OpenAIRE

    Ola M. Johannessen; Miles, Martin W.

    2010-01-01

    The objectives of this paper are to summarise: (1) observed 20th-century and projected 21st-century changes in key components of the Arctic climate system and (2) probable impacts on the Arctic marine environment, with emphasis on the vulnerabilities of marine and sea ice–based ecosystems. Multi-decadal to century-scale observational data sets of surface air temperature (SAT) and sea ice indicate that the two pronounced 20th-century warming events, both amplified in th...

  11. Comparative analysis of marine ecosystems: workshop on predator-prey interactions

    DEFF Research Database (Denmark)

    Bailey, Kevin M.; Ciannelli, Lorenzo; Hunsicker, Mary

    2010-01-01

    Climate and human influences on marine ecosystems are largely manifested by changes in predator–prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator–prey interactions....... The goals of the workshop were to critically examine the methods of scaling-up predator–prey interactions from local observations to systems, the role of shifting ecological processes with scale changes, and the complexity and organizational structure in trophic interactions....

  12. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (ed.) (Studsvik Nuclear AB (Sweden))

    2010-12-15

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  13. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study.

    Science.gov (United States)

    Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël

    2017-11-14

    Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ(13)C and δ(15)N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms

  14. Are Known Cyanotoxins Involved in the Toxicity of Picoplanktonic and Filamentous North Atlantic Marine Cyanobacteria?

    Directory of Open Access Journals (Sweden)

    Bárbara Frazão

    2010-06-01

    Full Text Available Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.

  15. Marine ornamental species from European waters: a valuable overlooked resource or a future threat for the conservation of marine ecosystems?

    Directory of Open Access Journals (Sweden)

    Ricardo Calado

    2006-09-01

    Full Text Available P align=justify>The worldwide growth of the marine aquarium market has contributed to the degradation of coral reef ecosystems. Enforcing the legislation on importing ornamental species has led some European traders to concentrate on local species. Portugal is used as a case study of marine ornamental fish and invertebrate collection in European waters. One hundred and seventy two species occurring in Portuguese waters (mainland, the Azores and Madeira archipelagos were considered as potential targets for the marine aquarium industry, some of which are already traded on a regular basis (e.g. Clibanarius erythropus, Lysmata seticaudata, Cerithium vulgatum, Hinia reticulata and Ophioderma longicauda. To ensure appropriate management and conservation of these resources, the following options have been evaluated: banning the harvest and trade of all marine ornamental species from European waters; creating sanctuaries and “no take zones”; issuing collection permits; creating certified wholesalers; implementing the use of suitable gear and collecting methods; setting minimum and maximum size limits; establishing species-based quotas; protecting rare, or “key stone” species and organisms with poor survivability in captivity; establishing closed seasons; culturing ornamental organisms; and creating an “eco-fee” to support research and management. Establishing this sustainable alternative fishery may help minimise the economical and social impacts caused by the crash of important food fisheries in Portugal and other European and West African countries.

  16. Consumers control diversity and functioning of a natural marine ecosystem.

    Directory of Open Access Journals (Sweden)

    Andrew H Altieri

    Full Text Available BACKGROUND: Our understanding of the functional consequences of changes in biodiversity has been hampered by several limitations of previous work, including limited attention to trophic interactions, a focus on species richness rather than evenness, and the use of artificially assembled communities. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we manipulated the density of an herbivorous snail in natural tide pools and allowed seaweed communities to assemble in an ecologically relevant and non-random manner. Seaweed species evenness and biomass-specific primary productivity (mg O(2 h(-1 g(-1 were higher in tide pools with snails because snails preferentially consumed an otherwise dominant seaweed species that can reduce biomass-specific productivity rates of algal assemblages. Although snails reduced overall seaweed biomass in tide pools, they did not affect gross primary productivity at the scale of tide pools (mg O(2 h(-1 pool(-1 or mg O(2 h(-1 m(-2 because of the enhanced biomass-specific productivity associated with grazer-mediated increases in algal evenness. SIGNIFICANCE: Our results suggest that increased attention to trophic interactions, diversity measures other than richness, and particularly the effects of consumers on evenness and primary productivity, will improve our understanding of the relationship between diversity and ecosystem functioning and allow more effective links between experimental results and real-world changes in biodiversity.

  17. Functional biology and ecological role of krill in Northern marine ecosystems

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard

    ) and by production of fast sinking carbon-rich faecal pellets. Hence, the large schools of krill greatly influence the pelagic food web and the flux of organic matter in the sea. However, knowledge of the distribution and feeding biology in krill from northern areas is scarce, although of importance to get a better...... understanding of the marine ecosystems and food webs. This thesis aimed to gain more knowledge of krill in northern hemisphere and to study their trophic position and grazing impact in a sub-Arctic fjord. The project investigated i) species and population composition of krill in the area of Godthåbsfjord, SW...... assumed to be the main grazers in marine ecosystems. This suggests that krill could be and are - in the case of Godthåbsfjord - important grazers that deserve more attention in future monitoring and research programs...

  18. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems.

    Science.gov (United States)

    Wagner, Peter J; Kosnik, Matthew A; Lidgard, Scott

    2006-11-24

    Likelihood analyses of 1176 fossil assemblages of marine organisms from Phanerozoic (i.e., Cambrian to Recent) assemblages indicate a shift in typical relative-abundance distributions after the Paleozoic. Ecological theory associated with these abundance distributions implies that complex ecosystems are far more common among Meso-Cenozoic assemblages than among the Paleozoic assemblages that preceded them. This transition coincides not with any major change in the way fossils are preserved or collected but with a shift from communities dominated by sessile epifaunal suspension feeders to communities with elevated diversities of mobile and infaunal taxa. This suggests that the end-Permian extinction permanently altered prevailing marine ecosystem structure and precipitated high levels of ecological complexity and alpha diversity in the Meso-Cenozoic.

  19. Variation in the Adaptive Capacity of Plankton Alters Marine Ecosystem Responses to Climate Change.

    Science.gov (United States)

    Kremer, C. T.; Stock, C. A.; Vasseur, D.; Sarmiento, J. L.

    2016-02-01

    Ecosystem responses to climate change depend on the collective reactions of many species, which individually can evolve, migrate, or decline. Evolutionary responses will be particularly important in areas that experience extreme or novel conditions, such as the tropics. Ecosystem function in these regions will depend on the pace of climate change, the rate at which species can adapt, and the consequences of maladaptation. Marine ecosystem models are powerful tools for exploring climate change scenarios. They can describe the physical effects of climate change and the transport (dispersal) of plankton in detail, but rarely account for evolutionary responses. We studied the response of marine ecosystems to changing ocean temperatures given different evolutionary scenarios, using an intermediate complexity global ecosystem model (COBALT) embedded within GFDL's Earth System Model. We characterized the limits of present-day plankton species to tolerate high temperatures using empirical data. Informed by this, we explored four evolutionary scenarios: (1) phytoplankton and zooplankton are limited in their response to climate change by standing variation and cannot evolve higher temperature tolerances, (2) phytoplankton can evolve, but not zooplankton, (3) phytoplankton and smaller zooplankton can evolve, but not large zooplankton, and (4) all groups evolve rapidly. Differing rates of evolutionary response between groups are likely, driven by variation in body size, generation time, reproductive mode, and population size. We will describe the results of these bounding simulations, focusing on equatorial regions. Our results highlight the importance of incorporating evolution in climate change and ecosystem studies, while providing an example of how to do so. Finally, our results illustrate how interactions between evolution, ecology, and climate variability can lead to markedly different future ecosystems.

  20. Interannual variability of the early summer circulation around the Balearic Islands: Driving factors and potential effects on the marine ecosystem

    Science.gov (United States)

    Balbín, R.; López-Jurado, J. L.; Flexas, M. M.; Reglero, P.; Vélez-Velchí, P.; González-Pola, C.; Rodríguez, J. M.; García, A.; Alemany, F.

    2014-10-01

    Six summer surveys conducted from 2001 to 2005 and in 2012 by the Spanish Institute of Oceanography (IEO) reveal that the hydrographic early summer scenarios around the Balearic Islands are related to the winter atmospheric forcing in the northwestern Mediterranean Sea. The Balearic Islands (western Mediterranean Sea) lie at the transition between the southern, fresher, newly arrived Atlantic Waters (AWs) and the northern, saltier, resident AW. The meridional position of the salinity driven oceanic density front separating the new from the resident AW is determined by the presence/absence of Western Intermediate Water (WIW) in the Mallorca and Ibiza channels. When WIW is present in the channels, the oceanic density front is found either at the south of the islands, or along the Emile Baudot escarpment. In contrast, when WIW is absent, new AW progresses northwards crossing the Ibiza channel and/or the Mallorca channel. In this later scenario, the oceanic density front is closer to the Balearic Islands. A good correspondence exists between standardized winter air temperature anomaly in the Gulf of Lions and the presence of WIW in the channels. We discuss the use of a regional climatic index based on these parameters to forecast in a first-order approach the position of the oceanic front, as it is expected to have high impact on the regional marine ecosystem.

  1. Arctic warming will promote Atlantic-Pacific fish interchange

    DEFF Research Database (Denmark)

    Wisz, Mary; Broennimann, O.; Grønkjær, Peter

    2015-01-01

    Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific. Rapid warming has begun to lift this barrier, potentially facilitating...... to ecosystems that at present contribute 39% to global marine fish landings...

  2. Lost Ecosystem Goods and Services as a Measure of Marine Oil Pollution Damages

    OpenAIRE

    Boyd, James

    2010-01-01

    The paper addresses the definition and measurement of liability for marine oil pollution accidents. The economic value of lost or injured ecosystem goods and services is argued to be the most legally, economically, and ecologically defensible measure of damages. This is easier said than done, however. Calculating lost ecological wealth with any precision is an enormous scientific and economic undertaking. The paper proposes practical ways to improve our future ability to calculate such losses.

  3. Exploring confidence and uncertainty in projections of potential marine ecosystem stressors under climate change

    Science.gov (United States)

    Froelicher, T. L.; Rodgers, K. B.; Stock, C. A.; Cheung, W. W. L.

    2016-02-01

    Marine ecosystems are increasingly stressed by human-induced climate change affecting their physical and biogeochemical environment. Future projections of potential marine ecosystem stressors - including warming, acidification, nutrient availability and declining oxygen levels-are inherently uncertain, however, complicating assessments of climate change impacts. Here we combine data from a novel 30-member ensemble simulation from the GFDL's Earth System Model with data from CMIP5 Earth System models that were run under a high- and low-carbon-emissions scenario to assess the different sources of uncertainty (internal, model and scenario) in projections of marine ecosystem drivers.We show that the uncertainty in century-scale global and regional surface pH projections is dominated by scenario uncertainty, highlighting the critical importance of policy decisions on carbon emissions. In contrast, uncertainty in century-scale sea surface temperature projections in polar regions, oxygen levels in low oxygen waters, and regional nutrient availability is dominated by model uncertainty, underscoring that overcoming deficiencies in scientific understanding and improved process representation in Earth System Models are critical for making more robust predictions. For smaller spatial and temporal scales, uncertainty associated with internal variability also constitutes an important source of uncertainty, suggesting irreducible uncertainty inherent in these projections. We also show that changes in the combined multiple ecosystem drivers emerges from the noise in 44% of the ocean in the next decade and in 57% of the ocean by the end of the century following a high carbon emissions scenario. Changes in pH and sea surface temperature can be reduced substantially and rapidly by the end of 21st century with aggressive carbon emission mitigation, but only marginally for oxygen and net primary productivity. Implications for downscaling of Earth system model output and for projecting

  4. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    Science.gov (United States)

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  5. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems.

    Science.gov (United States)

    Mieszkowska, N; Sugden, H; Firth, L B; Hawkins, S J

    2014-09-28

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    Science.gov (United States)

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  7. Climate change alters stability and species potential interactions in a large marine ecosystem.

    Science.gov (United States)

    Griffith, Gary P; Strutton, Peter G; Semmens, Jayson M

    2018-01-01

    We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current, but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change. © 2017 John Wiley & Sons Ltd.

  8. Significance of the Maritimes Region ecosystem research initiative to marine protected area network planning within Fisheries and Oceans Canada

    National Research Council Canada - National Science Library

    Lawton, P; Westhead, M; Greenlaw, M.E; Smith, S.J; Brown, C.J; Quigley, S; Brickman, D

    2013-01-01

    This research document outlines the relevance to Marine Protected Area (MPA) network planning of scientific work recently completed under Fisheries and Oceans Canada's Maritimes Region Ecosystem Research Initiative (ERI...

  9. Comparative analysis of management plans of the Marine Protected Areas of four European Atlantic countries

    Directory of Open Access Journals (Sweden)

    Inmaculada Alvarez Fernandez

    2014-05-01

    Full Text Available Management plans for Marine Protected Areas (MPA in four European Atlantic countries (UK, France, Portugal and Spain were analyzed comparatively. The information used in the analysis was related to the development and the content of the plans, as governance, control and enforcement. It was collected through questionnaires from a total of 125 management plans, corresponding to 234 marine protected areas. The overall priority goal in all of the management plans was biodiversity conservation and restoration, except in Spain were management of exploited natural resources was always present as an objective. In general the management plans have more objectives than described in the MPA designation, as to improve environment education and raising of public awareness or to maintain key ecological functions. However these objectives are qualitative in all of the management plans and only 15% of them have quantitative objectives, mainly in France and Portugal. Over 70% of the management plans studied provided a regular monitoring program and approximately half provided indicators to monitor each of the MPA objectives, except in the case of Portugal (15%.

  10. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...... model and the uncertainty of the driving parameters is considered low. The presented XF estimation method contributes with a central component for site-dependent characterization factors (CFs) for marine eutrophication, to be coupled with environmental fate of N emissions and effects of oxygen depletion...

  11. Placing marine protected areas onto the ecosystem-based management seascape

    Science.gov (United States)

    Halpern, Benjamin S.; Lester, Sarah E.; McLeod, Karen L.

    2010-01-01

    The rapid increase in the science and implementation of marine protected areas (MPAs) around the world in the past 15 years is now being followed by similar increases in the science and application of marine ecosystem-based management (EBM). Despite important overlaps and some common goals, these two approaches have remained either separated in the literature and in conservation and management efforts or treated as if they are one and the same. In the cases when connections are acknowledged, there is often little assessment of if or how well MPAs can achieve specific EBM goals. Here we start by critically evaluating commonalities and differences between MPAs and EBM. Next, we use global analyses to show where and how much no-take marine reserves can be expected to contribute to EBM goals, specifically by reducing the cumulative impacts of stressors on ocean ecosystems. These analyses revealed large stretches of coastal oceans where reserves can play a major role in reducing cumulative impacts and thus improving overall ocean condition, at the same time highlighting the limitations of marine reserves as a single tool to achieve comprehensive EBM. Ultimately, better synergies between these two burgeoning approaches provide opportunities to greatly benefit ocean health. PMID:20176945

  12. Foreword to the thematic cluster: the Arctic in Rapid Transition—marine ecosystems

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-12-01

    Full Text Available The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.

  13. A comparison of three marine ecosystems surrounding the Korean peninsula: Responses to climate change [review article

    Science.gov (United States)

    Rebstock, Ginger A.; Shil Kang, Young

    2003-12-01

    This study uses a comparative approach to examine responses of marine ecosystems to climatic regime shifts. The three seas surrounding the Korean peninsula, the Japan/East Sea, the East China Sea and the Yellow Sea represent three contiguous but distinct ecosystems. Sampling has been carried out by the National Fisheries Research and Development Institute of South Korea since 1965, using the same methods in all three seas. Sampling was generally synoptic. Amplitude time series of 1st EOF modes for temperature, salinity, zooplankton biomass and concentrations of four major zooplankton taxa were used to determine whether the three marine ecosystems respond in a similar manner to climate variations. Temporal patterns of the variables were strongly similar among the three seas at decadal time scales, but very weakly similar at interannual scales. All three seas responded to a climatic regime shift that occurred in 1989. Temperature, zooplankton biomass and copepod concentrations increased in the late 1980s or early 1990s in all three seas. Concentrations of amphipods, chaetognaths and euphausiids also increased in the Japan/East Sea and the East China Sea, but not the Yellow Sea. The Yellow Sea ecosystem differs strongly from the other two seas, and water exchange between the Yellow Sea and the East China Sea is much weaker than that between the East China Sea and Japan/East Sea. Spatial patterns of zooplankton determined by the EOF analysis were closely related to currents and fronts in each of the three seas.

  14. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T.N.; Gabrielsen, G.W.; Falk-Petersen, S.

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  15. Reactive Halogens in the Marine Boundary Layer (RHaMBLe: the tropical North Atlantic experiments

    Directory of Open Access Journals (Sweden)

    J. D. Lee

    2010-02-01

    Full Text Available The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period.

    This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental. Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice. Consistency with

  16. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    Science.gov (United States)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist

  17. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R., E-mail: cbern@usgs.gov [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Chadwick, Oliver A. [Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Kendall, Carol [U.S. Geological Survey, Menlo Park, CA (United States); Pribil, Michael J. [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ{sup 34}S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ{sup 34}S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ{sup 34}S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  18. Marine

    NARCIS (Netherlands)

    Govers, L.; Man in 't Veld, W.A.; Meffert, J.P.; Bouma, T.J.; van Rijswick, P.C.; Heusinkveld, J.H.T.; Orth, R.J.; van Katwijk, M.M.; van der Heide, T.

    2016-01-01

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives.

  19. Composition, Distribution and Abundance of Anthropogenic Marine Debris in Northwest Atlantic Submarine Canyons

    Science.gov (United States)

    Heyl, T. P.; Nizinski, M. S.; Kinlan, B. P.; Shank, T. M.

    2016-02-01

    Submarine canyons are important productive habitats in the deep-sea, as well as downslope conduits for transporting sediment and organic material that enhances local and regional species diversity, including species and ecosystems vulnerable to anthropogenic activities. In 2012 and 2013, we documented and characterized deep-sea coral and sponge ecosystems in virtually unexplored northeast and mid-Atlantic canyons using WHOI's TowCam towed imaging system on the FSV Bigelow. Specifically, thirty-eight digital image TowCam surveys were completed in 10 canyons, with more than 91,000 images documenting not only deep-sea coral and sponge ecosystems and habitat features, but also anthropogenic debris. Canyons surveyed cover most of the latitudinal range of the northeast US region and include Toms Canyon complex, Ryan, Veatch, Gilbert, Powell, and Munson canyons. Each of these canyon hosted debris across depths of 550 to 2100m, consisting mostly of fisheries equipment, including fishing lines, traps, and nets. Potentially-land-based debris (e.g., plastic bags and magazines) was also present in all canyons surveyed. These substrates likely enhance colonization and often served as habitat for specific sessile and mobile species. Comparisons of debris in these canyons revealed depth-related differences, likely due to offshore extent of fishing activities, and will be compared to density and abundances of other deep-sea environments. The occurrence of anthropogenic debris on Northeast US canyon floors suggests major sources via transport ship and fishing-related activities and perhaps the rapid transport of debris through near-shore zones and entrainment in bottom currents.

  20. Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    Science.gov (United States)

    Liu, Hongyu; Moore, Richard; Hostetler, Christopher; Ferrare, Richard; Fairlie, T. Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew; Gantt, Brett; hide

    2016-01-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES; http://naames.larc.nasa.gov) is a five year NASA Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic, with the 1st field deployment in November 2015 and the 2nd in May 2016.

  1. Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    DEFF Research Database (Denmark)

    Peck, M.A.; Neuenfeldt, Stefan; Essington, V.M.

    2014-01-01

    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium...

  2. Getting it right for the North Atlantic right whale (Eubalaenaglacialis): a last opportunity for effective marine spatial planning?

    Science.gov (United States)

    Petruny, Loren M; Wright, Andrew J; Smith, Courtney E

    2014-08-15

    The North Atlantic right whale (Eubalaena glacialis) faces increasing pressure from commercial shipping traffic and proposed marine renewable energy developments. Drawing upon the successful Stellwagen Bank National Marine Sanctuary model, we propose a multi-stakeholder marine spatial planning process that considers both appropriate positioning of offshore wind farms and redefining commercial shipping lanes relative to whale migration routes: placement of wind turbines within certain right whale habitats may prove beneficial for the species. To that end, it may be advisable to initially relocate the shipping lanes for the benefit of the whales prior to selecting wind energy areas. The optimal end-state is the commercial viability of renewable energy, as well as a safe shipping infrastructure, with minimal risk of collision and exposure to shipping noise for the whales. This opportunity to manage impacts on right whales could serve as a model for other problematic interactions between marine life and commercial activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Provenance for actionable data products and indicators in marine ecosystem assessments

    Science.gov (United States)

    Beaulieu, S. E.; Maffei, A. R.; Fox, P. A.; West, P.; Di Stefano, M.; Hare, J. A.; Fogarty, M.

    2013-12-01

    Ecosystem-based management of Large Marine Ecosystems (LMEs) involves the sharing of data and information products among a diverse set of stakeholders - from environmental and fisheries scientists to policy makers, commercial entities, nonprofits, and the public. Often the data products that are shared have resulted from a number of processing steps and may also have involved the combination of a number of data sources. The traceability from an actionable data product or indicator back to its original data source(s) is important not just for trust and understanding of each final data product, but also to compare with similar data products produced by the different stakeholder groups. For a data product to be traceable, its provenance, i.e., lineage or history, must be recorded and preferably machine-readable. We are collaborating on a use case to develop a software framework for the bi-annual Ecosystem Status Report (ESR) for the U.S. Northeast Shelf LME. The ESR presents indicators of ecosystem status including climate forcing, primary and secondary production, anthropogenic factors, and integrated ecosystem measures. Our software framework retrieves data, conducts standard analyses, provides iterative and interactive visualization, and generates final graphics for the ESR. The specific process for each data and information product is updated in a metadata template, including data source, code versioning, attribution, and related contextual information suitable for traceability, repeatability, explanation, verification, and validation. Here we present the use of standard metadata for provenance for data products in the ESR, in particular the W3C provenance (PROV) family of specifications, including the PROV-O ontology which maps the PROV data model to RDF. We are also exploring extensions to PROV-O in development (e.g., PROV-ES for Earth Science Data Systems, D-PROV for workflow structure). To associate data products in the ESR to domain-specific ontologies we are

  4. Exploring industry specific social welfare maximizing rates of water pollution abatement in linked terrestrial and marine ecosystems

    NARCIS (Netherlands)

    Roebeling, P.C.; Hendrix, E.M.T.; Grieken, van M.E.

    2009-01-01

    Marine ecosystems are severely affected by water pollution originating from coastal catchments, while these ecosystems are of vital importance from an environmental as well as an economic perspective. To warrant sustainable economic development of coastal regions, we need to balance the marginal

  5. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Kumar, Sumit [Michigan Technological Univ., Houghton, MI (United States); Wright, Kendra [Michigan Technological Univ., Houghton, MI (United States); Kramer, Louisa [Michigan Technological Univ., Houghton, MI (United States); Mazzoleni, Lynn [Michigan Technological Univ., Houghton, MI (United States); Owen, Robert [Michigan Technological Univ., Houghton, MI (United States); Helmig, Detlev [Univ. of Colorado, Boulder, CO (United States)

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron

  6. VECTORS of change in the marine environment: Ecosystem and economic impacts and management implications

    Science.gov (United States)

    Austen, M. C.; Crowe, T. P.; Elliott, M.; Paterson, D. M.; Peck, M. A.; Piraino, S.

    2018-02-01

    Human use of the European marine environment is increasing and diversifying. This is creating new mechanisms for human induced-changes in marine life which need to be understood and quantified as well as the impact of these changes on ecosystems, their structures (e.g. biodiversity) and functioning (e.g. productivity), and the social and economic consequences that arise. The current and emerging pressures are multiple and interacting, arising, for example, from transport, platforms for renewable and non-renewable energy, exploitation of living and non-living resources, agricultural and industrial discharges, together with wider environmental changes (including climate change). Anticipating the future consequences of these pressures and vectors of change for marine life and of adaptation and mitigation measures (such as the introduction of new technologies and structures, new ballast water practices, ocean and offshore wind energy devices and new fishing strategies) is a prerequisite to the development and implementation of strategies, policies and regulations to manage the marine environment, such as the IMO Convention on ballast water management and the EU Maritime Policy and Marine Strategy Framework Directive.

  7. Regional marine climate scenarios in the NE Atlantic sector close to the Spanish shores

    Directory of Open Access Journals (Sweden)

    Damià Gomis

    2016-09-01

    Full Text Available We present an overview of the changes expected during the 21st century in key marine parameters (sea surface temperature, sea surface salinity, sea level and waves in the sector of the NE Atlantic Ocean close to the Spanish shores. Under the A1B scenario, open-sea surface temperatures would increase by 1°C to 1.5°C by 2050 as a consequence of global ocean warming. Near the continental margin, however, the global temperature rise would be counteracted by an enhancement of the seasonal upwelling. Sea surface salinity is likely to decrease in the future, mainly due to the advection of high-latitude fresher waters from ice melting. Mean sea level rise has been quantified as 15-20 cm by 2050, but two contributions not accounted for by our models must be added: the mass redistribution derived from changes in the large-scale circulation (which in the NE Atlantic may be as large as 15 cm in 2050 or 35 cm by 2100 and the increase in the ocean mass content due to the melting of continental ice (for which estimates are still uncertain. The meteorological tide shows very small changes, and therefore extreme sea levels would be higher in the 21st century, but mostly due to the increase in mean sea level, not to an increase in the storminess. The wave projections point towards slightly smaller significant wave heights, but the changes projected are of the same order as the natural variability.

