Sample records for atherosclerosis expression implications

  1. Atherosclerosis (United States)

    Atherosclerosis is a disease in which plaque builds up inside your arteries. Plaque is a sticky substance ... flow of oxygen-rich blood to your body. Atherosclerosis can lead to serious problems, including Coronary artery ...

  2. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian


    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1......) in the endothelia of Apoe(-/-) mice (Irs1/Apoe(-/-)) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE(-/-) mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin's enhanced antiatherogenic actions in EC was related to remarkable...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  3. Increased YKL-40 expression in patients with carotid atherosclerosis

    DEFF Research Database (Denmark)

    Michelsen, Annika E; Rathcke, Camilla N; Skjelland, Mona


    atherosclerosis and 20 healthy controls. Carotid expression of YKL-40 was examined by real time RT-PCR in 57 of the patients. Regulation and effect of YKL-40 were examined in THP-1 monocytes. RESULTS: Our main findings were: (1) serum YKL-40 levels were significantly elevated in patients with carotid...... atherosclerosis, with particularly high levels in those with symptomatic disease; (2) patients with recent ischemic symptoms (within 2 months) had higher YKL-40 mRNA levels in carotid plaque than other patients; (3) in vitro, the beta-adrenergic receptor agonist isoproterenol, toll-like receptor (TLR) 2 and TLR4...

  4. Increased YKL-40 expression in patients with carotid atherosclerosis

    DEFF Research Database (Denmark)

    Michelsen, Axel Gottlieb; Rathcke, C.N.; Skjelland, M.


    atherosclerosis and 20 healthy controls. Carotid expression of YKL-40 was examined by real time RT-PCR in 57 of the patients. Regulation and effect of YKL-40 were examined in THP-1 monocytes. Results: Our main findings were: (1) serum YKL-40 levels were significantly elevated in patients with carotid...... atherosclerosis, with particularly high levels in those with symptomatic disease; (2) patients with recent ischemic symptoms (within 2 months) had higher YKL-40 mRNA levels in carotid plaque than other patients; (3) in vitro, the beta-adrenergic receptor agonist isoproterenol, toll-like receptor (TLR) 2 and TLR4...

  5. Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. (United States)

    Rolin, Johannes; Maghazachi, Azzam A


    Chemokines are a diverse group of molecules with important implications for the development of solid tissues and normal function of the immune system. However, change of the conditions for such a complex system can have important and dangerous consequences leading to diseases. The specific implications of the various chemokines in diseases have been elucidated in the last few years, prompting hope of manipulating this system for therapy or prevention of diseases. On the other hand, inflammatory lipids are biologically active molecules with crucial impacts on the function of various cell types, including immune cells in health and disease. Here, we describe how these lipids affect the chemokine system and how they interact with chemokines to shape chronic inflammation in the case of atherosclerosis.

  6. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expressionimplications for atherosclerosis research (United States)

    Bisgaard, Line S.; Mogensen, Christina K.; Rosendahl, Alexander; Cucak, Helena; Nielsen, Lars Bo; Rasmussen, Salka E.; Pedersen, Tanja X.


    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE−/− mice, their M1/M2 phenotype, inflammatory status, and lipid metabolism signatures were compared. oxLDL accumulation was similar in PEMs and BMDMs. On protein expression level, BMDMs showed an M2-like CD206highCD11clow profile, while cholesterol loading led to enhanced CD11c expression and reduced MCP-1 secretion. In contrast, PEMs expressed low levels of CD206 and CD11c, and responded to cholesterol loading by increasing CD11c expression and MCP-1 secretion. mRNA expression of M1/M2 markers was higher in PEMS than BMDMs, while lipid metabolism genes were similarly expressed. Whole aorta flow cytometry showed an accumulation of M2-like CD206highCD11clow macrophages in advanced versus early atherosclerotic disease in ApoE−/− mice. In isolated lesions, mRNA levels of the M2 markers Socs2, CD206, Retnla, and IL4 were downregulated with increasing disease severity. Likewise, mRNA expression of lipid metabolism genes (SREBP2, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes. PMID:27734926

  7. Fibrinogen and P-selectin expression in atherosclerosis model of Sprague Dawley rat

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bi-rong; PAN Ying; ZHAI Zhi-min


    Background Platelet P-selectin plays an important role in inflammation and contributes to thrombosis and hemostasis.Fibrinogen may take part in inflammation,thrombosis,and hemostasis via enhancement of platelet P-selectin expression.This study aimed to discover the correlation between them in atherosclerosis model of Sprague Dawley (SD) rat.Methods Diet-induced atherosclerosis SD rats were adopted as experimental models.The blood from the common abdominal aorta of the rats was obtained to measure the biochemical characteristics and for the check of flow cytometry.Then the aortas were separated carefully,taken out,put into 10% (w/v) neutral formalin for later use.Then fibrinogen and P-selectin expression were detected by flow cytometry and immunohistochemistry.Results SD rats were induced to atherosclerosis model by high fat diet and vitamin D2 injected.It was discovered that the binding of fibrinogen and the expression of P-selectin on the platelet increase in atherosclerosis model (Group H)than in that in the control group (Group Z),there were closely interrelated.High levels of fibrinogen and P-selectin express on the artery of atherosclerosis rat model.Conclusions Fibrinogen and P-selectin are concerned with atherosclerosis.Fibrinogen can interact with P-selectin in order to contribute to the development of atherosclerosis,high levels of fibrinogen and P-selectin can be regarded as risk factors for markers of atherosclerosis.

  8. Monocyte chemotactic protein-1 expression in coronary atherosclerosis plaque of sudden coronary death patients

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the expression of monocyte chemotactic protein 1 (MCP-1) in coronary atherosclerosis plaque of sudden coronary death (SCD) patients and the relationship between MCP-1 expression and SCD. Methods Autopsy heart samples (n=90) collected during 2001 - 2003 were divided to SCD group (n=

  9. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Aarup; Pedersen, Tanja X; Junker, Nanna


    transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation...... to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS: HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis....

  10. Differentially expressed microRNAs at different stages of atherosclerosis in ApoE-deficient mice

    Institute of Scientific and Technical Information of China (English)

    SHAN Zhen; YAO Chen; LI Zi-lun; TENG Yuan; LI Wen; WANG Jin-song; YE Cai-sheng


    Background Atherosclerosis is the primary cause of cardiovascular disease,carotid artery disease,and peripheral vascular disease.However,it is hard to obtain human arterial tissue at different stages of atherosclerosis for a systematic study.The ApoE-deficient (ApoE 1-) mice predictably develop spontaneous atherosclerotic plaques with numerous features similar to the human lesions and contain nearly the entire spectrum of lesions observed during atherogenesis in humans.MicroRNA expression profiles at different stages of atherosclerosis in ApoE-deficient mice were screened to find out the differentially expressed microRNAs.Methods ApoE-deficient mice were euthanized at 4,8,and 20 weeks of age and divided into three groups according to the three time points,including groups A4 (fed a Western-type diet for 0 week),A8 (fed a Western-type diet for 4 weeks),and A20 (fed a Western-type diet for 16 weeks).Atherosclerotic lesions were analyzed.Fifteen aortas were collected and combined into three pools (five aortas in one pool) in each group.MicroRNA microarray analysis was replicated thrice in each group.The threshold of fold change ≥2.0 was used to screen up or down-regulated microRNAs.Differentially expressed microRNAs were subsequently verified with quantitative real-time polymerase chain reaction.Those increasingly up or down-regulated microRNAs during the progression of atherosclerosis were selected.Results Atherosclerotic lesions first appeared in the aortic arch in group A8.Severe atherosclerotic lesions were observed in group A20.In group A8,seven MicroRNAs were up-regulated while two were down-regulated.In group A20,15 microRNAs were up-regulated while two were down-regulated.miR-34a-Sp and miR-497-5p were increasingly up-regulated,while miR-434-3p was progressively down-regulated when atherosclerosis progressed.Conclusions In this study,we described that microRNAs are differentially expressed at different stages of atherosclerosis in ApoE-deficient mice

  11. [Scavenger receptor CD36: its expression, regulation, and role in the pathogenesis of atherosclerosis. Part I]. (United States)

    Kuliczkowska-Płaksej, Justyna; Bednarek-Tupikowska, Grazyna; Płaksej, Rafał; Filus, Alicja


    Atherosclerosis is a progressive pathological process based on endothelial dysfunction and chronic inflammation. Monocytes, macrophages, and modified lipoproteins, especially oxidized LDLs (oxLDLs), play a fundamental role in the pathogenesis of atherosclerosis. Monocytes evolve into macrophages in the vascular wall and then accumulate oxLDLs, forming foam cells. OxLDLs are toxic and activate foam cells, stimulate the replication of macrophages and their migration into atherosclerotic plaque, and increase the expression of metaloproteinases. Macrophages bind oxLDLs through many types of receptors, among them scavenger receptors. One of these is CD36, a membrane glycoprotein expressed by endothelial cells, adipocytes, smooth and skeletal muscle cells, cardiomiocytes, platelets, monocytes, and macrophages. CD36 recognizes and binds many ligands, such as oxLDLs, long-chain fatty acids, collagen, thrombospondin 1, apoptotic cells, anionic phospholipids, and Plasmodium falciparum-infected erythrocytes. CD36 is involved in many processes, e.g. inner immune system responses, removal of apoptotic cells and Plasmodium falciparum-infected erythrocytes, and the transport of long-chain fatty acids, and it also mediates collagen and thrombospondin action. Recent reports indicate that CD36 may play a role in the development of atherosclerosis. An animal model revealed that lack of CD36 expression restrains atheroslerosis. Increased expression of CD36 was shown in atheroslerotic plaque and damaged vascular tissue. Contradictory data about the effects of antiatherosclerotic drugs on CD36 expression indicate the necessity for further investigation of the role of CD36 in the development of atherosclerosis.

  12. Mechanism linking atherosclerosis and type 2 diabetes: increased expression of scavenger receptor CD36 in monocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei; ZHANG Xiao-lian; ZHOU Xin; LI Dong; GU Jin-gang; WU Juan-juan


    Background We investigated the pathogenesis of atherosclerosis in diabetes, and detected the expression of scavenger receptor CD36 in monocytes in patients with type 2 diabetes.Methods According to the criteria by WHO, diabetic patients were classified into two groups: well controlled diabetic patients (WCP) and poorly controlled diabetic patients (PCP). The expression of CD36 protein and mRNA were evaluated by flow cytometry and reversal transcription polymerase chain reaction (RT-PCR). Plasma levels of accumulution of oxidized LDL (oxLDL) were directly measured by sandwich enzyme-linked immunosorbent assay (ELISA) method.Results Flow cytometry and RT-PCR showed that the mean fluorescence intensity (MFI) of CD36 in monocyte and CD36 mRNA were significantly higher in the PCP and WCP in comparison with healthy controls (P0.05). The concentrations of plasma oxLDL were higher in the PCP group compared to WCP and control group (P0.05). In the WCP and PCP groups, oxLDL levels were higher in patients with diabetic atherosclerosis than those without diabetic atherosclerosis (P<0.05).Conclusions The increased expression of scavenger receptor CD36 may be one of the mechanism of accelerated atherosclerosis in diabetic. The poorly controlled diabetes patients are at higher risk for the vascular complications than the well controlled diabetic patients.

  13. Therapeutic Potential of Ocimum tenuiflorum as MPO Inhibitor with Implications for Atherosclerosis Prevention. (United States)

    Narasimhulu, Chandrakala Aluganti; Vardhan, Sangamithra


    Current experimental studies show that Ocimum tenuiflorum (commonly known as basil or Tulsi) possesses many health benefits. Ocimum is suggested to be antioxidative and anti-inflammatory. Eugenol, an orthomethoxyphenol, and ursolic acid have been identified as important components of basil. Myeloperoxidase (MPO), an oxidative enzyme, has been implicated in the pathogenesis of atherosclerosis. MPO-dependent oxidation of lipoproteins has been implicated in foam cell formation, dysfunctional HDL, and abnormalities in reverse cholesterol transport. Whole leaf extract of O. tenuiflorum and its major components, eugenol and ursolic acid, inhibit the oxidation of lipoproteins by myeloperoxidase/copper as measured by conjugated diene formation as well as by the thiobarbituric acid reactive substance (TBARS) assay. Whole basil leaf extract is able to attenuate the lipopolysaccharide-induced inflammation in RAW 264.7 cells compared with its components. In addition, whole basil leaf extract and eugenol inhibited MPO enzyme activity against synthetic substrates. Based on these results, we conclude that basil extract could act as an inhibitor of MPO and may serve as a nonpharmacological therapeutic agent for atherosclerosis.

  14. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. (United States)

    Manea, Adrian; Manea, Simona-Adriana; Gan, Ana Maria; Constantin, Alina; Fenyo, Ioana Madalina; Raicu, Monica; Muresian, Horia; Simionescu, Maya


    Monocytes (Mon) and Mon-derived macrophages (Mac) orchestrate important oxidative and inflammatory reactions in atherosclerosis by secreting reactive oxygen species (ROS) due, in large part, to the upregulated NADPH oxidases (Nox). The Nox enzymes have been extensively investigated in human Mon and Mac. However, the expression and functional significance of the Nox5 subtypes is not known. We aimed at elucidating whether Nox5 is expressed in human Mon and Mac, and examine its potential role in atherosclerosis. Human monocytic THP-1 cell line and CD14(+) Mon were employed to search for Nox5 expression. RT-PCR, Western blot, lucigenin-enhanced chemiluminescence and dihydroethidium assays were utilized to examine Nox5 in these cells. We found that Nox5 transcription variants and proteins are constitutively expressed in THP-1 cells and primary CD14(+) Mon. Silencing of Nox5 protein expression by siRNA reduced the Ca(2+)-dependent Nox activity and the formation of ROS in Mac induced by A23187, a selective Ca(2+) ionophore. Exposure of Mac to increasing concentrations of IFNγ (5-100 ng/ml) or oxidized LDL (5-100 μg/ml) resulted in a dose-dependent increase in Nox5 protein expression and elevation in intracellular Ca(2+) concentration. Immunohistochemical staining revealed that Nox5 is present in CD68(+) Mac-rich area within human carotid artery atherosclerotic plaques. To the best of our knowledge, this is the first evidence that Nox5 is constitutively expressed in human Mon. Induction of Nox5 expression in IFNγ- and oxidized LDL-exposed Mac and the presence of Nox5 in Mac-rich atheroma are indicative of the implication of Nox5 in atherogenesis.

  15. Effects of Losartan on expression of connexins at the early stage of atherosclerosis in rabbits

    Directory of Open Access Journals (Sweden)

    Li-ming Ruan, Wei Cai, Jun-zhu Chen, Jin-feng Duan


    Full Text Available Aim: to investigate effects of Losartan on expression of connexin 40 and 43 (Cx40 and Cx43, in arteries at the early stage of atherosclerosis in a rabbit model. Methods: A total of 28 male New Zealand white rabbits were divided into following groups: control group, high fat diet group, and Losartan group (10 mg/kg/day. Losartan was administrated in food for two weeks. Iliac arteries were obtained for immunohistochemistry, transmission electron microscopy, Western blot, and reverse transcriptase-polymerase chain reaction (RT-PCR. Results: Transmission electron microscopy revealed abundant gap junctions between neointimal smooth muscle cells (SMCs, which were markedly reduced by treatment. RT-PCR and Western blot assay showed that the mRNA and protein expression of Cx40 and Cx43 were elevated in the neointimal area at the early stage of atherosclerosis. The mRNA and protein expression of Cx43 were significantly down-regulated by losartan treatment but those of Cx40 were not markedly changed. Conclusion: Cx40 and Cx43 in the neointimal SMCs were up-regulated at the early stage of atherosclerosis. Losartan (an angiotensin-converting enzyme inhibitor could reduce neointima proliferation and down-regulate the elevated protein expression of Cx43, suggesting the rennin-angiotensin system (RAS plays an important role in the remodeling of gap junction between ventricular myocytes under pathological conditions.

  16. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama


    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  17. Atherosclerosis and Physical Activity


    Al-Mamari, Ali


    Atherosclerosis and coronary heart disease have been considered as major health problem worldwide. Abnormalities in lipids and lipoprotein metabolism and impairment of endothelial function have been implicated as the main contributing factors in atherosclerosis and its progression. Physical activity has been recognized as a preventive measure for atherosclerosis.

  18. Effects of aspirin on atherosclerosis and the cyclooxygenase-2 expression in atherosclerotic rabbits

    Institute of Scientific and Technical Information of China (English)

    GUO Yi; WANG Qi-zhang; TANG Bing-shan; ZUO Yan-fang; LI Fang-ming; JIANG Xin; WANG Ling; MA Ke-fu


    Background Atherosclerosis is a complex vascular inflammatory disease. Aspirin is a mainstay in the prevention of vascular complications of atherosclerosis. In this study, the effectiveness of aspirin in suppressing atherosclerosis and the inflammation process was evaluated in rabbits fed with a high fat diet.Methods Eighteen male New Zealand rabbits were randomly divided into 3 groups: control group, untreated cholesterol-fed group, aspirin treated cholesterol-fed group, which were fed for 12 weeks. After 12 weeks, the aorta was harvested for pathologic morphology observation. Immunohistochemical analysis of cyclooxygenase-2 (COX-2), macrophage and vascular smooth muscle cell (VSMC) was performed. The statistical analysis was performed by the statistical program SPSS 10.0.Results The aorta plaque/intima size (P/I) by pathologic morphology observation was 0%, (59.6± 13.7)% and (36.3± 16.5)% in the control, untreated cholesterol-fed group and aspirin treated group, respectively. The maximum plaque thickness, the degree of artery stenosis and the proportion of the intimal circumference occupied by atheroma of the 3 groups were significantly different from each other (P<0.01). The expression of COX-2 and macrophage in plaque of the aspirin treated group were decreased compared with that in untreated cholesterol-fed group. However, no difference was found in the expression of VSMC between the aspirin treated and the untreated cholesterol-fed group.Conclusion The mechanism of atherosclerosis suppression by aspirin in cholesterol-fed rabbits is related to the inhibition of COX-2 expression together with the reduced inflammation followed by, but not related to the hypolipidemic effects.

  19. Endothelial Expression of Scavenger Receptor Class B, Type I Protects against Development of Atherosclerosis in Mice

    Directory of Open Access Journals (Sweden)

    Boris L. Vaisman


    Full Text Available The role of scavenger receptor class B, type I (SR-BI in endothelial cells (EC was examined in several novel transgenic mouse models expressing SR-BI in endothelium of mice with normal C57Bl6/N, apoE-KO, or Scarb1-KO backgrounds. Mice were also created expressing SR-BI exclusively in endothelium and liver. Endothelial expression of the Tie2-Scarb1 transgene had no significant effect on plasma lipoprotein levels in mice on a normal chow diet but on an atherogenic diet, significantly decreased plasma cholesterol levels, increased plasma HDL cholesterol (HDL-C levels, and protected mice against atherosclerosis. In 8-month-old apoE-KO mice fed a normal chow diet, the Tie2-Scarb1 transgene decreased aortic lesions by 24%. Mice expressing SR-BI only in EC and liver had a 1.5 ± 0.1-fold increase in plasma cholesterol compared to mice synthesizing SR-BI only in liver. This elevation was due mostly to increased HDL-C. In EC culture studies, SR-BI was found to be present in both basolateral and apical membranes but greater cellular uptake of cholesterol from HDL was found in the basolateral compartment. In summary, enhanced expression of SR-BI in EC resulted in a less atherogenic lipoprotein profile and decreased atherosclerosis, suggesting a possible role for endothelial SR-BI in the flux of cholesterol across EC.

  20. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    Directory of Open Access Journals (Sweden)

    Ricardo A Verdugo

    Full Text Available Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts

  1. Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage

    Institute of Scientific and Technical Information of China (English)

    Ke Li; Wenqi Yao; Xiudan Zheng; Kan Liao


    Berberine is identified to lower the serum cholesterol level in human and hamster through the induction of low density lipoproteins (LDL) receptor in hepatic cells. To evaluate its potential in preventing atherosclerosis, the effect of berberine on atherosclerosis development in apolipoprotein E-deficient (apoE-/-) mice was investigated, in apoE-/-mice, berberine induced in vivo foam cell formation and promoted atherosclerosis development. The foam cell for-mation induced by berberine was also observed in mouse RAW264.7 cells, as well as in mouse and human primary macrophages. By inducing scavenger receptor A (SR-A) expression in macrophages, berberine increased the uptake of modified LDL (DiO-Ac-LDL). Berberine-induced SR-A expression was also observed in macrophage foam cells in vivo and in the cells at atherosclerotic lesion. Analysis in RAW264.7 cells indicated that berberine induced SR-A ex-pression by suppressing PTEN expression, which led to sustained Akt activation. Our results suggest that to evaluate the potential of a cholesterol-reducing compound in alleviating atherosclerosis, its effect on the cells involved in ath-erosclerosis development, such as macrophages, should also be considered. Promotion of foam cell formation could counter-balance the beneficial effect of lowering serum cholesterol.

