WorldWideScience

Sample records for atherosclerosis molecular imaging

  1. Molecular imaging in atherosclerosis

    NARCIS (Netherlands)

    Glaudemans, Andor W. J. M.; Slart, Riemer H. J. A.; Bozzao, Alessandro; Bonanno, Elena; Arca, Marcello; Dierckx, Rudi A. J. O.; Signore, Alberto

    2010-01-01

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (p

  2. Molecular imaging of atherosclerosis in translational medicine

    Energy Technology Data Exchange (ETDEWEB)

    Perrone-Filardi, Pasquale; Costanzo, Pierluigi; Marciano, Caterina; Vassallo, Enrico; Marsico, Fabio; Ruggiero, Donatella; Petretta, Maria Piera; Chiariello, Massimo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Dellegrottaglie, Santo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Mount Sinai Medical Center, Z. and M.A. Wiener Cardiovascular Institute and M.-J. and H.R. Kravis Center for Cardiovascular Health, New York, NY (United States); Rudd, James H.F. [University of Cambridge, School of Clinical Medicine, Cambridge (United Kingdom); Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy)

    2011-05-15

    Functional characterization of atherosclerosis is a promising application of molecular imaging. Radionuclide-based techniques for molecular imaging in the large arteries (e.g. aorta and carotids), along with ultrasound and magnetic resonance imaging (MRI), have been studied both experimentally and in clinical studies. Technical factors including cardiac and respiratory motion, low spatial resolution and partial volume effects mean that noninvasive molecular imaging of atherosclerosis in the coronary arteries is not ready for prime time. Positron emission tomography imaging with fluorodeoxyglucose can measure vascular inflammation in the large arteries with high reproducibility, and signal change in response to anti-inflammatory therapy has been described. MRI has proven of value for quantifying carotid artery inflammation when iron oxide nanoparticles are used as a contrast agent. Macrophage accumulation of the iron particles allows regression of inflammation to be measured with drug therapy. Similarly, contrast-enhanced ultrasound imaging is also being evaluated for functional characterization of atherosclerotic plaques. For all of these techniques, however, large-scale clinical trials are mandatory to define the prognostic importance of the imaging signals in terms of risk of future vascular events. (orig.)

  3. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography.

    Science.gov (United States)

    Scherer, Daniel J; Psaltis, Peter J

    2016-08-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of (18)Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of (18)Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) and sodium (18)F-fluoride ((18)F-NaF). PMID:27500093

  4. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis

    OpenAIRE

    Maiseyeu, Andrei; Mihai, Georgeta; Kampfrath, Thomas; Simonetti, Orlando P.; Sen, Chandan K.; Roy, Sashwati; Rajagopalan, Sanjay; Parthasarathy, Sampath

    2009-01-01

    Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellula...

  5. Atherosclerosis (image)

    Science.gov (United States)

    Atherosclerosis is a disease of the arteries in which fatty material is deposited in the vessel wall, ... muscle leads to symptoms such as chest pain. Atherosclerosis shows no symptoms until a complication occurs.

  6. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Elham Khanicheh

    Full Text Available BACKGROUND/OBJECTIVES: Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1 with contrast enhanced ultrasound (CEU could assess treatment effects on endothelial phenotype in early atherosclerosis. METHODS: Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day. At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM and control microbubbles (MB(Ctr. Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression. RESULTS: Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM in non-treated animals (MB(VCAM 2±0.3 vs MB(Ctr 0.7±0.2, p<0.01, but not in statin-treated animals (MB(VCAM 0.8±0.2 vs MB(Ctr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MB(VCAM signal. CONCLUSIONS: Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.

  7. Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Balluff, Benjamin; Maroto, Aroa S; Carreira, Ricardo J; van Zeijl, Rene J M; Gonzalez-Calero, Laura; de la Cuesta, Fernando; Barderas, Maria G; Lopez-Almodovar, Luis F; Padial, Luis R; McDonnell, Liam A; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2015-08-01

    The molecular anatomy of healthy and atherosclerotic tissue is pursued here to identify ongoing molecular changes in atherosclerosis development. Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. Mass spectrometry imaging (MSI) is a novel unexplored ex vivo imaging approach in CVD able to provide in-tissue molecular maps. A rabbit model of early atherosclerosis was developed and high-spatial-resolution MALDI-MSI was applied to comparatively analyze histologically-based arterial regions of interest from control and early atherosclerotic aortas. Specific protocols were applied to identify lipids and proteins significantly altered in response to atherosclerosis. Observed protein alterations were confirmed by immunohistochemistry in rabbit tissue, and additionally in human aortas. Molecular features specifically defining different arterial regions were identified. Localized in the intima, increased expression of SFA and lysolipids and intimal spatial organization showing accumulation of PI, PG and SM point to endothelial dysfunction and triggered inflammatory response. TG, PA, SM and PE-Cer were identified specifically located in calcified regions. Thymosin β4 (TMSB4X) protein was upregulated in intima versus media layer and also in response to atherosclerosis. This overexpression and localization was confirmed in human aortas. In conclusion, molecular histology by MS Imaging identifies spatial organization of arterial tissue in response to atherosclerosis. PMID:26079611

  8. Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA

    International Nuclear Information System (INIS)

    Background: Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. Methods and results: We previously developed a low-molecular-weight imaging agent, [125I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mouse model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. Conclusions: IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved. - Highlights: • [125I]iodoDPA SPECT detects atherosclerotic plaques in ApoE -/- mice with high contrast. • Plaques are detected in ApoE -/- mice regardless of diet with iodoDPA. • iodoDPA has very low uptake in healthy tissue including healthy TSPO + tissues at 24 h

  9. Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA

    Energy Technology Data Exchange (ETDEWEB)

    Foss, Catherine A., E-mail: cfoss1@jhmi.edu [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287 (United States); Bedja, Djahida [Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 (United States); Faculty of Medicine and Health Sciences, Macquarie University, Sydney (Australia); Mease, Ronnie C.; Wang, Haofan [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287 (United States); Kass, David A. [Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 (United States); Chatterjee, Subroto [Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 (United States); Pomper, Martin G. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287 (United States)

    2015-05-22

    Background: Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. Methods and results: We previously developed a low-molecular-weight imaging agent, [{sup 125}I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mouse model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. Conclusions: IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved. - Highlights: • [{sup 125}I]iodoDPA SPECT detects atherosclerotic plaques in ApoE -/- mice with high contrast. • Plaques are detected in ApoE -/- mice regardless of diet with iodoDPA. • iodoDPA has very low uptake in healthy tissue including healthy TSPO + tissues at 24 h.

  10. (18F-FDG PET imaging of murine atherosclerosis: association with gene expression of key molecular markers.

    Directory of Open Access Journals (Sweden)

    Anne Mette Fisker Hag

    Full Text Available AIM: To study whether (18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/- mice. METHODS: Nine groups of apoE(-/- mice were given normal chow or high-fat diet. At different time-points, (18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif ligand 1 (CXCL-1, monocyte chemoattractant protein (MCP-1, vascular cell adhesion molecule (VCAM-1, cluster of differentiation molecule (CD-68, osteopontin (OPN, lectin-like oxidized LDL-receptor (LOX-1, hypoxia-inducible factor (HIF-1α, HIF-2α, vascular endothelial growth factor A (VEGF, and tissue factor (TF was measured by means of qPCR. RESULTS: The uptake of (18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with (18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001. A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of (18F-FDG. Together they could explain 60% of the (18F-FDG uptake. CONCLUSION: We have demonstrated that (18F-FDG can be used to follow the progression of atherosclerosis in apoE(-/- mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of (18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.

  11. CTHRSSVVC Peptide as a Possible Early Molecular Imaging Target for Atherosclerosis

    Science.gov (United States)

    Silva, Rosemeire A.; Giordano, Ricardo J.; Gutierrez, Paulo S.; Rocha, Viviane Z.; Rudnicki, Martina; Kee, Patrick; Abdalla, Dulcinéia S. P.; Puech-Leão, Pedro; Caramelli, Bruno; Arap, Wadih; Pasqualini, Renata; Meneghetti, José C.; Marques, Fabio L. N.; Khoobchandani, Menka; Katti, Kattesh V.; Lugão, Ademar B.; Kalil, Jorge

    2016-01-01

    The purpose of our work was to select phages displaying peptides capable of binding to vascular markers present in human atheroma, and validate their capacity to target the vascular markers in vitro and in low-density lipoprotein receptor knockout (LDLr−/−) mouse model of atherosclerosis. By peptide fingerprinting on human atherosclerotic tissues, we selected and isolated four different peptides sequences, which bind to atherosclerotic lesions and share significant similarity to known human proteins with prominent roles in atherosclerosis. The CTHRSSVVC-phage peptide displayed the strongest reactivity with human carotid atherosclerotic lesions (p 95% yield as determined by high performance liquid chromatography (HPLC), to validate the binding of the peptide in atherosclerotic plaque specimens. The results supported our hypothesis that CTHRSSVVC peptide has a remarkable sequence for the development of theranostics approaches in the treatment of atherosclerosis and other diseases. PMID:27563889

  12. CTHRSSVVC Peptide as a Possible Early Molecular Imaging Target for Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Rosemeire A. Silva

    2016-08-01

    Full Text Available The purpose of our work was to select phages displaying peptides capable of binding to vascular markers present in human atheroma, and validate their capacity to target the vascular markers in vitro and in low-density lipoprotein receptor knockout (LDLr−/− mouse model of atherosclerosis. By peptide fingerprinting on human atherosclerotic tissues, we selected and isolated four different peptides sequences, which bind to atherosclerotic lesions and share significant similarity to known human proteins with prominent roles in atherosclerosis. The CTHRSSVVC-phage peptide displayed the strongest reactivity with human carotid atherosclerotic lesions (p < 0.05, when compared to tissues from normal carotid arteries. This peptide sequence shares similarity to a sequence present in the fifth scavenger receptor cysteine-rich (SRCR domain of CD163, which appeared to bind to CD163, and subsequently, was internalized by macrophages. Moreover, the CTHRSSVVC-phage targets atherosclerotic lesions of a low-density lipoprotein receptor knockout (LDLr−/− mouse model of atherosclerosis in vivo to High-Fat diet group versus Control group. Tetraazacyclododecane-1,4,7,10-tetraacetic acid-CTHRSSVVC peptide (DOTA-CTHRSSVVC was synthesized and labeled with 111InCl3 in >95% yield as determined by high performance liquid chromatography (HPLC, to validate the binding of the peptide in atherosclerotic plaque specimens. The results supported our hypothesis that CTHRSSVVC peptide has a remarkable sequence for the development of theranostics approaches in the treatment of atherosclerosis and other diseases.

  13. CTHRSSVVC Peptide as a Possible Early Molecular Imaging Target for Atherosclerosis

    Science.gov (United States)

    Silva, Rosemeire A.; Giordano, Ricardo J.; Gutierrez, Paulo S.; Rocha, Viviane Z.; Rudnicki, Martina; Kee, Patrick; Abdalla, Dulcinéia S. P.; Puech-Leão, Pedro; Caramelli, Bruno; Arap, Wadih; Pasqualini, Renata; Meneghetti, José C.; Marques, Fabio L. N.; Khoobchandani, Menka; Katti, Kattesh V.; Lugão, Ademar B.; Kalil, Jorge

    2016-01-01

    The purpose of our work was to select phages displaying peptides capable of binding to vascular markers present in human atheroma, and validate their capacity to target the vascular markers in vitro and in low-density lipoprotein receptor knockout (LDLr−/−) mouse model of atherosclerosis. By peptide fingerprinting on human atherosclerotic tissues, we selected and isolated four different peptides sequences, which bind to atherosclerotic lesions and share significant similarity to known human proteins with prominent roles in atherosclerosis. The CTHRSSVVC-phage peptide displayed the strongest reactivity with human carotid atherosclerotic lesions (p High-Fat diet group versus Control group. Tetraazacyclododecane-1,4,7,10-tetraacetic acid-CTHRSSVVC peptide (DOTA-CTHRSSVVC) was synthesized and labeled with 111InCl3 in >95% yield as determined by high performance liquid chromatography (HPLC), to validate the binding of the peptide in atherosclerotic plaque specimens. The results supported our hypothesis that CTHRSSVVC peptide has a remarkable sequence for the development of theranostics approaches in the treatment of atherosclerosis and other diseases. PMID:27563889

  14. (18)F-FDG PET imaging of murine atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Pedersen, Sune Folke; Christoffersen, Christina;

    2012-01-01

    To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice.......To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice....

  15. Photoacoustic tomography: applications for atherosclerosis imaging

    Science.gov (United States)

    Sangha, Gurneet S.; Goergen, Craig J.

    2016-08-01

    Atherosclerosis is a debilitating condition that increases a patient’s risk for intermittent claudication, limb amputation, myocardial infarction, and stroke, thereby causing approximately 50% of deaths in the western world. Current diagnostic imaging techniques, such as ultrasound, digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and optical imaging remain suboptimal for detecting development of early stage plaques. This is largely due to the lack of compositional information, penetration depth, and/or clinical efficiency of these traditional imaging techniques. Photoacoustic imaging has emerged as a promising modality that could address some of these limitations to improve the diagnosis and characterization of atherosclerosis-related diseases. Photoacoustic imaging uses near-infrared light to induce acoustic waves, which can be used to recreate compositional images of tissue. Recent developments in photoacoustic techniques show its potential in noninvasively characterizing atherosclerotic plaques deeper than traditional optical imaging approaches. In this review, we discuss the significance and development of atherosclerosis, current and novel clinical diagnostic methods, and recent works that highlight the potential of photoacoustic imaging for both experimental and clinical studies of atherosclerosis.

  16. Imaging Atherosclerosis in Diabetes: Current State.

    Science.gov (United States)

    Rahmani, Sina; Nakanishi, Rine; Budoff, Matthew J

    2016-11-01

    Cardiovascular events, including myocardial infarction and stroke, are the primary causes of mortality in both type 1 and type 2 diabetes. Affected patients frequently have asymptomatic coronary artery disease. Studies have shown heterogeneity in cardiovascular risk among patients with diabetes. Imaging can help categorize risk of future cardiovascular events by identifying those patients with atherosclerosis, rather than relying on risk prediction based on population-based studies. In this article, we will review the evidence regarding use of atherosclerosis imaging in patients with diabetes to predict risk of coronary heart disease and mortality. PMID:27658933

  17. Imaging of atherosclerosis with MRI

    International Nuclear Information System (INIS)

    Vascular delineation with Magnetic Resonance Imaging (MRI) suffers from severe artifacts caused by the motion of flowing blood. With recent developments these artifacts are reduced significantly. Using special sequences and processing algorithms the resulting images have an angiographic-like character (MR-Angiography, MRA). While MRA-signals derive from moving spins, the vessel wall itself is suppressed like it is in conventional angiography also. Prerequisites for the assessment of the arterial wall are increased spatial resolution and the discrimination of blood signals. This study demonstrates the clinical value of MRA with respect to arteriosclerosis. Moreover, a pilot study to visualize the arterial wall and atheroma is presented. (author). 11 refs.; 3 figs.; 2 tabs

  18. Atherosclerosis

    Science.gov (United States)

    Atherosclerosis is a disease in which plaque builds up inside your arteries. Plaque is a sticky substance ... flow of oxygen-rich blood to your body. Atherosclerosis can lead to serious problems, including Coronary artery ...

  19. [¹⁸F]-fluorodeoxyglucose PET imaging of atherosclerosis

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Høilund-Carlsen, Poul Flemming

    2015-01-01

    [(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk of atheros......[(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk...... of atherosclerosis-related disease, such as stroke and myocardial infarction. With excellent reproducibility, (18)FDG PET can be a surrogate end point in clinical drug trials, improving trial efficiency. This article summarizes key findings in the literature, discusses limitations of (18)FDG PET imaging...... of atherosclerosis, and reports recommendations to optimize imaging protocols....

  20. Imaging of coronary atherosclerosis in various susceptible groups.

    Science.gov (United States)

    Munnur, Ravi Kiran; Nerlekar, Nitesh; Wong, Dennis T L

    2016-08-01

    Coronary artery disease (CAD) is the leading cause of death and disability worldwide. Atherosclerosis, which is the primary pathophysiologic mechanism for the development of plaque leading to CAD, is a multifactorial process resulting from a complex interplay between genetic susceptibility and various risk factors such as hypertension (HT), dyslipidaemia, diabetes mellitus (DM) and smoking. In addition, influences from other disease states such as chronic kidney disease (CKD), obesity and the metabolic syndrome as well as gender and ethnic diversity also contribute to the disease process. Insights from pathological observations and advances in cellular and molecular biology have helped us understand the process of plaque formation, progression and rupture leading to events. Several intravascular imaging techniques such as intravascular ultrasound (IVUS), Virtual histology IVUS (VH-IVUS) and optical coherence tomography (OCT) allow in vivo assessment of plaque burden, plaque morphology and response to therapy. In addition, non invasive assessment using coronary artery calcium (CAC) score allows risk stratification and plaque burden assessment whilst computed tomography coronary angiography (CTCA) allows evaluation of luminal stenosis, plaque characterisation and quantification. This review aims to summarise the results of invasive and non-invasive imaging studies of coronary atherosclerosis seen in various high-risk populations including DM, metabolic syndrome, obesity, CKD and, gender differences and ethnicity. Understanding the phenotype of plaques in various susceptible groups may allow potential development of personalised therapies. PMID:27500095

  1. Development of Integrated Multimodality Intravascular Imaging System for Assessing and Characterizing Atherosclerosis

    Science.gov (United States)

    Chen, Zhongping

    Atherosclerosis is one of the major causes of morbidity and mortality in developed countries. Early detection of plaque lesions is the first and most necessary step towards preventing the lethal consequences of atherosclerosis. Currently, many biomedical imaging techniques aimed at imaging and assessing vulnerable plaques have been reported in literature. Unfortunately, atherosclerosis is often asymptomatic, as vulnerable plaques grow without causing any detrimental side effects until rupturing. Due to this complication, the information provided by a single clinical arterial imaging technique is often insufficient to diagnose vulnerable plaque formation at an early stage. Therefore, an optimal imaging modality for diagnosis and characterization of plaques should combine high spatial resolution capable of resolving fibrous cap thickness, deep imaging depth capable of assessing plaque burden and vessel remodeling, and molecular sensitivity capable of determining tissue composition and mechanical properties.

  2. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke;

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu......Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular...... and cellular levels in living systems, this technology represents an opportunity to investigate some of these questions in vivo. In addition, molecular imaging may be translated into clinical use and eventually pave the way for more personalized treatment regimes in patients. Here, we review the current...

  3. Future non-invasive imaging to detect vascular plaque instability and subclinical non-obstructive atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Arnon Blum; Menachem Nahir

    2013-01-01

    Atherosclerosis underlies the major causes of death in the Western World. Our main goal is to detect early changes of atherosclerosis and to identify subjects at highest cardiovascular risk that may aid in the development of prevention approaches and better management that will decrease cardiovascular morbidity and mortality. The new methods that are of interest include the advanced vascular ultrasound methods, the infra red and near infra red imaging techniques, the EndoPat device that reflects peripheral arterial tone, the electron beam computed tomography, the magnetic resonance imaging, and the molecular imaging techniques. In this review we will focus on the future of advanced imaging techniques that are being developed to detect early (pre-clinical) development of atherosclerosis.

  4. Imaging of coronary atherosclerosis: Intravascular ultrasound

    NARCIS (Netherlands)

    H.M. Garcia-Garcia (Hector); M.A. Costa (Marco); P.W.J.C. Serruys (Patrick)

    2010-01-01

    textabstractAtherosclerosis is the main cause of coronary heart disease, which is today the leading cause of death worldwide and will continue to be the first in the world in 2030. In the formation of atherosclerotic coronary lesions, a critical primary step is the accumulation and oxidation of low-

  5. Photoacoustic imaging of carotid artery atherosclerosis

    Science.gov (United States)

    Kruizinga, Pieter; van der Steen, Antonius F. W.; de Jong, Nico; Springeling, Geert; Robertus, Jan Lukas; van der Lugt, Aad; van Soest, Gijs

    2014-11-01

    We introduce a method for photoacoustic imaging of the carotid artery, tailored toward detection of lipid-rich atherosclerotic lesions. A common human carotid artery was obtained at autopsy, embedded in a neck mimicking phantom and imaged with a multimodality imaging system using interstitial illumination. Light was delivered through a 1.25-mm-diameter optical probe that can be placed in the pharynx, allowing the carotid artery to be illuminated from within the body. Ultrasound imaging and photoacoustic signal detection is achieved by an external 8-MHz linear array coupled to an ultrasound imaging system. Spectroscopic analysis of photoacoustic images obtained in the wavelength range from 1130 to 1250 nm revealed plaque-specific lipid accumulation in the collagen structure of the artery wall. These spectroscopic findings were confirmed by histology.

  6. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques

    OpenAIRE

    Lee, Soo Jin; Paeng, Jin Chul

    2015-01-01

    Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell...

  7. METHODS FOR SEGMENTATION OF IVUS ATHEROSCLEROSIS IMAGES

    OpenAIRE

    R. Ravindraiah; K. Tejaswini

    2013-01-01

    Segmentation is an important aspect of medical image processing. Segmentation of coronary arteries ofatherosclerosis is one important process prior to many analyses and visualization tasks for intravascular ultrasound (IVUS)images. It is also helpful in the finding of the disease and its progressive treatment. Different methods are used for medicalimage segmentation such as Clustering methods, Thresholding method, Classifier, Region Growing, Deformable Model,Markov Random Model etc. The main ...

  8. Imaging of coronary atherosclerosis - evolution towards new treatment strategies.

    Science.gov (United States)

    Dweck, Marc R; Doris, Mhairi K; Motwani, Manish; Adamson, Philip D; Slomka, Piotr; Dey, Damini; Fayad, Zahi A; Newby, David E; Berman, Daniel

    2016-09-01

    Coronary atherosclerosis and the precipitation of acute myocardial infarction are highly complex processes, which makes accurate risk prediction challenging. Rapid developments in invasive and noninvasive imaging technologies now provide us with detailed, exquisite images of the coronary vasculature that allow direct investigation of a wide range of these processes. These modalities include sophisticated assessments of luminal stenoses and myocardial perfusion, complemented by novel measures of the atherosclerotic plaque burden, adverse plaque characteristics, and disease activity. Together, they can provide comprehensive, individualized assessments of coronary atherosclerosis as it occurs in patients. Not only can this information provide important pathological insights, but it can also potentially be used to guide personalized treatment decisions. In this Review, we describe the latest advances in both established and emerging imaging techniques, focusing on the strengths and weakness of each approach. Moreover, we discuss how these technological advances might be translated from attractive images into novel imaging strategies and definite improvements in clinical risk prediction and patient outcomes. This process will not be easy, and the many potential barriers and difficulties are also reviewed. PMID:27226154

  9. 动脉粥样硬化斑块MRI和近红外分子影像的实验研究%Molecular imaging of atherosclerosis in mice with MRI and near-infrared fluorescence imaging

    Institute of Scientific and Technical Information of China (English)

    卢瞳; 文颂; 周官辉; 居胜红; 滕皋军

    2012-01-01

    .05,n =8 ).The positive areas in imaging were (41.69 ± 5.29) % and (39.45 ± 5.35 ) %,respectively.Immunofluorescence staining demonstrated that the expression of oxLDL was closely associated to macrophage infiltrates.Conclusion This study demonstrates that atherosclerotic plaque MRI and NIRF imaging are feasible by using novel molecular imaging probes and may help to identify high-risk plaques,providing a foundation for multimodality imaging of atherosclerosis.%目的 探讨7.0 T MRI和近红外荧光成像(NIRF)检测动脉粥样硬化(AS)斑块的可行性.方法 对14周龄ApoE-/-小鼠按高脂饮食喂养20周,建立AS模型,以正常C57BL/6小鼠作为对照.MRI实验中,5只ApoE-/-小鼠及5只C57小鼠经尾静脉注入超微超顺磁性氧化铁颗粒(USPIO)前及36 h后分别行7.0 T MRI.NIRF实验中,10只ApoE-/-小鼠和4只C57小鼠经尾静脉注入抗氧化修饰的低密度脂蛋白(oxLDL)抗体-NIR 797(抗-oxLDL-抗体-NIR 797)近红外探针,4只ApoE-/-小鼠经尾静脉注入非特异性IgG-NIR 797,另4只ApoE-/-小鼠注入PBS,24h后分别行NIRF.用SPSS17.0软件对计量数据行独立样本t检验和单因素方差分析.结果 ApoE-/-小鼠注入USPIO 36 h后,在T2WI上腹主动脉斑块信号较注射前减低,相对信号强度分别为0.70±0.04和1.28±0.06,差异有统计学意义(t =3.376,P<O.05),信号改变率达(-56.58±4.25)%;普鲁士蓝染色证实斑块内有铁沉积.注入抗-oxLDL-抗体-NIR 797 24 h后,ApoE-/-小鼠主动脉离体NIRF示强荧光信号(SNR为42.51 ±5.24)聚集于主动脉根、主动脉弓及降主动脉起始段,而非特异性IgG-NIR 797组(19.58±3.06)、PBS组(4.19±0.82)及对照C57小鼠(2.29±1.11)仅见较弱荧光信号,与靶向探针组比较差异有统计学意义(F =25.104,P<0.05).斑块油红O染色与NIRF阳性面积分别为(41.69 ±5.29)%和(39.45±5.35)%,两者呈线性相关(r=0.738,P<0.05,n=8),免疫荧光证实斑块内oxLDL的表达与巨噬细胞共区域.结论 应

  10. Molecular imaging of vulnerable atherosclerosis. Preclinical and clinical evaluation of nuclear tracers; Imagerie moleculaire de la plaque d'atherome vulnerable. Evaluation preclinique et clinique de traceurs radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Broisat, A.; Riou, L.M.; Dimastromatteo, J.; Pons, G.; Fagret, D.; Ghezzi, C. [Inserm U877, radiopharmaceutiques biocliniques, 38 - Grenoble (France); Grenoble Univ., 38 (France); Dimastromatteo, J. [ERAS Labo, 38 - Saint-Nazaire-les-Eymes (France)

    2009-02-15

    Atherosclerotic cardiovascular diseases (C.V.D.) are the leading cause of mortality worldwide, accounting for greater than 19.106 deaths annually. Despite major advances in the treatment of C.V.D., a high proportion of C.V.D. victims die suddenly while being apparently healthy, the great majority of these accidents being due to the rupture or erosion of a vulnerable coronary atherosclerotic plaque. Indeed, an acute heart attack is the first symptom of atherosclerosis in as much as 50% of individuals with severe disease. A non-invasive imaging methodology allowing the early detection of vulnerable atherosclerosis in selected individuals prior to the occurrence of any symptom would therefore be of great public health benefit. Nuclear imaging could potentially allow the identification of vulnerable patients by non-invasive scintigraphic imaging following administration of a radiolabeled tracer. The development of radiolabeled probes that specifically bind to and allow the in vivo imaging of vulnerable atherosclerotic plaques is therefore the subject of intense ongoing experimental and clinical research. Radiotracers targeted at the inflammatory process seem particularly relevant and promising. Recently, macrophage targeting allowed the experimental in vivo detection of atherosclerosis using either SPECT or PET imaging. A few tracers have also been evaluated clinically. Targeting of apoptosis and macrophage metabolism both allowed the imaging of vulnerable atherosclerotic plaques in the carotid vessels of patients. However, nuclear imaging of vulnerable plaques at the level of the coronary arteries remains a challenging issue because of the small size of atherosclerotic lesions and of their vicinity with blood and the circulating tracer activity. (authors)

  11. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...... PET and MRI have previously been used for imaging plaque morphology and function: however, the combination of the two methods may offer new synergistic opportunities. Here, we will give a short summary of current relevant clinical applications of PET and MRI in the setting of atherosclerosis....... Additionally, our initial experiences with simultaneous PET/MRI for atherosclerosis imaging are presented. Finally, future potential vascular applications exploiting the unique combination of PET and MRI will be discussed....

  12. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  13. Cardiovascular molecular MR imaging

    OpenAIRE

    Lamb, H J; van der Meer, R. W.; Roos, A. (Anna); Bax, J J

    2007-01-01

    Introduction Cardiovascular molecular imaging is a rapidly evolving field of research, aiming to image and quantify molecular and cellular targets in vivo. MR imaging has some inherent properties that make it very suitable for cardiovascular molecular imaging. Until now, only a limited number of studies have been published on cardiovascular molecular imaging using MR imaging. Review In the current review, MR techniques that have already shown potential are discussed. Metabolic MR imaging can ...

  14. Inflammatory therapeutic targets in coronary atherosclerosis – from molecular biology to clinical application

    Directory of Open Access Journals (Sweden)

    Fabian eLinden

    2014-11-01

    Full Text Available Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over three years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecu-lar inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis.

  15. Combining OCT and a fluorescence intensity imaging method for atherosclerosis detection

    Science.gov (United States)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Yin, Jiechen; Narula, Jagat; Chen, Zhongping

    2012-02-01

    Coronary heart disease (like myocardial infarction) is caused by atherosclerosis. It cause over 30% of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. To diagnose this atherosclerosis before it gets rupture is the most effect way to increase the chance of survival for patients who suffer from this disease. The crucial tusk is how to find out vulnerable plaques. In resent years optical coherence tomography (OCT) has become a very useful tool for intravascular imaging, since it has high axial and transverse resolution. OCT can tell the detail structure inside the plaque like the thickness of plaque cap which is an important factor to identify vulnerable plaques. But we still need to find out the biochemical characteristics that is unique for vulnerable plaques (like inflammation). Fluorescence molecular imaging is a standard way to exam the biochemical property of biological samples. So we integrate these two techniques together into one probe. Our probe is comprised of a double-clad fiber (DCF) and a grin lens, and rotates with a micro mirror in front. The single-mode inner core of the DCF transmits both OCT and fluorescence excitation light, and the multimode inner cladding is used to detect fluorescence signal. In vitro result shows that this is a possible way for more accurate diagnose of vulnerable plaques.

  16. Advance in molecular imaging research of vascular smooth muscle cells in the vascular diseases

    International Nuclear Information System (INIS)

    Vascular smooth muscle cells (VSMCs) are the primary cells within the vascular wall structure and maintain the tension of blood vessels, playing a key role in the restenosis, atherosclerosis and some other vascular diseases. With the development of molecular imaging, VSMCs cellular level of imaging studies is becoming more and more attention. The phenotype modulation, proliferation, migration and molecular imaging research progress of VSMCs in pathologic state were reviewed, to improve the management of vascular restenosis and atherosclerosis. (authors)

  17. Molecular Imaging of the Kidneys

    Science.gov (United States)

    Szabo, Zsolt; Alachkar, Nada; Xia, Jinsong; Mathews, William B.; Rabb, Hamid

    2010-01-01

    . Considering the increasing age of general population, the incidence of kidney diseases such as atherosclerosis, diabetic nephropathy, and cancer is expected to increase. Successful management of these diseases offers an opportunity and a challenge for development of novel molecular imaging technologies. PMID:21111857

  18. Contrast-enhanced ultrasound for imaging vasa vasorum: Comparison with histopathology in a swine model of atherosclerosis

    OpenAIRE

    Schinkel, Arend; Krueger, Chris; Tellez, Armando; Granada, Juan; Reed, Jess; Hall, Anne; Zang, William; Owens, Cindy; Kaluza, Grzegorz; Staub, Daniel; Coll, Blai; Cate, Folkert; Feinstein, Steven

    2010-01-01

    textabstractAimTo evaluate the agreement between contrast-enhanced ultrasound imaging and histopathology in an animal model of atherosclerosis.Methods and results: Atherosclerosis was studied in both femoral arteries of four Rapacz familial hypercholesterolaemia (RFH) swine. Contrast-enhanced ultrasound imaging of the eight femoral arteries was performed at baseline and at 5, 12, 26, and 43 weeks follow-up after percutaneous transluminal stimulation of atherosclerosis to assess the progressio...

  19. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  20. Cardiovascular Molecular Imaging

    OpenAIRE

    Khanicheh, Elham

    2009-01-01

    Although there have been significant improvements in the treatment of cardiovascular diseases they still remain the main cause of morbidity and mortality globally. Currently available diagnostic approaches may not be adequate to detect pathologic changes during the early disease stages, which may be valuable for risk stratification and also to assess a response to a therapy. Therefore molecular imaging techniques such as Contrast Enhanced Ultrasound (CEU) molecular imaging to noninvasively i...

  1. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kukreja A

    2014-05-01

    Full Text Available Aastha Kukreja,1 Eun-Kyung Lim,2–4 Byunghoon Kang,1 Yuna Choi,2 Taeksu Lee,1 Jin-Suck Suh,2,3 Yong-Min Huh,2,3 Seungjoo Haam1,31Department of Chemical and Biomolecular Engineering, College of Engineering, 2Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea; 3YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea; 4BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of KoreaAbstract: In this study, dextran-encrusted magnetic nanoclusters (DMNCs were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.Keywords: magnetic nanocrystal, magnetic resonance imaging, atherosclerosis, macrophages, dextran

  2. Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice

    Directory of Open Access Journals (Sweden)

    Fei Yan

    2015-01-01

    Full Text Available The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein- targeted microparticles of iron oxide (CD81-MPIO for magnetic resonance imaging (MRI of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G- MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (P<0.01. Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging.

  3. Imaging Coronary Atherosclerosis and Vulnerable Plaques with Optical Coherence Tomography

    Science.gov (United States)

    Tearney, Guillermo J.; Jang, Ik-Kyung; Kashiwagi, Manubu; Bouma, Brett E.

    Intracoronary optical coherence tomography (OCT) is an invasive microscopic imaging technology that has been developed for the identification of vulnerable plaque. OCT acquires cross-sectional images of tissue reflectance and, since it may be implemented through an optical fiber probe, it is readily adaptable to coronary catheters for insertion into coronary arteries and circumferential imaging of arterial pathology. The first investigation of vascular optical coherence tomography ex vivo demonstrated the potential of this technique to identify arterial microstructure. Subsequent development of OCT technology enabled image acquisition at rates sufficient for intracoronary imaging in human patients. In this chapter, we review studies conducted with this technology at the Massachusetts General Hospital (MGH). Results from these studies show that a wide variety of microscopic features, including those associated with TCFAs, can be identified by OCT imaging both ex vivo and in living human patients. These findings suggest that this technology will play an important role in improving our understanding of coronary artery disease, guiding local therapy, and decreasing themortality of AMI.

  4. Coronary atherosclerosis is already ongoing in pre-diabeticstatus: Insight from intravascular imaging modalities

    Institute of Scientific and Technical Information of China (English)

    Osamu Kurihara; Masamichi Takano; Yoshihiko Seino; Wataru Shimizu; Kyoichi Mizuno

    2015-01-01

    Diabetes mellitus is a powerful risk factor of coronaryartery disease (CAD), leading to death and disability.In recent years, given the accumulating evidence thatprediabetes is also related to increasing risk of CADincluding cardiovascular events, a new guideline hasbeen proposed for the treatment of blood cholesterolfor primary prevention of cardiovascular events. Thisguideline recommends aggressive lipid-lowering statintherapy for primary prevention in diabetes and otherpatients. The ultimate goal of patient managementis to inhibit progression of systemic atherosclerosisand prevent fatal cardiovascular events such as acutecoronary syndrome (ACS). Because disruption ofatherosclerotic coronary plaques is a trigger of ACS,the high-risk atheroma is called a vulnerable plaque.Several types of novel diagnostic imaging technologieshave been developed for identifying the characteristicsof coronary atherosclerosis before the onset of ACS,especially vulnerable plaques. According to coronaryangioscopic evaluation, atherosclerosis severity andplaque vulnerability were more advanced in prediabeticthan in nondiabetic patients and comparable to thatin diabetic patients. In addition, pharmacologicalintervention by statin therapy changed plaque color andcomplexity, and the dynamic changes in plaque featuresare considered plaque stabilization. In this article, wereview the findings of atherosclerosis in prediabetes,detected by intravascular imaging modalities, and thetherapeutic implications.

  5. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  6. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    Directory of Open Access Journals (Sweden)

    Ricardo A Verdugo

    Full Text Available Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts

  7. Imaging arterial cells, atherosclerosis, and restenosis by multimodal nonlinear optical microscopy

    Science.gov (United States)

    Wang, Han-Wei; Simianu, Vlad; Locker, Matthew J.; Sturek, Michael; Cheng, Ji-Xin

    2008-02-01

    By integrating sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on a coherent anti-Stokes Raman scattering (CARS) microscope platform, multimodal nonlinear optical (NLO) imaging of arteries and atherosclerotic lesions was demonstrated. CARS signals arising from CH II-rich membranes allowed visualization of endothelial cells and smooth muscle cells in a carotid artery. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are rich in CH II bonds in their cross-linking residues. The extracellular matrix organization was further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. The system is capable of identifying different atherosclerotic lesion stages with sub-cellular resolution. The stages of atherosclerosis, such as macrophage infiltration, lipid-laden foam cell accumulation, extracellular lipid distribution, fibrous tissue deposition, plaque establishment, and formation of other complicated lesions could be viewed by our multimodal CARS microscope. Collagen percentages in the region adjacent to coronary artery stents were resolved. High correlation between NLO and histology imaging evidenced the validity of the NLO imaging. The capability of imaging significant components of an arterial wall and distinctive stages of atherosclerosis in a label-free manner suggests the potential application of multimodal nonlinear optical microscopy to monitor the onset and progression of arterial diseases.

  8. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  9. Molecular breast imaging. An update

    International Nuclear Information System (INIS)

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy (1H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging (23Na-MRI), phosphorus spectroscopy (31P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.)

  10. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo

    Science.gov (United States)

    Wu, Chenxin; Zhang, Yejun; Li, Zhen; Li, Chunyan; Wang, Qiangbin

    2016-06-01

    Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications.Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively

  11. Time-resolved molecular imaging

    Science.gov (United States)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  12. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    Science.gov (United States)

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  13. Molecular mechanisms of atherosclerosis in metabolic syndrome: role of reduced IRS2-dependent signaling

    OpenAIRE

    González-Navarro, Herminia; Vinué, Ángela; Vila-Caballer, Marian; Fortuño, Ana; Beloqui, Oscar; Zalba, Guillermo; Burks, Deborah J.; Díez, Javier; Andrés, Vicente

    2008-01-01

    OBJECTIVE: The mechanisms underlying accelerated atherosclerosis in metabolic syndrome (MetS) patients remain poorly defined. In the mouse, complete disruption of insulin receptor substrate-2 (Irs2) causes insulin resistance, MetS-like manifestations, and accelerates atherosclerosis. Here, we performed human, mouse, and cell culture studies to gain insight into the contribution of defective Irs2 signaling to MetS-associated alterations. METHODS AND RESULTS: In circulating leukocytes from ...

  14. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  15. Molecular imaging in oncology

    OpenAIRE

    Dzik-Jurasz, A S K

    2004-01-01

    Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular ther...

  16. Molecular imaging in ovarian cancer.

    Science.gov (United States)

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  17. Modelling atherosclerosis by proteomics: Molecular changes in the ascending aortas of cholesterol-fed rabbits.