  8. Iodine Speciation in Marine Aerosol of the Atlantic Ocean (AMT21)

    Science.gov (United States)

    Yodle, Chan; von Glasow, Roland; Baker, Alex

    2014-05-01

    Iodine chemistry in marine aerosol plays important roles in the marine boundary layer such as ozone destruction and new aerosol particle formation. In both cases, the speciation of iodine is an important factor in determining the role of iodine in these processes. Iodine has a complex chemistry in the gas and aerosol phases and to date the interactions and roles of individual iodine species are not well understood. This study will present results of a research cruise from the Atlantic Ocean, AMT21, which travelled from Avonmouth in the UK to Punta Arenas, Chile during September to November 2011. Aerosol samples were collected for 24 hours onto pre-cleaned glass fibre filters with a flow rate of ~1 m3 min-1, using a total suspended particulate sampler. Collected aerosol samples were extracted into ultra-pure water using mechanical shaking at room temperature. Iodine speciation in these extracts was measured using ion-chromatography coupled to Inductively Coupled Plasma-Spectrometry (IC-ICP-MS). Soluble organic iodine (SOI) was then determined by differences between the sum of inorganic iodine (iodide and iodate) and total soluble iodine determined by ICP-MS. Chemical analysis of major ions was also analysed by ion chromatography. Back trajectories were used to categorise air masses of aerosol, according to their origins and transport pathways. Results show considerable differences in the iodine speciation of fine and coarse aerosol particles. These differences of iodine proportions in both aerosol modes agree well with previous studies in the Atlantic. Iodate was dominant species in coarse mode aerosol, its concentration ranged from 4.4 to 58.4 pmol m-3 (median proportion 80%), while SOI and iodide were found in lower concentrations. SOI concentrations ranged from 0.5 to 6.4 pmol m-3 (median proportion 12%) and iodide concentrations ranged from 0.6 to 4.6 pmol m-3 (median proportion 9%) respectively. For fine mode aerosol, lower iodate concentrations were observed

  9. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2014-02-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. The aragonite saturation state within the California Current System is predicted to decrease in the future with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the spatial mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, and (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  10. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity

    Science.gov (United States)

    Rode, Karyn D.; Wilson, Ryan R.; Douglas, David C.; Muhlenbruch, Vanessa L; Atwood, Todd C.; Regehr, Eric V.; Richardson, Evan; Pilfold, Nicholas; Derocher, Andrew E.; Durner, George M.; Stirling, Ian; Amstrup, Steven C.; St Martin, Michelle; Pagano, Anthony M.; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983–1999 and 2000–2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in

  11. High-resolution modeling of a marine ecosystem using the FRESCO hydroecological model

    Science.gov (United States)

    Zalesny, V. B.; Tamsalu, R.

    2009-02-01

    The FRESCO (Finnish Russian Estonian Cooperation) mathematical model describing a marine hydroecosystem is presented. The methodology of the numerical solution is based on the method of multicomponent splitting into physical and biological processes, spatial coordinates, etc. The model is used for the reproduction of physical and biological processes proceeding in the Baltic Sea. Numerical experiments are performed with different spatial resolutions for four marine basins that are enclosed into one another: the Baltic Sea, the Gulf of Finland, the Tallinn-Helsinki water area, and Tallinn Bay. Physical processes are described by the equations of nonhydrostatic dynamics, including the k-ω parametrization of turbulence. Biological processes are described by the three-dimensional equations of an aquatic ecosystem with the use of a size-dependent parametrization of biochemical reactions. The main goal of this study is to illustrate the efficiency of the developed numerical technique and to demonstrate the importance of a high spatial resolution for water basins that have complex bottom topography, such as the Baltic Sea. Detailed information about the atmospheric forcing, bottom topography, and coastline is very important for the description of coastal dynamics and specific features of a marine ecosystem. Experiments show that the spatial inhomogeneity of hydroecosystem fields is caused by the combined effect of upwelling, turbulent mixing, surface-wave breaking, and temperature variations, which affect biochemical reactions.

  12. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot

    Science.gov (United States)

    Wernberg, Thomas; Smale, Dan A.; Tuya, Fernando; Thomsen, Mads S.; Langlois, Timothy J.; de Bettignies, Thibaut; Bennett, Scott; Rousseaux, Cecile S.

    2013-01-01

    Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems. In early 2011, the marine ecosystems along the west coast of Australia--a global hotspot of biodiversity and endemism--experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2-4°C persisted for more than ten weeks along >2,000km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.

  13. Biomonitoring Climate Change and Pollution in Marine Ecosystems: A Review on Aulacomya ater

    Directory of Open Access Journals (Sweden)

    France Caza

    2016-01-01

    Full Text Available The sedentarism and wide global distribution of the blue mussel Mytilus edulis have made it a useful bioindicator to assess changes in the health status of the marine ecosystem in response to pollution and other environmental stresses. Effective biomonitoring of an ecosystem requires, however, that multiple biomarkers be used to obtain an accurate measure of the cumulative effects of different sources of environmental stress. Here, we provide a first integrated review of the biological, economical, and geographical characteristics of another species of mussels, the ribbed mussel Aulacomya ater. We discuss the use of Aulacomya ater as a complementary biomonitor to the blue mussel to assess the impact of pollutants and climate change. Recent findings have indeed shown that Mytilus edulis and Aulacomya ater have distinctive anatomy and physiology and respond differently to environmental stress. Monitoring of mixed beds containing blue and ribbed mussels may thus represent a unique opportunity to study the effect of environmental stress on the biodiversity of marine ecosystems, most notably in the Southern hemisphere, which is particularly sensitive to climate change and where both species often cohabitate in the same intertidal zones.

  14. Pathways between primary production and fisheries yields of large marine ecosystems.

    Directory of Open Access Journals (Sweden)

    Kevin D Friedland

    Full Text Available The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems.

  15. Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages.

    Directory of Open Access Journals (Sweden)

    Marina Panova

    Full Text Available The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792, exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp. We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM, possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.

  16. The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast.

    Science.gov (United States)

    Alfonsi, Eric; Méheust, Eleonore; Fuchs, Sandra; Carpentier, François-Gilles; Quillivic, Yann; Viricel, Amélia; Hassani, Sami; Jung, Jean-Luc

    2013-12-30

    In the last ten years, 14 species of cetaceans and five species of pinnipeds stranded along the Atlantic coast of Brittany in the North West of France. All species included, an average of 150 animals strand each year in this area. Based on reports from the stranding network operating along this coast, the most common stranding events comprise six cetacean species (Delphinus delphis, Tursiops truncatus, Stenella coeruleoalba, Globicephala melas, Grampus griseus, Phocoena phocoena)and one pinniped species (Halichoerus grypus). Rare stranding events include deep-diving or exotic species, such as arctic seals. In this study, our aim was to determine the potential contribution of DNA barcoding to the monitoring of marine mammal biodiversity as performed by the stranding network. We sequenced more than 500 bp of the 5' end of the mitochondrial COI gene of 89 animals of 15 different species (12 cetaceans, and three pinnipeds). Except for members of the Delphininae, all species were unambiguously discriminated on the basis of their COI sequences. We then applied DNA barcoding to identify some "undetermined" samples. With again the exception of the Delphininae, this was successful using the BOLD identification engine. For samples of the Delphininae, we sequenced a portion of the mitochondrial control region (MCR), and using a non-metric multidimentional scaling plot and posterior probability calculations we were able to determine putatively each species. We then showed, in the case of the harbour porpoise, that COI polymorphisms, although being lower than MCR ones, could also be used to assess intraspecific variability. All these results show that the use of DNA barcoding in conjunction with a stranding network could clearly increase the accuracy of the monitoring of marine mammal biodiversity.

  17. The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Eric Alfonsi

    2013-12-01

    Full Text Available In the last ten years, 14 species of cetaceans and five species of pinnipeds stranded along the Atlantic coast of Brittany in the North West of France. All species included, an average of 150 animals strand each year in this area. Based on reports from the stranding network operating along this coast, the most common stranding events comprise six cetacean species (Delphinus delphis, Tursiops truncatus, Stenella coeruleoalba, Globicephala melas, Grampus griseus, Phocoena phocoena and one pinniped species (Halichoerus grypus. Rare stranding events include deep-diving or exotic species, such as arctic seals. In this study, our aim was to determine the potential contribution of DNA barcoding to the monitoring of marine mammal biodiversity as performed by the stranding network.We sequenced more than 500 bp of the 5’ end of the mitochondrial cox1 gene of 89 animals of 15 different species (12 cetaceans, and three pinnipeds. Except for members of the Delphininae, all species were unambiguously discriminated on the basis of their cox1 sequences. We then applied DNA barcoding to identify some “undetermined” samples. With again the exception of the Delphininae, this was successful using the BOLD identification engine. For samples of the Delphininae, we sequenced a portion of the mitochondrial control region (MCR, and using a non-metric multidimentional scaling plot and posterior probability calculations we were able to determine putatively each species. We then showed, in the case of the harbour porpoise, that cox1 polymorphisms, although being lower than MCR ones, could also be used to assess intraspecific variability. All these results show that the use of DNA barcoding in conjunction with a stranding network could clearly increase the accuracy of the monitoring of marine mammal biodiversity.

  18. The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast

    Science.gov (United States)

    Alfonsi, Eric; Méheust, Eleonore; Fuchs, Sandra; Carpentier, François-Gilles; Quillivic, Yann; Viricel, Amélia; Hassani, Sami; Jung, Jean-Luc

    2013-01-01

    Abstract In the last ten years, 14 species of cetaceans and five species of pinnipeds stranded along the Atlantic coast of Brittany in the North West of France. All species included, an average of 150 animals strand each year in this area. Based on reports from the stranding network operating along this coast, the most common stranding events comprise six cetacean species (Delphinus delphis, Tursiops truncatus, Stenella coeruleoalba, Globicephala melas, Grampus griseus, Phocoena phocoena)and one pinniped species (Halichoerus grypus). Rare stranding events include deep-diving or exotic species, such as arctic seals. In this study, our aim was to determine the potential contribution of DNA barcoding to the monitoring of marine mammal biodiversity as performed by the stranding network. We sequenced more than 500 bp of the 5’ end of the mitochondrial COI gene of 89 animals of 15 different species (12 cetaceans, and three pinnipeds). Except for members of the Delphininae, all species were unambiguously discriminated on the basis of their COI sequences. We then applied DNA barcoding to identify some “undetermined” samples. With again the exception of the Delphininae, this was successful using the BOLD identification engine. For samples of the Delphininae, we sequenced a portion of the mitochondrial control region (MCR), and using a non-metric multidimentional scaling plot and posterior probability calculations we were able to determine putatively each species. We then showed, in the case of the harbour porpoise, that COI polymorphisms, although being lower than MCR ones, could also be used to assess intraspecific variability. All these results show that the use of DNA barcoding in conjunction with a stranding network could clearly increase the accuracy of the monitoring of marine mammal biodiversity. PMID:24453548

  19. Seabirds and marine plastic debris in the northeastern Atlantic: A synthesis and recommendations for monitoring and research.

    Science.gov (United States)

    O'Hanlon, Nina J; James, Neil A; Masden, Elizabeth A; Bond, Alexander L

    2017-12-01

    Marine plastic pollution is an increasing, and global, environmental issue. Numerous marine species are affected by plastic debris through entanglement, nest incorporation, and ingestion, which can lead to lethal and sub-lethal impacts. However, in the northeastern Atlantic Ocean, an area of international importance for seabirds, there has been little effort to date to assess information from studies of wildlife and plastic to better understand the spatiotemporal variation of how marine plastic affects different seabird species. To improve our understanding of seabirds and marine plastic in this region, we completed a synthesis of the published and grey literature to obtain information on all known documented cases of plastic ingestion and nest incorporation by this group. We found that of 69 seabird species that commonly occur in the northeastern Atlantic, 25 had evidence of ingesting plastic. However, data on plastic ingestion was available for only 49% of all species, with 74% of investigated species recorded ingesting plastic. We found only three published studies on nest incorporation, for the Northern Gannet (Morus bassanus) and Black-legged Kittiwake (Rissa tridactyla). For many species, sample sizes were small or not reported, and only 39% of studies were from the 21st century, whilst information from multiple countries and years was only available for 11 species. This indicates that we actually know very little about the current prevalence of plastic ingestion and nest incorporation for many species, several of them globally threatened. Furthermore, in the majority of studies, the metrics reported were inadequate to carry out robust comparisons among locations and species or perform meta-analyses. We recommend multi-jurisdictional collaboration to obtain a more comprehensive and current understanding of how marine plastic is affecting seabirds in the northeastern Atlantic Ocean. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Development and application of a density dependent matrix population model for Atlantic killifish (Fundulus heteroclitus)

    Science.gov (United States)

    Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems....

  1. Selection of bioindicators for monitoring marine environmental quality in the Bay of Fundy, Atlantic Canada.

    Science.gov (United States)

    Chou, C L; Paon, L A; Moffatt, J D; King, T

    2003-06-01

    Distribution of metals, PAH's and PCB's in lobsters, mussels, and sediments were used to assess marine environmental quality of the Bay of Fundy. This study demonstrates that the lobster (Homarus americanus) is a better bioindicator for monitoring contaminants in the marine environment and has a greater capacity for the uptake and accumulation of contaminants than the mussel (Mytilus edulis) and sediments. A definite pattern in the spatial distribution of lobster Cu, Cd, and Ag was evident. The distribution of organic contaminants for both mussels and lobsters in the Bay of Fundy lacked a spatial trend, and organic contaminants were undetectable in sediments from all sites. The Gulf Watch Programme, which monitors chemicals in mussels in the Bay of Fundy, did not indicate a problem with high levels of Cu, Cd, and Zn in the ecosystem. Analytes below the detection limit, such as in mussels and sediments, increase the difficulties of chemical analysis and detection for environmental monitoring. Deficiencies of mussels in monitoring the Bay of Fundy were discussed.

  2. Open Source Software for Mapping Human Impacts on Marine Ecosystems with an Additive Model

    Directory of Open Access Journals (Sweden)

    Andy Stock

    2016-06-01

    Full Text Available This paper describes an easy-to-use open source software tool implementing a commonly used additive model (Halpern et al., 'Science', 2008 for mapping human impacts on marine ecosystems. The tool has been used to map the potential for cumulative human impacts in Arctic marine waters and can support future human impact mapping projects by 1 making the model easier to use; 2 making updates of model results straightforward when better input data become available; 3 storing input data and information about processing steps in a defined format and thus facilitating data sharing and reproduction of modeling results; 4 supporting basic visualization of model inputs and outputs without the need for advanced technical skills. The tool, called EcoImpactMapper, was implemented in Java and is thus platform-independent. A tutorial, example data, the tool and the source code are available online.

  3. The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing?

    Science.gov (United States)

    Ward, Jessica R.; Lafferty, Kevin D.

    2004-01-01

    Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish), invertebrates (corals, crustaceans, echinoderms), and plants (seagrasses). Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter “disease”) in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups). Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  4. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Directory of Open Access Journals (Sweden)

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  5. Effects of ocean acidification on temperate coastal marine ecosystems and fisheries in the northeast Pacific.

    Directory of Open Access Journals (Sweden)

    Rowan Haigh

    Full Text Available As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA. Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC, sport (recreational fishing generates more income than commercial fishing (including the expanding aquaculture industry. Salmon (fished recreationally and farmed and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated, little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.

  6. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  7. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems.

    Science.gov (United States)

    Casini, Michele; Hjelm, Joakim; Molinero, Juan-Carlos; Lövgren, Johan; Cardinale, Massimiliano; Bartolino, Valerio; Belgrano, Andrea; Kornilovs, Georgs

    2009-01-06

    Fisheries can have a large impact on marine ecosystems, because the effects of removing large predatory fish may cascade down the food web. The implications of these cascading processes on system functioning and resilience remain a source of intense scientific debate. By using field data covering a 30-year period, we show for the Baltic Sea that the underlying mechanisms of trophic cascades produced a shift in ecosystem functioning after the collapse of the top predator cod. We identified an ecological threshold, corresponding to a planktivore abundance of approximately 17 x 10(10) individuals, that separates 2 ecosystem configurations in which zooplankton dynamics are driven by either hydroclimatic forces or predation pressure. Abundances of the planktivore sprat above the threshold decouple zooplankton dynamics from hydrological circumstances. The current strong regulation by sprat of the feeding resources for larval cod may hinder cod recovery and the return of the ecosystem to a prior state. This calls for the inclusion of a food web perspective in management decisions.

  8. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  9. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    Science.gov (United States)

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast

  10. Observations from Space: Marine Ecosystem and Environment Response to Typhoon/ Hurricanes

    Science.gov (United States)

    Tang, Danling; Yi, Sui

    Marine ecosystem is sensitive to environmental factors, including typhoon. Typhoon's activities have been strengthening in both intensity and spatial coverage in the past several decades, along with global changes; however, our knowledge about the impact of typhoons upon the marine ecosystem is very scarce. To understand how could typhoon/hurricane impact on marine ecosystem, we have conducted a series studies in the South China Sea, by using Satellite remote sensing and in situ observation data to investigate phytoplankton concentration, sea surface temperature (SST) and related factors before, during, and after typhoon. Results show that typhoon can induce large area of phytoplankton blooms with increases of Chlorophyll a (Chl a) concentrations and decrease of sea surface temperature (SST) about 4 oC. Analysis showed that typhoon can support nutrients to surface phytoplankton by upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phyto-plankton bloom by upwelling. Typhoon can also induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. Comparative study show that slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. Therefore, typhoons may have important contribution to the marine primary production. Those studies may help better understand the mechanism of typhoon impacts on marine ecosys-tem, and the role of typhoon in the global environmental changes. The series research were sup-ported by: NSFC (40976091, 40811140533) and GD NSF (8351030101000002); (2) CAS(kzcx2-yw-226 and LYQ200701); (3) The CAS/SAFEA International Partnership Program for Creative Research Teams (KZCX2-YW-T001). References: Tang, DanLing, H Kawamura, P Shi, W Takahashi, T Shimada, F. Sakaida, O

  11. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  12. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean.

    Science.gov (United States)

    Vales, Damián G; Cardona, Luis; Zangrando, Atilio F; Borella, Florencia; Saporiti, Fabiana; Goodall, R Natalie P; de Oliveira, Larissa Rosa; Crespo, Enrique A

    2017-02-01

    Predators may modify their diets as a result of both anthropogenic and natural environmental changes. Stable isotope ratios of nitrogen and carbon in bone collagen have been used to reconstruct the foraging ecology of South American fur seals (Arctocephalus australis) in the southwestern South Atlantic Ocean since the Middle Holocene, a region inhabited by hunter-gatherers by millennia and modified by two centuries of whaling, sealing and fishing. Results suggest that the isotopic niche of fur seals from Patagonia has not changed over the last two millennia (average for the period: δ13C2200-0BP = -13.4 ± 0.5‰, δ15N2200-0BP = 20.6 ± 1.1‰). Conversely, Middle Holocene fur seals fed more pelagically than their modern conspecifics in the Río de la Plata region (δ13C7000BP = -15.9 ± 0.6‰ vs. δ13CPRESENT = -13.5 ± 0.8‰) and Tierra del Fuego (δ13C6400-4300BP = -15.4 ± 0.5‰ vs. δ13CPRESENT = -13.2 ± 0.7‰). In the latter region, Middle Holocene fur seals also fed at a higher trophic level than their modern counterparts (δ15N6400-4300BP = 20.5 ± 0.5‰ vs. δ15NPRESENT = 19.0 ± 1.6‰). Nevertheless, a major dietary shift was observed in fur seals from Tierra del Fuego during the nineteenth century (δ13C100BP = -17.2 ± 0.3‰, δ15N100BP = 18.6 ± 0.7‰), when marine primary productivity plummeted and the fur seal population was decimated by sealing. Disentangling the relative roles of natural and anthropogenic factors in explaining this dietary shift is difficult, but certainly the trophic position of fur seals has changed through the Holocene in some South Atlantic regions.

  13. The North Atlantic Data Portal: A Current Approach To Improving Marine Geophysical Data Discovery And Access

    Science.gov (United States)

    Jencks, J. H.; Cartwright, J.; Varner, J. D.

    2016-12-01

    Exploring, understanding, and managing the global oceans are a challenge when hydrographic maps are available for only 5% of the world's oceans. Seafloor mapping is expensive and most government and academic budgets continue to tighten. The first step for any mapping program, before setting out to map uncharted waters, should be to identify if data currently exist in the area of interest. There are many reasons why this seemingly simple suggestion is easier said than done.While certain datasets are accessible online (e.g., NOAA's NCEI, EMODnet, IHO-DCDB), many are not. In some cases, data that are publicly available are difficult to discover and access. No single agency can successfully resolve the complex and pressing demands of ocean and coastal mapping and the associated data stewardship. The National Oceanic and Atmospheric Administration (NOAA) is an active participant in numerous campaign mapping projects whose goals are to carry out coordinated and comprehensive ocean mapping efforts. One of these international programs is an outcome of the Galway Statement on Atlantic Ocean Cooperation signed by the European Union, Canada, and the United States in 2013. At NOAA's National Centers for Environmental Information (NCEI), resources are focused on ensuring the security and widespread availability of the Nation's scientific marine geophysical data through long-term stewardship. NCEI draws on a variety of software technologies and adheres to international standards to meet this challenge. The result is a geospatial framework built on spatially-enabled databases, standards-based web services, and International Standards Organization (ISO) metadata. Through the use of industry standards, the services are constructed such that they can be combined and re-used in a variety of contexts. For example, users may leverage the services in desktop analysis tools, web applications created by the hosting organizations (e.g. the North Atlantic Data Portal), or in custom

  14. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John

    2018-01-29

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  15. Global change in marine ecosystems: implications for semi-enclosed Arabian seas

    KAUST Repository

    Duarte, Carlos M.

    2015-12-07

    Global Change has been defined as the impact of human activities on the key processes that determine the functioning of the Biosphere. Global Change is a major threat for marine ecosystems and includes climate change as well as other global impacts such as inputs of pollutants, overfishing and coastal sprawl. The Semi-enclosed Arabian Seas, including the Arabian Gulf and the Red Sea, have supported human livelihoods in the Arabian Peninsula over centuries and continue to do so, but are also threatened by Global Change. These threats are particularly severe as Semi-enclosed Arabian Seas already present rather extreme conditions, in terms of temperature, salinity and oxygen concentration. The vulnerability of the unique marine ecosystems of the Semi-enclosed Arabian Seas to Global Change vectors is largely unknown, but predictions based on first principles suggest that they may be at or near the tipping point for many pressures, such as warming and hypoxia. There is an urgent need to implement international collaborative research programs to accelerate our understanding of the vulnerability of Semi-enclosed Arabian Seas to Global Change vectors in order to inform conservation and management plans to ensure these Seas continue to support the livelihoods and well-being of the Arab nations.

  16. Visualizing Ecosystem Energy Flow in Complex Food Web Networks: A Comparison of Three Alaskan Large Marine Ecosystems

    Science.gov (United States)

    Kearney, K.; Aydin, K.

    2016-02-01

    Oceanic food webs are often depicted as network graphs, with the major organisms or functional groups displayed as nodes and the fluxes of between them as the edges. However, the large number of nodes and edges and high connectance of many management-oriented food webs coupled with graph layout algorithms poorly-suited to certain desired characteristics of food web visualizations often lead to hopelessly tangled diagrams that convey little information other than, "It's complex." Here, I combine several new graph visualization techniques- including a new node layout alorithm based on a trophic similarity (quantification of shared predator and prey) and trophic level, divided edge bundling for edge routing, and intelligent automated placement of labels- to create a much clearer visualization of the important fluxes through a food web. The technique will be used to highlight the differences in energy flow within three Alaskan Large Marine Ecosystems (the Bering Sea, Gulf of Alaska, and Aleutian Islands) that include very similar functional groups but unique energy pathways.

  17. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the

  18. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  19. Euxinia and primary production in Upper Cretaceous eastern equatorial Atlantic surface waters fostered orbital-driven formation of marine black shales in the Deep Ivory Basin, ODP Site 959

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Wagner, T.; Hofmann, P.; Beckmann, B.

    2004-01-01

    Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales Thomas Wagner Department of Geosciences, University of Bremen, Bremen, Germany Jaap S. Sinninghe Damst¨¦ Department of Marine

  20. Trends and drivers of marine debris on the Atlantic coast of the United States 1997-2007

    Science.gov (United States)

    Ribic, C.A.; Sheavly, S.B.; Rugg, D.J.; Erdmann, Eric S.

    2010-01-01

    For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue. ?? 2010.