  2. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul


    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  3. Diagonal ear lobe crease and atherosclerosis: a review of the medical literature and dental implications. (United States)

    Friedlander, Arthur H; López-López, José; Velasco-Ortega, Eugenio


    In Spain a significant number of individuals die from atherosclerotic disease of the coronary and carotid arteries without having classic risk factors and prodomal symptoms. The diagonal ear lobe crease (DELC) has been characterized in the medical literature as a surrogate marker which can identify high risk patients having occult atherosclerosis. This topic however has not been examined in either the medical or dental literature emanating from Spain. The majority of clinical, angiography and postmortem reports support the premise that DELC is a valuable extravascular physical sign able to distinguish some patients at risk of succumbing to atherosclerosis of the coronary arteries. A minority of studies have however failed to support this hypothesis. More recently reports using B mode ultrasound have also linked DELC to atherosclerosis of the carotid artery and another report has related DELC to the presence of calcified carotid artery atheromas on panoramic radiographs. DELC is readily visible during head and neck cancer screening examinations. In conjunction with the patient's medical history, vital signs, and panoramic radiograph, the DELC may assist in atherosclerotic risk.

  4. Disruption of mTORC1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis (United States)

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I; Tall, Alan R.


    Rationale The mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma LDL levels. This suggests an anti-atherogenic effect possibly mediated by modulation of inflammatory responses in atherosclerotic plaques. Objective To assess the role of macrophage mTORC1 in atherogenesis. Methods and Results We transplanted bone marrow from mice in which a key mTORC1 adaptor, Raptor, was deleted in macrophages by Cre/loxP recombination (Mac-RapKO mice) into Ldlr-/- mice and then fed them the Western-type diet (WTD). Atherosclerotic lesions from Mac-RapKO mice showed decreased infiltration of macrophages, lesion size and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified LDL (mmLDL) resulted in increased levels of chemokine mRNAs and STAT3 phosphorylation; these effects were reduced in Mac-RapKO macrophages. While wild-type and Mac-RapKO macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-RapKO macrophages showed decreased STAT3 Ser727 phosphorylation in response to mmLDL treatment and decreased Ccl2 promoter binding of STAT3. Conclusions The results demonstrate cross-talk between nutritionally-induced mTORC1 signaling and mmLDL-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the CCL2 (MCP-1)promoter with pro-atherogenic consequences. PMID:24687132

  5. Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression.

    Directory of Open Access Journals (Sweden)

    Huili Zhang

    Full Text Available Hydrogen sulfide, as a novel gaseous mediator, has been suggested to play a key role in atherogenesis. However, the precise mechanisms by which H(2S affects atherosclerosis remain unclear. Therefore, the present study aimed to investigate the potential role of H(2S in atherosclerosis and the underlying mechanism with respect to chemokines (CCL2, CCL5 and CX3CL1 and chemokine receptors (CCR2, CCR5, and CX3CR1 in macrophages. Mouse macrophage cell line RAW 264.7 or mouse peritoneal macrophages were pre-incubated with saline or NaHS (50 µM, 100 µM, 200 µM, an H(2S donor, and then stimulated with interferon-γ (IFN-γ or lipopolysaccharide (LPS. It was found that NaHS dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 and CX3CL1 expression, as well as CX3CR1-mediated chemotaxis in macrophages. Overexpression of cystathionine γ-lyase (CSE, an enzyme that catalyzes H(2S biosynthesis resulted in a significant reduction in CX3CR1 and CX3CL1 expression as well as CX3CR1-mediated chemotaxis in stimulated macrophages. The inhibitory effect of H(2S on CX3CR1 and CX3CL1 expression was mediated by modulation of proliferators-activated receptor-γ (PPAR-γ and NF-κB pathway. Furthermore, male apoE(-/- mice were fed a high-fat diet and then randomly given NaHS (1 mg/kg, i.p., daily or DL-propargylglycine (PAG, 10 mg/kg, i.p., daily. NaHS significantly inhibited aortic CX3CR1 and CX3CL1 expression and impeded aortic plaque development. NaHS had a better anti-atherogenic benefit when it was applied at the early stage of atherosclerosis. However, inhibition of H(2S formation by PAG increased aortic CX3CR1 and CX3CL1 expression and exacerbated the extent of atherosclerosis. In addition, H(2S had minimal effect on the expression of CCL2, CCL5, CCR2 and CCR5 in vitro and in vivo. In conclusion, these data indicate that H(2S hampers the progression of atherosclerosis in fat-fed apoE(-/- mice and downregulates CX3CR1 and CX3CL1 expression on macrophages and

  6. Effects of Naoxintong on atherosclerosis and inducible nitric oxide synthase expression in atherosclerotic rabbit

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xiao-nan; WANG Hong-hao; LU Zheng-qi; DAI Yong-qiang; HUANG Jian-hua; QIU Wei; SHU Ya-qing


    Background High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerosis processes.Naoxintong is a traditional Chinese medicine for treatment of cerebrovascular and cardiovascular disease.The aim of the present study was to detect and quantify changes of iNOS mRNA and NO levels in the vessel wall after the administration of Naoxintong in an atherosclerotic rabbit model.Methods Forty New Zealand white rabbits were randomly divided into five groups (n=8).Rabbits were fed a standard diet (group A),an atherogenic diet consisting of 79% standard feed+1% cholesterol+5% lard+15% egg yolk powder (group B),an atherogenic diet with Naoxintong 0.25 mg·kg-1·d-1 (group C),an atherogenic diet with Naoxintong 0.5mg·kg-1·d-1 (group D),or atherogenic diet with Naoxintong 1.0 mg·kg-1·d-1 (group E) for 12 weeks.Results Supplemented administration of Naoxintong led to a down-regulation of cholesterol (CHOL) (P <0.001) and low-density lipoprotein (LDL) (P <0.001).The trend became more notable as the dose of Naoxintong increased; group B (CHOL,P=0.568; LDL-cholesterol (LDL-C),P=0.119),group D B (CHOL,P=0.264; LDL-C,P=0.027),group E B (CHOL,P=0.028; LDL-C,P=0.002).Atherosclerotic lesions in aorta were reduced in Naoxintong groups (groups C,D,E) compared to group B.Group B had higher iNOS mRNA (P=0.001) and NO level (P<0.001) than group A.Compared with the atherogenic diet fed-rabbits,Naoxintong supplements decreased the expression of iNOS mRNA (P <0.001) and the NO level (P <0.001) in the vessel wall.Groups given a higher Naoxintong dose exhibited greater benefits.iNOS mRNA and NO levels seemed to be reduced in group C,although the difference did not quite reach statistical significance (iNOS mRNA,P=0.130; NO,P=0.038).iNOS mRNA and NO levels significantly decreased in group D (iNOS mRNA,P=0.019; NO,P=0.018) and group E (iNOS mRNA,P=0.004; NO,P<0.001).Conclusion Naoxintong has

  7. Atherosclerosis (image) (United States)

    Atherosclerosis is a disease of the arteries in which fatty material is deposited in the vessel wall, ... muscle leads to symptoms such as chest pain. Atherosclerosis shows no symptoms until a complication occurs.

  8. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis. (United States)

    Michael, Daryn R; Ashlin, Tim G; Davies, Charlotte S; Gallagher, Hayley; Stoneman, Thomas W; Buckley, Melanie L; Ramji, Dipak P


    A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-β, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-β-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process.

  9. Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL. (United States)

    Kurita-Ochiai, Tomoko; Yamamoto, Masafumi


    Inflammation is well accepted to play a crucial role in the development of atherosclerotic lesions, and recent studies have demonstrated an association between periodontal disease and cardiovascular disease. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, causative agents of destructive chronic inflammation in the periodontium, can accelerate atheroma deposition in animal models. Emerging evidence suggests that vaccination against virulence factors of these pathogens and anti-inflammatory therapy may confer disease resistance. In this review, we focus on the role of inflammatory mechanisms and oxidative modification in the formation and activation of atherosclerotic plaques accelerated by P. gingivalis or A. actinomycetemcomitans in an ApoE-deficient mouse model and high-fat-diet-fed mice. Furthermore, we examine whether mucosal vaccination with a periodontal pathogen or the anti-inflammatory activity of catechins can reduce periodontal pathogen-accelerated atherosclerosis.

  10. Periodontal Pathogens and Atherosclerosis: Implications of Inflammation and Oxidative Modification of LDL

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai


    Full Text Available Inflammation is well accepted to play a crucial role in the development of atherosclerotic lesions, and recent studies have demonstrated an association between periodontal disease and cardiovascular disease. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, causative agents of destructive chronic inflammation in the periodontium, can accelerate atheroma deposition in animal models. Emerging evidence suggests that vaccination against virulence factors of these pathogens and anti-inflammatory therapy may confer disease resistance. In this review, we focus on the role of inflammatory mechanisms and oxidative modification in the formation and activation of atherosclerotic plaques accelerated by P. gingivalis or A. actinomycetemcomitans in an ApoE-deficient mouse model and high-fat-diet-fed mice. Furthermore, we examine whether mucosal vaccination with a periodontal pathogen or the anti-inflammatory activity of catechins can reduce periodontal pathogen-accelerated atherosclerosis.

  11. CDKN2B expression and subcutaneous adipose tissue expandability: Possible influence of the 9p21 atherosclerosis locus

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Per-Arne; Wahlstrand, Björn; Olsson, Maja [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden); Froguel, Philippe; Falchi, Mario [Department of Genomics of Common Disease, School of Public Health, Imperial College London (United Kingdom); Bergman, Richard N. [Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (United States); McTernan, Philip G. [Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry (United Kingdom); Hedner, Thomas; Carlsson, Lena M.S. [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden); Jacobson, Peter, E-mail: [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden)


    Highlights: • The tumor suppressor gene CDKN2B is highly expressed in human adipose tissue. • Risk alleles at the 9p21 locus modify CDKN2B expression in a BMI-dependent fashion. • There is an inverse relationship between expression of CDKN2B and adipogenic genes. • CDKN2B expression influences to postprandial triacylglycerol clearance. • CDKN2B expression in adipose tissue is linked to markers of hepatic steatosis. - Abstract: Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.

  12. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata. (United States)

    Janeesh, P A; Abraham, Annie


    Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.

  13. Toll-Like Receptors, Their Ligands, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Conrad P. Hodgkinson


    Full Text Available Atherosclerosis is a disease characterized by inflammation in the arterial wall. Atherogenesis is dependent on the innate immune response involving activation of Toll-like receptors (TLRs and the expression of inflammatory proteins. TLRs, which recognize various pathogen-associated molecular patterns, are expressed in various cell types within the atherosclerotic plaque. Microbial agents are associated with an increased risk of atherosclerosis and this is, in part, due to activation of TLRs. Recently considerable evidence has been provided suggesting that endogenous proteins promote atherosclerosis by binding to TLRs. In this review, we describe the role of TLRs in atherosclerosis with particular emphasis on those atherogenic endogenous proteins that have been implicated as TLR ligands.

  14. 18F-FDG PET Imaging of Murine Atherosclerosis: Association with Gene Expression of Key Molecular Markers



    AIM: To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice. METHODS: Nine groups of apoE(-/-) mice were given normal chow or high-fat diet. At different time-points, (18)F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from...

  15. Cloning and expression of an anti-LDL(-) single-chain variable fragment, and its inhibitory effect on experimental atherosclerosis. (United States)

    Kazuma, Soraya M; Cavalcante, Marcela F; Telles, Andréia E R; Maranhão, Andrea Queiroz; Abdalla, Dulcineia S P


    The in vivo modified forms of low-density lipoprotein (LDL) are important for the formation of foam cells and as mediators of the immuno-inflammatory process involved in the progression of atherosclerosis. Electronegative LDL, LDL(-), is a LDL subfraction with pro-inflammatory properties that is present in human blood. To investigate possible atheroprotective effects, an anti-LDL(-) single-chain variable fragment (scFv) was expressed in the methylotrophic yeast Pichia pastoris and its activity was evaluated in vitro against macrophages and in experimental atherosclerosis in Ldlr(-/-) mice. The recombinant 2C7 scFv was produced in a yield of 9.5 mg of protein/L. The specificity and affinity of purified 2C7 scFv against LDL(-) was confirmed by ELISA. To assess the activity of 2C7 scFv on foam cell formation, RAW 264.7 macrophages were exposed to LDL(-) in the presence or absence of 2C7 scFv. The 2C7 scFv inhibited the uptake of LDL(-) by macrophages in a dose-dependent manner, and internalization of LDL(-) by these cells was found to be mediated by the CD36 and CD14 receptor. In addition, compared with untreated cells, lipid accumulation in macrophages was decreased, and the expression of Cd36, Tlr-4 and Cox-2 was downregulated in macrophages treated with 2C7 scFv. Importantly, compared with untreated mice, the treatment of Ldlr(-/-) mice with 2C7 scFv decreased the atherosclerotic lesion area at the aortic sinus. In conclusion, our data show that 2C7 scFv inhibits foam cell formation and atherosclerotic plaque development by modulating the expression of genes relevant to atherogenesis. These results encourage further use of this antibody fragment in the development of new therapeutic strategies that neutralize the pro-atherogenic effects of LDL(-).

  16. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis.

    Directory of Open Access Journals (Sweden)

    J Christopher States

    Full Text Available The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE(-/- mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE(-/- mice exposed to 49 ppm arsenic in utero from gestational day (GD 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a. Gene ontology (GO annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8 and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes

  17. Effects of Chronic Mild Stress on the Development of Atherosclerosis and Expression of Toll-Like Receptor 4 Signaling Pathway in Adolescent Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Hongfeng Gu


    Full Text Available Here, we investigated the effect of chronic mild stress (CMS on the development of atherosclerosis as well as the expression of Toll-like receptors (TLRs signaling pathway in adolescent apolipoprotein E knockout (apoE-/- mice. Mice were subjected to daily CMS for 0, 4, and 12 weeks, respectively. To identify the expression of Toll-like receptor 4 signaling pathway in adolescent apolipoprotein E knockout mice subjected to CMS, we compared gene expression in aortas of stressed and unstressed mice using TLRs signaling pathway real-time PCR microarrays consisting of 87 genes. We found that atherosclerosis lesions both in aortic tress and sinuses of CMS mice were significantly increased linearly in response to duration of CMS exposure. Among 87 genes analyzed, 15 genes were upregulated in stressed mice, especially TLR4, myeloid differentiation factor 88 (MyD88, and IL-1β, and 28 genes were downregulated compared with nonstressed mice. CMS mice demonstrated markedly increased aortic atherosclerosis that were associated with significant increases in levels of expression of TLR4, MyD88, nuclear factor κB (NF-κB, MCP-1, IL-1β, TNF-α, and sICAM-1. Taken together, our results suggest an important role for TLR4 signaling pathway in atherosclerosis in a CMS mouse model.

  18. Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia%内皮细胞和平滑肌细胞氧化应激时Nrf2/ARE信号通路对抗氧化基因表达的调控:与动脉粥样硬化和先兆子痫的关系

    Institute of Scientific and Technical Information of China (English)

    Giovanni E. Mann; J(o)rg Niehueser-Saran; Alan Watson; Ling Gao; Tetsuro Ishii; Patricia de Winter; Richard C.M.Siow


    phase Ⅱ detoxifying enzymes and antioxidant proteins. A cisacting transcriptional regulatory element, designated as antioxidant response element (ARE) or electrophile response element (EpRE),mediates the transcriptional activation of genes such as hene oxygenase-1, γ-glutamylcysteine synthethase, thioredoxin reductase,glutathione-S-transferase and NAD(P)H:quinone oxidoreductase. Other antioxidant enzymes such as superoxide dismutase and catalase and non-enzymatic scavengers such as glutathione are also involved in scavenging ROS. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a member of the Cap 'n' Collar family of basic region-leucine zipper (bZIP) transcription factors, plays an important role in ARE-mediated antioxidant gene expression. Kelch-like ECH-associated protein-1 (Keap1) normally sequesters Nrf2 in the cytoplasm in association with the actin cytoskeleton, but upon oxidation of cysteine residues Nrf2 dissociates from Keap1, translocates to the nucleus and binds to ARE sequences leading to transcriptional activation of antioxidant and phase Ⅱ detoxifying genes. Protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and phosphotidylinositol 3-kinase (PI3K) have been implicated in the regulation of Nrf2/ARE signaling. We here review the evidence that the Nrf2/ARE signaling pathway plays an important role in vascular homeostasis and the defense of endothelial and smooth muscle cells against sustained oxidative stress associated with diseases such as atherosclerosis and preeclampsia.

  19. Expression of matrix metalloproteinase-1 mRNA in peripheral blood mononuclear cells of systemic lupus erythematosus patients and its relationship with atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ying; BAO Shu-meng; SHOU Wei-ling; LUAN Hai-xia; ZHANG Yang; FENG Xue; TONG Da-wei; ZHANG Shu-lan; HU Chao-jun; ZENG Xiao-feng; LI Yong-zhe


    Background Matrix metalloproteinase-1(MMP-1)plays an important role in atherosclerosis.This study was to examine expression of MMP-1 mRNA in peripheral blood mononuclear cells(PBMCs)of patients with systemic lupus erythematosus(SLE),and to explore its relationship with atherosclerosis in SLE.Methods Fluorescent quantitative reverse transcription polymerase chain reaction(RT-PCR)was used to examine the expression of MMP-1 mRNA in PBMCs in 80 SLE patients,including 39 prone to atherosclerosis(Group A)and 41 unprone to atherosclerosis(Group B).Meanwhile,30 patients who were free of cardiovascular diseases and 30 healthy individuals were selected as disease and normal control group(Groups C and D).The changes of MMP-1 gene expression were analyzed by differences of cycle threshold(△Ct),with the following formula:△Ct = Ct_(target) gene-Ct_(reference) gene.Results The expression level of MMP-1 mRNA in Group A was significantly higher than that of group B(△Ct=8.64±2.43 vs △Ct=12.09±2.26,t=6.588,P<0.01).The expression level of MMP-1 mRNA of SLE patients was significantly higher than that of Group C(△Ct=10.41±2.90 vs △Ct=12.29±2.51,t=-3.135,P<0.01)and Group D(△Ct=10.41±2.90 vs △Ct=12.48±1.69,t=3.675,P<0.01).Conclusions In comparison to disease and control group,expression of MMP-1 mRNA in PBMCs of SLE patients was significantly elevated,and significant difference of MMP-1 mRNA expression was also found between SLE patients prone and unprone to atherosclerosis,indicating that expression of MMP-1 mRNA may be correlated with the pathogenesis and activity of atherosclerosis in SLE.

  20. Effect of different degrees of impaired glucose metabolism on the expression of inflammatory markers in monocytes of patients with atherosclerosis. (United States)

    Bernal-Lopez, M R; Llorente-Cortes, V; Calleja, F; Lopez-Carmona, D; Mayas, M D; Gomez-Huelgas, R; Badimon, L; Tinahones, F J


    Inflammatory markers are elevated in type 2 diabetic patients (DP) and may predict the development of type 2 diabetes. Our aims were to analyze differences in the expression of inflammatory and immunological molecules between DP and healthy subjects and to investigate whether glycemic control might prevent the overexpression of inflammatory markers in DP. Twenty-two DP with advanced atherosclerosis and eight healthy blood donors were included. DP were classified as well (HbA1c ≤ 6.5) or poorly controlled (HbA1c > 6.5). In "in vitro" studies, monocytes were exposed to low (5.5 mM) or high glucose (26 mM) concentrations in the absence or presence of insulin. Expression profiling of 14 inflammatory genes was analyzed using TLDA analysis. "In vivo" results show that monocytes from DP had increased levels of monocyte chemoattractant protein (MCP-1) and interleukin 6 (IL6) and lower levels of Toll-like receptor 2 (TLR2) mRNA than healthy subjects. Well-controlled DP had lower levels of IL-6 than poorly controlled DP, suggesting that glycemic control may prevent IL6 mRNA alterations associated with diabetes. "In vitro" results demonstrate that glucose directly and significantly induced MCP-1 and IL6 and reduced TLR2 mRNA expression. Insulin at high dose (100 IU/ml) dramatically enhanced the upregulatory effects of glucose on MCP-1 and IL-6 and reduced per se TLR2 mRNA expression. MCP-1, IL-6 and TLR2 are key inflammatory players altered in monocytes from type 2 DP. Both hyperinsulinemia and hyperglycemia contribute to alter the expression of these genes. The glycemic control only significantly prevented IL6 overexpression in this group of patients.