    Science.gov (United States)

    Xu, Jingshu; Jüllig, Mia; Middleditch, Martin J; Cooper, Garth J S

    2015-09-01

    The cholesterol-fed rabbit is commonly used as a model to study the vascular effects of hypercholesterolemia and resulting atherosclerotic lesions. Here we undertook a proteomic case-control investigation of ascending aortas from male New Zealand White rabbits after 10 weeks on a high-cholesterol (2% w/w) diet (HCD, n = 5) or control diet (n = 5), in order to determine the changes in response to the HCD. Histology confirmed intimal thickening in the HCD group consistent with atherosclerosis, and LC-MS/MS analysis of individually-obtained ascending aortic extracts labelled with isobaric (iTRAQ) tags enabled the identification and quantitation of 453 unique proteins above the 1% false discovery rate threshold. Of 67 proteins showing significant differences in relative abundance (p atherosclerosis. This and additional novel observations merit further investigation as these perturbations may play important and as yet undiscovered roles in the pathogenesis of atherosclerosis in rabbits as well as humans.

  18. Molecular imaging with terahertz waves.

    Science.gov (United States)

    Oh, Seung Jae; Choi, Jihye; Maeng, Inhee; Park, Jae Yeon; Lee, Kwangyeol; Huh, Yong-Min; Suh, Jin-Suck; Haam, Seungjoo; Son, Joo-Hiuk

    2011-02-28

    We demonstrate a highly sensitive THz molecular imaging (TMI) technique involving differential modulation of surface plasmons induced on nanoparticles and obtain target specific in vivo images of cancers. This technique can detect quantities of gold nanoparticles as small as 15 µM in vivo. A comparison of TMI images with near infrared absorption images shows the superior sensitivity of TMI. Furthermore, the quantification property of TMI is excellent, being linearly proportional to the concentration of nanoparticles. The target specificity issue is also addressed at the ex vivo and cell levels. The high thermal sensitivity of TMI can help extend photonic-based photothermal molecular imaging researches from the in vitro level to the in vivo level. The TMI technique can be used for monitoring drug delivery processes and for early cancer diagnosis.

  19. Advances in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    Multimodality molecular imaging is now playing a pivotal role in clinical setting and biomedical research. Modern molecular imaging technologies are deemed to potentially lead to a revolutionary paradigm shift in healthcare and revolutionize clinical practice. Within the spectrum of macroscopic medical imaging, sensitivity ranges from the detection of millimolar to submillimolar concentrations of contrast media with computed tomography (CT) and magnetic resonance imaging (MRI), respectively, to picomolar concentrations in single-photon emission computed tomography (SPECT) and positron emission 8 9 tomography (PET): a 108-109 difference. Even though the introduction of dedicated dual-modality imaging systems designed specifically and available commercially for clinical practice is relatively recent, the concept of combining anatomical and functional imaging has been recognized for several decades. Software- and hardware-based correlation between anatomical (x-ray CT, MRI) and physiological (PET) information is a promising research field and now offers unique capabilities for the medical imaging community and biomedical researchers. The introduction of dual-modality PET/CT imaging systems in clinical environments has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a 'one-stop shop' and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging where the first patient images have been shown late in 2006. This paper discusses the

  20. Correlation of collagen synthesis with polarization-sensitive optical coherence tomography imaging of in vitro human atherosclerosis

    Science.gov (United States)

    Kuo, Wen-Chuan; Shyu, Jeou-Jong; Chou, Nai-Kuan; Lai, Chih-Ming; Tien, En-Kuang; Huang, Huan-Jang; Chou, Chien; Jan, Gwo-Jen

    2005-04-01

    Atherosclerosis is unquestionably the leading cause of morbidity and mortality in developed countries. In the mean time, the worldwide importance of acute vascular syndromes is increasing. Because collagen fiber is a critical component of atherosclerotic lesions; it constitutes up to 60% of the total atherosclerotic plaque protein. The uncontrolled collagen accumulation leads to arterial stenosis, whereas excessive collagen breakdown weakens plaques thereby making them prone to rupture finally. Thus, in this study, we present the first application, to our knowledge, of using polarization-sensitive optical coherence tomography (PS-OCT) in human atherosclerosis. We demonstrate this technique for imaging of intensity, birefringence, and fast-axis orientation simultaneously in atherosclerotic plaques. This in vitro study suggests that the birefringence change in plaque is due to the prominent deposition of collagen according to the correlation of PS-OCT images with histological counterpart. Moreover, we can acquire quantitative criteria based on the change of polarization of incident beam to estimate whether the collagen synthesized is "too much" or "not enough". Thus by combining of high resolution intensity imaging and birefringence detection makes PS-OCT could be a potentially powerful tool for early assessment of atherosclerosis appearance and the prediction of plaque rupture in clinic.

  1. CORRELATIONS OF LOW MOLECULAR WEIGHT PHENOTYPE OF APOPROTEIN(A AND SERUM LEVEL OF LIPOPROTEIN(A WITH MULTIFOCAL ATHEROSCLEROSIS IN PATIENTS WITH CORONARY HEART DISEASE

    Directory of Open Access Journals (Sweden)

    O. I. Afanasieva

    2010-01-01

    Full Text Available Background. Atherosclerosis is a systemic disease. That is why the damage is not restricted by one vascular area in 18-50% of patients. High serum level of lipoprotein(a [Lp(a] is an independent risk factor for coronary, carotid and peripheral atherosclerosis. However the correlation of apoprotein(a [apo(a] polymorphism with the multifocal atherosclerosis in coronary heart disease (CHD is not sufficiently studied.Aim. To study the correlation of apo(a phenotype with the multifocal atherosclerosis in CHD patients.Material and Methods. 220 patients aged 32- 76 y.o. with the proven coronary and carotid atherosclerosis were split into two groups depending on the presence (n=22 or absence (n=198 of peripheral atherosclerosis. Evaluation of lipid profile, Lp(a and determination of apo(a isoforms by SDS electrophoresis in polyacrylamide gel and immunoblotting was performed in all patients.Results. Both groups of patients were comparable by age, sex, classical cardiovascular risk factors, including frequency of hyperlipidemia and diabetes mellitus, lipid profile. The Lp(a serum level ≥30 mg/dL and low molecular weight (LMW apo(a phenotype were found more often in patients with multifocal than coronary and carotid atherosclerosis: 55 and 45% (р=0.372; 73 and 44% (p<0.05, respectively. According to multiple regression analysis (including sex, age, smoking status, and Lp(a serum level only smoking status (β=0.203, p=0.0003 and a size of apo(a isoforms (β=0.191, p=0.0133 correlated with the peripheral atherosclerosis in patients with CHD. LMW apo(a phenotype was the most significant predictor of peripheral atherosclerosis (β=0.281, p=0.0089 regardless of the Lp(a serum level in patients under 55 y.o. High Lp(a serum level combined with LMW apo(a phenotype associated with more significant coronary, carotid and peripheral atherosclerosis.Conclusion. LMW apo(a phenotype relates to the presence of multifocal atherosclerosis in CHD patients regardless of

  2. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  3. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  4. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center

    2013-07-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  5. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    International Nuclear Information System (INIS)

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  6. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC), Department of Nuclear Medicine and Cardiovascular Research Institute (CARIM), P. Debyelaan 25, HX, Maastricht (Netherlands); Hyafil, Fabien [Bichat University Hospital, Inserm 1148, DHU FIRE, Assistance Publique - Hopitaux de Paris, Department of Nuclear Medicine, Paris (France); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Verberne, Hein J. [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede (Netherlands); Lindner, Oliver [Heart and Diabetes Center NRW, Nuclear Medicine and Molecular Imaging, Institute of Radiology, Bad Oeynhausen (Germany); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Agostini, Denis [Normandie Universite, Department of Nuclear Medicine, CHU Cote de Nacre, Caen (France); Uebleis, Christopher [Ludwig-Maximilians Universitaet Muenchen, Department of Clinical Radiology, Muenchen (Germany); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hacker, Marcus [Medical University Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided therapy, Vienna (Austria); Collaboration: on behalf of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-04-15

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  7. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    Science.gov (United States)

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  8. Molecular imaging in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Mark H. [Stanford University School of Medicine, Stanford, CA (United States); Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States)

    2011-02-15

    The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies. (orig.)

  9. 3D molecular imaging SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Greg [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States)]. E-mail: Greg.gillen@nist.gov; Fahey, Albert [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States); Wagner, Matt [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States); Mahoney, Christine [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States)

    2006-07-30

    Thin monolayer and bilayer films of spin cast poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(lactic) acid (PLA) and PLA doped with several pharmaceuticals have been analyzed by dynamic SIMS using SF{sub 5} {sup +} polyatomic primary ion bombardment. Each of these systems exhibited minimal primary beam-induced degradation under cluster ion bombardment allowing molecular depth profiles to be obtained through the film. By combing secondary ion imaging with depth profiling, three-dimensional molecular image depth profiles have been obtained from these systems. In another approach, bevel cross-sections are cut in the samples with the SF{sub 5} {sup +} primary ion beam to produce a laterally magnified cross-section of the sample that does not contain the beam-induced damage that would be induced by conventional focussed ion beam (FIB) cross-sectioning. The bevel surface can then be examined using cluster SIMS imaging or other appropriate microanalysis technique.

  10. Non-invasive imaging for subclinical coronary atherosclerosis in patients with peripheral artery disease

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjaer, Andreas; Hesse, Birger

    2014-01-01

    Patients with peripheral artery disease are at high risk of coronary artery disease. An increasing number of studies show that a large proportion of patients with peripheral artery disease have significant coronary atherosclerosis, even in the absence of symptoms. Although the reported prevalence...... of subclinical coronary artery disease varies widely in patients with peripheral artery disease, it could include more than half of patients. No consensus exists to date on either the rationale for screening patients with peripheral artery disease for coronary atherosclerosis or the optimal algorithm and method...

  11. Molecular imaging of brown adipose tissue in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  12. Advances in multimodality molecular imaging

    Directory of Open Access Journals (Sweden)

    Zaidi Habib

    2009-01-01

    Full Text Available Multimodality molecular imaging using high resolution positron emission tomography (PET combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT and functional or metabolic (PET information provided in a "one-stop shop" and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed.

  13. Sparse image reconstruction for molecular imaging

    CERN Document Server

    Ting, Michael; Hero, Alfred O

    2008-01-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at sub-atomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. The paper therefore does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing t...

  14. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  15. Vector flow imaging of the ascending aorta. Are systolic backflow and atherosclerosis related?

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper;

    2015-01-01

    In the ascending aorta, atherosclerotic plaque formation, which is a risk factor for cerebrovascular events, most often occurs along the inner curvature. Atherosclerosis is a multifactorial disease, but the predilection site for the aortic vessel degradation is probably flow dependent. To better...... understand the aortic flow and especially the complex flow patterns, the ascending aorta was scanned intraoperatively in patients undergoing heart surgery using the angle-independent vector velocity ultrasound method Transverse Oscillation (TO). The primary aim of the study was to analyze systolic backflow...... in relation to atherosclerosis. Thirteen patients with normal aortic valves were included in to the study. TO implemented on a conventional US scanner (ProFocus 2202 UltraView, BK Medical, Herlev, Denmark) with a linear array transducer (8670, BK Medical, Herlev, Denmark) was used intraoperatively...

  16. Analysis of Soluble Molecular Fibronectin-Fibrin Complexes and EDA-Fibronectin Concentration in Plasma of Patients with Atherosclerosis.

    Science.gov (United States)

    Lemańska-Perek, Anna; Krzyżanowska-Gołąb, Dorota; Pupek, Małgorzata; Klimeczek, Piotr; Witkiewicz, Wojciech; Kątnik-Prastowska, Iwona

    2016-06-01

    Atherosclerosis, a chronic vascular disease, leads to molecular events bound with interplaying processes of inflammation and coagulation. In the present study, fibronectin (FN), FN containing extra domain A (EDA-FN), frequency of occurrence, and relative amounts of soluble plasma FN-fibrin complexes were analyzed in 80 plasma samples of patients suspected of coronary artery disease based on clinical evaluation and changes in arteries found by computed tomographic coronary angiography. The study showed that in the plasma of the patients' group with high risk of coronary artery disease EDA-FN concentration was significantly higher (3.5 ± 2.5 mg/L; P < 0.025) and the molecular FN-fibrin complexes of 1000 kDa and higher occurred more often than in the groups of patients with mild risk of coronary artery disease and the normal age-matched. The increased level of EDA-FN and occurrence of FN-fibrin complexes could have a potential diagnostic value in the diagnosis and management of patients with coronary artery disease. PMID:27022744

  17. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    Science.gov (United States)

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  18. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    Science.gov (United States)

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  19. Molecular and Functional Imaging of Internet Addiction

    OpenAIRE

    Yunqi Zhu; Hong Zhang; Mei Tian

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) an...

  20. Ultrasound molecular imaging: Moving toward clinical translation

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K., E-mail: willmann@stanford.edu

    2015-09-15

    Highlights: • Ultrasound molecular imaging is a highly sensitive modality. • A clinical grade ultrasound contrast agent has entered first in human clinical trials. • Several new potential future clinical applications of ultrasound molecular imaging are being explored. - Abstract: Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.

  1. Nanodiamond Imaging: a New Molecular Imaging Approach

    OpenAIRE

    Hegyi, Alex Nathan

    2013-01-01

    Nanodiamond imaging is a novel biomedical imaging technique that non-invasively records the distribution of biologically-tagged nanodiamonds in vivo, in two or three dimensions. A nanodiamond imaging system optically detects electron spin resonance of nitrogen-vacancy centers in nanodiamonds, a non-toxic nanomaterial that is easily biologically functionalized. Two systems were built to demonstrate the feasibility of the technique. Using the first system, we imaged 2D projections of multipl...

  2. Molecular imaging of mental disorders

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) techniques have made it possible to measure changes in neurochemical components in living human brain. PET can be used to investigate various brain functions such as receptors, transporters, enzymes and various biochemical pathways; therefore, it could be a powerful tool for molecular imaging of mental disorders. Since the pathophysiology of schizophrenia has been discussed with a functional alteration of dopaminergic transmission in the brain, we have focused the dopaminergic components for the research target of schizophrenia using PET. Using high affinity ligand [11C]FLB 457, we found reduced D2 receptor binding in the anterior cingulate cortex of patients with schizophrenia, and a significant negative correlation was observed between D2 receptor binding and the positive symptom score. Subregions of interest were defined on the thalamus using individual magnetic resonance images. D2 receptor binding was also lower in the central medial and posterior subregions of the thalamus in patients with schizophrenia. Alterations in D2 receptor function in the extrastriatal region may underlie the positive symptoms of schizophrenia. On the other hand D1 receptor binding was found to be lower in the prefrontal cortex and a significant negative correlation was observed between D1 receptor binding and the negative symptom score. Abnormality of D1 receptor function would be at the bottom of the negative symptoms and cognitive impairment of schizophrenia. Regarding the effect of antipsychotics on dopamine D2 receptor, occupancy and it's time-course have been measured in a living body using PET. This approach can provide in vivo pharmacological evidences of antipsychotics and establish the rational therapeutic strategy. PET is a powerful tool not only in the field of brain research but also drug discovery. (author)

  3. Molecular Imaging of Pulmonary Cancer and Inflammation

    OpenAIRE

    Divgi, Chaitanya R.

    2009-01-01

    Molecular imaging (MI) may be defined as imaging in vivo using molecules that report on biologic function. This review will focus on the clinical use of radioactive tracers (nonpharmacologic amounts of compounds labeled with a radioactive substance) that permit external imaging using single photon emission computed tomography (planar, SPECT) or positron emission tomography (PET) imaging. Imaging of lung cancer has been revolutionized with the use of fluorine-18–labeled fluorodeoxyglucose (18F...

  4. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.

    Science.gov (United States)

    Borow, Kenneth M; Nelson, John R; Mason, R Preston

    2015-09-01

    Residual cardiovascular (CV) risk remains in dyslipidemic patients despite intensive statin therapy, underscoring the need for additional intervention. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into membrane phospholipids and atherosclerotic plaques and exerts beneficial effects on the pathophysiologic cascade from onset of plaque formation through rupture. Specific salutary actions have been reported relating to endothelial function, oxidative stress, foam cell formation, inflammation, plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture. EPA also improves atherogenic dyslipidemia characterized by reduction of triglycerides without raising low-density lipoprotein cholesterol. Other beneficial effects of EPA include vasodilation, resulting in blood pressure reductions, as well as improved membrane fluidity. EPA's effects are at least additive to those of statins when given as adjunctive therapy. In this review, we present data supporting the biologic plausibility of EPA as an anti-atherosclerotic agent with potential clinical benefit for prevention of CV events, as well as its cellular effects and molecular mechanisms of action. REDUCE-IT is an ongoing, randomized, controlled study evaluating whether the high-purity ethyl ester of EPA (icosapent ethyl) at 4 g/day combined with statin therapy is superior to statin therapy alone for reducing CV events in high-risk patients with mixed dyslipidemia. The results from this study are expected to clarify the role of EPA as adjunctive therapy to a statin for reduction of residual CV risk.

  5. Principle and applications of terahertz molecular imaging.

    Science.gov (United States)

    Son, Joo-Hiuk

    2013-05-31

    The principle, characteristics and applications of molecular imaging with terahertz electromagnetic waves are reviewed herein. The terahertz molecular imaging (TMI) technique uses nanoparticle probes to achieve dramatically enhanced sensitivity compared with that of conventional terahertz imaging. Surface plasmons, induced around the nanoparticles, raise the temperature of water in biological cells, and the temperature-dependent changes in the optical properties of water, which are large in the terahertz range, are measured differentially by terahertz waves. TMI has been applied to cancer diagnosis and nanoparticle drug delivery imaging. The technique is also compared with magnetic resonance imaging by using a dual-modality nanoparticle probe.

  6. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    Science.gov (United States)

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD. PMID:26809711

  7. Molecular imaging in quality health care

    International Nuclear Information System (INIS)

    Full text: Quality health care results from translating fundamental bench discoveries and making them available to patients. During the past decade, 'molecular imaging' has emerged both as a new tool/technology and as a research and clinical discipline. Molecular imaging is an interdisciplinary approach involving biologists, physicists, physicians, mathematicians, conventional chemists, radiochemists and other specialists who have joined forces for better understanding and visualizing of both normal physiological processes and the molecular processes preceding the morphological manifestations of disease in vivo. Molecular imaging has been defined as 'non-invasive, quantitative, and repetitive imaging of targeted macromolecules and biological processes in living organisms' or as 'the visual representation, characterization, and quantification of biological processes at the cellular and sub-cellular levels within intact living organisms'. Weissleder defined molecular imaging in the most simple terms as 'studying diseases non-invasively at the molecular level'. Regardless of these semantic differences molecular imaging can contribute significantly to the preclinical and clinical drug and disease evaluation process. It is interesting to note, that despite major advances in imaging technology, cancer mortality has remained largely unchanged over the last three decades. Imaging has thus far enabled us to look through a magnifying glass at disease processes but has failed to dramatically influence disease outcomes. Emerging data suggest that molecular PET imaging is about to change this situation. High resolution molecular imaging devices designed for small animal research have developed into valuable tools for drug evaluation and imaging probe design. These include microPET, microCT, microMRI and optical imaging devices. These have enabled us to study drug effects in vivo by monitoring longitudinally their effects on tumour cell metabolism or proliferation. The only

  8. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Progress of molecular biology, genetic engineering, and polymer chemistry provide various tools to target molecules and cells in vivo. In this paper, recent achievements in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune, and stem cells using molecular nuclear imaging techniques are introduced

  9. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  10. Molecular Imaging of Urogenital Diseases

    Science.gov (United States)

    Cho, Steve Y.; Szabo, Zsolt; Morgan, Russell H.

    2013-01-01

    There is an expanding and exciting repertoire of PET imaging radiotracers for urogenital diseases, particularly in prostate cancer, renal cell cancer, and renal function. Prostate cancer is the most commonly diagnosed cancer in men. With growing therapeutics options for the treatment of metastatic and advanced prostate cancer, improved functional imaging of prostate cancer beyond the limitations of conventional computed tomography (CT) and bone scan (BS) is becoming increasingly important for both clinical management and drug development. PET radiotracers beyond 18F-Fluorodeoxyglucose (FDG) for prostate cancer include 18F-Sodium Fluoride, 11C-Choline and 18F-Fluorocholine and 11C-Acetate. Other emerging and promising PET radiotracers include a synthetic L-leucine amino acid analog (anti-18F-FACBC), dihydrotestosterone analog (18F-FDHT) and prostate specific membrane antigen (PSMA) based PET radiotracers (ex. 18F-DCFBC, 89Zr-DFO-J591, 68Ga(HBED-CC)). Larger prospective and comparison trials of these PET radiotracers are needed to establish the role of PET/CT in prostate cancer. Renal cell cancer imaging with FDG PET/CT although available can be limited, especially for detection of the primary tumor. Improved renal cell cancer detection with carbonic anhydrase IX (CAIX) based antibody (124I-girentuximab) and radioimmunotherapy targeting with 177Lu-cG250 appear promising. Evaluation of renal injury by imaging renal perfusion and function with novel PET radiotracers include p-18F-fluorohippurate (18F-PFH) and hippurate m-cyano-p-18F-fluorohippurate (18F-CNPFH) and Rubidium-82 chloride (typically used for myocardial perfusion imaging). Renal receptor imaging of the renal renin angiotensin system with a variety of selective PET radioligands are also becoming available for clinical translation. PMID:24484747

  11. Molecular and functional imaging of internet addiction.

    Science.gov (United States)

    Zhu, Yunqi; Zhang, Hong; Tian, Mei

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) and single photon emission computed tomography (SPECT). MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC) could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition.

  12. Molecular and Functional Imaging of Internet Addiction

    Directory of Open Access Journals (Sweden)

    Yunqi Zhu

    2015-01-01

    Full Text Available Maladaptive use of the Internet results in Internet addiction (IA, which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI and nuclear imaging modalities including positron emission tomography (PET and single photon emission computed tomography (SPECT. MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition.

  13. Genetic Susceptibility to Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sanja Kovacic

    2012-01-01

    Full Text Available Atherosclerosis is a complex multifocal arterial disease involving interactions of multiple genetic and environmental factors. Advances in techniques of molecular genetics have revealed that genetic ground significantly influences susceptibility to atherosclerotic vascular diseases. Besides further investigations of monogenetic diseases, candidate genes, genetic polymorphisms, and susceptibility loci associated with atherosclerotic diseases have been identified in recent years, and their number is rapidly increasing. This paper discusses main genetic investigations fields associated with human atherosclerotic vascular diseases. The paper concludes with a discussion of the directions and implications of future genetic research in arteriosclerosis with an emphasis on prospective prediction from an early age of individuals who are predisposed to develop premature atherosclerosis as well as to facilitate the discovery of novel drug targets.

  14. Molecular imaging of prostate cancer with PET.

    Science.gov (United States)

    Jadvar, Hossein

    2013-10-01

    Molecular imaging is paving the way for precision and personalized medicine. In view of the significant biologic and clinical heterogeneity of prostate cancer, molecular imaging is expected to play an important role in the evaluation of this prevalent disease. The natural history of prostate cancer spans from an indolent localized process to biochemical relapse after radical treatment with curative intent to a lethal castrate-resistant metastatic disease. The ongoing unraveling of the complex tumor biology of prostate cancer uniquely positions molecular imaging with PET to contribute significantly to every clinical phase of prostate cancer evaluation. The purpose of this article was to provide a concise review of the current state of affairs and potential future developments in the diagnostic utility of PET in prostate cancer.

  15. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm

    Science.gov (United States)

    Wang, Hao; Gardecki, Joseph A.; Ughi, Giovanni J.; Jacques, Paulino Vacas; Hamidi, Ehsan; Tearney, Guillermo J.

    2015-01-01

    While optical coherence tomography (OCT) has been shown to be capable of imaging coronary plaque microstructure, additional chemical/molecular information may be needed in order to determine which lesions are at risk of causing an acute coronary event. In this study, we used a recently developed imaging system and double-clad fiber (DCF) catheter capable of simultaneously acquiring both OCT and red excited near-infrared autofluorescence (NIRAF) images (excitation: 633 nm, emission: 680nm to 900nm). We found that NIRAF is elevated in lesions that contain necrotic core – a feature that is critical for vulnerable plaque diagnosis and that is not readily discriminated by OCT alone. We first utilized a DCF ball lens probe and a bench top setup to acquire en face NIRAF images of aortic plaques ex vivo (n = 20). In addition, we used the OCT-NIRAF system and fully assembled catheters to acquire multimodality images from human coronary arteries (n = 15) prosected from human cadaver hearts (n = 5). Comparison of these images with corresponding histology demonstrated that necrotic core plaques exhibited significantly higher NIRAF intensity than other plaque types. These results suggest that multimodality intracoronary OCT-NIRAF imaging technology may be used in the future to provide improved characterization of coronary artery disease in human patients. PMID:25909020

  16. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99mTc as a radionuclide. We developed 99mTc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99mTc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99mTc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99mTc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  17. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  18. Quantitative cardiovascular magnetic resonance for molecular imaging

    OpenAIRE

    Lanza Gregory M; Caruthers Shelton D; Winter Patrick M; Wickline Samuel A

    2010-01-01

    Abstract Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examp...

  19. NAOMI: nanoparticle assisted optical molecular imaging

    Science.gov (United States)

    Faber, Dirk J.; van Velthoven, Mirjam E. J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; Graf, Christina; van Leeuwen, Ton G.

    2006-02-01

    Our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using OCT as the imaging modality are presented. We derive an expression to estimate the sensitivity of this technique. We propose to use nanoparticles based on biodegradable polymers, loaded with suitable dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. This report presents preliminary results of our investigation on the use of nanoshells to serve as contrast agents We injected nanoshells with specific contrast features in the 800 nm wavelength region in excised porcine eyes. The nanoshells showed up as bright reflecting structures in the OCT images, which confirm their potential as contrast agents.

  20. Radiogenomic imaging-linking diagnostic imaging and molecular diagnostics

    Institute of Scientific and Technical Information of China (English)

    Mathias; Goyen

    2014-01-01

    Radiogenomic imaging refers to the correlation between cancer imaging features and gene expression and is one of the most promising areas within science and medicine. High-throughput biological techniques have reshaped the perspective of biomedical research allowing for fast and efficient assessment of the entire molecular topography of a cell’s physiology providing new insights into human cancers. The use of non-invasive imaging tools for gene expression profiling of solid tumors could serve as a means for linking specific imaging features with specific gene expression patterns thereby allowing for more accurate diagnosis and prognosis and obviating the need for high-risk invasive biopsy procedures. This review focuses on the medical imaging part as one of the main drivers for the development of radiogenomic imaging.

  1. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah;

    2013-01-01

    Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...... for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP activatable agent was imaged after intratumoral and intravenous injections...... in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual wavelength imaging method. Results Active forms of both MMP2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent...

  2. Dose reduction in molecular breast imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  3. Molecular imaging in quality health care

    International Nuclear Information System (INIS)

    Full text: Quality Health Care results from applying fundamental basic science and preclinical concepts as well as novel technologies to patient care within specific socio-economic frameworks. Cancer mortality has improved recently but outcomes of cancer patients are still unacceptably poor. Molecular Imaging has the potential to improve the outcome of cancer patients in several ways. In the preclinical setting, high resolution molecular imaging devices designed for small animal research have developed into valuable tools for drug evaluation and imaging probe design. These have enabled us to study drug effects in vivo by monitoring longitudinally their effects on tumor cell metabolism or proliferation. The success of Imatinib in treating chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST) has demonstrated that targeted drugs can induce remarkable tumor responses and may even cure cancer patients. Targeted drugs have been used for treating various common solid human tumors, including breast cancer, colorectal cancer, and non-small cell lung cancer. However, diverse signaling pathways are involved in the development and progression of these genetically heterogeneous diseases. Consequently, inhibition of one specific pathway is likely to be efficacious in only in small subsets of patients with specific histological tumor types. It is unlikely that a single 'blockbuster' drug can be effective for all patients with a 'common' tumor. Rather, it will be necessary to develop multiple targeted drugs even for patients that share a single histologically defined tumor type. The inevitable consequence is a decreased revenue/cost ratio for the industry and increasing costs for patients and health care systems. It is therefore of paramount importance to identify drug failure as early as possible in preclinical and clinical trials. Human studies with positron emission tomography (PET) with molecular imaging probes targeting physiological processes such as

  4. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  5. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  6. NAOMI: nanoparticle-assisted optical molecular imaging

    Science.gov (United States)

    Faber, Dirk J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; van Leeuwen, Ton G.

    2007-02-01

    We present our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using biodegradable nanoparticles. Our focus is on using optical coherence tomography(OCT) as the imaging modality. We propose to use nanoparticles based on biodegradable polymers, loaded with carefully selected dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. Moreover, we perform a qualitative pilot study using these biodegradable nanoparticles, measuring their optical properties which are found to be in line with theoretical predictions.

  7. Molecular Imaging of Biomarkers in Breast Cancer

    Science.gov (United States)

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  8. Molecular imaging for the diagnosis of dementia

    International Nuclear Information System (INIS)

    Many radiotracers have been developed to visualize pathological protein accumulation and neurotransmitter deficits in the brains of patients with dementia using positron emission tomography (PET). Recent advances in the development of β-sheet binding agents enabled in vivo detection of senile plaques in Alzheimer's disease. Molecular imaging using these agents would contribute to the early and accurate diagnosis of dementia and monitoring therapeutic effect of anti-dementia drugs. (author)

  9. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  10. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis.

    Science.gov (United States)

    Chung, Eun Ji; Tirrell, Matthew

    2015-11-18

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows the easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this Progress Report, the pathogenesis of atherosclerosis and the damage caused to vascular tissue are described, as well as the current diagnostic and treatment options. An overview of targeted strategies using self-assembling nanoparticles is provided, including liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, an overview is given of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles.

  11. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  12. PET Imaging - from Physics to Clinical Molecular Imaging

    Science.gov (United States)

    Majewski, Stan

    2008-03-01

    From the beginnings many years ago in a few physics laboratories and first applications as a research brain function imager, PET became lately a leading molecular imaging modality used in diagnosis, staging and therapy monitoring of cancer, as well as has increased use in assessment of brain function (early diagnosis of Alzheimer's, etc) and in cardiac function. To assist with anatomic structure map and with absorption correction CT is often used with PET in a duo system. Growing interest in the last 5-10 years in dedicated organ specific PET imagers (breast, prostate, brain, etc) presents again an opportunity to the particle physics instrumentation community to contribute to the important field of medical imaging. In addition to the bulky standard ring structures, compact, economical and high performance mobile imagers are being proposed and build. The latest development in standard PET imaging is introduction of the well known TOF concept enabling clearer tomographic pictures of the patient organs. Development and availability of novel photodetectors such as Silicon PMT immune to magnetic fields offers an exciting opportunity to use PET in conjunction with MRI and fMRI. As before with avalanche photodiodes, particle physics community plays a leading role in developing these devices. The presentation will mostly focus on present and future opportunities for better PET designs based on new technologies and methods: new scintillators, photodetectors, readout, software.

  13. Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects

    Directory of Open Access Journals (Sweden)

    Dagvasumberel Munkhbaatar

    2012-09-01

    Full Text Available Abstract Background Growing evidence suggests that epicardial adipose tissue (EAT may contribute to the development of coronary artery disease (CAD. In this study, we explored gender disparities in EAT volume (EATV and its impact on coronary atherosclerosis. Methods The study population consisted of 90 consecutive subjects (age: 63 ± 12 years; men: 47, women: 43 who underwent 256-slice multi-detector computed tomography (MDCT coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50% and non-CAD group. Results EATV/body surface area (BSA was higher among men in the CAD group than in the non-CAD group (62 ± 13 vs. 33 ± 10 cm3/m2, p 3/m2, not significant. Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p Conclusions Increased EATV is strongly associated with coronary atherosclerosis in men.

  14. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  15. Molecular probes for malignant melanoma imaging.

    Science.gov (United States)

    Ren, Gang; Pan, Ying; Cheng, Zhen

    2010-09-01

    Malignant melanoma represents a serious public health problem and is a deadly disease when it is diagnosed at late stage. Though (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) has been widely used clinically for melanoma imaging, other approaches to specifically identify, characterize, monitor and guide therapeutics for malignant melanoma are still needed. Consequently, many probes targeting general molecular events including metabolism, angiogenesis, hypoxia and apoptosis in melanoma have been successfully developed. Furthermore, probes targeting melanoma associated targets such as melanocortin receptor 1 (MC1R), melanin, etc. have undergone active investigation and have demonstrated high melanoma specificity. In this review, these molecular probes targeting diverse melanoma biomarkers have been summarized. Some of them may eventually contribute to the improvement of personalized management of malignant melanoma. PMID:20497118

  16. Molecular imaging of apoptosis in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hakumaeki, Juhana M. [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland) and Department of Clinical Radiology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)]. E-mail: juhana.hakumaki@uku.fi; Liimatainen, Timo [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2005-11-01

    Apoptosis plays an important role in cancer. Mechanisms hindering its action are implicated in a number of malignancies. Also, the induction of apoptosis plays a pivotal role in non-surgical cancer treatment regimes such as irradiation, chemotherapy, or hormones. Recent advanced in imaging science have made it now possible for us to detect and visualize previously inaccessible and even unrecognized biological phenomena in cells and tissue undergoing apoptosis in vivo. Not only are these imaging techniques painting an intriguing picture of the spatiotemporal characteristics and metabolic and biophysical of apoptosis in situ, but they are expected to have an ever increasing impact in preclinical testing and design of new anticancer agents as well. Rapid and accurate visualization of apoptotic response in the clinical settings can also be of significant diagnostic and prognostic worth. With the advent of molecular medicine and patient-tailored treatment options and therapeutic agents, such monitoring techniques are becoming paramount.

  17. Novel high resolution SPECT instrumentation and techniques for molecular imaging of small animals

    International Nuclear Information System (INIS)

    The main purpose of the project is the development and tuning of an advanced detector system for molecular imaging with radionuclides on small animal. The equipment has sub-millimeter spatial resolution, adequate sensitivity and field of view, It is designed for studies, on animal models, of diagnostic and/or therapeutic techniques in cardiovascular diseases, such as detection and identification of vulnerable plaques in atherosclerosis and stem cell therapy for cardiac repair. The present activities is carried on in collaboration with groups from Johns Hopkins University (Baltimore), Jefferson Lab (Newport News), Istituto Nazionale Fisica Nucleare (INFN) and ISS (Dept. Technology and Health and Dept. Therapeutic Research and Medicines Evaluation). The main results of the last two years are summarized as follows: development of the SPECT system prototype; set up of the technique for vulnerable plaques detection;demonstration of detectability of the cardiac perfusion via peritoneum injection of the radiotracer

  18. Bioresponsive probes for molecular imaging: concepts and in vivo applications

    NARCIS (Netherlands)

    Duijnhoven, S.M. van; Robillard, M.S.; Langereis, S.; Grull, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecu

  19. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  20. Current Progress of Aptamer-Based Molecular Imaging

    OpenAIRE

    Wang, Andrew Z.; Farokhzad, Omid C.

    2014-01-01

    Aptamers, single-stranded oligonucleotides, are an important class of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. They have been approved as therapeutics and molecular diagnostics. Aptamers also possess several properties that make them uniquely suited to molecular imaging. This review aims to provide an overview of aptamers’ advantages as targeting ligands and their application in molecular imaging.

  1. Molecular imaging probes derived from natural peptides.

    Science.gov (United States)

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  2. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages.

    Science.gov (United States)

    Cheng, Dengfeng; Li, Xiao; Zhang, Chunfu; Tan, Hui; Wang, Cong; Pang, Lifang; Shi, Hongcheng

    2015-02-01

    Atherosclerosis (AS), especially the vulnerable AS plaque rupture-induced acute obstructive vascular disease, is a leading cause of death. Accordingly, there is a need for an effective method to draw accurate predictions about AS progression and plaque vulnerability. Herein we report on an approach to constructing a hybrid nanoparticle system using a single-photon-emission computed tomography (SPECT)/magnetic resonance imaging (MRI) multimodal probe, aiming for a comprehensive evaluation of AS progression by achieving high sensitivity along with high resolution. Ultrasmall superparamagnetic iron oxide (USPIO) was covered by aminated poly(ethylene glycol) (PEG) and carboxylated PEG simultaneously and then functionalized with diethylenetriaminepentacetate acid for (99m)Tc coordination and subsequently Annexin V for targeting apoptotic macrophages abundant in vulnerable plaques. The in vivo accumulations of imaging probe reflected by SPECT and MRI were consistent and accurate in highlighting lesions. Intense radioactive signals detected by SPECT facilitated focus recognization and quantification, while USPIO-based T2-weighted MRI improved the focal localization and volumetry of AS plaques. For subsequent ex vivo planar images, targeting effects were further confirmed by immunohistochemistry, including CD-68 and TUNEL staining; meanwhile, the degree of concentration was proven to be statistically correlated with the Oil Red O staining results. In conclusion, these results indicated that the Annexin V-modified hybrid nanoparticle system specifically targeted the vulnerable AS plaques containing apoptotic macrophages and could be of great value in the invasively accurate detection of vulnerable plaques. PMID:25569777

  3. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    OpenAIRE

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques.

  4. Molecular breast imaging with gamma emitters.

    Science.gov (United States)

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  5. Applications of molecular MRI and optical imaging in cancer

    OpenAIRE

    Penet, Marie-France; Mikhaylova, Maria; Li, Cong; Krishnamachary, Balaji; Glunde, Kristine; Pathak, Arvind P.; Bhujwalla, Zaver M.

    2010-01-01

    Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer c...

  6. Molecular imaging of stem cell transplantation for neurodegenerative diseases.

    Science.gov (United States)

    Wang, Ping; Moore, Anna

    2012-01-01

    Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders. We discuss current challenges and perspectives of these techniques and encompass updated information such as theranostic imaging and optogenetics in stem cell-based treatment of neurodegenerative diseases.

  7. Molecular imaging in Libman-Sacks endocarditis.

    Science.gov (United States)

    Dahl, Anders; Schaadt, Bente K; Santoni-Rugiu, Eric; Bruun, Niels E

    2015-04-01

    We present a 54-year-old woman with systemic lupus erythematosus (SLE), fever, pericardial effusion and a mitral valve vegetation. (18)F-Fluorodesoxyglucose positron emission tomography CT ((18)F-FDG-PET-CT) showed very high accumulation of the isotope at the mitral valve. The patient underwent cardiothoracic surgery and pathologic examinations showed characteristic morphology of Libman-Sacks vegetations. All microbiological examinations including blood cultures, microscopy, culture and 16s PCR of the valve were negative and the diagnosis of Libman-Sacks endocarditis was convincing. It is difficult to distinguish Libman-Sacks endocarditis from culture-negative infective endocarditis (IE). Molecular imaging techniques are being used increasingly in cases of suspected IE but no studies have previously reported the use in patients with Libman-Sacks endocarditis. In the present case, (18)F-FDG-PET-CT clearly demonstrated the increased glucose uptake caused by infiltrating white blood cells in the ongoing inflammatory process at the mitral valve. In conclusion, (18)F-FDG-PET-CT cannot be used to distinguish between IE and non-infective Libman-Sacks vegetations.