  1. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  2. Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect

    Science.gov (United States)

    Amiri-Farahani, Anahita; Allen, Robert J.; Neubauer, David; Lohmann, Ulrike

    2017-05-01

    One component of aerosol-cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust-MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol-cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45° W and 15° E and between 0 and 35° N. To calculate the aerosol-cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of -1.5 ± 1.4 and -1.5 ± 1.6 W m-2, respectively, for the annual mean aerosol-cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol-cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields -3.8 ± 2.5 (-4.3 ± 4.1) during summer and 1 ± 2.9 (0.6 ± 1) W m-2 during winter. In Method 1, the aerosol-cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semidirect effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from -0.7 ± 0.6 in summer to 0.1 ± 0.5 W m-2 in winter. The second term, however, dominates the overall radiative effect, varying from -3.2 ± 2.5 in summer to 0.9 ± 2.9 W m-2 during winter. Studies show that the semidirect effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol

  3. Effects of exotic fish farms on bird communities in lake and marine ecosystems.

    Science.gov (United States)

    Jiménez, Jaime E; Arriagada, Aldo M; Fontúrbel, Francisco E; Camus, Patricio A; Avila-Thieme, M Isidora

    2013-08-01

    Salmon farming is a widespread activity around the world, also known to promote diverse environmental effects on aquatic ecosystems. However, information regarding the impact of salmon farming on bird assemblages is notably scarce. We hypothesize that salmon farming, by providing food subsidies and physical structures to birds, will change their local community structure. To test this hypothesis, we conducted a seasonal monitoring of bird richness, abundance, and composition at paired salmon pen and control plots in two marine and two lake sites in southern Chile, from fall 2002 to summer 2004. Overall, salmon farming had no significant effects on species richness, but bird abundance was significantly and noticeably higher in salmon pens than in controls. Such aggregation was mainly accounted for by the trophic guilds of omnivores, diving piscivores, carrion eaters, and perching piscivores, but not by invertebrate feeders, herbivores, and surface feeders. Species composition was also significantly and persistently different between salmon pens and controls within each lake or marine locality. The patterns described above remained consistent across environment types and seasons indicating that salmon farming is changing the community structure of birds in both lake and marine habitats by promoting functional and aggregation responses, particularly by favoring species with broader niches. Such local patterns may thus anticipate potential threats from the ongoing expansion of the salmon industry to neighboring areas in Chile, resulting in regional changes of bird communities, toward a less diverse one and dominated by opportunistic, common, and generalist species such as gulls, vultures, and cormorants.

  4. The Baltic Sea - an example of how to protect marine coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Dietwart Nehring

    2001-03-01

    Full Text Available The Baltic Sea covers an area of 415 000 km2. A typical brackish sea, it is very sensitive to anthropogenic activities. Inorganic nutrients, trace metals, chlorinated hydrocarbons and crude oil products are contaminants studied in the Baltic Monitoring Programme of HELCOM. The data collected by the riparian countries forms the basis for the periodic assessments of the state of the marine environment of the Baltic Sea Area produced by HELCOM every five years. Since 1992 marine nature conservation has been part of the HELCOM convention. According to the third status report issued in 1996, it was the first time that HELCOM could strike a positive balance with regard to the decreasing environmental load. This is also reflected in lower concentrations of harmful substances in fish, marine mammals and seabirds in the Baltic Sea Area. The reasons for this progress are the protective actions initiated by HELCOM and the economic collapse in some of the former East Bloc countries, the latter resulting in an abrupt fall in industrial and agricultural production. Although the restoration of the Baltic ecosystem has only just begun, the protective measures introduced to achieve this aim can serve as an example of how to solve similar problems in other semi-enclosed basins and shelf seas.

  5. Effects of exotic fish farms on bird communities in lake and marine ecosystems

    Science.gov (United States)

    Jiménez, Jaime E.; Arriagada, Aldo M.; Fontúrbel, Francisco E.; Camus, Patricio A.; Ávila-Thieme, M. Isidora

    2013-08-01

    Salmon farming is a widespread activity around the world, also known to promote diverse environmental effects on aquatic ecosystems. However, information regarding the impact of salmon farming on bird assemblages is notably scarce. We hypothesize that salmon farming, by providing food subsidies and physical structures to birds, will change their local community structure. To test this hypothesis, we conducted a seasonal monitoring of bird richness, abundance, and composition at paired salmon pen and control plots in two marine and two lake sites in southern Chile, from fall 2002 to summer 2004. Overall, salmon farming had no significant effects on species richness, but bird abundance was significantly and noticeably higher in salmon pens than in controls. Such aggregation was mainly accounted for by the trophic guilds of omnivores, diving piscivores, carrion eaters, and perching piscivores, but not by invertebrate feeders, herbivores, and surface feeders. Species composition was also significantly and persistently different between salmon pens and controls within each lake or marine locality. The patterns described above remained consistent across environment types and seasons indicating that salmon farming is changing the community structure of birds in both lake and marine habitats by promoting functional and aggregation responses, particularly by favoring species with broader niches. Such local patterns may thus anticipate potential threats from the ongoing expansion of the salmon industry to neighboring areas in Chile, resulting in regional changes of bird communities, toward a less diverse one and dominated by opportunistic, common, and generalist species such as gulls, vultures, and cormorants.

  6. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Science.gov (United States)

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ34S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ34S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ34S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  7. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity.

    Science.gov (United States)

    Rode, Karyn D; Wilson, Ryan R; Douglas, David C; Muhlenbruch, Vanessa; Atwood, Todd C; Regehr, Eric V; Richardson, Evan S; Pilfold, Nicholas W; Derocher, Andrew E; Durner, George M; Stirling, Ian; Amstrup, Steven C; St Martin, Michelle; Pagano, Anthony M; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983-1999 and 2000-2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting

  8. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems.

    Science.gov (United States)

    Bern, Carleton R; Chadwick, Oliver A; Kendall, Carol; Pribil, Michael J

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ(34)S VCDT) of -0.8‰. Bulk deposition on the island of Maui had a δ(34)S VCDT that varied temporally, spanned a range from +8.2 to +19.7‰, and reflected isotopic mixing from three sources: sea-salt (+21.1‰), marine biogenic emissions (+15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to +2.7‰) to relatively high (+17.8 to +19.3‰) soil δ(34)S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from +8.1 to +20.3‰ and generally decreased with increasing elevation (0-2000 m), distance from the coast (0-12 km), and annual rainfall (180-5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur

  9. A new species of monorchiid digenean from marine fishes in the Southwestern Atlantic Ocean off Patagonia.

    Science.gov (United States)

    Carballo, María Cecilia; Laurenti, Sonia; Cremonte, Florencia

    2011-03-01

    Proctotrema bartolii n. sp. (Digenea: Monorchiidae) is described based on naturally and experimental obtained adults from the marine fishes Odontesthes smitti (Lahille), O. nigricans (Richardson) (Atherinopsidae) and Eleginops maclovinus (Cuvier) (Eleginopidae) off Patagonia, Argentina, in the Southwestern Atlantic Ocean. Its generic identification is based on the presence of a unipartite terminal organ with the metraterm uniting with its distal region, an unarmed genital atrium, a single testis, a vitellarium follicular lateral to the ovary and ventral sucker, and uterine coils occupying most of hindbody. The new species differs from P. bacilliovatum Odhner, 1911, P. amphitruncatum Fischthal & Thomas, 1969 and P. guptai Ahmad & Dhar, 1987 in having a smaller body (305-650 vs 1,600-3,080, 1,500-1,800 and 2,150-2,670 μm, respectively), a round vs funnel-shaped oral sucker, a smooth vs lobed ovary, a saccular rather than tubular excretory vesicle, the number of vitelline follicles (12-16 vs 8-9, 9 and 6-8, respectively), and wider eggs (25-31 × 15-20 vs 28-37 × 9-12, 24-28 × 7-10, and 24-30 × 8-10 μm, respectively). Moreover, the new species differs from P. bacilliovatum and P. amphitruncatum in having a saccular rather than a coiled seminal vesicle, and from P. bacilliovatum and P. guptai in having its tegument completely vs partly spined. Proctotrema Odhner, 1911 is considered to be restricted to these four species. This is the first report of a species of this genus from South American waters.

  10. A new marine ecosystem model for the University of Victoria Earth System Climate Model

    Directory of Open Access Journals (Sweden)

    D. P. Keller

    2012-09-01

    Full Text Available Earth System Climate Models (ESCMs are valuable tools that can be used to gain a better understanding of the climate system, global biogeochemical cycles and how anthropogenically-driven changes may affect them. Here we describe improvements made to the marine biogeochemical ecosystem component of the University of Victoria's ESCM (version 2.9. Major changes include corrections to the code and equations describing phytoplankton light limitation and zooplankton grazing, the implementation of a more realistic zooplankton growth and grazing model, and the implementation of an iron limitation scheme to constrain phytoplankton growth. The new model is evaluated after a 10 000-yr spin-up and compared to both the previous version and observations. For the majority of biogeochemical tracers and ecosystem processes the new model shows significant improvements when compared to the previous version and evaluated against observations. Many of the improvements are due to better simulation of seasonal changes in higher latitude ecosystems and the effect that this has on ocean biogeochemistry. This improved model is intended to provide a basic new ESCM model component, which can be used as is or expanded upon (i.e., the addition of new tracers, for climate change and biogeochemical cycling research.

  11. Biological modifiers of marine benthic seascapes: Their role as ecosystem engineers

    Science.gov (United States)

    Meadows, Peter S.; Meadows, Azra; Murray, John M. H.

    2012-07-01

    Benthic organisms in marine ecosystems modify the environment on different spatial and temporal scales. These modifications, many of which are initially at a microscale, are likely to have large scale effects on benthic seascapes. This is especially so if the species are ecosystem engineers. Most species of infaunal and epifaunal invertebrates and macrophytes contribute at a geophysical or geochemical level. Microorganisms also play a key but currently neglected role. In the intertidal and immediately sublittoral zone, algae and seagrasses, and mussels in mussel beds have received considerable attention. A substantial fossil record also exists. Mathematical modelling of these systems is still in its infancy, although several sophisticated mathematical tools have been applied. The effects of bioturbation and of microorganisms have been less studied, and little is known about the activities of benthic organisms in the deep sea. This paper addresses all these effects, and places them in the context of large scale benthic seascapes and of the extensive literature on species defined as ecosystem engineers in the sea.

  12. Porting marine ecosystem model spin-up using transport matrices to GPUs

    Directory of Open Access Journals (Sweden)

    E. Siewertsen

    2013-01-01

    Full Text Available We have ported an implementation of the spin-up for marine ecosystem models based on transport matrices to graphics processing units (GPUs. The original implementation was designed for distributed-memory architectures and uses the Portable, Extensible Toolkit for Scientific Computation (PETSc library that is based on the Message Passing Interface (MPI standard. The spin-up computes a steady seasonal cycle of ecosystem tracers with climatological ocean circulation data as forcing. Since the transport is linear with respect to the tracers, the resulting operator is represented by matrices. Each iteration of the spin-up involves two matrix-vector multiplications and the evaluation of the used biogeochemical model. The original code was written in C and Fortran. On the GPU, we use the Compute Unified Device Architecture (CUDA standard, a customized version of PETSc and a commercial CUDA Fortran compiler. We describe the extensions to PETSc and the modifications of the original C and Fortran codes that had to be done. Here we make use of freely available libraries for the GPU. We analyze the computational effort of the main parts of the spin-up for two exemplar ecosystem models and compare the overall computational time to those necessary on different CPUs. The results show that a consumer GPU can compete with a significant number of cluster CPUs without further code optimization.

  13. Porting marine ecosystem model spin-up using transport matrices to GPUs

    Science.gov (United States)

    Siewertsen, E.; Piwonski, J.; Slawig, T.

    2013-01-01

    We have ported an implementation of the spin-up for marine ecosystem models based on transport matrices to graphics processing units (GPUs). The original implementation was designed for distributed-memory architectures and uses the Portable, Extensible Toolkit for Scientific Computation (PETSc) library that is based on the Message Passing Interface (MPI) standard. The spin-up computes a steady seasonal cycle of ecosystem tracers with climatological ocean circulation data as forcing. Since the transport is linear with respect to the tracers, the resulting operator is represented by matrices. Each iteration of the spin-up involves two matrix-vector multiplications and the evaluation of the used biogeochemical model. The original code was written in C and Fortran. On the GPU, we use the Compute Unified Device Architecture (CUDA) standard, a customized version of PETSc and a commercial CUDA Fortran compiler. We describe the extensions to PETSc and the modifications of the original C and Fortran codes that had to be done. Here we make use of freely available libraries for the GPU. We analyze the computational effort of the main parts of the spin-up for two exemplar ecosystem models and compare the overall computational time to those necessary on different CPUs. The results show that a consumer GPU can compete with a significant number of cluster CPUs without further code optimization.

  14. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  15. Defining Boundaries for Ecosystem-Based Management: A Multispecies Case Study of Marine Connectivity across the Hawaiian Archipelago

    OpenAIRE

    Toonen, Robert J.; Kimberly R Andrews; Iliana B Baums; Bird, Christopher E.; Concepcion, Gregory T.; Daly-Engel, Toby S.; Eble, Jeff A.; Anuschka Faucci; Gaither, Michelle R.; Matthew Iacchei; Puritz, Jonathan B.; Schultz, Jennifer K.; Derek J. Skillings; Timmers, Molly A.; Brian W. Bowen

    2011-01-01

    Determining the geographic scale at which to apply ecosystem-based management (EBM) has proven to be an obstacle for many marine conservation programs. Generalizations based on geographic proximity, taxonomy, or life history characteristics provide little predictive power in determining overall patterns of connectivity, and therefore offer little in terms of delineating boundaries for marine spatial management areas. Here, we provide a case study of 27 taxonomically and ecologically diverse ...

  16. Biodiversity and key ecosystem services in agroforestry coffee systems in the Brazilian Atlantic Rainforest Biome

    NARCIS (Netherlands)

    Souza, de H.N.

    2012-01-01

    The thesis reports the results of long-term experimentation (since 1993) of family farmers with agroforestry (AF) coffee systems in the Brazilian Atlantic Rainforest region, a highly fragmented and threatened biodiversity hotspot. The farmers used native trees from forest fragments during a

  17. Tropical South-East Atlantic response to ENSO as an ecosystem ...

    African Journals Online (AJOL)

    Prior to an El Niñoinduced drought, anomalous easterly flow over the Atlantic strengthens the cold tongue extending from Angola. How these climatic conditions affect fisheries abundance in the southern Benguela was investigated. Higher anchovy Engraulis encrasicolus catches tend to follow an El Niño event, and higher ...

  18. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review.

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.

  19. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  20. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  1. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    Science.gov (United States)

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  2. Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics

    Science.gov (United States)

    Chen, Z.

    2013-12-01

    Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw

  3. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    Science.gov (United States)

    Butenschön, Momme; Clark, James; Aldridge, John N.; Icarus Allen, Julian; Artioli, Yuri; Blackford, Jeremy; Bruggeman, Jorn; Cazenave, Pierre; Ciavatta, Stefano; Kay, Susan; Lessin, Gennadi; van Leeuwen, Sonja; van der Molen, Johan; de Mora, Lee; Polimene, Luca; Sailley, Sevrine; Stephens, Nicholas; Torres, Ricardo

    2016-04-01

    The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.

  4. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  5. Coupling ecosystems exposure to nitrogen and species sensitivity to hypoxia: modelling marine eutrophication in LCIA

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    the ecosystem response (exposure) to anthropogenic N enrichment (eXposure Factor, XF [kgO2·kgN-1]) with the sensitivity of species exposed to oxygen-depleted waters (Effect Factor, EF [(PAF)·m3·kgO2-1], expressed as a Potentially Affected Fraction (PAF) of species). Thus, the coupled indicator (XF*EF, [(PAF)·m3......·kgN-1]) represents the potential impact on benthic and demersal marine species caused by N inputs. Preliminary results range from 2 (PAF)·m3·kgN-1 (Central Arctic Ocean) to 94 (PAF)·m3·kgN-1 (Baltic Sea). Comparative contributions per country or watersheds can also be obtained. Further adding...

  6. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  7. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes

    DEFF Research Database (Denmark)

    Weitz, Joshua S.; Stock, Charles A.; Wilhelm, Steven W.

    2015-01-01

    that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.The ISME Journal...

  8. Market-based instruments for the governance of coastal and marine ecosystem services : An analysis based on the Chinese case

    NARCIS (Netherlands)

    Li, Ruiqian; van den Brink, Margaretha; Woltjer, Johannes

    Scholars and policy makers have increasingly emphasized the role of market-based instruments (MBIs) for the governance of ecosystem services (ESs). Limited focus however exists on a systematic understanding of how coastal and marine governance facilitates MBIs to sustain ESs. This paper develops a

  9. Modeling the role and impact of alien species and fisheries on the Israeli marine continental shelf ecosystem

    Science.gov (United States)

    Corrales, X.; Ofir, E.; Coll, M.; Goren, M.; Edelist, D.; Heymans, J. J.; Gal, G.

    2017-06-01

    The ecosystems of the Israeli Mediterranean coast have undergone significant changes in recent decades mainly due to species invasions and fishing. In order to characterize the structure and functioning of the marine continental shelf of the Israeli Mediterranean coast and assess temporal changes, we developed a food web model representing two time periods: 1990-1994 and 2008-2012. The 1990-1994 and 2008-2012 food web models were composed of 39 and 41 functional groups, respectively. Functional groups ranged from primary producers to top predators, and included six and eight alien functional groups, respectively, encompassing several crustacean and fish species. Input data included local surveys and fishery statistics, published data on stomach content analyses, and the application of empirical equations to estimate consumption and production rates. Results of the competitive interactions between alien and native species and changes in trophic flows between food web components highlight the increasing impact of alien species over time. Fishing had noticeable impacts in both time periods and played an important role in the ecosystem. Despite different productivity rates and other environmental differences, the Israeli marine ecosystem shared common structural and functional traits with other Mediterranean marine ecosystems. This is the first attempt to study the ecosystem of the Levant region using mass-balance models and to integrate such a large amount of alien species into food web analyses.

  10. Marine spatial planning (MSP: A first step to ecosystem-based management (EBM in the Wider Caribbean

    Directory of Open Access Journals (Sweden)

    John C Ogden

    2010-10-01

    Full Text Available The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC. Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 71-79. Epub 2010 October 01.

  11. Marine spatial planning (MSP): a first step to ecosystem-based management (EBM) in the Wider Caribbean.

    Science.gov (United States)

    Ogden, John C

    2010-10-01

    The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC). Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs) which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP) holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems.

  12. 52 Million Points and Counting: A New Stratification Approach for Mapping Global Marine Ecosystems

    Science.gov (United States)

    Wright, D. J.; Sayre, R.; Breyer, S.; Butler, K. A.; VanGraafeiland, K.; Goodin, K.; Kavanaugh, M.; Costello, M. J.; Cressie, N.; Basher, Z.; Harris, P. T.; Guinotte, J. M.

    2016-12-01

    We report progress on the Ecological Marine Units (EMU) project, a new undertaking commissioned by the Group on Earth Observations (GEO) as a means of developing a standardized and practical global ecosystems classification and map for the oceans, and thus a key outcome of the GEO Biodiversity Observation Network (GEO BON). The project is one of four components of the new GI-14 GEO Ecosystems Initiative within the GEO 2016 Transitional Work plan, and for eventual use by the Global Earth Observation System of Systems (GEOSS). The project is also the follow-on to a comprehensive Ecological Land Units project (ELU), also commissioned by GEO. The EMU is comprised of a global point mesh framework, created from 52,487,233 points from the NOAA World Ocean Atlas; spatial resolution is ¼° by ¼° by varying depth; temporal resolution is currently decadal; each point has x, y, z, as well as six attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many ecosystem responses. We implemented a k-means statistical clustering of the point mesh (using the pseudo-F statistic to help determine the numbers of clusters), allowing us to identify and map 37 environmentally distinct 3D regions (candidate `ecosystems') within the water column. These units can be attributed according to their productivity, direction and velocity of currents, species abundance, global seafloor geomorphology (from Harris et al.), and much more. A series of data products for open access will share the 3D point mesh and EMU clusters at the surface, bottom, and within the water column, as well as 2D and 3D web apps for exploration of the EMUs and the original World Ocean Atlas data. Future plans include a global delineation of Ecological Coastal Units (ECU) at a much finer spatial resolution (not yet commenced), as well as global ecological freshwater ecosystems (EFUs; in earliest planning stages). We will

  13. Shifts in phenotypic plasticity constrain the value of seabirds as ecological indicators of marine ecosystems.

    Science.gov (United States)

    Grémillet, David; Charmantier, Anne

    2010-09-01

    Marine ecosystems are critically challenged by human activities, urgently calling for better management practices. It has been proposed that conspicuous top predators such as seabirds may be used as ecological indicators. This approach requires intimate knowledge of relationships connecting seabird parameters to other ecosystem components (i.e., population plasticity, underlined by individual reaction norms), information which remains scarce. Furthermore, if seabirds are to be used as long-term indicators, the strength of the average plastic response in a studied population has to be sustained through time and space. This second aspect has so far been startlingly neglected, although previous studies underline shifts in the plasticity of seabird traits and detail the tools allowing an evolutionary and ecological study of plasticity in bird populations. Building upon these advances, we argue that gradual or sudden spatiotemporal changes in seabird phenotypic plasticity should not be neglected when designing monitoring schemes. We conclude that seabirds are best used as qualitative sentinels, rather than as quantitative indicators.

  14. Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.

    Science.gov (United States)

    Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S

    2012-03-01

    Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China.

    Science.gov (United States)

    Song, Debin; Gao, Zhiqiang; Zhang, Hua; Xu, Fuxiang; Zheng, Xiangyu; Ai, Jinquan; Hu, Xiaoke; Huang, Guopei; Zhang, Haibo

    2017-08-17

    According to 2014-2016 monitoring data, an assessment index system including water quality, depositional environment and ecosystem was built to evaluate the health statue of marine ecosystem in the Laizhou Bay using analytic hierarchy process (AHP) method. The results, spatialized in ArcGIS software, show: while the comprehensive ecological health index is 0.62, the ecological environmental quality in the Laizhou Bay is in a sub-healthy state; the unhealthy area is mainly concentrated in southwestern inshore region, and impacted by serious environmental problems, such as water eutrophication and heavy metal pollution; the northwestern and southeastern inshore regions are in a sub-healthy state, while the eastern inshore and northern areas are in the healthiest state. The land-based pollutants that discharge into the sea may be the leading factors that are causing ecological environment deterioration in the Laizhou Bay, and the reclamation work ongoing around the port has exacerbated the ecological risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bioremediation in marine ecosystems: a computational study combining ecological modelling and flux balance analysis

    Directory of Open Access Journals (Sweden)

    Marianna eTaffi

    2014-09-01

    Full Text Available The pressure to search effective bioremediation methodologies for contaminated ecosystems has led to the large-scale identification of microbial species and metabolic degradation pathways. However, minor attention has been paid to the study of bioremediation in marine food webs and to the definition of integrated strategies for reducing bioaccumulation in species. We propose a novel computational framework for analysing the multiscale effects of bioremediation at the ecosystem level, based on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The combination of techniques from synthetic biology and ecological network analysis allows the specification of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or synthetic microbial strains.In this study, we derive a bioaccumulation model of polychlorinated biphenyls (PCBs in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida KT2440 (iJN746 with the aerobic pathway of PCBs degradation. We assess the effectiveness of different bioremediation scenarios in reducing PCBs concentration in species and we study indices of species centrality to measure their importance in the contaminant diffusion via feeding links.The analysis of the Adriatic sea case study suggests that our framework could represent a practical tool in the design of effective remediation strategies, providing at the same time insights into the ecological role of microbial communities within food webs.

  17. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  18. Ballast water management that adapts to climate changes and reduces harmful bio-invasions in marine eco-systems

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2015-01-01

    in marine ecosystem of changed factors in the shipping sector, for instance change of number, size, and design of vessels as well as treatment technologies of ballast water. New areas for shipping due to climate changes are also included. Our study would contribute to improve decision support tools, usable......The shipping ballast water is defined as water taken on board a ship to control trim, cargo, draught, stability and stress of the ship. Alien bio-organisms in ballast water have a range of ecological impacts, for instance reducing native bio-diversity, altering habitat and potentially the overall...... food-webs and eco-systems. Economic impacts include reductions in fisheries production and algae blooms harmful for fish farms, tourism and human health. Due to the rising temperatures of the Oceans, organisms that prefer a warm climate may take roots in marine ecosystems that were previously too cold...

  19. Nutrient reduction and climate change cause a potential shift from pelagic to benthic pathways in a eutrophic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Blenckner, T.; Stenseth, N.C.

    2012-01-01

    for the occurrence of regime shifts and the relative importance of multiple drivers, e.g., climate change, eutrophication and commercial fishing on ecosystem dynamics and trophic pathways. Using multivariate statistics and nonlinear regression on a comprehensive data set, covering abiotic factors and biotic......The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger...... large and abrupt changes, i.e., trophic cascades and ecological regime shifts, which once having occurred may prove potentially irreversible. In this study, we investigate the state and regulatory pathways of the Kattegat; a eutrophied and heavily exploited marine ecosystem, specifically testing...

  20. US-Canada Monitoring Network Reveals Biodiversity Patterns in Data-poor Marine Cobble-Boulder Habitats of the Coastal Northwest Atlantic

    Science.gov (United States)

    Wahle, R.; Hunt, H.; Tremblay, J.; Comeau, M.; Silva, A.; Rochette, R.