  1. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Genome-wide association studies (GWAS have linked common single nucleotide polymorphisms (SNPs on chromosome 9p21 near the INK4/ARF (CDKN2A/B tumor suppressor locus with risk of atherosclerotic diseases and type 2 diabetes mellitus. To explore the mechanism of this association, we investigated whether expression of proximate transcripts (p16(INK4a, p15(INK4b, ARF, ANRIL and MTAP correlate with genotype of representative 9p21 SNPs.We analyzed expression of 9p21 transcripts in purified peripheral blood T-cells (PBTL from 170 healthy donors. Samples were genotyped for six selected disease-related SNPs spanning the INK4/ARF locus. Correlations among these variables were determined by univariate and multivariate analysis. Significantly reduced expression of all INK4/ARF transcripts (p15(INK4b, p16(INK4a, ARF and ANRIL was found in PBTL of individuals harboring a common SNP (rs10757278 associated with increased risk of coronary artery disease, stroke and aortic aneurysm. Expression of MTAP was not influenced by rs10757278 genotype. No association of any these transcripts was noted with five other tested 9p21 SNPs.Genotypes of rs10757278 linked to increased risk of atherosclerotic diseases are also associated with decreased expression in PBTL of the INK4/ARF locus, which encodes three related anti-proliferative transcripts of known importance in tumor suppression and aging.

  2. Genetic Susceptibility to Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sanja Kovacic


    Full Text Available Atherosclerosis is a complex multifocal arterial disease involving interactions of multiple genetic and environmental factors. Advances in techniques of molecular genetics have revealed that genetic ground significantly influences susceptibility to atherosclerotic vascular diseases. Besides further investigations of monogenetic diseases, candidate genes, genetic polymorphisms, and susceptibility loci associated with atherosclerotic diseases have been identified in recent years, and their number is rapidly increasing. This paper discusses main genetic investigations fields associated with human atherosclerotic vascular diseases. The paper concludes with a discussion of the directions and implications of future genetic research in arteriosclerosis with an emphasis on prospective prediction from an early age of individuals who are predisposed to develop premature atherosclerosis as well as to facilitate the discovery of novel drug targets.

  3. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)



    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.


    Directory of Open Access Journals (Sweden)

    Rasmidar Samad


    Full Text Available C-Reactive Protein and serum lipids are correlated with atherosclerosis. The purpose of this study was to prove that increasing level of hs-CRP and serum lipids were correlated with periodontitis. This was a cross-sectional approach with 63 samples. Periodontitis was determined if the pocket depth (PD was more than 4 mm and the attachment loss (AL was more than 2 mm. Serum lipids and hs-CRP was analyzed by enzymatic method and chemiluminescent (Immulite hs_CRP alternatively. With unpaired t-test it has showed that there was a difference level of hs-CRP and total cholesterol in periodontitis and non-periodontitis. It was found that there was a significant positive correlation between PD (r=0.26, AL (r=0.25 with hs-CRP serum level; and PD (r=0.27, AL (r=0.30 with total cholesterol and LDL. It was concluded that there is a possibility that there is a relationship between periodontitis and atherosclerosis.

  5. What Causes Atherosclerosis? (United States)

    ... page from the NHLBI on Twitter. What Causes Atherosclerosis? The exact cause of atherosclerosis isn't known. ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  6. How Is Atherosclerosis Treated? (United States)

    ... page from the NHLBI on Twitter. How Is Atherosclerosis Treated? Treatments for atherosclerosis may include heart-healthy ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  7. How Is Atherosclerosis Diagnosed? (United States)

    ... page from the NHLBI on Twitter. How Is Atherosclerosis Diagnosed? Your doctor will diagnose atherosclerosis based on ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  8. What Is Atherosclerosis? (United States)

    ... page from the NHLBI on Twitter. What Is Atherosclerosis? Español Atherosclerosis is a disease in which plaque ... problems, including heart attack , stroke , or even death. Atherosclerosis Figure A shows a normal artery with normal ...

  9. Long noncoding RNAs and atherosclerosis. (United States)

    Zhou, Tian; Ding, Jia-wang; Wang, Xin-an; Zheng, Xia-xia


    Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall in response to dyslipidemia and haemodynamic stress involving dysfunction and activation of resident vascular cells as well as infiltration of leukocytes. As members of nonprotein-coding RNAs, the long noncoding RNAs (lncRNAs) are implicated in various biological processes. Accumulating evidences suggest that lncRNAs regulate the function of vascular wall, activation of macrophages, lipid metabolism and immune response. Here, we review the effects of lncRNAs on the progress of atherosclerosis.

  10. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study

    KAUST Repository

    Hägg, Sara


    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n =66/tissue) and atherosclerotic and unaffected arterial wall (n =40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n =15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n= 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n =49/48) and one visceral fat (n =59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P=0.008 and P=0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n =55/54) relating to carotid stenosis (P =0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n= 16/17, P<10 -27and-30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the Amodule was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the

  11. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE study.

    Directory of Open Access Journals (Sweden)

    Sara Hägg


    Full Text Available Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD. The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE study was to determine whether there are functionally associated genes (rather than individual genes important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue and atherosclerotic and unaffected arterial wall (n = 40/tissue isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes. In the second step (performed within tissue clusters, one atherosclerotic lesion (n = 49/48 and one visceral fat (n = 59 cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015. The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54 relating to carotid stenosis (P = 0.04, 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10(-27 and-30. Genes in the transendothelial migration of leukocytes (TEML pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module. In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004. The transcription co-factor LIM domain binding 2 (LDB2 was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2

  12. Living with Atherosclerosis (United States)

    ... page from the NHLBI on Twitter. Living With Atherosclerosis Improved treatments have reduced the number of deaths ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  13. Atherosclerosis and Stroke (United States)

    ... After Stroke Inspirational Stories Stroke Heroes Among Us Atherosclerosis and Stroke Updated:Oct 24,2016 Excerpted and ... cause difficulty walking and eventually gangrene. Stroke and atherosclerosis There are two types of ischemic stroke caused ...

  14. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona


    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...... and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. BER gene expression levels were analyzed in 162 carotid plaques, 8...... genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion....

  15. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. (United States)

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar


    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  16. Membrane-dependent Activities of Human 15-LOX-2 and Its Murine Counterpart: IMPLICATIONS FOR MURINE MODELS OF ATHEROSCLEROSIS. (United States)

    Bender, Gunes; Schexnaydre, Erin E; Murphy, Robert C; Uhlson, Charis; Newcomer, Marcia E


    The enzyme encoded by the ALOX15B gene has been linked to the development of atherosclerotic plaques in humans and in a mouse model of hypercholesterolemia. In vitro, these enzymes, which share 78% sequence identity, generate distinct products from their substrate arachidonic acid: the human enzyme, a 15-S-hydroperoxy product; and the murine enzyme, an 8-S-product. We probed the activities of these enzymes with nanodiscs as membrane mimics to determine whether they can access substrate esterified in a bilayer and characterized their activities at the membrane interface. We observed that both enzymes transform phospholipid-esterified arachidonic acid to a 15-S-product. Moreover, when expressed in transfected HEK cells, both enzymes result in significant increases in the amounts of 15-hydroxyderivatives of eicosanoids detected. In addition, we show that 15-LOX-2 is distributed at the plasma membrane when the HEK293 cells are stimulated by the addition Ca(2+) ionophore and that cellular localization is dependent upon the presence of a putative membrane insertion loop. We also report that sequence differences between the human and mouse enzymes in this loop appear to confer distinct mechanisms of enzyme-membrane interaction for the homologues.

  17. Effects of Simvastatin on NF-κB-DNA Binding Activity and Monocyte Chemoattractant Protein-1 Expression in a Rabbit Model of Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoyun; WANG Lin; ZENG Hesong; DUBEY Laxman; ZHOU Ning; PU Jun


    To observe the effects of simvastatin on nuclear factor kappaB (NF-κB)-DNA binding activity and on the expression of monocyte chemoattractant protein-1 (MCP-1) in atherosclerotic plaque in rabbits and to explore the anti-atherosclerotic properties beyond its lipid-lowering effects.Thirty-six New Zealand male rabbits were randomly divided into low-cholesterol group (LC), highcholesterol group (HC), high-cholesterol+ simvastatin group (HC+S) and then were fed for 12weeks. At the end of theexperiment, standard enzymatic assays, electrophoretic mobility shift assay (EMSA), immunohistochemical staining, and morphometry were performed to observe serum lipids, NF-κB-DNA binding activity, MCP-1 protein expression, intima thickness and plaque area of aorta respectively in all three groups. Our results showed that the serum lipids, NF-κB-DNA binding activity, expression of MCP-1 protein, intima thickness, and plaque area of aorta in the LC and HC+S groups were significantly lower than those in the HC group (P<0.05). There was no significant difference in the serum lipids between the LC and HC+S groups (P>0.05), but the NF-κB-DNA binding activity, the expression of MCP-1 protein and the intima thickness and plaque area of aorta in the HC+S group were significantly decreased as compared to the LC group (P<0.05). This study demonstrated that simvastatin could decrease atherosclerosis by inhibiting the NFκB-DNA binding activity and by reducing the expression of MCP-1 protein.

  18. Increased tissue factor, MMP-8, and D-dimer expression in diabetic patients with unstable advanced carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jerzy Krupinski


    diabetic patients at higher risk of atherothrombosis. Increased procoagulant activity in diabetic patients may be linked to increased mural remodeling.Keywords: Diabetes, atherosclerosis, carotid artery, tissue factor, D-dimer, matrix metalloproteinase.

  19. Hyperglycemia impairs atherosclerosis regression in mice. (United States)

    Gaudreault, Nathalie; Kumar, Nikit; Olivas, Victor R; Eberlé, Delphine; Stephens, Kyle; Raffai, Robert L


    Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.

  20. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(shl) mice deficient in apolipoprotein E expression. (United States)

    Yokota, Takashi; Nomura, Koichi; Nagashima, Mikio; Kamimura, Naomi


    Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, possesses many biological activities including anti-inflammatory and antioxidant activities. We aimed to investigate the protective effects of fucoidan on dyslipidemia and atherosclerosis in apolipoprotein E-deficient mice (ApoE(shl) mice) and to elucidate its molecular targets in the liver by using a transcriptomic approach. For 12weeks, ApoE(shl) mice were fed a high-fat diet (HFD) supplemented with either 1% or 5% fucoidan. Fucoidan supplementation significantly reduced tissue weight (liver and white adipose tissue), blood lipid, total cholesterol (TC), triglyceride (TG), non-high-density lipoprotein cholesterol (non-HDL-C) and glucose levels in HFD-fed ApoE(shl) mice but increased plasma lipoprotein lipase (LPL) activity and HDL-C levels. Fucoidan also reduced hepatic steatosis levels (liver size, TC and TG levels, and lipid peroxidation) and increased white adipose tissue LPL activity. DNA microarray analysis and quantitative reverse transcription-polymerase chain reaction demonstrated differential expression of genes encoding proteins involved in lipid metabolism, energy homeostasis and insulin sensitivity, by activating Ppara and inactivating Srebf1. Fucoidan supplementation markedly reduced the thickness of the lipid-rich plaque, lipid peroxidation and foaming macrophage accumulation in the aorta in HFD-fed ApoE(shl) mice. Thus, fucoidan supplementation appears to have anti-dyslipidemic and anti-atherosclerotic effects by inducing LPL activity and inhibiting the effects of inflammation and oxidative stress in HFD-fed ApoE(shl) mice.

  1. Phytosterols and atherosclerosis

    DEFF Research Database (Denmark)

    Schrøder, Malene

    Cardiovascular disease (CVD) is the major cause of premature deaths worldwide. Coronary heart disease is the most common CVD, caused by atherosclerosis in the coronary arteries. Atherosclerosis is a multifactorial disease influenced by both genetic and environmental factors. WHO has in 2007 listed...... in its “Guidelines for assessment and management of cardiovascular risk” the following risk factors to influence progressive atherosclerosis: hypertension, abnormal blood lipids, diabetes, unhealthy diet, physical inactivity and smoking. Phytosterols (plant sterols and plant stanols) are known...... their blood cholesterol levels. The aim of this Ph.D. project was to investigate the effects of phytosterols on the development of atherosclerosis in the aorta of heterozygous Watanabe Heritable Hyperlipidemic (WHHL) rabbits. The main advantage of animal studies to human studies in atherosclerosis research...

  2. Profiling of genetic switches using boolean implications in expression data. (United States)

    Çakır, Mehmet Volkan; Binder, Hans; Wirth, Henry


    Correlation analysis assuming coexpression of the genes is a widely used method for gene expression analysis in molecular biology. Yet growing extent, quality and dimensionality of the molecular biological data permits emerging, more sophisticated approaches like Boolean implications. We present an approach which is a combination of the SOM (self organizing maps) machine learning method and Boolean implication analysis to identify relations between genes, metagenes and similarly behaving metagene groups (spots). Our method provides a way to assign Boolean states to genes/metagenes/spots and offers a functional view over significantly variant elements of gene expression data on these three different levels. While being able to cover relations between weakly correlated entities Boolean implication method also decomposes these relations into six implication classes. Our method allows one to validate or identify potential relationships between genes and functional modules of interest and to assess their switching behaviour. Furthermore the output of the method renders it possible to construct and study the network of genes. By providing logical implications as updating rules for the network it can also serve to aid modelling approaches.

  3. Histone deacetylases and atherosclerosis. (United States)

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang


    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis.

  4. Infection and Atherosclerosis Development (United States)

    Campbell, Lee Ann; Rosenfeld, Michael E.


    Atherosclerosis is a chronic disease hallmarked by chronic inflammation, endothelial dysfunction and lipid accumulation in the vasculature. Although lipid modification and deposition are thought to be a major source of the continuous inflammatory stimulus, a large body of evidence suggests that infectious agents may contribute to atherosclerotic processes. This could occur by either direct effects through infection of vascular cells and/or through indirect effects by induction of cytokine and acute phase reactant proteins by infection at other sites. Multiple bacterial and viral pathogens have been associated with atherosclerosis by seroepidemiological studies, identification of the infectious agent in human atherosclerotic tissue, and experimental studies demonstrating an acceleration of atherosclerosis following infection in animal models of atherosclerosis. This review will focus on those infectious agents for which biological plausibility has been demonstrated in animal models and on the challenges of proving a role of infection in human atherosclerotic disease. PMID:26004263

  5. [Diet and atherosclerosis]. (United States)

    Garrido, J A; Garcés, C; de Oya, M


    The relationship between diet and atherosclerosis is due to the diet influence on lipoprotein composition. However, because of the multifactorial basis of the atherosclerosis, diet components have another potential intervention mechanisms in the atherosclerosis process, such as the influence on other cardiovascular risk factors (hypertension, obesity, diabetes) or the influence on the coagulation system and the relationship endothelium-platelets. We will review the effect of diet components on these factors, specially its effects on the haemostasia system, which alteration is responsible for provoking ischemic heart disease. We have to consider that the main objective when treating dyslipidaemias, besides of avoiding acute pancreatitis in cases of strong hypertrigliceridaemia, is to prevent arteriosclerosis development and its clinical manifestations such as ischemic heart disease. Besides, we know that genetic, in addition to provoke familial susceptibility to atherosclerosis, has an essential importance in the response to ambiental factors as diet is.

  6. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    Full Text Available Elevated low-density lipoprotein (LDL-cholesterol is a risk factor for both Alzheimer's disease (AD and Atherosclerosis (CVD, suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1 high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2 Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3 oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL, induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4 LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5 cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6 ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  7. Effects of a novel pharmacologic inhibitor of myeloperoxidase in a mouse atherosclerosis model. (United States)

    Liu, Cuiqing; Desikan, Rajagopal; Ying, Zhekang; Gushchina, Liubov; Kampfrath, Thomas; Deiuliis, Jeffrey; Wang, Aixia; Xu, Xiaohua; Zhong, Jixin; Rao, Xiaoquan; Sun, Qinghua; Maiseyeu, Andrei; Parthasarathy, Sampath; Rajagopalan, Sanjay


    Inflammation and oxidative stress play fundamental roles in the pathogenesis of atherosclerosis. Myeloperoxidase has been extensively implicated as a key mediator of inflammatory and redox-dependent processes in atherosclerosis. However, the effect of synthetic myeloperoxidase inhibitors on atherosclerosis has been insufficiently studied. In this study, ApoE(-/-) mice were randomized to low- and high-dose INV-315 groups for 16 weeks on high-fat diet. INV-315 resulted in reduced plaque burden and improved endothelial function in response to acetylcholine. These effects occurred without adverse events or changes in body weight or blood pressure. INV-315 treatment resulted in a decrease in iNOS gene expression, superoxide production and nitrotyrosine content in the aorta. Circulating IL-6 and inflammatory CD11b(+)/Ly6G(low)/7/4(hi) monocytes were significantly decreased in response to INV-315 treatment. Acute pretreatment with INV-315 blocked TNFα-mediated leukocyte adhesion in cremasteric venules and inhibited myeloperoxidase activity. Cholesterol efflux was significantly increased by high-dose INV-315 via ex-vivo reverse cholesterol transport assays. Our results suggest that myeloperoxidase inhibition may exert anti-atherosclerotic effects via inhibition of oxidative stress and enhancement of cholesterol efflux. These findings demonstrate a role for pharmacologic modulation of myeloperoxidase in atherosclerosis.

  8. Pathobiological implications of MUC16 expression in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Dhanya Haridas

    Full Text Available MUC16 (CA125 belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC, the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.

  9. Oxyradical Stress, Endocannabinoids, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Anberitha T. Matthews


    Full Text Available Atherosclerosis is responsible for most cardiovascular disease (CVD and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG. Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.

  10. Who Is at Risk for Atherosclerosis? (United States)

    ... NHLBI on Twitter. Who Is at Risk for Atherosclerosis? The exact cause of atherosclerosis isn't known. ... role in atherosclerosis risk. Other Factors That Affect Atherosclerosis Other factors also may raise your risk for ...

  11. Macrophage Autophagy in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Maria Chiara Maiuri


    Full Text Available Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility.

  12. Immune Vasculitis Induced Atherosclerosis

    Institute of Scientific and Technical Information of China (English)


    The relationship between immune vasculitis and atherosclerosis was studied. The experimental model of weanling rabbits for immune vasculitis was reproduced by intravenous injection of 10 % bovine serum albumin. There were 6 groups: group A, 25 weanling rabbits with immune vasculitis subject to coronary arteriography; group B, 10 normal mature rabbits subject to coronary arteriography; group C, 10 weanling rabbits subject to coronary arteriography; group D, 8 weanling rabbits with vasculitis and cholesterol diet; group E, 8 weanling rabbits receiving single cholesterol diet; group F: 8 weanling rabbits receiving basic diet. Four weeks later, coronary arteriography was performed in groups A, B and C. The rabbits in groups D, E and F were sacrificed for the study of pathological changes in the coronary artery after 12 weeks. The results showed that the dilatation of coronary artery occurred in 6 rabbits of group A, but in groups B and C, no dilatation of coronary artery appeared. In comparison with group E, more severe atherosclerosis occurred in group D, showing the thickened plaque, fibrous sclerosis and atherosclerotic lesion. Percentage of plaques covering aortic intima, incidence of atherosclerosis of small coronary arteries and degree of stenosis of coronary arteries were significantly higher in group D than in group E (P<0.01). No atherosclerosis changes were found in group F. It was concluded that in the acute phase, the serum immune vasculitis can induce the dilatation of coronary artery of some weanling rabbits, and aggravate the formation of atherosclerosis in rabbits fed with cholesterol diet. Immune vasculitis is a new risk factor of atherosclerosis and ischemic heart disease.

  13. (18)F-FDG PET imaging of murine atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Pedersen, Sune Folke; Christoffersen, Christina


    To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice.......To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice....