  8. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    OpenAIRE

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to th...

  9. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  10. Phytosterols and atherosclerosis

    DEFF Research Database (Denmark)

    Schrøder, Malene

    Cardiovascular disease (CVD) is the major cause of premature deaths worldwide. Coronary heart disease is the most common CVD, caused by atherosclerosis in the coronary arteries. Atherosclerosis is a multifactorial disease influenced by both genetic and environmental factors. WHO has in 2007 listed...... in its “Guidelines for assessment and management of cardiovascular risk” the following risk factors to influence progressive atherosclerosis: hypertension, abnormal blood lipids, diabetes, unhealthy diet, physical inactivity and smoking. Phytosterols (plant sterols and plant stanols) are known...... their blood cholesterol levels. The aim of this Ph.D. project was to investigate the effects of phytosterols on the development of atherosclerosis in the aorta of heterozygous Watanabe Heritable Hyperlipidemic (WHHL) rabbits. The main advantage of animal studies to human studies in atherosclerosis research...

  11. Real-time targeted molecular imaging using singular value spectra properties to isolate the adherent microbubble signal

    International Nuclear Information System (INIS)

    Ultrasound-based real-time molecular imaging in large blood vessels holds promise for early detection and diagnosis of various important and significant diseases, such as stroke, atherosclerosis, and cancer. Central to the success of this imaging technique is the isolation of ligand–receptor bound adherent microbubbles from free microbubbles and tissue structures. In this paper, we present a new approach, termed singular spectrum-based targeted molecular (SiSTM) imaging, which separates signal components using singular value spectra content over local regions of complex echo data. Simulations were performed to illustrate the effects of acoustic target motion and harmonic energy on SiSTM imaging-derived measurements of statistical dimensionality. In vitro flow phantom experiments were performed under physiologically realistic conditions (2.7 cm s−1 flow velocity and 4 mm diameter) with targeted and non-targeted phantom channels. Both simulation and experimental results demonstrated that the relative motion and harmonic characteristics of adherent microbubbles (i.e. low motion and large harmonics) yields echo data with a dimensionality that is distinct from free microbubbles (i.e. large motion and large harmonics) and tissue (i.e. low motion and low harmonics). Experimental SiSTM images produced the expected trend of a greater adherent microbubble signal in targeted versus non-targeted microbubble experiments (P < 0.05, n = 4). The location of adherent microbubbles was qualitatively confirmed via optical imaging of the fluorescent DiI signal along the phantom channel walls after SiSTM imaging. In comparison with two frequency-based real-time molecular imaging strategies, SiSTM imaging provided significantly higher image contrast (P < 0.001, n = 4) and a larger area under the receiver operating characteristic curve (P < 0.05, n = 4). (paper)

  12. Functional and molecular image guidance in radiotherapy treatment planning optimization.

    Science.gov (United States)

    Das, Shiva K; Ten Haken, Randall K

    2011-04-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479

  13. Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology.

    Science.gov (United States)

    Van Mieghem, Carlos A G; Bruining, Nico; Schaar, Johannes A; McFadden, Eugene; Mollet, Nico; Cademartiri, Filippo; Mastik, Frits; Ligthart, Jurgen M R; Granillo, Gaston A Rodriguez; Valgimigli, Marco; Sianos, Georgios; van der Giessen, Willem J; Backx, Bianca; Morel, Marie-Angele M; Van Es, Gerrit-Anne; Sawyer, Jonathon D; Kaplow, June; Zalewski, Andrew; van der Steen, Anton F W; de Feyter, Pim; Serruys, Patrick W

    2005-08-01

    Death or myocardial infarction, the most serious clinical consequences of atherosclerosis, often result from plaque rupture at non-flow limiting lesions. Current diagnostic imaging with coronary angiography only detects large plaques that already impinge on the lumen and cannot accurately identify those that have a propensity to cause unheralded events. Accurate evaluation of the composition or of the biomechanical characteristics of plaques with invasive or non-invasive methods, alone or in conjunction with assessment of circulating biomarkers, could help identify high-risk patients, thus providing the rationale for aggressive treatments in order to reduce future clinical events. The IBIS (Integrated Biomarker and Imaging Study) study is a prospective, single-center, non-randomized, observational study conducted in Rotterdam. The aim of the IBIS study is to evaluate both invasive (quantitative coronary angiography, intravascular ultrasound (IVUS) and palpography) and non-invasive (multislice spiral computed tomography) imaging techniques to characterize non-flow limiting coronary lesions. In addition, multiple classical and novel biomarkers will be measured and their levels correlated with the results of the different imaging techniques. A minimum of 85 patients up to a maximum of 120 patients will be included. This paper describes the study protocol and methodological solutions that have been devised for the purpose of comparisons among several imaging modalities. It outlines the analyses that will be performed to compare invasive and non-invasive imaging techniques in conjunction with multiple biomarkers to characterize non-flow limiting subclinical coronary lesions.

  14. Inversion of Strong Field Photoelectron Spectra for Molecular Orbital Imaging

    CERN Document Server

    Puthumpally-Joseph, R; Peters, M; Nguyen-Dang, T T; Atabek, O; Charron, E

    2016-01-01

    Imaging structures at the molecular level is a fast developing interdisciplinary research field that spans across the boundaries of physics and chemistry. High spatial resolution images of molecules can be obtained with photons or ultrafast electrons. In addition, images of valence molecular orbitals can be extracted via tomographic techniques based on the coherent XUV radiation emitted by a molecular gas exposed to an intense ultra-short infrared laser pulse. In this paper, we demonstrate that similar information can be obtained by inverting energy resolved photoelectron spectra using a simplified analytical model.

  15. [Is regression of atherosclerosis possible?].

    Science.gov (United States)

    Thomas, D; Richard, J L; Emmerich, J; Bruckert, E; Delahaye, F

    1992-10-01

    Experimental studies have shown the regression of atherosclerosis in animals given a cholesterol-rich diet and then given a normal diet or hypolipidemic therapy. Despite favourable results of clinical trials of primary prevention modifying the lipid profile, the concept of atherosclerosis regression in man remains very controversial. The methodological approach is difficult: this is based on angiographic data and requires strict standardisation of angiographic views and reliable quantitative techniques of analysis which are available with image processing. Several methodologically acceptable clinical coronary studies have shown not only stabilisation but also regression of atherosclerotic lesions with reductions of about 25% in total cholesterol levels and of about 40% in LDL cholesterol levels. These reductions were obtained either by drugs as in CLAS (Cholesterol Lowering Atherosclerosis Study), FATS (Familial Atherosclerosis Treatment Study) and SCOR (Specialized Center of Research Intervention Trial), by profound modifications in dietary habits as in the Lifestyle Heart Trial, or by surgery (ileo-caecal bypass) as in POSCH (Program On the Surgical Control of the Hyperlipidemias). On the other hand, trials with non-lipid lowering drugs such as the calcium antagonists (INTACT, MHIS) have not shown significant regression of existing atherosclerotic lesions but only a decrease on the number of new lesions. The clinical benefits of these regression studies are difficult to demonstrate given the limited period of observation, relatively small population numbers and the fact that in some cases the subjects were asymptomatic. The decrease in the number of cardiovascular events therefore seems relatively modest and concerns essentially subjects who were symptomatic initially. The clinical repercussion of studies of prevention involving a single lipid factor is probably partially due to the reduction in progression and anatomical regression of the atherosclerotic plaque

  16. Histone deacetylases and atherosclerosis.

    Science.gov (United States)

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis.

  17. Designing an university-level module on molecular imaging chemistry

    International Nuclear Information System (INIS)

    Full text: Why do we need radiopharmacy, radiopharmacy, radiopharmacy training? In this post-genomic era, molecular imaging has gain tremendous interest not only amongst physicians but also from biologists, chemists, physicists, engineers, statisticians, pharmaceutical companies and even from governments. There is no doubt that nuclear medicine has been engaged in molecular medicine more than one decade ago. Positron emission tomography (PET) has reawaken interest in long forgotten radiopharmacy. Only major hospitals in the developed countries have invested in the development of dedicated radiopharmacy laboratory and training or recruitment of radiopharmacist. But PET has forced nuclear medicine to create a radiopharmacy unit and adopt radiopharmacy guidelines such as good radiopharmaceutical practice (GRPP) and good manufacturing practice (GMP). It is compounded by the fact that SPECT radiopharmaceutical chemistry has advanced significantly for both diagnostics and therapeutics, which calls for a high level of understanding on radiopharmaceutical chemistry and technical know-how. These factors eventually lead to introduction of tran ing program, courses and degree program. The most striking examples will be European Association of Nuclear Medicine (EANM) radiopharmacy courses and a series of IAEA activities on GRPP, GMP and technologist training programs. Various forms of training or education program can be formulated for various levels, starting from basic radiopharmacy course to PhD program, depending on the following factors; (1) National interest and policies on bio/medical sector; (2) Size of the nuclear medicine community in the respective country; (3) Institution interest and policies; and (4) Existing infrastructure and programs. Current Radiopharmacy Education in Singapore: In Singapore, all of the major nuclear medicine centers are supervised by radiopharmacists with PhD degree. All of the nuclear medicine technologists in the major centers have got

  18. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David;

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions...

  19. Imaging the Breakdown of Molecular Frame Dynamics through Rotational Uncoupling

    CERN Document Server

    Zipp, Lucas J; Bucksbaum, Philip H

    2016-01-01

    We have observed directly in the time domain the uncoupling of electron motion from the molecular frame due to rotational-electronic coupling in a molecular Rydberg system. In contrast to Born- Oppenheimer dynamics, in which the electron is firmly fixed to the molecular frame, there exists a regime of molecular dynamics known as $l$-uncoupling where the motion of a non-penetrating Rydberg electron decouples from the instantaneous alignment of the molecular frame. We have imaged this unusual regime in time-dependent photoelectron angular distributions of a coherently prepared electron wave packet in the 4$f$ manifold of $N_2$.

  20. How Is Atherosclerosis Treated?

    Science.gov (United States)

    ... symptoms Widening or bypassing plaque-clogged arteries Heart-Healthy Lifestyle Changes Your doctor may recommend heart-healthy lifestyle changes if you have atherosclerosis. Heart-healthy lifestyle ...

  1. Continuous-terahertz-wave molecular imaging system for biomedical applications

    Science.gov (United States)

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Wang, Ruixue; Zuo, Shasha; Wu, Dong; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-07-01

    Molecular imaging techniques are becoming increasingly important in biomedical research and potentially in clinical practice. We present a continuous-terahertz (THz)-wave molecular imaging system for biomedical applications, in which an infrared (IR) laser is integrated into a 0.2-THz reflection-mode continuous-THz-wave imaging system to induce surface plasmon polaritons on the nanoparticles and further improve the intensity of the reflected signal from the water around the nanoparticles. A strong and rapid increment of the reflected THz signal in the nanoparticle solution upon the IR laser irradiation is demonstrated, using either gold or silver nanoparticles. This low-cost, simple, and stable continuous-THz-wave molecular imaging system is suitable for miniaturization and practical imaging applications; in particular, it shows great promise for cancer diagnosis and nanoparticle drug-delivery monitoring.

  2. Molecular imaging of HER2-positive breast cancer

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  3. Tight binding description of the STM image of molecular chains

    OpenAIRE

    Calev, Yoel; Cohen, Hezy; Cuniberti, Gianaurelio; Nitzan, Abraham; Porath, Danny

    2004-01-01

    A tight binding model for scanning tunneling microscopy images of a molecule adsorbed on a metal surface is described. The model is similar in spirit to that used to analyze conduction along molecular wires connecting two metal leads and makes it possible to relate these two measurements and the information that may be gleaned from the corresponding results. In particular, the dependence of molecular conduction properties along and across a molecular chain on the chain length, intersite elect...

  4. Towards risk stratification in systemic atherosclerosis: value of myocardial function and viability imaging as an adjunct to MR angiography

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim; Fenchel, Michael; Kramer, Ulrich; Bretschneider, Christiane; Grimm, Florian; Klumpp, Bernhard; Claussen, Claus D.; Miller, Stephan [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Scheule, Albertus [Eberhard Karls University Tuebingen, Department for Thorax, Cardiac and Vascular Surgery, Tuebingen (Germany); Balletshofer, Bernd [Eberhard Karls University Tuebingen, Department of Internal Medicine IV, Tuebingen (Germany)

    2010-04-15

    To longitudinally assess the value of cardiac functional and viability imaging as a supplement to MR angiography in patients with atherosclerotic disease. Cardiac MRI was performed in 195 consecutive patients with symptomatic peripheral arterial disease. Of these, 186 patients were followed for 22 {+-} 5 months for the presence of cardiac events (cardiac death, acute coronary syndrome and hospitalisation as a result of congestive heart failure). Myocardial viability imaging showed a high prevalence of known (n = 31) and occult myocardial infarctions (MI) (n = 26). Cardiac events occurred more often in patients with reduced ventricular function (ejection fraction (EF) less than 40%, cardiac event in 4/8 patients; EF 40-55%, cardiac event in 10/40 patients; EF greater than 55%, cardiac event in 15/138 patients) as well as in patients with occult MI (8/25 patients) and known MI (11/30 patients). In patients with normal function, the detection of a previous MI was of high relevance to prognosis. Both reduced EF and the presence of MI influence patients' prognoses. Performing cardiac MRI in this patient population may influence further patient management including intensified risk factor intervention. (orig.)

  5. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  6. Functional and Molecular Image Guidance in Radiotherapy Treatment Planning Optimization

    OpenAIRE

    Das, Shiva K.; Ten Haken, Randall K.

    2011-01-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters such as metabolism, proliferation, hypoxia, perfusion and ventilation, among others, onto anatomically-imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high functioning subregions of normal organs or dose escalation to selected subregions of tumor, as well as the p...

  7. Molecular Imaging of Healing After Myocardial Infarction

    OpenAIRE

    Naresh, Nivedita K; Ben-Mordechai, Tamar; Leor, Jonathan; Epstein, Frederick H

    2011-01-01

    The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. H...

  8. Molecular Imaging of Native Low-Density Lipoprotein by Near-Infrared Fluorescent Angioscopy in Human Coronary Plaques.

    Science.gov (United States)

    Uchida, Yasumi; Yoshida, Tomoe; Shimoyama, Ei; Uchida, Yasuto

    2016-03-01

    Low-density lipoprotein (LDL) is an important risk factor for coronary artery disease, but its localization within the human coronary arterial wall is poorly understood. Imaging of LDL in 30 coronary arteries excised from 15 subjects who underwent autopsy was performed using near-infrared fluorescent angioscopy system and using indocyanine green dye as a biomarker of LDL. The percentage incidence of LDL in 28 normal segments, 24 white plaques (early stage of plaque growth), and 21 yellow plaques (mature stage of plaque) classified by conventional angioscopy, was 14.2, 79.1 (p Coronary near-infrared fluorescent angioscopy showed similar results in 7 patients in vivo. Our results suggested that LDL begins to deposit in the human coronary arterial wall in the early stage of atherosclerosis, increasingly deposits with plaque growth and decreases in the mature stage; and therefore, molecular therapy targeting LDL should be started before plaque maturation.

  9. Plaque of atherosclerosis in aorta: review on atherogenesis, formation of plaque, clinical significance, methods of imaging and treatment

    International Nuclear Information System (INIS)

    There is a certain consensus in the literature that the earliest stage of atherogenesis is characterized by the accumulation of spongy cells in the region of the intimal artery. Risk factors such as arterial hypertension, smoking, diabetes mellitus, hypercholesterolemia, male gender and advanced age predispose a person to the formation of plaques in the coronaries and aorta. A greater number of acute coronary events as well as strokes have been observed in people with these risk factors. Strokes are the third cause of death in the USA, with about 40% of the cases being of cryptogenic origin. Since 1989 the atheroma plaques which develop in the thoracic aorta have been considered to be responsible for cerebral and peripheral strokes which were previously considered cryptogenic because imaging techniques such as electrocardiogram transesophageal, computerized tomogram, nuclear magnetic angio-resonance have visualized and characterized the lesions with plaques of arteriosclerosis in the thoracic aorta. The authors of this article made a systematic review in the PUBMED about arteriosclerosis in the aorta and its diagnostic methods. This review includes the physiopathology of the formation of atheroma to the aorta and its consequences, diagnostic methods such as echo transesophageal, computerized tomogram and angio resonance, as well as the advantages and disadvantages of each method of identification of the lesions. An analysis of the clinical significance of the size, form and location of the atheroma plaques in the thoracic aorta were made based on clinical studies, as well as their treatment with anticoagulants, antiplatelet and drugs to reduce cholesterol. (author)

  10. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  11. Molecular imaging in neuroendocrine tumors : Molecular uptake mechanisms and clinical results

    NARCIS (Netherlands)

    Koopmans, Klaas P.; Neels, Oliver N.; Kema, Ido P.; Elsinga, Philip H.; Links, Thera P.; de Vries, Elisabeth G. E.; Jager, Pieter L.

    2009-01-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-

  12. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  13. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging

    International Nuclear Information System (INIS)

    Hydroxyapatite (HAp) is the most important constituent of biological tissues such as bone and teeth and exhibits several characteristic features. HAp nanoparticles (NPs) are good host materials and can be functionalized with various kinds of dopants and substrates. By endowing HAp NPs with desired properties in order to render them suitable for biomedical applications including cellular imaging, non-invasive and quantitative visualisation of molecular process occurring at cellular and subcellular levels becomes possible. Depending on their functional properties, HAp based nanoprobes can be divided into three classes, i.e., luminescent HAp NPs (for both down conversion and up conversion luminescence), magnetic HAp NPs, and luminomagnetic HAp NPs. Luminomagnetic HAp NPs are particularly attractive in terms of bimodal imaging and even multimodal imaging by virtue of their luminescence and magnetism. Functionalized HAp NPs are potential candidates for targeted drug delivery applications. This review (with 166 references) spotlights the cellular imaging applications of three types of HAp NPs. Specific sections cover aspects of molecular imaging and the various imaging modes, a comparison of the common types of nanoprobes for bioimaging, synthetic methods for making the various kinds of HAp NPs, followed by overviews on fluorescent NPs for bioimaging (such as quantum dots, gold nanoclusters, lanthanide-doped or fluorophore-doped NPs), magnetic HAp NPs for use in magnetic resonance imaging (MRI), luminomagnetic HAp NPs for bimodal imaging, and sections on drug delivery as well as cellular imaging applications of HAp based nanoprobes (including targeted imaging). (author)

  14. Macrophage Autophagy in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Maria Chiara Maiuri

    2013-01-01

    Full Text Available Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility.

  15. Emerging applications of conjugated polymers in molecular imaging.

    Science.gov (United States)

    Li, Junwei; Liu, Jie; Wei, Chen-Wei; Liu, Bin; O'Donnell, Matthew; Gao, Xiaohu

    2013-10-28

    In recent years, conjugated polymers have attracted considerable attention from the imaging community as a new class of contrast agent due to their intriguing structural, chemical, and optical properties. Their size and emission wavelength tunability, brightness, photostability, and low toxicity have been demonstrated in a wide range of in vitro sensing and cellular imaging applications, and have just begun to show impact in in vivo settings. In this Perspective, we summarize recent advances in engineering conjugated polymers as imaging contrast agents, their emerging applications in molecular imaging (referred to as in vivo uses in this paper), as well as our perspectives on future research.

  16. Immune Vasculitis Induced Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The relationship between immune vasculitis and atherosclerosis was studied. The experimental model of weanling rabbits for immune vasculitis was reproduced by intravenous injection of 10 % bovine serum albumin. There were 6 groups: group A, 25 weanling rabbits with immune vasculitis subject to coronary arteriography; group B, 10 normal mature rabbits subject to coronary arteriography; group C, 10 weanling rabbits subject to coronary arteriography; group D, 8 weanling rabbits with vasculitis and cholesterol diet; group E, 8 weanling rabbits receiving single cholesterol diet; group F: 8 weanling rabbits receiving basic diet. Four weeks later, coronary arteriography was performed in groups A, B and C. The rabbits in groups D, E and F were sacrificed for the study of pathological changes in the coronary artery after 12 weeks. The results showed that the dilatation of coronary artery occurred in 6 rabbits of group A, but in groups B and C, no dilatation of coronary artery appeared. In comparison with group E, more severe atherosclerosis occurred in group D, showing the thickened plaque, fibrous sclerosis and atherosclerotic lesion. Percentage of plaques covering aortic intima, incidence of atherosclerosis of small coronary arteries and degree of stenosis of coronary arteries were significantly higher in group D than in group E (P<0.01). No atherosclerosis changes were found in group F. It was concluded that in the acute phase, the serum immune vasculitis can induce the dilatation of coronary artery of some weanling rabbits, and aggravate the formation of atherosclerosis in rabbits fed with cholesterol diet. Immune vasculitis is a new risk factor of atherosclerosis and ischemic heart disease.

  17. Molecular imaging in myeloma precursor disease

    OpenAIRE

    Mena, E.; Choyke, P; Tan, E; Landgren, O; Kurdziel, K

    2011-01-01

    Multiple myeloma (MM) is consistently preceded by its pre-malignant states, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). By definition, precursor conditions do not exhibit end-organ disease (anemia, hypercalcemia, renal failure, skeletal lytic lesions, or a combination of these). However, new imaging methods are demonstrating that some patients in the MGUS or SNM category are exhibiting early signs of MM.

  18. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  19. Molecular Imaging of Breast Cancer: Present and future directions

    Science.gov (United States)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  20. Molecular imaging with dynamic contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Dynamic contrast-enhanced computed tomography (DCE-CT) is a quantitative technique that employs rapid sequences of CT images after bolus administration of intravenous contrast material to measure a range of physiological processes related to the microvasculature of tissues. By combining knowledge of the molecular processes underlying changes in vascular physiology with an understanding of the relationship between vascular physiology and CT contrast enhancement, DCE-CT can be redefined as a molecular imaging technique. Some DCE-CT derived parameters reflect tissue hypoxia and can, therefore, provide information about the cellular microenvironment. DCE-CT can also depict physiological processes, such as vasodilatation, that represent the physiological consequences of molecular responses to tissue hypoxia. To date the main applications have been in stroke and oncology. Unlike some other molecular imaging approaches, DCE-CT benefits from wide availability and ease of application along with the use of contrast materials and software packages that have achieved full regulatory approval. Hence, DCE-CT represents a molecular imaging technique that is applicable in clinical practice today.

  1. Molecular imaging in cardiovascular diseases; Molekulare kardiovaskulaere MRT-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Botnar, R.M. [King' s College London (United Kingdom). Imaging Sciences; St. Thomas' NHS Foundation Trust, London (United Kingdom); Ebersberger, H. [Heart Center Munich-Bogenhausen, Munich (Germany). Dept. of Cardiology and Intensive Care Medicine; Noerenberg, D. [Charite, Berlin (Germany). Inst. for Radiology; and others

    2015-02-15

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  2. Molecular Imaging: A Promising Tool to Monitor Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-01-01

    Full Text Available Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.

  3. Development of molecular imaging in the European radiological community

    International Nuclear Information System (INIS)

    The recent and concomitant advances in molecular biology and imaging for diagnosis and therapy will place in vivo imaging techniques at the centre of their clinical transfer. Before that, a wide range of multidisciplinary preclinical research is already taking place. The involvement of radiologists in this new field of imaging sciences is therefore absolutely mandatory during these two phases of development. Achievement of such objectives requires the refinement of strategy within the European radiological community and the European Society of Radiology (ESR) will have to drive a number of actions to stimulate the younger generation of radiologists and to facilitate their access to knowledge. For that purpose, a molecular imaging (MI) subcommittee of the ESR Research Committee based on a group of involved radiologists will be constituted to develop contacts with other constitutive committees and associated societies to provide proposals to our community. (orig.)

  4. Vascular ultrasound for atherosclerosis imaging

    NARCIS (Netherlands)

    C.L. de Korte (Chris); H.H.G. Hansen (Hendrik); A.F.W. van der Steen (Anton)

    2011-01-01

    textabstractCardiovascular disease is a leading cause of death in the Western world. Therefore, detection and quantification of atherosclerotic disease is of paramount importance to monitor treatment and possible prevention of acute events. Vascular ultrasound is an excellent technique to assess the

  5. Molecular imaging of vessels in mouse models of disease

    International Nuclear Information System (INIS)

    Vascular imaging of angiogenesis in mouse models of disease requires multi modal imaging hardware capable of targeting both structure and function at different physical scales. The three dimensional (3D) structure and function vascular information allows for accurate differentiation between biological processes. For example, image analysis of vessel development in angiogenesis vs. arteriogenesis enables more accurate detection of biological variation between subjects and more robust and reliable diagnosis of disease. In the recent years a number of micro imaging modalities have emerged in the field as preferred means for this purpose. They provide 3D volumetric data suitable for analysis, quantification, validation, and visualization of results in animal models. This review highlights the capabilities of microCT, ultrasound and microPET for multimodal imaging of angiogenesis and molecular vascular targets in a mouse model of tumor angiogenesis. The basic principles of the imaging modalities are described and experimental results are presented.

  6. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  7. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  8. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Science.gov (United States)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2014-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. PMID:23536223

  9. [Atherosclerosis and infection?].

    Science.gov (United States)

    Zeman, K

    2006-09-01

    Atherosclerosis is guided by chronicle inflammation process. In the last decades of the 20th century, studies considering infection another possible risk factor of atherosclerosis development were written. Helicobacter pylori, Porphyromas gingivalis, some viruses but most frequently Chlamydia pneumonie are infection agens mentioned in these studies. Some of them emphasize also combined infections caused by more pathogenic factors having influence on vascular inflammation. Serological, epidemiological, histological and imunological studies show the pathogenic influence of acute or chronic infections. Many studies selected makrolid antibiotics as treatment in patients with ischaemic heart disease. However, existing experience with antibiotics did not bring clear results. These studies have mentioned the fact antibiotics have not been indicated as treatment in patients with acute or chronic vascular system infliction by atherosclerosis. Since the experimental and clinical research of influence of inflammations on the development of atherosclerosis moved forward a lot, no exact evidence of this complicated pathogenic mechanism was given. It will obviously take some time to confirm whether the relation between infections and artherosclerosis is causal, i.e. initiating the pathogenic process, accelerating it or keeping it alive. PMID:17091609

  10. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    DA LUZ PROTASIO L.

    2001-01-01

    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  11. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    International Nuclear Information System (INIS)

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure–function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [18F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed “theranostics”. Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. -- Highlights: •Molecular functional imaging (MFI) gives insight into the tumor biology and intratumoral heterogeneity. •It has potential role in identifying radiomic signatures associated with underlying gene-expression. •Radiomics can be used to create a road map

  12. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  13. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Bishnu P. [Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109 (United States); Wang, Thomas D., E-mail: thomaswa@umich.edu [Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109 (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-06-11

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research.

  14. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers m

  15. Multi-modality systems for molecular tomographic imaging

    Science.gov (United States)

    Li, Mingze; Bai, Jing

    2009-11-01

    In vivo small animal imaging is a cornerstone in the study of human diseases by providing important clues on the pathogenesis, progression and treatment of many disorders. Molecular tomographic imaging can probe complex biologic interactions dynamically and to study diseases and treatment responses over time in the same animal. Current imaging technique including microCT, microMRI, microPET, microSPECT, microUS, BLT and FMT has its own advantages and applications, however, none of them can provide structural, functional and molecular information in one context. Multi-modality imaging, which utilizes the strengths of different modalities to provide a complete understanding of the object under investigation, emerges as an important alternative in small animal imaging. This article is to introduce the latest development of multimodality systems for small animal tomographic imaging. After a systematic review of imaging principles, systems and commerical products for each stand-alone method, we introduce some multimodality strategies in the latest years. In particular, two dual-modality systems, i.e. FMT-CT and FMT-PET are presented in detail. The end of this article concludes that though most multimodality systems are still in a laboratory research stage, they will surely undergo deep development and wide application in the near future.

  16. Molecular imaging of apoptosis: from micro to macro.

    Science.gov (United States)

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.

  17. Low-Noise CMOS Image Sensors for Radio-Molecular Imaging

    NARCIS (Netherlands)

    Chen, Y.

    2012-01-01

    This thesis presents the development of low-noise CMOS image sensors for radio-molecular imaging. The development is described in two directions: firstly, from the technology point of view to reduce the pixel noise level, and secondly from the design point of view to reduce the pixel readout circuit

  18. PET molecular imaging in stem cell therapy for neurological diseases

    International Nuclear Information System (INIS)

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  19. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  20. Imaging of Isotopically Enhanced Molecular Targeting Agents Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Quong, J N

    2004-02-19

    The goal of this project is to develop experimental and computational protocols to use SIMS to image the chemical composition of biological samples, focusing on optimizing sample preparation protocols and developing multivariate data analysis methods. Our results on sample preparation, molecular imaging, and multivariate analysis have been presented at several meeting abstracts (UCRL151797ABS, UCRL151797ABSREV1, UCRL151426ABS, UCRL201277, UCRL154757). A refereed paper describing our results for sample preparation and molecular imaging of various endogenous biomolecules as well as the mutagen PhIP has been accepted for publication (UCRL-JC-151797). We are also preparing two additional papers describing our multivariate analysis methods to analyze spectral data. As these papers have not been submitted, their content is included in this final report.

  1. The Utility of Molecular Imaging in Prostate Cancer.

    Science.gov (United States)

    Leiblich, Aaron; Stevens, Daniel; Sooriakumaran, Prasanna

    2016-03-01

    Prostate cancer is the commonest solid-organ cancer diagnosed in males and represents an important source of morbidity and mortality worldwide. Imaging plays a crucial role in diagnosing prostate cancer and informs the ongoing management of the disease at all stages. Several novel molecular imaging technologies have been developed recently that have the potential to revolutionise disease diagnosis and the surveillance of patients living with prostate cancer. These innovations include hyperpolarised MRI, choline PET/CT and PSMA PET/CT. The major utility of choline and PSMA PET/CT currently lies in their sensitivity for detecting early recurrence after radical treatment for prostate cancer and identifying discrete lesions that may be amenable to salvage therapy. Molecular imaging is likely to play a future role in characterising genetic and biochemical signatures in individual tumours, which may be of particular significance as cancer therapies move into an era of precision medicine. PMID:26894753

  2. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    Science.gov (United States)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  3. Imprints of Molecular Clouds in Radio Continuum Images

    CERN Document Server

    Yusef-Zadeh, F

    2012-01-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the snake filament and G359.75-0.13 demonstrate an anti--correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are iden...

  4. Engineering imaging probes and molecular machines for nanomedicine.

    Science.gov (United States)

    Tong, Sheng; Cradick, Thomas J; Ma, Yan; Dai, Zhifei; Bao, Gang

    2012-10-01

    Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarriers and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of functional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carriers for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imaging probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nanomedicine approaches to clinical applications are discussed.

  5. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  6. Alcohol and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Gao Yinglan; Song Jingyu; Jin Junshuo; Zhong Xiuhong; Ren Xiangshan; Liu Shuangping

    2005-01-01

    Objectives To study the relationship between alcohol and atherosclerosis (AS).Methods The paper reviewed the mechanism of the alcohol leading to AS from four aspects such as the introduction of alcohol and AS, imbalance of oxidationantioxidation system, oxygen free radical (OFR) and endothelium cell (EC) apoptosis, apoptosis and AS.Results Excessive alcohol could lead to imbalance of oxidation-antioxidation system, and increase OFR, in the meanwhile, OFR could lead to EC apoptosis,which could lead to AS.

  7. Blood pressure and atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008412 Association between single nucleotide polymorphisms of matrix metalloproteinase-3 gene and the severity of coronary atherosclerosis in patients with coronary artery disease. WU Naqiong(吴娜琼),et al. Cardiovasc Instit, Fuwai Hosp, Beijing 100037. Chin J Cardiol 2008;36(6):501-505. Objective To investigate the association between the severity of coronary arteries in patients with coronary artery disease and the single nucleotide polymorphisms of MMP-3 gene.

  8. Animal Models of Atherosclerosis

    OpenAIRE

    Godfrey S Getz; Reardon, Catherine A

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to...

  9. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    Science.gov (United States)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  10. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.;

    2011-01-01

    Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this achie...... small animal PET/CT for studies of muscle and tendon in exercise models. © 2011 Bentham Science Publishers Ltd.......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this...... this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume...

  11. Ultrafast Molecular Imaging by Laser Induced Electron Diffraction

    CERN Document Server

    Peters, Michel; Cornaggia, Christian; Saugout, Sébastien; Charron, Eric; Keller, Arne; Atabek, Osman

    2010-01-01

    We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the Laser Induced Electron Diffraction, LIED, technique [T. Zuo \\textit{et al.}, Chem. Phys. Lett. \\textbf{259}, 313 (1996)]. We present numerical results obtained for the CO$_2$ molecule using a single active electron model. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  12. Coronary, Carotid, and Lower-extremity Atherosclerosis and Their Interrelationship in Danish Patients with Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Kay, Susan Due; Poulsen, Mikael Kjaer; Diederichsen, Axel Cosmus Pyndt;

    2015-01-01

    OBJECTIVE: Atherosclerosis is highly prevalent among patients with systemic lupus erythematosus (SLE), but has been demonstrated predominantly in non-European SLE cohorts and few investigations have included more than 1 imaging modality. We aimed to investigate the prevalence of atherosclerosis...... regression model, age (p Systemic Lupus International Collaborating Clinics (SLICC; p = 0.008) were significant independent risk factors for atherosclerosis at any vascular territory. CONCLUSION: Atherosclerosis is highly prevalent among Danish patients with SLE...

  13. Role of Micronutrients on Subclinical Atherosclerosis Micronutrients in Subclinical Atherosclerosis.

    Science.gov (United States)

    Kocyigit, Duygu; Gurses, Kadri Murat; Yalcin, Muhammed Ulvi; Tokgozoglu, Lale

    2016-01-01

    Atherosclerotic cardiovascular disease (CVD) leading to coronary heart disease is the leading cause of morbidity and mortality in the world. Nutrition is one of the key factors in the etiology of atherosclerosis. Micronutrient supplements are widely used to prevent many chronic diseases including atherosclerosis. However, scientific evidence regarding this issue is still insufficient and current data on the association of dietary micronutrients and CVD risk is contradictory. Most of the randomized studies have failed to demonstrate beneficial effects of micronutrient supplementation on markers of subclinical atherosclerosis. In this review, role of each micronutrient on subclinical atherosclerosis will be evaluated thoroughly.

  14. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    Science.gov (United States)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  15. Molecular imaging and the neuropathologies of Parkinson's disease

    DEFF Research Database (Denmark)

    Cumming, Paul; Borghammer, Per

    2012-01-01

    The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA...... with denervation upregulation, but there is an accelerated rate of DA receptor loss as the disease advances. Animal studies and post mortem investigations reveal changes in brain opioid peptide systems, but these are poorly documented in imaging studies of PD. Relatively minor changes in the binding sites for GABA...

  16. Advances in radionuclide molecular imaging of pancreatic β-cells

    International Nuclear Information System (INIS)

    In both type 1 and type 2 diabetes mellitus, β-cell mass (BCM) is lost.Various treatments are developed to restore or reconstruct BCM. The development of non-invasive methods to quantify BCM in vivo offers the potential for early detection of β-cell dysfunction prior to the clinical onset of diabetes. PET imaging with radioligands that directly target the pancreatic β-cells appears promising. The ability to determine the BCM has been investigated in several targets and their corresponding radiotracers, including radiolabeled receptor ligands, antibodies, metabolites and reporter genes. Therefore, we summarize the recent progress in radionuclide molecular imaging of pancreatic β-cells. (authors)

  17. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  18. Tau PET: the next frontier in molecular imaging of dementia.

    Science.gov (United States)

    Xia, Chenjie; Dickerson, Bradford C

    2016-09-01

    We have arrived at an exciting juncture in dementia research: the second major pathological hallmark of Alzheimer's disease (AD)-tau-can now be seen for the first time in the living human brain. The major proteinopathies in AD include amyloid-β plaques and neurofibrillary tangles (NFTs) made of hyperphosphorylated paired helical filament (PHF) tau. Since its advent more than a decade ago, amyloid PET imaging has revolutionized the field of dementia research, enabling more confident diagnosis of the likely pathology in patients with a variety of clinical dementia syndromes, paving the way for the identification of people with preclinical or prodromal AD pathology, and serving as a minimally invasive molecular readout in clinical trials of putative disease-modifying interventions. Now that we are on the brink of a second revolution in molecular imaging in dementia, it is worth considering the likely potential impact of this development on the field. PMID:27334648

  19. Toll-Like Receptors, Their Ligands, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Conrad P. Hodgkinson

    2011-01-01

    Full Text Available Atherosclerosis is a disease characterized by inflammation in the arterial wall. Atherogenesis is dependent on the innate immune response involving activation of Toll-like receptors (TLRs and the expression of inflammatory proteins. TLRs, which recognize various pathogen-associated molecular patterns, are expressed in various cell types within the atherosclerotic plaque. Microbial agents are associated with an increased risk of atherosclerosis and this is, in part, due to activation of TLRs. Recently considerable evidence has been provided suggesting that endogenous proteins promote atherosclerosis by binding to TLRs. In this review, we describe the role of TLRs in atherosclerosis with particular emphasis on those atherogenic endogenous proteins that have been implicated as TLR ligands.

  20. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis.

    Science.gov (United States)

    Meng, Lingjun; Jin, Wei; Wang, Yuhui; Huang, Huanwei; Li, Jia; Zhang, Cai

    2016-04-29

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE -/- mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come.

  1. T Lymphocyte Autoreactivity in Inflammatory Mechanisms Regulating Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Elisabetta Profumo

    2012-01-01

    Full Text Available Atherosclerosis has been clearly demonstrated to be a chronic inflammatory disease of the arterial wall. Both cells of the innate and the acquired immune system, particularly monocytes and T lymphocytes, are implicated in the atherogenic process, producing different cytokines with pro- and anti-inflammatory effects. The majority of pathogenic T cells involved in atherosclerosis are of the Th1 profile, that has been correlated positively with coronary artery disease. Many studies conducted to evaluate the molecular factors responsible for the activation of T cells have demonstrated that the main antigenic targets in atherosclerosis are modified endogenous structures. These self-molecules activate autoimmune reactions mainly characterized by the production of Th1 cytokines, thus sustaining the inflammatory mechanisms involved in endothelial dysfunction and plaque development. In this paper we will summarize the different T-cell subsets involved in atherosclerosis and the best characterized autoantigens involved in cardiovascular inflammation.