    2016-02-01

    In the Northeast US and Atlantic Canada a regional collaborative of marine resource agencies, academics, and fishing industry participants monitor more than 100 coastal sites with subtidal cobble-boulder habitat, a prime nursery of commercially important lobsters and crabs. The survey's prime motivation is to quantify annual recruitment of early juvenile stages of these crustaceans. Quantifying faunal abundance in subtidal cobble-boulder habitats is logistically challenging, defying trawl, core and camera. Until recently surveys of cobble habitats were solely conducted by divers using airlift suction samplers in natural cobble beds. In 2005 we developed standardized cobble-filled collectors that considerably expand the survey's reach to greater depths and offshore areas. In addition to their value in monitoring commercial crustaceans, these vessel-deployed collectors have proven to be especially useful in biodiversity studies. Here we describe patterns of species richness and abundance of decapod crustaceans and small demersal fishes colonizing 800 cobble-filled collectors deployed yearly in 2008 and 2009 at near-shore sites across the steep thermal and biogeographic gradient from Rhode Island, USA to Newfoundland, Canada to 76 m depth. At least 17 decapod and 24 fish genera were represented, including cryptic fish taxa not readily detected with other sampling gear. Species richness at shallow sites (5-10 m) was greatest in the south, but did not follow a simple latitudinal cline; rather, it correlated strongly with the complex geography of summer bottom temperature, thereby setting a baseline for climate change studies. Given the world-wide prevalence of this coastal habitat, broader monitoring will reveal new insights on biodiversity patterns and ecosystem services it provides. We seek wider collaboration with the scientific community and stakeholders toward a broader understanding of this poorly studied marine habitat.

  1. Trade‐offs between supportive and provisioning ecosystem services of forage species in marine food webs.

    Science.gov (United States)

    Essington, Timothy E; Munch, Stephen B

    Ecosystem-based management of natural resources involves an explicit consideration of trade-offs among ecosystem services. In marine fisheries, there is the potential for a trade-off between the supporting role of small pelagic fish and cephalopods in food webs, and the provisioning service they play as a major target of fisheries. Because these species play central roles in food webs by providing a conduit of energy from small prey to upper trophic level predators, we hypothesized that trade-offs between these two ecosystem services could be predicted based on energetic properties of predator–prey linkages and food-web structure. We compiled information from 27 marine food-web models (all within the Ecopath framework) that included either small pelagic fish or cephalopods, described predator–prey linkages involving these species, and developed a novel analytical framework to estimate how changes in yields of forage species would propagate through food webs and other fisheries. Consistent with expectations, diet overlap between predators and prey was generally low, and predator–prey linkages tended to be asymmetric; contribution of these species to predator diets was, on average, larger than the contribution of individual predator stocks to prey mortality. The estimated trade-offs between yields of forage fish and predator species were highly variable when we assumed joint bottom-up and top-down control on predation. Roughly one-third of this variance was related to an interactive effect of fishing and predation intensity; strong trade-offs were predicted when fishing intensity on forage species is high and when predators account for a high proportion of total forage mortality. When trophic connections were presumed to be driven by bottom-up processes, trade-offs were more predictable, but generally very small. Contrary to our expectations, trade-offs were not easily predicted from energetic properties, largely because predators of forage species exhibited a

  2. Food-web and ecosystem structure of the open-ocean and deep-sea environments of the Azores, NE Atlantic

    Directory of Open Access Journals (Sweden)

    Telmo Morato

    2016-12-01

    Full Text Available The Marine Strategy Framework Directive intends to adopt ecosystem-based management for resources, biodiversity and habitats that puts emphasis on maintaining the health of the ecosystem alongside appropriate human use of the marine environment, for the benefit of current and future generations. Within the overall framework of ecosystem-based management, ecosystem models are tools to evaluate and gain insights in ecosystem properties. The low data availability and complexity of modelling deep-water ecosystems has limited the application of ecosystem models to few deep-water ecosystems. Here, we aim to develop an ecosystem model for the deep-sea and open ocean in the Azores exclusive economic zone with the overarching objective of characterising the food-web and ecosystem structure of the ecosystem. An ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built. Overall data quality measured by the pedigree index was estimated to be higher than the mean value of all published models. Therefore, the model was built with source data of an overall reasonable quality, especially considering the normally low data availability for deep-sea ecosystems. The total biomass (excluding detritus of the modelled ecosystem for the whole area was calculated as 24.7 t km-². The mean trophic level for the total marine catch of the Azores was estimated to be 3.95, similar to the trophic level of the bathypelagic and medium-size pelagic fish. Trophic levels for the different functional groups were estimated to be similar to those obtained with stable isotopes and stomach contents analyses, with some exceptions on both ends of the trophic spectra. Omnivory indices were in general low, indicating prey speciation for the majority of the groups. Cephalopods, pelagic sharks and toothed whales were identified as groups with

  3. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, J.L.; Slater, R.D.; Toggweiler, J.R. (Princeton Univ., NJ (United States)); Fasham, M.J.R. (Institute of Oceanographic Sciences Deacon Lab., Southampton (United Kingdom)); Ducklow, H.W. (Univ. of Maryland Center for Environmental and Estuarine Sciences, Cambridge, MA (United States)); Evans, G.T. (Science Branch St. John' s, Newfoundland (Canada))

    1993-06-01

    This paper presents a modeling study as a step in an attempt to develop a single generic ecosystem model for cycling of chemicals in the ocean. This model is focused on nitrogen and consists of seven compartments describing phytoplankton, zooplankton, bacteria, nonliving dissolved nitrogen, nitrate, ammonium, and organic nitrogen. The most important conclusion of this study is that it confirms the feasibility of merging a single general ecosystem model with an ocean general circulation model, and obtaining results that are capable of reflecting the large range of biogeochemical behavior of the surface ocean. 60 refs., 26 figs., 3 tabs.

  4. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes.

    Science.gov (United States)

    Weitz, Joshua S; Stock, Charles A; Wilhelm, Steven W; Bourouiba, Lydia; Coleman, Maureen L; Buchan, Alison; Follows, Michael J; Fuhrman, Jed A; Jover, Luis F; Lennon, Jay T; Middelboe, Mathias; Sonderegger, Derek L; Suttle, Curtis A; Taylor, Bradford P; Frede Thingstad, T; Wilson, William H; Eric Wommack, K

    2015-06-01

    Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.

  5. Detection of Shallow Marine Cumulus Convection with airborne and spaceborne Lidar-Systems over the tropical North Atlantic Ocean

    Science.gov (United States)

    Gutleben, Manuel; Groß, Silke; Wirth, Martin

    2017-04-01

    Recent modeling and theoretical studies have shown that the vertical and horizontal distribution of cloudiness in the trades has a large impact on the results of cloud feedback calculations. In particular, feedbacks from marine cumulus convection in the boundary layer with maximum cloud top heights of 4 km introduce large uncertainties in climate sensitivity. Characterizing shallow marine cumulus clouds using passive satellite measurements is difficult. The small size of these clouds and the low horizontal resolution of passive satellite sensors as well as the influence of solar background noise on measurements lead to inevitable errors. Airborne lidar instruments allow measurements with high temporal and spatial resolution and are therefore suitable for the investigation of small scale shallow marine cumulus clouds. During the field campaigns NARVAL-I and -II (Next-generation Aircraft Remote-sensing for VALidation studies) in December 2013 and August 2016 over the North Atlantic Ocean measurements with the DLR high spectral resolution and differential absorption lidar system WALES onboard the German research aircraft HALO were performed. Those measurements provide the opportunity to study the horizontal and vertical distribution of shallow marine cumulus convection. Since measurements during NARVAL-I in December 2013 were conducted during the dry season and measurements during NARVAL-II in August 2016 were conducted during the wet season, they can furthermore be used to study seasonal differences in cloud size and cloud top height distributions. During both campaigns sets of A-Train underpasses were flown, that allow to examine the benefit of spaceborne lidar measurements to study shallow marine cumulus convection. In our presentation we will give an overview of the measurements and we will show first results of derived shallow marine cumulus cloud statistics over the subtropical North Atlantic Ocean. In particular, we present statistical quantities such as cloud

  6. Reduced marine survival of hatchery-reared Atlantic salmon post-smolts exposed to aluminium and moderate acidification in freshwater

    Science.gov (United States)

    Thorstad, Eva B.; Uglem, Ingebrigt; Finstad, Bengt; Kroglund, Frode; Einarsdottir, Ingibjörg Eir; Kristensen, Torstein; Diserud, Ola; Arechavala-Lopez, Pablo; Mayer, Ian; Moore, Andy; Nilsen, Rune; Björnsson, Björn Thrandur; Økland, Finn

    2013-06-01

    Short-term Al-exposure and moderate acidification increased initial marine mortality in migrating post-smolts, and can thereby reduce viability of Atlantic salmon stocks. The delayed impact of short-term aluminium (Al) exposure on hatchery-reared Atlantic salmon smolt in moderately acidified freshwater (pH 5.88-5.98) was investigated during the first 37 km of the marine migration. Smolts were tagged with acoustic tags and exposed to low (28.3 ± 4.6 μg l-1 labile Al, 90 h) or high (48.5 ± 6.4 μg l-1 labile Al, 90 or 48 h) Al concentrations within the hatchery. Thereafter their movements, together with a control group, were monitored throughout the marine fjord. Al-exposure resulted in increased gill-Al and compromised hypoosmoregulatory capacity, as shown by elevated mortality in laboratory seawater challenge tests and reduced Na+, K+-ATPase activity levels. Further, Al-exposure resulted in decreased plasma concentrations of growth hormone (GH), while the insulin-like growth factor (IGF-I) was unaffected. There was a significant mortality in the 90 h high-Al group during exposure, and those surviving until release died during the first 3.6 km of the marine migration. Physiological stress and mortality were not only a result of the Al-concentrations, but also dependent on exposure duration, as shown by results from the 48 h high-Al group. Elevated mortality was not recorded in freshwater or after entering the sea for this group, which highly contrasts to the 100% mortality in the 90 h high-Al group, despite both groups having similarly high gill-Al levels. The low-Al group showed a 20% higher mortality compared to the control group during the first 10 km of the marine migration, but during the next 28 km, mortality rates did not differ. Hence, post-smolts surviving the first 10 km subsequently showed no differences in mortality compared to controls. At least one third of the mortality in both the low-Al and control groups were due to predation by marine fishes

  7. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Mittelholzer Christian

    2009-12-01

    Full Text Available Abstract Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs for evidence of selection in local populations of Atlantic cod (Gadus morhua L. across the species distribution. Results Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. Conclusion These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of

  8. Conspecific sperm precedence is a reproductive barrier between free-spawning marine mussels in the northwest atlantic mytilus hybrid zone.

    Directory of Open Access Journals (Sweden)

    Lara K J Klibansky

    Full Text Available Reproductive isolation at the gamete stage has become a focus of speciation research because of its potential to evolve rapidly between closely related species. Conspecific sperm precedence (CSP, a type of gametic isolation, has been demonstrated in a number of taxa, both marine and terrestrial, with the potential to play an important role in speciation. Free-spawning marine invertebrates are ideal subjects for the study of CSP because of a likely central role for gametic barriers in reproductive isolation. The western Atlantic Mytilus blue mussel hybrid zone, ranging from the Atlantic Canada to eastern Maine, exhibits characteristics conducive to the study of CSP. Previous studies have shown that gametic incompatibility is incomplete, variable in strength and the genotype distribution is bimodal-dominated by the parental species, with a low frequency of hybrids. We conducted gamete crossing experiments using M. trossulus and M. edulis individuals collected from natural populations during the spring spawning season in order to detect the presence or absence of CSP within this hybrid zone. We detected CSP, defined here as a reduction in heterospecific offspring from competitive fertilizations in vitro compared to that seen in non-competitive fertilizations, in five of the twelve crosses in which conspecific crosses were detectable. This is the first finding of CSP in a naturally hybridizing population of a free-spawning marine invertebrate. Our findings support earlier predictions that CSP can promote assortative fertilization in bimodal hybrid zones, further advancing their hypothesized progression towards full speciation. Despite strong CSP numerous heterospecific fertilizations remain, reinforcing the hypothesis that compatible females are a source of hybrid offspring in mixed natural spawns.

  9. Conspecific sperm precedence is a reproductive barrier between free-spawning marine mussels in the northwest atlantic mytilus hybrid zone.

    Science.gov (United States)

    Klibansky, Lara K J; McCartney, Michael A

    2014-01-01

    Reproductive isolation at the gamete stage has become a focus of speciation research because of its potential to evolve rapidly between closely related species. Conspecific sperm precedence (CSP), a type of gametic isolation, has been demonstrated in a number of taxa, both marine and terrestrial, with the potential to play an important role in speciation. Free-spawning marine invertebrates are ideal subjects for the study of CSP because of a likely central role for gametic barriers in reproductive isolation. The western Atlantic Mytilus blue mussel hybrid zone, ranging from the Atlantic Canada to eastern Maine, exhibits characteristics conducive to the study of CSP. Previous studies have shown that gametic incompatibility is incomplete, variable in strength and the genotype distribution is bimodal-dominated by the parental species, with a low frequency of hybrids. We conducted gamete crossing experiments using M. trossulus and M. edulis individuals collected from natural populations during the spring spawning season in order to detect the presence or absence of CSP within this hybrid zone. We detected CSP, defined here as a reduction in heterospecific offspring from competitive fertilizations in vitro compared to that seen in non-competitive fertilizations, in five of the twelve crosses in which conspecific crosses were detectable. This is the first finding of CSP in a naturally hybridizing population of a free-spawning marine invertebrate. Our findings support earlier predictions that CSP can promote assortative fertilization in bimodal hybrid zones, further advancing their hypothesized progression towards full speciation. Despite strong CSP numerous heterospecific fertilizations remain, reinforcing the hypothesis that compatible females are a source of hybrid offspring in mixed natural spawns.

  10. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Nielsen, Einar E; Hemmer-Hansen, Jakob; Poulsen, Nina A; Loeschcke, Volker; Moen, Thomas; Johansen, Torild; Mittelholzer, Christian; Taranger, Geir-Lasse; Ogden, Rob; Carvalho, Gary R

    2009-12-01

    Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs) for evidence of selection in local populations of Atlantic cod (Gadus morhua L.) across the species distribution. Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of evolutionary forces in general, and for the conservation of

  11. Concepts and approaches for marine ecosystem research with reference to the tropics

    Directory of Open Access Journals (Sweden)

    Matthias Wolff

    2002-06-01

    Full Text Available The present article gives an overview on the leading concepts and modelling approaches for marine ecosystems’ research including (1 The trophodynamic theory of pelagic ecosystems, (2 Compartment/network models, (3 Mesocosm experiments and (4 Individual based modelling approaches and virtual ecosystems (VE. The main research questions addressed, as well as the potential and limits of each approach, are summarized and discussed and it is shown how the concept of ecosystem has changed over time. Aquatic biomas spectra (derived from the theory of pelagic ecosystems can give insight into the trophic structure of different systems, and can show how organism sizes are distributed within the system and how different size groups participate in the system’s metabolism and production. Compartment/network models allow for a more detailed description of the trophic structure of ecosystems and of the energy/biomass fluxes through the explicit modelling of P/B-and food consumption rates and biomasses for each system compartment. Moreover, system indices for a characterization and comparison with other systems can be obtained such as average trophic efficiency, energy throughput, and degree of connectivity, degree of maturity, and others. Recent dynamic extensions of trophic network models allow for exploring past and future impacts of fishing and environmental disturbances as well as to explore policies such as marine protected areas. Mesocosm experiments address a multitude of questions related to aquatic processes (i.e. primary production, grazing, predation, energy transfer between trophic levels etc. and the behaviour of organisms (i.e. growth, migration, response to contaminants etc. under semi-natural conditions. As processes within mesocosms often differ in rate and magnitude from those occurring in nature, mesocosms should be viewed as large in vitro experiments designed to test selected components of the ecosystem and not as an attempt to enclose

  12. Appendix B of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data. Workshop to Establish Coordination and Communication

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the second appendix to the report, the workshop participants.

  13. Appendix D of the Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data. Workshop to Establish Coordination and Communication

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. This is the fourth appendix to the report, the presentations from the workshop.

  14. Body size abundance distributions of nano- and micro-phytoplankton guilds in coastal marine ecosystems

    Science.gov (United States)

    Sabetta, Letizia; Fiocca, Annita; Margheriti, Lucia; Vignes, Fabio; Basset, Alberto; Mangoni, Olga; Carrada, Gian Carlo; Ruggieri, Nicoletta; Ianni, Carmela

    2005-06-01

    This study focuses on body size-abundance distributions of nano- and micro-phytoplankton guilds in coastal marine areas of the Southern Adriatic-Ionian region. The aim of the study was to evaluate the occurrence of common patterns of body size-abundance distributions in relation to physical, chemical and biological environmental forcing factors and to taxonomic composition of phytoplankton guilds. This paper is based on data collected during four oceanographic cruises carried out seasonally along the Southern Apulian coast (Adriatic and Ionian Seas, SE Italy) as a part of the INTERREG II Italy-Greece Program. The study was performed at 21 stations located on 7 transects perpendicular to the coastline, with 3 stations per transect at a distance of 3, 9 and 15 NM from the coastline. At each station, profiles of the major physical features of the water were determined and water samples were collected for phytoplankton and nutrient analysis. Overall, 320 nano- and micro-phytoplankton taxa were identified, 76% of which at species level, with phytoplankton cells ranging in size from 0.008 to 4697.54 ng. Body size-abundance distributions showed some common features: they were relatively invariant (average similarity 65%) with respect to taxonomic composition (average similarity 32%), right skewed (90%), leptokurtic (77%) and log normal (76%). Moreover, abiotic, biotic and spatial ecosystem components accounted for up to 75% of body size-abundance distribution variation. The results of this study suggest that body size-abundance distributions are an intrinsic property of marine phytoplankton communities, emphasising functional dependence on ecological constraints related to trophic factors and intra-guild coexistence relationships.

  15. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  16. Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts

    Science.gov (United States)

    Bănaru, D.; Mellon-Duval, C.; Roos, D.; Bigot, J.-L.; Souplet, A.; Jadaud, A.; Beaubrun, P.; Fromentin, J.-M.

    2013-02-01

    The Gulf of Lions ecosystem was described using the Ecopath mass-balance model to characterise its structure and functioning and to examine the effects of the multispecific fisheries operating in this area. The model is composed of 40 compartments, including 1 group of seabirds, 2 groups of cetaceans, 18 groups of fish, 12 groups of invertebrates, 5 groups of primary producers, detritus and discards. Input data were based on several recurrent scientific surveys, two alternative datasets for fishing data, stock assessment outputs, stomach content analyses and published information. Results showed that the functional groups were organised into five trophic levels with the highest one represented by dolphins, anglerfish, Atlantic bluefin tuna, European hake and European conger. European pilchard and European anchovy dominated in terms of fish biomass and catch. Other fish with high biomass such as Atlantic mackerel and blue whiting were highly important in the food web. Seabirds, dolphins and cuttlefish-squids represented keystone species. Important coupled pelagic-demersal-benthic interactions were described. The 7 different fisheries analysed were operating at mean trophic levels situated between 2.6 for small artisanal boats, and 4.1 for purse seines (> 24 m) targeting large pelagic fish, indicating an intensively exploited ecosystem. Large trawlers (24-40 m) had the highest impact on most of the groups considered; while purse seines (12-24 m) targeting small pelagic fish had the lowest impact. Preliminary results highlighted the importance of data sources for further ecosystem and fisheries analyses and management scenarios.

  17. Hydrodynamic Environment and Ecosystem Diversity at two Deep-Sea Marine Protected Areas in Southern Biscay

    Science.gov (United States)

    González-Pola, C.; Ivey, G. N.; Jones, N. L.; Sanchez, F.; Kelly, S. M.; Bluteau, C.; Somavilla, R.

    2016-02-01

    Two nearby offshore deep sea areas in Southern Bay of Biscay (northern Spain), hosting valuable ecosystems, have been recently declared marine protected areas. The first one is Le Danois Bank, a seamount-like feature connected to the continental shelf by a saddle. The second one is the Aviles Canyon System (ACS) that breaks the continuity of the northern Spanish continental shelf. A number of observational multidisciplinary programs carried out within the last decade allowed a detailed identification of habitats and biological communities. As a long-term goal these programs aimed to understand the ecosystem functioning as a whole with the implicit focus in associated circulation and dynamics. The observational record includes deep sea photogrametry as well as standard hydrography and long-term mooring lines. A lander system provided high-frequency currents and thermal structure tens meters above bottom together with time lapse photographs at selected sites. Different characteristic habitats from sedimentary to rocky, associated with different fisheries, were described both in Le Danois Bank and the ACS. These include sponge aggregations and deep water corals. Noteworthy structured coral reefs only appeared in a relatively small area in one of the tributaries of the ACS (La Gaviera Canyon), where local near-bottom currents were stronger than anywhere else in the region. The development and violent breaking of an internal tidal bore was the main feature of such hotspot. Analytic estimates confirmed that La Gaviera is the only canyon were large patches of the seafloor are critical or near-critical to the semidiurnal internal tide and nearby upper flanks show also large patches of critical seafloor and large body forcing. A year-long near-bottom current record captured the development of three benthic storms, events lasting several days in which currents increases up to 3-fold the tidal max speeds and direction swings rapidly, losing the uniformity of tidal regime.

  18. A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model

    Directory of Open Access Journals (Sweden)

    I. Hoteit

    2003-01-01

    Full Text Available A singular evolutive extended Kalman (SEEK filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM, while the physical forcing is described by the Princeton Ocean Model (POM. In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs. The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior. Key words. Oceanography: general (ocean prediction; numerical modelling – Oceanography: biological and chemical (ecosystems and ecology

  19. Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    DEFF Research Database (Denmark)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino

    2018-01-01

    call for continuous involvement of MCES ‘end users’, integrated knowledge on marine social–ecological systems, defining thresholds to MCES use and raising awareness to the general public. Such improvements at the intersection of science, policy and practice are essential starting points toward building...... Partnership in September 2016. The MCES assessments were used to (1) address multiple policy objectives simultaneously, (2) interpret EU-wide policies to smaller scales and (3) inform local decision-making. Most of the studies did inform decision makers, but only in a few cases, the outputs were applied...... a stronger science foundation supporting management of European marine ecosystems....

  20. Toxoplasma gondii in stranded marine mammals from the North Sea and Eastern Atlantic Ocean

    NARCIS (Netherlands)

    Velde, van de Norbert; Devleesschauwer, Brecht; Leopold, Mardik; Begeman, Lineke; IJsseldijk, Lonneke; Hiemstra, Sjoukje; IJzer, Jooske; Brownlow, Andrew; Davison, Nicholas; Haelters, Jan

    2016-01-01

    The occurrence of the zoonotic protozoan parasite Toxoplasma gondii in marine mammals remains a poorly understood phenomenon. In this study, samples from 589 marine mammal species and 34 European otters (Lutra lutra), stranded on the coasts of Scotland, Belgium, France, The Netherlands and

  1. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems.

    Directory of Open Access Journals (Sweden)

    Brittany E Alexander

    Full Text Available This study describes in vivo cell turnover (the balance between cell proliferation and cell loss in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2'-deoxyuridine (BrdU and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for Chondrosia reniformis. Apoptosis was identified using an antibody against active caspase-3. Cell loss through shedding was studied quantitatively by collecting and weighing sponge-expelled detritus and qualitatively by light microscopy of sponge tissue and detritus. All species investigated displayed substantial cell proliferation, predominantly in the choanoderm, but also in the mesohyl. The majority of coral reef species (five showed between 16.1±15.9% and 19.0±2.0% choanocyte proliferation (mean±SD after 6 h and the Mediterranean species, C. reniformis, showed 16.6±3.2% after 10 h BrdU-labeling. Monanchora arbuscula showed lower choanocyte proliferation (8.1±3.7%, whereas the mangrove species Mycale microsigmatosa showed relatively higher levels of choanocyte proliferation (70.5±6.6%. Choanocyte proliferation in Haliclona vansoesti was variable (2.8-73.1%. Apoptosis was negligible and not the primary mechanism of cell loss involved in cell turnover. All species investigated produced significant amounts of detritus (2.5-18% detritus bodyweight(-1·d(-1 and cell shedding was observed in seven out of eight species. The amount of shed cells observed in histological sections may be related to differences in residence time of detritus within canals. Detritus production could not be directly linked to cell shedding due to the degraded nature of expelled cellular debris. We have demonstrated that under steady-state conditions, cell turnover through cell proliferation and cell shedding are common processes to maintain tissue homeostasis in a variety of

  2. Cell Turnover and Detritus Production in Marine Sponges from Tropical and Temperate Benthic Ecosystems

    Science.gov (United States)

    Alexander, Brittany E.; Liebrand, Kevin; Osinga, Ronald; van der Geest, Harm G.; Admiraal, Wim; Cleutjens, Jack P. M.; Schutte, Bert; Verheyen, Fons; Ribes, Marta; van Loon, Emiel; de Goeij, Jasper M.