  14. LXR signaling pathways and atherosclerosis (United States)

    Calkin, Anna; Tontonoz, Peter


    First discovered as orphan receptors, liver X receptors (LXRs) were subsequently identified as the nuclear receptor target of the cholesterol metabolites, oxysterols.1 There are 2 LXR receptors encoded by distinct genes: LXRα is most highly expressed in the liver, adipose, kidney, adrenal tissues and macrophages, and LXRβ is ubiquitously expressed. Despite differential tissue distribution, these isoforms have 78% homology in their ligand-binding domain and appear to respond to the same endogenous ligands. Work over the past 10 years has shown that the LXR pathway regulates lipid metabolism and inflammation via both the induction and repression of target genes. Given the importance of cholesterol regulation and inflammation in the development of cardiovascular disease, it is not surprising that activation of the LXR pathway attenuates various mechanisms underlying atherosclerotic plaque development.2 In this minireview we will discuss the impact of the LXR pathway on both cholesterol metabolism and atherosclerosis. PMID:20631351

  15. Cathepsins and cystatin C in atherosclerosis and obesity. (United States)

    Lafarge, Jean-Charles; Naour, Nadia; Clément, Karine; Guerre-Millo, Michèle


    Given the increasing prevalence of human obesity worldwide, there is an urgent need for a better understanding of the molecular mechanisms linking obesity to metabolic and cardiovascular diseases. Our knowledge is nevertheless limited regarding molecules linking adipose tissue to downstream complications. The importance of cathepsins was brought to light in this context. Through a large scale transcriptomic analysis, our group recently identified the gene encoding cathepsin S as one of the most deregulated gene in the adipose tissue of obese subjects and positively correlated with body mass index. Other members of the cathepsin family are expressed in the adipose tissue, including cathepsin K and cathepsin L. Given their implication in atherogenesis, these proteases could participate into the well established deleterious relationship between enlarged adipose tissue and increased cardiovascular risk. Here, we review the clinical and experimental evidence relevant to the role of cathepsins K, L and S and their most abundant endogenous inhibitor, cystatin C, in atherosclerosis and in obesity.

  16. Reduction of atherosclerosis in cholesterol-fed rabbits and decrease of expressions of intracellular adhesion molecule-1 and vascular endothelial growth factor in foam cells by a water-soluble fraction of Polygonum multiflorum. (United States)

    Yang, Peng-Yuan; Almofti, Mohamad Radwan; Lu, Ling; Kang, Hui; Zhang, Jing; Li, Tie-Jun; Rui, Yao-Cheng; Sun, Lian-Na; Chen, Wan-Sheng


    Polygonum multiflorum stilbeneglycoside (PMS) is a water-soluble fraction of Polygonum multiflorum Thunb., one of the most famous tonic traditional Chinese medicines, that has protective effects on the cardiovascular system. The purpose of the present study is to elucidate the effects of PMS on macrophage-derived foam cell functions and the reduction of severity of atherosclerosis in hypercholesterolemic New Zealand White (NZW) rabbits. NZW rabbits were fed for 12 weeks with a normal diet, a high cholesterol diet, or a high cholesterol diet associated with irrigation with different doses of PMS (25, 50, or 100 mg/kg). Treatment of NZW rabbits fed with high cholesterol diet with 100 mg/kg PMS attenuated the increase in plasma cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and plasma triglyceride. Treatment with 50 and 100 mg/kg PMS caused 43% and 60% decrease in atherosclerotic lesioned area ratio to total surface area, respectively. In U937 foam cells, PMS could decrease the high expression of intercellular adhesion molecule (ICAM)-1 protein and the vascular endothelial growth factor (VEGF) protein levels in the medium induced by oxidized lipoprotein when analyzed by flow cytometry. The results proved that PMS is a powerful agent against atherosclerosis and that PMS action could possibly be through the inhibition of the expression of ICAM-1 and VEGF in foam cells.

  17. Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke: implications in comorbidities of COPD

    Directory of Open Access Journals (Sweden)

    Yao Hongwei


    Full Text Available Abstract Background Chronic obstructive pulmonary disease is associated with numerous vascular effects including endothelial dysfunction, arterial stiffness and atherogenesis. It is also known that a decline in lung function is associated with increased cardiovascular comorbidity in smokers. The mechanism of this cardiopulmonary dual risk by cigarette smoke (CS is not known. We studied the molecular mechanisms involved in development of emphysema in atherosclerosis-prone apolipoprotein E-deficient (ApoE-/- mice in response to CS exposure. Methods Adult male and female wild-type (WT mice of genetic background C57BL/6J and ApoE-/- mice were exposed to CS, and lung inflammatory responses, oxidative stress (lipid peroxidation products, mechanical properties as well as airspace enlargement were assessed. Results and Discussion The lungs of ApoE-/- mice showed augmented inflammatory response and increased oxidative stress with development of distal airspace enlargement which was accompanied with decline in lung function. Interestingly, the levels and activities of matrix metalloproteinases (MMP-9 and MMP-12 were increased, whereas the level of eNOS was decreased in lungs of CS-exposed ApoE-/- mice as compared to air-exposed ApoE-/- mice or CS-exposed WT mice. Conclusion These findings suggest that CS causes premature emphysema and a decline of lung function in mice susceptible to cardiovascular abnormalities via abnormal lung inflammation, increased oxidative stress and alterations in levels of MMPs and eNOS.

  18. Macrophage plasticity in experimental atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Jamila Khallou-Laschet

    Full Text Available As in human disease, macrophages (MØ are central players in the development and progression of experimental atherosclerosis. In this study we have evaluated the phenotype of MØ associated with progression of atherosclerosis in the apolipoprotein E (ApoE knockout (KO mouse model.We found that bone marrow-derived MØ submitted to M1 and M2 polarization specifically expressed arginase (Arg II and Arg I, respectively. This distinct arginase expression was used to evaluate the frequency and distribution of M1 and M2 MØ in cross-sections of atherosclerotic plaques of ApoE KO mice. Early lesions were infiltrated by Arg I(+ (M2 MØ. This type of MØ favored the proliferation of smooth muscle cells, in vitro. Arg II(+ (M1 MØ appeared and prevailed in lesions of aged ApoE KO mice and lesion progression was correlated with the dominance of M1 over the M2 MØ phenotype. In order to address whether the M2->M1 switch could be due to a phenotypic switch of the infiltrated cells, we performed in vitro repolarization experiments. We found that fully polarized MØ retained their plasticity since they could revert their phenotype. The analysis of the distribution of Arg I- and Arg II-expressing MØ also argued against a recent recruitment of M1 MØ in the lesion. The combined data therefore suggest that the M2->M1 switch observed in vivo is due to a conversion of cells already present in the lesion. Our study suggests that interventional tools able to revert the MØ infiltrate towards the M2 phenotype may exert an atheroprotective action.

  19. Toll-like receptors and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jerko Barbić


    Full Text Available Toll like receptors (TLR are receptors with major role in activationof immune system by regulating production of chemokinesand cytokines, which makes them important in different types ofinflammatory reactions- bacterial, viral, parasitic, acute, chronicetc. Having in mind that atherosclerosis is a chronic inflammatorydisease, it is clear then that TLRs are a group of immune systemactivators, producing specific immune cells. In human atheroscleroticplaque there is a markedly enhanced expression of TLR1,TLR2, and TLR4. TLRs are expressed in adrenal cells, and TLRagonists stimulate the release of steroids from human adrenalgland, as well. TLR2 deficient mice have an impaired steroid releaseduring endotoxemia. TLR9 stimulation leads to a corticosteroneand inflammatory cytokine response. The best characterizedof all is TLR4. Up to date this TLR has a major role in thedevelopment of atherosclerosis. Enhanced expression of hTLR4(human TLR4 in patients with ACS (acute coronary syndromewas associated with elevations of IL-12 and B7-1 expression, astypical downstream effects of TLR4 activation. It is known that acertain gene polymorphism of TLR4 can slow progression of thedisease. Over expression of TLR2 in mice facilitates ventricularremodeling after myocardial infarction. The CAPS study foundcontrary results, when in 3000 patients no connection had beenfound between TLR2 polymorphism (Arg 753 Gln,-16934A/Tand TLR4 polymorphism (D299G, T399I and the process of atherosclerosis.

  20. Implications of the Eighth Joint National Committee Guidelines for the Management of High Blood Pressure for Aging Adults: Atherosclerosis Risk in Communities Study. (United States)

    Miedema, Michael D; Lopez, Faye L; Blaha, Michael J; Virani, Salim S; Coresh, Josef; Ballantyne, Christie M; Folsom, Aaron R


    The recent 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults from the Eight Joint National Committee Panel may significantly affect the aging US population. We performed a cross-sectional analysis of black and white participants in Atherosclerosis Risk in Communities who participated in the fifth study visit (2011-2013). Sitting blood pressure was calculated from the average of 3 successive readings taken after a 5-minute rest. Currently, prescribed antihypertensive medications were recorded by reviewing medication containers brought to the visit. Blood pressure control was defined using both the Seventh and Eighth Joint National Committee thresholds. Of 6088 participants (mean age, 75.6 [range, 66-90] years, 58.4% women; 23.2% black), 54.9% had either diabetes mellitus or chronic kidney disease. The prevalence of hypertension according to Seventh Joint National Committee thresholds was 81.9%, and 62.8% of the entire sample were at blood pressure goal. Using the Eighth Joint National Committee thresholds, 79.4% were at blood pressure goal (16.6% were reclassified as at-goal). Reclassification was higher for individuals with diabetes mellitus or chronic kidney disease (20.6%) when compared with individuals without either condition (11.6%). The use of antihypertensive medications in our cohort was high, with 75.0% prescribed at least 1 antihypertensive medication and 46.7% on ≥2 antihypertensive agents. In conclusion, in a US cohort of aging white and black individuals, ≈1 in 6 individuals were reclassified as having blood pressure at goal by Eighth Joint National Committee guidelines. Despite these less aggressive goals, >20% remain uncontrolled by the new criteria.

  1. The role of mediastinal adipose tissue 11β-hydroxysteroid d ehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Atalar Fatmahan


    Full Text Available Abstract Background Visceral fat deposition and its associated atherogenic complications are mediated by glucocorticoids. Cardiac visceral fat comprises mediastinal adipose tissue (MAT and epicardial adipose tissue (EAT, and MAT is a potential biomarker of risk for obese patients. Aim Our objective was to evaluate the role of EAT and MAT 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD-1 and glucocorticoid receptor (GCR expression in comparison with subcutaneous adipose tissue (SAT in the development of coronary atherosclerosis in obese patients with coronary artery disease (CAD, and to assess their correlations with CD68 and fatty acids from these tissues. Methods and results Expression of 11β-HSD-1 and GCR was measured by qRT-PCR in EAT, MAT and SAT of thirty-one obese patients undergoing coronary artery bypass grafting due to CAD (obese CAD group and sixteen obese patients without CAD undergoing heart valve surgery (controls. 11β-HSD-1 and GCR expression in MAT were found to be significantly increased in the obese CAD group compared with controls (p  Conclusions We report for the first time the increased expression of 11β-HSD-1 and GCR in MAT compared with EAT and SAT, and also describe the interrelated effects of stearidonic acid, HOMA-IR, plasma cortisol and GCR mRNA levels, explaining 40.2% of the variance in 11β-HSD-1 mRNA levels in MAT of obese CAD patients. These findings support the hypothesis that MAT contributes locally to the development of coronary atherosclerosis via glucocorticoid action.

  2. T Lymphocyte Autoreactivity in Inflammatory Mechanisms Regulating Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Elisabetta Profumo


    Full Text Available Atherosclerosis has been clearly demonstrated to be a chronic inflammatory disease of the arterial wall. Both cells of the innate and the acquired immune system, particularly monocytes and T lymphocytes, are implicated in the atherogenic process, producing different cytokines with pro- and anti-inflammatory effects. The majority of pathogenic T cells involved in atherosclerosis are of the Th1 profile, that has been correlated positively with coronary artery disease. Many studies conducted to evaluate the molecular factors responsible for the activation of T cells have demonstrated that the main antigenic targets in atherosclerosis are modified endogenous structures. These self-molecules activate autoimmune reactions mainly characterized by the production of Th1 cytokines, thus sustaining the inflammatory mechanisms involved in endothelial dysfunction and plaque development. In this paper we will summarize the different T-cell subsets involved in atherosclerosis and the best characterized autoantigens involved in cardiovascular inflammation.

  3. Alcohol and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Gao Yinglan; Song Jingyu; Jin Junshuo; Zhong Xiuhong; Ren Xiangshan; Liu Shuangping


    Objectives To study the relationship between alcohol and atherosclerosis (AS).Methods The paper reviewed the mechanism of the alcohol leading to AS from four aspects such as the introduction of alcohol and AS, imbalance of oxidationantioxidation system, oxygen free radical (OFR) and endothelium cell (EC) apoptosis, apoptosis and AS.Results Excessive alcohol could lead to imbalance of oxidation-antioxidation system, and increase OFR, in the meanwhile, OFR could lead to EC apoptosis,which could lead to AS.

  4. Blood pressure and atherosclerosis

    Institute of Scientific and Technical Information of China (English)


    2008412 Association between single nucleotide polymorphisms of matrix metalloproteinase-3 gene and the severity of coronary atherosclerosis in patients with coronary artery disease. WU Naqiong(吴娜琼),et al. Cardiovasc Instit, Fuwai Hosp, Beijing 100037. Chin J Cardiol 2008;36(6):501-505. Objective To investigate the association between the severity of coronary arteries in patients with coronary artery disease and the single nucleotide polymorphisms of MMP-3 gene.

  5. Role of Micronutrients on Subclinical Atherosclerosis Micronutrients in Subclinical Atherosclerosis. (United States)

    Kocyigit, Duygu; Gurses, Kadri Murat; Yalcin, Muhammed Ulvi; Tokgozoglu, Lale


    Atherosclerotic cardiovascular disease (CVD) leading to coronary heart disease is the leading cause of morbidity and mortality in the world. Nutrition is one of the key factors in the etiology of atherosclerosis. Micronutrient supplements are widely used to prevent many chronic diseases including atherosclerosis. However, scientific evidence regarding this issue is still insufficient and current data on the association of dietary micronutrients and CVD risk is contradictory. Most of the randomized studies have failed to demonstrate beneficial effects of micronutrient supplementation on markers of subclinical atherosclerosis. In this review, role of each micronutrient on subclinical atherosclerosis will be evaluated thoroughly.

  6. Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Boris L Vaisman

    Full Text Available Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and the development of atherosclerosis.Transgenic mice on a C57BL/6 background with endothelial-specific overexpression of human arginase II (hArgII gene under the control of the Tie2 promoter were produced. The hArgII mice had elevated tissue arginase activity except in liver and in resident peritoneal macrophages, confirming endothelial specificity of the transgene. Using small-vessel myography, aorta from these mice exhibited endothelial dysfunction when compared to their non-transgenic littermate controls. The blood pressure of the hArgII mice was 17% higher than their littermate controls and, when crossed with apoE -/- mice, hArgII mice had increased aortic atherosclerotic lesions.We conclude that overexpression of arginase II in the endothelium is detrimental to the cardiovascular system.

  7. 基质金属蛋白酶3在小鼠颈动脉粥样硬化斑块中的表达%The Expression of Matrix Metalloprotein-3 in Carotid Atherosclerosis Plaques of Mice

    Institute of Scientific and Technical Information of China (English)

    刘莉; 赵雷; 王汐; 陈晓敏


    Objective:To study the expression of matrix metalloprotein-3 (MMP-3) in carotid atherosclerosis plaques of apolipoprotein E-deficient mice.Methods:21 ApoE- deficient mice at 28 weeks of age were divided randomly into control group and Atorvastarin Calcium group, simvastatin group. All of them fed high cholesterol diet. After 12 weeks, detect serum MMP-3, separate their carotid arteries and analyze the expressions of MMP-3 by immunohistochemistry.Results:To compare with control group, both Atorvastarin Calcium group, simvastatin group could decrease MMP-3 in the atherosclerosis plaques (P<0.05). Atorvastarin Calcium group also decrease serum MMP-3 (P<0.01).Conclusion:MMP-3 is very important for atherosclerosis. The lipid lowering therapy with Atorvastarin Calcium and simvastatin could inhibit angiogenesis and degradation of extracellular matrix in the atherosclerotic plaque.%目的:研究基质金属蛋白酶3(matrix metalloproteinase 3,MMP-3)在小鼠颈动脉粥样硬化斑块中的表达,分析其与动脉粥样硬化斑块的关系.方法:21只28周龄载脂蛋白E基因(apolipoprotein E,ApoE)敲除小鼠随机分成对照组(7只),阿托伐他汀钙组(7只),麝香保心丸组(7只),均给予高脂饮食,喂养12周后检测血清MMP-3,并分离各组小鼠颈动脉,通过免疫组化分析斑块内MMP-3的表达.结果:与对照组比较,阿托伐他汀钙组血清MMP-3降低(P<0.01),麝香保心丸组血清MMP-3降低不明显.两组均能降低斑块内MMP-3的表达,且有统计学意义(P<0.05).结论:动脉粥样硬化发展过程中,MMP-3起到重要作用,阿托伐他汀钙和麝香保心丸的治疗可减少斑块内胞外基质的降解,具有稳定斑块的作用.

  8. Emerging role of IL-17 in atherosclerosis. (United States)

    Chen, Shuang; Crother, Timothy R; Arditi, Moshe


    The IL-23-IL-17 axis is emerging as a critical regulatory system that bridges the innate and adaptive arms of the immune system. Th17 cells have been linked to the pathogenesis of several chronic inflammatory and autoimmune diseases. However, the role of Th17 cells and IL-17 in various stages of atherogenesis remains poorly understood and is only beginning to be elucidated. While IL-17 is a predominantly proinflammatory cytokine, it has a pleiotropic function and it has been implicated both as an instigator in the pathogenesis of several inflammatory disorders as well as being protective in certain inflammatory disease models. Therefore, it is not surprising that the current literature is conflicting on the role of IL-17 during atherosclerotic lesion development. Various approaches have been used by several groups to discern the involvement of IL-17 in atherosclerosis. While one study found that IL-17 is protective against atherosclerosis, several other recent studies have suggested that IL-17 plays a proatherogenic role. Thus, the function of IL-17 remains controversial and awaits more direct studies to address the issue. In this review, we will highlight all the latest studies involving IL-17 and atherosclerosis, including both clinical and experimental research.

  9. Intervention of Tongxinluo Capsule (通心络胶囊) against Vascular Lesion of Atherosclerosis and Its Effect on Lectin-like Oxidized Low Density Lipoprotein Receptor-1 Expression in Rabbits

    Institute of Scientific and Technical Information of China (English)


    Objective: To investigate the prevention by Tongxinluo capsule ( 通心络胶囊, TXL) of vascular lesions and its effect on the levels of protein and gene expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) of vascular wall in rabbits with atherosclerosis (AS), and to explore its possible mechanism against AS. Methods: AS models were established by feeding New Zealand white rabbits with high-cholesterol diet, and 24 immature rabbits were randomly divided into the control group, model group and treated group (treated with TXL capsule). The indexes of total cholesterol (TC) and low density lipoprotein (LDL) levels were measured at the 16th week. The intima thickness and the plaque area of abdominal aorta were quantitatively analyzed by pathological morphological analysis, the expression of macrophage and smooth muscle cell (SMC) in intima were detected by immunohistochemical method and histologic segments were stained by Hematoxilin-Eosin (HE) to identify the degree of atherosclerotic lesion in the model group and the prevention by TXL. The LOX-1 gene and protein expression in abdominal aorta was detected by semi-quantitative RT-PCR and immunohistochemistry, respectively. Results: In the model group, the levels of TC and LDL were significantly elevated, aortic intima thickened extensively, the intima area enhanced,and macrophages expression increased; the levels of LOX-1 gene and protein expression was up-regulated in endothelium and neo-intima of the abdominal aorta. The treatment with TXL reduced blood lipids, attenuated arterial intimal proliferation, markedly inhibited the expression of macrophage and excessively expressed the level of LOX-1. Conclusion:TXL has an inhibitory effect on blood lipids, and it can prevent the occurrence of vascular lesion and cure its development , and its protection against AS was possibly associated with a crucial endothelial protective action through lowering the expression of LOX-1 in vascular walls.

  10. B cell subsets in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Heather M. Perry


    Full Text Available Atherosclerosis, the underlying cause of heart attacks and strokes, is a chronic inflammatory disease of the artery wall. Immune cells, including lymphocytes modulate atherosclerotic lesion development through interconnected mechanisms. Elegant studies over the past decades have begun to unravel a role for B cells in atherosclerosis. Recent findings provide evidence that B cell effects on atherosclerosis may be subset-dependent. B-1a B cells have been reported to protect from atherosclerosis by secretion of natural IgM antibodies. Conventional B-2 B cells can promote atherosclerosis through less clearly defined mechanism that may involve CD4 T cells. Yet, there may be other populations of B cells within these subsets with different phenotypes altering their impact on atherosclerosis. Additionally, the role of B cell subsets in atherosclerosis may depend on their environmental niche and/or the stage of atherogenesis. This review will highlight key findings in the evolving field of B cells and atherosclerosis and touch on the potential and importance of translating these findings to human disease.