  2. Non-invasive Optical Molecular Imaging for Cancer Detection

    Science.gov (United States)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  3. Breast imaging technology: Probing physiology and molecular function using optical imaging - applications to breast cancer

    International Nuclear Information System (INIS)

    The present review addresses the capacity of optical imaging to resolve functional and molecular characteristics of breast cancer. We focus on recent developments in optical imaging that allow three-dimensional reconstruction of optical signatures in the human breast using diffuse optical tomography (DOT). These technologic advances allow the noninvasive, in vivo imaging and quantification of oxygenated and deoxygenated hemoglobin and of contrast agents that target the physiologic and molecular functions of tumors. Hence, malignancy differentiation can be based on a novel set of functional features that are complementary to current radiologic imaging methods. These features could enhance diagnostic accuracy, lower the current state-of-the-art detection limits, and play a vital role in therapeutic strategy and monitoring

  4. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  5. Photoacoustic molecular imaging for in vivo liver iron quantitation

    Science.gov (United States)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  6. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  7. Prevention and Regression of Atherosclerosis: Emerging Treatments

    Directory of Open Access Journals (Sweden)

    Aliosvi Rodríguez Rodríguez

    2014-06-01

    Full Text Available Occlusive vascular diseases such as acute coronary syndrome, cerebral stroke, and peripheral arterial disease, represent a serious health problem worldwide. In recent decades, there has been significant progress in the diagnosis and treatment of atherosclerosis. Intravascular ultrasound imaging provides detailed information on the anatomy of the plaque and it has been used in several studies to evaluate the results. Atherosclerosis destabilizes the normal protective mechanism provided by the endothelium and this mechanism has been involved in the pathophysiology of acute coronary disease and brain stroke. Main efforts focus on prevention, especially at early ages. This paper is a review of 68 updated bibliographic citations in order to show the current options available for the prevention and reversal of the atherosclerotic process.

  8. Contributions on biomedical imaging, with a side-look at molecular imaging

    International Nuclear Information System (INIS)

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.)

  9. Luminescent Nanomaterials for Molecular-Specific Cellular Imaging

    Science.gov (United States)

    Zvyagin, Andrei Vasilyevich; Song, Zhen; Nadort, Annemarie; Sreenivasan, Varun Kumaraswamy Annayya; Deyev, Sergey Mikhailovich

    Imaging of molecular trafficking in cells and biological tissue aided by molecular-specific fluorescent labeling is very attractive, since it affords capturing the key processes in comprehensive biological context. Several shortcomings of the existing organic dye labeling technology, however, call for development of alternative molecular reporters, with improved photostability, reduced cytotoxicity, and an increased number of controllable surface moieties. Such alternative molecular reporters are represented by inorganic luminescent nanoparticles (NP) whose optical, physical, and chemical properties are discussed on the examples of luminescent nanodiamonds (LND) and upconversion nanoparticles (UCNP). The emission origins of these nanomaterials differ markedly. LND emission results from individual nitrogen-vacancy color-centers in a biocompatible nanodiamond host whose properties can be controlled via size and surface groups. Photophysics of UCNP is governed by the collective, nonlinear excitation transfer processes, resulting in conversion of longer-wavelength excitation to the shorter-wavelength emission. The emission/excitation spectral properties of UCNP falling within the biological tissue transparency window open new opportunities of almost complete suppression of the cell/tissue autofluorescence background. The developed surface of these nanoparticles represents a flexible platform populated with biocompatible surface moieties onto which cargo and targeting biomolecules can be firmly docked through a process called bioconjugation. These bioconjugated modules, e.g., nanodiamond-antibody, (quantum dot)-somatostatin, or (upconversion nanoparticle)-(mini-antibody) can gain admission into the cells by initiating the cell-specific, cell-recognized communication protocol. In this chapter, we aim to demonstrate the whole bottom-up bio-nano-optics approach for optical biological imaging capturing luminescent nanoparticle design, surface activation, and bioconjugation

  10. Mitogen-activated protein kinases in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Dorota Bryk

    2014-01-01

    Full Text Available Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase, JNK (c-Jun N-terminal kinase and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

  11. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  12. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  13. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    OpenAIRE

    Lu, Feng-Mei; Yuan, Zhen

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in n...

  14. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Murilo Foppa

    2001-02-01

    Full Text Available Observational studies have attributed a protective effect to alcohol consumption on the development of atherosclerosis and cardiovascular morbidity and mortality. Alcohol intake in the amount of one to two drinks per day results in an estimated 20-40% reduction in cardiovascular events. An additional protective effect, according to major cohort studies, has been attributed to wine, probably due to antioxidant effects and platelet antiaggregation agents. On the other hand, the influence of different patterns of alcohol consumption and environmental factors may explain a great part of the additional effect of wine. Protection may be mediated by modulation of other risk factors, because alcohol increases HDL-C, produces a biphasic response on blood pressure, and modulates the endothelial function, while it neither increases body weight nor impairs glucose-insulin homeostasis. Alcohol may also have a direct effect on atherogenesis. Despite these favorable effects, the current evidence is not enough to justify prescribing alcohol to prevent cardiovascular disease.

  15. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  16. Molecular imaging by optically-detected electron spin resonance of nitrogen-vacancies in nanodiamond

    CERN Document Server

    Hegyi, Alex

    2012-01-01

    Molecular imaging refers to a class of noninvasive biomedical imaging techniques with the sensitivity and specificity to image biochemical variations in-vivo. An ideal molecular imaging technique visualizes a biochemical target according to a range of criteria, including high spatial and temporal resolution, high contrast relative to non-targeted tissues, depth-independent penetration into tissue, lack of harm to the organism under study, and low cost. Because no existing molecular imaging modality is ideal for all purposes, new imaging approaches are needed. Here we demonstrate a novel molecular imaging approach, called nanodiamond imaging, that uses nanodiamonds containing nitrogen-vacancy (NV) color centers as an imaging agent, and image nanodiamond targets in pieces of chicken breast. Nanodiamonds can be tagged with biologically active molecules so they bind to specific receptors; their distribution can then be quantified in-vivo via optically-detected magnetic resonance of the NVs. In effect, we are demo...

  17. [PREDICTORS OF ATHEROSCLEROSIS: NEW DEVELOPMENTS].

    Science.gov (United States)

    Gozhenko, A I; Kotyuzhinskaya, S G; Kovalevskaya, L A

    2014-12-01

    The article describes known atherosclerosis predictors of endothelial origin, which are diagnostic criteria for identifying's early stages of atherosclerosis, and can prevent the development of this disease and are used to monitor the effectiveness of the therapy The authors analyzed the possibility of using heparin as an early marker of atherosclerosis, based on the fact that the inhibition of lipoprotein lipase activity due hyperheparinemia resulting from depletion of mast cells due to endothelial dysfunction, leads to the disorders of lipid transporting system in the form of the resistant hyperlipidemia with the phenomena of dyslipidemia. PMID:26638463

  18. Laser induced - tunneling, electron diffraction and molecular orbital imaging

    International Nuclear Information System (INIS)

    Full text: Multiphoton ionization in the tunneling limit is similar to tunneling in a scanning tunneling microscope. In both cases an electron wave packet tunnels from a bound (or valence) state to the continuum. I will show that multiphoton ionization provides a route to extend tunneling spectroscopy to the interior of transparent solids. Rotating the laser polarization is the analogue of scanning the STM tip - a means of measuring the crystal symmetry of a solid. In gas phase molecules the momentum spectrum of individual electrons can be measured. I will show that, as we rotate the molecule with respect to the laser polarization, the photoelectron spectrum samples a filter projection of the momentum wave function (the molecular analogue to the band structure) of the ionizing orbital. Some electrons created during multiphoton ionization re-collide with their parent ion. I will show that they diffract, revealing the scattering potential of the ion - the molecular structure. The electron can also interfere with the initial orbital from which it separated, creating attosecond XUV pulses or pulse trains. The amplitude and phase of the radiation contains all information needed to re-construct the image of the orbital (just as a sheared optical interferometer can fully characterize an optical pulse). Strong field methods provide an extensive range of new tools to apply to atomic, molecular and solid-state problems. (author)

  19. Signs of subclinical coronary atherosclerosis in relation to risk factor distribution in the Multi-Ethnic Study of Atherosclerosis (MESA) and the Heinz Nixdorf Recall Study (HNR)

    OpenAIRE

    Erbel, Raimund; Delaney, Joseph A. C.; Lehmann, Nils; McClelland, Robyn L.; Möhlenkamp, Stefan; Kronmal, Richard A.; Schmermund, Axel; Moebus, Susanne; Dragano, Nico; Stang, Andreas; Jöckel, Karl-Heinz; Budoff, Matthew J.

    2008-01-01

    Aims Modern imaging technology allows us the visualization of coronary artery calcification (CAC), a marker of subclinical coronary atherosclerosis. The prevalence, quantity, and risk factors for CAC were compared between two studies with similar imaging protocols but different source populations: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Heinz Nixdorf Recall Study (HNR). Methods and results The measured CAC in 2220 MESA participants were compared with those in 3126 HNR partici...

  20. A Review of Tumor Specific Imaging Methods: A Glance at the Use of Molecular Imaging

    Directory of Open Access Journals (Sweden)

    M.A. Oghabian

    2005-08-01

    Full Text Available Introduction & Background: Conventional imaging modalities of CT, MRI, ultrasound, radionuclide, and even metabolic PET are insensitive to reveal tumor and metastasis of less than few millimeters containing not much fewer than 500,000 cells. At this size, a tu-mor has effectively undergone about 20 cell dou-blings, and is sufficiently stuffed with gene defects and likely to metastasize. New techniques generally known as molecular imaging lead to a patient-specific approach based on physiologic, antigenic, molecular, and genetic disease markers. In this article, Current and the near term trends and techniques in early de-tection of cancer using gene specific, cell specific, or even patient specific approaches are summarized. A number of markers are used for cancer imaging. Anatomic markers show cell morphology defects at the sub-10-µm level on CT, MRI, and OCT (Optical Coherence Tomography. These techniques often fail to provide accurate and basic information necessary to manage the patient’s disease such as true metastatic extent. Functional markers use dynamic features, such as capillary leak (using ICG, IndoCyanine Green, lymphatic transport (by colloid, or Tc-Sestamibi, blood oxygenation, and blood flow. The features provide signal by a bulk phenomenon, and hence are still insensitive. More specifically, anti-genic probes, such as targeted antibodies have been demonstrated effectively in vivo for both diagnostic and therapeutic purposes, such as PSMA in the pros-tate cancer, CEA in colorectal cancer, and HER-2/neu in breast cancer. Metabolic probes accumulate at the site of a specific metabolic activity, and rely on imag-ing agents involving certain enzymatic pathways or transport functions of the cell. Examples are 18FDG (18F-fluoroDeoxyGlucose in PET and 11C-thymidine. Recent spectroscopy techniques do not need such labeled probes. The common method for in-vivo spectroscopy is MRSI (Proton Magnetic Resonance Spectroscopy that can

  1. [Molecular imaging for early diagnosis of Alzheimer's disease].

    Science.gov (United States)

    Pozo García, Miguel Angel

    2004-01-01

    The progressive aging of the population and the difficulty of diagnosing and treating Alzheimer's disease (AD) portends an exponencial increase in the prevalence of this illness. One way to approach this social and health problem is to develop diagnostic techniques that allow us to detect the disease in its pre-clinical stages and apply early treatment that can slow down AD advance. Molecular imaging, in particular that generated by positron emission tomography with 2-fluoro-2 deoxi-D-glucose (PET-FDG) has shown high sensitivity in detecting changes in cerebral metabolic activity in the early stages of AD, and allow other dementias and physiological changes that accompany normal aging to be distinguished from AD. PMID:15997594

  2. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    Science.gov (United States)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  3. Recent trends in Molecular Imaging : PET/CT in Neurology

    Directory of Open Access Journals (Sweden)

    R P Tripathi

    2015-06-01

    Full Text Available PET/CT is an important molecular imaging technique for the assessment ofneurological disorders. The most widely used radiopharmaceutical for both clinical and research purposes is [18F] 2-fluoro-2-deoxy-D-glucose (FDG. It is extensively used owing to its favourable physical characteristics. It enables depiction of cerebral glucose metabolism, and has thus been used to study various pathological states. Despite this, FDG has its own limitations. This is owing to its limited specificity and high cortical uptake. This has paved the way for the development of several non-FDG PET radiopharmaceuticals. We present the insights gained at our institution, using these radiotracers in the assessment of neurological disease. Our study shows that the use of FDG and non-FDG novel PET radiopharmaceuticals facilitates the early diagnosis, delineation of extent, prognostication and monitoring of therapeutic response in several neuropathological states.PET/CT is an important molecular imaging technique for the assessment ofneurological disorders. The most widely used radiopharmaceutical for both clinicaland research purposes is [18F] 2-fluoro-2-deoxy-D-glucose (FDG. It is extensivelyused owing to its favourable physical characteristics. It enables depiction of cerebralglucose metabolism, and has thus been used to study various pathological states.Despite this, FDG has its own limitations. This is owing to its limited specificity andhigh cortical uptake. This has paved the way for the development of several non-FDGPET radiopharmaceuticals. We present the insights gained at our institution, usingthese radiotracers in the assessment of neurological disease. Our study shows that theuse of FDG and non-FDG novel PET radiopharmaceuticals facilitates the earlydiagnosis, delineation of extent, prognostication and monitoring of therapeuticresponse in several neuropathological states.

  4. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  5. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  6. Proteomic Biomarkers of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Natacha Diaz-Prieto

    2008-01-01

    Full Text Available Biomarkers provide a powerful approach to understanding the spectrum of cardiovascular diseases. They have application in screening, diagnostic, prognostication, prediction of recurrences and monitoring of therapy. The “omics” tool are becoming very useful in the development of new biomarkers in cardiovascular diseases. Among them, proteomics is especially fitted to look for new proteins in health and disease and is playing a significant role in the development of new diagnostic tools in cardiovascular diagnosis and prognosis. This review provides an overview of progress in applying proteomics to atherosclerosis. First, we describe novel proteins identified analysing atherosclerotic plaques directly. Careful analysis of proteins within the atherosclerotic vascular tissue can provide a repertoire of proteins involved in vascular remodelling and atherogenesis. Second, we discuss recent data concerning proteins secreted by atherosclerotic plaques. The definition of the atheroma plaque secretome resides in that proteins secreted by arteries can be very good candidates of novel biomarkers. Finally we describe proteins that have been differentially expressed (versus controls by individual cells which constitute atheroma plaques (endothelial cells, vascular smooth muscle cells, macrophages and foam cells as well as by circulating cells (monocytes, platelets or novel biomarkers present in plasma.

  7. Proteomic Biomarkers of Atherosclerosis.

    Science.gov (United States)

    Vivanco, F; Padial, L R; Darde, V M; de la Cuesta, F; Alvarez-Llamas, G; Diaz-Prieto, Natacha; Barderas, M G

    2008-01-01

    SUMMARY: Biomarkers provide a powerful approach to understanding the spectrum of cardiovascular diseases. They have application in screening, diagnostic, prognostication, prediction of recurrences and monitoring of therapy. The "omics" tool are becoming very useful in the development of new biomarkers in cardiovascular diseases. Among them, proteomics is especially fitted to look for new proteins in health and disease and is playing a significant role in the development of new diagnostic tools in cardiovascular diagnosis and prognosis. This review provides an overview of progress in applying proteomics to atherosclerosis. First, we describe novel proteins identified analysing atherosclerotic plaques directly. Careful analysis of proteins within the atherosclerotic vascular tissue can provide a repertoire of proteins involved in vascular remodelling and atherogenesis. Second, we discuss recent data concerning proteins secreted by atherosclerotic plaques. The definition of the atheroma plaque secretome resides in that proteins secreted by arteries can be very good candidates of novel biomarkers. Finally we describe proteins that have been differentially expressed (versus controls) by individual cells which constitute atheroma plaques (endothelial cells, vascular smooth muscle cells, macrophages and foam cells) as well as by circulating cells (monocytes, platelets) or novel biomarkers present in plasma. PMID:19578499

  8. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  9. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.

  10. Nuclear molecular imaging of paragangliomas; Imagerie moleculaire nucleaire des paragangliomes

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, D.; Tessonnier, L.; Mundler, O. [Service central de biophysique et de medecine nucleaire, CHU de la Timone, 13 - Marseille (France)

    2010-08-15

    Paragangliomas (PGL) are relatively rare neural crest tumors originating in the adrenal medulla (usually called pheochromocytoma), chemoreceptors (i.e., carotid and aortic bodies) or autonomic ganglia. These tumors are highly vascular, usually benign and slow-growing. PGL may occur as sporadic or familial entities, the latter mostly in association with germline mutations of the succinate dehydrogenase (SDH) B, SDHC, SDHD, SDH5, von Hippel-Lindau (VHL), ret proto-oncogene (RET), neurofibromatosis 1 (NF1) (von Recklinghausen's disease), prolyl hydroxylase domain protein 2 (PHD2) genes and TMEM127. Molecular nuclear imaging has a central role in characterization of PGL and include: somatostatin receptor imaging ({sup 111}In, {sup 68}Ga), MIBG scintigraphy ({sup 131}I, {sup 123}I), {sup 18}F-dihydroxy-phenylalanine ({sup 18}F-DOPA) positron emission tomography (PET), and {sup 18}F-deoxyglucose ({sup 18}F-FDG) PET. The choice of the tracer is not yet fully established but the work-up of familial forms often require the combination of multiple approaches. (authors)

  11. Feasibility of high-resolution MR imaging in the evaluation of small diameter artery atherosclerosis: An animal study%高分辨MRI检测兔小管径动脉粥样斑块的可靠性

    Institute of Scientific and Technical Information of China (English)

    李明利; 孙杰; 常晓燕; 张竹花; 雷晶; 金征宇

    2011-01-01

    Objective To study the value of high-resolution MR imaging (HRMRI) in detection of atherosclerosis of small diameter arteries with rabbit models. Methods Abodominal aortic atherosclerosis was induced through endothelial denudation and high-cholesterol diet in 12 New Zealand white (NZW) rabbits. HRMRI was performed with fast spin echo T2-weighted (T2W) imaging on a 1. 5T clinical scanner. HE, Masson stain and imunohistochemical stain were performed after HRMRI. MRI performance and histological findings of atherosclerosis lesions were compared slice by slice. Results Atherosclerotic plaques characterized by lipid deposition and fibrosis were induced in the abdominal aorta. HRMRI clearly showed the lesions, and a good match was observed between MRI and histological findings. There was significant correlation for both lumen area and wall area measurements between MRI and histology (lumen area: r=0. 7503, wall areas r= 0. 8666, both P<0. 05). On T2WI, the luminal high signal band corresponded to the thick fibrous cap with extensive inflammatory cell infiltration, while underlying low signal areas corresponded to lipid core. Thin and dense fibrous cap was not displayed on T2WI due to resolution limitation. Conclusion HRMRI is reliable to show the morphologic structure of atherosclerotic lesions of small diameter arteries. It can provide information about lesions burden and main compositions.%目的 探讨高分辨MRI(HRMRI)技术评价大白兔模型小管径动脉粥样斑块的价值.方法 通过高脂饮食和球囊损伤新西兰大白兔(12只)腹主动脉内膜制作模拟小管径动脉的粥样硬化模型,行高分辨FSE T2WI成像和病理分析.病理切片严格与MRI匹配,分析包括HE染色、Masson及免疫组化染色.以病理分析结果为标准,评价MRI在显示动脉斑块形态、成分以及定量测量方面的价值.结果 模型腹主动脉可见以脂质沉积和纤维增生为特征的斑块.不同组织成分的斑块表现为不同的T2

  12. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis

    Science.gov (United States)

    Babaev, Vladimir R.; Chew, Joshua D.; Ding, Lei; Davis, Sarah; Breyer, Matthew D.; Breyer, Richard M.; Oates, John A.; Fazio, Sergio; Linton, MacRae F.

    2009-01-01

    Prostagladin (PG) E2, a major product of activated macrophages, has been implicated in atherosclerosis and plaque rupture. The PGE2 receptors, EP2 and EP4, are expressed in atherosclerotic lesions and are known to inhibit apoptosis in cancer cells. To examine the roles of macrophage EP4 and EP2 in apoptosis and early atherosclerosis, fetal liver cell transplantation was used to generate LDLR−/− mice chimeric for EP2−/− or EP4−/− hematopoietic cells. After 8-weeks on a Western diet, EP4−/− → LDLR−/− mice, but not EP2−/− → LDLR−/− mice, had significantly reduced aortic atherosclerosis with increased apoptotic cells in the lesions. EP4−/− peritoneal macrophages had increased sensitivity to pro-apoptotic stimuli, including palmitic acid and free cholesterol loading, which was accompanied by suppression of activity of p-Akt, p-Bad and NF-kB-regulated genes. Thus, EP4 deficiency inhibits the PI3K/Akt and NF-kB pathways compromising macrophage survival and suppressing early atherosclerosis, identifying macrophage EP4 signaling pathways as molecular targets for modulating the development of atherosclerosis. PMID:19041765

  13. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  14. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    Science.gov (United States)

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  15. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G. (ed.)

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  16. In Vivo Detection of Oxidation-Specific Epitopes in Atherosclerotic Lesions Using Bio-Compatible Mn(II) Molecular Magnetic Imaging Probes

    Science.gov (United States)

    Briley-Saebo, Karen C.; Hoang, Tuyen; Saeboe, Alexander M.; Cho, Young Seok; Ryu, Sung Kee; Volkava, Eugenia; Dickson, Stephen; Leibundgut, Gregor; Weisner, Philipp; Green, Simone; Casanada, Florence; Miller, Yury I.; Shaw, Walter; Witztum, Joseph L; Fayad, Zahi A.; Tsimikas, Sotirios

    2012-01-01

    Objectives To evaluate the in vivo magnetic resonance (MR) imaging efficacy of manganese (Mn(II)) molecular imaging probes targeted to oxidation-specific epitopes (OSE). Background OSE are critical in the initiation, progression and de-stabilization of atherosclerotic plaques. Gadolinium (Gd(III)) based MR imaging agents can be associated with systemic toxicity. Mn is an endogenous, bio-compatible, paramagnetic metal ion that has poor MR efficacy when chelated, but strong efficacy when released within cells. Methods Multimodal Mn-micelles were generated to contain rhodamine for confocal microscopy and conjugated with either the murine monoclonal IgG antibody MDA2 targeted to malondialdehyde (MDA)-lysine epitopes or the human single-chain Fv antibody fragment IK17 targeted to MDA-like epitopes (‘targeted micelles”). Micelle formulations were characterized in vitro and in vivo and their MR efficacy (9.4 Tesla) evaluated in apoE−/− and LDLR−/− mice (0.05 mmol Mn/Kg dose) (total of 120 mice for all experiments). In vivo competitive inhibition studies were performed to evaluate target specificity. Untargeted, MDA2-Gd and IK17-Gd micelles (0.075 mmol Gd/Kg) were included as controls. Results In vitro studies demonstrated that targeted Mn-micelles accumulate in macrophages when pre-exposed to MDA-LDL with ~10X increase in longitudinal relativity. Following intravenous injection, strong MR signal enhancement was observed 48–72 hours after administration of targeted Mn-micelles, with co-localization within intraplaque macrophages. Co-injection of free MDA2 with the MDA2-Mn micelles resulted in full suppression of MR signal in the arterial wall confirming target specificity. Similar MR efficacy was noted in apoE−/− and LDLR−/− mice with aortic atherosclerosis. No significant differences in MR efficacy were noted between targeted Mn and Gd micelles. Conclusions This study demonstrates that bio-compatible multimodal Mn-based molecular imaging probes

  17. Metabolomics and Atherosclerosis

    OpenAIRE

    Sascha N Goonewardena; Prevette, Lisa E.; Desai, Ankit A

    2010-01-01

    Metabolites reflect the dynamic processes underlying cellular homeostasis. Recent advances in analytical chemistry and molecular biology have set the stage for metabolite profiling to help us understand complex molecular processes and physiology. Metabolomics is the comparative analysis of metabolite flux and how it relates to biological phenotypes. As an intermediate phenotype, metabolite signatures capture a unique aspect of cellular dynamics that is not typically interrogated, providing a ...

  18. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  19. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy.

    Science.gov (United States)

    Du, Wei; Tao, Hongyan; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2015-09-01

    Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.

  20. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    Science.gov (United States)

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease.

  1. Postmortem Study of Validation of Low Signal on Fat-Suppressed T1-Weighted Magnetic Resonance Imaging as Marker of Lipid Core in Middle Cerebral Artery Atherosclerosis

    Science.gov (United States)

    Yang, Wen-Jie; Zhao, Hai-Lu; Niu, Chun-Bo; Zhang, Bing; Xu, Yun; Wong, Ka-Sing; Ng, Ho-Keung

    2016-01-01

    Background and Purpose— High signal on T1-weighted fat-suppressed images in middle cerebral artery plaques on ex vivo magnetic resonance imaging was verified to be intraplaque hemorrhage histologically. However, the underlying plaque component of low signal on T1-weighted fat-suppressed images (LST1) has never been explored. Based on our experience, we hypothesized that LST1 might indicate the presence of lipid core within intracranial plaques. Methods— 1.5 T magnetic resonance imaging was performed in the postmortem brains to scan the cross sections of bilateral middle cerebral arteries. Then middle cerebral artery specimens were removed for histology processing. LST1 presence was identified on magnetic resonance images, and lipid core areas were measured on the corresponding histology sections. Results— Total 76 middle cerebral artery locations were included for analysis. LST1 showed a high specificity (96.9%; 95% confidence interval, 82.0%–99.8%) but a low sensitivity (38.6%; 95% confidence interval, 24.7%–54.5%) for detecting lipid core of all areas. However, the sensitivity increased markedly (81.2%; 95% confidence interval, 53.7%–95.0%) when only lipid cores of area ≥0.80 mm2 were included. Mean lipid core area was 5× larger in those with presence of LST1 than in those without (1.63±1.18 mm2 versus 0.32±0.31 mm2; P=0.003). Conclusions— LST1 is a promising imaging biomarker of identifying intraplaque lipid core, which may be useful to distinguish intracranial atherosclerotic disease from other intracranial vasculopathies and to assess plaque vulnerability for risk stratification of patients with intracranial atherosclerotic disease. In vivo clinical studies are required to explore the correlation between LST1 and clinical outcomes of patients with intracranial atherosclerotic disease. PMID:27462119

  2. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized (129)Xe Molecular Clamp Probe.

    Science.gov (United States)

    Guo, Qianni; Zeng, Qingbin; Jiang, Weiping; Zhang, Xiaoxiao; Luo, Qing; Zhang, Xu; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-03-14

    Mercury pollution, in the form of mercury ions (Hg(2+)), is a major health and environmental hazard. Commonly used sensors are invasive and limited to point measurements. Fluorescence-based sensors do not provide depth resolution needed to image spatial distributions. Herein we report a novel sensor capable of yielding spatial distributions by MRI using hyperpolarized (129)Xe. A molecular clamp probe was developed consisting of dipyrrolylquinoxaline (DPQ) derivatives and twocryptophane-A cages. The DPQ derivatives act as cation receptors whereas cryptophane-A acts as a suitable host molecule for xenon. When the DPQ moiety interacts with mercury ions, the molecular clamp closes on the ion. Due to overlap of the electron clouds of the two cryptophane-A cages, the shielding effect on the encapsulated Xe becomes important. This leads to an upfield change of the chemical shift of the encapsulated Xe. This sensor exhibits good selectivity and sensitivity toward the mercury ion. This mercury-activated hyperpolarized (129)Xe-based chemosensor is a new concept method for monitoring Hg(2+) ion distributions by MRI.

  3. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    International Nuclear Information System (INIS)

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  4. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  5. Basic research and clinical application of optical molecular imaging in breast cancer

    International Nuclear Information System (INIS)

    As a rapidly developing biomedical imaging technology,in vivo optical molecular imaging has been widely applied in various research fields owing to its unique real-time, quantitative and noninvasive characteristics. The applications of in vivo optical imaging technology in the basic and clinical research of breast cancer were reviewed, including detection of distant metastasis,tumor apoptosis, cell cycle, hypoxia and angiogenesis, ER-mediated molecular pathway, breast cancer stem cells, early diagnosis, sentinel node biopsy, evaluation of drug efficacy and detection of human epidermal growth factor receptor-2 (HER-2) expression. They all seem to have a promising potential in in vivo optical molecular imaging. (authors)

  6. Serum Resistin Level and Progression of Atherosclerosis during Glucocorticoid Therapy for Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Nahoko Tanaka

    2016-09-01

    Full Text Available Adipokines are important regulators of several processes, including inflammation and atherosclerosis. In patients with systemic autoimmune diseases, atherosclerosis is accelerated with higher cardiovascular morbidity and mortality. We prospectively investigated the association of adipokines and glucocorticoid therapy with progression of premature atherosclerosis in 38 patients starting glucocorticoid therapy for systemic autoimmune diseases. To detect premature atherosclerosis, carotid ultrasonography was performed at initiation of glucocorticoid therapy and after a mean three-year follow-up period. The ankle-brachial pressure index and cardio-ankle vascular index (CAVI were measured. Serum adipokine levels were determined with enzyme-linked immunosorbent assay kits. Twenty-three patients (60.5% had carotid artery plaque at baseline. The carotid artery intima-media thickness (IMT increased significantly during follow-up. Glucocorticoids reduced the serum resistin level, while increasing serum leptin and high molecular weight-adiponectin. There was slower progression of atherosclerosis (carotid IMT and CAVI at follow-up in patients with greater reduction of serum resistin and with higher cumulative prednisolone dose. In conclusion, progression of premature atherosclerosis occurred at an early stage of systemic autoimmune diseases before initiation of glucocorticoid therapy. Since resistin, an inflammation and atherosclerosis related adipokine, is reduced by glucocorticoids, glucocortidoid therapy may not accelerate atherosclerosis in patients with systemic autoimmune diseases.

  7. Serum Resistin Level and Progression of Atherosclerosis during Glucocorticoid Therapy for Systemic Autoimmune Diseases.

    Science.gov (United States)

    Tanaka, Nahoko; Masuoka, Shotaro; Kusunoki, Natsuko; Nanki, Toshihiro; Kawai, Shinichi

    2016-09-16

    Adipokines are important regulators of several processes, including inflammation and atherosclerosis. In patients with systemic autoimmune diseases, atherosclerosis is accelerated with higher cardiovascular morbidity and mortality. We prospectively investigated the association of adipokines and glucocorticoid therapy with progression of premature atherosclerosis in 38 patients starting glucocorticoid therapy for systemic autoimmune diseases. To detect premature atherosclerosis, carotid ultrasonography was performed at initiation of glucocorticoid therapy and after a mean three-year follow-up period. The ankle-brachial pressure index and cardio-ankle vascular index (CAVI) were measured. Serum adipokine levels were determined with enzyme-linked immunosorbent assay kits. Twenty-three patients (60.5%) had carotid artery plaque at baseline. The carotid artery intima-media thickness (IMT) increased significantly during follow-up. Glucocorticoids reduced the serum resistin level, while increasing serum leptin and high molecular weight-adiponectin. There was slower progression of atherosclerosis (carotid IMT and CAVI) at follow-up in patients with greater reduction of serum resistin and with higher cumulative prednisolone dose. In conclusion, progression of premature atherosclerosis occurred at an early stage of systemic autoimmune diseases before initiation of glucocorticoid therapy. Since resistin, an inflammation and atherosclerosis related adipokine, is reduced by glucocorticoids, glucocortidoid therapy may not accelerate atherosclerosis in patients with systemic autoimmune diseases.

  8. The Center for Integrated Molecular Brain Imaging (Cimbi) database.

    Science.gov (United States)

    Knudsen, Gitte M; Jensen, Peter S; Erritzoe, David; Baaré, William F C; Ettrup, Anders; Fisher, Patrick M; Gillings, Nic; Hansen, Hanne D; Hansen, Lars Kai; Hasselbalch, Steen G; Henningsson, Susanne; Herth, Matthias M; Holst, Klaus K; Iversen, Pernille; Kessing, Lars V; Macoveanu, Julian; Madsen, Kathrine Skak; Mortensen, Erik L; Nielsen, Finn Årup; Paulson, Olaf B; Siebner, Hartwig R; Stenbæk, Dea S; Svarer, Claus; Jernigan, Terry L; Strother, Stephen C; Frokjaer, Vibe G

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes. The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies. The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank. PMID:25891375

  9. Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  10. Molecular markers in breast cancer: new tools in imaging and prognosis

    OpenAIRE

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluorescent labeled (NIRF) tracers for detection of breast cancer. Thus far, only a few molecular imaging tracers have been taken to the clinic of which most are suitable for PET. My thesis describes the e...

  11. Investigations on the usefulness of CEACAMs as potential imaging targets for molecular imaging purposes.

    Directory of Open Access Journals (Sweden)

    Markus Heine

    Full Text Available Members of the carcinoembryonic antigen cell adhesion molecules (CEACAMs family are the prototype of tumour markers. Classically they are used as serum markers, however, CEACAMs could serve as targets for molecular imaging as well.In order to test the anti CEACAM monoclonal antibody T84.1 for imaging purposes, CEACAM expression was analysed using this antibody. Twelve human cancer cell lines from different entities were screened for their CEACAM expression using qPCR, Western Blot and FACS analysis. In addition, CEACAM expression was analyzed in primary tumour xenografts of these cells. Nine of 12 tumour cell lines expressed CEACAM mRNA and protein when grown in vitro. Pancreatic and colon cancer cell lines showed the highest expression levels with good correlation of mRNA and protein level. However, when grown in vivo, the CEACAM expression was generally downregulated except for the melanoma cell lines. As the CEACAM expression showed pronounced expression in FemX-1 primary tumours, this model system was used for further experiments. As the accessibility of the antibody after i.v. application is critical for its use in molecular imaging, the binding of the T84.1 monoclonal antibody was assessed after i.v. injection into SCID mice harbouring a FemX-1 primary tumour. When applied i.v., the CEACAM specific T84.1 antibody bound to tumour cells in the vicinity of blood vessels. This binding pattern was particularly pronounced in the periphery of the tumour xenograft, however, some antibody binding was also observed in the central areas of the tumour around blood vessels. Still, a general penetration of the tumour by i.v. application of the anti CEACAM antibody could not be achieved despite homogenous CEACAM expression of all melanoma cells when analysed in tissue sections. This lack of penetration is probably due to the increased interstitial fluid pressure in tumours caused by the absence of functional lymphatic vessels.

  12. Evaluation of animal ultrasound imaging in the atherosclerosis model%小动物超声机在动脉粥样硬化模型中的评价作用

    Institute of Scientific and Technical Information of China (English)

    陈燕芬; 卢军; 张敏州; 王磊

    2015-01-01

    Objective To investigate a simple and fast method for evaluating an atherosclerosis model in ApoE -/-mice,particularly with carotid atherosclerotic plaque .Methods Eighteen ApoE-/-mice were divided into two groups .The model group was fed with high fat food for 16 weeks.8 mice were fed with chow food for 16 weeks as the sham.On the 0,4th,8th,12th,16th week after fed, the body weight was detected.The carotid artery of ApoE-/-mice was imaged with the vevo2100 animal ultrasound by MS-550D probe.On the 16th week, the levels of triglyceride(TG),total cholesterol(TC),low-density lipoprotein(LDL) and high-density lipoprotein (HDL) were detected.The pathological morphology of carotid artery or aorta was determined by HE staining .Results Compared with those of the sham ,the levels of LDL and TC were increased (P<0.05,P<0.01),more plaques of carotid artery were detected with the animal ultrasound imaging , carotid in-tima and tunica media were thickened and carotid plaque was significantly formed in model group .Conclusions Animal ultrasound imaging technique could be a simple and fast method to evaluate if the atherosclerosis animal model is established successfully or not .%目的:探讨一种简单快速评价ApoE-/-小鼠动脉粥样硬化模型成功建立与否的方法。方法18只ApoE-/-小鼠随机分为模型组(10只)和对照组(8只)。模型组采用高脂饲料喂养16 w建立动脉粥样硬化模型,对照组予普通饲料喂养。造模16 w后,用Vevo2100小动物超声机MS-550D探头观测ApoE-/-小鼠双侧颈动脉斑块形成情况;并检测甘油三酯(TG)、血清总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)及高密度脂蛋白胆固醇( HDL-C)水平,HE染色检测颈动脉及主动脉病理形态学的变化。结果与对照组相比,模型组小鼠体重较快明显增加,颈动脉小动物超声可见明显的斑块影,LDL-C及TC水平升高(P<0.05,P<0.01),小鼠内

  13. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer.

    Science.gov (United States)

    Mirshojaei, Seyedeh Fatemeh; Ahmadi, Amirhossein; Morales-Avila, Enrique; Ortiz-Reynoso, Mariana; Reyes-Perez, Horacio

    2016-01-01

    Nanotechnology has been used for every single modality in the molecular imaging arena for imaging purposes. Synergic advantages can be explored when multiple molecular imaging modalities are combined with respect to single imaging modalities. Multifunctional nanoparticles have large surface areas, where multiple functional moieties can be incorporated, including ligands for site-specific targeting and radionuclides, which can be detected to create 3D images. Recently, radiolabeled nanoparticles with individual properties have attracted great interest regarding their use in multimodality tumor imaging. Multifunctional nanoparticles can combine diagnostic and therapeutic capabilities for both target-specific diagnosis and the treatment of a given disease. The future of nanomedicine lies in multifunctional nanoplatforms that combine the diagnostic ability and therapeutic effects using appropriate ligands, drugs, responses and technological devices, which together are collectively called theranostic drugs. Co-delivery of radiolabeled nanoparticles is useful in multifunctional molecular imaging areas because it comprises several advantages based on nanoparticles architecture, pharmacokinetics and pharmacodynamic properties.

  14. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  15. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    International Nuclear Information System (INIS)

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20–140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at http://hdl.handle.net/10092/8531

  16. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  17. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (bioluminescence based modalities for molecular imaging in live mice.

  18. Intestinal Microbiota Metabolism and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Tian-Xing Liu; Hai-Tao Niu; Shu-Yang Zhang

    2015-01-01

    Objective:This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target.Data Sources:This study was based on data obtained from PubMed and EMBASE up to June 30,2015.Articles were selected using the following search temps:"Intestinal microbiota","trimethylamine N-oxide (TMAO)","trimethylamine (TMA)","cardiovascular",and "atherosclerosis".Study Selection:Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis.Studies on TMA-containing nutrients were also included.Results:A new CVD risk factor,TMAO,was recently identified.It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota,resulting in TMA release.TMA is subsequently converted to TMAO in the liver.Several preliminary studies have linked TMAO to CVD,particularly atherosclerosis;however,the details of this relationship remain unclear.Conclusions:Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management.

  19. Vitamin K Intake and Atherosclerosis

    Science.gov (United States)

    It has been hypothesized that insufficient intake of vitamin K may increase soft tissue calcification due to impaired gamma-carboxylation of the vitamin K-dependent protein, matrix gamma-carboxyglutamic acid (MGP). The evidence to support this putative role of vitamin K intake in atherosclerosis is ...

  20. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  1. From molecular imaging to personalized radionuclide therapy of cancer

    International Nuclear Information System (INIS)

    Full text of publication follows. 68Gallium is a positron emitter (t1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 7700 68Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, re-staging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177Lutetium or 90Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRNT is based on the receptor-mediated internalization of SA. Several clinical trials indicate that PRRNT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mo) whereas NET of small bowel had a median PFS of 51 months. Side effects like 3-4 NEThro- or hemato-toxicity were observed in only 0.2% and 2% of patients respectively. PRRNT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period of time (Bad Berka Concept using sequential (DUO) PRRNT) results in excellent therapeutic responses. By

  2. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

    DEFF Research Database (Denmark)

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S;

    2016-01-01

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B...... that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production...... of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis....