    2014-01-01

    This study describes in vivo cell turnover (the balance between cell proliferation and cell loss) in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2′-deoxyuridine (BrdU) and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for Chondrosia reniformis). Apoptosis was identified using an antibody against active caspase-3. Cell loss through shedding was studied quantitatively by collecting and weighing sponge-expelled detritus and qualitatively by light microscopy of sponge tissue and detritus. All species investigated displayed substantial cell proliferation, predominantly in the choanoderm, but also in the mesohyl. The majority of coral reef species (five) showed between 16.1±15.9% and 19.0±2.0% choanocyte proliferation (mean±SD) after 6 h and the Mediterranean species, C. reniformis, showed 16.6±3.2% after 10 h BrdU-labeling. Monanchora arbuscula showed lower choanocyte proliferation (8.1±3.7%), whereas the mangrove species Mycale microsigmatosa showed relatively higher levels of choanocyte proliferation (70.5±6.6%). Choanocyte proliferation in Haliclona vansoesti was variable (2.8–73.1%). Apoptosis was negligible and not the primary mechanism of cell loss involved in cell turnover. All species investigated produced significant amounts of detritus (2.5–18% detritus bodyweight−1·d−1) and cell shedding was observed in seven out of eight species. The amount of shed cells observed in histological sections may be related to differences in residence time of detritus within canals. Detritus production could not be directly linked to cell shedding due to the degraded nature of expelled cellular debris. We have demonstrated that under steady-state conditions, cell turnover through cell proliferation and cell shedding are common processes to maintain tissue homeostasis in a variety of sponge

  3. Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region

    Science.gov (United States)

    Loeb, Valerie; Hofmann, Eileen E.; Klinck, John M.; Holm-Hansen, Osmund

    2010-04-01

    The South Shetland-Elephant Island and Bransfield Strait region of the West Antarctic Peninsula is an important spawning and nursery ground of Antarctic krill ( Euphausia superba) and is an important source of krill to the Southern Ocean. Krill reproductive and recruitment success, hence supply of krill to predator populations locally and in downstream areas, are extremely variable on interannual and longer time scales. Interannual ecosystem variability in this region has long been recognized and thought related to El Niño Southern Oscillation (ENSO) events, but understanding of how has been limited by the hydrographic complexity of the region and lack of appropriate ocean-atmosphere interaction models. This study utilizes multidisciplinary data sets collected in the region from 1990 to 2004 by the U.S. Antarctic Living Marine Resources (AMLR) Program. We focus on hydrographic conditions associated with changes in the distribution, abundance and composition of salp- and copepod-dominated zooplankton assemblages during 1998 and 1999, years characterized respectively by a strong El Niño event and La Niña conditions. We provide detailed analyses of hydrographic, biological and ecological conditions during these dichotomous years in order to identify previously elusive oceanographic processes underlying ecosystem variability. We found that fluctuations between salp-dominated coastal zooplankton assemblages and copepod-dominated oceanic zooplankton assemblages result from the relative influence of Weddell Sea and oceanic waters and that these fluctuations are associated with latitudinal movement of the Southern Antarctic Circumpolar Current Front (sACCf). Latitudinal movements of the sACCf can be explained by meridional atmosphere teleconnections instigated in the western tropical Pacific Ocean by ENSO variability and are consistent with out-of-phase forcing in the South Pacific and South Atlantic Oceans by the Antarctic Dipole high-latitude climate mode. During El

  4. A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Science.gov (United States)

    Ardron, Jeff A.; Clark, Malcolm R.; Penney, Andrew J.; Hourigan, Thomas F.; Rowden, Ashley A.; Dunstan, Piers K.; Watling, Les; Shank, Timothy M.; Tracey, Di M.; Dunn, Matthew R.; Parker, Steven J.

    2014-01-01

    The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: (1) Comparatively assess potential VME indicator taxa and habitats in a region; (2) determine VME thresholds; (3) consider areas already known for their ecological importance; (4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; (5) develop predictive distribution models for VME indicator taxa and habitats; (6) compile known or likely fishing impacts; (7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); (8) identify areas of higher value to user groups; (9) conduct management strategy evaluations to produce trade-off scenarios; (10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.

  5. Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.

    Science.gov (United States)

    Caswell, Bryony A; Frid, Christopher L J

    2017-01-01

    Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.

  6. Trophic network model of exposed sandy coast: Linking continental and marine water ecosystems

    Science.gov (United States)

    Razinkovas-Baziukas, Artūras; Morkūnė, Rasa; Bacevičius, Egidijus; Gasiūnaitė, Zita Rasuolė

    2017-08-01

    A macroscopic food web network for the exposed sandy coastal zone of the south-eastern Baltic Sea was reconstructed using ECOPATH software to assess the matter and energy balance in the ecosystem. The model incorporated 40 living functional groups representing the Baltic Sea coastal system of Lithuania during the first decade of 21rst century. The overall pedigree index of our model was relatively high (0.66) as much of the input data originated from the study area. The results indicate net heterotrophy of the coastal zone due to strong influences from the nearby river - lagoon system (Curonian Lagoon). The majority of fish species and waterbirds were present in the coastal system on a seasonal basis and their migrations contributed to heterotrophic conditions. Among fish, the freshwater stragglers possibly contribute to the reversal of flow in biomass and energy from the coastal zone to the river-lagoon system. Top predators such as breeding and wintering piscivorous waterbirds and large pike-perch were identified as keystone species. There was a clear negative balance for the biomass of small marine pelagic fishes such as smelt, sprat and Baltic herring which represent the main prey items in this system.

  7. Methods for Marine Ecosystems Research through the Use of PDAs with Preservice Teachers

    Directory of Open Access Journals (Sweden)

    Antoinette Bruciati

    2005-10-01

    Full Text Available Science teachers are charged with the task of providing students in grades K-12 with opportunities that will enable them to make sense of science and develop habits of mind. One goal of science education is to prepare well-rounded citizens who are scientifically literate. Through inquiry-based learning, students formulate questions, perform investigations, and construct new understandings. It is important for preservice science teachers to be introduced to current techniques, discoveries, and debates in the field of science. The use of personal digital assistants (PDAs can provide K-12 students with increased opportunities for exploring and learning through scientific investigations. In order for these devices to be successfully integrated into classroom instruction, changes in teaching methodologies must be adopted. This paper presents a model lesson that can be used to guide preservice teachers in the use of PDAs for studying a marine ecosystem. The field experience takes place on the shoreline of Long Island Sound at Stratford Point, in Stratford Connecticut.

  8. [Effects of artificial reef construction to marine ecosystem services value: a case of Yang-Meikeng artificial reef region in Shenzhen].

    Science.gov (United States)

    Qin, Chuan-xin; Chem, Pi-mao; Jia, Xiao-ping

    2011-08-01

    Based on the researches and statistic data of Yangmeikeng artificial reef region in Shenzhen in 2008 and by the method of ecosystem services value, this paper analyzed the effects of artificial reef construction in the region on the marine ecosystem services. After the artificial reef construction, the tourism service value in the region decreased from 87% to 42%, food supply service value increased from 7% to 27%, and the services value of raw material supply, climatic regulation, air quality regulation, water quality regulation, harmful organism and disease regulation, and knowledge expansion had a slight increase, as compared to the surrounding coastal areas. The total services value per unit area of Yangmeikeng artificial reef region in 2008 was 1714.7 x 10(4) yuan x km(-2), far higher than the mean services value of coastal marine ecosystem in the surrounding areas of Shenzhen and in the world. Artificial reef construction affected and altered the structure of regional marine ecosystem services value, and improved the regional ecosystem services value, being of significance for the rational exploitation and utilization of marine resources and the successful recovery of damaged marine eco-environment and fish resources. Utilizing the method of ecosystem services value to evaluate artificial reef construction region could better elucidate the benefits of artificial reef construction, effectively promote the development of our artificial reef construction, and improve the management of marine ecosystem.

  9. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    Science.gov (United States)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  10. Toxoplasma gondii in stranded marine mammals from the North Sea and Eastern Atlantic Ocean: Findings and diagnostic difficulties.

    Science.gov (United States)

    van de Velde, Norbert; Devleesschauwer, Brecht; Leopold, Mardik; Begeman, Lineke; IJsseldijk, Lonneke; Hiemstra, Sjoukje; IJzer, Jooske; Brownlow, Andrew; Davison, Nicholas; Haelters, Jan; Jauniaux, Thierry; Siebert, Ursula; Dorny, Pierre; De Craeye, Stéphane

    2016-10-30

    The occurrence of the zoonotic protozoan parasite Toxoplasma gondii in marine mammals remains a poorly understood phenomenon. In this study, samples from 589 marine mammal species and 34 European otters (Lutra lutra), stranded on the coasts of Scotland, Belgium, France, The Netherlands and Germany, were tested for the presence of T. gondii. Brain samples were analysed by polymerase chain reaction (PCR) for detection of parasite DNA. Blood and muscle fluid samples were tested for specific antibodies using a modified agglutination test (MAT), a commercial multi-species enzyme-linked immunosorbent assay (ELISA) and an immunofluorescence assay (IFA). Out of 193 animals tested by PCR, only two harbour porpoise (Phocoena phocoena) cerebrum samples, obtained from animals stranded on the Dutch coast, tested positive. The serological results showed a wide variation depending on the test used. Using a cut-off value of 1/40 dilution in MAT, 141 out of 292 animals (41%) were positive. Using IFA, 30 out of 244 tested samples (12%) were positive at a 1/50 dilution. The commercial ELISA yielded 7% positives with a cut-off of the sample-to-positive (S/P) ratio≥50; and 12% when the cut-off was set at S/P ratio≥20. The high number of positives in MAT may be an overestimation due to the high degree of haemolysis of the samples and/or the presence of lipids. The ELISA results could be an underestimation due to the use of a multispecies conjugate. Our results confirm the presence of T. gondii in marine mammals in The Netherlands and show exposure to the parasite in both the North Sea and the Eastern Atlantic Ocean. We also highlight the limitations of the tests used to diagnose T. gondii in stranded marine mammals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    Science.gov (United States)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-11-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  12. Studies of Np and Pu in the marine environment of Swedish-Danish waters and the North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Patric [Department of Radiation Physics, Lund University Hospital, SE-221 85 Lund (Sweden) and Korea Ocean Research and Development Institute, Ansan P.O. Box 29, Seoul 425-600 (Korea, Republic of)]. E-mail: patriclindahl@yahoo.com; Roos, Per [Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark); Holm, Elis [Department of Radiation Physics, Lund University Hospital, SE-221 85 Lund (Sweden); Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark); Dahlgaard, Henning [Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2005-07-01

    The long-lived anthropogenic radionuclides {sup 237}Np, {sup 239}Pu and {sup 240}Pu were determined in marine environmental samples (seaweed and seawater) collected from Swedish-Danish waters and the North Atlantic Ocean at various locations on different occasions during the period 1991-2001. The measurements were performed with sector field Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and conventional alpha spectrometry. The {sup 237}Np activity concentrations in Fucus vesiculosus and surface seawater from the Swedish west coast and Danish waters ranged from 0.16 {+-} 0.02 to 1.02 {+-} 0.09 mBq kg{sup -1} (dry weight) and 0.65 {+-} 0.02 to 1.69 {+-} 0.02 mBq m{sup -3}, respectively, depending on the location and sampling year. Most of the {sup 237}Np in these waters is believed to originate from the Sellafield nuclear reprocessing plant, with some contribution from global fallout. The {sup 240}Pu/{sup 239}Pu atomic ratios in F. vesiculosus samples are reported in this study with an overall average of 0.17 {+-} 0.03. The {sup 237}Np and {sup 239}Pu activity concentrations observed in surface seawater collected in North Atlantic waters ranged from 0.16 {+-} 0.01 to 0.62 {+-} 0.08 mBq m{sup -3} and from 0.64 {+-} 0.05 to 4.27 {+-} 0.08 mBq m{sup -3}, respectively, and the {sup 237}Np/{sup 239}Pu atomic ratios were a good indicator of conservative behaviour of Np in marine waters.

  13. Potential role of predators on carbon dynamics of marine ecosystems as assessed by a Bayesian belief network.

    OpenAIRE

    Spiers, Elisabeth K.A.; Stafford, Richard; Ramirez, Mery; Vera Izurieta, Douglas F.; Cornejo, Mariaherminia; Chavarria, Johnny

    2016-01-01

    While the effects of climate change on top predators are well documented, the role of predation on ecosystem level carbon production is poorly developed, despite it being a logical consequence of trophic dynamics. Trophic cascade effects have shown predator mediated changes in primary production, but we predict that predators should lower the overall biomass capacity of any system with top down control. Through a simple Bayesian belief network model of a typical marine foodweb, we show that p...

  14. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  15. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  16. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  17. Interplay of multiple goods, ecosystem services, and property rights in large social-ecological marine protected areas

    Directory of Open Access Journals (Sweden)

    Natalie C. Ban

    2015-12-01

    Full Text Available Protected areas are a cornerstone of biodiversity conservation, and increasingly, conservation science is integrating ecological and social considerations in park management. Indeed, both social and ecological factors need to be considered to understand processes that lead to changes in environmental conditions. Here, we use a social-ecological systems lens to examine changes in governance through time in an extensive regional protected area network, the Great Barrier Reef Marine Park. We studied the peer-reviewed and nonpeer-reviewed literature to develop an understanding of governance of the Great Barrier Reef Marine Park and its management changes through time. In particular, we examined how interacting and changing property rights, as designated by the evolving marine protected area network and other institutional changes (e.g., fisheries management, defined multiple goods and ecosystem services and altered who could benefit from them. The rezoning of the Great Barrier Reef Marine Park in 2004 substantially altered the types and distribution of property rights and associated benefits from ecosystem goods and services. Initially, common-pool resources were enjoyed as common and private benefits at the expense of public goods (overexploited fisheries and reduced biodiversity and ecosystem health. The rezoning redefined the available goods and benefits and who could benefit, prioritizing public goods and benefits (i.e., biodiversity conservation, and inducing private costs (through reduced fishing. We also found that the original conceptualization of the step-wise progression of property rights from user to owner oversimplifies property rights based on its division into operational and collective-choice rule-making levels. Instead, we suggest that a diversity of available management tools implemented simultaneously can result in interactions that are seldom fully captured by the original conceptualization of the bundling of property rights

  18. Behavioural changes of Atlantic cod (Gadus morhua) after marine boulder reef restoration: Implications for coastal habitat management and Natura 2000 areas

    DEFF Research Database (Denmark)

    Støttrup, Josianne Gatt; Svendsen, Jon Christian; Stenberg, Claus

    2017-01-01

    While marine reefs are degraded globally, the responses of fish to marine reef restoration remain uncertain, particularly in temperate waters. This study measured the effect of marine boulder reef restoration on the behaviour of Atlantic cod, Gadus morhua L., in a Natura 2000 area using acoustic...... telemetry. Cod were tagged and released in the study area before and after the restoration and tracked continuously for six months. A larger fraction of the released fish remained in the study area after restoration (94%) than before (53%). Moreover, throughout the study period, cod spent significantly more...... hours per day and prolonged their residence time in the study area after the restoration. The study indicates that marine reefs subjected to boulder extraction can be restored and function as favourable cod habitats. Temperate marine boulder reef restoration represents a valuable management tool...

  19. Marine ecosystem acoustics (MEA): Quantifying processes in the sea at the spatio-temporal scales on which they occur

    KAUST Repository

    Godøl, Olav Rune

    2014-07-22

    Sustainable management of fisheries resources requires quantitative knowledge and understanding of species distribution, abundance, and productivity-determining processes. Conventional sampling by physical capture is inconsistent with the spatial and temporal scales on which many of these processes occur. In contrast, acoustic observations can be obtained on spatial scales from centimetres to ocean basins, and temporal scales from seconds to seasons. The concept of marine ecosystem acoustics (MEA) is founded on the basic capability of acoustics to detect, classify, and quantify organisms and biological and physical heterogeneities in the water column. Acoustics observations integrate operational technologies, platforms, and models and can generate information by taxon at the relevant scales. The gaps between single-species assessment and ecosystem-based management, as well as between fisheries oceanography and ecology, are thereby bridged. The MEA concept combines state-of-the-art acoustic technology with advanced operational capabilities and tailored modelling integrated into a flexible tool for ecosystem research and monitoring. Case studies are presented to illustrate application of the MEA concept in quantification of biophysical coupling, patchiness of organisms, predator-prey interactions, and fish stock recruitment processes. Widespread implementation of MEA will have a large impact on marine monitoring and assessment practices and it is to be hoped that they also promote and facilitate interaction among disciplines within the marine sciences.

  20. Assessing the main threats to marine ecosystem components of the Adriatic - Ionian Region for the implementation of Maritime Spatial Planning

    Science.gov (United States)

    Lipizer, Marina

    2015-04-01

    Marine and coastal ecosystems and the related benefits they provide for humans are threatened by increasing pressures and competing usages. To address these issues, in the last decade, several EU legislations have been formulated to guarantee and promote sustainable use of the sea (e.g. Common Fishery Policy, Marine Strategy Framework Directive, Maritime Spatial Planning). As a first step to implement cross-border Maritime Spatial Planning (MSP) in the Adriatic - Ionian Seas, a review of the main anthropogenic pressures due to maritime activities involving the Adriatic - Ionian Region (AIR) as well as of the most relevant environmental components has been carried out. The main objective of the analysis is to better identify the spatial distribution of human uses of the sea and of the key environmental components and the ecosystem services provided. The analysis of the existing conditions includes a description of the human activities per economic sector, considering type, location, dimension and magnitude of the activity in the AIR and the spatial extent of the main environmental and ecological values present in the AIR. The environmental status has been characterized according to the descriptors proposed by the Marine Strategy Framework Directive (MSFD Directive 2008/56/EC) and the most sensitive ecosystem components in the AIR have been pointed out. A qualitative analysis of the relationships between good environmental status descriptors sensu MSFD and ecosystem services in the AIR has been carried out to provide useful information for the implementation of MSP. Cross-border Maritime Spatial Planning is particularly needed in a semi-enclosed basin such as the Adriatic Sea, hosting very diverse human activities, ranging from fishery to tourism, sand extraction, commercial and passenger transport, oil and gas exploration and exploitation, which may partially overlap and severely threaten ecosystem functioning and the associated services.

  1. Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases.

    Science.gov (United States)

    de Moura, Jailson Fulgencio; Hauser-Davis, Rachel Ann; Lemos, Leila; Emin-Lima, Renata; Siciliano, Salvatore

    2014-01-01

    Guiana dolphins (Sotalia guianensis) are small cetaceans that inhabit coastal regions down to a 50 m depth. As a coastally distributed species, they are exposed to a variety of human-induced risks that include passive fishing nets, persistent environmental pollution, and emerging diseases. As a top predatorS. guianensis occupies an important ecological niche in marine ecosystems. However, this niche also exposes this dolphin to extensive biomagnification of marine contaminants that may accumulate and be stored throughout their life of about 30 years.In this paper, we have compiled available data on the Guiana dolphin as regards its exposure to chemical pollutants, pathogenic microbes, infectious diseases, and injuries caused by interactions with passive fishing gears. Our analysis of the data shows that Guiana dolphins are particularly sensitive to environmental changes.Although the major mortal threat to dolphins results from contact with fishing other human-related activities in coastal zones also pose risks and need more attention.Such human-related risks include the presence of persistent toxicants in the marine environment, such as PCBs and PBDEs. Residues of these chemicals have been detected in Guiana dolphin's tissues at similar or higher levels that exist in cetaceans from other known polluted areas. Another risk encountered by this species is the non lethal injuries caused by fishing gear. Several incidents of this sort have occurred along the Brazilian coast with this species. When injuries are produced by interaction with fishing gear, the dorsal fin is the part of the dolphin anatomy that is more affected, commonly causing severe laceration or even total loss.The Guiana dolphins also face risks from infectious diseases. The major ones thus far identified include giardiasis, lobomycosis, toxoplasmosis, skin and skeletal lesions. Many bacterial pathogens from the family Aeromonadaceae and Vibrionaceae have been isolated from Guiana dolphins. Several

  2. Defining Boundaries for Ecosystem-Based Management: A Multispecies Case Study of Marine Connectivity across the Hawaiian Archipelago

    Directory of Open Access Journals (Sweden)

    Robert J. Toonen

    2011-01-01

    Full Text Available Determining the geographic scale at which to apply ecosystem-based management (EBM has proven to be an obstacle for many marine conservation programs. Generalizations based on geographic proximity, taxonomy, or life history characteristics provide little predictive power in determining overall patterns of connectivity, and therefore offer little in terms of delineating boundaries for marine spatial management areas. Here, we provide a case study of 27 taxonomically and ecologically diverse species (including reef fishes, marine mammals, gastropods, echinoderms, cnidarians, crustaceans, and an elasmobranch that reveal four concordant barriers to dispersal within the Hawaiian Archipelago which are not detected in single-species exemplar studies. We contend that this multispecies approach to determine concordant patterns of connectivity is an objective and logical way in which to define the minimum number of management units and that EBM in the Hawaiian Archipelago requires at least five spatially managed regions.

  3. Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species

    Science.gov (United States)

    Harwood, L. A.; Smith, T. G.; George, J. C.; Sandstrom, S. J.; Walkusz, W.; Divoky, G. J.

    2015-08-01

    Studies of the body condition of five marine vertebrate predators in the Beaufort Sea, conducted independently during the past 2-4 decades, suggest each has been affected by biophysical changes in the marine ecosystem. We summarize a temporal trend of increasing body condition in two species (bowhead whale subadults, Arctic char), in both cases influenced by the extent and persistence of annual sea ice. Three other species (ringed seal, beluga, black guillemot chicks), consumers with a dietary preference for Arctic cod, experienced declines in condition, growth and/or production during the same time period. The proximate causes of these observed changes remain unknown, but may reflect an upward trend in secondary productivity, and a concurrent downward trend in the availability of forage fishes, such as the preferred Arctic cod. To further our understanding of these apparent ecosystem shifts, we urge the use of multiple marine vertebrate species in the design of biophysical sampling studies to identify causes of these changes. Continued long-term, standardized monitoring of vertebrate body condition should be paired with concurrent direct (stomach contents) or indirect (isotopes, fatty acids) monitoring of diet, detailed study of movements and seasonal ranges to establish and refine baselines, and identification of critical habitats of the marine vertebrates being monitored. This would be coordinated with biophysical and oceanographic sampling, at spatial and temporal scales, and geographic locations, that are relevant to the home range, critical habitats and prey of the vertebrate indicator species showing changes in condition and related parameters.

  4. Responses of leaf processing to impacts in streams in Atlantic rain forest, Rio de Janeiro, Brazil--a test of the biodiversity-ecosystem functioning relationship?

    Science.gov (United States)

    Moulton, T P; Magalhães, S A P

    2003-02-01

    The relationship between biodiversity and ecosystem functioning has been intensely debated and researched in recent times. It is generally agreed that there is redundancy of species in ecosystems such that loss of species does not necessarily result in change in the functioning of the ecosystem in which they occur. However the state of our knowledge does not allow prediction of sensitivity or specificity of this relationship for any particular ecosystem. A widely-held opinion is that ecosystem functioning is relatively stable to environmental impact, whereas biodiversity is more sensitive. We tested this in streams of the Atlantic forest using leaf decomposition as an aspect of ecosystem functioning and measuring the diversity of the associated fauna. In lightly impacted streams of the urban park Parque Estadual da Pedra Branca, RJ, leaf processing rate of a hard-leaf species, Myrcia rostrata (Myrtaceae) was more than 50% slower than in "intact" streams at the biological reserve of Ilha Grande, RJ. Taxon diversity of fauna of the leaves was not significantly lower in the impacted than the intact streams. We construe this as preliminary evidence contrary to the notion that ecosystem functioning is less sensitive than biodiversity to impacts in this system.

  5. Responses of leaf processing to impacts in streams in Atlantic rain Forest, Rio de Janeiro, Brazil - a test of the biodiversity-ecosystem functioning relationship?

    Directory of Open Access Journals (Sweden)

    Moulton T. P.

    2003-01-01

    Full Text Available The relationship between biodiversity and ecosystem functioning has been intensely debated and researched in recent times. It is generally agreed that there is redundancy of species in ecosystems such that loss of species does not necessarily result in change in the functioning of the ecosystem in which they occur. However the state of our knowledge does not allow prediction of sensitivity or specificity of this relationship for any particular ecosystem. A widely-held opinion is that ecosystem functioning is relatively stable to environmental impact, whereas biodiversity is more sensitive. We tested this in streams of the Atlantic forest using leaf decomposition as an aspect of ecosystem functioning and measuring the diversity of the associated fauna. In lightly impacted streams of the urban park Parque Estadual da Pedra Branca, RJ, leaf processing rate of a hard-leaf species, Myrcia rostrata (Myrtaceae was more than 50% slower than in "intact" streams at the biological reserve of Ilha Grande, RJ. Taxon diversity of fauna of the leaves was not significantly lower in the impacted than the intact streams. We construe this as preliminary evidence contrary to the notion that ecosystem functioning is less sensitive than biodiversity to impacts in this system.

  6. Tales from a thousand and one ways to integrate marine ecosystem components when assessing the environmental status

    Directory of Open Access Journals (Sweden)

    Angel eBorja

    2014-12-01

    Full Text Available Assessing the environmental status of marine ecosystems is useful when communicating key messages to policymakers or the society, reducing the complex information of the multiple ecosystem and biodiversity components and their important spatial and temporal variability into manageable units. Taking into account the ecosystem components to be addressed (e.g. biological, chemical, physical, the numerous biodiversity elements to be assessed (e.g. from microbes to sea mammals, the different indicators needed to be studied (e.g. in Europe, 56 indicators of status have been selected, and the different assessment scales to be undertaken (e.g. from local to regional sea scale, some criteria to define spatial scales and some guidance on aggregating and integrating information is needed. We have reviewed, from ecological and management perspectives, the approaches for aggregating and integrating currently available for marine status assessment in Europe and other regions of the world. Advantages and shortcomings of the different alternatives are highlighted. We provide some guidance on the steps towards defining rules for aggregation and integration of information at multiple levels of ecosystem organization, providing recommendations on when using specific rules in the assessment. A main conclusion is that any integration principle used should be ecologically-relevant, transparent and well documented, in order to make it comparable across different geographic regions.