  11. Immune mechanisms in atherosclerosis, especially in diabetes type 2. (United States)

    Frostegård, Johan


    Atherosclerosis and ensuing cardiovascular disease (CVD) are major complications of diabetes type 2. Atherosclerosis is a chronic inflammatory condition involving immunocompetent cells of different types present in the lesions. Even though inflammation and immune activation may be more pronounced in atherosclerosis in diabetes type 2, there does not appear to be any major differences between diabetics and non-diabetics. Similar factors are thus implicated in atherosclerosis-associated immune activation in both groups. The cause of immune activation is not known and different mutually non-exclusive possibilities exist. Oxidized and/or enzymatically modified forms of low-density lipoprotein (OxLDL) and dead cells are present in atherosclerotic plaques. OxLDL could play a role, being pro-inflammatory and immunostimulatory as it activates T-cells and is cytotoxic at higher concentrations. Inflammatory phospholipids in OxLDL are implicated, with phosphorylcholine (PC) as one of the exposed antigens. Antibodies against PC (anti-PC) are anti-atherogenic in mouse studies, and anti-PC is negatively associated with development of atherosclerosis and CVD in humans. Bacteria and virus have been discussed as potential causes of immune activation, but it has been difficult to find direct evidence supporting this hypothesis, and antibiotic trials in humans have been negative or inconclusive. Heat shock proteins (HSP) could be one major target for atherogenic immune reactions. More direct causes of plaque rupture include cytokines such as interleukin 1β (IL-1β), tumor necrosis factor (TNF), and also lipid mediators as leukotrienes. In addition, in diabetes, hyperglycemia and oxidative stress appear to accelerate the development of atherosclerosis, one mechanism could be via promotion of immune reactions. To prove that immune reactions are causative of atherosclerosis and CVD, further studies with immune-modulatory treatments are needed.

  12. Innate immunity, Toll-like receptors, and atherosclerosis: mouse models and methods. (United States)

    Sorrentino, Rosalinda; Arditi, Moshe


    Chronic inflammation and aberrant lipid metabolism represent hallmarks of atherosclerosis. Innate immunity critically depends upon Toll-like receptor (TLR) signalling. Recent data directly implicate signalling by TLR4 and TLR2 in the pathogenesis of atherosclerosis. The role that TLRs play in the pathogenesis of atherosclerosis can be assessed by using several animal models, which provide a double genetic deficiency in TLRs and molecules implicated in the lipid metabolism, such as ApoE or LDL receptor. Furthermore, a more recent technique, such as the bone marrow transplantation (BMT), can be a useful and straightforward method to elucidate the role of stromal versus hematopoietic cells in the acceleration of the atheroma.

  13. Alcohol and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Murilo Foppa


    Full Text Available Observational studies have attributed a protective effect to alcohol consumption on the development of atherosclerosis and cardiovascular morbidity and mortality. Alcohol intake in the amount of one to two drinks per day results in an estimated 20-40% reduction in cardiovascular events. An additional protective effect, according to major cohort studies, has been attributed to wine, probably due to antioxidant effects and platelet antiaggregation agents. On the other hand, the influence of different patterns of alcohol consumption and environmental factors may explain a great part of the additional effect of wine. Protection may be mediated by modulation of other risk factors, because alcohol increases HDL-C, produces a biphasic response on blood pressure, and modulates the endothelial function, while it neither increases body weight nor impairs glucose-insulin homeostasis. Alcohol may also have a direct effect on atherogenesis. Despite these favorable effects, the current evidence is not enough to justify prescribing alcohol to prevent cardiovascular disease.

  14. Functional Implication of Netrin Expression in Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Simone Kaufmann


    Full Text Available Background: Malignant melanoma cells are known to have altered expression of genes supporting proliferation and invasion, however, the expression of molecules of the Netrin family of repellent factors has not been analyzed in melanomas until now.

  15. Apolipoprotein E gene polymorphisms as risk factors for carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Zurnić Irena


    Full Text Available Background/Aim. Atherosclerosis is still the leading cause of death in Western world. Development of atherosclerotic plaque involves accumulation of inflammatory cells, lipids, smooth muscle cells and extracellular matrix proteins in the intima of the vascular wall. Apolipoprotein E participates in the transport of exogenous cholesterol, endogenouly synthesized lipids and triglycerides in the organism. Apolipoprotein E gene has been identified as one of the candidate genes for atherosclerosis. Previous studies in different populations have clearly implicated apolipoprotein E genetic variation (ε polymorphisms as a major modulator of low density lipoprotein cholesterol levels. Data considering apolipoprotein E polymorphisms in relation to carotid atherosclerosis gave results that are not in full compliance. The aim of present study was to investigate the apolipoprotein E polymorphisms in association with carotid plaque presence, apolipoprotein E and lipid serum levels in patients with carotid atherosclerosis from Serbia. Methods. The study group enrolled 495 participants: 285 controls and 210 consecutive patients with carotid atherosclerosis who underwent carotid endarterectomy. Genotyping of apolipoprotein E polymorphisms were done using polymerase chain reaction and restriction fragment length polymorphism methods. Results. Patients had significantly decreased frequency of the ε2 allele compared to controls. Patients who carry at least one ε2 allele had a significantly higher level of serum apolipoprotein E and significantly lower low density lipoprotein cholesterol levels compared to those who do not carry this allele. Conclusion. Our results suggest protective effect of apolipoprotein E ε2 allele on susceptibility for carotid plaque presence as well as low density lipoprotein cholesterol lowering effect in Serbian patients with carotid atherosclerosis. Further research of multiple gene and environmental factors that contribute to the

  16. Obstructive Sleep Apnea and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Zulkifli Amin


    Endothelial dysfunction, sympathetic stimulation, and proinflammatory cytokine modulation caused by OSA play significant role to an atherosclesrotic event. Other risk factors of atherosclerosis like hypertension and diabetes mellitus also associated with OSA. Animal and clinical studies recently showed promising data to prove association between OSA, atherosclerosis, and its risk factors. However, provided data has not showed consistent result. In the future, demand of further research both basic and clinical sciences need to be fulfilled.

  17. A gene expression signature for RSV: clinical implications and limitations.

    Directory of Open Access Journals (Sweden)

    Peter J M Openshaw


    Full Text Available Peter Openshaw discusses the challenges in advancing respiratory syncytial virus (RSV treatments and the implications of a study by Mejias and colleagues using a newly identified gene signature for diagnosis and prediction of RSV severity. Please see later in the article for the Editors' Summary.

  18. Probucol alleviates atherosclerosis and improves high density lipoprotein function

    Directory of Open Access Journals (Sweden)

    Zhong Jian-Kai


    Full Text Available Abstract Background Probucol is a unique hypolipidemic agent that decreases high density lipoprotein cholesterol (HDL-C. However, it is not definite that whether probucol hinders the progression of atherosclerosis by improving HDL function. Methods Eighteen New Zealand White rabbits were randomly divided into the control, atherosclerosis and probucol groups. Control group were fed a regular diet; the atherosclerosis group received a high fat diet, and the probucol group received the high fat diet plus probucol. Hepatocytes and peritoneal macrophages were isolated for [3H] labeled cholesterol efflux rates and expression of ABCA1 and SR-B1 at gene and protein levels; venous blood was collected for serum paraoxonase 1, myeloperoxidase activity and lipid analysis. Aorta were prepared for morphologic and immunohistochemical analysis after 12 weeks. Results Compared to the atherosclerosis group, the paraoxonase 1 activity, cholesterol efflux rates, expression of ABCA1 and SR-BI in hepatocytes and peritoneal macrophages, and the level of ABCA1 and SR-BI in aortic lesions were remarkably improved in the probucol group, But the serum HDL cholesterol concentration, myeloperoxidase activity, the IMT and the percentage plaque area of aorta were significantly decreased. Conclusion Probucol alleviated atherosclerosis by improving HDL function. The mechanisms include accelerating the process of reverse cholesterol transport, improving the anti-inflammatory and anti-oxidant functions.

  19. MicroRNAs in Lipid Metabolism and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Anna Meiliana


    Full Text Available BACKGROUND: MicroRNAs (miRNA are mediators of post-transcriptional gene expression that likely regulate most biological pathways and networks. The study of miRNAs is a rapidly emerging field; recent findings have revealed a significant role for miRNAs in atherosclerosis and lipoprotein metabolism. CONTENT: Results from recent studies demonstrated a role for miRNAs in endothelial integrity, macrophage inflammatory response to oxidized low-density lipoprotein, vascular smooth muscle cell proliferation and cholesterol synthesis. These mechanisms are all vital to the initiation and proliferation of atherosclerosis and cardiovascular disease. The importance of miRNAs has recently been recognized in cardiovascular sciences and miRNAs will likely become an integral part of our fundamental comprehension of atherosclerosis and lipoprotein metabolism. The extensive impact of miRNA mediated gene regulation and the relative ease of in vivo applicable modifications highlight the enormous potential of miRNA-based therapeutics in cardiovascular diseases. SUMMARY: miRNA studies in the field of lipid metabolism and atherosclerosis are in their infancy, and thus there is tremendous opportunity for discovery in this understudied area. The ability to target miRNAs in vivo through delivery of miRNA-mimics to enhance miRNA function, or antimiRNAs which inhibit miRNAs, has opened new avenues for the development of therapeutics for dyslipidemias and atherosclerosis, offers a unique approach to treating disease by modulating entire biological pathways. These exciting findings support the development of miRNA antagonists as potential therapeutics for the treatment of dyslipidaemia,atherosclerosis and related metabolic diseases. KEYWORDS: atherosclerosis, lipoprotein, HDL, miRNA.

  20. Choline Transporters in Human Lung Adenocarcinoma: Expression and Functional Implications

    Institute of Scientific and Technical Information of China (English)


    Choline is an essential nutrient for cell survival and proliferation, however, the expression and function of choline transporters have not been well identified in cancer. In this study, we detected the mRNA and protein expression of organic cation transporter OCT3, carnitine/cation transporters OCTN 1 and OCTN2,and choline transporter-like protein CTL1 in human lung adenocarcinoma cell lines A549, H1299 and SPC-A-1.Their expression pattern was further confirmed in 25 human primary adenocarcinoma tissues. The choline uptake in these cell lines was significantly blocked by CTL1 inhibitor, but only partially inhibited by OCT or OCTN inhibitors. The efficacy of these inhibitors on cell proliferation is closely correlated with their abilities to block choline transport. Under the native expression of these transporters, the total choline uptake was notably blocked by specific PI3K/AKT inhibitors. These results describe the expression of choline transporters and their relevant function in cell proliferation of human lung adenocarcinoma, thus providing a potential"choline-starvation" strategy of cancer interference through targeting choline transporters, especially CTL1.

  1. Cholecystokinin expression in tumors: biogenetic and diagnostic implications. (United States)

    Rehfeld, Jens F


    Cholecystokinin (CCK) is a classic gut hormone. CCK is also a complex system of peptides expressed in several molecular forms in enteroendocrine I cells, in cerebral and peripheral neurons, in cardiac myocytes and spermatozoa. CCK gene expression has now been found at protein or peptide level in different neuroendocrine tumors; cerebral gliomas and astrocytomas and specific pediatric tumors. Tumor hypersecretion of CCK was recently reported in a patient with a metastatic islet cell tumor and hypercholecystokininemia resulting in a novel tumor syndrome, the cholecystokininoma syndrome. This review presents an overview of the cell-specific biogenesis of CCK peptides, and a description of the CCK expression in tumors and of the cholecystokininoma syndrome. Finally, assays for the diagnosis of CCK-producing tumors are reviewed.

  2. Stanniocalcin-2 overexpression reduces atherosclerosis in hypercholesterolemic mice

    DEFF Research Database (Denmark)

    Steffensen, Lasse B; Conover, Cheryl A; Bjørklund, Martin M;


    lesion development. We then used adeno-associated virus-mediated expression of STC2 to increase the fraction of PAPP-A present in the inhibited state and found that it decreased the development of atherosclerosis by 47% (P = 0.0005) in apolipoprotein E-deficient mice challenged with a Western type diet...... compared to controls. CONCLUSIONS: This study is the first to suggest the involvement of STC2 in regulating PAPP-A activity during the development of atherosclerosis. Furthermore, we demonstrate that lesion development can be inhibited in an experimental model by driving the balance towards inhibited PAPP-A....

  3. Suppression of atherosclerosis by synthetic REV-ERB agonist

    Energy Technology Data Exchange (ETDEWEB)

    Sitaula, Sadichha [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Billon, Cyrielle [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States); Kamenecka, Theodore M.; Solt, Laura A. [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Burris, Thomas P., E-mail: [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States)


    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  4. Musical Understanding, Musical Works, and Emotional Expression: Implications for Education (United States)

    Elliott, David J.


    What do musicians, critics, and listeners mean when they use emotion-words to describe a piece of instrumental music? How can "pure" musical sounds "express" emotions such as joyfulness, sadness, anguish, optimism, and anger? Sounds are not living organisms; sounds cannot feel emotions. Yet many people around the world believe they hear emotions…

  5. IL-35: a potential target for the treatment of atherosclerosis. (United States)

    Huang, Ying; Lin, Ying-Zhong; Shi, Ying; Ji, Qing-Wei


    The imbalance of anti- inflammatory/pro-inflammatory cytokines plays an important role in the process of atherosclerosis. IL-35 is an anti-inflammatory cytokine comprising the p35 subunit of IL-12 and the subunit Epstein-Barr virus (EBV) -induced gene 3(EBI3). Accumulating evidence showed that IL-35 up-regulates the expression of anti-inflammatory cytokines, induces the generation of CD4 + regulatory T cells, inhibits CD4 + effector T cells response and other target cells activity, and reduces the progression of inflammatory and autoimmune diseases. In addition, it has been found that Ebi3 and p35 strongly coexpressed in human advanced lesions. Therefore, we hypothesize that IL-35 may become a novel target for the treatment of atherosclerosis. Further studies are required to investigate the precise effect and the signaling pathway of IL-35 in atherosclerosis process.

  6. How Can Atherosclerosis Be Prevented or Delayed? (United States)

    ... page from the NHLBI on Twitter. How Can Atherosclerosis Be Prevented or Delayed? Taking action to control ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  7. Periodontal Innate Immune Mechanisms Relevant to Atherosclerosis



    Atherosclerosis is a common cardiovascular disease in the United States. The disease is a leading cause of illness and death in the United States. Atherosclerosis is the most common cause for heart attack and stroke. Most commonly, people develop atherosclerosis as a result of diabetes, genetic risk factors, high blood pressure, a high-fat diet, obesity, high blood cholesterol levels, and smoking. However a sizable amount of patients suffering from atherosclerosis do not harbor the classical ...

  8. Blood pressure and atherosclerosis

    Institute of Scientific and Technical Information of China (English)


    2008038 Regulation of cyclooxygenase 2 expression in renal medulla of spontaneous hypertensive rats intaking dietary salt. WANG Shaoqing(王少清), et al. Div Nephrol, Huashan Hosp, Fudan Univ, Shanghai 200040. Chin J Nephrol 2007;23(11):716-721. Objective To investigate the effects of dietary salt intake on the expression of cyclooxygenase 2 (COX2) in renal medulla of spontaneously hypertensive rats(SHR) and normaltensive Wistar-Kyoto rats (WKY). Methods Rats

  9. Convergent genetic and expression data implicate immunity in Alzheimer's disease (United States)

    Jones, Lesley; Lambert, Jean-Charles; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Vedernikov, Alexey; Escott-Price, Valentina; Stone, Timothy; Richards, Alexander; Bellenguez, Céline; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Gerrish, Amy; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letteneur, Luc; Kornhuber, Johanes; Tárraga, Lluís; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Emilsson, Valur; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Kehoe, Pat; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleὀ, Alberti; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick; Hardy, John; Naranjo, Maria Candida Deniz; Razquin, Cristina; Bosco, Paola; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Moebus, Susanne; Mecocci, Patrizia; del Zompo, Maria; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Jessen, Frank; Dichgans, Martin; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alavarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee FAG; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John SK; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Pastor, Pau; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broekhoven, Christine; Ramirez, Alfredo; Schellenberg, Gerard D; Seshadri, Sudha; Amouyel, Philippe; Holmans, Peter A


    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics. PMID:25533204

  10. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis. (United States)

    VanderLaan, Paul A; Reardon, Catherine A; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S


    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1(-/-)LDLR(-/-) mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Valpha14Jalpha18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d(-/-) mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Valpha14Jalpha18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque.

  11. NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome. (United States)

    Chaldakov, G N; Fiore, M; Stankulov, I S; Hristova, M; Antonelli, A; Manni, L; Ghenev, P I; Angelucci, F; Aloe, L


    While multiple growth factor, cytokines, and immune cells are identified in atherosclerotic lesions, as well as an essential nonneuronal function of neurotrophins implicated in cardiovascular tissue development and in lipid and glucose metabolism, the role of the neurotrophins NGF and BDNF and also the adipokine leptin in human coronary atherosclerosis and related disorders, such as metabolic syndrome, remains unclear. Here we report that (i) both the amount and the immunoreactivity of NGF was reduced and the expression of p75NGF receptor and the number of mast cell increased in human atherosclerotic coronary arteries (n = 12) compared with control specimens (n = 9) obtained from autopsy cases, and (ii) NGF and BDNF plasma levels were reduced in patients with metabolic syndrome (n = 23) compared with control subjects (n = 10). Also, in metabolic syndrome patients, a positive correlation between the plasma leptin levels and the number of adipose tissue mast cells was found, suggesting that leptin may be a novel adipoimmune mediator. Altogether, the results provide the first correlative evidence for the potential involvement of NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome, implying neuroimmune and adipoimmune pathways in the pathobiology of these cardiovascular disorders.

  12. Intestinal Microbiota Metabolism and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Tian-Xing Liu; Hai-Tao Niu; Shu-Yang Zhang


    Objective:This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target.Data Sources:This study was based on data obtained from PubMed and EMBASE up to June 30,2015.Articles were selected using the following search temps:"Intestinal microbiota","trimethylamine N-oxide (TMAO)","trimethylamine (TMA)","cardiovascular",and "atherosclerosis".Study Selection:Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis.Studies on TMA-containing nutrients were also included.Results:A new CVD risk factor,TMAO,was recently identified.It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota,resulting in TMA release.TMA is subsequently converted to TMAO in the liver.Several preliminary studies have linked TMAO to CVD,particularly atherosclerosis;however,the details of this relationship remain unclear.Conclusions:Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management.

  13. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis (United States)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.


    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  14. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

    DEFF Research Database (Denmark)


    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B...... that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production...... of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis....

  15. Periodontal disease and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jeferson Freitas Toregeani


    Full Text Available Atherosclerotic disease (AD is one of the most important causes of morbidity and mortality in the world. It expresses inflammatory markers such as C-reactive protein (CRP and can provoke arterial wall thickening, which can be evaluated using Doppler ultrasound. Risk factors associated with AD include diabetes mellitus, systemic arterial hypertension, dyslipidemia and smoking. More recently, periodontal disease (PD has been identified as a factor related to AD. Periodontal disease has a high prevalence in the global population and the inflammatory process and bacterial activity at the periodontium appear to increase the risk of AD. Encouraging good oral hygiene can reduce expression of inflammatory markers of AD. A review of literature on PD, AD and inflammatory markers and the interrelationships between the two diseases was conducted using data published in articles indexed on the PUBMED, SCIELO and BIREME databases.

  16. Expansion of CD25+ Innate Lymphoid Cells Reduces Atherosclerosis (United States)

    Engelbertsen, Daniel; Foks, Amanda C.; Alberts-Grill, Noah; Kuperwaser, Felicia; Chen, Tao; Lederer, James A.; Jarolim, Petr; Grabie, Nir; Lichtman, Andrew H.