  3. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

    Science.gov (United States)

    Hoyt, Kenneth; Warram, Jason M.; Wang, Dezhi; Ratnayaka, Sithira; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Purpose The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. Procedures A population of rats underwent 30 min of renal ischemia (acute kidney injury, N=6) or sham injury (N=4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. Results Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. Conclusions Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted. PMID:25905474

  4. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Zu T Shen

    Full Text Available Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd-based contrast agent (GBCA-HDL using high density lipoproteins (HDL-like particles significantly enhances the detection of plaques in an apolipoprotein (apo E knockout (KO mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the

  5. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles

    Science.gov (United States)

    Shen, Zu T.; Zheng, Shaokuan; Gounis, Matthew J.; Sigalov, Alexander B.

    2015-01-01

    Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd)-based contrast agent (GBCA-HDL) using high density lipoproteins (HDL)-like particles significantly enhances the detection of plaques in an apolipoprotein (apo) E knockout (KO) mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER) of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the expanded diagnostic

  6. Recent advances in lipoprotein and atherosclerosis: nutrigenomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.; Ortega, A.; Varela, L.; Bermudez, B.; Muriana, F. J. G.; Abaia, R.

    2009-07-01

    Atherosclerosis is a disease in which multiple factors contribute to the degeneration of the vascular wall. Many risk factors have been identified as having influence on the progression of atherosclerosis among them, the type of diet. Multifactorial interaction among lipoproteins, vascular wall cells, and inflammatory mediators has been recognised as the basis of atherogenesis. Dietary intake affects lipoprotein concentration and composition providing risk or protection at several stages of atherosclerosis. More intriguingly, it has been demonstrated that the extent to which each lipid or lipoprotein is associated with cardiovascular disease depends on the time to last meal; thus, postprandial lipoproteins, main lipoproteins in blood after a high-fat meal, have been shown to strongly influence atherogenesis. As a complex biological process, the full cellular and molecular characterization of atherosclerosis derived by diet, calls for application of the newly developing omics techniques of analysis. This review will considered recent studies using high-throughput technologies and a nutrigenomic approach to reveal the patho-physiological effects that the fasting and postprandial lipoproteins may exert on the vascular wall. (Author) 55 refs.

  7. The complementary roles of dynamic contrast-enhanced MRI and {sup 18}F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Calcagno, Claudia; Ramachandran, Sarayu; Mani, Venkatesh; Millon, Antoine [Mount Sinai School of Medicine, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Izquierdo-Garcia, David [Harvard University - MIT - Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Rosenbaum, David [Hopital Pitie Salpetriere, Paris (France); Tawakol, Ahmed [Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Woodward, Mark [University of Sydney, George Institute, Sydney (Australia); Bucerius, Jan [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Rheinisch-Westfaelische Technische Hochschule Aachen, Department of Nuclear Medicine, Aachen (Germany); Moshier, Erin; Godbold, James [Mount Sinai School of Medicine, Biostatistics Shared Research Facility, New York, NY (United States); Kallend, David [F. Hoffmann-La Roche Ltd, Basel (Switzerland); Farkouh, Michael E. [Mount Sinai School of Medicine, Cardiovascular Institute, New York, NY (United States); Peter Munk Cardiac Centre and Li Ka Shing Knowledge Institute, Toronto (Canada); Fuster, Valentin [Mount Sinai School of Medicine, Cardiovascular Institute, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Rudd, James H.F. [University of Cambridge, Division of Cardiovascular Medicine, Cambridge (United Kingdom); Fayad, Zahi A. [Mount Sinai School of Medicine, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Institute, New York, NY (United States)

    2013-12-15

    Inflammation and neovascularization in vulnerable atherosclerotic plaques are key features for severe clinical events. Dynamic contrast-enhanced (DCE) MRI and FDG PET are two noninvasive imaging techniques capable of quantifying plaque neovascularization and inflammatory infiltrate, respectively. However, their mutual role in defining plaque vulnerability and their possible overlap has not been thoroughly investigated. We studied the relationship between DCE-MRI and {sup 18}F-FDG PET data from the carotid arteries of 40 subjects with coronary heart disease (CHD) or CHD risk equivalent, as a substudy of the dal-PLAQUE trial (NCT00655473). The dal-PLAQUE trial was a multicenter study that evaluated dalcetrapib, a cholesteryl ester transfer protein modulator. Subjects underwent anatomical MRI, DCE-MRI and {sup 18}F-FDG PET. Only baseline imaging and biomarker data (before randomization) from dal-PLAQUE were used as part of this substudy. Our primary goal was to evaluate the relationship between DCE-MRI and {sup 18}F-FDG PET data. As secondary endpoints, we evaluated the relationship between (a) PET data and whole-vessel anatomical MRI data, and (b) DCE-MRI and matching anatomical MRI data. All correlations were estimated using a mixed linear model. We found a significant inverse relationship between several perfusion indices by DCE-MRI and {sup 18}F-FDG uptake by PET. Regarding our secondary endpoints, there was a significant relationship between plaque burden measured by anatomical MRI with several perfusion indices by DCE-MRI and {sup 18}F-FDG uptake by PET. No relationship was found between plaque composition by anatomical MRI and DCE-MRI or {sup 18}F-FDG PET metrics. In this study we observed a significant, weak inverse relationship between inflammation measured as {sup 18}F-FDG uptake by PET and plaque perfusion by DCE-MRI. Our findings suggest that there may be a complex relationship between plaque inflammation and microvascularization during the different

  8. The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis

    International Nuclear Information System (INIS)

    Inflammation and neovascularization in vulnerable atherosclerotic plaques are key features for severe clinical events. Dynamic contrast-enhanced (DCE) MRI and FDG PET are two noninvasive imaging techniques capable of quantifying plaque neovascularization and inflammatory infiltrate, respectively. However, their mutual role in defining plaque vulnerability and their possible overlap has not been thoroughly investigated. We studied the relationship between DCE-MRI and 18F-FDG PET data from the carotid arteries of 40 subjects with coronary heart disease (CHD) or CHD risk equivalent, as a substudy of the dal-PLAQUE trial (NCT00655473). The dal-PLAQUE trial was a multicenter study that evaluated dalcetrapib, a cholesteryl ester transfer protein modulator. Subjects underwent anatomical MRI, DCE-MRI and 18F-FDG PET. Only baseline imaging and biomarker data (before randomization) from dal-PLAQUE were used as part of this substudy. Our primary goal was to evaluate the relationship between DCE-MRI and 18F-FDG PET data. As secondary endpoints, we evaluated the relationship between (a) PET data and whole-vessel anatomical MRI data, and (b) DCE-MRI and matching anatomical MRI data. All correlations were estimated using a mixed linear model. We found a significant inverse relationship between several perfusion indices by DCE-MRI and 18F-FDG uptake by PET. Regarding our secondary endpoints, there was a significant relationship between plaque burden measured by anatomical MRI with several perfusion indices by DCE-MRI and 18F-FDG uptake by PET. No relationship was found between plaque composition by anatomical MRI and DCE-MRI or 18F-FDG PET metrics. In this study we observed a significant, weak inverse relationship between inflammation measured as 18F-FDG uptake by PET and plaque perfusion by DCE-MRI. Our findings suggest that there may be a complex relationship between plaque inflammation and microvascularization during the different stages of plaque development. 18F-FDG PET and

  9. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  10. Handbook of nuclear medicine and molecular imaging principles and clinical applications

    CERN Document Server

    Kim, Edmund E; Tateishi, Ukihide; Baum, Richard P

    2012-01-01

    This handbook will provide updated information on nuclear medicine and molecular imaging techniques as well as its clinical applications, including radionuclide therapy, to trainees and practitioners of nuclear medicine, radiology and general medicine. Updated information on nuclear medicine and molecular imaging are vitally important and useful to both trainees and existing practitioners. Imaging techniques and agents are advancing and changing so rapidly that concise and pertinent information are absolutely necessary and helpful. It is hoped that this handbook will help readers be better equipped for the utilization of new imaging methods and treatments using radiopharmaceuticals.

  11. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  12. Neurobiological mechanisms of treatment resistant depression: Functional, structural and molecular imaging studies

    NARCIS (Netherlands)

    B.P. de Kwaasteniet

    2015-01-01

    This thesis investigated the neurobiological mechanisms of TRD using functional, structural and molecular imaging studies. First the neurobiological mechanisms of MDD were investigated and revealed decreased functional connectivity between the ventral and dorsal network. Thereafter, structural conne

  13. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Jiang[1,4; Zijian Deng[2,4; Dan Yang[3; Xin Deng[1; Qi Li[1; Yinlin Sha[3; Changhui Li[2; Dongsheng Xu[1

    2015-01-01

    By binding molecular probes that target tumor cells, gold nanoparticles (AuNPs) with superior characteristics have shown great potential in tumor molecular imaging studies. The non-invasive, high-resolution, and three-dimensional imaging of the targeted AuNPs within the tumor is desirable for both diagnosis and therapy. In this study, gold nanoflowers (AuNFs) are presented as a novel contrast agent for photoacoustic tomography (PAT). By binding to folic acid, the molecular probe, the tail-vein injected AuNFs concentrated within the tumor site in mice; this was clearly visualized by three-dimensional (3D) PAT imaging. In addition, toxicity assay proved that AuNFs were harmless to living cells and animals. Our results demonstrate that AuNFs have great potential in tumor molecular imaging.

  14. Effect of age on aortic atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Michael A. Chen; Miwa Kawakubo; Patrick M. Colletti; Dongxiang Xu; Laurie LaBree Dustin; Robert Detrano; Stanley P Azen; Nathan D. Wong; Xue-Qiao Zhao

    2013-01-01

    Objective To examine the association of atherosclerosis burden in the survivors of an asymptomatic elderly cohort study and its relationship to other coronary risk factors (specifically, age) by evaluating aortic atherosclerotic wall burden by magnetic resonance imaging (MRI). Methods A total of 312 participants in an ongoing observational cohort study underwent cardiac and descending thoracic aorta imaging by MRI. Maximum wall thickness was measured and the mean wall thickness calculated. Wall/outer wall ratio was used as a normalized wall index (NWI) adjusted for artery size difference among participants. Percent wall volume (PWV) was calculated as NWI × 100. Results In this asymptomatic cohort (mean age: 76 years), the mean (SD) aortic wall area and wall thickness were 222 ± 45 mm2 and 2.7 ± 0.4 mm, respectively. Maximum wall thickness was 3.4 ± 0.6 mm, and PWV was 32% ± 4%. Women appeared to have smaller wall area, but after correcting for their smaller artery size, had significantly higher PWV than men (P = 0.03). Older age was associated with larger wall area (P = 0.04 for trend) with similar PWVs. However, there were no statistically significant associations between standard risk factors, Framingham global risk, or metabolic syndrome status, therapy for cholesterol or hypertension, coronary or aortic calcium score, and the aortic wall burden. Aortic calcification was associated with coronary calcification. Conclusions Asymptomatic elderly in this cohort had a greater descending thoracic aortic wall volume that correlated with age, and women had a significantly increased PWV compared to men. In these survivors, the atherosclerotic aortic wall burden was not significantly associated with traditional risk factors or with coronary or aortic calcium scores or coronary calcium progression. Results suggest that age, or as yet unidentified risk factor(s), may be responsible for the increase in atherosclerosis.

  15. Molecular imaging of cancer: MR spectroscopy and beyond

    International Nuclear Information System (INIS)

    Proton magnetic resonance spectroscopic imaging is a non-invasive diagnostic tool for the investigation of cancer metabolism. As an adjunct to morphologic and dynamic magnetic resonance imaging, it is routinely used for the staging, assessment of treatment response, and therapy monitoring in brain, breast, and prostate cancer. Recently, its application was extended to other cancerous diseases, such as malignant soft-tissue tumours, gastrointestinal and gynecological cancers, as well as nodal metastasis. In this review, we discuss the current and evolving clinical applications of proton magnetic resonance spectroscopic imaging. In addition, we will briefly discuss other evolving techniques, such as phosphorus magnetic resonance spectroscopic imaging, sodium imaging and diffusion-weighted imaging in cancer assessment.

  16. Optical molecular imaging for detection of Barrett's-associated neoplasia

    Institute of Scientific and Technical Information of China (English)

    Nadhi Thekkek; Sharmila Anandasabapathy; Rebecca Richards-Kortum

    2011-01-01

    Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in optical properties as well as imaging approaches that measures those changes.Wide-field imaging approaches include narrow-band imaging that measures changes in light scattering and absorption,and autofluorescence imaging that measure changes in endogenous fluorophores.High-resolution imaging approaches include optical coherence tomography,endocytoscopy,confocal microendoscopy,and high-resolution microendoscopy.These technologies,some coupled with an appropriate contrast agent,can measure differences in glandular morphology,nuclear morphology,or vascular alterations associated with neoplasia.Advances in targeted contrast agents are further discussed.Studies that have explored these technologies are highlighted;as are the advantages and limitations of each.

  17. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    OpenAIRE

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2013-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard S...

  18. DONOR-TRANSMITTED CORONARY ATHEROSCLEROSIS

    Directory of Open Access Journals (Sweden)

    B. L. Mironkov

    2014-01-01

    Full Text Available Aim. To estimate opportunities, prospects and safety of using heart transplants from aged donors who are at high risk of coronary atherosclerosis.Materials and methods. Over the period from March 1987 to May 2014450 heart transplantations (HTx were performed in V.I.Shumakov Federal Research Center of Transplantology and Artifi cial Organs. During the fi rst month after HTx coronarography was made to 152 (37,8% recipients inorder to exclude/confi rm donor-transmitted coronary atherosclerosis (DTCA and to identify tactics of treatment. Coronary atherosclerosis was detected among 16 patients (3,6% of total number of HTx, 15 (93,8% men and 1 (6,2% women. Mean age of recipients with DTCA at the moment of HTx was 48,3 ± 13,1 years.Results. Hemodynamically relevant coronary atherosclerosis was not detected and percutaneous coronary intervention (PCI was not made in the group of patients with the mean age of 42,24 ± 8,91 years. Using heart transplants from aged donors is connected with increasing risk of DTCA among the recipients. DTCA-dependent PCI is not connected with coronary mortality. Actuarial survival rate of patients who underwent PCI is comparable with the same one in the total population of HTx recipients and is equal to 87,5% at 5 years and less.Conclusion. Hearts from aged donors (older than 50 years may be used for HTx with suffi cient level of safety. Due to high level of DTCA using of hearts from such donors is preferable for completing urgent HTx to recipients 1А–В UNOS.

  19. Atherosclerosis in Juvenile Idiopathic Arthritis

    Directory of Open Access Journals (Sweden)

    Ewa Jednacz

    2012-01-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease of the arteries. Clinical consequences of the atherosclerotic process occur in the adult population, however atherosclerotic process begins in childhood. The classic risk factors for atherosclerosis include obesity, dyslipidaemia, age, gender or family history. In recent years, attention has been drawn to the similarity between atherosclerotic inflammatory processes and inflammatory changes in the course of systemic connective tissue disease, in particular systemic lupus etythematosus (SLE or rheumatoid arthritis (RA. There is also observed the similarity of the pathogenetic background of development of atherosclerosis and juvenile idiopathic arthritis (JIA. Elevated levels of pro-inflammatory cytokines are observed in the course of juvenile idiopathic arthritis. Also homocysteine concentrations, which may play a significant role in the development of atherosclerotic lesions, are observed higher in patients with JIA. Some studies revealed higher carotid intima-media thickness (IMT index values in children with JIA. In view of the fact that atherosclerotic process begins as early as in childhood, the introduction of appropriate preventive measures in children is a matter of utmost importance.

  20. Molecular shape of Lumbricus terrestris erythrocruorin studied by electron microscopy and image analysis

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van

    1989-01-01

    The molecular structure of erythrocruorin (hemoglobin) from Lumbricus terrestris has been studied by electron microscopy of negatively stained particles. Over 1000 molecular projections were selected from a number of electron micrographs and were then classified by multivariate statistical image-pro

  1. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how...

  2. Imaging of Flow Patterns with Fluorescent Molecular Rotors

    OpenAIRE

    Mustafic, Adnan; Huang, Hsuan-Ming; Theodorakis, Emmanuel A.; Haidekker, Mark A

    2010-01-01

    Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer states (TICT) upon photoexcitation. Some classes of molecular rotors, among them those that are built on the benzylidene malononitrile motif, return to the ground state either by nonradiative intramolecular rotation or by fluorescence emission. In low-viscosity solvents, intramolecular rotation dominates, and the fluorescence quantum yield is low. Higher solvent viscosities reduce the intram...

  3. Deblurring molecular images using desorption electrospray ionization mass spectrometry

    Science.gov (United States)

    Parry, R. Mitchell; Galhena, Asiri S.; Fernandez, Facundo M.; Wang, May D.

    2016-01-01

    Traditional imaging techniques for studying the spatial distribution of biological molecules such as proteins, metabolites, and lipids, require the a priori selection of a handful of target molecules. Imaging mass spectrometry provides a means to analyze thousands of molecules at a time within a tissue sample, adding spatial detail to proteomic, metabolomic, and lipidomic studies. Compared to traditional microscopic images, mass spectrometric images have reduced spatial resolution and require a destructive acquisition process. In order to increase spatial detail, we propose a constrained acquisition path and signal degradation model enabling the use of a general image deblurring algorithm. Our analysis shows the potential of this approach and supports prior observations that the effect of the sprayer focuses on a central region much smaller than the extent of the spray. PMID:19963935

  4. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  5. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    Science.gov (United States)

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  6. Molecular imaging for theranostics in gastroenterology: one stone to kill two birds.

    Science.gov (United States)

    Ko, Kwang Hyun; Kown, Chang-Il; Park, Jong Min; Lee, Hoo Geun; Han, Na Young; Hahm, Ki Baik

    2014-09-01

    Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine.

  7. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluoresc

  8. A DR-WFOI fusion system for the real-time molecular imaging in vivo

    Institute of Scientific and Technical Information of China (English)

    Kun Bi; Xiaochun Xu; Lei Xi; Shaoqun Zeng; Qingming Luo

    2008-01-01

    Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image.

  9. Molecular and Functional Imaging for Detection of Lymph Node Metastases in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ansje Fortuin

    2013-07-01

    Full Text Available Knowledge on lymph node metastases is crucial for the prognosis and treatment of prostate cancer patients. Conventional anatomic imaging often fails to differentiate benign from metastatic lymph nodes. Pelvic lymph node dissection is an invasive technique and underestimates the extent of lymph node metastases. Therefore, there is a need for more accurate non-invasive diagnostic techniques. Molecular and functional imaging has been subject of research for the last decades, in this respect. Therefore, in this article the value of imaging techniques to detect lymph node metastases is reviewed. These techniques include scintigraphy, sentinel node imaging, positron emission tomography/computed tomography (PET/CT, diffusion weighted magnetic resonance imaging (DWI MRI and magnetic resonance lymphography (MRL. Knowledge on pathway and size of lymph node metastases has increased with molecular and functional imaging. Furthermore, improved detection and localization of lymph node metastases will enable (focal treatment of the positive nodes only.

  10. Molecular and functional imaging for detection of lymph node metastases in prostate cancer.

    Science.gov (United States)

    Fortuin, Ansje; Rooij, Maarten de; Zamecnik, Patrik; Haberkorn, Uwe; Barentsz, Jelle

    2013-07-03

    Knowledge on lymph node metastases is crucial for the prognosis and treatment of prostate cancer patients. Conventional anatomic imaging often fails to differentiate benign from metastatic lymph nodes. Pelvic lymph node dissection is an invasive technique and underestimates the extent of lymph node metastases. Therefore, there is a need for more accurate non-invasive diagnostic techniques. Molecular and functional imaging has been subject of research for the last decades, in this respect. Therefore, in this article the value of imaging techniques to detect lymph node metastases is reviewed. These techniques include scintigraphy, sentinel node imaging, positron emission tomography/computed tomography (PET/CT), diffusion weighted magnetic resonance imaging (DWI MRI) and magnetic resonance lymphography (MRL). Knowledge on pathway and size of lymph node metastases has increased with molecular and functional imaging. Furthermore, improved detection and localization of lymph node metastases will enable (focal) treatment of the positive nodes only.

  11. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    Science.gov (United States)

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  12. Cholesterol-Lowering Atherosclerosis Study (CLAS)

    Science.gov (United States)

    2013-12-12

    Arterial Occlusive Diseases; Cardiovascular Diseases; Carotid Artery Diseases; Cerebral Arteriosclerosis; Cerebrovascular Disorders; Coronary Arteriosclerosis; Coronary Disease; Heart Diseases; Myocardial Ischemia; Atherosclerosis

  13. Effect of molecular organization on the image histograms of polarization SHG microscopy

    OpenAIRE

    Psilodimitrakopoulos, Sotiris; Amat Roldán, Iván; Loza Álvarez, Pablo; Artigas García, David

    2012-01-01

    Based on its polarization dependency, second harmonic generation (PSHG) microscopy has been proven capable to structurally characterize molecular architectures in different biological samples. By exploiting this polarization dependency of the SHG signal in every pixel of the image, average quantitative structural information can be retrieved in the form of PSHG image histograms. In the present study we experimentally show how the PSHG image histograms can be affected by the organization of th...

  14. Laser-Induced Electron Diffraction: Inversion of Photoelectron Spectra for Molecular Orbital Imaging

    CERN Document Server

    Puthumpally-Joseph, R; Peters, M; Nguyen-Dang, T T; Atabek, O; Charron, E

    2016-01-01

    In this paper, we discuss the possibility of imaging molecular orbitals from photoelectron spectra obtained via Laser Induced Electron Diffraction (LIED) in linear molecules. This is an extension of our work published recently in Physical Review A \\textbf{94}, 023421 (2016) to the case of the HOMO-1 orbital of the carbon dioxide molecule. We show that such an imaging technique has the potential to image molecular orbitals at different internuclear distances in a sub-femtosecond time scale and with a resolution of a fraction of an Angstr\\"om.

  15. High-order harmonic spectroscopy for molecular imaging of polyatomic molecules

    CERN Document Server

    Negro, M; Faccialà, D; De Silvestri, S; Vozzi, C; Stagira, S

    2014-01-01

    High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such technique to nitrous oxide (N2O) and acetylene (C2H2). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.

  16. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  17. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  18. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    Science.gov (United States)

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  19. Molecular imaging to target transplanted muscle progenitor cells.

    Science.gov (United States)

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  20. Bioluminescence: a versatile technique for imaging cellular and molecular features

    Science.gov (United States)

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.

  1. Oxyradical Stress, Endocannabinoids, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Anberitha T. Matthews

    2015-12-01

    Full Text Available Atherosclerosis is responsible for most cardiovascular disease (CVD and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG. Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.

  2. Laser induced electron diffraction: a tool for molecular orbital imaging

    CERN Document Server

    Peters, Michel; Charron, Eric; Keller, Arne; Atabek, Osman

    2012-01-01

    We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800\\,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the electron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents.

  3. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  4. Molecular probes for nonlinear optical imaging of biological membranes

    Science.gov (United States)

    Blanchard-Desce, Mireille H.; Ventelon, Lionel; Charier, Sandrine; Moreaux, Laurent; Mertz, Jerome

    2001-12-01

    Second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) are nonlinear optical (NLO) phenomena that scale with excitation intensity squared, and hence give rise to an intrinsic 3-dimensional resolution when used in microscopic imaging. TPEF microscopy has gained widespread popularity in the biology community whereas SHG microscopy promises to be a powerful tool because of its sensitivity to local asymmetry. We have implemented an approach toward the design of NLO-probes specifically adapted for SHG and/or TPEF imaging of biological membranes. Our strategy is based on the design of nanoscale amphiphilic NLO-phores. We have prepared symmetrical bolaamphiphilic fluorophores combining very high two-photon absorption (TPA) cross-sections in the visible red region and affinity for cellular membranes. Their incorporation and orientation in lipid membranes can be monitored via TPEF anisotropy. We have also prepared amphiphilic push-pull chromophores exhibiting both large TPA cross-sections and very large first hyperpolarizabilities in the near-IR region. These NLO-probes have proved to be particularly useful for imaging of biological membranes by simultaneous SHG and TPEF microscopy and offer attractive prospects for real-time imaging of fundamental biological processes such as adhesion, fusion or reporting of membrane potentials.

  5. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    Science.gov (United States)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  6. Imaging unstable plaque.

    Science.gov (United States)

    Sriranjan, Rouchelle S; Tarkin, Jason M; Evans, Nicholas R; Chowdhury, Mohammed M; Rudd, James H

    2016-09-01

    Recent advances in imaging technology have enabled us to utilise a range of diagnostic approaches to better characterise high-risk atherosclerotic plaque. The aim of this article is to review current and emerging techniques used to detect and quantify unstable plaque in the context of large and small arterial systems and will focus on both invasive and non-invasive imaging techniques. While the diagnosis of clinically relevant atherosclerosis still relies heavily on anatomical assessment of arterial luminal stenosis, evolving multimodal cross-sectional imaging techniques that encompass novel molecular probes can provide added information with regard to plaque composition and overall disease burden. Novel molecular probes currently being developed to track precursors of plaque rupture such as inflammation, micro-calcification, hypoxia and neoangiogenesis are likely to have translational applications beyond diagnostics and have the potential to play a part in quantifying early responses to therapeutic interventions and more accurate cardiovascular risk stratification. PMID:27273430

  7. Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors

    Science.gov (United States)

    Thompson, Alex J.; Tang, T.-Y. Dora; Herling, Therese W.; Che Hak, C. Rohaida; Mann, Stephen; Knowles, Tuomas P. J.; Kuimova, Marina K.

    2014-03-01

    Molecular rotors are fluorophores that have a fluorescence quantum yield that depends upon intermolecular rotation. The fluorescence quantum yield, intensity and lifetime of molecular rotors all vary as functions of viscosity, as high viscosities inhibit intermolecular rotation and cause an increase in the non-radiative decay rate. As such, molecular rotors can be used to probe viscosity on microscopic scales. Here, we apply fluorescence lifetime imaging microscopy (FLIM) to measure the fluorescence lifetimes of three different molecular rotors, in order to determine the microscopic viscosity in two model systems with significant biological interest. First, the constituents of a novel protocell - a model of a prebiotic cell - were studied using the molecular rotors BODIPY C10 and kiton red. Second, amyloid formation was investigated using the molecular rotor Cy3.

  8. Atherosclerosis in Egyptian patients with ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Dahlia A Hussein

    2014-01-01

    Conclusion Patients with AS are more susceptible to atherosclerosis, which is related to disease activity, and receiving biologics may place them at a higher risk. vWF, as a useful marker of atherosclerosis in AS patients, was correlated positively with disease activity scores and IMT.

  9. Rapid Progression of Coronary Atherosclerosis: A Review

    Directory of Open Access Journals (Sweden)

    Priyank Shah

    2015-01-01

    Full Text Available Atherosclerosis is chronic disease, the prevalence of which has increased steadily as the population ages. Vascular injury is believed to be critical initiating event in pathogenesis of spontaneous atherosclerosis. Syndrome of accelerated atherosclerosis has been classically described in patients undergoing heart transplantation, coronary artery bypass graft, and percutaneous transluminal coronary angioplasty. In contrast to spontaneous atherosclerosis, denuding endothelial injury followed by thrombus formation and initial predominant smooth muscle cell proliferation is believed to be playing a significant role in accelerated atherosclerosis. There is no universal definition of rapid progression of atherosclerosis. However most studies describing the phenomenon have used the following definition: (i > or = 10% diameter reduction of at least one preexisting stenosis > or = 50%, (ii > or = 30% diameter reduction of a preexisting stenosis <50%, and (iii progression of a lesion to total occlusion within few months. Recent studies have described the role of coronary vasospasm, human immunodeficiency virus, various inflammatory markers, and some genetic mutations as predictors of rapid progression of atherosclerosis. As research in the field of vascular biology continues, more factors are likely to be implicated in the pathogenesis of rapid progression of atherosclerosis.

  10. In-Vivo Assessment of Coronary Atherosclerosis

    NARCIS (Netherlands)

    G.A. Rodriguez-Granillo

    2006-01-01

    textabstractIntravascular ultrasound (IVUS) has emerged as a highly accurate tool for the serial assessment of the natural history of coronary atherosclerosis and to evaluate the effect of different conventional and emerging drug therapies on the progression of atherosclerosis. The contemporary a

  11. Cytokines in atherosclerosis: an intricate balance

    NARCIS (Netherlands)

    M.C.S. Boshuizen

    2016-01-01

    Atherosclerosis is the underlying pathology in the majority of clinical manifestations of cardiovascular diseases, which are nowadays the main global cause of mortality. Atherosclerosis is a lipid-driven chronic inflammatory disease of the arterial wall. This inflammatory response, with cytokines as

  12. (Second) Harmonic Disharmony: Nonlinear Microscopy Shines New Light on the Pathology of Atherosclerosis.

    Science.gov (United States)

    Watson, Shana R; Lessner, Susan M

    2016-06-01

    There has been increasing interest in second harmonic generation (SHG) imaging approaches for the investigation of atherosclerosis due to the deep penetration and three-dimensional sectioning capabilities of the nonlinear optical microscope. Atherosclerosis involves remodeling or alteration of the collagenous framework in affected vessels. The disease is often characterized by excessive collagen deposition and altered collagen organization. SHG has the capability to accurately characterize collagen structure, which is an essential component in understanding atherosclerotic lesion development and progression. As a structure-based imaging modality, SHG is most impactful in atherosclerosis evaluation in conjunction with other, chemically specific nonlinear optics (NLO) techniques to identify additional components of the lesion. These include the use of coherent anti-Stokes Raman scattering and two-photon excitation fluorescence for studying atherosclerosis burden, and application of stimulated Raman scattering to image cholesterol crystals. However, very few NLO studies have attempted to quantitate differences in control versus atherosclerotic states or to correlate the application to clinical situations. This review highlights the potential of SHG imaging to directly and indirectly describe atherosclerosis as a pathological condition. PMID:27329310

  13. Synthesis and evaluation of a peptide targeted small molecular Gd-DOTA monoamide conjugate for MR molecular imaging of prostate cancer

    OpenAIRE

    Wu, Xueming; Burden-Gulley, Susan M.; Yu, Guan-Ping; Tan, Mingqian; Lindner, Daniel; Brady-Kalnay, Susann M.; Lu, Zheng-Rong

    2012-01-01

    Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)4 specific to clotted plasma proteins in tumor stroma for cancer MR molecula...

  14. Avaliação da aterosclerose carotídea por intermédio de ultra-sonografia e ressonância magnética Evaluation of carotid atherosclerosis by ultrasound and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Lara Vilela de Souza

    2005-04-01

    with coronary disease and indication for surgical treatment. To evaluate the degree of stenosis of the internal carotid arteries using color Doppler ultrasound (CDU and magnetic resonance angiography (MRA. To compare plaque ultrasound echogenicity with signal intensity in magnetic resonance imaging (MRI. To evaluate the quality of the images and inter-rater reliability of MRI analysis. MATERIALS AND METHODS: This was a prospective study of 50 patients. Imaging methods used included ultrasound, T1- and T2-weighted MRI sequences, both with black-blood (BB and fat sat black-blood (FSBB techniques, and 3D TOF (time-of-flight MRA, with and without administration of paramagnetic contrast media. RESULTS: Out of a total of 100 arterial segments, 81% showed stenosis on ultrasound whereas in 72 plaques with type 4 echogenicity there was high signal intensity in MRI in 59.7% in T1-BB technique, 65.3% in T1-FSBB, 62.5% in T2-BB and 66.7% in T2-FSBB. In type 2 plaques we observed high signal intensity in 71.4% in T1-BB and T1-FSBB, 85.7% in T2-BB and 71.4% in T2-FSBB. In type 1 plaques there was high signal intensity in 50% on T1- and T2-weighted images. In 19 segments ultrasound was considered normal. The same segments showed high signal intensity in 47.4% in T1-BB, 57.9% in T1-FSBB, 52.6% in T2-BB and T2-FSBB when evaluated with MRI. CONCLUSION: A high incidence of carotid atherosclerosis was observed. There was borderline reproducibility in the association between the degree of stenosis observed by CDU and MRA. There was no correlation between the types of plaque echogenicity assessed by ultrasound and MR signal intensity changes. The quality of MR images was considered optimal on T1- and T2-weighted images, and good in 3D TOF (axial. The quality of MRA images was considered excellent. Optimal inter-rater reliability was observed, with a kappa index above 0.71.

  15. Oral microbiota in patients with atherosclerosis

    DEFF Research Database (Denmark)

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran;

    2015-01-01

    BACKGROUND AND AIMS: Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested...... patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. RESULTS......: The overall microbial structure was similar in controls and atherosclerosis patients, but patients with symptomatic atherosclerosis had higher relative abundance of Anaeroglobus (mean 0.040% (SD 0.049)) than the control group (0.010% (SD 0.028)) (P = 0.03). Using linear regression analysis, we found...

  16. Pheochromocytoma and Paraganglioma: Current Functional and Future Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Elise M Blanchet

    2012-01-01

    Full Text Available Paragangliomas are neural crest-derived tumors, arising either from chromaffin sympathetic tissue (in adrenal, abdominal, intra-pelvic or thoracic paraganglia or from parasympathetic tissue (in head and neck paraganglia. They have a specific cellular metabolism, with the ability to synthesize, store and secrete catecholamines (although most head and neck paragangliomas do not secrete any catecholamines. This disease is rare and also very heterogeneous, with various presentations (e.g., in regards to localization, multifocality, potential to metastasize, biochemical phenotype, and genetic background. With growing knowledge, notably about the pathophysiology and genetic background, guidelines are evolving rapidly. In this context, functional imaging is a challenge for the management of paragangliomas.Nuclear imaging has been used for exploring paragangliomas for the last three decades, with MIBG historically as the first-line exam. Tracers used in paragangliomas can be grouped in three different categories. Agents that specifically target catecholamine synthesis, storage, and secretion pathways include: 123 and 131I-metaiodobenzylguanidine (123/131I-MIBG, 18F-fluorodopamine (18F-FDA, and 18F-fluorodihydroxyphenylalanine (18F-FDOPA. Agents that bind somatostatin receptors include 111In-pentetreotide and 68Ga-labelled somatostatin analog peptides. The non-specific agent most commonly used in paragangliomas is 18F-fluorodeoxyglucose (18F-FDG. This review will first describe conventional scintigraphic exams that are used for imaging paragangliomas. In the second part we will emphasize the interest in new PET approaches (specific and non-specific, considering the growing knowledge about genetic background and pathophysiology, with the aim of understanding how tumors behave, and optimally adjusting imaging technique for each tumor type.

  17. Atherosclerosis

    Science.gov (United States)

    ... to help you stop smoking. Eat a heart-healthy diet. A heart-healthy diet includes a variety of fresh fruits and vegetables, ... High Cholesterol” for more on eating a heart-healthy diet. Talk to your doctor about adding supplements to ...

  18. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging.

    Science.gov (United States)

    Meng, Congsen; Janssen, Maurice H M

    2015-02-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude. PMID:25725826

  19. Molecular imaging of atherosclerotic lesions by positron emission tomography - can it meet the expectations?

    Science.gov (United States)

    Brammen, Lindsay; Steiner, Sabine; Berent, Robert; Sinzinger, Helmut

    2016-01-01

    Early non-invasive imaging of atherosclerosis and in particular the detection of lesions at risk with high specificity could significantly affect cardiovascular morbidity and mortality. Conventional nuclear medicine approaches, in particular using autologous radiolabeled lipoproteins, can be related to histopathological findings; however, they fail to identify lesions at risk. Positron emission tomography (PET) tracers with much better physical properties have been examined, the most detailed information being available for F-18-deoxyglucose (FDG) and F-18-sodium fluoride (NaF). These two approaches are sensitive to different biochemical mechanisms, i.e. inflammation and microcalcification. Initial enthusiasm, in particular for F-18-FDG, has disappeared, although for F-18-NaF there is some hope, but this is not a breakthrough. No tracer is available so far that is able to identify a specific characteristic of a lesion prone to rupture. Other PET tracers in the pipeline have been examined, mainly in experimental models and only a few in patients, but they failed to contribute significantly to early lesion discovery and do not support great expectations. The key question is: Do we understand what we see? Moreover, methodological problems, a lack of standardization of imaging protocols and aspects of quantification provide a wide range for potential future improvements. While monitoring a therapeutic intervention seems to be possible for both F-18-FDG and F-18-NaF, highly specific early identification of lesions at risk by PET imaging is still far away. As of today, PET is not ready for routine clinical judgment of atherosclerotic lesions at risk to rupture. Even if all these problems can be solved, radiation exposure will still remain a concern, in particular for repeated studies.

  20. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes

    Science.gov (United States)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  1. Enhancing contrast and quantitation by spatial frequency domain fluorescence molecular imaging

    Science.gov (United States)

    Sun, Jessica; Hathi, Deep; Zhou, Haiying; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Optical imaging with fluorescent contrast agents is highly sensitive for molecular imaging but is limited in depth to a few centimeters below the skin. Planar fluorescence imaging with full-field, uniform illumination and scientific camera image capture provides a portable and robust configuration for real-time, sensitive fluorescence detection with scalable resolution, but is inherently surface weighted and therefore limited in depth to a few millimeters. At the NIR region (700-1000 nm), tissue absorption and autofluorescence are relatively reduced, increasing depth penetration and reducing background signal, respectively. Optical imaging resolution scales with depth, limiting microscopic resolution with multiphoton microscopy and optical coherence tomography to skin and peri-tumoral tissues are not uniform, varying in thickness and color, complicating subsurface fluorescence measurements. Diffuse optical imaging methods have been developed that better quantify optical signals relative to faster full-field planar reflectance imaging, but require long scan times, complex instrumentation, and reconstruction algorithms. Here we report a novel strategy for rapid measurement of subsurface fluorescence using structured light illumination to improve quantitation of deep-seated fluorescence molecular probe accumulation. This technique, in combination with highly specific, tumor-avid fluorescent molecular probes, will easily integrate noninvasive diagnostics for superficial cancers and fluorescence guided surgery.

  2. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes.

    Science.gov (United States)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  3. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    Science.gov (United States)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  4. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis.