  7. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    several months after the mixing event, together with anoxic stress conditions, additionally influence already stressed ecosystem, hence shifting the community structure and food/web interactions in this marine system.

  8. Development of a decision support system to manage contamination in marine ecosystems.

    Science.gov (United States)

    Dagnino, A; Viarengo, A

    2014-01-01

    In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of

  9. How can we quantify impacts of contaminants in marine ecosystems? The ICON project

    NARCIS (Netherlands)

    Hylland, K.; Burgeot, T.; Martínez-Gómez, C.; Lang, T.; Robinson, C.D.; Svavarsson, J.; Thain, J.E.; Vethaak, A.D.; Gubbins, M.J.

    2017-01-01

    An international workshop on marine integrated contaminant monitoring (ICON) was organised to test a framework on integrated environmental assessment and simultaneously assess the status of selected European marine areas. Biota and sediment were sampled in selected estuarine, inshore and offshore

  10. Towards ecosystem based management and monitoring of the deep Mediterranean, North-East Atlantic and Beyond

    Science.gov (United States)

    Grehan, Anthony J.; Arnaud-Haond, Sophie; D'Onghia, Gianfranco; Savini, Alessandra; Yesson, Chris

    2017-11-01

    The deep sea covers 65% of the earth's surface and 95% of the biosphere but only a very small fraction (less than 0.0001%) of this has been explored (Rogers et al., 2015; Taylor and Roterman, 2017). However, current knowledge indicates that the deep ocean is characterized by a high level of biodiversity and by the presence of important biological and non-renewable resources. As well as vast flat and muddy plains, the topography of the deep ocean contains a variety of complex and heterogeneous seafloor features, such as canyons, seamounts, cold seeps, hydrothermal vents and biogenic (deep-water coral) reefs and sponge bioherms that harbour an unquantified and diverse array of organisms. The deep sea, despite its remoteness, provides a variety of supporting, provisioning, regulating and cultural, ecosystem goods and services (Thurber et al., 2014). The recent push for 'Blue Growth', to unlock the potential of seas and oceans (European Commission, 2017) has increased the focus on the potential to exploit resources in the deep-sea and consequently the need for improved management (Thurber et al., 2014).

  11. Female philopatry in coastal basins and male dispersion across the North Atlantic in a highly mobile marine species, the sperm whale (Physeter macrocephalus).

    Science.gov (United States)

    Engelhaupt, Daniel; Hoelzel, A Rus; Nicholson, Colin; Frantzis, Alexandros; Mesnick, Sarah; Gero, Shane; Whitehead, Hal; Rendell, Luke; Miller, Patrick; De Stefanis, Renaud; Cañadas, Ana; Airoldi, Sabina; Mignucci-Giannoni, Antonio A

    2009-10-01

    The mechanisms that determine population structure in highly mobile marine species are poorly understood, but useful towards understanding the evolution of diversity, and essential for effective conservation and management. In this study, we compare putative sperm whale populations located in the Gulf of Mexico, western North Atlantic, Mediterranean Sea and North Sea using mtDNA control region sequence data and 16 polymorphic microsatellite loci. The Gulf of Mexico, western North Atlantic and North Sea populations each possessed similar low levels of haplotype and nucleotide diversity at the mtDNA locus, while the Mediterranean Sea population showed no detectable mtDNA diversity. Mitochondrial DNA results showed significant differentiation between all populations, while microsatellites showed significant differentiation only for comparisons with the Mediterranean Sea, and at a much lower level than seen for mtDNA. Samples from either side of the North Atlantic in coastal waters showed no differentiation for mtDNA, while North Atlantic samples from just outside the Gulf of Mexico (the western North Atlantic sample) were highly differentiated from samples within the Gulf at this locus. Our analyses indicate a previously unknown fidelity of females to coastal basins either side of the North Atlantic, and suggest the movement of males among these populations for breeding.

  12. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    Science.gov (United States)

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  13. The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

    Science.gov (United States)

    Ianora, Adrianna; Bentley, Matthew G.; Caldwell, Gary S.; Casotti, Raffaella; Cembella, Allan D.; Engström-Öst, Jonna; Halsband, Claudia; Sonnenschein, Eva; Legrand, Catherine; Llewellyn, Carole A.; Paldavičienë, Aistë; Pilkaityte, Renata; Pohnert, Georg; Razinkovas, Arturas; Romano, Giovanna; Tillmann, Urban; Vaiciute, Diana

    2011-01-01

    Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality. PMID:22131962

  14. The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

    Directory of Open Access Journals (Sweden)

    Urban Tillmann

    2011-09-01

    Full Text Available Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds, and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs of diatoms. Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP in prymnesiophytes. Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.

  15. Marine Ecosystem Response to Rapid Climate Warming on the West Antarctic Peninsula (Invited)

    Science.gov (United States)

    Ducklow, H.; Baker, K. S.; Doney, S. C.; Fraser, B.; Martinson, D. G.; Meredith, M. P.; Montes-Hugo, M. A.; Sailley, S.; Schofield, O.; Sherrell, R. M.; Stammerjohn, S. E.; Steinberg, D. K.

    2010-12-01

    The Palmer, Antarctica LTER builds on meteorological, ocean color and seabird observations since the late 1970s. It occupies annually in summer a regional-scale grid extending 700 km northward from Charcot Island to Anvers Island, and 200 km cross-shelf from the coast to the shelfbreak. In addition to routine CTD profiles and zooplankton tows throughout the grid, the observing system also includes Slocum Glider surveys and thermistor moorings. Geophysical changes include +6C atmospheric warming in winter since 1950, a 20% increase in heat content over the continental shelf since 1990, a surface ocean warming of +1C since 1950, an 83-day reduction in sea ice duration (advance 48 days later, retreat 35 days earlier) over the greater southern Bellingshausen Sea region from 1979-2007, intensification of westerly winds and differential changes in cloudiness. In response to these large changes in the regional climate, the marine ecosystem of the western Peninsula is changing at all trophic levels from diatoms to penguins. Ocean color indicates differential changes in phytoplankton stocks in response to regional decreases in sea ice cover. Surface chlorophyll has declined 89% in the north and increased 67% in the south. Antarctic krill and salps have declined and increased in our study area, respectively. Penguin diet sampling suggests changes in populations or distributions of the Antarctic Silverfish in the Anvers Island vicinity, possibly in response to ocean warming. Adélie penguins have declined 75% from 15000 to <3000 pairs at since 1975 in response to changes in food availability and increased late spring snow accumulation. Changes in pygoscelid penguin breeding populations in the Anvers Island vicinity of the West Antarctic Peninsula

  16. Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?

    Directory of Open Access Journals (Sweden)

    Scott Bennett

    2017-09-01

    Full Text Available Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE. Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.

  17. Enabling the Integrated Assessment of Large Marine Ecosystems: Informatics to the Forefront of Science-Based Decision Support

    Science.gov (United States)

    Di Stefano, M.; Fox, P. A.; Beaulieu, S. E.; Maffei, A. R.; West, P.; Hare, J. A.

    2012-12-01

    Integrated assessments of large marine ecosystems require the understanding of interactions between environmental, ecological, and socio-economic factors that affect production and utilization of marine natural resources. Assessing the functioning of complex coupled natural-human systems calls for collaboration between natural and social scientists across disciplinary and national boundaries. We are developing a platform to implement and sustain informatics solutions for these applications, providing interoperability among very diverse and heterogeneous data and information sources, as well as multi-disciplinary organizations and people. We have partnered with NOAA NMFS scientists to facilitate the deployment of an integrated ecosystem approach to management in the Northeast U.S. (NES) and California Current Large Marine Ecosystems (LMEs). Our platform will facilitate the collaboration and knowledge sharing among NMFS natural and social scientists, promoting community participation in integrating data, models, and knowledge. Here, we present collaborative software tools developed to aid the production of the Ecosystem Status Report (ESR) for the NES LME. The ESR addresses the D-P-S portion of the DPSIR (Driver-Pressure-State-Impact-Response) management framework: reporting data, indicators, and information products for climate drivers, physical and human (fisheries) pressures, and ecosystem state (primary and secondary production and higher trophic levels). We are developing our tools in open-source software, with the main tool based on a web application capable of providing the ability to work on multiple data types from a variety of sources, providing an effective way to share the source code used to generate data products and associated metadata as well as track workflow provenance to allow in the reproducibility of a data product. Our platform retrieves data, conducts standard analyses, reports data quality and other standardized metadata, provides iterative

  18. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    Directory of Open Access Journals (Sweden)

    Marie Savina

    Full Text Available We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia. The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure, and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives.

  19. Coastal Residents Ocean Literacy about Seawater Desalination and its Impacts on Marine Ecosystems in the Monterey Bay

    Science.gov (United States)

    Faraola, S.; Heck, N.; Mirza Ordshahi, B.; Paytan, A.; Petersen, K. L.; Haddad, B.; Potts, D. C.

    2016-12-01

    The current lack of available freshwater in California has brought about the consideration of utilizing seawater desalination to provide a consistent drinking water source for local residents of coastal areas. Public literacy about this technology and its impacts on the ocean is vital to making informed policy decisions about marine resources and ecosystems, which may empower local communities to become more involved stewards of the ocean. Our study evaluates public literacy about seawater desalination and its impacts on the ocean. Data was collected using a questionnaire-based survey from a randomly selected sample of residents and marine stakeholders in coastal communities around Monterey Bay. The study explored (1) self-assessed and accurate knowledge about marine impacts from seawater desalination and (2) what shapes public literacy concerning pertinent ocean issues in communities near a National Marine Sanctuary. Our findings show to what extent the public is prepared to engage in meaningful discussions about marine issues and seawater desalination and if an understanding of the ocean shapes perceptions on saltwater desalination.

  20. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake.

    Science.gov (United States)

    Cruz-Rivera, Edwin; Malaquias, Manuel António E

    2016-01-01

    The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt), a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy) and molecular methods (COI gene phylogeny). Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown.

  1. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake.

    Directory of Open Access Journals (Sweden)

    Edwin Cruz-Rivera

    Full Text Available The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt, a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy and molecular methods (COI gene phylogeny. Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown.

  2. Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N.

    Science.gov (United States)

    Weiss, Christian; Weiss, Joanna; Boy, Jens; Iskandar, Issi; Mikutta, Robert; Guggenberger, Georg

    2016-07-01

    Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271-572 Mg ha(-1) m(-1)) were much higher than under estuarine mangroves (100-315 Mg ha(-1) m(-1)) with a further decrease caused by degradation to 80-132 Mg ha(-1) m(-1). Soils differed in C/N ratio (marine: 29-64; estuarine: 9-28), δ (15)N (marine: -0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3-6.3 mg kg(-1); estuarine: 0.16-1.8 mg kg(-1)). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.

  3. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management

    Directory of Open Access Journals (Sweden)

    M. SALOMIDI

    2012-02-01

    Full Text Available The goal of ecosystem-based marine spatial management is to maintain marine ecosystems in a healthy, productive and resilient condition; hence, they can sustainably provide the needed goods and services for human welfare. However, the increasing pressures upon the marine realm threaten marine ecosystems, especially seabed biotopes, and thus a well-planned approach of managing use of marine space is essential to achieve sustainability. The relative value of seabed biotopes, evaluated on the basis of goods and services, is an important starting point for the spatial management of marine areas. Herein, 56 types of European seabed biotopes and their related goods, services, sensitivity issues, and conservation status were compiled, the latter referring to management and protection tools which currently apply for these biotopes at European or international level. Fishing activities, especially by benthic trawls, and marine pollution are the main threats to European seabed biotopes. Increased seawater turbidity, dredged sediment disposal, coastal constructions, biological invasions, mining, extraction of raw materials, shipping-related activities, tourism, hydrocarbon exploration, and even some practices of scientific research, also exert substantial pressure. Although some first steps have been taken to protect the European sea beds through international agreements and European and national legislation, a finer scale of classification and assessment of marine biotopes is considered crucial in shaping sound priorities and management guidelines towards the effective conservation and sustainability of European marine resources.

  4. Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile

    Science.gov (United States)

    Friedlander, Alan M.; Ballesteros, Enric; Beets, Jim; Berkenpas, Eric; Gaymer, Carlos F.; Gorny, Matthias; Sala, Enric

    2013-01-01

    1. An expedition to Salas y Gómez and Easter islands was conducted to develop a comprehensive baseline of the nearshore marine ecosystem, to survey seamounts of the recently created Motu Motiro Hiva Marine Park (MMHMP) – a no-take marine reserve of 150 000 km2 – and to compare these results with Easter Island where the marine ecosystem is similar but has no marine protection. 2. Live coral cover was surprisingly high at both Easter Island (53%) and Salas y Gómez (44%), especially considering their sub-tropical location, high wave energy environments, and geographic isolation. 3. Endemic and regionally-endemic species comprised 77% of the fish abundance at Easter Island and 73% at Salas y Gómez. Fish biomass at Salas y Gómez was relatively high (1.2 t ha-1) and included a large proportion of apex predators (43%), whereas at Easter Island it was almost three times lower (0.45 t ha-1) with large predators accounting for less than 2% of the biomass, despite good habitat quality. 4. The large cohort of small sharks and the absence of larger sharks at Salas y Gómez suggest mesopredator release consistent with recent shark fishing. The fish fauna at the seamounts between Easter Island and Salas y Gómez, outside of MMHMP, harboured 46% endemic species, including a new species of damselfish (Chromis sp. nov.) and probably a new species of Chimaera (Hydrolagus). Numerous seamounts adjacent to Salas y Gómez are currently not included in the MMHMP. 5. This expedition highlights the high biodiversity value of this remote part of the Pacific owing to the uniqueness (endemicity) of the fauna, large apex predator biomass, and geographic isolation.

  5. The status of marine biodiversity in the Eastern Central Atlantic (West and Central Africa)

    DEFF Research Database (Denmark)

    Polidoro, Beth A.; Ralph, Gina M.; Strongin, Kyle

    2017-01-01

    Concern, and 15% are Data Deficient. Fisheries and overharvesting are the biggest threats to living marine resources in the ECA, with 87% of threatened species across all taxonomic groups affected by both large- and small-scale targeted fisheries, excessive capture as by-catch, or unsustainable harvest...... training, and improved reporting of fisheries catch and effort....

  6. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology

    Directory of Open Access Journals (Sweden)

    Millard Andrew D

    2010-10-01

    Full Text Available Abstract From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.

  7. Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands

    Science.gov (United States)

    Rogers, C.S.; Beets, J.

    2001-01-01

    The large number of marine protected areas (MPAs) in the Caribbean (over 100) gives a misleading impression of the amount of protection the reefs and other marine resources in this region are receiving. This review synthesizes information on marine resources in two of the first MPAs established in the USA, namely Virgin Islands National Park (1962) and Buck Island Reef National Monument (1961), and provides compelling evidence that greater protection is needed, based on data from some of the longest running research projects on coral reefs, reef fish assemblages, and seagrass beds for the Caribbean. Most of the stresses affecting marine resources throughout the Caribbean (e.g. damage from boats, hurricanes and coral diseases) are also causing deterioration in these MPAs. Living coral cover has decreased and macroalgal cover has increased. Seagrass densities have decreased because of storms and anchor damage. Intensive fishing in the US Virgin Islands has caused loss of spawning aggregations and decreases in mean fish size and abundance. Groupers and snappers are far less abundant and herbivorous fishes comprise a greater proportion of samples than in the 1960s. Effects of intensive fishing are evident even within MPA boundaries. Although only traditional fishing with traps of 'conventional design' is allowed, commercial trap fishing is occurring. Visual samples of fishes inside and outside Virgin Islands National 'Park showed no significant differences in number of species, biomass, or mean size of fishes. Similarly, the number of fishes per trap was statistically similar inside and outside park waters. These MPAs have not been effective because an unprecedented combination of natural and human factors is assaulting the resources, some of the greatest damage is from stresses outside the control of park managers (e.g. hurricanes), and enforcement of the few regulations has been limited. Fully functioning MPAs which prohibit fishing and other extractive uses (e.g. no

  8. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain

    Science.gov (United States)

    Habib, D.; Miller, J.A.

    1989-01-01

    Palynological evidence is used to date and interpret depositional environments of sediments of Campanian, Maestrichtian and early Danian ages cored in three wells from South Carolina and Georgia. The evidence is usefil for distinguishing environments which lithofacies evidence indicates a range from nonmarine to coastal to inner neritic shallow shelf. Numerous dinoflagellate species and an organic facies defined abundant amoprphous debris (amorphous debris facies) distinguish shallow shelf sediments deposited during marine transgression. The nearshore amorphous debris facies of late Campanian age consists of heterogenous assemblages dominated by Palaeohystrichophora infusorioides Deflandre or Hystrichosphaerina varians (May). The farther offshore amorphous debris facies of late early Maestrichtian to late Maestrichtian age consists of heterogenous assemblages dominated by Glaphyrocysta retiintexta (Cookson) and/or Areoligera medusettiformis (Wetzel). The larger number of dinoflagellate species in the offshore facies represents the maximum transgression detected in the investigated interval. A multiple occurrence datum defined by the combination of first appearance, klast appearances and sole occurrence of dinoflagellate species at the base of each interval distinguished by the amorphous debris facies provides the first evidence of marine transgression. Relatively small organic residues consisting of intertinite and few or no palynomorphs define the inertinite facies in nonmarine deltaic and in coastal (lagoonal, tidal flat, interdistributary bary) sediments. Dinocyt{star, open}s are absent in the nonmarine sediments and are represented by few species and few specimens in the coastal inertinite faceis. A third organic facies (vascular tissue facies) is defined by the abundance of land plant tissue. Sporomorph species, including those of the Normapolles pollen group and of pteridophyte spores, comprise a large proportion of the total palynomorph flora in the

  9. Importance of spatial factors and temporal scales in environmental risk assessment in marine ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Grebenkov, A.; Linkov, I.; Andrizhievski, A.; Lukashevich, A.; Trifonov, A. [Joint Institute of Power and Nuclear Research, IPEP, 220109, Minsk, (Belarus)

    2004-07-01

    Coastal areas adjacent to the Black Sea, particularly in Crimea, have suffered from inappropriate human activities, poorly regulated industry and former naval bases. Industrial and municipal wastewater pollutants draining into the three major European rivers (the Danube, Dniestr, and Dnieper) and dumping in the open sea result in an enormous increase in contamination level of ecosystems of the Black Sea. In spite of this, Crimea and its adjacent waters is still a globally important center of biological diversity, with an enormous and exciting range of habitats within a comparatively small area. The problem now is to evaluate economically feasible remediation and ecologically sustainable cleanup/reuse alternatives for the most contaminated sites of this area. One of the principal methodological components of such evaluation is a risk-based decision protocol that provides support in analysis of ecological value and reuse options for a chosen site. This paper presents the results of development of a spatially explicit risk assessment technique to be implemented as a part of the decision-making process and gives an example of its application to contaminated marine ecosystems. The model is suggested that takes into account several principal assumptions: (i) spatial heterogeneity of contamination of forage is known and mapped within known location of receptor's habitat, and (ii) the receptor movement and timescale are determined by location, volume and attractiveness of local habitat and forage resources. This implies two models: Spatially Explicit Exposure Assessment Model that calculates internal exposure resulting from ingestion of contaminated feeds, and Probabilistic Receptor Migration Model that generates motivation of behaviour of a receptor while feeding. In the first model, time-dependent accumulation of contamination in receptor tissue is defined by the differential balance equation that takes into account forage consumption rate and excretion rate. In the

  10. Marine debris ingestion by the South American Fur Seal from the Southwest Atlantic Ocean.

    Science.gov (United States)

    Denuncio, Pablo; Mandiola, María Agustina; Pérez Salles, Sofía Belén; Machado, Rodrigo; Ott, Paulo H; De Oliveira, Larissa Rosa; Rodriguez, Diego

    2017-09-15

    In this paper, we examined the ingestion of marine debris (MD) in South American fur seals (SAFS), Arctocephalus australis, found dead in coastal beaches of northern Argentina and southern Brazil. Seven percent of 133 SAFS analyzed presented marine debris in their stomach (n=10), with no differences between sampling countries (Brazil n=7, Argentina n=3) and sexes (female=3; male=6). However, significant differences were observed between ages classes, with MD exclusively present in stomach contents of young specimens. Plastics represents 90% of MD ingested by the SAFS, whereas regarding the source, fishery-related items (e.g. monofilament lines) were the main MD (70%), with a lesser proportion of packaging (e.g. pieces of bags). Low numbers but large size pieces of MD were found in each stomach affected. Negative effects on the individuals could not be fully evaluated. Therefore, the potential impacts of the marine debris to the SAFS deserve further elucidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic.

    Directory of Open Access Journals (Sweden)

    Jonatas H F Prado

    Full Text Available Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574, South American fur seal, (n = 3,419, South American sea lion (n = 2,049, bottlenose dolphins (n = 293 and subantarctic fur seal (n = 219 were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal and warm-water (e.g. rough-toothed dolphin species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to

  12. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic

    Science.gov (United States)

    Prado, Jonatas H. F.; Mattos, Paulo H.; Silva, Kleber G.; Secchi, Eduardo R.

    2016-01-01

    Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change

  13. Properties of cloud condensation nuclei (CCN in the trade wind marine boundary layer of the western North Atlantic

    Directory of Open Access Journals (Sweden)

    T. B. Kristensen

    2016-03-01

    Full Text Available Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June–July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM in combination with energy-dispersive X-ray spectroscopy (EDX. During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.

  14. The Idea and Concept of Metos3D: A Marine Ecosystem Toolkit for Optimization and Simulation in 3D

    CERN Document Server

    Piwonski, Jaroslaw

    2014-01-01

    The simulation and parameter optimization of coupled ocean circulation and ecosystem models in three space dimensions is one of the most challenging tasks in numerical climate research. Here we present a scientific toolkit that aims at supporting researchers by defining clear coupling interfaces, providing state-of-the-art numerical methods for simulation, parallelization and optimization while using only freely available and (to a great extend) platform-independent software. Besides defining a user-friendly coupling interface (API) for marine ecosystem or biogeochemical models, we heavily rely on the Portable, Extensible Toolkit for Scientific computation (PETSc) developed at Argonne Nat. Lab. for a wide variety of parallel linear and non-linear solvers and optimizers. We specifically focus on the usage of matrix-free Newton-Krylov methods for the fast computation of steady periodic solutions, and make use of the Transport Matrix Method (TMM) introduced by Khatiwala et al.

  15. A marine eutrophication impacts assessment method in LCIA coupling coastal ecosystems exposure to nitrogen and species sensitivity to hypoxia

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) aims at quantifying potential impacts of anthropogenic emissions. It delivers substance-specific Characterisation Factors (CF) expressing ecosystem responses to marginal increments in emitted quantities. Nitrogen (N) emissions from e...... biological processes of ecosystem’s N exposure (Exposure Factor, XF) with the sensitivity of select species to hypoxia (Effect Factor, EF). The XF converts N-inputs into a sinking carbon flux from planktonic primary production and DO consumed by bacterial respiration in bottom waters, whereas EF builds...... on probabilistic Species Sensitivity Distribution (SSD) methodologies to quantify potential species losses from hypoxia. Results show 2 orders of magnitude global spatial differentiation on a Large Marine Ecosystems (LME) spatial resolution. Adding an N-fate model completes CFs for anthropogenic N-forms, thus...

  16. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    Science.gov (United States)

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  17. Evaluation of mangrove ecosystem service functions of Ximen Island Marine Specially Protected Areas in Yueqing Bay, China

    Science.gov (United States)

    Wang, D. G.; Sun, L.; Tan, Y. H.; Shi, A. Q.; Cheng, J.

    2017-08-01

    Taking the mangrove ecosystem of Ximen Island National Marine Specially Protected Areas as the research object, the ecological service value of the mangrove forest was evaluated and analyzed using a market value method, an ecological value method and a carbon tax method. The results showed that the ecosystem service value of the mangrove forest on Ximen Island is worth a total of 16,104,000 CNY/a. Among the value of individual ecosystem services, the direct value of material production function and leisure function reached 1,385,000 CNY/a, with a ratio of 8.6%. The indirect value of disturbance regulation, gas regulation, water purification, habitat function and culture research reached 14,719,000 CNY/a, with a ratio of 91.4%. Among the above sub-items, the proportion of disturbance regulation value, habitat function value and cultural research function value reached 78.8%, which reflects the important scientific value and ecological value of the Ximen Island mangrove ecosystem, especially its vital importance in providing a habitat for birds and playing a role in disaster prevention and mitigation.

  18. What are the effects of macroalgal blooms on the structure and functioning of marine ecosystems? A systematic review protocol

    Directory of Open Access Journals (Sweden)

    Lyons Devin A

    2012-06-01

    Full Text Available Abstract Background Anthropogenic activities are believed to have caused an increase in the magnitude, frequency, and extent of macroalgal blooms in marine and estuarine environments. These blooms may contribute to declines in seagrasses and non-blooming macroalgal beds, increasing hypoxia, and reductions in the diversity of benthic invertebrates. However, they may also provide other marine organisms with food and habitat, increase secondary production, and reduce eutrophication. The objective of this systematic review will be to quantify the positive and negative impacts of anthropogenically induced macroalgal blooms in order to determine their effects on ecosystem structure and functioning, and to identify factors that cause their effects to vary. Methods We will search a number of online databases to gather empirical evidence from the literature on the impacts of macroalgal blooms on: (1 species richness and other univariate measures of biodiversity; (2 productivity and abundance of algae, plants, and animals; and (3 biogeochemical cycling and other flows of energy and materials, including trophic interactions and cross-ecosystem subsidies. Data from relevant studies will be extracted and used in a random effects meta-analysis in order to estimate the average effect of macroalgal blooms on each response of interest. Where possible, sub-group analyses will be conducted in order to evaluate how the effects of macroalgal blooms vary according to: (1 which part of the ecosystem is being studied (e.g. which habitat type, taxonomic group, or trophic level; (2 the size of blooms; (3 the region in which blooms occurred; (4 background levels of ecosystem productivity; (5 physical and chemical conditions; (6 aspects of study design and quality (e.g. lab vs. field, experimental vs. observational, degree of replication; and (7 whether the blooms are believed to be anthropogenically induced or not.