    Objective Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that promote tissue homeostasis and protect against pathogens. ILCs produce cytokines also produced by T lymphocytes that have been shown to affect atherosclerosis, but the influence of ILCs on atherosclerosis has not been explored. Approach and Results We demonstrate that CD25+ ILCs that produce type 2 cytokines (ILC2s) are present in the aorta of atherosclerotic immunodeficient ldlr−/−rag1−/− mice. To investigate the role of ILCs in atherosclerosis, ldlr−/−rag1−/− mice were concurrently fed an atherogenic diet and treated with either ILC-depleting anti-CD90.2 antibodies or with IL-2/anti-IL-2 complexes that expand CD25+ ILCs. Lesion development was not affected by anti-CD90.2 treatment, but was reduced in IL-2/anti-IL-2 -treated mice. These IL-2 treated mice had reduced VLDL cholesterol and increased triglycerides compared to controls and reduced apolipoprotein B100 gene expression in the liver. IL-2/anti-IL-2 treatment caused expansion of ILC2s in aorta and other tissues, elevated levels of IL-5, systemic eosinophila and hepatic eosinophilic inflammation. Blockade of IL-5 reversed the IL-2-complex-induced eosinophilia but did not change lesion size. Conclusions This study demonstrates that expansion of CD25-expressing ILCs by IL-2/anti-IL-2 complexes leads to a reduction in VLDL cholesterol and atherosclerosis. Global depletion of ILCs by anti-CD90.2 did not significantly affect lesion size indicating that different ILC subsets may have divergent effects on atherosclerosis. PMID:26494229

  17. [Is regression of atherosclerosis possible?]. (United States)

    Thomas, D; Richard, J L; Emmerich, J; Bruckert, E; Delahaye, F


    Experimental studies have shown the regression of atherosclerosis in animals given a cholesterol-rich diet and then given a normal diet or hypolipidemic therapy. Despite favourable results of clinical trials of primary prevention modifying the lipid profile, the concept of atherosclerosis regression in man remains very controversial. The methodological approach is difficult: this is based on angiographic data and requires strict standardisation of angiographic views and reliable quantitative techniques of analysis which are available with image processing. Several methodologically acceptable clinical coronary studies have shown not only stabilisation but also regression of atherosclerotic lesions with reductions of about 25% in total cholesterol levels and of about 40% in LDL cholesterol levels. These reductions were obtained either by drugs as in CLAS (Cholesterol Lowering Atherosclerosis Study), FATS (Familial Atherosclerosis Treatment Study) and SCOR (Specialized Center of Research Intervention Trial), by profound modifications in dietary habits as in the Lifestyle Heart Trial, or by surgery (ileo-caecal bypass) as in POSCH (Program On the Surgical Control of the Hyperlipidemias). On the other hand, trials with non-lipid lowering drugs such as the calcium antagonists (INTACT, MHIS) have not shown significant regression of existing atherosclerotic lesions but only a decrease on the number of new lesions. The clinical benefits of these regression studies are difficult to demonstrate given the limited period of observation, relatively small population numbers and the fact that in some cases the subjects were asymptomatic. The decrease in the number of cardiovascular events therefore seems relatively modest and concerns essentially subjects who were symptomatic initially. The clinical repercussion of studies of prevention involving a single lipid factor is probably partially due to the reduction in progression and anatomical regression of the atherosclerotic plaque

  18. Atherosclerosis in Juvenile Idiopathic Arthritis

    Directory of Open Access Journals (Sweden)

    Ewa Jednacz


    Full Text Available Atherosclerosis is a chronic inflammatory disease of the arteries. Clinical consequences of the atherosclerotic process occur in the adult population, however atherosclerotic process begins in childhood. The classic risk factors for atherosclerosis include obesity, dyslipidaemia, age, gender or family history. In recent years, attention has been drawn to the similarity between atherosclerotic inflammatory processes and inflammatory changes in the course of systemic connective tissue disease, in particular systemic lupus etythematosus (SLE or rheumatoid arthritis (RA. There is also observed the similarity of the pathogenetic background of development of atherosclerosis and juvenile idiopathic arthritis (JIA. Elevated levels of pro-inflammatory cytokines are observed in the course of juvenile idiopathic arthritis. Also homocysteine concentrations, which may play a significant role in the development of atherosclerotic lesions, are observed higher in patients with JIA. Some studies revealed higher carotid intima-media thickness (IMT index values in children with JIA. In view of the fact that atherosclerotic process begins as early as in childhood, the introduction of appropriate preventive measures in children is a matter of utmost importance.

  19. Conservation and diversity of Foxp2 expression in muroid rodents: Functional implications


    Campbell, Polly; Reep, Roger L.; Stoll, Margaret L.; Ophir, Alexander G.; Phelps, Steven M.


    FOXP2, the first gene causally linked to a human language disorder, is implicated in song acquisition, production and perception in oscine songbirds, the evolution of speech and language in hominids and the evolution of echolocation in bats. Despite the evident relevance of Foxp2 to vertebrate acoustic communication, a comprehensive description of neural expression patterns is currently lacking in mammals. Here we use immunocytochemistry to systematically describe the neural distribution of F...

  20. Expression of Beta-Catenin and APC Protein in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can


    Objective: To investigate the expression of beta-catenin, APC protein and its implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to determine the expression of beta-catenin and APC protein in 48 cases of ovarian epithelial tumor. Results: The abnormal expression rates of beta-catenin in ovarian malignant and borderline epithelial tumors were higher than that in benign epithelial tumors. The expression of APC protein in benign epithelial tumors was significantly greater than that in malignant epithelial tumors. A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors. Conclusion: Beta-catenin and APC protein have important effect on pathogenesis and development of ovarian epithelial tumors.

  1. Immune response to lipoproteins in atherosclerosis. (United States)

    Samson, Sonia; Mundkur, Lakshmi; Kakkar, Vijay V


    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL) has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  2. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - implications for atherosclerosis research

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander;


    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,...

  3. Cholesterol-Lowering Atherosclerosis Study (CLAS) (United States)


    Arterial Occlusive Diseases; Cardiovascular Diseases; Carotid Artery Diseases; Cerebral Arteriosclerosis; Cerebrovascular Disorders; Coronary Arteriosclerosis; Coronary Disease; Heart Diseases; Myocardial Ischemia; Atherosclerosis

  4. Lipoprotein(a) accelerates atherosclerosis in uremic mice

    DEFF Research Database (Denmark)

    Pedersen, Tanja X; McCormick, Sally P; Tsimikas, Sotirios


    lipoprotein-associated OxPL. Thus, Lp(a) may be particularly atherogenic in a uremic setting. We therefore investigated whether transgenic (Tg) expression of human Lp(a) increases atherosclerosis in uremic mice. Moderate uremia was induced by 5/6 nephrectomy (NX) in Tg mice with expression of human apo(a) (n...... = 19), human apoB-100 (n = 20), or human apo(a) + human apoB [Lp(a)] (n = 15), and in wild-type (WT) controls (n = 21). The uremic mice received a high-fat diet, and aortic atherosclerosis was examined 35 weeks later. LDL-cholesterol was increased in apoB-Tg and Lp(a)-Tg mice, but it was normal in apo...... with both apo(a) and Lp(a). In conclusion, expression of apo(a) or Lp(a) increased uremia-induced atherosclerosis. Binding of OxPL on apo(a) and Lp(a) may contribute to the atherogenicity of Lp(a) in uremia....

  5. Nicotine stimulates expression of proteins implicated in peripheral and central sensitization. (United States)

    Hawkins, J L; Denson, J E; Miley, D R; Durham, P L


    Pain patients who are nicotine dependent report a significantly increased incidence and severity of pain intensity. The goal of this study was to determine the effects of prolonged nicotine administration on inflammatory proteins implicated in the development of peripheral and central sensitization of the trigeminal system. Behavioral, immunohistochemical, and microarray studies were utilized to investigate the effects of nicotine administered daily for 14 days via an Alzet® osmotic pump in Sprague Dawley rats. Systemic nicotine administration caused a significant increase in nocifensive withdrawals to mechanical stimulation of trigeminal neurons. Nicotine stimulated expression of the pro-inflammatory signal transduction proteins phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and protein kinase A (PKA) in the spinal trigeminal nucleus. Nicotine also promoted elevations in the expression of glial fibrillary acidic protein (GFAP), a biomarker of activated astrocytes, and the microglia biomarker ionized calcium-binding adapter molecule 1 (Iba1). Similarly, levels of eleven cytokines were significantly elevated with the largest increase in expression of TNF-α. Levels of PKA, p-ERK, and p-JNK in trigeminal ganglion neurons were increased by nicotine. Our findings demonstrate that prolonged systemic administration of nicotine promotes sustained behavioral and cellular changes in the expression of key proteins in the spinal trigeminal nucleus and trigeminal ganglion implicated in the development and maintenance of peripheral and central sensitization.

  6. What Are the Signs and Symptoms of Atherosclerosis? (United States)

    ... Twitter. What Are the Signs and Symptoms of Atherosclerosis? Atherosclerosis usually doesn't cause signs and symptoms ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  7. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis. (United States)

    Björkegren, Johan L M; Hägg, Sara; Talukdar, Husain A; Foroughi Asl, Hassan; Jain, Rajeev K; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin


    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob (100/100) Mttp (flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.

  8. Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis (United States)

    Björkegren, Johan L. M.; Hägg, Sara; Jain, Rajeev K.; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin


    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr−/−Apob 100/100 Mttp flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. PMID:24586211

  9. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Johan L M Björkegren


    Full Text Available Plasma cholesterol lowering (PCL slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80% and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-Apob (100/100 Mttp (flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.

  10. Highly expressed genes within hippocampal sector CA1: implications for the physiology of memory

    Directory of Open Access Journals (Sweden)

    Michael A. Meyer


    Full Text Available As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT. From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated.

  11. EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway. (United States)

    Yin, Jianguo; Huang, Fang; Yi, Yuhong; Yin, Liang; Peng, Daoquan


    Atherosclerosis is the most common cause of cardiovascular diseases worldwide. Oxidized low-density lipoprotein (ox-LDL) is a particularly important risk factor in the pathogenesis of atherosclerosis. Accumulating evidence has indicated that epigallocatechin-3-gallate (EGCG; a catechin found in the popular beverage, greent tea) protects against ox-LDL-induced atherosclerosis. However, the underlying mechanisms remain unclear. In the present study, ox-LDL (100 mg/l) induced damage to, and the apoptosis of human umbilical vein endothelial cells (HUVECs) by reducing endothelial nitric oxide synthase (eNOS) expression and promoting inducible nitric oxide synthase (iNOS) expression; these effects were abrogated by the addition of 50 µM EGCG. Furthermore, ox-LDL rapidly activated the membrane translocation of p22phox, and altered the protein expression of Jagged-1 and Notch pathway-related proteins [Math1, hairy and enhancer of split (HES)1 and HES5]; these effects were also prevented by pre-treatment with 50 µM EGCG. In addition, Jagged-1 played a significant role in the EGCG-mediated protection against ox-LDL-induced apoptosis and ox-LDL‑diminished cell adhesion in the HUVECs. Finally, EGCG inhibited high-fat diet (HFD)-induced atherosclerosis in apolipoprotein E (ApoE) knockout (ApoE-KO) mice through the Jagged-1/Notch pathway. Taken together, these findings demonstrate that 50 µM EGCG protects against ox-LDL-induced endothelial dysfunction through the Jagged-1/Notch signaling pathway. Moreover, our data provide insight into the possible molecular mechanisms through which EGCG attenuates ox-LDL‑induced vascular endothelial dysfunction.

  12. Porcine Models of Accelerated Coronary Atherosclerosis: Role of Diabetes Mellitus and Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Damir Hamamdzic


    Full Text Available Animal models of atherosclerosis have proven to be an invaluable asset in understanding the pathogenesis of the disease. However, large animal models may be needed in order to assess novel therapeutic approaches to the treatment of atherosclerosis. Porcine models of coronary and peripheral atherosclerosis offer several advantages over rodent models, including similar anatomical size to humans, as well as genetic expression and development of high-risk atherosclerotic lesions which are similar to humans. Here we review the four models of porcine atherosclerosis, including the diabetic/hypercholesterolemic model, Rapacz-familial hypercholesterolemia pig, the (PCSK9 gain-of-function mutant pig model, and the Ossabaw miniature pig model of metabolic syndrome. All four models reliably represent features of human vascular disease.

  13. In-Vivo Assessment of Coronary Atherosclerosis

    NARCIS (Netherlands)

    G.A. Rodriguez-Granillo


    textabstractIntravascular ultrasound (IVUS) has emerged as a highly accurate tool for the serial assessment of the natural history of coronary atherosclerosis and to evaluate the effect of different conventional and emerging drug therapies on the progression of atherosclerosis. The contemporary a

  14. Cytokines in atherosclerosis: an intricate balance

    NARCIS (Netherlands)

    Boshuizen, M.C.S.


    Atherosclerosis is the underlying pathology in the majority of clinical manifestations of cardiovascular diseases, which are nowadays the main global cause of mortality. Atherosclerosis is a lipid-driven chronic inflammatory disease of the arterial wall. This inflammatory response, with cytokines as

  15. Cyanotic congenital heart disease and atherosclerosis. (United States)

    Tarp, Julie Bjerre; Jensen, Annette Schophuus; Engstrøm, Thomas; Holstein-Rathlou, Niels-Henrik; Søndergaard, Lars


    Improved treatment options in paediatric cardiology and congenital heart surgery have resulted in an ageing population of patients with cyanotic congenital heart disease (CCHD). The risk of acquired heart disease such as atherosclerosis increases with age.Previous studies have speculated whether patients with CCHD are protected against atherosclerosis. Results have shown that the coronary arteries of patients with CCHD are free from plaques and stenosis. Decreased carotid intima-media thickness and low total plasma cholesterol may indicate a reduced risk of later development of atherosclerosis. However, the evidence is still sparse and questionable, and a reasonable explanation for the decreased risk of developing atherosclerosis in patients with CCHD is still missing.This review provides an overview of what is known about the prevalence and potential causes of the reduced risk of atherosclerosis in patients with CCHD.

  16. Oral microbiota in patients with atherosclerosis

    DEFF Research Database (Denmark)

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran


    BACKGROUND AND AIMS: Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested...... patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. RESULTS......: The overall microbial structure was similar in controls and atherosclerosis patients, but patients with symptomatic atherosclerosis had higher relative abundance of Anaeroglobus (mean 0.040% (SD 0.049)) than the control group (0.010% (SD 0.028)) (P = 0.03). Using linear regression analysis, we found...

  17. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? (United States)

    Chaldakov, George N; Fiore, Marco; Stankulov, Ivan S; Manni, Luigi; Hristova, Mariyana G; Antonelli, Alessia; Ghenev, Peter I; Aloe, Luigi


    The development of atherosclerotic cardiovascular disease is a common comorbidity in patients with the metabolic syndrome, a concurrence of cardiovascular risk factors in one individual. While multiple growth factors and adipokines are identified in atherosclerotic lesions, as well as neurotrophins implicated in both cardiac ischemia and lipid and glucose metabolism, the potential role of neurotrophins in human coronary atherosclerosis and in the metabolic syndrome still remains to be elucidated. Here we describe and discuss our results that represent a novel attempt to study the cardiovascular and metabolic biology of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and mast cells (MC). The local amount of NGF, the immunolocalization of p75 neurotrophin receptor (p75NTR) and the number of MC were correlatively examined in coronary vascular wall and in the surrounding subepicardial adipose tissue, obtained from autopsy cases in humans with advanced coronary atherosclerosis. We also analyzed the plasma levels of NGF, BDNF and leptin and the number of MC in biopsies from abdominal subcutaneous adipose tissue in patients with a severe form of the metabolic syndrome. The results demonstrate that NGF levels are decreased in atherosclerotic coronary vascular tissue but increased in the subepicardial adipose tissue, whereas both tissues express a greater number of MC and a stronger p75NTR immunoreactivity, compared to controls. Metabolic syndrome patients display a significant hyponeurotrophinemia and an increased number of adipose MC; the later correlates with elevated plasma leptin levels. In effect, we provide the first evidence for (i) an altered presence of NGF, p75NTR and MC in both coronary vascular and subepicardial adipose tissue in human coronary atherosclerosis, and (ii) a significant decrease in plasma NGF and BDNF levels and an elevated amount of plasma leptin and adipose MC in metabolic syndrome patients. Together our findings suggest that

  18. Naringenin and atherosclerosis: a review of literature. (United States)

    Orhan, Ilkay E; Nabavi, Seyed F; Daglia, Maria; Tenore, Gian C; Mansouri, Kowsar; Nabavi, Seyed M


    Atherosclerosis is a multifactorial disease mainly caused by deposition of low-density lipoprotein (LD) cholesterol in macrophages of arterial walls. Atherosclerosis leads to heart attacks as well as stroke. Epidemiological studies showed that there is an inverse correlation between fruit and vegetable consumption and the risk of atherosclerosis. The promising effect of high vegetable and fruit containing diet on atherosclerosis is approved by several experimental studies on isolated phytochemicals such as flavonoids. Flavonoids are known to up-regulate endogenous antioxidant system, suppress oxidative and nitrosative stress, decrease macrophage oxidative stress through cellular oxygenase inhibition as well as interaction with several signal transduction pathways and from these ways, have therapeutic effects against atherosclerosis. Naringenin is a well known flavonoid belonging to the chemical class of flavanones. It is especially abundant in citrus fruits, especially grapefruits. A plethora of evidences ascribes to naringenin antiatherosclerotic effects. Naringenin abilities to decrease LDL and triglycerides as well as inhibit glucose uptake; increase high-density lipoprotein (HDL); co-oxidation of NADH; suppress protein oxidation; protect against intercellular adhesion molecule-1(ICAM-1); suppress macrophage inflammation; inhibit leukotriene B4, monocyte adhesion and foam cell formation; induce of HO-1 and G 0/G 1 cell cycle arrest in vascular smooth muscle cells (VSMC) and down regulate atherosclerosis related genes are believed to have crucial role in the promising role against atherosclerosis. In the present review, we have summarized the available literature data on the anti-atherosclerotic effects of naringenin and its possible mechanisms of action.

  19. The Progression and Early detection of Subclinical Atherosclerosis (PESA) study

    DEFF Research Database (Denmark)

    Fernández-Ortiz, Antonio; Jiménez-Borreguero, L Jesús; Peñalvo, José L


    The presence of subclinical atherosclerosis is a likely predictor of cardiovascular events; however, factors associated with the early stages and progression of atherosclerosis are poorly defined.......The presence of subclinical atherosclerosis is a likely predictor of cardiovascular events; however, factors associated with the early stages and progression of atherosclerosis are poorly defined....

  20. Disruption of phactr-1 pathway triggers pro-inflammatory and pro-atherogenic factors: New insights in atherosclerosis development. (United States)

    Jarray, Rafika; Pavoni, Serena; Borriello, Lucia; Allain, Barbara; Lopez, Nicolas; Bianco, Sara; Liu, Wang-Qing; Biard, Denis; Demange, Luc; Hermine, Olivier; Garbay, Christiane; Raynaud, Françoise; Lepelletier, Yves


    Significant interest has recently emerged for phosphatase and actin regulatory protein (PHACTR1) gene in heart diseases prognosis. However, the functional role of phactr-1 protein remains elusive in heart related-diseases such as atherosclerosis, coronary artery calcification, ischaemic stroke, coronary artery stenosis and early-onset myocardial infarction. Phactr-1 is directly regulated by vascular endothelial growth factor A165 (VEGF-A165) through VEGF receptor 1 (VEGR-1) and Neuropilin-1 (NRP-1). Using an antagonist peptide approach to inhibit the interaction of VEGF-A165 to NRP-1 and VEGF-R1, we highlighted the importance of both cysteine residues located at the end of VEGF-A165 exon-7 and at the exon-8 to generate functional peptides, which decreased Phactr-1 expression. Here, we report original data showing Phactr-1 down-expression induces the expression of Matrix Metalloproteinase (MMP) regulators such as Tissue inhibitor of metalloproteinase (TIMP-1/-2) and Reversion-inducing-cysteine-rich protein with kazal motifs (RECK). Furthermore, focal adhesion kinases (FAK/PYK2/PAXILLIN) and metabolic stress (AMPK/CREB/eNOS) pathways were inhibited in endothelial cells. Moreover, the decrease of phactr-1 expression induced several factors implicated in atherosclerotic events such as oxidized low-density lipoprotein receptors (CD36, Clusterin, Cadherin-13), pro-inflammatory proteins including Thrombin, Thrombin receptor 1 (PAR-1), A Disintegrin And Metalloprotease domain-9/-17 (ADAM-9/-17), Trombospondin-2 and Galectin-3. Besides, Phactr-1 down-expression also induces emerging atherosclerosis biomarkers such as semicarbazide-sensitive amine oxidase (SSAO) and TGF-beta-inducible gene h3 (βIG-H3). In this report, we show for the first time the direct evidence of the phactr-1 biological function in the regulation of pro-atherosclerotic molecules. This intriguing result strengthened heart diseases PHACTR-1 single-nucleotide polymorphisms (SNP) correlation. Taken together

  1. Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. (United States)

    Hayashi, Chie; Papadopoulos, George; Gudino, Cynthia V; Weinberg, Ellen O; Barth, Kenneth R; Madrigal, Andrés G; Chen, Yang; Ning, Hua; LaValley, Michael; Gibson, Frank C; Hamilton, James A; Genco, Caroline A


    Clinical and epidemiological studies have implicated chronic infections in the development of atherosclerosis. It has been proposed that common mechanisms of signaling via TLRs link stimulation by multiple pathogens to atherosclerosis. However, how pathogen-specific stimulation of TLR4 contributes to atherosclerosis progression remains poorly understood. In this study, atherosclerosis-prone apolipoprotein-E null (ApoE(-/-)) and TLR4-deficient (ApoE(-/-)TLR4(-/-)) mice were orally infected with the periodontal pathogen Porphyromonas gingivalis. ApoE(-/-)TLR4(-/-) mice were markedly more susceptible to atherosclerosis after oral infection with P. gingivalis. Using live animal imaging, we demonstrate that enhanced lesion progression occurs progressively and was increasingly evident with advancing age. Immunohistochemical analysis of lesions from ApoE(-/-)TLR4(-/-) mice revealed an increased inflammatory cell infiltrate composed primarily of macrophages and IL-17 effector T cells (Th17), a subset linked with chronic inflammation. Furthermore, enhanced atherosclerosis in TLR4-deficient mice was associated with impaired development of Th1 immunity and regulatory T cell infiltration. In vitro studies suggest that the mechanism of TLR4-mediated protective immunity may be orchestrated by dendritic cell IL-12 and IL-10, which are prototypic Th1 and regulatory T cell polarizing cytokines. We demonstrate an atheroprotective role for TLR4 in response to infection with the oral pathogen P. gingivalis. Our results point to a role for pathogen-specific TLR signaling in chronic inflammation and atherosclerosis.