    Science.gov (United States)

    Simmons, Rachel D; Kumar, Sandeep; Thabet, Salim Raid; Sur, Sanjoli; Jo, Hanjoong

    2016-09-01

    Atherosclerosis is a multifactorial disease that preferentially occurs in arterial regions exposed to d-flow can be used to indicate disturbed flow or disturbed blood flow. The mechanisms by which d-flow induces atherosclerosis involve changes in the transcriptome, methylome, proteome, and metabolome of multiple vascular cells, especially endothelial cells. Initially, we begin with the pathogenesis of atherosclerosis and the changes that occur at multiple levels owing to d-flow, especially in the endothelium. Also, there are a variety of strategies used for the global profiling of the genome, transcriptome, miRNA-ome, DNA methylome, and metabolome that are important to define the biological and pathophysiological mechanisms of endothelial dysfunction and atherosclerosis. Finally, systems biology can be used to integrate these 'omics' datasets, especially those that derive data based on a single animal model, in order to better understand the pathophysiology of atherosclerosis development in a holistic manner and how this integrative approach could be used to identify novel molecular diagnostics and therapeutic targets to prevent or treat atherosclerosis. WIREs Syst Biol Med 2016, 8:378-401. doi: 10.1002/wsbm.1344 For further resources related to this article, please visit the WIREs website. PMID:27341633

  5. Molecular fragmentation by recombination with cold electrons studied with a mass sensitive imaging detector

    OpenAIRE

    Mendes, M

    2010-01-01

    The recombination of a molecular cation with a low-energy electron, followed by fragmentation, is a fundamental reaction process in cold and dilute plasmas. For polyatomic ions, it can yield molecular fragments in ro-vibrationally excited states. The discrimination between decay channels with chemically different fragments and the measurement of their excitation energies pose an experimental challenge. This work discusses a new experimental scheme based on fast beam fragment imaging in a stor...

  6. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  7. Positron emission tomography: diagnostic imaging on a molecular level

    International Nuclear Information System (INIS)

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed

  8. Molecular imaging of cancer with radiolabeled peptides and PET.

    Science.gov (United States)

    Vāvere, Amy L; Rossin, Raffaella

    2012-06-01

    Radiolabeled peptides hold promise for diagnosis and therapy of cancer as well as for early monitoring of therapy outcomes, patient stratification, etc. This manuscript focuses on the development of peptides labeled with 18F, 64Cu, 68Ga and other positron-emitting radionuclides for PET imaging. The major techniques for radionuclide incorporation are briefly discussed. Then, examples of positron-emitting peptides targeting somatostatin receptors, integrins, gastrin-releasing peptide receptors, vasointestinal peptide receptors, melanocortin 1 receptors and others are reviewed. PMID:22292762

  9. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    Directory of Open Access Journals (Sweden)

    A. Greco

    2012-01-01

    Full Text Available Ultrasound biomicroscopy (UBM is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research.

  10. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  11. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  12. Molecular imaging: future uses in arthritides; Molekulare Bildgebung: Kuenftige Anwendungen bei Arthritiden

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H.; Schlechtweg, P.M.; MacKenzie, J.; Winalski, C.S.; Lang, P. [Brigham and Women' s Hospital of Harvard Medical School, Department of Radiology, Boston, MA 02115 (United States)

    2006-05-15

    Molecular imaging is an upcoming field in radiology as a result of great advances in imaging technology, genetics, and biochemistry in the recent past. Early-stage imaging of molecular pathological changes in cells opens the gates to new methods in medical treatment of diseases that otherwise would only be detected in advanced stages. Methods of imaging biochemical pathways with molecular agents are currently an issue of intensive research. This article reviews current modalities of molecular imaging in arthritis that should offer future perspective on early disease detection, diagnosis, and monitoring of treatment efficiency and how they can pave the way to optimized therapy. (orig.) [German] Die molekulare Bildgebung gehoert dank immenser Fortschritte bzgl. Technologie, Genetik und Biochemie in juengster Vergangenheit zu den sehr viel versprechenden neuen Methoden der Bildgebung in der Radiologie. Die Darstellung pathophysiologischer Vorgaenge auf molekularer Ebene in Initialstadien von Erkrankungen eroeffnen ganz neue und noch weitgehend unerforschte Optionen bei der Behandlung von Erkrankungen, die mit herkoemmlichen Methoden erst in weit fortgeschrittenen Stadien erkannt werden koennen. Gegenwaertig wird intensiv an Methoden zur Darstellung dieser verschiedenen zellulaeren Vorgaenge durch Kontrastmittel auf molekularer Basis gearbeitet. In diesem Uebersichtsartikel soll veranschaulicht werden, wie die molekulare Bildgebung bei Arthritiden derzeit und zukuenftig zu verbesserter Frueherkennung, Diagnostik und durch Monitoring der verschiedenen Behandlungsregime zu optimierter Therapie beitragen kann. (orig.)

  13. Somatostatin Receptor-Based Molecular Imaging and Therapy for Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2013-01-01

    Full Text Available Neuroendocrine tumors (NETs are tumors originated from neuroendocrine cells in the body. The localization and the detection of the extent of NETs are important for diagnosis and treatment, which should be individualized according to the tumor type, burden, and symptoms. Molecular imaging of NETs with high sensitivity and specificity is achieved by nuclear medicine method using single photon-emitting and positron-emitting radiopharmaceuticals. Somatostatin receptor imaging (SRI using SPECT or PET as a whole-body imaging technique has become a crucial part of the management of NETs. The radiotherapy with somatostatin analogues labeled with therapeutic beta emitters, such as lutetium-177 or yttrium-90, has been proved to be an option of therapy for patients with unresectable and metastasized NETs. Molecular imaging can deliver an important message to improve the outcome for patients with NETs by earlier diagnosis, better choice of the therapeutic method, and evaluation of the therapeutic response.

  14. Nonlinear optical molecular imaging enables metabolic redox sensing in tissue-engineered constructs

    Science.gov (United States)

    Chen, Leng-Chun; Lloyd, William R.; Wilson, Robert H.; Kuo, Shiuhyang; Marcelo, Cynthia L.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2011-07-01

    Tissue-engineered constructs require noninvasive monitoring of cellular viability prior to implantation. In a preclinical study on human Ex Vivo Produced Oral Mucosa Equivalent (EVPOME) constructs, nonlinear optical molecular imaging was employed to extract morphological and functional information from intact constructs. Multiphoton excitation fluorescence images were acquired using endogenous fluorescence from cellular nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD). The images were analyzed to report quantitatively on tissue structure and metabolism (redox ratio). Both thickness variations over time and cell distribution variations with depth were identified, while changes in redox were quantified. Our results show that nonlinear optical molecular imaging has the potential to visualize and quantitatively monitor the growth and viability of a tissue-engineered construct over time.

  15. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  16. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  17. Imaging Multi-Particle Atomic and Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Landers, Allen [Auburn Univ., AL (United States)

    2016-02-12

    Final Report for Grant Number: DE- FG02-10ER16146 This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms and molecules with photons and electrons. The duration of the grant was the 5 year period from 4/1/2010 – 10/31/2015. All of the support from the grant was used to pay salaries of the PI, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 20 peer reviewed publications over these 5 years with 2 of the publications in Physical Review Letters and 1 in Nature; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B ...).

  18. Molecular targeting of angiogenesis for imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brack, Simon S.; Neri, Dario [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich (Switzerland); Dinkelborg, Ludger M. [Research Laboratories of Schering AG, Berlin (Germany)

    2004-09-01

    Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors' views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future. (orig.)

  19. Justifying molecular images in cell biology textbooks: From constructions to primary data.

    Science.gov (United States)

    Serpente, Norberto

    2016-02-01

    For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic

  20. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h. PMID:26530921

  1. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  2. Calculation of images of oriented C_60 molecules using molecular orbital theory

    OpenAIRE

    Hands, Ian D; Dunn, Janette L; Bates, Colin A.

    2010-01-01

    Using Hückel molecular-orbital theory, images are created to represent the electron distributions expected for a C60 molecule adsorbed on a substrate. Three different orientations of the C60 molecule on the substrate are considered. The effect of the interaction of the molecule with the substrate is treated purely from the basis of symmetry using group theoretical methods. The resulting electron distributions are then used to generate idealized images which represent how the molec...

  3. Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging

    OpenAIRE

    Tan, Mingqian; Wu, Xueming; Jeong, Eun-Kee; Chen, Qianjin; Lu, Zheng-Rong

    2010-01-01

    Effective imaging of cancer molecular biomarker is critical for accurate cancer diagnosis and prognosis. CLT1 peptide was observed to specifically bind to the fibrin-fibronectin complexes presented in tumor extracellular matrix. In this study, we synthesized and evaluated CLT1 peptide-targeted nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance (MR) imaging of the fibrin-fibronectin complexes in tumor. The targeted nanoglobular contrast agents were prepared by conjugating peptide...

  4. Early Cancer Detection and Targeted Therapy by Magnetic Resonance Molecular Imaging and Nano Medicine

    OpenAIRE

    Li, Zhao

    2015-01-01

    The common theme of my 5-year PhD research is to channel progress in spin physics and nano-bio-materials into meaningful improvements in the theoretical studies, methodological developments, and advanced applications of magnetic resonance (MR) to: 1) MR Molecular Imaging: to detect lesions (especially cancers) at early stages through imaging the existence and locations of physiologically important biomarkers; and2) MR Nano Medicine: to cure diseases (especially cancers) by targeted therapy th...

  5. Bisphenol A exposure enhances atherosclerosis in WHHL rabbits.

    Directory of Open Access Journals (Sweden)

    Chao Fang

    Full Text Available Bisphenol A (BPA is an environmental endocrine disrupter. Excess exposure to BPA may increase susceptibility to many metabolic disorders, but it is unclear whether BPA exposure has any adverse effects on the development of atherosclerosis. To determine whether there are such effects, we investigated the response of Watanabe heritable hyperlipidemic (WHHL rabbits to 400-µg/kg BPA per day, administered orally by gavage, over the course of 12 weeks and compared aortic and coronary atherosclerosis in these rabbits to the vehicle group using histological and morphometric methods. In addition, serum BPA, cytokines levels and plasma lipids as well as pathologic changes in liver, adipose and heart were analyzed. Moreover, we treated human umbilical cord vein endothelial cells (HUVECs and rabbit aortic smooth muscle cells (SMCs with different doses of BPA to investigate the underlying molecular mechanisms involved in BPA action(s. BPA treatment did not change the plasma lipids and body weights of the WHHL rabbits; however, the gross atherosclerotic lesion area in the aortic arch was increased by 57% compared to the vehicle group. Histological and immunohistochemical analyses revealed marked increases in advanced lesions (37% accompanied by smooth muscle cells (60% but no significant changes in the numbers of macrophages. With regard to coronary atherosclerosis, incidents of coronary stenosis increased by 11% and smooth muscle cells increased by 73% compared to the vehicle group. Furthermore, BPA-treated WHHL rabbits showed increased adipose accumulation and hepatic and myocardial injuries accompanied by up-regulation of endoplasmic reticulum (ER stress and inflammatory and lipid metabolism markers in livers. Treatment with BPA also induced the expression of ER stress and inflammation related genes in cultured HUVECs. These results demonstrate for the first time that BPA exposure may increase susceptibility to atherosclerosis in WHHL rabbits.

  6. Naringenin and atherosclerosis: a review of literature.

    Science.gov (United States)

    Orhan, Ilkay E; Nabavi, Seyed F; Daglia, Maria; Tenore, Gian C; Mansouri, Kowsar; Nabavi, Seyed M

    2015-01-01

    Atherosclerosis is a multifactorial disease mainly caused by deposition of low-density lipoprotein (LD) cholesterol in macrophages of arterial walls. Atherosclerosis leads to heart attacks as well as stroke. Epidemiological studies showed that there is an inverse correlation between fruit and vegetable consumption and the risk of atherosclerosis. The promising effect of high vegetable and fruit containing diet on atherosclerosis is approved by several experimental studies on isolated phytochemicals such as flavonoids. Flavonoids are known to up-regulate endogenous antioxidant system, suppress oxidative and nitrosative stress, decrease macrophage oxidative stress through cellular oxygenase inhibition as well as interaction with several signal transduction pathways and from these ways, have therapeutic effects against atherosclerosis. Naringenin is a well known flavonoid belonging to the chemical class of flavanones. It is especially abundant in citrus fruits, especially grapefruits. A plethora of evidences ascribes to naringenin antiatherosclerotic effects. Naringenin abilities to decrease LDL and triglycerides as well as inhibit glucose uptake; increase high-density lipoprotein (HDL); co-oxidation of NADH; suppress protein oxidation; protect against intercellular adhesion molecule-1(ICAM-1); suppress macrophage inflammation; inhibit leukotriene B4, monocyte adhesion and foam cell formation; induce of HO-1 and G 0/G 1 cell cycle arrest in vascular smooth muscle cells (VSMC) and down regulate atherosclerosis related genes are believed to have crucial role in the promising role against atherosclerosis. In the present review, we have summarized the available literature data on the anti-atherosclerotic effects of naringenin and its possible mechanisms of action.

  7. Macrophage plasticity in experimental atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Jamila Khallou-Laschet

    Full Text Available As in human disease, macrophages (MØ are central players in the development and progression of experimental atherosclerosis. In this study we have evaluated the phenotype of MØ associated with progression of atherosclerosis in the apolipoprotein E (ApoE knockout (KO mouse model.We found that bone marrow-derived MØ submitted to M1 and M2 polarization specifically expressed arginase (Arg II and Arg I, respectively. This distinct arginase expression was used to evaluate the frequency and distribution of M1 and M2 MØ in cross-sections of atherosclerotic plaques of ApoE KO mice. Early lesions were infiltrated by Arg I(+ (M2 MØ. This type of MØ favored the proliferation of smooth muscle cells, in vitro. Arg II(+ (M1 MØ appeared and prevailed in lesions of aged ApoE KO mice and lesion progression was correlated with the dominance of M1 over the M2 MØ phenotype. In order to address whether the M2->M1 switch could be due to a phenotypic switch of the infiltrated cells, we performed in vitro repolarization experiments. We found that fully polarized MØ retained their plasticity since they could revert their phenotype. The analysis of the distribution of Arg I- and Arg II-expressing MØ also argued against a recent recruitment of M1 MØ in the lesion. The combined data therefore suggest that the M2->M1 switch observed in vivo is due to a conversion of cells already present in the lesion. Our study suggests that interventional tools able to revert the MØ infiltrate towards the M2 phenotype may exert an atheroprotective action.

  8. The Progression and Early detection of Subclinical Atherosclerosis (PESA) study

    DEFF Research Database (Denmark)

    Fernández-Ortiz, Antonio; Jiménez-Borreguero, L Jesús; Peñalvo, José L;

    2013-01-01

    The presence of subclinical atherosclerosis is a likely predictor of cardiovascular events; however, factors associated with the early stages and progression of atherosclerosis are poorly defined.......The presence of subclinical atherosclerosis is a likely predictor of cardiovascular events; however, factors associated with the early stages and progression of atherosclerosis are poorly defined....

  9. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice

    Science.gov (United States)

    Mohanta, Sarajo; Yin, Changjun; Weber, Christian; Hu, Desheng; Habenicht, Andreas JR

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. Apolipoprotein E-deficient (ApoE-/-) mice are used as experimental models to study human atherosclerosis. ApoE-/- mice are constitutively hyperlipidemic and develop intima plaques that resemble human plaques. Various issues including experimental design for lesion analysis, dietary conditions, isolation of the aorta, staining methods, morphometry, group size, age, the location within the arterial tree, and statistical analyses are important parameters that need to be addressed to obtain robust data. Here, we provide detailed methods to quantify aorta atherosclerosis. PMID:27366759

  10. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    Science.gov (United States)

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Assoian, Richard K.; Rader, Daniel J.; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD44 to atherosclerosis, we bred CD44-null mice to atherosclerosis-prone apoE-deficient mice. We found a 50–70% reduction in aortic lesions in CD44-null mice compared with CD44 heterozygote and wild-type littermates. We demonstrate that CD44 promotes the recruitment of macrophages to atherosclerotic lesions. Furthermore, we show that CD44 is required for phenotypic dedifferentiation of medial smooth muscle cells to the “synthetic” state as measured by expression of VCAM-1. Finally, we demonstrate that hyaluronan, the principal ligand for CD44, is upregulated in atherosclerotic lesions of apoE-deficient mice and that the low-molecular-weight proinflammatory forms of hyaluronan stimulate VCAM-1 expression and proliferation of cultured primary aortic smooth muscle cells, whereas high-molecular-weight forms of hyaluronan inhibit smooth muscle cell proliferation. We conclude that CD44 plays a critical role in the progression of atherosclerosis through multiple mechanisms. PMID:11581304

  11. Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions.

    Directory of Open Access Journals (Sweden)

    Eli Zamir

    Full Text Available BACKGROUND: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition. CONCLUSIONS/SIGNIFICANCE: Multicolor compositional imaging resolves "molecular signatures" characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional "contents-resolved" dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution.

  12. Molecular Dynamics Study of a Thermal Expansion Coefficient: Ti Bulk with an Elastic Minimum Image Method

    Institute of Scientific and Technical Information of China (English)

    Yakup Hundur; Rainer Hippler; Ziya B. Güven(c)

    2006-01-01

    @@ Linear thermal expansion coefficient (TEC) of Ti bulk is investigated by means of molecular dynamics simulation.The elastic minimum image convention of periodic boundary conditions is introduced to allow the bulk to adjust its size according to the new fixed temperature. The TEC and the specific heat of Ti are compared to the available theoretical and experimental data.

  13. Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly.

    Science.gov (United States)

    He, Xuewen; Zeng, Tao; Li, Zhi; Wang, Ganglin; Ma, Nan

    2016-02-24

    Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low-abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal-to-background ratio of conventional molecular imaging probes. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) assembly-based probes for catalytic imaging of cancer-related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA-programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non-catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells. PMID:26694689

  14. A synthetic molecular system capable of mirror-image genetic replication and transcription.

    Science.gov (United States)

    Wang, Zimou; Xu, Weiliang; Liu, Lei; Zhu, Ting F

    2016-07-01

    The overwhelmingly homochiral nature of life has left a puzzle as to whether mirror-image biological systems based on a chirally inverted version of molecular machinery could also have existed. Here we report that two key steps in the central dogma of molecular biology, the template-directed polymerization of DNA and transcription into RNA, can be catalysed by a chemically synthesized D-amino acid polymerase on an L-DNA template. We also show that two chirally mirrored versions of the 174-residue African swine fever virus polymerase X could operate in a racemic mixture without significant enantiomeric cross-inhibition to the activity of each other. Furthermore, we demonstrate that a functionally active L-DNAzyme could be enzymatically produced using the D-amino acid polymerase. The establishment of such molecular systems with an opposite handedness highlights the potential to exploit enzymatically produced mirror-image biomolecules as research and therapeutic tools. PMID:27325097

  15. Molecular Imaging Using Fluorescence and Bioluminescence to Reveal Tissue Response to Laser-Mediated Thermal Injury

    Science.gov (United States)

    Mackanos, Mark A.; Jansen, E. Duco; Contag, Christopher H.

    For decades biological investigation has focused on a reductionist approach, which has greatly advanced our understanding of the biological process, but has also served to move the analysis further and further away from the living body. This was necessary as we sought to identify the cells, genes, mutations and/or etiological agents that were associated with a given process. The information generated through these approaches can now be used to advance more integrative strategies in which specific cellular and molecular events can be studied in context of the functional circulation and intact organ systems of living animals, and humans. Essential tools for integrative analyses of biology include imaging modalities that enable visualization of structure and function in the living body. The relatively recent development of molecular probes as exogenous contrast agents and reporter genes that encode proteins with unique properties that can be distinguished from tissues and cells has ushered in a new set of approaches that are being called molecular imaging.

  16. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044 (China); Pu, Huangsheng; Liu, Fei; Bai, Jing [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); He, Wei [China Institute of Sport Science, Beijing 100061 (China); Luo, Jianwen, E-mail: luo-jianwen@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  17. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Science.gov (United States)

    Zhang, Guanglei; Pu, Huangsheng; He, Wei; Liu, Fei; Luo, Jianwen; Bai, Jing

    2015-02-01

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  18. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    International Nuclear Information System (INIS)

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images

  19. Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents

    Science.gov (United States)

    Keahey, Pelham; Ramalingam, Preetha; Schmeler, Kathleen

    2016-01-01

    Fiber optic microendoscopy has shown promise for visualization of molecular contrast agents used to study disease in vivo. However, fiber optic microendoscopes have limited optical sectioning capability, and image contrast is limited by out-of-focus light generated in highly scattering tissue. Optical sectioning techniques have been used in microendoscopes to remove out-of-focus light but reduce imaging speed or rely on bulky optical elements that prevent in vivo imaging. Here, we present differential structured illumination microendoscopy (DSIMe), a fiber optic system that can perform structured illumination in real time for optical sectioning without any opto-mechanical components attached to the distal tip of the fiber bundle. We demonstrate the use of DSIMe during in vivo fluorescence imaging in patients undergoing surgery for cervical adenocarcinoma in situ. Images acquired using DSIMe show greater contrast than standard microendoscopy, improving the ability to detect cellular atypia associated with neoplasia. PMID:27621464

  20. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  1. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  2. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  3. Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging

    Science.gov (United States)

    Yang, Chenying; Hou, Vivian W.; Girard, Emily J.; Nelson, Leonard Y.; Seibel, Eric J.

    2014-07-01

    Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and near-infrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo.

  4. Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions.

    Science.gov (United States)

    Carol, Priya; Sreejith, Sivaramapanicker; Ajayaghosh, Ayyappanpillai

    2007-03-01

    The detection and imaging of Zn2+ in biological samples are of paramount interest owing to the role of this cation in physiological functions. This is possible only with molecular probes that specifically bind to Zn2+ and result in changes in emission properties. A "turn-on" emission or shift in the emission color upon binding to Zn2+ should be ideal for in vivo imaging. In this context, ratiometric and near-IR probes are of particular interest. Therefore, in the area of chemosensors or molecular probes, the design of fluorophores that allow ratiometric sensing or imaging in the near-IR region is attracting the attention of chemists. The purpose of this Focus Review is to highlight recent developments in this area and stress the importance of further research for future applications.

  5. Molecular Imaging of Bacterial Infections in vivo: The Discrimination between Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Heather Eggleston

    2014-05-01

    Full Text Available Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.

  6. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.

    2007-01-01

    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  7. Image-guided Coring for Large-scale Studies in Molecular Pathology.

    Science.gov (United States)

    Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W; Oh, Eun-Yeong; Baker, Gabrielle; Christensen, Stephen; Hazra, Aditi; Tamimi, Rulla M; Beck, Andrew H

    2016-07-01

    Sampling of formalin-fixed paraffin-embedded (FFPE) tissue blocks is a critical initial step in molecular pathology. Image-guided coring (IGC) is a new method for using digital pathology images to guide tissue block coring for molecular analyses. The goal of our study is to evaluate the use of IGC for both tissue-based and nucleic acid-based projects in molecular pathology. First, we used IGC to construct a tissue microarray (TMA); second, we used IGC for FFPE block sampling followed by RNA extraction; and third, we assessed the correlation between nuclear counts quantitated from the IGC images and RNA yields. We used IGC to construct a TMA containing 198 normal and breast cancer cores. Histopathologic analysis showed high accuracy for obtaining tumor and normal breast tissue. Next, we used IGC to obtain normal and tumor breast samples before RNA extraction. We selected a random subset of tumor and normal samples to perform computational image analysis to quantify nuclear density, and we built regression models to estimate RNA yields from nuclear count, age of the block, and core diameter. Number of nuclei and core diameter were the strongest predictors of RNA yields in both normal and tumor tissue. IGC is an effective method for sampling FFPE tissue blocks for TMA construction and nucleic acid extraction. We identify significant associations between quantitative nuclear counts obtained from IGC images and RNA yields, suggesting that the integration of computational image analysis with IGC may be an effective approach for tumor sampling in large-scale molecular studies. PMID:26186251

  8. Secondary Retroperitoneal Fibrosis Associated with Generalized Atherosclerosis

    OpenAIRE

    Barbullushi Myftar; Pasko Nevi; Bezhani Edip; Duraku Ahmet; Rusi Reza; Hoti Klit; Bakalli Vaso; Idrizi Alma

    1999-01-01

    Retroperitoneal fibrosis is an uncommon disease that often presents in a subtle manner. Only a few cases of the combined association of generalized atherosclerosis and retroperitoneal fibrosis are reported in the recent literature, supporting the view that the condition is probably an autoimmune periaortitis. We describe a typical case of retroperitoneal fibrosis associated with generalized atherosclerosis with clinical presentation of progressive renal insufficiency, and claudication from ar...

  9. Secondary Retroperitoneal Fibrosis Associated with Generalized Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Barbullushi Myftar

    1999-01-01

    Full Text Available Retroperitoneal fibrosis is an uncommon disease that often presents in a subtle manner. Only a few cases of the combined association of generalized atherosclerosis and retroperitoneal fibrosis are reported in the recent literature, supporting the view that the condition is probably an autoimmune periaortitis. We describe a typical case of retroperitoneal fibrosis associated with generalized atherosclerosis with clinical presentation of progressive renal insufficiency, and claudication from arterial compromise.

  10. Disease-specific target gene expression profiling of molecular imaging probes: database development and clinical validation.

    Science.gov (United States)

    Chan, Lawrence Wing-Chi; Ngo, Connie Hiu-Ching; Wang, Fengfeng; Zhao, Moss Y; Zhao, Mengying; Law, Helen Ka-Wai; Wong, Sze Chuen Cesar; Yung, Benjamin Yat-Ming

    2014-01-01

    Molecular imaging probes can target abnormal gene expression patterns in patients and allow early diagnosis of disease. For selecting a suitable imaging probe, the current Molecular Imaging and Contrast Agent Database (MICAD) provides descriptive and qualitative information on imaging probe characteristics and properties. However, MICAD does not support linkage with the expression profiles of target genes. The proposed Disease-specific Imaging Probe Profiling (DIPP) database quantitatively archives and presents the gene expression profiles of targets across different diseases, anatomic regions, and subcellular locations, providing an objective reference for selecting imaging probes. The DIPP database was validated with a clinical positron emission tomography (PET) study on lung cancer and an in vitro study on neuroendocrine cancer. The retrieved records show that choline kinase beta and glucose transporters were positively and significantly associated with lung cancer among the targets of 11C-choline and [18F]fluoro-2-deoxy-2-d-glucose (FDG), respectively. Their significant overexpressions corresponded to the findings that the uptake rate of FDG increased with tumor size but that of 11C-choline remained constant. Validated with the in vitro study, the expression profiles of disease-associated targets can indicate the eligibility of patients for clinical trials of the treatment probe. A Web search tool of the DIPP database is available at http://www.polyu.edu.hk/bmi/dipp/. PMID:25022454

  11. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    Science.gov (United States)

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-02-11

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future.

  12. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    Science.gov (United States)

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  13. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  14. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    International Nuclear Information System (INIS)

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis

  15. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    Science.gov (United States)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  16. PET for molecular imaging of cancer: a tool for tailored therapy

    International Nuclear Information System (INIS)

    The concept of personalised medicine has led to a need for improved phenotyping as well as prediction of treatment response early after therapy initiation. Most of the molecular biology methods used today need tissue sampling for in vitro analysis. In contrast, molecular imaging allows for non-invasive studies at the molecular level in living, intact organisms. Accordingly, molecular imaging with PET has been one of the most successful techniques in such phenotyping and response prediction using FDG. In addition, recent development of new PET tracers has further improved the value of PET in tumor characterization. Such new PET tracers allow for visualization of tumor specific receptors and tissue characteristics such as ability to metastasize. Furthermore, PET has a high sensitivity and allows for quantification and is not prone to sampling error as seen with biopsies. We will present examples of development of probes targeting the somatostatin receptor type 2, over-expressed in neuroendocrine tumors, including our first-in-man studies of 64Cu-DOTATATE. Also development in probes for visualization of the invasive phenotype will be presented. Finally, with the most recent development of true integrated PET/MRI scanners it has now become possible to add information from MRI. The value of such hybrid imaging will also be briefly discussed. (author)

  17. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-05-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  18. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  19. Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)

    Science.gov (United States)

    Nafra, Zahra; Liu, Tan; Jiao, Shuliang

    2016-03-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  20. Noninvasive assessment of preclinical atherosclerosis

    Directory of Open Access Journals (Sweden)

    Helen A Lane

    2006-03-01

    Full Text Available Helen A Lane, Jamie C Smith, J Stephen DaviesDepartment of Endocrinology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, UKAbstract: Initially considered as a semipermeable barrier separating lumen from vessel wall, the endothelium is now recognised as a complex endocrine organ responsible for a variety of physiological processes vital for vascular homeostasis. These include the regulation of vascular tone, luminal diameter, and blood flow; hemostasis and thrombolysis; platelet and leucocyte vessel-wall interactions; the regulation of vascular permeability; and tissue growth and remodelling. The endothelium modulates arterial stiffness, which precedes overt atherosclerosis and is an independent predictor of cardiovascular events. Unsurprisingly, dysfunction of the endothelium may be considered as an early and potentially reversible step in the process of atherogenesis and numerous methods have been developed to assess endothelial status and large artery stiffness. Methodology includes flow-mediated dilatation of the brachial artery, assessment of coronary flow reserve, carotid intimamedia thickness, pulse wave analysis, pulse wave velocity, and plethysmography. This review outlines the various modalities, indications, and limitations of available methods to assess arterial dysfunction and vascular risk.Keywords: endothelial function, vascular risk, vascular stiffness

  1. Metabolic syndrome, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Rodolfo Paoletti

    2006-06-01

    Full Text Available Rodolfo Paoletti1,2, Chiara Bolego1, Andrea Poli2, Andrea Cignarella1,31Department of Pharmacological Sciences, University of Milan, Italy; 2Nutrition Foundation of Italy (NFI, Milan; 3Department of Pharmacology and Anesthesiology, University of Padova, ItalyAbstract: The inflammatory component of atherogenesis has been increasingly recognized over the last decade. Inflammation participates in all stages of atherosclerosis, not only during initiation and during evolution of lesions, but also with precipitation of acute thrombotic complications. The metabolic syndrome is associated with increased risk for development of both cardiovascular disease and type-2 diabetes in humans. Central obesity and insulin resistance are thought to represent common underlying factors of the syndrome, which features a chronic low-grade inflammatory state. Diagnosis of the metabolic syndrome occurs using defined threshold values for waist circumference, blood pressure, fasting glucose and dyslipidemia. The metabolic syndrome appears to affect a significant proportion of the population. Therapeutic approaches that reduce the levels of proinflammatory biomarkers and address traditional risk factors are particularly important in preventing cardiovascular disease and, potentially, diabetes. The primary management of metabolic syndrome involves healthy lifestyle promotion through moderate calorie restriction, moderate increase in physical activity and change in dietary composition. Treatment of individual components aims to control atherogenic dyslipidemia using fibrates and statins, elevated blood pressure, and hyperglycemia. While no single treatment for the metabolic syndrome as a whole yet exists, emerging therapies offer potential as future therapeutic approaches.Keywords: metabolic syndrome, systemic inflammation, coronary artery disease

  2. Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma.

    Directory of Open Access Journals (Sweden)

    James K Tsuruta

    Full Text Available Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2 is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6 ± 0.27 (n = 13, p = 0.0032. The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.

  3. Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime.

    Science.gov (United States)

    Battisti, Antonella; Panettieri, Silvio; Abbandonato, Gerardo; Jacchetti, Emanuela; Cardarelli, Francesco; Signore, Giovanni; Beltram, Fabio; Bizzarri, Ranieri

    2013-07-01

    The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress. PMID:23780224

  4. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    International Nuclear Information System (INIS)

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment

  5. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    Science.gov (United States)

    Chiu, Bernard; Li, Bing; Chow, Tommy W. S.

    2013-09-01

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment

  6. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    Science.gov (United States)

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  7. Abnormalities of blood platelets in rabbits with dietary hypercholesterolemia and atherosclerosis

    International Nuclear Information System (INIS)

    Preliminary results are reported from observations of rabbits that were fed a high cholesterol diet to induce atherosclerosis. The purpose of the project was to develop an animal model that would be appropriate to use in the imaging of vascular lesions by positron emission tomography or other techniques

  8. Justifying molecular images in cell biology textbooks: From constructions to primary data.

    Science.gov (United States)

    Serpente, Norberto

    2016-02-01

    For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic

  9. Molecular Imaging of Tumor Hypoxia: Existing Problems and Their Potential Model-Based Solutions.

    Science.gov (United States)

    Shi, Kuangyu; Ziegler, Sibylle I; Vaupel, Peter

    2016-01-01

    Molecular imaging of tissue hypoxia generates contrast in hypoxic areas by applying hypoxia-specific tracers in organisms. In cancer tissue, the injected tracer needs to be transported over relatively long distances and accumulates slowly in hypoxic regions. Thus, the signal-to-background ratio of hypoxia imaging is very small and a non-specific accumulation may suppress the real hypoxia-specific signals. In addition, the heterogeneous tumor microenvironment makes the assessment of the tissue oxygenation status more challenging. In this study, the diffusion potential of oxygen and of a hypoxia tracer for 4 different hypoxia subtypes: ischemic acute hypoxia, hypoxemic acute hypoxia, diffusion-limited chronic hypoxia and anemic chronic hypoxia are theoretically assessed. In particular, a reaction-diffusion equation is introduced to quantitatively analyze the interstitial diffusion of the hypoxia tracer [(18)F]FMISO. Imaging analysis strategies are explored based on reaction-diffusion simulations. For hypoxia imaging of low signal-to-background ratio, pharmacokinetic modelling has advantages to extract underlying specific binding signals from non-specific background signals and to improve the assessment of tumor oxygenation. Different pharmacokinetic models are evaluated for the analysis of the hypoxia tracer [(18)F]FMISO and optimal analysis model were identified accordingly. The improvements by model-based methods for the estimation of tumor oxygenation are in agreement with experimental data. The computational modelling offers a tool to explore molecular imaging of hypoxia and pharmacokinetic modelling is encouraged to be employed in the corresponding data analysis. PMID:27526129

  10. Regulation of the renin–angiotensin system in coronary atherosclerosis: A review of the literature

    Directory of Open Access Journals (Sweden)

    Ramadan A Hammoud

    2008-01-01

    Full Text Available Ramadan A Hammoud, Christopher S Vaccari, Sameer H Nagamia, Bobby V KhanEmory University School of Medicine, Division of Cardiology, Grady Memorial Hospital Vascular Research Laboratory, Atlanta, Georgia, USAAbstract: Activation of the renin–angiotensin system (RAS is significant in the pathogenesis of cardiovascular disease and specifically coronary atherosclerosis. There is strong evidence that the RAS has effects on the mechanisms of action of atherosclerosis, including fibrinolytic balance, endothelial function, and plaque stability. Pharmacological inhibition of the renin angiotensin system includes angiotensin converting enzyme (ACE inhibitors, angiotensin receptor blockers (ARBs, and renin inhibitors. These agents have clinical benefits in reducing morbidity and mortality in the management of hypertension. In addition, ACE inhibitors and ARBs have shown to be effective in the management of congestive heart failure and acute myocardial infarction. This review article discusses the biochemical and molecular mechanisms involving the RAS in coronary atherosclerosis as well as the effects of RAS inhibition in clinical studies involving coronary atherosclerosis.Keywords: angiotensin II, atherosclerosis, endothelium, inflammation, vasculature

  11. Anti-Inflammatory Effects of Vinpocetine in Atherosclerosis and Ischemic Stroke: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Linjie Zhang

    2014-12-01

    Full Text Available Immune responses play an important role in the pathophysiology of atherosclerosis and ischemic stroke. Atherosclerosis is a common condition that increases the risk of stroke. Hyperlipidemia damages endothelial cells, thus initiating chemokine pathways and the release of inflammatory cytokines—this represents the first step in the inflammatory response to atherosclerosis. Blocking blood flow in the brain leads to ischemic stroke, and deprives neurons of oxygen and energy. Damaged neurons release danger-associated molecular patterns, which promote the activation of innate immune cells and the release of inflammatory cytokines. The nuclear factor κ-light-chain-enhancer of activated B cells κB (NF-κB pathway plays a key role in the pathogenesis of atherosclerosis and ischemic stroke. Vinpocetine is believed to be a potent anti-inflammatory agent and has been used to treat cerebrovascular disorders. Vinpocetine improves neuronal plasticity and reduces the release of inflammatory cytokines and chemokines from endothelial cells, vascular smooth muscle cells, macrophages, and microglia, by inhibiting the inhibitor of the NF-κB pathway. This review clarifies the anti-inflammatory role of vinpocetine in atherosclerosis and ischemic stroke.

  12. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  13. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    Science.gov (United States)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  14. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    Science.gov (United States)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  15. The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, Charles R., E-mail: crtapping@doctors.org.uk; Bratby, Mark J., E-mail: mark.bratby@ouh.nhs.uk [Oxford University Hospitals, John Radcliffe Hospital, Department of Radiology (United Kingdom)

    2013-08-01

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.

  16. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    OpenAIRE

    Tan Liu; Rong Wen; Lam, Byron L.; Puliafito, Carmen A.; Shuliang Jiao

    2015-01-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption oc...

  17. The dopaminergic basis of human behaviors: a review of molecular imaging studies

    OpenAIRE

    Egerton, Alice; Mehta, Mitul A; Montgomery, Andrew J; Lappin, Julia M.; Howes, Oliver D; Reeves, Suzanne J.; Cunningham, Vincent J; Grasby, Paul M.

    2009-01-01

    This systematic review describes human molecular imaging studies which have investigated alterations in extracellular DA levels during performance of behavioral tasks. Whilst heterogeneity in experimental methods limits meta-analysis, we describe the advantages and limitations of different methodological approaches. Interpretation of experimental results may be limited by regional cerebral blood flow (rCBF) changes, head movement and choice of control conditions. We revisit our original study...

  18. Molecular Imaging Approaches to Understanding the Roles of Hydrogen Peroxide Biology in Stress and Development

    OpenAIRE

    Dickinson, Bryan Craig

    2010-01-01

    The production of hydrogen peroxide (H2O2) in biological systems is associated with a variety of pathologies including neurodegenerative diseases, cancer, and the general process of aging. However, a growing body of evidence suggests that the reactivity of this particular reactive oxygen species (ROS) is also harnessed for physiological processes. Molecular imaging using fluorescence microscopy offers a valuable approach for deciphering the multifaceted roles of H2O2 in biological processes. ...

  19. On Sensitivity of Molecular Specific Photoacoustic Imaging Using Plasmonic Gold Nanoparticles

    OpenAIRE

    Mallidi, Srivalleesha; Joshi, Pratixa P.; Sokolov, Konstantin; Emelianov, Stanislav

    2009-01-01

    Functionalized gold nanospheres undergo receptor mediated aggregation on cancer cells that overexpress the epidermal growth factor receptor (EGFR). This phenomenon leads to a red shift in the plasmon resonance frequency of the EGFR-targeted gold nanoparticles. Previously we demonstrated that highly selective detection of cancer cells can be achieved using the combination of multi-wavelength photoacoustic imaging and molecular specific gold nanoparticles. In this study, we use tissue models to...

  20. Molecular Sensing and Imaging of Human Disease Cells and Their Responses to Biochemical Stimuli

    OpenAIRE

    Xiao, Lifu

    2015-01-01

    The overall goal of this dissertation is to develop noninvasive imaging techniques that allow us not only to detect diseased cells but also to study the molecular mechanisms underlying these diseases. Atomic force microscopy and Raman spectroscopy are applied to measure cellular mechanical properties (e.g. Young’s Modulus, adhesion force) and biochemical composition of living cancerous vs. healthy (A549 vs. SAEC) human lung epithelial cells. These biomechanical and biochemical properties c...