  19. Preliminary assessment of the contamination of the marine water ...

    African Journals Online (AJOL)

    Facing the problem of the pollution of the watery ecosystems world-wide, a preliminary assessment of the contamination of marine environment was performed on samples of water and fish coming from the Atlantic Ocean on the coasts of Cotonou. Aluminium (Al), cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) ...

  20. Marine spatial planning (MSP: A first step to ecosystem-based management (EBM in the Wider Caribbean

    Directory of Open Access Journals (Sweden)

    John C Ogden

    2010-10-01

    Full Text Available The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC. Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 71-79. Epub 2010 October 01.La rápida disminución de los ecosistemas costeros del Mar Caribe está entrando en su quinta década. Algunos de los mejores aportes científicos que documentan este descenso y sus causas han sido realizados por los laboratorios de la Asociación de Laboratorios Marinos del Caribe (ALMC. Alarmados por las tendencias, los pioneros de la conservación del Caribe establecieron áreas marinas protegidas (MPAs que se extendieron por toda la región. Desafortunadamente, muchas de estas áreas tienen poca o ninguna protección y ahora se conoce que son demasiado pequeñas para ser efectivas en el mantenimiento de los ecosistemas costeros. La planificación espacial marina (MSP es promisoria para englobar las grandes escalas geográficas de los procesos ecológicos y los impactos humanos que influyen en los ecosistemas costeros y las

  1. Spatial patterns of benthic foraminifera as a support to the oceanographic characterisation of Arvoredo biological marine reserve (South Atlantic, Brazil).

    Science.gov (United States)

    Paquette, Marie-Laurence; Bonetti, Carla; Bitencourt, Volney; Bonetti, Jarbas

    2016-03-01

    This paper analyses the distribution of benthic foraminifera in a sector of the inner continental shelf of Santa Catarina State (Brazil), which comprises a Marine Protected Area (MPA). Species indicators of continental input suggest that waters under the influence of continental drainage can eventually reach the southwestern part of the reserve, which might jeopardise the ecosystems of this MPA due to the transport of contaminants related to human activities. Species known to be indicators of high marine benthic productivity were more abundant below 30 m, and were associated with areas under the stronger influence of nutrient-enriched water mass. The high density of foraminifera and the low dominance of species found in most samples inside the reserve might be evidence for the positive effects of the prohibition of bottom trawling, ensuring a higher ecological equilibrium of benthic communities. These results can contribute to the current debate about the reclassification and change in the extent of this MPA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biostratigraphic correlation of Pleistocene marine deposits and sea levels, Atlantic coastal plain of the southeastern United States

    Science.gov (United States)

    Cronin, T. M.

    1980-01-01

    Marine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2-10 m from Maryland to northern Florida; middle Pleistocene, 6-15 m in northern South Carolina; early Pleistocene, 4-22 m in central North Carolina, 13-35 m in southern North Carolina, and 6-27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record. ?? 1980.

  3. Social capital as an ecosystem service: Evidence from a locally managed marine area

    NARCIS (Netherlands)

    Barnes-Mauthe, M.; Oleson, K.L.L.; Brander, L.M.; Zafindrasilivonona, B.; Oliver, T.A.; van Beukering, P.J.H.

    2015-01-01

    Social capital is an important ecosystem service, yet we lack common understanding of how it fits, and can be operationalized, within the ecosystem services framework. We review the literature to clarify the role of social capital in this context, establishing it as a multidimensional concept and a

  4. Spatial and Temporal Variability of Ground and Satellite Column Measurements of NO2 and O3 over the Atlantic Ocean During the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment

    Science.gov (United States)

    Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.

    2016-01-01

    In situ measurements of O3 and nitrogen oxides (NO + NO2=NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July August 2014,100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements(r 0.96), but satellite measurements were 3 systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.

  5. Integrating the provision of ecosystem services and trawl fisheries for the management of the marine environment.

    Science.gov (United States)

    Muntadas, Alba; de Juan, Silvia; Demestre, Montserrat

    2015-02-15

    The species interaction and their biological traits (BT) determine the function of benthic communities and, hence, the delivery of ecosystem services. Therefore, disturbance of benthic communities by trawling may compromise ecosystem service delivery, including fisheries' catches. In this work, we explore 1) the impact of trawling activities on benthic functional components (after the BTA approach) and 2) how trawling impact may affect the ecosystem services delivered by benthic communities. To this aim, we assessed the provision of ecosystem services by adopting the concept of Ecosystem Service Providers (ESP), i.e. ecological units that perform ecosystem functions that will ultimately deliver ecosystem services. We studied thirteen sites subjected to different levels of fishing effort in the Mediterranean. From a range of environmental variables included in the study, we found ESPs to be mainly affected by fishing effort and grain size. Our results suggested that habitat type has significant effects on the distribution of ESPs and this natural variability influences ESP response to trawling at a specific site. In order to summarize the complex relationships between human uses, ecosystem components and the demand for ecosystem services in trawling grounds, we adapted a DPSIR (Drivers-Pressures-State Change-Impact-Response) framework to the study area, emphasizing the role of society as Drivers of change and actors demanding management Responses. This integrative framework aims to inform managers about the interactions between all the elements involved in the management of trawling grounds, highlighting the need for an integrated approach in order to ensure ecosystem service provision. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Preferences for Management of Near-Shore Marine Ecosystems: A Choice Experiment in New Zealand

    Directory of Open Access Journals (Sweden)

    Sophal Chhun

    2013-09-01

    Full Text Available There is considerable interest in New Zealand in establishing “Customary Management Areas” (taiāpure and mātaitai and Marine Reserves to support Māori cultural practices and restore declining biodiversity and fish stocks. Allocation of near-shore marine areas for these management systems potentially benefits the larger public, but it has often been vigorously opposed by recreational and commercial fishers. This paper reports estimates of the relative values held by the public toward four potentially conflicting uses of near-shore marine areas. These estimates come from a web-based choice survey completed by 1055 respondents recruited from throughout New Zealand. The response rate was especially high at 60%. We present results weighted to the characteristics of the population and test the results against a variety of well-known sources of survey bias. Scenario development suggests that some reallocation of near-shore marine areas to any of the management systems under discussion alternative to the status quo is likely to yield a welfare gain. A combination of marine reserves and taiāpure is most preferred. The exercise supports the use of discrete choice experiments to provide crucial information about difficult-to-quantify public values for aspects of management of near-shore marine areas, such as proposed taiāpure, mātaitai, or marine reserves.

  7. North Atlantic ecosystem shifts revealed by cod otolith δ15N and δ13C chronologies

    DEFF Research Database (Denmark)

    Pedersen, Jens Brøgger; Nielsen, Jens Munk; Steingrund, Petur

    annual mean values over time were seen in both ecosystems, suggesting δ15N & δ13C values were affected by the same overall processes. There were significant effects of climate variables (temperature, Atlantic Multi-decadal Oscillation (AMO) and Sub Polar Gyre index) on δ15N and δ13C chronologies in both...... catches. This indicates a large ecosystem shift in the Nuuk Fjord around 1970 and a smaller in 1995 and is further supported by the δ15N & δ13C bi-plot that shows a clear separation in signatures before and after 1970. To separate baseline shifts from trophic shifts new δ15N and δ13C chronologies...

  8. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast.

    Science.gov (United States)

    Brito, Ângela; Ramos, Vitor; Mota, Rita; Lima, Steeve; Santos, Arlete; Vieira, Jorge; Vieira, Cristina P; Kaštovský, Jan; Vasconcelos, Vitor M; Tamagnini, Paula

    2017-06-01

    Aiming at increasing the knowledge on marine cyanobacteria from temperate regions, we previously isolated and characterized 60 strains from the Portuguese foreshore and evaluate their potential to produce secondary metabolites. About 15% of the obtained 16S rRNA gene sequences showed less than 97% similarity to sequences in the databases revealing novel biodiversity. Herein, seven of these strains were extensively characterized and their classification was re-evaluated. The present study led to the proposal of five new taxa, three genera (Geminobacterium, Lusitaniella, and Calenema) and two species (Hyella patelloides and Jaaginema litorale). Geminobacterium atlanticum LEGE 07459 is a chroococcalean that shares morphological characteristics with other unicellular cyanobacterial genera but has a distinct phylogenetic position and particular ultrastructural features. The description of the Pleurocapsales Hyella patelloides LEGE 07179 includes novel molecular data for members of this genus. The filamentous isolates of Lusitaniella coriacea - LEGE 07167, 07157 and 06111 - constitute a very distinct lineage, and seem to be ubiquitous on the Portuguese coast. Jaaginema litorale LEGE 07176 has distinct characteristics compared to their marine counterparts, and our analysis indicates that this genus is polyphyletic. The Synechococcales Calenema singularis possess wider trichomes than Leptolyngbya, and its phylogenetic position reinforces the establishment of this new genus. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems

    NARCIS (Netherlands)

    Ostman, Orjan; Eklof, Johan; Eriksson, Britas Klemens; Olsson, Jens; Moksnes, Per-Olav; Bergstrom, Ulf

    Seagrass and seaweed habitats constitute hotspots for diversity and ecosystem services in coastal ecosystems. These habitats are subject to anthropogenic pressures, of which eutrophication is one major stressor. Eutrophication favours fast-growing ephemeral algae over perennial macroalgae and

  10. Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Desboeufs, K.; Wagener, T.; Pulido-Villena, E.; Grisoni, J.-M.; Louis, F.; Ridame, C.; Blain, S.; Brunet, C.; Bon Nguyen, E.; Tran, S.; Labiadh, M.; Dominici, J.-M.

    2010-09-01

    Intense Saharan dust deposition occurs over large oligotrophic areas in the Mediterranean Sea and in the Tropical Atlantic, and its impact on the biogeochemical functioning of such oligotrophic ecosystems needs to be understood. However, due to the logistical difficulties of investigating in situ natural dust events, and due to the inherent limitations of microcosm laboratory experiments, new experimental approaches need to be developed. In this paper, we present a new experimental setup based on large, clean mesocoms deployed in the frame of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project. We demonstrate that these tools are highly relevant and provide a powerful new strategy to in situ studies of the response of an oligotrophic ecosystem to chemical forcing by atmospheric deposition of African dust. First, we describe how to cope with the large amount of dust aerosol needed to conduct the seeding experiments by producing an analogue from soil collected in a source area and by performing subsequent appropriate physico-chemical treatments in the laboratory, including an eventual processing by simulated cloud water. The comparison of the physico-chemical characteristics of produced dust analogues with the literature confirms that our experimental simulations are representative of dust, aging during atmospheric transport, and subsequent deposition to the Mediterranean. Second, we demonstrate the feasibility in coastal areas to installing, in situ, a series of large (6 × 52 m3) mesocosms without perturbing the local ecosystem. The setup, containing no metallic parts and with the least possible induced perturbation during the sampling sequence, provides an approach for working with the required conditions for biogeochemical studies in oligotrophic environments, where nutrient and micronutrients are at nano- or subnano-molar levels. Two, distinct "seeding experiments" were conducted by deploying three mesocosms serving as controls

  11. Development of an Online Climate and Fisheries Data Dashboard for Stakeholders in the Northeast Shelf Large Marine Ecosystem

    Science.gov (United States)

    Young Morse, R.

    2016-12-01

    Fisheries managers make decisions that shape the future of ecosystems and the communities that depend on them. These decisions are often made without reference to environmental conditions, or are made assuming that past conditions (physical conditions, productivity, and species distributions) will persist. The rapid changes experienced in the Northeast Shelf Large Marine Ecosystem (NES LME), as well as the high degree of natural variability in this system, are prompting new discussions about how to incorporate environmental information into fisheries policy and management and into the industry. Through this project, we are facilitating access to fisheries and climate data for fisheries stakeholders in the Northeast through the creation of an online dynamic data dashboard. The primary goal is to make complex climate-relevant data accessible and easy to understand. Information on past, present, and future environmental conditions in the NES LME are presented in the context of fisheries dependent data. Working with marine fisheries stakeholders, including fisheries management council members, industry leaders and non-profits, we have developed a suite of open source processes and tools to acquire and subset climate relevant data from a variety of sources (satellites, sensors, models), develop long range climatologies, and display through dynamically updated interactive data visualizations. The resulting dashboard allows users to quickly assess conditions in the ocean and evaluate them in the context of past and projected change.

  12. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    Science.gov (United States)

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  13. Methane and nonmethane hydrocarbon concentrations in the Atlantic marine boundary layer

    Science.gov (United States)

    Cofer, W. R., III

    1982-01-01

    The reactions of reduced tropospheric trace gases with hydroxyl radicals are thought to play a significant role in global tropospheric photochemistry. Since tropospheric methane and nonmethane hydrocarbon (NMHC) concentrations will affect the tropospheric hydroxyl radical concentrations, accurate measurements of tropospheric CH4 and NMHC concentrations are necessary. Such measurements were, therefore, included in the first leg (from Hamburg, West Germany to Montevideo, Uruguay) of the 1980-1981 Antarctic Expedition. On the basis of the obtained data, a pronounced gradient between northern and southern hemispheric methane concentrations was observed in the marine boundary layer in the region of the intertropical convergence zone. Methane concentrations gradually decreased from about 1.70 ppmv at 40 deg N latitude to about 1.68 ppmv at 14 deg N latitude, then dropped sharply between 14 deg N and 10 deg N latitude to about 1.61 ppmv. NMHC data are also discussed.

  14. Reconstructing Past Seasonal to Multicentennial-Scale Variability in the NE Atlantic Ocean Using the Long-Lived Marine Bivalve Mollusk Glycymeris glycymeris

    Science.gov (United States)

    Reynolds, D. J.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Halloran, P. R.; Sayer, M. D. J.

    2017-11-01

    The lack of long-term, highly resolved (annual to subannual) and absolutely dated baseline records of marine variability extending beyond the instrumental period (last 50-100 years) hinders our ability to develop a comprehensive understanding of the role the ocean plays in the climate system. Specifically, without such records, it remains difficult to fully quantify the range of natural climate variability mediated by the ocean and to robustly attribute recent changes to anthropogenic or natural drivers. Here we present a 211 year (1799-2010 C.E.; all dates hereafter are Common Era) seawater temperature (SWT) reconstruction from the northeast Atlantic Ocean derived from absolutely dated, annually resolved, oxygen isotope ratios recorded in the shell carbonate (δ18Oshell) of the long-lived marine bivalve mollusk Glycymeris glycymeris. The annual record was calibrated using subannually resolved δ18Oshell values drilled from multiple shells covering the instrumental period. Calibration verification statistics and spatial correlation analyses indicate that the δ18Oshell record contains significant skill at reconstructing Northeast Atlantic Ocean mean summer SWT variability associated with changes in subpolar gyre dynamics and the North Atlantic Current. Reconciling differences between the δ18Oshell data and corresponding growth increment width chronology demonstrates that 68% of the variability in G. glycymeris shell growth can be explained by the combined influence of biological productivity and SWT variability. These data suggest that G. glycymeris can provide seasonal to multicentennial absolutely dated baseline records of past marine variability that will lead to the development of a quantitative understanding of the role the marine environment plays in the global climate system.

  15. Trophic Cascades Promote Threshold-Like Shifts in Pelagic Marine Ecosystems

    National Research Council Canada - National Science Library

    Michele Casini; Joakim Hjelm; Juan-Carlos Molinero; Johan Lövgren; Massimiliano Cardinale; Valerio Bartolino; Andrea Belgrano; Georgs Kornilovs; Robert T. Paine

    2009-01-01

    .... By using field data covering a 30-year period, we show for the Baltic Sea that the underlying mechanisms of trophic cascades produced a shift in ecosystem functioning after the collapse of the top predator cod...

  16. Polybrominated diphenyl ethers (PBDEs) in marine mammals from Arctic and North Atlantic regions, 1986-2009.

    Science.gov (United States)

    Rotander, Anna; van Bavel, Bert; Polder, Anuschka; Rigét, Frank; Auðunsson, Guðjón Atli; Gabrielsen, Geir Wing; Víkingsson, Gísli; Bloch, Dorete; Dam, Maria

    2012-04-01

    A selection of PBDE congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography, and the analysis was performed on a GC-MS system operating in the NCI mode. The highest PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, and the lowest levels in fin whales and ringed seals. One-sided analyses of variance (ANOVA) followed by Tukey comparisons of means were applied to test for differences between years and sampling areas. Due to inter-year sampling variability, only general comparisons of PBDE concentrations between different sampling areas could be made. Differences in PBDE concentrations between three sampling periods, from 1986 to 2007, were evaluated in samples of pilot whales, ringed seals, white-sided dolphins and hooded seals. The highest PBDE levels were found in samples from the late 1990s or beginning of 2000, possibly reflecting the increase in the global production of technical PBDE mixtures in the 1990s. The levels of BDE #153 and #154 increased relative to the total PBDE concentration in some of the species in recent years, which may indicate an increased relative exposure to higher brominated congeners. In order to assess the effect of measures taken in legally binding international agreements, it is important to continuously monitor POPs such as PBDEs in sub-Arctic and Arctic environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  18. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    Science.gov (United States)

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (Corg ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and Corg than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  19. Patterns and Trends of Primary Production, Inorganic Carbon and Oxygen and Their Ecosystem Impacts in a Regional Biogeochemical Ocean Model for Atlantic Canada

    Science.gov (United States)

    Fennel, K.; Rutherford, K. E.; Kuhn, A. M.; Zhang, W.; Brennan, C. E.; Zhang, R.

    2016-12-01

    Representing coastal oceans in global biogeochemical models is a challenge, yet the ecosystems in these regions are most vulnerable to the combined stressors of ocean warming, deoxygenation, acidification, eutrophication and fishing. Coastal regions also have large air-sea fluxes of CO2, making them an important but poorly quantified component of the global carbon cycle, and are the most relevant for human activities. Regional model applications that are nested within large-scale or global models are necessary for detailed studies of coastal regions. We present results from such a regional biogeochemical model for the northwestern North Atlantic shelves and adjacent deep ocean of Atlantic Canada. The model is an implementation of the Regional Ocean Modeling System (ROMS) and includes an NPZD-type nitrogen cycle model with explicit representation of dissolved oxygen and inorganic carbon. The region is at the confluence of the Gulf Stream and Labrador Current making it highly dynamic, a challenge for analysis and prediction, and prone to large changes. Historically a rich fishing ground, coastal ecosystems in Atlantic Canada have undergone dramatic changes including the collapse of several economically important fish stocks and the listing of many species as threatened or endangered. Furthermore it is unclear whether the region is a net source or sink of atmospheric CO2 with estimates of the size and direction of the net air-sea CO2 flux remaining controversial. We will discuss simulated patterns of primary production, inorganic carbon fluxes and oxygen trends in the context of circulation features and shelf residence times for the present ocean state and present future projections.

  20. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...... and function. Recently, studies demonstrated the existence of alternative stable states in various terrestrial and aquatic ecosystems. These so-called ecosystem regime shifts have been explained mainly as a result of multiple causes, e.g. climatic regime shifts, overexploitation or a combination of both...... ecosystem structure to have the characteristics of a discontinuous regime shift, initiated by climate-induced changes in the abiotic environment and stabilized by fisheries-induced feedback loops in the food web. Our results indicate the importance of maintaining the resilience of an ecosystem...

  1. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning.

    Science.gov (United States)

    Portman, Michelle E; Shabtay-Yanai, Ateret; Zanzuri, Asaf

    2016-01-01

    Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA) has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical) attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.

  2. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning.

    Directory of Open Access Journals (Sweden)

    Michelle E Portman

    Full Text Available Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.

  3. Recent marine deposits reconstruction of two depositional environments of the French Atlantic coast

    Science.gov (United States)

    Pouzet, Pierre; Maanan, Mohamed; Schmidt, Sabine; Athimon, Emmanuelle; Robin, Marc

    2017-04-01

    This work provides a 300-yr high-resolution record of past storm and/or tsunami events using a multi-proxy analysis (137Cs and 210Pb dating, chemical composition and grain size) of sedimentary deposits from two coastal depositional environments of the French Atlantic coast. We analyse two wetland areas situated just behind a narrow coastal sand strip: 1) the Mer Blanche and 2) the Turballe. Evidence for strong extratropical storms and /or tsunamis events can be identified in this central part of the Bay of Biscay from the XIXth to the XXth century. Nine short sediment cores were collected in August 2016 using gravity type corer of 10 inner diameter and 100 cm length. Each core was longitudinally sliced, each half section photographed and described. High-resolution elemental analyses of split sediment cores were done using an Avaatech XRF core scanner. Then sediment cores were sampled every 0.5 cm. Grain size analysis was done using a Malvern 2600 laser beam grain sizer; organic carbon was measured by Leco induction furnace. 137Cs, 210Pb and 226Ra activities were measured on about 2 g dried sediment using a low background, well-type γ spectrometer (Canberra). The 210Pb in excess, which is used for dating, was calculated as the difference of measured 210Pb and of its supported activities (226Ra). The history information is performed using historical documents including narrative sources, ancient maps, records of cities repairs, surveys conducted after a disaster, newspaper from different departmental and national archives, and meteorological data. Coastal depositional environments were affected hardest by extreme environmental and climatological events during the last century. In the Mer Blanche core, three extreme episodes can be observed: i) at 36 cm, sediment is characterized by coarser sand and higher Sr/Al ratio, this episode coincides with a high tidal wave in spring 1937; ii) at 55 cm, we observe the presence of many gravels, they dates back to the high tidal

  4. Larval dispersion of the estuarine crab Neohelice granulata in coastal marine waters of the Southwest Atlantic

    Science.gov (United States)

    Bas, Claudia; Luppi, Tomás; Spivak, Eduardo; Schejter, Laura

    2009-08-01

    The estuarine brachyuran crab Neohelice granulata export their larvae from the parental intertidal population of the Mar Chiquita coastal lagoon, and probably other populations, to marine waters. The degree of larval dispersion or self-recruitment of populations is unknown. We evaluated the presence of all larval stages of N. granulata in coastal waters of Argentina between 37.9° and 35.8° S, at two different spatial scales: a broad scale of tens to hundreds of kilometers from the Río de la Plata estuary in the north, to Mar Chiquita lagoon in the south, and a small scale of hundreds of meters to some kilometers around the mouth of Mar Chiquita, during spring and summer. Additionally, we registered the larval composition and density at San Clemente creek population, in Samborombon Bay (Río de la Plata estuary), every 3 h along a 30-hour period. Evidence indicates that larval release of N. granulata is temporally synchronized with nocturnal ebb tides and all development from Zoea I to Zoea IV occur in areas close to the parental population, even with very different oceanographic characteristics. A possible mechanism based on salinity selection and wind-driven transport is proposed for such behavior, and some considerations related to the connectivity of present populations are made.

  5. Development of the Coupled Northwest Atlantic Prediction System (CNAPS)

    Science.gov (United States)

    Zambon, J. B.; He, R.

    2016-02-01

    A 3-dimensioanl marine environmental nowcast/forecast system has been constructed and is running quasi-operationally for the Northwest Atlantic Ocean. This fully coupled modeling accounts for the interactions among Ocean, Atmosphere, Wave, Sediment Transport and the low-trophic marine ecosystem. It is driven by realistic meteorological boundary forcing, tides, river, and deep-ocean boundary conditions provided by a data assimilative global ocean model. Model output from this nowcast/forecast system, including marine weather, ocean wave, ocean circulation and marine ecosystem variable are generated daily and available for public access. The construction of this prediction system, model validations and case studies on air-sea interactions during major tropical and extratropical storms will be discussed in this presentation.

  6. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China

    Directory of Open Access Journals (Sweden)

    Nian-Zhi Jiao

    2015-06-01

    Full Text Available The ecosystems of China seas and coasts are undergoing rapid changes under the strong influences of both global climate change and anthropogenic activities. To understand the scope of these changes and the mechanisms behind them is of paramount importance for the sustainable development of China, and for the establishment of national policies on environment protection and climate change mitigation. Here we provide a brief review of the impacts of global climate change and human activities on the oceans in general, and on the ecosystems of China seas and coasts in particular. More importantly, we discuss the challenges we are facing and propose several research foci for China seas/coasts ecosystem studies, including long-term time series observations on multiple scales, facilities for simulation study, blue carbon, coastal ecological security, prediction of ecosystem evolution and ecosystem-based management. We also establish a link to the Future Earth program from the perspectives of two newly formed national alliances, the China Future Ocean Alliance and the Pan-China Ocean Carbon Alliance.

  7. Distribution of marine birds on the mid- and north-Atlantic U. S. outer continental shelf. Technical progress report, September 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Powers, K.D.; Pittman, G.L.; Burrell, G.C.