  2. Long-chain polyunsaturated fatty acids, endothelial lipase and atherosclerosis. (United States)

    Das, Undurti N


    Endothelial lipase (EL), a new member of the lipase gene family, was recently cloned and has been shown to have a significant role in modulating the concentrations of plasma high-density lipoprotein levels (HDL). EL is closely related to lipoprotein and hepatic lipases both in structure and function. It is primarily synthesized by endothelial cells, functions at the cell surface, and shows phospholipase A1 activity. Overexpression of EL decreases HDL cholesterol levels whereas blocking its action increases concentrations of HDL cholesterol. Pro-inflammatory cytokines suppress plasma HDL cholesterol concentrations by enhancing the activity of EL. On the other hand, physical exercise and fish oil (a rich source of eicosapentaenoic acid and docosahexaenoic acid) suppress the activity of EL and this, in turn, enhances the plasma concentrations of HDL cholesterol. Thus, EL plays a critical role in the regulation of plasma HDL cholesterol concentrations and thus modulates the development and progression of atherosclerosis. The expression and actions of EL in specific endothelial cells determines the initiation and progression of atherosclerosis locally explaining the patchy nature of atheroma seen, especially, in coronary arteries. Both HDL cholesterol and EPA and DHA enhance endothelial nitric oxide (eNO) and prostacyclin (PGI2) synthesis, which are known to prevent atherosclerosis. On the other hand, pro-inflammatory cytokines augment free radical generation, which are known to inactivate eNO and PGI2. Thus, interactions between EL, pro- and anti-inflammatory cytokines, polyunsaturated fatty acids, and the ability of endothelial cells to generate NO and PGI2 and neutralize the actions of free radicals may play a critical role in atherosclerosis.

  3. Bisphenol A exposure enhances atherosclerosis in WHHL rabbits.

    Directory of Open Access Journals (Sweden)

    Chao Fang

    Full Text Available Bisphenol A (BPA is an environmental endocrine disrupter. Excess exposure to BPA may increase susceptibility to many metabolic disorders, but it is unclear whether BPA exposure has any adverse effects on the development of atherosclerosis. To determine whether there are such effects, we investigated the response of Watanabe heritable hyperlipidemic (WHHL rabbits to 400-µg/kg BPA per day, administered orally by gavage, over the course of 12 weeks and compared aortic and coronary atherosclerosis in these rabbits to the vehicle group using histological and morphometric methods. In addition, serum BPA, cytokines levels and plasma lipids as well as pathologic changes in liver, adipose and heart were analyzed. Moreover, we treated human umbilical cord vein endothelial cells (HUVECs and rabbit aortic smooth muscle cells (SMCs with different doses of BPA to investigate the underlying molecular mechanisms involved in BPA action(s. BPA treatment did not change the plasma lipids and body weights of the WHHL rabbits; however, the gross atherosclerotic lesion area in the aortic arch was increased by 57% compared to the vehicle group. Histological and immunohistochemical analyses revealed marked increases in advanced lesions (37% accompanied by smooth muscle cells (60% but no significant changes in the numbers of macrophages. With regard to coronary atherosclerosis, incidents of coronary stenosis increased by 11% and smooth muscle cells increased by 73% compared to the vehicle group. Furthermore, BPA-treated WHHL rabbits showed increased adipose accumulation and hepatic and myocardial injuries accompanied by up-regulation of endoplasmic reticulum (ER stress and inflammatory and lipid metabolism markers in livers. Treatment with BPA also induced the expression of ER stress and inflammation related genes in cultured HUVECs. These results demonstrate for the first time that BPA exposure may increase susceptibility to atherosclerosis in WHHL rabbits.

  4. Matrix metalloproteinase inhibition in atherosclerosis and stroke. (United States)

    Roycik, M D; Myers, J S; Newcomer, R G; Sang, Q-X A


    Matrix metalloproteinases (MMPs) are a family of tightly regulated, zinc-dependent proteases that degrade extracellular matrix (ECM), cell surface, and intracellular proteins. Vascular remodeling, whether as a function of normal physiology or as a consequence of a myriad of pathological processes, requires degradation of the ECM. Thus, the expression and activity of many MMPs are up-regulated in numerous conditions affecting the vasculature and often exacerbate vascular dysfunction. A growing body of evidence supports the rationale of using MMP inhibitors for the treatment of cardiovascular diseases, stroke, and chronic vascular dementia. This manuscript will examine promising targets for MMP inhibition in atherosclerosis and stroke, reviewing findings in preclinical animal models and human patient studies. Strategies for MMP inhibition have progressed beyond chelating the catalytic zinc to functional blocking antibodies and peptides that target either the active site or exosites of the enzyme. While the inhibition of MMP activity presents a rational therapeutic avenue, the multiplicity of roles for MMPs and the non-selective nature of MMP inhibitors that cause unintended side-effects hinder full realization of MMP inhibition as therapy for vascular disease. For optimal therapeutic effects to be realized, specific targets for MMP inhibition in these pathologies must first be identified and then attacked by potent and selective agents during the most appropriate timepoint.

  5. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes



    Background: Atherosclerosis is the major cause of morbidities and mortalities worldwide. In this study we aimed to review the mechanism of atherosclerosis and its risk factors, focusing on new findings in atherosclerosis markers and its risk factors. Furthermore, the role of antioxidants and medicinal herbs in atherosclerosis and endothelial damage has been discussed and a list of important medicinal plants effective in the treatment and prevention of hyperlipidemia and atherosclerosis is pre...

  6. Inflammation and immune system interactions in atherosclerosis. (United States)

    Legein, Bart; Temmerman, Lieve; Biessen, Erik A L; Lutgens, Esther


    Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.

  7. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.


    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  8. Role of gut microbiota in atherosclerosis

    DEFF Research Database (Denmark)

    Jonsson, Annika Lindskog; Bäckhed, Gert Fredrik


    Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we...... of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been...... associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based...

  9. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.


    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into l

  10. Cytokines and Immune Responses in Murine Atherosclerosis. (United States)

    Kusters, Pascal J H; Lutgens, Esther


    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

  11. Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Arsenescu, Violeta [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Arsenescu, Razvan [Digestive Diseases and Nutrition, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Parulkar, Madhura; Karounos, Michael [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Zhang, Xuan [Graduate Center for Toxicology, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Baker, Nicki [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Cassis, Lisa A., E-mail: [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States)


    Infusion of angiotensin II (AngII) to hyperlipidemic mice augments atherosclerosis and causes formation of abdominal aortic aneurysms (AAAs). Each of these AngII-induced vascular pathologies exhibit pronounced inflammation. Previous studies demonstrated that coplanar polychlorinated biphenyls (PCBs) promote inflammation in endothelial cells and adipocytes, two cell types implicated in AngII-induced vascular pathologies. The purpose of this study was to test the hypothesis that administration of PCB77 to male apolipoprotein E (ApoE) -/- mice promotes AngII-induced atherosclerosis and AAA formation. Male ApoE-/- mice were administered vehicle or PCB77 (49 mg/kg, i.p.) during week 1 and 4 (2 divided doses/week) of AngII infusion. Body weights and total serum cholesterol concentrations were not influenced by administration of PCB77. Systolic blood pressure was increased in AngII-infused mice administered PCB77 compared to vehicle (156 {+-} 6 vs 137 {+-} 5 mmHg, respectively). The percentage of aortic arch covered by atherosclerotic lesions was increased in AngII-infused mice administered PCB77 compared to vehicle (2.0 {+-} 0.4 vs 0.9 {+-} 0.1%, respectively). Lumen diameters of abdominal aortas determined by in vivo ultrasound and external diameters of excised suprarenal aortas were increased in AngII-infused mice administered PCB77 compared to vehicle. In addition, AAA incidence increased from 47 to 85% in AngII-infused mice administered PCB77. Adipose tissue in close proximity to AAAs from mice administered PCB77 exhibited increased mRNA abundance of proinflammatory cytokines and elevated expression of components of the renin-angiotensin system (angiotensinogen, angiotensin type 1a receptor (AT1aR)). These results demonstrate that PCB77 augments AngII-induced atherosclerosis and AAA formation. -- Highlights: Black-Right-Pointing-Pointer Polychlorinated biphenyl 77 (PCB77) promotes AngII-induced hypertension. Black-Right-Pointing-Pointer PCB77 augments Ang

  12. Environmental carcinogens and mutational pathways in atherosclerosis. (United States)

    Pulliero, A; Godschalk, R; Andreassi, M G; Curfs, D; Van Schooten, F J; Izzotti, A


    Atherosclerosis is associated with DNA damage in both circulating and vessel-wall cells and DNA adducts derived from exposure to environmental mutagens are abundant in atherosclerotic vessels. Environmental chemical carcinogens identified as risk factor for atherosclerosis include polycyclic aromatic hydrocarbons (benzo(a)pyrene, dimethylbenz(a)anthracene, beta-naphthoflavone, pyrene, 3-methylcolanthrene), arsenic, cadmium, 1,3-butadiene, cigarette smoke. Accordingly, polymorphisms of genes encoding for phase I/II metabolic reaction and DNA repair are risk factor for cardiovascular diseases, although their role is negligible as compared to other risk factors. The pathogenic relevance of mutation-related molecular damage in atherosclerosis has been demonstrated in experimental animal models involving the exposure to chemical mutagens. The relevance of mutation-related events in worsening atherosclerosis prognosis has been demonstrated in human clinical studies mainly as referred to mitochondrial DNA damage. Atherosclerosis is characterized by the occurrence of high level of oxidative damage in blood vessel resulting from both endogenous and exogenous sources. Mitochondrial damage is a main endogenous source of oxidative stress whose accumulation causes activation of intrinsic apoptosis through BIRC2 inhibition and cell loss contributing to plaque development and instability. Environmental physical mutagens, including ionizing radiation, are a risk factor for atherosclerosis even at the low exposure dose occurring in case of occupational exposure or the high exposure doses occurring during radiotherapy. Conversely, the role of exciting UV radiation in atherosclerosis is still uncertain. This review summarizes the experimental and clinical evidence supporting the pathogenic role of mutation-related pathway in atherosclerosis examining the underlying molecular mechanisms.

  13. How hyperglycemia promotes atherosclerosis: molecular mechanisms



    Abstract Both type I and type II diabetes are powerful and independent risk factors for coronary artery disease (CAD), stroke, and peripheral arterial disease. Atherosclerosis accounts for virtually 80% of all deaths among diabetic patients. Prolonged exposure to hyperglycemia is now recognized a major factor in the pathogenesis of atherosclerosis in diabetes. Hyperglycemia induces a large number of alterations at the cellular level of vascular tissue that potentially accelerate the atheroscl...

  14. Immune Response to Lipoproteins in Atherosclerosis


    Sonia Samson; Lakshmi Mundkur; Kakkar, Vijay V


    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation re...

  15. Composição química de alimentos: implicações na prevenção da aterosclerose Chemical food composition: implications for atherosclerosis prevention

    Directory of Open Access Journals (Sweden)

    Carlos Scherr


    this can compromise our recommendations on preventing atherosclerosis. One possible explanation for the differences would be the fact that the UNIFESP table is American in origin.

  16. Toxicological implications of modulation of gene expression by microRNAs. (United States)

    Yokoi, Tsuyoshi; Nakajima, Miki


    MicroRNAs (miRNAs) are a large family of non-coding RNAs that are evolutionarily conserved, endogenous, and 21-23 nucleotides in length. miRNAs regulate gene expression by targeting messenger RNAs (mRNAs) by binding to complementary regions of transcripts to repress their translation or mRNA degradation. miRNAs are encoded by the genome, and more than 1000 human miRNAs have been identified so far. miRNAs are predicted to target ∼60% of human mRNAs and are expressed in all animal cells and have fundamental roles in cellular responses to xenobiotic stresses, which affect a large range of physiological processes such as development, immune responses, metabolism, tumor formation as well as toxicological outcomes. Recently, many reports concerning miRNAs related to cancer have been published; however, the miRNA research in the metabolism of xenobiotics and endobiotics and in toxicology has only recently been established. This review describes the current knowledge on the miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and its potential toxicological implications. In this review, miRNAs with reference to target prediction, potential modulation of toxicology-related changes of miRNA expression, role of miRNA in immune-mediated drug-induced liver injury, miRNA in plasma as potential toxicological biomarkers, and relevance of miRNA-related genetic polymorphisms are discussed.

  17. [Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis]. (United States)

    Machalińska, Anna


    Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.

  18. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)


    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  19. Periodontal innate immune mechanisms relevant to atherosclerosis. (United States)

    Amar, S; Engelke, M


    Atherosclerosis is a common cardiovascular disease in the USA where it is a leading cause of illness and death. Atherosclerosis is the most common cause for heart attack and stroke. Most commonly, people develop atherosclerosis as a result of diabetes, genetic risk factors, high blood pressure, a high-fat diet, obesity, high blood cholesterol levels, and smoking. However, a sizable number of patients suffering from atherosclerosis do not harbor the classical risk factors. Ongoing infections have been suggested to play a role in this process. Periodontal disease is perhaps the most common chronic infection in adults with a wide range of clinical variability and severity. Research in the past decade has shed substantial light on both the initiating infectious agents and host immunological responses in periodontal disease. Up to 46% of the general population harbors the microorganism(s) associated with periodontal disease, although many are able to limit the progression of periodontal disease or even clear the organism(s) if infected. In the last decade, several epidemiological studies have found an association between periodontal infection and atherosclerosis. This review focuses on exploring the molecular consequences of infection by pathogens that exacerbate atherosclerosis, with the focus on infections by the periodontal bacterium Porphyromonas gingivalis as a running example.

  20. Angiotensin converting enzyme 2 and atherosclerosis. (United States)

    Wang, Yutang; Tikellis, Chris; Thomas, Merlin C; Golledge, Jonathan


    Angiotensin converting enzyme 2 (ACE2) is a homolog of angiotensin converting enzyme (ACE) which generates angiotensin II from angiotensin I. ACE, its product angiotensin II and the downstream angiotensin type I receptor are important components of the renin-angiotensin system (RAS). Angiotensin II, the most important component of the RAS, promotes the development of atherosclerosis. The identification of ACE2 in 2000 opened a new chapter of research on the regulation of the RAS. ACE2 degrades pro-atherosclerotic angiotensin II and generates anti-atherosclerotic angiotensin 1-7. In this review, we explored the importance of ACE2 in protecting experimental animals from developing atherosclerosis and its involvement in human atherosclerosis. We also examined the published evidence assessing the importance of ACE2 in different cell types relevant to atherosclerosis and putative underlying cellular and molecular mechanisms linking ACE2 with protection from atherosclerosis. ACE2 shifts the balance from angiotensin II to angiotensin 1-7 inhibiting the progression of atherosclerosis in animal models.

  1. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson


    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  2. Study on the Expression Changes of Integrin beta2 with the Process of Atherosclerosis in Rabbit%整联蛋白beta2亚基在兔动脉粥样硬化进展模型中表达量变化研究

    Institute of Scientific and Technical Information of China (English)

    刘昌华; 王乐; 迟彦; 高泽红


    通过建立兔动脉粥样硬化模型,收集各时期外周血相关血脂数据,确定动物模型的建立情况,并结合解剖后得到的组织切片进一步确定其病理发展。然后用实时荧光定量 PCR检测单核细胞整联蛋白 beta2的 mRNA表达水平,激光共聚焦和流式细胞术检测 beta2的蛋白表达水平。结果表明,整联蛋白 beta2的 mRNA 表达水平和蛋白表达水平随建模时期推移均有显著升高。提示整联蛋白 beta2的表达量随动脉粥样硬化的发生发展不断升高,可能对临床诊断由动脉粥样硬化引起的心肌梗塞有一定的预测作用。%The model of rabbits atherosclerosis was ensured by collecting the peripheral blood lipids data and combining with the tissue sections to further determine the pathological development.The expression level of mRNA and protein were detected by real-time fluorescence quantitative PCR and laser scanning confocal microscopy and flow cytometry respectively.The expression level of mRNA and protein of the whole protein beta2 increased significantly with the passage of time.It suggests that the expressional vol-ume of the whole protein beta2 continuously increased with atherosclerosis development.It may be a pre-dictive way for the clinical diagnosis of myocardial infarction caused by atherosclerosis.

  3. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. (United States)

    Wang, Zhi-Qiang; Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Guillemette, Chantal; Gobeil, Stéphane; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho


    Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.

  4. The pigeon (Columba livia) model of spontaneous atherosclerosis. (United States)

    Anderson, J L; Smith, S C; Taylor, R L


    Multiple animal models have been employed to study human atherosclerosis, the principal cause of mortality in the United States. Each model has individual advantages related to specific pathologies. Initiation, the earliest disease phase, is best modeled by the White Carneau (WC-As) pigeon. Atherosclerosis develops spontaneously in the WC-As without either external manipulation or known risk factors. Furthermore, susceptibility is caused by a single gene defect inherited in an autosomal recessive manner. The Show Racer (SR-Ar) pigeon is resistant to atherosclerosis. Breed differences in the biochemistry and metabolism of celiac foci cells have been described. For example, WC-As have lower oxidative metabolism but higher amounts of chondroitin-6-sulfate and nonesterified fatty acids compared with SR-Ar. Gene expression in aortic smooth muscle cells was compared between breeds using representational difference analysis and microarray analysis. Energy metabolism and cellular phenotype were the chief gene expression differences. Glycolysis and synthetic cell types were related to the WC-As but oxidative metabolism and contractile cell types were related to the SR-Ar. Rosiglitazone, a PPARγ agonist, blocked RNA binding motif (RBMS1) expression in WC-As cells. The drug may act through the c-myc oncogene as RBMS1 is a c-myc target. Proteomic tests of aortic smooth muscle cells supported greater glycosylation in the WC-As and a transforming growth factor β effect in SR-Ar. Unoxidized fatty acids build up in WC-As cells because of their metabolic deficiency, ultimately preventing the contractile phenotype in these cells. The single gene responsible for the disease is likely regulatory in nature.