  1. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks

    Science.gov (United States)

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering.

  2. IMAGING OF THE CCS 22.3 GHz EMISSION IN THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Thioxoethenylidene (CCS) is an abundant interstellar molecule and a good tracer of high density and evolutionary stage of dense molecular clouds. It is also a suitable candidate for Zeeman splitting observations for its high splitting factor and narrow thermal line widths. We report here Expanded Very Large Array 22.3 GHz observations of three dense molecular cores TMC-1, TMC-1C, and L1521B in the Taurus molecular cloud complex to image the CCS 21-10 transition. For all three sources, the clumpy CCS emission is most likely tracing the starless cores. However, these compact structures account for only ∼1%-13% of the integrated emission detected in single-dish observations, indicating the presence of significant large-scale diffuse emission in favorable conditions for producing CCS.

  3. Imaging of the CCS 22.3 GHz emission in the Taurus Molecular Cloud complex

    CERN Document Server

    Roy, Nirupam; Momjian, Emmanuel; Sarma, Anuj P

    2011-01-01

    Thioxoethenylidene (CCS) is an abundant interstellar molecule, and a good tracer of high density and evolutionary stage of dense molecular clouds. It is also a suitable candidate for Zeeman splitting observations for its high splitting factor and narrow thermal linewidths. We report here EVLA 22.3 GHz observations of three dense molecular cores TMC-1, TMC-1C and L1521B in the Taurus Molecular Cloud complex to image the CCS 2_1-1_0 transition. For all three sources, the clumpy CCS emission is most likely tracing the starless cores. However, these compact structures account for only ~ 1-13% of the integrated emission detected in single-dish observations, indicating the presence of significant large scale diffuse emission in favorable conditions for producing CCS.

  4. Molecular imaging of plaques in coronary arteries with PET and SPECT

    Institute of Scientific and Technical Information of China (English)

    Zhong-Hua SUN; Hairil Rashmizal; Lei XU

    2014-01-01

    Coronary artery disease remains a major cause of mortality. Presence of atherosclerotic plaques in the coronary artery is responsible for lu-men stenosis which is often used as an indicator for determining the severity of coronary artery disease. However, the degree of coronary lumen stenosis is not often related to compromising myocardial blood flow, as most of the cardiac events that are caused by atherosclerotic plaques are the result of vulnerable plaques which are prone to rupture. Thus, identification of vulnerable plaques in coronary arteries has become increas-ingly important to assist identify patients with high cardiovascular risks. Molecular imaging with use of positron emission tomography (PET) and single photon emission computed tomography (SPECT) has fulfilled this goal by providing functional information about plaque activity which enables accurate assessment of plaque stability. This review article provides an overview of diagnostic applications of molecular imaging tech-niques in the detection of plaques in coronary arteries with PET and SPECT. New radiopharmaceuticals used in the molecular imaging of coro-nary plaques and diagnostic applications of integrated PET/CT and PET/MRI in coronary plaques are also discussed.

  5. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  6. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    Science.gov (United States)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  7. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ghayathri Balasundaram,1,* Chris Jun Hui Ho,1,* Kai Li,2 Wouter Driessen,3 US Dinish,1 Chi Lok Wong,1 Vasilis Ntziachristos,3 Bin Liu,2 Malini Olivo1,41Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC, 2Institute of Materials Research and Engineering (IMRE, Agency for Science, Technology and Research (A*STAR, Singapore; 3Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany; 4School of Physics, National University of Ireland, Galway, Ireland *These authors contributed equally to this work Abstract: Conjugated polymers (CPs are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used

  8. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish.

    Directory of Open Access Journals (Sweden)

    Sang Joon Lee

    Full Text Available Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis.

  9. Increased plasma levels of Lp(a) enhance the development of coronary atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    LI Ying; XU Hong; ZHOU Qin; WANG Chang-yuan; LIU Yan-xia; LU Yuan-yuan; FAN Jiang-lin; SUN Hui-jun

    2008-01-01

    Objective To test the hypothesis that increased plasma levels of Lp(a) may enhance the development of atherosclerosis in the setting of hypercholesterolemia. Methods The plasma Lp(a) was analyzed by SDS-PAGE Western blotting and quantitated using specific ELISA kits. Plasma total cholesterol, triglycerides and HDL-cholesterol were determined using Wako assay kits. The left coronary artery was used for the evaluation of coronary atherosclerosis (stenosis %). For quantitative study of the lesions in coronary atherosclerosis, hematoxylin- eosin and Elastica - van Gieson staining were used. To study cellular components ( SMC vs. macrophages) and Lp(a) deposits in the lesions, immunohistochemical staining was performed and then image analysis system was used. Results Plasma total cholesterol, triglycerides, or HDL-C were not significantly different between transgenic (Trg) and nontransgenic (nonTrg) rabbits. Trg rabbits had 200 % increase in coronary stenosis caused by atherosclerosis. The lesions of Trg WHHL rabbits contained more SMCs and less macrophage than those of nonTrg WHHL rabbits. Conclusions The results suggest that increased plasma levels of Lp(a) enhance the development of coronary atherosclerosis.

  10. Chemokines and their receptors in Atherosclerosis.

    Science.gov (United States)

    van der Vorst, Emiel P C; Döring, Yvonne; Weber, Christian

    2015-09-01

    Atherosclerosis, a chronic inflammatory disease of the medium- and large-sized arteries, is the main underlying cause of cardiovascular diseases (CVDs) most often leading to a myocardial infarction or stroke. However, atherosclerosis can also develop without this clinical manifestation. The pathophysiology of atherosclerosis is very complex and consists of many cells and molecules interacting with each other. Over the last years, chemokines (small 8-12 kDa cytokines with chemotactic properties) have been identified as key players in atherogenesis. However, this remains a very active and dynamic field of research. Here, we will give an overview of the current knowledge about the involvement of chemokines in all phases of atherosclerotic lesion development. Furthermore, we will focus on two chemokines that recently have been associated with atherogenesis, CXCL12, and macrophage migration inhibitory factor (MIF). Both chemokines play a crucial role in leukocyte recruitment and arrest, a critical step in atherosclerosis development. MIF has shown to be a more pro-inflammatory and thus pro-atherogenic chemokine, instead CXCL12 seems to have a more protective function. However, results about this protective role are still quite debatable. Future research will further elucidate the precise role of these chemokines in atherosclerosis and determine the potential of chemokine-based therapies. PMID:26175090

  11. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    Science.gov (United States)

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  12. Nanosized multifunctional liposomes for tumor diagnosis and molecular imaging by SPECT/CT.

    Science.gov (United States)

    Silindir, Mine; Erdoğan, Suna; Özer, A Yekta; Doğan, A Lale; Tuncel, Murat; Uğur, Ömer; Torchilin, Vladimir P

    2013-03-01

    Among currently used cancer imaging methods, nuclear medicine modalities provide metabolic information, whereas modalities in radiology provide anatomical information. However, different modalities, having different acquisition times in separate machines, decrease the specificity and accuracy of images. To solve this problem, hybrid imaging modalities were developed as a new era, especially in the cancer imaging field. With widespread usage of hybrid imaging modalities, specific contrast agents are essentially needed to use in both modalities, such as single-photon emission computed tomography/computed tomography (SPECT/CT). Liposomes are one of the most desirable drug delivery systems, depending on their suitable properties. The aim of this study was to develop a liposomal contrast agent for the diagnosis and molecular imaging of tumor by SPECT/CT. Liposomes were prepared nanosized, coated with polyethylene glycol to obtain long blood circulation, and modified with monoclonal antibody 2C5 for specific tumor targeting. Although DTPA-PE and DTPA-PLL-NGPE (polychelating amphilic polymers; PAPs) were loaded onto liposomes for stable radiolabeling for SPECT imaging, iopromide was encapsulated into liposomes for CT imaging. Liposomes [(DPPC:PEG(2000)-PE:Chol:DTPA-PE), (PL 90G:PEG(2000)-PE:Chol:DTPA-PE), (DPPC:PEG(2000)-PE:Chol:PAPs), (PL 90G:PEG(2000)-PE:Chol:PAPs), (60:0.9:39:0.1% mol ratio)] were characterized in terms of entrapment efficiency, particle size, physical stability, and release kinetics. Additionally, in vitro cell-binding studies were carried out on two tumor cell lines (MCF-7 and EL 4) by counting radioactivity. Tumor-specific antibody-modified liposomes were found to be effective multimodal contrast agents by designating almost 3-8 fold more uptake than nonmodified ones in different tumor cell lines. These results could be considered as an important step in the development of tumor-targeted SPECT/CT contrast agents for cancer imaging. PMID:23078019

  13. The development of EGFR molecular imaging and gene mutation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    In vivo epidermal growth factor receptor (EGFR) imaging has great potential to affect patient-specific treatment for NSCLC, applying a targeted therapy, and measuring molecular-specific effects of treatment. New PET/CT radiotracers,such as N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl) methoxy]quinazolin-4-amine (ZD6476), five 4-(anilino) quinazoline derivatives (ML01) and 4-[(3-iodophenyl) amino]-7-(2-[2-{2-(2-[2-{2-([18F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)- ethoxy }-ethoxy]-quinazoline-6-yl-acrylamide) ([18F]F-PEG6-IPQA) are now available. But, 11C labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline (PD153035) is the only PET/CT radiotracer used for human clinical evaluation,primarily for EGFR imaging. Finally, the most important aspect of successful imaging is the identification and characterization of EGFR at the cellular or sub-cellular level with high specificity for the target. Considering the need for further development of such PET/CT tracers, EGFR molecular imaging will be presented along with an important examination of the progression that has been made thus far in the field. (authors)

  14. Pushing CT and MR Imaging to the Molecular Level for Studying the “Omics”: Current Challenges and Advancements

    Directory of Open Access Journals (Sweden)

    Hsuan-Ming Huang

    2014-01-01

    Full Text Available During the past decade, medical imaging has made the transition from anatomical imaging to functional and even molecular imaging. Such transition provides a great opportunity to begin the integration of imaging data and various levels of biological data. In particular, the integration of imaging data and multiomics data such as genomics, metabolomics, proteomics, and pharmacogenomics may open new avenues for predictive, preventive, and personalized medicine. However, to promote imaging-omics integration, the practical challenge of imaging techniques should be addressed. In this paper, we describe key challenges in two imaging techniques: computed tomography (CT and magnetic resonance imaging (MRI and then review existing technological advancements. Despite the fact that CT and MRI have different principles of image formation, both imaging techniques can provide high-resolution anatomical images while playing a more and more important role in providing molecular information. Such imaging techniques that enable single modality to image both the detailed anatomy and function of tissues and organs of the body will be beneficial in the imaging-omics field.

  15. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    Science.gov (United States)

    Liu, Tan; Wen, Rong; Lam, Byron L.; Puliafito, Carmen A.; Jiao, Shuliang

    2015-09-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  16. Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme

    Science.gov (United States)

    Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine

    2009-05-01

    Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).

  17. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction.

    Science.gov (United States)

    Thackeray, James T; Bankstahl, Jens P; Wang, Yong; Wollert, Kai C; Bengel, Frank M

    2016-01-01

    Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid (11)C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with (11)C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher (11)C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (ptranslation of novel image-guided, inflammation-targeted regenerative therapies. PMID:27570549

  18. Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Raja Gopal Rayavarapu

    2007-01-01

    Full Text Available We have synthesized and characterized gold nanoparticles (spheres and rods with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed.

  19. Preanalytical considerations in detection of colorectal cancer in blood serum using Raman molecular imaging (Conference Presentation)

    Science.gov (United States)

    Treado, Patrick J.; Stewart, Shona D.; Smith, Aaron; Kirschner, Heather; Post, Christopher; Overholt, Bergein F.

    2016-03-01

    Colorectal cancer (CRC) is the third most common cancer in men and women in the United States. Raman Molecular Imaging (RMI) is an effective technique to evaluate human tissue, cells and bodily fluids, including blood serum for disease diagnosis. ChemImage Corporation, in collaboration with clinicians, has been engaged in development of an in vitro diagnostic Raman assay focused on CRC detection. The Raman Assay for Colorectal Cancer (RACC) exploits the high specificity of Raman imaging to distinguish diseased from normal dried blood serum droplets without additional reagents. Pilot Study results from testing of hundreds of biobank patient samples have demonstrated that RACC detects CRC with high sensitivity and specificity. However, expanded clinical trials, which are ongoing, are revealing a host of important preanalytical considerations associated with sample collection, sample storage and stability, sample shipping, sample preparation and sample interferents, which impact detection performance. Results from recent clinical studies will be presented.

  20. Osteoprotegerin as a marker of atherosclerosis

    DEFF Research Database (Denmark)

    Hosbond, Susanne Elisabeth; Poulsen, Tina Svenstrup; Diederichsen, Axel Cosmus Pyndt;

    2012-01-01

    Abstract Objective: Osteoprotegerin (OPG) may be involved in development of atherosclerosis. To evaluate plasma concentrations of OPG in individuals with stable coronary artery disease (CAD), acute coronary syndrome (ACS), peripheral artery disease (PAD) and cerebrovascular disease (CBVD) a syste......Abstract Objective: Osteoprotegerin (OPG) may be involved in development of atherosclerosis. To evaluate plasma concentrations of OPG in individuals with stable coronary artery disease (CAD), acute coronary syndrome (ACS), peripheral artery disease (PAD) and cerebrovascular disease (CBVD...... with clearly defined cohorts qualified for this review. Results: In 11 studies OPG concentrations were elevated. Severity of atherosclerosis was significantly associated with higher OPG concentrations compared to healthy controls. No association between PAD and OPG concentrations was observed. Conclusion: OPG...

  1. ATHEROSCLEROSIS DISEASE: A MULTI-FACTORIAL PATHOLOGY

    Directory of Open Access Journals (Sweden)

    Marcieli da Luz Giroldo1; Arienne Serrano Alves1; Francielle Baptista1

    2007-06-01

    Full Text Available Atherosclerosis or arterial stiffening is a gradual disease that restricts the normal blood flow in different areas of body and maylead to secondary illnesses as myocardial infarction and cerebral stroke. Innumerable factors are related to the development ofatherosclerosis, among them are the dyslipidemia; genetic factors; arterial hypertension; diabetes mellitus; obesity; smoking;lack of exercise; pulmonary infection by Chlamydia and stress. Due to multi-factorial atherosclerosis characteristics,innumerable drugs, with differentiated mechanisms of action, are being elaborated to be used in prevention and control of thisdisease. However, beyond the pharmacological therapy, a balanced diet, physical activity and elimination of risk habits, assmoking, also are need for controlling atherosclerosis progression, as well as for the increase of expectative and quality of life

  2. Association between arterial stiffness and atherosclerosis: the Rotterdam Study

    NARCIS (Netherlands)

    N.M-L. van Popele (Nicole); D.E. Grobbee (Diederick); M.L. Bots (Michiel); R. Asmar (Roland); J. Topouchian; R.S. Reneman; A.P.G. Hoeks; D.A. van der Kuip (Deirdre); J.C.M. Witteman (Jacqueline); A. Hofman (Albert)

    2001-01-01

    textabstractBACKGROUND AND PURPOSE: Studies of the association between arterial stiffness and atherosclerosis are contradictory. We studied stiffness of the aorta and the common carotid artery in relation to several indicators of atherosclerosis. METHODS: This study was conducted w

  3. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes

    Directory of Open Access Journals (Sweden)

    Mahmoud Rafieian-Kopaei

    2014-01-01

    Conclusions: The pathogenesis factors involved in atherosclerosis have recently been cleared and the discovery of these factors has brought about new hopes for better prevention and treatment of atherosclerosis.

  4. [The treatment of atherosclerosis--drug therapy].

    Science.gov (United States)

    Nakamura, H; Takahashi, Y

    1993-08-01

    Drug treatment against atherosclerosis has been evaluated recently in many epidemiological studies. Lipid Research Clinics Group convincingly reported in a large scale design that anion exchange resin effectively reduced blood cholesterol level and concomitantly decreased the events of coronary heart disease. Subsequently, anion exchange resin with or without combined administration of niacin or statin was found to inhibit the progression of coronary atherosclerotic lesions in FATS, SCOR, CLAS and STARS. Fenofibrate also successfully reduced the coronary artery narrowings. Based on these intervention studies, several hypocholesterolemic agents are definitely effective in the treatment of coronary atherosclerosis.

  5. Periodontitis-atherosclerosis syndrome: an expanded model of pathogenesis.

    Science.gov (United States)

    Offenbacher, S; Madianos, P N; Champagne, C M; Southerland, J H; Paquette, D W; Williams, R C; Slade, G; Beck, J D

    1999-10-01

    The early reports of a linkage between periodontitis and atherosclerosis have garnered further support by additional data generated by several investigative teams in many different countries. The evidence continues to suggest that periodontitis may be an important risk factor or risk indicator for cardiovascular pathology for some individuals. The term periodontitis-atherosclerosis syndrome (PAS) is proposed as a new diagnostic term to describe this condition in these individuals. Current evidence, albeit preliminary in nature, which describes a cluster of clinical signs and symptoms that are associated with this condition, is presented. It is clear that this syndrome will require considerable study and refinement before a definitive diagnosis and treatment plan can be formulated. Potential mechanisms by which systemic inflammation and infectious challenge of periodontal origin may serve as a potential modifier of cardiovascular disease are discussed in the context of a detailed working model of pathogenesis. This hypothetical model embraces many cellular and molecular components of atherogenesis and thromboembolic diseases from the perspective of periodontitis pathogenesis. Many aspects of the hypothetical model remain unproved; however, it is our opinion that only through the clarification of the mechanisms of pathogenesis can we ultimately construct a knowledge framework for accurate diagnoses and successful therapies. The concept of diagnosing and treating a periodontal patient to minimize the deleterious effects of this chronic infectious and inflammatory condition on the cardiovascular system represents an unprecedented challenge to our profession. PMID:10685359

  6. Observing molecular dynamics with time-resolved 3D momentum imaging

    Science.gov (United States)

    Sturm, F. P.; Wright, T.; Bocharova, I.; Ray, D.; Shivaram, N.; Cryan, J.; Belkacem, A.; Weber, T.; Dörner, R.

    2014-05-01

    Photo-excitation and ionization trigger rich dynamics in molecular systems which play a key role in many important processes in nature such as vision, photosynthesis or photoprotection. Observing those reactions in real-time without significantly disturbing the molecules by a strong electric field has been a great challenge. Recent experiments using Time-of-Flight and Velocity Map Imaging techniques have revealed important information on the dynamics of small molecular systems upon photo-excitation. We have developed an apparatus for time-resolved momentum imaging of electrons and ions in all three spatial dimensions that employs two-color femtosecond laser pulses in the vacuum and extreme ultraviolet (VUV, XUV) for probing molecular dynamics. Our COLTRIMS style reaction microscope can measure electrons and ions in coincidence and reconstruct the momenta of the reaction fragments in 3D. We use a high power 800 nm laser in a loose focusing geometry gas cell to efficinetly drive High Harmonic Generation. The resulting photon flux is sufficient to perform 2-photon pump-probe experiments using VUV and XUV pulses for both pump and probe. With this setup we investigate non-Born-Oppenheimer dynamics in small molecules such as C2H4 and CO2 on a femtosecond time scale. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  7. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    Science.gov (United States)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-03-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  8. Light at the end of the tunnel in radiation therapy: molecular imaging in radiation research

    International Nuclear Information System (INIS)

    Accurate dose delivery to malignant tissue in radiotherapy is quite important for enhancing the treatment efficacy while minimizing morbidity of surrounding normal tissues. Advances in therapeutic strategies and diagnosis technologies along with our understanding of the biology of tumor response to radiation therapy have paved way to allow nearly 60% of current cancer patients to be treated with Radiation Therapy. The confluence of molecular imaging and nanotechnology fields are bridging physics and medicine and are quickly making strides in opening new avenues and therapeutic strategies that complement radiation therapy - with a distinct footprint in immunotherapy, adoptive cell therapy, and targeted chemotherapy. Incorporating optical imaging in radiation therapy in my laboratory, we demonstrated that molecular probes can monitor radiation-induced physiological changes at the target and off-target sites using in vivo molecular imaging approaches. Further we show endogenous bioluminescence resulting from whole body irradiation, which is distinct from the Cherenkov radiation. Mice without anesthesia were held in ventilated mouse pie cage and subjected to 5 Gy X-ray irradiation using commercially available X-RAD320 irradiator (1 Gy/min; F2 beam hardening filter 1.5 mm Al, 0.25 mm Cu, 0.75 mm Sn,). The endogenous bioluminescence from the subjects was captured using cooled CCD camera. Significant increase (up to 100 fold) in the amounts of photons released as bioluminescence was detected during 5 min capture from the mice subjected to irradiation compared to that of the control. To determine the early inflammatory response, the reactive oxygen species (ROS) activity was monitored using L-012 (8-amino-5-chloro-7-phenylpyridol (3,4-d)pyridazine-1,4(2H,3H) dione), a chemiluminescence reporter. L-012 was administered (i.p) after 15 min of irradiation. Chemiluminescence resulting from the irradiation induced ROS activity, possible through the action of the

  9. Atherosclerotic Plaque Vulnerability in Experimental Models of Atherosclerosis

    NARCIS (Netherlands)

    D. Segers (Dolf)

    2011-01-01

    textabstractAtherosclerosis is a chronic and often progressive disease of the wall of the arterial vasculature. The term atherosclerosis is derived from the Greek words “athero” meaning gruel or paste and “skleros” meaning stiff or hard. Atherosclerosis is considered a major clinical problem, which

  10. Fab(nimotuzumab)-HYNIC-99mTc: Antibody Fragmentation for Molecular Imaging Agents.

    Science.gov (United States)

    Calzada, Victoria; García, María Fernanda; Alonso-Martínez, Luis Michel; Camachoc, Ximena; Goicochea, Enzo; Fernández, Marcelo; Castillo, Abmel Xiques; Díaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Montaña, René Leyva; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo

    2016-01-01

    Finally, fast blood clearance nimotuzumab is a humanized monoclonal antibody that recognise, with high specific affinity, the epidermal growth factor receptor (EGF-R) which play an important role in the growth process associated with many solid tumors. In this work, the whole antibody was digested with papain in order to generate a Fab fragment, derivatized with NHS-HYNIC-Tfa and radiolabel with technetium-99m (99mTc) as a potential agent of molecular imaging of cancer. Both, whole and fragment radiolabels were in-vivo and in-vitro characterized. Radiolabeling conditions with Tricine as coligand and quality controls were assessed to confirm the integrity of the labeled fragment. Biodistribution and imaging studies in normal and spontaneous adenocarcinoma mice were performed at different times to determine the in-vivo characteristics of the radiolabel fragment. Tumor localization was visualized by conventional gamma camera imaging studies, and the results were compared with the whole antibody. Also, an immunoreactivity assay was carried out for both. The results showed clearly the integrity of the nimotuzumab fragment and the affinity by the receptor was verified. Fab(nimotuzumab)-HYNIC was obtained with high purity and a simple strategy of radiolabeling was performed. Finally, a fast blood clearance was observed in the biodistribution studies increasing the tumor uptake of Fab(nimotuzumab)- HYNIC-99mTc over time, with tumor/muscle ratios of 3.81 ± 0.50, 5.16 ± 1.97 and 6.32 ± 1.98 at 1 h, 4 h and 24 h post injection. Urinary excretion resulted in 32.89 ± 3.91 %ID eliminated at 24 h. Scintigraphy images showed uptake in the tumor and the activity in non-target organs was consistent with the biodistribution data at the same time points. Hence, these preliminary results showed important further characteristic of Fab(nimotuzumab)-HYNIC-99mTc as a molecular imaging agent of cancer. PMID:26961312

  11. Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging.

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    Full Text Available BACKGROUND AND PURPOSE: The purpose of our study was to utilize a molecular imaging technology based on the retrograde axonal transport mechanism (neurography, to determine if oxaliplatin-induced neurotoxicity affects retrograde axonal transport in an animal model. MATERIALS AND METHODS: Mice (n = 8/group were injected with a cumulative dose of 30 mg/kg oxaliplatin (sufficient to induce neurotoxicity or dextrose control injections. Intramuscular injections of Tetanus Toxin C-fragment (TTc labeled with Alexa 790 fluorescent dye were done (15 ug/20 uL in the left calf muscles, and in vivo fluorescent imaging performed (0-60 min at baseline, and then weekly for 5 weeks, followed by 2-weekly imaging out to 9 weeks. Tissues were harvested for immunohistochemical analysis. RESULTS: With sham treatment, TTc transport causes fluorescent signal intensity over the thoracic spine to increase from 0 to 60 minutes after injection. On average, fluorescence signal increased 722%+/-117% (Mean+/-SD from 0 to 60 minutes. Oxaliplatin treated animals had comparable transport at baseline (787%+/-140%, but transport rapidly decreased through the course of the study, falling to 363%+/-88%, 269%+/-96%, 191%+/-58%, 121%+/-39%, 75%+/-21% with each successive week and stabilizing around 57% (+/-15% at 7 weeks. Statistically significant divergence occurred at approximately 3 weeks (p≤0.05, linear mixed-effects regression model. Quantitative immuno-fluorescence histology with a constant cutoff threshold showed reduced TTc in the spinal cord at 7 weeks for treated animals versus controls (5.2 Arbitrary Units +/-0.52 vs 7.1 AU +/-1.38, p0.56, T-test. CONCLUSION: We show-for the first time to our knowledge-that neurographic in vivo molecular imaging can demonstrate imaging changes in a model of oxaliplatin-induced neuropathy. Impaired retrograde neural transport is suggested to be an important part of the pathophysiology of oxaliplatin-induced neuropathy.

  12. Fab(nimotuzumab)-HYNIC-99mTc: Antibody Fragmentation for Molecular Imaging Agents.

    Science.gov (United States)

    Calzada, Victoria; García, María Fernanda; Alonso-Martínez, Luis Michel; Camachoc, Ximena; Goicochea, Enzo; Fernández, Marcelo; Castillo, Abmel Xiques; Díaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Montaña, René Leyva; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo

    2016-01-01

    Finally, fast blood clearance nimotuzumab is a humanized monoclonal antibody that recognise, with high specific affinity, the epidermal growth factor receptor (EGF-R) which play an important role in the growth process associated with many solid tumors. In this work, the whole antibody was digested with papain in order to generate a Fab fragment, derivatized with NHS-HYNIC-Tfa and radiolabel with technetium-99m (99mTc) as a potential agent of molecular imaging of cancer. Both, whole and fragment radiolabels were in-vivo and in-vitro characterized. Radiolabeling conditions with Tricine as coligand and quality controls were assessed to confirm the integrity of the labeled fragment. Biodistribution and imaging studies in normal and spontaneous adenocarcinoma mice were performed at different times to determine the in-vivo characteristics of the radiolabel fragment. Tumor localization was visualized by conventional gamma camera imaging studies, and the results were compared with the whole antibody. Also, an immunoreactivity assay was carried out for both. The results showed clearly the integrity of the nimotuzumab fragment and the affinity by the receptor was verified. Fab(nimotuzumab)-HYNIC was obtained with high purity and a simple strategy of radiolabeling was performed. Finally, a fast blood clearance was observed in the biodistribution studies increasing the tumor uptake of Fab(nimotuzumab)- HYNIC-99mTc over time, with tumor/muscle ratios of 3.81 ± 0.50, 5.16 ± 1.97 and 6.32 ± 1.98 at 1 h, 4 h and 24 h post injection. Urinary excretion resulted in 32.89 ± 3.91 %ID eliminated at 24 h. Scintigraphy images showed uptake in the tumor and the activity in non-target organs was consistent with the biodistribution data at the same time points. Hence, these preliminary results showed important further characteristic of Fab(nimotuzumab)-HYNIC-99mTc as a molecular imaging agent of cancer.

  13. Advances of molecular imaging probes for the diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Zhou, Ming; Wang, Xiaobo; Liu, Zhiguo; Yu, Lun; Hu, Shuo; Chen, Lizhang; Zeng, Wenbin

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains and it becomes the most common cause of dementia in the elderly. There is an urgent need for the early diagnosis and treatment of AD to ease caregiver burden and medical costs, as well as improve patients' living activities associated with the dramatic increasing number of affected individuals. Molecular imaging with target-specific probes is contributing to identify the underlying biology in AD, which benefits to the early diagnosis of AD and the evaluation of anti-AD therapy. Molecular imaging probes, such as (11)C-PIB, (11)C-MP4A, (18)F-AV-45, and (11)F-FDG, can selectively bind to special bimolecular of AD or accurately accumulate at the location of damage areas, thus become an edge tool for a better management of the diseases in the clinical practice and new drug development. In the past decades, a large variety of probes is being developed and tested to be useful for the early and accurate diagnosis of Alzheimer's disease, patient selection for disease-modifying therapeutic trials and monitoring the effect of anti-amyloid therapy. Since imaging probes may also help to guide physicians to identify those patients that could best benefit from a given therapeutic regimen, dose, or duration of drug, this paper is to present a perspective of the available imaging probes for AD, classified on different modalities. Meanwhile, recent advances of those probes that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval are outlined. Additionally, future directions and specific application of imaging strategies designed for both diagnosis and treatment for AD are discussed. PMID:24484277

  14. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    Science.gov (United States)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  15. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoeben, Bianca A. W.; Bussink, Johan; Kaanders, Johannes H. A. M. [Dept. of Radiation Oncology, Radboud Univ. Nijmegen Medical Centre, Nijmegen (Netherlands)], e-mail: b.hoeben@rther.umcn.nl; Oyen, Wim J. G. [Dept. of Nuclear Medicine, Radboud Univ. Nijmegen Medical Centre, Nijmegen (Netherlands); Troost, Esther G. C. [Maastro Clinic, GROW School for Oncology and Developmental Biology, Maastricht Univ. Medical Centre, Maastricht (Netherlands)

    2013-10-15

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer 18F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  16. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  17. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Cheng, Lin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  18. Multi-analyte profiling in human carotid atherosclerosis uncovers pro-inflammatory macrophage programming in plaques.

    Science.gov (United States)

    Shalhoub, Joseph; Viiri, Leena E; Cross, Amanda J; Gregan, Scott M; Allin, David M; Astola, Nagore; Franklin, Ian J; Davies, Alun H; Monaco, Claudia

    2016-05-01

    Molecular characterisation of vulnerable atherosclerosis is necessary for targeting functional imaging and plaque-stabilising therapeutics. Inflammation has been linked to atherogenesis and the development of high-risk plaques. We set to quantify cytokine, chemokine and matrix metalloproteinase (MMP) protein production in cells derived from carotid plaques to map the inflammatory milieu responsible for instability. Carotid endarterectomies from carefully characterised symptomatic (n=35) and asymptomatic (n=32) patients were enzymatically dissociated producing mixed cell type atheroma cell suspensions which were cultured for 24 hours. Supernatants were interrogated for 45 analytes using the Luminex 100 platform. Twenty-nine of the 45 analytes were reproducibly detectable in the majority of donors. The in vitro production of a specific network of mediators was found to be significantly higher in symptomatic than asymptomatic plaques, including: tumour necrosis factor α, interleukin (IL) 1β, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), CCL5, CCL20, CXCL9, matrix metalloproteinase (MMP)-3 and MMP-9. Ingenuity pathway analysis of differentially expressed analytes between symptomatic and asymptomatic patients identified a number of key biological pathways (p< 10(-25)). In conclusion, the carotid artery plaque culprit of ischaemic neurological symptoms is characterised by an inflammatory milieu favouring inflammatory cell recruitment and pro-inflammatory macrophage polarisation. PMID:26763091

  19. Molecular Imaging in Preclinical Models of IBD with Nuclear Imaging Techniques: State-of-the-Art and Perspectives.

    Science.gov (United States)

    Kaaru, Eric; Bianchi, Andrea; Wunder, Andreas; Rasche, Volker; Stiller, Detlef

    2016-10-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is characterized by chronic unregulated inflammation of the intestinal mucosa of the gastrointestinal tract. To date, this pathology has no cure. Colonoscopy and biopsies are the current gold standard diagnostic tools. However, being a chronic disease, IBD requires continuous follow-up to check for disease progress, treatment response, and remission. Unfortunately, these 2 diagnostic procedures are invasive and generally unable to show the cellular and molecular changes that take place in vivo. In this context, it is clear that there is a strong need for optimized noninvasive imaging techniques able to overcome the aforementioned limitations. This review aims to bring to light the scientific advancements that have been achieved so far in nuclear medicine in relation to tracking of immune cells involved in the preclinical models of IBD. In particular, this review will explore the advantages and limitations of the radiopharmaceuticals that aim to track whole cells like neutrophils, those that involve the radiolabeling of immune cell substrates or available human IBD medical therapies, and those that aim to track cell signaling molecules (e.g., cytokines and cell adhesion molecules). After a detailed critical summary of the state-of-the art, the challenges and perspectives of molecular imaging applied to IBD studies will be analyzed. Special attention will be paid to the translational potential of the described techniques and on the potential impact of these innovative approaches on the drug discovery pipelines and their contribution to the evolution of personalized medicine. PMID:27580387

  20. A semantically-aided architecture for a web-based monitoring system for carotid atherosclerosis.

    Science.gov (United States)

    Kolias, Vassileios D; Stamou, Giorgos; Golemati, Spyretta; Stoitsis, Giannis; Gkekas, Christos D; Liapis, Christos D; Nikita, Konstantina S

    2015-08-01

    Carotid atherosclerosis is a multifactorial disease and its clinical diagnosis depends on the evaluation of heterogeneous clinical data, such as imaging exams, biochemical tests and the patient's clinical history. The lack of interoperability between Health Information Systems (HIS) does not allow the physicians to acquire all the necessary data for the diagnostic process. In this paper, a semantically-aided architecture is proposed for a web-based monitoring system for carotid atherosclerosis that is able to gather and unify heterogeneous data with the use of an ontology and to create a common interface for data access enhancing the interoperability of HIS. The architecture is based on an application ontology of carotid atherosclerosis that is used to (a) integrate heterogeneous data sources on the basis of semantic representation and ontological reasoning and (b) access the critical information using SPARQL query rewriting and ontology-based data access services. The architecture was tested over a carotid atherosclerosis dataset consisting of the imaging exams and the clinical profile of 233 patients, using a set of complex queries, constructed by the physicians. The proposed architecture was evaluated with respect to the complexity of the queries that the physicians could make and the retrieval speed. The proposed architecture gave promising results in terms of interoperability, data integration of heterogeneous sources with an ontological way and expanded capabilities of query and retrieval in HIS.

  1. Diffractive imaging of a molecular rotational wavepacket with femtosecond Megaelectronvolt electron pulses

    CERN Document Server

    Yang, Jie; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Centurion, Martin; Wang, Xijie

    2015-01-01

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, since the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. We performed a gas-phase electron diffraction experiment using Megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved an unprecedented combination of 100 fs root-mean-squared (RMS) temporal resolution and sub-Angstrom (0.76 {\\AA}) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomical...

  2. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery.

    Science.gov (United States)

    Gessel, Megan M; Norris, Jeremy L; Caprioli, Richard M

    2014-07-31

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  3. LDL oxidation and extent of coronary atherosclerosis

    NARCIS (Netherlands)

    Vijver, L.P.L. van de; Kardinaal, A.F.M.; Duyvenvoorde, W. van; Kruijssen, D.A.C.M.; Grobbee, D.E.; Poppel, G. van; Princen, H.M.G.

    1998-01-01

    Accumulated evidence indicates that oxidative modification of LDL plays an important role in the atherogenic process. Therefore, we investigated the relation between coronary atherosclerosis and susceptibility of LDL to oxidation in a case-control study in men between 45 and 80 years of age. Case su

  4. Crosstalk between apoptosis and inflammation in atherosclerosis

    NARCIS (Netherlands)

    Westra, Marijke Marianne

    2010-01-01

    In this thesis the role of several apoptosis regulating proteins in the development of atherosclerosis and atherosclerotic plaque stability is investigated. Apoptosis of different cell types in atherosclerotic plaques, such as macrophages and smooth muscle cells may inhibit or promote plaque develop

  5. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    Science.gov (United States)

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  6. Simultaneous molecular imaging of EGFR and HER2 using hyperspectral darkfield microscopy and immunotargeted nanoparticles

    Science.gov (United States)

    Crow, Matthew J.; Marinakos, Stella; Chilkoti, Ashutosh; Wax, Adam P.

    2009-02-01

    Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER2) contribute to the regulation of cell proliferation, and when jointly over-expressed are associated with several types of cancer. The ability to monitor both receptors simultaneously results in a more accurate indicator of degree of cancerous activity than either receptor alone. Plasmonic nanoparticles (NPs) show promise as a potential EGFR and HER2 biomarker over alternatives such as fluorophores and quantum dots, which are limited by their cytotoxicity and photobleaching. To observe immunolabeled NPs bound to receptor-expressing cells, our past experiments were conducted using a novel optical darkfield microspectroscopy system. We implemented an epi-illumination darkfield broadband light train, which allows for darkfield analysis of live cells in culture with enhanced NP contrast. Under this setup, molecularly specific binding of NPs immunolabeled with anti-EGFR was confirmed. We have since adapted our darkfield setup, which previously only obtained spectral information from a line imaging spectrometer, to incorporate hyperspectral imaging capabilities, allowing widefield data acquisition within seconds. The new system has been validated through observation of shifts in the peak wavelength of scattering by gold NPs on silanated cover glasses using several immersion media. Peak resonant scattering wavelengths match well with that predicted by Mie theory. We will further demonstrate the potential of the system with simultaneous molecular imaging of multiple receptors in vitro using labeled EGFR+/HER2+ SK-BR-3 human breast cancer cells with anti-EGFR immunolabeled gold nanospheres and anti-HER2 immunolabeled gold nanorods, with each scattering in different spectral windows. Additional trials will be performed to demonstrate molecularly specific binding using EGFR+/HER2- MDA-MB-468 and HER2+/EGFR- MDA-MB-453 breast cancer cells.

  7. Early detection of breast cancer: a molecular optical imaging approach using novel estrogen conjugate fluorescent dye

    Science.gov (United States)

    Bhattacharjee, Shubhadeep; Jose, Iven

    2011-02-01

    Estrogen induced proliferation of mutant cells is widely understood to be the one of major risk determining factor in the development of breast cancer. Hence determination of the Estrogen Receptor[ER] status is of paramount importance if cancer pathogenesis is to be detected and rectified at an early stage. Near Infrared Fluorescence [NIRf] Molecular Optical Imaging is emerging as a powerful tool to monitor bio-molecular changes in living subjects. We discuss pre-clinical results in our efforts to develop an optical imaging diagnostic modality for the early detection of breast cancer. We have successfully carried out the synthesis and characterization of a novel target-specific NIRf dye conjugate aimed at measuring Estrogen Receptor[ER] status. The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of Indocyanine Green (ICG) cyanine dye, bis-1,1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. In-vitro studies regarding specific binding and endocytocis of the dye performed on ER+ve [MCF-7] and control [MDA-MB-231] adenocarcinoma breast cancer cell lines clearly indicated nuclear localization of the dye for MCF-7 as compared to plasma level staining for MDA-MB-231. Furthermore, MCF-7 cells showed ~4.5-fold increase in fluorescence signal intensity compared to MDA-MB-231. A 3-D mesh model mimicking the human breast placed in a parallel-plate DOT Scanner is created to examine the in-vivo efficacy of the dye before proceeding with clinical trials. Photon migration and florescence flux intensity is modeled using the finite-element method with the coefficients (quantum yield, molar extinction co-efficient etc.) pertaining to the dye as obtained from photo-physical and in-vitro studies. We conclude by stating that this lipophilic dye can be potentially used as a target specific exogenous contrast agent in molecular optical imaging for early detection of breast cancer.