    1979-10-01

    The scope of the project was not changed since the last annual report, but the study area was extended south to Cape Hatteras. The objectives were to determine spatial and temporal distributions of marine birds in mid- and north-Atlantic U.S. continental shelf waters; to identify marine bird food habits and distribution of prey items; and (3) to develop a marine bird data retrieval bank. Data from 1978-79 indicated that Georges Bank and its adjacent waters support an abundant and diverse bird population throughout the year. Species composition changed seasonally but diversity usually remained high. In contrast, the mid-Atlantic Bight demonstrated only a seasonal importance to birds. In all areas surveyed greatest bird densities were found at upwellings and in association with fishing activities. A stomach contents analysis of specimens collected in August 1978 indicated that Cory's, Greater and Sooty Shearwaters were feeding on squid and fish. Great Black-backed and Herring Gulls were utilizing fish, insects, birds, and crustaceans. All MBO seabird data collected prior to July 1979 have been keypunched. No data retrieval programs were developed.

  8. Effect of modified atmosphere and vacuum packaging conditions on selected chemical and physico-chemical parameters of marinated and salted Atlantic mackerel (Scomber scombrus

    Directory of Open Access Journals (Sweden)

    Ivanović Jelena S.

    2016-01-01

    Full Text Available Chemical and physico-chemical parameters of marinated and salted Atlantic mackerel (Scomber Scombrus, with emphasis on the quality and safety parameters in modified atmosphere packaging (MAP and vacuum packaging (VP, were investigated. Quality assessment of mackerel stored in MAP (40% CO2+60% N2 and VP for up to 50 days at 4±1 °C was done by the monitoring of pH value, total volatile basic nitrogen (TVB-N, thiobarbituric acid (TBA and histamine. The pH value of fish meat was significantly lower in the marinated samples. The highest concentration of TVB-N was recorded in the salted mackerel stored under VP whereas the lowest TVB-N in the marinated mackerel stored under MAP conditions. The formation of TBA increased with the time of storage and was the lowest in the marinated mackerel stored in MAP. The concentration of histamine increased during storage and its level reached over 10 mg/100 g for the salted mackerel stored under VP conditions. The marinated mackerel packed in MAP had extended shelf life at 4±1 °C compared to that packaged in VP according to physico-chemical analysis.

  9. Marine Governance in a European context: Regionalization, integration and cooperation for ecosystem-based management

    NARCIS (Netherlands)

    Soma, K.; Tatenhove, van J.P.M.; Leeuwen, van J.

    2015-01-01

    New EU policy initiatives within the Maritime Strategy Framework Directive, the Integrated Maritime Policy, the reform of the Common Fisheries Policy, the offshore Energy policy and the Blue Growth Strategy, are in different manners aiming at implementing Ecosystem Based Management (EBM). EBM

  10. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: a comparative assessment

    DEFF Research Database (Denmark)

    Kirkman, Stephen P.; Yemane, Dawit; Atkinson, Lara J.

    2015-01-01

    ‐level shifts were detected for Namibia; these and a regime shift in the overall community identified for this country corresponded well to the timing of severe environmental perturbations and an extensive regime shift in the pelagic ecosystem of this area. However, the interpretation of these shifts...

  11. A survey of wild marine fish identifies a potential origin of an outbreak of viral haemorrhagic septicaemia in wrasse, Labridae, used as cleaner fish on marine Atlantic salmon, Salmo salar L., farms.

    Science.gov (United States)

    Wallace, I S; Donald, K; Munro, L A; Murray, W; Pert, C C; Stagg, H; Hall, M; Bain, N

    2015-06-01

    Viral haemorrhagic septicaemia virus (VHSV) was isolated from five species of wrasse (Labridae) used as biological controls for parasitic sea lice predominantly, Lepeophtheirus salmonis (Krøyer, 1837), on marine Atlantic salmon, Salmo salar L., farms in Shetland. As part of the epidemiological investigation, 1400 wild marine fish were caught and screened in pools of 10 for VHSV using virus isolation. Eleven pools (8%) were confirmed VHSV positive from: grey gurnard, Eutrigla gurnardus L.; Atlantic herring, Clupea harengus L.; Norway pout, Trisopterus esmarkii (Nilsson); plaice, Pleuronectes platessa L.; sprat, Sprattus sprattus L. and whiting, Merlangius merlangus L. The isolation of VHSV from grey gurnard is the first documented report in this species. Nucleic acid sequencing of the partial nucleocapsid (N) and glycoprotein (G) genes was carried out for viral characterization. Sequence analysis confirmed that all wild isolates were genotype III the same as the wrasse and there was a close genetic similarity between the isolates from wild fish and wrasse on the farms. Infection from these local wild marine fish is the most likely source of VHSV isolated from wrasse on the fish farms. © 2014 Crown Copyright. Journal of Fish Diseases © 2014 John Wiley & Sons Ltd.

  12. 76 FR 59371 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2011-09-26

    ... turtle release gear requirements for the snapper- grouper fishery. Additionally, CE-BA 2 would amend... small tooth sawfish release gear specifications based on the freeboard height of commercial South..., and designate the top 33 ft (10 m) of the water column in the South Atlantic EEZ bounded by the Gulf...

  13. 76 FR 69230 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Science.gov (United States)

    2011-11-08

    ... tooth sawfish release gear specifications in the South Atlantic region. Through CE-BA 2, NMFS also... SMZs off South Carolina to the bag limit, and modify sea turtle and small tooth sawfish release gear... snapper-grouper species, designate Deepwater Coral HAPCs as EFH-HAPCs, and designate the top 33 ft (10 m...

  14. Temporal and spatial differences between taxonomic and trait biodiversity in a large marine ecosystem: Causes and consequences

    DEFF Research Database (Denmark)

    Dencker, Tim Spaanheden; Pécuchet, Lauréne; Beukhof, Esther

    2017-01-01

    has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences...... of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait...... dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows...

  15. An index based on the biodiversity of cetacean species to assess the environmental status of marine ecosystems.

    Science.gov (United States)

    Azzellino, Arianna; Fossi, Maria Cristina; Gaspari, Stefania; Lanfredi, Caterina; Lauriano, Giancarlo; Marsili, Letizia; Panigada, Simone; Podestà, Michela

    2014-09-01

    The Marine Strategy Framework Directive (MSFD) requires the assessment of the environmental status in relation to human pressures. In this study the biodiversity of the cetacean community is proposed as MSFD descriptor of the environmental status and its link with anthropogenic pressures is investigated. Functional groups are generally favoured over indicator species since they are thought to better reflect to anthropogenic stressors. Cetaceans are in many situations the most well known component of pelagic ecosystems. Their habitat requirements are known and can be used to evaluate the theoretical biodiversity that should be expected in a certain area. The deviations between the theoretical biodiversity and the actual biodiversity may be used to detect the impacts of human activities. Based on this analysis fishery resulted to be by far the most significant of the existing pressures. Among all the species, bottlenose dolphin was found the most correlated with the fishery sector dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Assessing the state of pelagic fish communities within an ecosystem approach and the European Marine Strategy Framework Directive

    DEFF Research Database (Denmark)

    Shephard, Samuel; Rindorf, Anna; Dickey-Collas, Mark

    2014-01-01

    Pelagic fish are key elements in marine foodwebs and thus comprise an important part of overall ecosystem health. We develop a suite of ecological indicators that track pelagic fish community state and evaluate state of specific objectives against Good Environmental Status (GES) criteria. Indicator....... The pelagic fish communities of both subregions currently appear to be close to GES, but each remains vulnerable. In the CS subregion, fishing mortality is close to the precautionary reference point, although the unknown dynamics of sandeel, sprat, and sardine in the subregion may reduce the robustness...... of this evaluation. In the North Sea, sandeel stocks have been in poor state until very recently. Pelagic fish community biomass is slightly below the precautionary reference point in both subregions...

  17. Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs

    Directory of Open Access Journals (Sweden)

    C. Guieu

    2010-09-01

    Full Text Available Intense Saharan dust deposition occurs over large oligotrophic areas in the Mediterranean Sea and in the Tropical Atlantic, and its impact on the biogeochemical functioning of such oligotrophic ecosystems needs to be understood. However, due to the logistical difficulties of investigating in situ natural dust events, and due to the inherent limitations of microcosm laboratory experiments, new experimental approaches need to be developed. In this paper, we present a new experimental setup based on large, clean mesocoms deployed in the frame of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem project. We demonstrate that these tools are highly relevant and provide a powerful new strategy to in situ studies of the response of an oligotrophic ecosystem to chemical forcing by atmospheric deposition of African dust. First, we describe how to cope with the large amount of dust aerosol needed to conduct the seeding experiments by producing an analogue from soil collected in a source area and by performing subsequent appropriate physico-chemical treatments in the laboratory, including an eventual processing by simulated cloud water. The comparison of the physico-chemical characteristics of produced dust analogues with the literature confirms that our experimental simulations are representative of dust, aging during atmospheric transport, and subsequent deposition to the Mediterranean. Second, we demonstrate the feasibility in coastal areas to installing, in situ, a series of large (6 × 52 m3 mesocosms without perturbing the local ecosystem. The setup, containing no metallic parts and with the least possible induced perturbation during the sampling sequence, provides an approach for working with the required conditions for biogeochemical studies in oligotrophic environments, where nutrient and micronutrients are at nano- or subnano-molar levels. Two, distinct "seeding experiments" were conducted by deploying three

  18. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; del Rio, Tijana G.; Foster, Brian; Copeland, A.; Jansson, Janet K.; Pati, Amrita; Gilbert, Jack A.; Tringe, Susannah G.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-02

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.

  19. The influence of the 73 ka Toba super-eruption on the ecosystems of northern Sumatra as recorded in marine core BAR94-25.

    NARCIS (Netherlands)

    van der Kaars, S.; Williams, M.A.J.; Bassinot, F.; Guichard, F.; Moreno, E.; Dewilde, F.; Cook, E.J.

    2012-01-01

    Examination of pollen content and geochemical analysis of marine core BAR94-25 taken from ~100 km north-west of Sumatra in the Andaman Sea reveals a ~100,000 year record of environmental change as well as the influence of the Toba super-eruption at ~73,000 years ago on the ecosystems of northern

  20. Contribution of waterborne nitrogen emissions to hypoxia-driven marine eutrophication: modelling of damage to ecosystems in life cycle impact assessment (LCIA)

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias

    Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia...

  1. 78 FR 26740 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Snapper-Grouper Fishery Off the...

    Science.gov (United States)

    2013-05-08

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BD04 Fisheries of the Caribbean... opportunities, and protecting marine ecosystems. To further this goal, the Magnuson-Stevens Act requires fishery... CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC 0 1. The authority citation for part 622 continues to read as...

  2. 78 FR 10122 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2013-02-13

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BC66 Fisheries of the Caribbean... opportunities, and protecting marine ecosystems. To further this goal, the Magnuson-Stevens Act requires fishery... CARIBBEAN, GULF, AND SOUTH ATLANTIC 0 1. The authority citation for part 622 continues to read as follows...

  3. 76 FR 59102 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf...

    Science.gov (United States)

    2011-09-23

    ... Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf of Mexico and South... providing food production and recreational opportunities, and protecting marine ecosystems. Management... From the Fishery Management Unit Five species of lobster are currently within the FMP: the Caribbean...

  4. 76 FR 78879 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Snapper-Grouper Fishery Off the...

    Science.gov (United States)

    2011-12-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BB10 Fisheries of the Caribbean... production and recreational opportunities, and protecting marine ecosystems. To further this goal, the... 622--FISHERIES OF THE CARIBBEAN, GULF, AND SOUTH ATLANTIC 1. The authority citation for part 622...

  5. 76 FR 54727 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf...

    Science.gov (United States)

    2011-09-02

    ... Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf of Mexico and South...) for Caribbean spiny lobster; revise the Federal spiny lobster tail- separation permitting requirements... production and recreational opportunities, and protecting marine ecosystems. Actions Contained in the...

  6. 77 FR 23652 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Annual Catch Limit...

    Science.gov (United States)

    2012-04-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BB93 Fisheries of the Caribbean... food production and recreational opportunities, and protecting marine ecosystems. An ACL is the level... proposed to be amended as follows: PART 622--FISHERIES OF THE CARIBBEAN, GULF, AND SOUTH ATLANTIC 1. The...

  7. 77 FR 28308 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-05-14

    ... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-BB90 Fisheries of the Caribbean... the document ``Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of... opportunities, and protecting marine ecosystems. To further this goal, the Magnuson- Stevens Act requires...

  8. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    Science.gov (United States)

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. Copyright © 2011 SETAC.

  9. Microplastic pollution, a threat to marine ecosystem and human health: a short review.

    Science.gov (United States)

    Sharma, Shivika; Chatterjee, Subhankar

    2017-09-01

    Human populations are using oceans as their household dustbins, and microplastic is one of the components which are not only polluting shorelines but also freshwater bodies globally. Microplastics are generally referred to particles with a size lower than 5 mm. These microplastics are tiny plastic granules and used as scrubbers in cosmetics, hand cleansers, air-blasting. These contaminants are omnipresent within almost all marine environments at present. The durability of plastics makes it highly resistant to degradation and through indiscriminate disposal they enter in the aquatic environment. Today, it is an issue of increasing scientific concern because these microparticles due to their small size are easily accessible to a wide range of aquatic organisms and ultimately transferred along food web. The chronic biological effects in marine organisms results due to accumulation of microplastics in their cells and tissues. The potential hazardous effects on humans by alternate ingestion of microparticles can cause alteration in chromosomes which lead to infertility, obesity, and cancer. Because of the recent threat of microplastics to marine biota as well as on human health, it is important to control excessive use of plastic additives and to introduce certain legislations and policies to regulate the sources of plastic litter. By setup various plastic recycling process or promoting plastic awareness programmes through different social and information media, we will be able to clean our sea dustbin in future.

  10. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems.

    Science.gov (United States)

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Drazen, Jeffrey C

    2017-03-01

    Climate change is expected to impact all aspects of marine ecosystems, including fisheries. Here, we use output from a suite of 11 earth system models to examine projected changes in two ecosystem-defining variables: temperature and food availability. In particular, we examine projected changes in epipelagic temperature and, as a proxy for food availability, zooplankton density. We find that under RCP8.5, a high business-as-usual greenhouse gas scenario, increasing temperatures may alter the spatial distribution of tuna and billfish species richness across the North Pacific basin. Furthermore, warmer waters and declining zooplankton densities may act together to lower carrying capacity for commercially valuable fish by 2-5% per decade over the 21st century. These changes have the potential to significantly impact the magnitude, composition, and distribution of commercial fish catch across the pelagic North Pacific. Such changes will in turn ultimately impact commercial fisheries' economic value. Fishery managers should anticipate these climate impacts to ensure sustainable fishery yields and livelihoods. © 2016 John Wiley & Sons Ltd.

  11. Potential impacts of historical disturbance on green turtle health in the unique & protected marine ecosystem of Palmyra Atoll (Central Pacific).

    Science.gov (United States)

    McFadden, Katherine W; Gómez, Andrés; Sterling, Eleanor J; Naro-Maciel, Eugenia

    2014-12-15

    Palmyra Atoll, in the Central Pacific, is a unique marine ecosystem because of its remarkably intact food web and limited anthropogenic stressors. However during World War II the atoll was structurally reconfigured into a military installation and questions remain whether this may have impacted the health of the atoll's ecosystems and species. To address the issue we assessed green sea turtle (n=157) health and exposure to contaminants at this foraging ground from 2008 to 2012. Physical exams were performed and blood was sampled for testosterone analysis, plasma biochemistry analysis, hematology and heavy metal exposure. Hematological and plasma chemistries were consistent with concentrations reported for healthy green turtles. Heavy metal screenings revealed low concentrations of most metals, except for high concentrations of iron and aluminum. Body condition indices showed that <1% of turtles had poor body condition. In this study, we provide the first published blood values for a markedly healthy sea turtle population at a remote Central Pacific Atoll. Published by Elsevier Ltd.

  12. The Transport of Chemicals and Biota into Coastal Rivers and Marine Ecosystems

    OpenAIRE

    Ng, Charlene Marie

    2012-01-01

    Coastal rivers link terrestrial and freshwater systems to oceans. River networks drain watersheds, delivering freshwater, nutrients, sediment, chemicals, and biota to estuaries and coastal ecosystems. These influences can negatively and positively affect downstream receiving water bodies. Effects of rivers on oceans depend on rates of transport and export of river-borne materials from channels versus rates of in-channel processing: degradation, storage, or biological uptake of those materi...

  13. Diets of and trophic relationships among dominant marine nekton within the northern California Current ecosystem

    OpenAIRE

    Miller, Todd W.; Richard D Brodeur

    2007-01-01

    In this study we analyzed the diets of 26 nekton species collected from two years (2000 and 2002) off Oregon and northern California to describe dominant nekton trophic groups of the northern California Current (NCC) pelagic ecosystem. We also examined interannual variation in the diets of three nekton species. Cluster analysis of predator diets resulted in nekton trophic groups based on the consumption of copepods, euphausiids, brachyuran larvae, larval juvenile fishes, and adult ne...

  14. An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea

    Directory of Open Access Journals (Sweden)

    J. I. Allen

    2003-01-01

    Full Text Available The purpose of this paper is to examine the use of a complex ecosystem model along with near real-time in situ data and a sequential data assimilation method for state estimation. The ecosystem model used is the European Regional Seas Ecosystem Model (ERSEM; Baretta et al., 1995 and the assimilation method chosen is the Ensemble Kalman Filer (EnKF. Previously, it has been shown that this method captures the nonlinear error evolution in time and is capable of both tracking the observations and providing realistic error estimates for the estimated state. This system has been used to assimilate long time series of in situ chlorophyll taken from a data buoy in the Cretan Sea. The assimilation of this data using the EnKF method results in a marked improvement in the ability of ERSEM to hindcast chlorophyll. The sensitivity of this system to the type of data used for assimilation, the frequency of assimilation, ensemble size and model errors is discussed. The predictability window of the EnKF appears to be at least 2 days. This is an indication that the methodology might be suitable for future operational data assimilation systems using more complex three-dimensional models. Key words. Oceanography: general (numerical modelling; ocean prediction – Oceanography: biological and chemical (plankton

  15. An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea

    Directory of Open Access Journals (Sweden)

    J. I. Allen

    Full Text Available The purpose of this paper is to examine the use of a complex ecosystem model along with near real-time in situ data and a sequential data assimilation method for state estimation. The ecosystem model used is the European Regional Seas Ecosystem Model (ERSEM; Baretta et al., 1995 and the assimilation method chosen is the Ensemble Kalman Filer (EnKF. Previously, it has been shown that this method captures the nonlinear error evolution in time and is capable of both tracking the observations and providing realistic error estimates for the estimated state. This system has been used to assimilate long time series of in situ chlorophyll taken from a data buoy in the Cretan Sea. The assimilation of this data using the EnKF method results in a marked improvement in the ability of ERSEM to hindcast chlorophyll. The sensitivity of this system to the type of data used for assimilation, the frequency of assimilation, ensemble size and model errors is discussed. The predictability window of the EnKF appears to be at least 2 days. This is an indication that the methodology might be suitable for future operational data assimilation systems using more complex three-dimensional models.

    Key words. Oceanography: general (numerical modelling; ocean prediction – Oceanography: biological and chemical (plankton

  16. Public preferences for ecosystem services on exurban landscapes: A case study from the Mid-Atlantic, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Duke

    2016-07-01

    Full Text Available This paper reports data from a residential landscape preference study conducted in Delaware, USA. The researchers constructed an ecologically designed exurban residential landscape, which delivered 20 new environmental and human-related impacts, including 7 that delivered ecosystem services. Ecosystem services included impacts such as improved flood control and enhanced plant diversity. Using pictures before and after the intervention, an intercept survey of 105 non-neighboring residents estimated whether the 20 impacts positively, negatively, or did not affect the respondents’ household wellbeing. The public found that most landscape-intervention impacts had a positive effect on their quality of life, especially those impacts involving ecosystem services. All but one ecosystem service were found to be strong amenities and the other (moving indoor activities outside was an amenity. However, the landscape intervention delivered one clear disamenity: increased undesirable wildlife. Respondents also identified what impacts were the most important in affecting their welfare: undesirable wildlife (negative; flood control (positive; and water quality (positive. Ecosystem services accounted for 41.6% of the public’s importance rating, while undesirable wildlife was 12.9%. A planning process seeking more ecosystem services from residential landscapes should focus on all the most important drivers of preference, if it is to be accepted by residents.

  17. Marine debris in beaches of the Southwestern Atlantic: An assessment of their abundance and mass at different spatial scales in northern coastal Argentina.

    Science.gov (United States)

    Becherucci, Maria Eugenia; Rosenthal, Alan Federico; Seco Pon, Juan Pablo

    2017-06-15

    Argentina is currently undergoing an intensive development of coastal-oriented tourism due to the temperate climate and coastal sceneries of the Southwestern Atlantic and particularly its wide ocean-open sandy beaches, which may turn into an important contributor of marine debris to the beaches. This study was designed to assess at four spatial scales (i) the variation of the abundance and mass of marine debris and (ii) the composition and sources of these items in sandy-tourist beaches of coastal zones of the province of Buenos Aires, in northern Argentina. The abundance and mass of marine debris shifted between sampling localities (separated by ~1.5×10 5 m) and beaches (~3×10 4 m). Debris was primarily from recreational and fishing activities and over 20mm in size. Tackling the complications associated with marine debris in northern Argentina may include intensive educational and advertising campaigns oriented chiefly to beach users and fisherman. Copyright © 2017. Published by Elsevier Ltd.

  18. A legacy of contrasting spatial genetic structure on either side of the Atlantic-Mediterranean transition zone in a marine protist.

    Science.gov (United States)

    Lowe, Chris D; Martin, Laura E; Montagnes, David J S; Watts, Phillip C

    2012-12-18

    The mechanisms that underpin the varied spatial genetic structures exhibited by free-living marine microorganisms remain controversial, with most studies emphasizing a high dispersal capability that should redistribute genetic diversity in contrast to most macroorganisms whose populations often retain a genetic signature of demographic response to historic climate fluctuations. We quantified the European phylogeographic structure of the marine flagellate Oxyrrhis marina and found a marked difference in spatial genetic structure, population demography, and genetic diversity between the northwest Atlantic and Mediterranean Sea that reflects the persistent separation of these regions as well as context-dependent population responses to contrasting environments. We found similar geographic variation in the level of genetic diversity in the sister species Oxyrrhis maritima. Because the capacity for wide dispersal is not always realized, historic genetic footprints of range expansion and contraction persist in contemporary populations of marine microbes, as they do in larger species. Indeed, the well-described genetic effects of climatic variation on macroorganisms provide clear, testable hypotheses about the processes that drive genetic divergence in marine microbes and thus about the response to future environmental change.

  19. Pyrosequencing characterization of the microbiota from Atlantic intertidal marine sponges reveals high microbial diversity and the lack of co-occurrence patterns.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2015-01-01

    Sponges are ancient metazoans that host diverse and complex microbial communities. Sponge-associated microbial diversity has been studied from wide oceans across the globe, particularly in subtidal regions, but the microbial communities from intertidal sponges have remained mostly unexplored. Here we used pyrosequencing to characterize the microbial communities in 12 different co-occurring intertidal marine sponge species sampled from the Atlantic coast, revealing a total of 686 operational taxonomic units (OTUs) at 97% sequence similarity. Taxonomic assignment of 16S ribosomal RNA tag sequences estimated altogether 26 microbial groups, represented by bacterial (75.5%) and archaeal (22%) domains. Proteobacteria (43.4%) and Crenarchaeota (20.6%) were the most dominant microbial groups detected in all the 12 marine sponge species and ambient seawater. The Crenarchaeota microbes detected in three Atlantic Ocean sponges had a close similarity with Crenarchaeota from geographically separated subtidal Red Sea sponges. Our study showed that most of the microbial communities observed in sponges (73%) were also found in the surrounding ambient seawater suggesting possible environmental acquisition and/or horizontal transfer of microbes. Beyond the microbial diversity and community structure assessments (NMDS, ADONIS, ANOSIM), we explored the interactions between the microbial communities coexisting in sponges using the checkerboard score (C-score). Analyses of the microbial association pattern (co-occurrence) among intertidal sympatric sponges revealed the random association of microbes, favoring the hypothesis that the sponge-inhabiting microbes are recruited from the habitat mostly by chance or influenced by environmental factors to benefit the hosts.

  20. ICES and PICES strategies for coordinating research on the impacts of climate change on marine ecosystems

    DEFF Research Database (Denmark)

    Kim, S.; Hollowed, Anne B.; Barange, Manuel

    2014-01-01

    organizations to develop a research initiative that focuses on their shared interests. A phased implementation will ensure that SICCME will be responsive to a rapidly evolving research area while delivering ongoing syntheses of existing knowledge, thereby advancing new science and methodologies......The social, economic, and ecological consequences of projected climate change on fish and fisheries are issues of global concern. In 2012, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES) established a Strategic Initiative...

  1. "Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions.

    Science.gov (United States)

    Teske, Peter R; Rius, Marc; McQuaid, Christopher D; Styan, Craig A; Piggott, Maxine P; Benhissoune, Saïd; Fuentes-Grünewald, Claudio; Walls, Kathy; Page, Mike; Attard, Catherine Rm; Cooke, Georgina M; McClusky, Claire F; Banks, Sam C; Barker, Nigel P; Beheregaray, Luciano B

    2011-06-21

    Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We addr