  8. The effect of aging on atherosclerotic plaque inflammation and molecular calcification: A PET CT imaging study

    DEFF Research Database (Denmark)

    Blomberg, Björn; Thomassen, Anders; Simonsen, Jane Angel;

    cardiovascular risk factors were prospectively assessed by 18F-FDG (inflammation) and sodium 18F-fluoride (18F-NaF) (molecular calcification) PET CT imaging. Global aortic uptake of 18F-FDG and 18F-NaF was determined semi-quantitatively by calculating the average blood pool corrected standardized uptake value (cSUV......) [Mean SUVAORTA - Mean SUVBLOOD POOL]. Furthermore, the average maximum 18F-NaF cSUV was determined in the coronary arteries. Calculating regression and correlation coefficients summarized the data. Results: A quadratic relationship was observed between aging and aortic 18F-FDG avidity. A second order...

  9. Peptidyl Molecular Imaging Contrast Agents Using a New Solid Phase Peptide Synthesis Approach

    OpenAIRE

    Yoo, Byunghee; Pagel, Mark D.

    2007-01-01

    A versatile method is disclosed for solid phase peptide synthesis (SPPS) of molecular imaging contrast agents. A DO3A moiety was derivatized to introduce a CBZ-protected amino group and then coupled to a polymeric support. CBZ cleavage with Et2AlCl/thioanisole was optimized for SPPS. Amino acids were then coupled to the aminoDOTA loaded resin using conventional step-wise Fmoc SPPS to create a product with DOTA coupled to the C-terminus of the peptide. In a second study, the DO3A moiety was co...

  10. Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods

    Science.gov (United States)

    Ha, S.; Tripathy, S.; Carson, A.; Lavery, L. L.; Zhang, H.; Agarwal, A.; Kotov, N.; Villanueva, F. S.; Kim, K.

    2011-03-01

    Multiple cardiovascular inflammatory biomarkers were simultaneously imaged in vivo using antibody conjugated gold nanorods (GNRs) injected into a mouse model of vascular injury stimulated by a photochemical reaction of Rose Bengal dye to green light. Mixed solutions of ICAM-1 antibody conjugated GNRs (715 nm) and E-selectin antibody conjugated GNRs (800 nm) were injected to bind to their respective inflammatory markers on the luminal surface of the inferior vena cava of a mouse. Photoacoustic intensity was measured by a commercial ultrasound probe synchronized to a pulsed laser (10-18 mJ/cm2) at 715 nm or 800 nm clearly identified the upregulation of targeted biomarkers. Histopathology on the harvested tissues confirmed inflammation. The feasibility of simultaneous photoacoustic molecular imaging of inflammation responses in cardiovascular system using a commercial ultrasound system has been demonstrated in vivo.

  11. Universal Molecular Scaffold for Facile Construction of Multivalent and Multimodal Imaging Probes.

    Science.gov (United States)

    Gai, Yongkang; Xiang, Guangya; Ma, Xiang; Hui, Wenqi; Ouyang, Qin; Sun, Lingyi; Ding, Jiule; Sheng, Jing; Zeng, Dexing

    2016-03-16

    Multivalent and multimodal imaging probes are rapidly emerging as powerful chemical tools for visualizing various biochemical processes. Herein, we described a bifunctional chelator (BFC)-based scaffold that can be used to construct such promising probes concisely. Compared to other reported similar scaffolds, this new BFC scaffold demonstrated two major advantages: (1) significantly simplified synthesis due to the use of this new BFC that can serve as chelator and linker simultaneously; (2) highly efficient synthesis rendered by using either click chemistry and/or total solid-phase synthesis. In addition, the versatile utility of this molecular scaffold has been demonstrated by constructing several multivalent/multimodal imaging probes labeled with various radioisotopes, and the resulting radiotracers demonstrated substantially improved in vivo performance compared to the two individual monomeric counterparts.

  12. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  13. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  14. The use of anatomical information for molecular image reconstruction algorithms: Attention/Scatter correction, motion compensation, and noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young [School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2016-03-15

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.

  15. The Use of Anatomical Information for Molecular Image Reconstruction Algorithms: Attenuation/Scatter Correction, Motion Compensation, and Noise Reduction.

    Science.gov (United States)

    Chun, Se Young

    2016-03-01

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples. PMID:26941855

  16. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.

    Science.gov (United States)

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J Bruce; Reddy, Ravinder

    2006-11-01

    In this article, both sodium magnetic resonance (MR) and T1rho relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1rho, a brief description of (i) principles of measuring T1rho relaxation, (ii) pulse sequences for computing T1rho relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1rho in biological tissues and (v) effects of exchange and dipolar interaction on T1rho dispersion are discussed. Correlation of T1rho relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1rho data from osteoarthritic specimens, animal models

  17. Exploration of target molecules for molecular imaging of inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Higashikawa, Kei; Akada, Naoki; Yagi, Katsuharu [Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530 (Japan); Watanabe, Keiko; Kamino, Shinichiro; Kanayama, Yousuke; Hiromura, Makoto [Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047 (Japan); Enomoto, Shuichi, E-mail: senomoto@pharm.okayama-u.ac.jp [Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530 (Japan); Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047 (Japan)

    2011-07-08

    Highlights: {sup {yields}18}F-FDG PET could discriminate each inflamed area of IBD model mice clearly. {sup {yields}18}F-FDG PET could not discriminate the difference of pathogenic mechanism. {yields} Cytokines and cytokine receptors expression was different by pathogenic mechanism. {yields} Cytokines and cytokine receptors would be new target molecules for IBD imaging. -- Abstract: Molecular imaging technology is a powerful tool for the diagnosis of inflammatory bowel disease (IBD) and the efficacy evaluation of various drug therapies for it. However, it is difficult to elucidate directly the relationships between the responsible molecules and IBD using existing probes. Therefore, the development of an alternative probe that is able to elucidate the pathogenic mechanism and provide information on the appropriate guidelines for treatment is earnestly awaited. In this study, we investigated pathognomonic molecules in the intestines of model mice. The accumulation of fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) in the inflamed area of the intestines of dextran sulfate sodium (DSS)- or indomethacin (IND)-induced IBD model mice was measured by positron emission tomography (PET) and autoradiography to confirm the inflamed area. The results suggested that the inflammation was selectively induced in the colons of mice by the administration of DSS, whereas it was induced mainly in the ilea and the proximal colons of mice by the administration of IND. To explore attractive target molecules for the molecular imaging of IBD, we evaluated the gene expression levels of cytokines and cytokine receptors in the inflamed area of the intestines of both model mice. We found that the expression levels of cytokines and cytokine receptors were significantly increased during the progression of IBD, whereas the expression levels were decreased as the mucosa began to heal. In particular, the expression levels of these molecules had already changed before the symptoms of IBD appeared. In

  18. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images; Radiofarmacos: nanoparticulas como sistemas multifuncionales para la obtencion in vivo de imagenes moleculares

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N., E-mail: guillermina.ferro@inin.gob.m [ININ, Departamento de Materiales Radiactivos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  19. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    Directory of Open Access Journals (Sweden)

    Byeong-Cheol Ahn

    2012-01-01

    Full Text Available Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers.

  20. Human-like atherosclerosis in minipigs: a new model for detection and treatment of vulnerable plaques.

    Science.gov (United States)

    Thim, Troels

    2010-07-01

    Advanced atherosclerosis, through thrombosis, leads to ischemic heart disease and ischemic stroke, the leading causes of death and disability worldwide. Advanced atherosclerosis and imaging of atherosclerosis are the focus of this dissertation with particular emphasis on the vulnerable plaque and vulnerable plaque detection. Aspects of advanced atherosclerosis and the vulnerable plaque in humans are described along with the basis for the selected minipig models and methods for atherosclerosis acceleration used. The overall aims of the studies were to develop an animal model of advanced atherosclerosis with human like vulnerable plaque morphology and use this animal model to test an imaging modality aimed at vulnerable plaque detection. The first aim is addressed in 3 papers, where accelerated plaque development in the coronary and carotid arteries is investigated in down sized Rapacz pigs. Down-sized Rapacz pigs are minipigs with familial hypercholesterolemia caused by a mutation in the low density lipoprotein receptor. Paper 1 describes the lipid profile in the down-sized Rapacz on chow and atherogenic diets and spontaneously developed and balloon accelerated coronary plaque with a morphology that resembles the morphology of human vulnerable plaque. Paper 2 describes vein graft disease in internal jugular vein grafts inserted into the common carotid artery. Plaques with necrotic cores were found in oversized vein grafts only indicating an effect of flow and shear stress on plaque development. Paper 3 describes the effects of wall shear stress on local plaque development in surgically stenosed common carotid arteries in the down-sized Rapacz pigs. This study indicated that the combination of low and oscillatory wall shear stress was needed for development of advanced plaque. In paper 4, we interrogated coronary lesions in the down-sized Rapacz with a commercially available diagnostic tool VH IVUS. It is claimed that VH IVUS can characterize the tissue components

  1. Cathepsins and cystatin C in atherosclerosis and obesity.

    Science.gov (United States)

    Lafarge, Jean-Charles; Naour, Nadia; Clément, Karine; Guerre-Millo, Michèle

    2010-11-01

    Given the increasing prevalence of human obesity worldwide, there is an urgent need for a better understanding of the molecular mechanisms linking obesity to metabolic and cardiovascular diseases. Our knowledge is nevertheless limited regarding molecules linking adipose tissue to downstream complications. The importance of cathepsins was brought to light in this context. Through a large scale transcriptomic analysis, our group recently identified the gene encoding cathepsin S as one of the most deregulated gene in the adipose tissue of obese subjects and positively correlated with body mass index. Other members of the cathepsin family are expressed in the adipose tissue, including cathepsin K and cathepsin L. Given their implication in atherogenesis, these proteases could participate into the well established deleterious relationship between enlarged adipose tissue and increased cardiovascular risk. Here, we review the clinical and experimental evidence relevant to the role of cathepsins K, L and S and their most abundant endogenous inhibitor, cystatin C, in atherosclerosis and in obesity.

  2. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    Science.gov (United States)

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  3. High Resolution Imaging of Defect Structures in Polymer and Organic Molecular Crystals

    Science.gov (United States)

    Martin, David

    2003-03-01

    We have been developing techniques for the low dose High Resolution Electron Microscopy (HREM) imaging of defect structures in polymer and organic molecular crystals. We have examined a variety of technologically important materials systems including rigid-rod polymers, poly(imides), poly(diacetylenes), poly(bisthiazoles), poly(bisoxazoles), and aromatic polyamides such as poly(paraphenylene terephthalamide) (PPTA or Kevlar(R)) and poly(metaphenylene diisophthalamide) (MPDI or Nomex(R)). These studies have made it possible for us to image the molecular reorganization in the vicinity of dislocations, surfaces, and grain boundaries. We have also learned about the micromechanisms of lattice bending and twisting. Most recently we have been examining the microstructure of pentacene, a highly-crystalline conjugated organic small molecule that is of interest for making flexible electronic devices such as thin-film transistors. We have also been examing the utility of low voltage techniques using a table-top sized electron microscope that operates near 5 kV.

  4. Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qinmin; Huang, Min; Qin, Zhihui [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Xiaohongshan West 30, Wuchang, Wuhan 430071 (China); Cao, Gengyu, E-mail: gycao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Xiaohongshan West 30, Wuchang, Wuhan 430071 (China)

    2012-07-15

    To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. -- Highlights: Black-Right-Pointing-Pointer STM is a powerful tool to depict molecular orbitals, a basic concept of chemistry. Black-Right-Pointing-Pointer Native copper oxide layer was fabricated for adsorption of cobalt phthalocyanine. Black-Right-Pointing-Pointer Detailed orbitals of CoPc were successfully observed for the 1st time by STM. Black-Right-Pointing-Pointer The effect of the layer is explained by DFT quantum mechanical computations.

  5. Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM

    International Nuclear Information System (INIS)

    To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. -- Highlights: ► STM is a powerful tool to depict molecular orbitals, a basic concept of chemistry. ► Native copper oxide layer was fabricated for adsorption of cobalt phthalocyanine. ► Detailed orbitals of CoPc were successfully observed for the 1st time by STM. ► The effect of the layer is explained by DFT quantum mechanical computations.

  6. Molecular Imaging of Stem Cells: Tracking Survival, Biodistribution, Tumorigenicity, and Immunogenicity

    Directory of Open Access Journals (Sweden)

    Eugene Gu, Wen-Yi Chen, Jay Gu, Paul Burridge, Joseph C. Wu

    2012-01-01

    Full Text Available Being able to self-renew and differentiate into virtually all cell types, both human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs have exciting therapeutic implications for myocardial infarction, neurodegenerative disease, diabetes, and other disorders involving irreversible cell loss. However, stem cell biology remains incompletely understood despite significant advances in the field. Inefficient stem cell differentiation, difficulty in verifying successful delivery to the target organ, and problems with engraftment all hamper the transition from laboratory animal studies to human clinical trials. Although traditional histopathological techniques have been the primary approach for ex vivo analysis of stem cell behavior, these postmortem examinations are unable to further elucidate the underlying mechanisms in real time and in vivo. Fortunately, the advent of molecular imaging has led to unprecedented progress in understanding the fundamental behavior of stem cells, including their survival, biodistribution, immunogenicity, and tumorigenicity in the targeted tissues of interest. This review summarizes various molecular imaging technologies and how they have advanced the current understanding of stem cell survival, biodistribution, immunogenicity, and tumorigenicity.

  7. Image-charge-induced localization of molecular orbitals at metal-molecule interfaces

    DEFF Research Database (Denmark)

    Strange, M.; Thygesen, K. S.

    2012-01-01

    Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a pi-conjugat......Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a pi......-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface, while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual...... orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect, which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and...

  8. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Cusanno, F., E-mail: francesco.cusanno@iss.infn.i [I.N.F.N., Gruppo Collegato Sanita, Sezione di Roma, Rome (Italy); Istituto Superiore di Sanita, Rome (Italy); Argentieri, A. [I.N.F.N., Sezione di Bari, Bari (Italy); Baiocchi, M.; Colilli, S.; Cisbani, E. [Istituto Superiore di Sanita, Rome (Italy); De Vincentis, G. [Universita La Sapienza, Rome (Italy); Fratoni, R. [Istituto Superiore di Sanita, Rome (Italy); Garibaldi, F. [I.N.F.N., Gruppo Collegato Sanita, Sezione di Roma, Rome (Italy); Giuliani, F.; Gricia, M.; Lucentini, M. [Istituto Superiore di Sanita, Rome (Italy); Magliozzi, M.L. [I.N.F.N., Gruppo Collegato Sanita, Sezione di Roma, Rome (Italy); Istituto Superiore di Sanita, Rome (Italy); Majewski, S. [West Virginia University, Morgantown WV (United States); Marano, G. [Istituto Superiore di Sanita, Rome (Italy); Musico, P. [I.N.F.N., Sezione di Genova, Genoa (Italy); Musumeci, M.; Santavenere, F.; Torrioli, S. [Istituto Superiore di Sanita, Rome (Italy); Tsui, B.M.W. [Johns Hopkins University, Baltimore MD (United States); Vitelli, L. [Istituto Superiore di Sanita, Rome (Italy)

    2010-05-21

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr{sub 3}(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr{sub 3}(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  9. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    Science.gov (United States)

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline; Gladstone, David; Pogue, Brian

    2016-03-01

    Cherenkov radiation has emerged as a novel source of light with a number of applications in the biomedical sciences. It's unique properties, including its broadband emission spectrum, spectral weighting in the ultraviolet and blue wavebands, and local generation of light within a given tissue have made it an attractive source of light for techniques ranging from widefield imaging to oximetry and phototherapy. To help guide the future development of this field in the context of molecular imaging, quantitative estimates of the light fluence rates of Cherenkov radiation from a number of radionuclide and external radiotherapy beams in tissue was explored for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.1 - 1 nW/cm2 per MBq/g for radionuclides and 1 - 10 μW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband and optical properties. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. To validate these findings, experimental validation was completed with an MV x-ray photon beam incident onto a tissue phantom, confirming the magnitudes of the simulation values. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at these relatively low fluence values.

  10. 124Iodine: A Longer-Life Positron Emitter Isotope—New Opportunities in Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucio Cascini

    2014-01-01

    Full Text Available 124Iodine (124I with its 4.2 d half-life is particularly attractive for in vivo detection and quantification of longer-term biological and physiological processes; the long half-life of 124I is especially suited for prolonged time in vivo studies of high molecular weight compounds uptake. Numerous small molecules and larger compounds like proteins and antibodies have been successfully labeled with 124I. Advances in radionuclide production allow the effective availability of sufficient quantities of 124I on small biomedical cyclotrons for molecular imaging purposes. Radioiodination chemistry with 124I relies on well-established radioiodine labeling methods, which consists mainly in nucleophilic and electrophilic substitution reactions. The physical characteristics of 124I permit taking advantages of the higher PET image quality. The availability of new molecules that may be targeted with 124I represents one of the more interesting reasons for the attention in nuclear medicine. We aim to discuss all iodine radioisotopes application focusing on 124I, which seems to be the most promising for its half-life, radiation emissions, and stability, allowing several applications in oncological and nononcological fields.

  11. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status.

    Science.gov (United States)

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors' ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  12. Estrogen receptor targeted contrast agents for molecular magnetic resonance imaging of breast cancer hormonal status

    Directory of Open Access Journals (Sweden)

    Adi ePais

    2016-04-01

    Full Text Available The estrogen receptor α (ER is over expressed in most breast cancers and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer, as well as in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging effects of two novel ER- targeted contrast agents (CAs based on pyridine-tetra-acetate-Gd(III chelate conjugated to 17β-estradiol (EPTA-Gd or to tamoxifen (TPTA-Gd. The experiments were conducted in solution, in human breast cancer cells and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen like agonistic activity, enhancing cell proliferation, as well as up-regulating cMyc oncogene and down-regulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also

  13. Molecular imaging in patients with mood disorders: a review of PET findings

    International Nuclear Information System (INIS)

    Mood disorders are chronic, recurrent psychiatric disorders with high morbidity rates that cause severe disability. Researchers have used molecular imaging extensively in studies of mood disorders. In this article, we concisely and selectively review the major findings of positron emission tomography studies of patients with mood disorders. Specifically, we describe findings from cerebral blood flow, cerebral glucose/oxygen metabolism, and radioligand studies in both cross-sectional and longitudinal investigations. Patients with mood disorders have mood-correlated regional metabolism changes and molecular abnormalities in several neurotransmitter systems. Although the findings of these studies are not completely consistent and confounding factors, including drug effects and specific methodology, should be strictly controlled, these results reveal the pathophysiology of mood disorders and aid the development of novel treatment approaches for mood disorders. Future positron emission tomography research will benefit greatly from the development of better radioligands to simultaneously identify multiple neurotransmitter systems in the specific brain region and the integration of more detecting methods in specifying the neurobiological predictors of treatment response in patients with mood disorders. Understanding the molecular mechanisms in underlying mood disorders will result in aetiological diagnosis and individualization of treatment of these disorders. (orig.)

  14. Metal-Based Systems for Molecular Imaging Applications - COST D38 Annual Workshop - Scientific Program and Abstracts

    International Nuclear Information System (INIS)

    The main objective of the Action is the development of metal-based imaging probes for cellular and molecular imaging applications, based on MRI, PET, SPECT and optical imaging that will facilitate early diagnosis, assessment of disease progression and treatment evaluation.The goal of this Action is to further the development of innovative imaging probes through the pursuit of innovations in a number of different areas, ranging from the design of imaging units endowed with enhanced sensitivity to the control of the structural and electronic determinants responsible for the molecular recognition of the target molecule.At present, in vivo diagnostic systems basically assess the structure and function of human organs. Therefore, for important diseases such as cancer and cardiovascular pathologies,and also diseases of the central nervous system, only the late symptoms are detected. It is expected that the advances in genomics and proteomics will have a tremendous impact on human health care of the future. However, advances in molecular biology are already redefining diseases in terms of molecular abnormalities. With this knowledge, new generations of diagnostic imaging agents can be defined that aim at the detection of those molecular processes in vivo.The molecular imaging approach offers a great potential for earlier detection and characterisation of disease, and evaluation of treatment. However, more research is necessary to bring these ideas to clinical applications and a key aspect relates to the development of high-specificity, high-sensitivity imaging probes for the different detection modalities. Additionally, the Action includes research activities dealing with the exploitation of peculiar nuclear properties of given isotopes for therapeutic effects, thus integrating the diagnostic and the therapeutic stages.Apart from its use in early diagnosis in clinical practice, the molecular imaging approach will have also a major impact on the development of new

  15. The Use of Radiation Detectors in Medicine: The Future of Molecular Imaging and Multimodality Imaging: Advantages and Technological Challenges (3/3)

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  16. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    Science.gov (United States)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  17. Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography.

    Science.gov (United States)

    Lambers, F M; Stuker, F; Weigt, C; Kuhn, G; Koch, K; Schulte, F A; Ripoll, J; Rudin, M; Müller, R

    2013-02-01

    Bone research often focuses on anatomical imaging of the bone microstructure, but in order to gain better understanding in how bone remodeling is modulated through interventions also bone formation and resorption processes should be investigated. With this in mind, the purpose of this study was to establish a longitudinal in vivo imaging approach of bone formation and resorption using fluorescence molecular tomography (FMT). In this study the reproducibility, accuracy and sensitivity of FMT for bone imaging were assessed by performing longitudinal measurements with FMT and comparing it to in vivo micro-computed tomography on a set of control mice, and mice in which load-adaptation was induced in the sixth caudal vertebra. The precision error for FMT measurements, expressed as coefficient of variation, was smaller than 16%, indicating acceptable reproducibility. A correlation was found between bone resorption measured with FMT and bone resorption rate measured with in vivo micro-computed tomography only over the first 14days (R=0.81, pbone formation measured with FMT and bone formation rate measured with in vivo micro-CT. Bone formation measured by FMT was 89-109% greater (pBone resorption was 5-8% lower, but did not reach a significant difference between groups, indicating moderate sensitivity for FMT. In conclusion, in vivo FMT in mouse tail bones is feasible but needs to be optimized for monitoring load adaptation in living mice.

  18. Molecular Origin of Color Variation in Firefly (Beetle) Bioluminescence: A Chemical Basis for Biological Imaging.

    Science.gov (United States)

    Hirano, Takashi

    2016-01-01

    Firefly shows bioluminescence by "luciferin-luciferase" (L-L) reaction using luciferin, luciferase, ATP and O2. The chemical photon generation by an enzymatic reaction is widely utilized for analytical methods including biological imaging in the life science fields. To expand photondetecting analyses with firefly bioluminescence, it is important for users to understand the chemical basis of the L-L reaction. In particular, the emission color variation of the L-L reaction is one of the distinguishing characteristics for multicolor luciferase assay and in vivo imaging. From the viewpoint of fundamental chemistry, this review explains the recent progress in the studies on the molecular mechanism of emission color variation after showing the outline of the reaction mechanism of the whole L-L reaction. On the basis of the mechanism, the progresses in organic synthesis of luciferin analogs modulating their emission colors are also presented to support further developments of red/near infrared in vivo biological imaging utility of firefly bioluminescence.

  19. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  20. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. I. HIGH-RESOLUTION MOLECULAR GAS IMAGING

    International Nuclear Information System (INIS)

    We present high-resolution images of the 12CO(2-1) emission in the central 1' (1 kpc) of NGC 5128 (Centaurus A), observed using the Submillimeter Array. We elucidate for the first time the distribution and kinematics of the molecular gas in this region with a resolution of 6.''0 x 2.''4 (100 pc x 40 pc). We spatially resolve the circumnuclear molecular gas in the inner 24''x 12'' (400 pc x 200 pc), which is elongated along a position angle of P.A. ≅155 deg. and perpendicular to the radio/X-ray jet. The southeast (SE) and northwest (NW) components of the circumnuclear gas are connected to molecular gas found at larger radii. This gas appears as two parallel filaments at P.A. = 120 deg., which are coextensive with the long sides of the 3 kpc parallelogram shape of the previously observed dust continuum, as well as ionized and pure rotational H2 lines. Spatial and kinematical asymmetries are apparent in both the circumnuclear and outer gas, suggesting noncoplanar and/or noncircular motions. We extend to inner radii (r12CO(2 - 1) observations show relevant deviations from this model: namely, the physical connection between the circumnuclear gas and that at larger radii, brighter SE and NW sides on the parallelogram-shaped feature, and an outer curvature of its long sides. Overall, it resembles more closely an S-shaped morphology, a trend that is also found in other molecular species. Hence, we qualitatively explore the possible contribution of a weak bi-symmetric potential which would naturally explain these peculiarities.

  1. Breast arterial calcification on mammogram: correlation with carotid arterial atherosclerosis on ultrasonogram

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nam Ju; Suh, Jung Ho [School of Medicine, Ajou Univ., Suwon (Korea, Republic of); Kim, Ji Hyung [College of Medicine, KonYang Univ., Nonsan (Korea, Republic of)

    2002-01-01

    To investigate the incidence of breast arterial calcification in Korean women, and to determine its association with systemic diseases and carotid arterial atherosclerosis. One thousand seven hundred and thirteen female subjects who underwent mammography at a health care center between May 1999 and May 2000 were included in this study. Of the total, 172 were found to have breast arterial calcification, and were classified according to age. The coincidence of hypertension, diabetes mellitus and hyperlipidemia was examined in both the subject group and the control group selected on the same age basis. To investigate the presence and degree of carotid atherosclerosis, sonographic imaging was performed and the findings were compared between the two groups. The incidence of breast arterial calcification showed statistically significant differences according to age, with a higher incidence in older patients (p<0.05). However, there was no statistical difference in the incidence of hypertension, hyperlipidemia, and diabetes mellitus between groups. Carotid atherosclerosis was subjects more prevalent among subjects than in the control group (p<0.05), though there was no statistically significant difference in the degree of luminal stenosis. The most common pathologic cause of breast arterial calcification is arteriosclerosis. Breast arterial calcification is demonstrated at mammography, along with other clinical risk factors for atherosclerosis or coincidental neurologic symptoms. We stress that further evaluation of the carotid artery is necessary.

  2. Mechanisms of MicroRNAs in Atherosclerosis.

    Science.gov (United States)

    Schober, Andreas; Weber, Christian

    2016-05-23

    The maladaptation of endothelial cells to disturbed flow at arterial bifurcations increases permeability for lipoproteins. Additional injury by chemically modified lipoproteins disrupts the continuous repair of maladapted endothelial cells and triggers intimal macrophage accumulation. Macrophages remove modified lipoproteins from the extracellular space until the cholesterol overload leads to macrophage death and insufficient efferocytosis. This macrophage failure promotes the progression to advanced lesions by formation of a lipid-rich necrotic core, which may rupture and cause myocardial infarction and stroke. In this article, we summarize the fundamental roles of microRNAs (miRNAs) in the regulation of endothelial maladaptation and macrophage failure during atherosclerosis. We describe how miRNAs coordinate the mutual interaction between chronic endothelial repair and endothelial senescence and mechanistically link the regulation of macrophage cholesterol homeostasis with defective efferocytosis. Lastly, we discuss how miRNAs may challenge and extend current theories about atherosclerosis. PMID:27193456

  3. Atherosclerosis in elderly patients with renal insufficiency

    Institute of Scientific and Technical Information of China (English)

    Sandeep S. Soman

    2005-01-01

    @@ Introduction As people age,cardiovascular structure and function change and this is superimposed on by specific pathophysiologic disease mechanism.In addition to lipid levels,diabetes,sedentary lifestyle,and genetic factors that are known risks for coronary disease,hypertension,and stroke - the quintessential cardiovascular (CV) diseases related to atherosclerosis within our society - advancing age unequivocally confers the major risk.(Fig.1) Mortality due to cardiovascular disease is more than any other disease and creates enormous costs for the health care system.The main underlying problem in cardiovascular disease is atherosclerosis,a process that obstructs major arteries with lipid deposits and cell accumulation.1 Decreased kidney function (estimated GFR<70 mL/min/1.73 m2) is an independent risk factor for cardiovascular disease and all-cause mortality in the general population.2

  4. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  5. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    International Nuclear Information System (INIS)

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUVmax; SUVmean) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R2. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUVmean (P=.018), and midtreatment FLT SUVmax (P=.006). Large decreases in FLT SUVmean from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUVmax (P=.022) in combination with large FLT response from

  6. Lysophosphatidic acid effects on atherosclerosis and thrombosis

    OpenAIRE

    Cui, Mei-Zhen

    2011-01-01

    Lysophosphatidic acid (LPA) has been found to accumulate in high concentrations in atherosclerotic lesions. LPA is a bioactive phospholipid produced by activated platelets and formed during the oxidation of LDL. Accumulating evidence suggests that this lipid mediator may serve as an important risk factor for development of atherosclerosis and thrombosis. The role of LPA in atherogenesis is supported by the evidence that LPA: stimulates endothelial cells to produce adhesion molecules and chemo...

  7. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations.

    Science.gov (United States)

    Antoniadis, Antonios P; Giannopoulos, Andreas A; Wentzel, Jolanda J; Joner, Michael; Giannoglou, George D; Virmani, Renu; Chatzizisis, Yiannis S

    2015-01-01

    Coronary artery bifurcations are susceptible to atherosclerosis as a result of the unique local flow patterns and the subsequent endothelial shear stress (ESS) environment that are conducive to the development of plaques. Along the lateral walls of the main vessel and side branches, a distinct flow pattern is observed with local low and oscillatory ESS, while high ESS develops at the flow divider (carina). Histopathologic studies have shown that the distribution of plaque at bifurcation regions is related to the local ESS patterns. The local ESS profile also influences the outcome of percutaneous coronary interventions in bifurcation lesions. A variety of invasive and non-invasive imaging modalities have enabled 3D reconstruction of coronary bifurcations and thereby detailed local ESS assessment by computational fluid dynamics. Highly effective strategies for treatment and ultimately prevention of atherosclerosis in coronary bifurcations are anticipated with the use of advanced imaging and computational fluid dynamic techniques.

  8. Doinseunggitang Ameliorates Endothelial Dysfunction in Diabetic Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jung Joo Yoon

    2013-01-01

    Full Text Available Atherosclerosis, a chronic and progressive disease characterized by vascular inflammation, is a leading cause of death in diabetes patients. Doinseunggitang (DYSGT, traditional prescription, has been used for promoting blood circulation to remove blood stasis. The aim of this study was to investigate the beneficial effects of DYSGT on endothelial dysfunction in diabetic atherosclerosis animal model. Apolipoprotein E knockout (ApoE KO mice fed on a Western diet were treated with DYSGT (200 mg/kg/day. DYSGT significantly lowered blood glucose level and glucose tolerance as well as systolic blood pressure. Metabolic parameter showed that DYSGT markedly decreased triglyceride and LDL-cholesterol levels. In the thoracic aorta, the impairment of vasorelaxation response to acetylcholine and atherosclerotic lesion was attenuated by DYSGT. Furthermore, DYSGT restored the reduction of endothelial nitric oxide synthase (eNOS expression, leading to the inhibition of intracellular adhesion molecule-1 (ICAM-1 and endothelin-1 (ET-1 expression. In conclusion, DYSGT improved the development of diabetic atherosclerosis via attenuation of the endothelial dysfunction, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation. Therefore, these results suggest that Korean traditional prescription Doinseunggitang may be useful in the treatment and prevention of diabetic vascular complications.

  9. The simulation of magnetic resonance elastography through atherosclerosis.

    Science.gov (United States)

    Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R

    2016-06-14

    The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm. PMID:27130475

  10. Inflammation, lipid metabolism dysfunction, and hypertension: Active research fields in atherosclerosis-related cardiovascular disease in China

    Institute of Scientific and Technical Information of China (English)

    YIN Kai; TANG ChaoKe

    2011-01-01

    Atherosclerosis-related cardiovascular disease is one of the leading causes of death in China [1].With advances in our understanding of the molecular mechanisms of atherosclerosis vascular inflammation,lipid metabolism dysfunction,and hypertension are regarded as the main pathogenetic pathways of both early atherogenesis and advanced plaque rupture [2,3].Currently,much attention is being paid to the control of these pathways,which offers the potential for development of novel therapeutic approaches in the treatment of cardiovascular disease in China.

  11. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G.; Torres G, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Gonzalez V, A. [UAEM, Facultad de Medicina, Toluca (Mexico); Murphy, C.A. de [INCMNSZ, Mexico D.F. (Mexico)

    2006-07-01

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. {sup 99m}Tc-HYNlC-TOC has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non Hodgkin's Iymphoma (NHL). The aim of this study was to establish biokinetic models for {sup 99m}Tc-HYNlC-TOC and {sup 188}Re-anti-CD20 prepared from Iyophilized kits, and to evaluate their dosimetry as target-specific radiopharmaceuticals. Whole-body images were acquired at different times after {sup 99m}Tc-HYNlC-TOC or {sup 188}Re-anti-CD20 administration obtained from instant freeze-dried kit formulations with radiochemical purities > 95 %. Regions of interest (ROls) were drawn around source organs on each time frame. The cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate time-activity curves in each organ, to adjust the biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. {sup 99m}Tc-HYNlC-TOC images showed an average tumor/blood (heart) ratio of 4.3 {+-} 0.7 in receptor-positive tumors at 1 h and the mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv. Results showed that after administration of 7 GBq of {sup 188}Re-anti-CD20 the absorbed dose to whole body would be 0.7 Gy (0.1 mGy/MBq) which is the indicated dose for non Hodgkin's Iymphome therapies. (Author)

  12. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring

    OpenAIRE

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the ...

  13. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  14. Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chen-wei; Lombardo, Michael; Larson-Smith, Kjersta; Perez, Camilo; Xia, Jinjun; Matula, Thomas; Pozzo, Danilo; O' Donnell, Matthew [Departments of Bioengineering and Chemical Engineering, and Applied Physics Lab, University of Washington, Seattle, Washington 98195 (United States); Pelivanov, Ivan [Departments of Bioengineering and Chemical Engineering, and Applied Physics Lab, University of Washington, Seattle, Washington 98195 (United States); International Laser Center, Moscow State University, Moscow (Russian Federation)

    2014-01-20

    A composite contrast agent, a nanoemulsion bead with assembled gold nanospheres at the interface, is proposed to improve the specific contrast of photoacoustic molecular imaging. A phase transition in the bead's core is induced by absorption of a nanosecond laser pulse with a fairly low laser fluence (∼3.5 mJ/cm{sup 2}), creating a transient microbubble through dramatically enhanced thermal expansion. This generates nonlinear photoacoustic signals with more than 10 times larger amplitude compared to that of a linear agent with the same optical absorption. By applying a differential scheme similar to ultrasound pulse inversion, more than 40 dB contrast enhancement is demonstrated with suppression of background signals.

  15. Molecular imaging with radionuclides, a powerful technique for studying biological processes in vivo

    Science.gov (United States)

    Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.; Tsui, B. M. W.

    2007-02-01

    Our team is carrying on a systematic study devoted to the design of a SPECT detector with submillimeter resolution and adequate sensitivity (1 cps/kBq). Such system will be used for functional imaging of biological processes at molecular level in small animal. The system requirements have been defined by two relevant applications: study of atherosclerotic plaques characterization and stem cells diffusion and homing. In order to minimize costs and implementation time, the gamma detector will be based—as much as possible—on conventional components: scintillator crystal and position sensitive PhotoMultipliers read by individual channel electronics. A coded aperture collimator should be adapted to maximize the efficiency. The optimal selection of the detector components is investigated by systematic use of Monte-Carlo simulations (and laboratory validation tests); and finally preliminary results are presented and discussed here.

  16. Molecular imaging using Cu-ATSM and FDG in solid canine tumors

    DEFF Research Database (Denmark)

    Hansen, Anders Elias

    Tumor hypoxia is one of the key factors in the development of aggressive and treatment resistant tumors. The negative effects of tumor hypoxia are mediated both by the direct lack of molecular oxygen for therapeutic efficacy and by pro- teomic and genomic changes induced in hypoxic tumor cells....... Identification of hypoxic tumor and intratumoral hypoxic regions therefore hold the potential to serve as a basis for individualized treatment protocols, including image guided radiation therapy. The current PhD project was undertaken to study tumor hypoxia in cancer bearing dogs, with the aims of 1) identifying...... the potential of implementing canine cancer patients in translational research on tumor hypoxia. 2) Non- invasively evaluate the hypoxia positron emission tomography (PET) tracer 64 Copper(II)diacetyl-bis(N 4 -methylthiosemicarbazone) ( 64 Cu-ATSM), including the comparison to non-invasive measures of tumor...

  17. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    International Nuclear Information System (INIS)

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging

  18. Recent advances in lipoprotein and atherosclerosis: A nutrigenomic approach

    Directory of Open Access Journals (Sweden)

    López, Sergio

    2009-03-01

    Full Text Available Atherosclerosis is a disease in which multiple factors contribute to the degeneration of the vascular wall. Many risk factors have been identified as having influence on the progression of atherosclerosis among them, the type of diet. Multifactorial interaction among lipoproteins, vascular wall cells, and inflammatory mediators has been recognised as the basis of atherogenesis. Dietary intake affects lipoprotein concentration and composition providing risk or protection at several stages of atherosclerosis. More intriguingly, it has been demonstrated that the extent to which each lipid or lipoprotein is associated with cardiovascular disease depends on the time to last meal; thus, postprandial lipoproteins, main lipoproteins in blood after a high-fat meal, have been shown to strongly influence atherogenesis. As a complex biological process, the full cellular and molecular characterization of atherosclerosis derived by diet, calls for application of the newly developing “omics” techniques of analysis. This review will considered recent studies using high-throughput technologies and a nutrigenomic approach to reveal the patho-physiological effects that the fasting and postprandial lipoproteins may exert on the vascular wall.La aterosclerosis es una enfermedad en la que múltiples factores, entre los que se encuentra la dieta, contribuyen a la degradación de la pared vascular. En la etiología de la aterogénesis son determinantes las lipoproteínas plasmáticas y los distintos tipos celulares de la pared vascular, incluyendo una respuesta inflamatoria. La ingesta de alimentos afecta la concentración y composición de las lipoproteínas, ejerciendo un papel de riesgo o protector durante las diferentes etapas del proceso aterosclerótico. Es importante destacar que la naturaleza de las lipoproteínas y por lo tanto su papel en la enfermedad cardiovascular, también depende del tiempo transcurrido entre comidas. Por ejemplo, las lipoprote