  5. Noninvasive assessment of preclinical atherosclerosis

    Directory of Open Access Journals (Sweden)

    Helen A Lane


    Full Text Available Helen A Lane, Jamie C Smith, J Stephen DaviesDepartment of Endocrinology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, UKAbstract: Initially considered as a semipermeable barrier separating lumen from vessel wall, the endothelium is now recognised as a complex endocrine organ responsible for a variety of physiological processes vital for vascular homeostasis. These include the regulation of vascular tone, luminal diameter, and blood flow; hemostasis and thrombolysis; platelet and leucocyte vessel-wall interactions; the regulation of vascular permeability; and tissue growth and remodelling. The endothelium modulates arterial stiffness, which precedes overt atherosclerosis and is an independent predictor of cardiovascular events. Unsurprisingly, dysfunction of the endothelium may be considered as an early and potentially reversible step in the process of atherogenesis and numerous methods have been developed to assess endothelial status and large artery stiffness. Methodology includes flow-mediated dilatation of the brachial artery, assessment of coronary flow reserve, carotid intimamedia thickness, pulse wave analysis, pulse wave velocity, and plethysmography. This review outlines the various modalities, indications, and limitations of available methods to assess arterial dysfunction and vascular risk.Keywords: endothelial function, vascular risk, vascular stiffness

  6. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jesus A Araujo


    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  7. Arterial heparan sulfate is negatively associated with hyperglycemia and atherosclerosis in diabetic monkeys

    Directory of Open Access Journals (Sweden)

    Litwak Kenneth N


    Full Text Available Abstract Background Arterial proteoglycans are implicated in the pathogenesis of atherosclerosis by their ability to trap plasma lipoproteins in the arterial wall and by their influence on cellular migration, adhesion and proliferation. In addition, data have suggested an anti-atherogenic role for heparan sulfate proteoglycans and a pro-atherogenic role for dermatan sulfate proteoglycans. Using a non-human primate model for human diabetes, studies examined diabetes-induced changes in arterial proteoglycans that may increase susceptibility to atherosclerosis. Methods Control (n = 7 and streptozotocin-induced diabetic (n = 8 cynomolgous monkeys were assessed for hyperglycemia by measurement of plasma glycated hemoglobin (GHb. Thoracic aortas obtained at necropsy, were extracted with 4 M guanidine HCL and proteoglycans were measured as hexuronic acid. Atherosclerosis was measured by enzymatic analysis of extracted tissue cholesterol. Glycosaminoglycan chains of arterial proteoglycans were released with papain, separated by agarose electrophoresis and analysed by scanning densitometry. Results Tissue cholesterol was positively associated with hexuronic acid content in diabetic arteries (r = .82, p Conclusions These data implicate hyperglycemia induced modifications in arterial proteoglycans that may promote atherosclerosis.

  8. Analysis of Kinase Gene Expression in the Frontal Cortex of Suicide Victims: Implications of Fear and Stress †


    Choi, Kwang; Le, Thien; Xing, Guoqiang; Luke R Johnson; Ursano, Robert J.


    Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database1 and a quan...

  9. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis. (United States)

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A


    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  10. STAT4 deficiency reduces the development of atherosclerosis in mice. (United States)

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V


    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses.

  11. Gene expression responses of threespine stickleback to salinity: implications for salt-sensitive hypertension

    Directory of Open Access Journals (Sweden)

    Gang eWang


    Full Text Available Despite some recent success with genome-wide association studies (GWAS, identifying hypertension (HTN-susceptibility loci in the general population remains difficult. Here, we present a novel strategy to address the challenge by studying salinity adaptation in the threespine stickleback, a fish species with diverse salt-handling ecotypes. We acclimated native freshwater (FW and anadromous, saltwater (SW threespine sticklebacks to fresh, brackish, and sea water for 30 days, and applied RNA sequencing to determine the gene expression in fish kidneys. We identified 1,844 salt-responsive genes that were differentially expressed between FW sticklebacks acclimated to different salinities and/or between SW and FW sticklebacks acclimated to full-strength sea water. Significant overlap between stickleback salt-responsive genes and human genes implicated in HTN was detected (P < 10-7, hypergeometric test, suggesting a striking similarity in genetic mechanisms of salt handling between threespine sticklebacks and humans. The overlapping genes included a newly discovered HTN gene—MAP3K15, whose expression in FW stickleback kidneys decreases with salinity. These also included genes located in the GWAS loci such as AGTRAP-PLOD1 and CYP1A1-ULK3, which contain multiple potentially causative genes contributing to HTN susceptibility that need to be prioritized for study. We show evidence that stickleback salt-responsive genes provide valuable information facilitating the identification of human HTN genes. We conclude that threespine sticklebacks may be used as a model, complementary to existing animal models, in human HTN research.

  12. Distinct expression patterns of ICK/MAK/MOK protein kinases in the intestine implicate functional diversity.

    Directory of Open Access Journals (Sweden)

    Tufeng Chen

    Full Text Available ICK/MRK (intestinal cell kinase/MAK-related kinase, MAK (male germ cell-associated kinase, and MOK (MAPK/MAK/MRK-overlapping kinase are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.

  13. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg


    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  14. Leishmania major Self-Limited Infection Increases Blood Cholesterol and Promotes Atherosclerosis Development

    Directory of Open Access Journals (Sweden)

    Luciana R. Fernandes


    Full Text Available Leishmania major infection of resistant mice causes a self-limited lesion characterized by macrophage activation and a Th1 proinflammatory response. Atherosclerosis is an inflammatory disease involving hypercholesterolemia and macrophage activation. In this study, we evaluated the influence of L. major infection on the development of atherosclerosis using atherosclerosis-susceptible apolipoprotein E-deficient (apoE KO mice. After 6 weeks of infection, apoE KO mice exhibited reduced footpad swelling and parasitemia similar to C57BL/6 controls, confirming that both strains are resistant to infection with L. major. L. major-infected mice had increased plasma cholesterol levels and reduced triacylglycerols. With regard to atherosclerosis, noninfected mice developed only fatty streak lesions, while the infected mice presented with advanced lesions containing a necrotic core and an abundant inflammatory infiltrate. CD36 expression was increased in the aortic valve of the infected mice, indicating increased macrophage activation. In conclusion, L. major infection, although localized and self-limited in resistant apoE KO mice, has a detrimental effect on the blood lipid profile, increases the inflammatory cell migration to atherosclerotic lesions, and promotes atherogenesis. These effects are consequences of the stimulation of the immune system by L. major, which promotes the inflammatory components of atherosclerosis, which are primarily the parasite-activated macrophages.

  15. Inhibitory effect of the paraoxonase gene on the formation of rabbit coronary atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Jing Bai; Hui Zhou; Xin-Hong Yang; Hua-Fen Liu; Yan-Yan Meng


    Objective: To observe the effect on the inhibition of coronary atherosclerosis hardening of the paraoxonase gene (PON-1) which transfected to the rabbit epicardial adipose tissue. Methods:Rabbit coronary atherosclerosis model was established by high-fat feeding, liposome-encapsulated recombinant plasmid pEGFP-PON-1 50 μL was injected to the rabbit pericardial cavity, and was harvested 4 weeks after transfection. Results: The epicardial fat transfected PON-1 gene had effect on the high lipid level. It significantly increased expression of PON-1 in peripheral arterial vascular tissue (P<0.05); and significantly reduced total cholesterol and low-density lipoprotein cholesterol levels (P<0.05), and the thickness ratio of coronary artery intima/media (P <0.05). Conclusions: The injection of the PON-1 gene in the pericardial cavity can effectively suppress the formation of coronary atherosclerosis.

  16. Macrophages, Dendritic Cells, and Regression of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jonathan E. Feig


    Full Text Available Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and monocyte-derived cells such as macrophages, dendritic cells, T cells, and other cellular elements of the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, in this review, the focus will be primarily on the monocyte derived cells- macrophages and dendritic cells. The roles of these cell types in atherogenesis will be highlighted. Finally, the mechanisms of atherosclerosis regression as it relates to these cells will be discussed.


    Institute of Scientific and Technical Information of China (English)

    YifuZhouM.D; MatieShouM.D


    @@ About 30%~50% of patients with atherosclerosis lack identified risk factors (such as hypertension,smoking,hypercholesterolemia,and diabetes).It has been postulated that additional factors predisposing to atherosclerosis may exist.Discovery of such factors,along with their accompanying mechanisms of action,would have profound implications for the development of new therapeutic strategies that could reduce the devastating impact this disease is having in both Western and Asian-pacific countries.

  18. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes

    Directory of Open Access Journals (Sweden)

    Mahmoud Rafieian-Kopaei


    Conclusions: The pathogenesis factors involved in atherosclerosis have recently been cleared and the discovery of these factors has brought about new hopes for better prevention and treatment of atherosclerosis.

  19. Subclinical Measures of Atherosclerosis: Genetics and Cardiovascular Risk Prediction

    NARCIS (Netherlands)

    M. Kavousi (Maryam)


    markdownabstract__Abstract__ Atherosclerosis is a chronic, progressive, systematic condition with a long asymptomatic phase. Atherosclerosis develops gradually as a subclinical condition over the life course and eventually becomes clinically apparent as ischemic heart disease, cerebrovascular disea

  20. Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis

    NARCIS (Netherlands)

    Natarajan, Pradeep; Bis, Joshua C; Bielak, Lawrence F; Cox, Amanda J; Dörr, Marcus; Feitosa, Mary F; Franceschini, Nora; Guo, Xiuqing; Hwang, Shih-Jen; Isaacs, Aaron; Jhun, Min A; Kavousi, Maryam; Li-Gao, Ruifang; Lyytikäinen, Leo-Pekka; Marioni, Riccardo E; Schminke, Ulf; Stitziel, Nathan O; Tada, Hayato; van Setten, Jessica; Smith, Albert V; Vojinovic, Dina; Yanek, Lisa R; Yao, Jie; Yerges-Armstrong, Laura M; Amin, Najaf; Baber, Usman; Borecki, Ingrid B; Carr, J Jeffrey; Chen, Yii-Der Ida; Cupples, L Adrienne; de Jong, Pim A; de Koning, Harry; de Vos, Bob D; Demirkan, Ayse; Fuster, Valentin; Franco, Oscar H; Goodarzi, Mark O; Harris, Tamara B; Heckbert, Susan R; Heiss, Gerardo; Hoffmann, Udo; Hofman, Albert; Išgum, Ivana; Jukema, J Wouter; Kähönen, Mika; Kardia, Sharon L R; Kral, Brian G; Launer, Lenore J; Massaro, Joseph; Mehran, Roxana; Mitchell, Braxton D; Mosley, Thomas H; de Mutsert, Renée; Newman, Anne B; Nguyen, Khanh-Dung; North, Kari E; O'Connell, Jeffrey R; Oudkerk, Matthijs; Pankow, James S; Peloso, Gina M; Post, Wendy; Province, Michael A; Raffield, Laura M; Raitakari, Olli T; Reilly, Dermot F; Rivadeneira, Fernando; Rosendaal, Frits; Sartori, Samantha; Taylor, Kent D; Teumer, Alexander; Trompet, Stella; Turner, Stephen T; Uitterlinden, André G; Vaidya, Dhananjay; van der Lugt, Aad; Völker, Uwe; Wardlaw, Joanna M; Wassel, Christina L; Weiss, Stefan; Wojczynski, Mary K; Becker, Diane M; Becker, Lewis C; Boerwinkle, Eric; Bowden, Donald W; Deary, Ian J; Dehghan, Abbas; Felix, Stephan B; Gudnason, Vilmundur; Lehtimäki, Terho; Mathias, Rasika; Mook-Kanamori, Dennis O; Psaty, Bruce M; Rader, Daniel J; Rotter, Jerome I; Wilson, James G; van Duijn, Cornelia M; Völzke, Henry; Kathiresan, Sekar; Peyser, Patricia A; O'Donnell, Christopher J


    BACKGROUND: -The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease (CHD). We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the

  1. [The treatment of atherosclerosis--drug therapy]. (United States)

    Nakamura, H; Takahashi, Y


    Drug treatment against atherosclerosis has been evaluated recently in many epidemiological studies. Lipid Research Clinics Group convincingly reported in a large scale design that anion exchange resin effectively reduced blood cholesterol level and concomitantly decreased the events of coronary heart disease. Subsequently, anion exchange resin with or without combined administration of niacin or statin was found to inhibit the progression of coronary atherosclerotic lesions in FATS, SCOR, CLAS and STARS. Fenofibrate also successfully reduced the coronary artery narrowings. Based on these intervention studies, several hypocholesterolemic agents are definitely effective in the treatment of coronary atherosclerosis.

  2. Possible roles of platelet-derived microparticles in atherosclerosis. (United States)

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei


    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.

  3. Dyslipidemia-associated alterations in B cell subpopulation frequency and phenotype during experimental atherosclerosis. (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M


    Lymphocytes, the cellular effectors of adaptive immunity, are involved in the chronic inflammatory process known as atherosclerosis. Proatherogenic and atheroprotective properties have been ascribed to B cells. However, information regarding the role of B cells during atherosclerosis is scarce. Both the frequency and the phenotype of B cell subpopulations were studied by flow cytometry in wild type and apolipoprotein-E-deficient (apoE(-/-)) mice fed a high-fat (HFD) or control diet. Whereas the proportion of follicular cells was decreased, transitional 1-like cells were increased in mice with advanced atherosclerotic lesions (apoE(-/-) HFD). B cells in atherosclerotic mice were more activated, indicated by their higher surface expression of CD80, CD86, CD40 and CD95 and increased serum IgG1 levels. In the aorta, a decreased frequency of B cells was observed in mice with advanced atherosclerosis. Low expression of CD19 was observed on B cells from the spleen, aorta and lymph nodes of apoE(-/-) HFD mice. This alteration correlated with serum levels of IgG1 and cholesterol. A reduction in CD19 expression was induced in splenic cells from young apoE(-/-) mice cultured with lipemic serum. These results show that mice with advanced atherosclerosis display a variety of alterations in the frequency and phenotype of B lymphocytes, most of which are associated with dyslipidemia.

  4. Atherosclerosis, apolipoprotein E and the prevalence of dementia and Alzheimer's disease in a population-based study: the Rotterdam Study

    NARCIS (Netherlands)

    A. Ott (Alewijn); M.L. Bots (Michiel); A.J.C. Slooter (Arjen); F. van Harskamp (Frans); C.M. van Duijn (Cock); D.E. Grobbee (Diederick); M.M.B. Breteler (Monique); C. van Broeckhoven (Christine); A. Hofman (Albert)


    textabstractBACKGROUND: Vascular disorders have been implicated in dementia, but whether atherosclerosis is related to the most frequent type of dementia, Alzheimer's disease, is not known. The apolipoprotein-E genotype has been associated with Alzheimer's disease, and we postulate that it plays a p

  5. Increased atherosclerosis and vascular smooth muscle cell activation in AIF-1 transgenic mice fed a high-fat diet. (United States)

    Sommerville, Laura J; Kelemen, Sheri E; Ellison, Stephen P; England, Ross N; Autieri, Michael V


    Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, scaffold signal transduction protein constitutively expressed in inflammatory cells, but inducible in vascular smooth muscle cells (VSMCs) in response to injury or inflammatory stimuli. Although several basic science and population studies have reported increased AIF-1 expression in human and experimental atherosclerosis, a direct causal effect of AIF-1 expression on development of atherosclerosis has not been reported. The purpose of this study is to establish a direct relationship between AIF-1 expression and development of atherosclerosis. AIF-1 expression is detected VSMC in atherosclerotic lesions from ApoE(-/-) mice, but not normal arteries from wild-type mice. AIF-1 expression can be induced in cultured VSMC by stimulation with oxidized LDL (ox-LDL). Transgenic mice in which AIF-1 expression is driven by the G/C modified SM22 alpha promoter to restrict AIF-1 expression to VSMC develop significantly increased atherosclerosis compared with wild-type control mice when fed a high-fat diet (P=0.022). Cultured VSMC isolated from Tg mice demonstrated significantly increased migration in response to ox-LDL compared with matched controls (P<0.001). VSMC isolated from Tg mice and cultured human VSMC which over express AIF-1 demonstrated increased expression of MMP-2 and MMP-9 mRNA and protein and increased NF-κB activation in response to ox-LDL as compared with wild-type control mice. VSMC which over express AIF-1 have significantly increased uptake of ox-LDL, and increased CD36 expression. Together, these data suggest a strong association between AIF-1 expression, NF-κB activation, and development of experimental atherosclerosis.

  6. Crosstalk between apoptosis and inflammation in atherosclerosis

    NARCIS (Netherlands)

    Westra, Marijke Marianne


    In this thesis the role of several apoptosis regulating proteins in the development of atherosclerosis and atherosclerotic plaque stability is investigated. Apoptosis of different cell types in atherosclerotic plaques, such as macrophages and smooth muscle cells may inhibit or promote plaque develop

  7. LDL oxidation and extent of coronary atherosclerosis

    NARCIS (Netherlands)

    Vijver, L.P.L. van de; Kardinaal, A.F.M.; Duyvenvoorde, W. van; Kruijssen, D.A.C.M.; Grobbee, D.E.; Poppel, G. van; Princen, H.M.G.


    Accumulated evidence indicates that oxidative modification of LDL plays an important role in the atherogenic process. Therefore, we investigated the relation between coronary atherosclerosis and susceptibility of LDL to oxidation in a case-control study in men between 45 and 80 years of age. Case su

  8. Imaging of coronary atherosclerosis: Intravascular ultrasound

    NARCIS (Netherlands)

    H.M. Garcia-Garcia (Hector); M.A. Costa (Marco); P.W.J.C. Serruys (Patrick)


    textabstractAtherosclerosis is the main cause of coronary heart disease, which is today the leading cause of death worldwide and will continue to be the first in the world in 2030. In the formation of atherosclerotic coronary lesions, a critical primary step is the accumulation and oxidation of low-

  9. Inflammation and its echo in atherosclerosis

    NARCIS (Netherlands)

    van Leuven, S.I.


    Inflammation plays a major role during all phases of atherogenesis from plaque initiation up to plaque rupture. In this thesis the role of inflammation in the pathophysiology of atherosclerosis is examined from different angles. In part I the effect of various pro-inflammatory mediators is examined

  10. Photoacoustic tomography: applications for atherosclerosis imaging (United States)

    Sangha, Gurneet S.; Goergen, Craig J.


    Atherosclerosis is a debilitating condition that increases a patient’s risk for intermittent claudication, limb amputation, myocardial infarction, and stroke, thereby causing approximately 50% of deaths in the western world. Current diagnostic imaging techniques, such as ultrasound, digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and optical imaging remain suboptimal for detecting development of early stage plaques. This is largely due to the lack of compositional information, penetration depth, and/or clinical efficiency of these traditional imaging techniques. Photoacoustic imaging has emerged as a promising modality that could address some of these limitations to improve the diagnosis and characterization of atherosclerosis-related diseases. Photoacoustic imaging uses near-infrared light to induce acoustic waves, which can be used to recreate compositional images of tissue. Recent developments in photoacoustic techniques show its potential in noninvasively characterizing atherosclerotic plaques deeper than traditional optical imaging approaches. In this review, we discuss the significance and development of atherosclerosis, current and novel clinical diagnostic methods, and recent works that highlight the potential of photoacoustic imaging for both experimental and clinical studies of atherosclerosis.

  11. Wine, alcohol and atherosclerosis: clinical evidences and mechanisms

    Directory of Open Access Journals (Sweden)

    P.L. da Luz


    Full Text Available Atherosclerosis is a chronic inflammatory disease which may cause obstructions of the coronary, cerebral and peripheral arteries. It is typically multifactorial, most often dependent on risk factors such as hypercholesterolemia, diabetes, smoking, hypertension, sedentarism, and obesity. It is the single main cause of death in most developed countries due to myocardial infarction, angina, sudden death, and heart failure. Several epidemiological studies suggest that moderate alcohol intake, especially red wine, decrease cardiac mortality due to atherosclerosis. The alcohol effect is described by a J curve, suggesting that moderate drinkers may benefit while abstainers and heavy drinkers are at higher risk. Experimental studies indicate that most beneficial effects of drinking are attributable to flavonoids that are present in red wine, purple grape juice and several fruits and vegetables. The mechanisms include antiplatelet actions, increases in high-density lipoprotein, antioxidation, reduced endothelin-1 production, and increased endothelial nitric oxide synthase expression which causes augmented nitric oxide production by endothelial cells. These findings lead to the concept that moderate red wine drinking, in the absence of contraindications, may be beneficial to patients who are at risk of atherosclerotic cardiovascular events. Moreover, a diet based on fruits and vegetables containing flavonoids may be even more beneficial.

  12. Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis. (United States)

    Yeang, Calvin; Cotter, Bruno; Tsimikas, Sotirios


    Lipoprotein(a) [Lp(a)], comprised of apolipoprotein(a) [apo(a)] and a low-density lipoprotein-like particle, is a genetically determined, causal risk factor for cardiovascular disease and calcific aortic valve stenosis. Lp(a) is the major plasma lipoprotein carrier of oxidized phospholipids, is pro-inflammatory, inhibits plasminogen activation, and promotes smooth muscle cell proliferation, as defined mostly through in vitro studies. Although Lp(a) is not expressed in commonly studied laboratory animals, mouse and rabbit models transgenic for Lp(a) and apo(a) have been developed to address their pathogenicity in vivo. These models have provided significant insights into the pathophysiology of Lp(a), particularly in understanding the mechanisms of Lp(a) in mediating atherosclerosis. Studies in Lp(a)-transgenic mouse models have demonstrated that apo(a) is retained in atheromas and suggest that it promotes fatty streak formation. Furthermore, rabbit models have shown that Lp(a) promotes atherosclerosis and vascular calcification. However, many of these models have limitations. Mouse models need to be transgenic for both apo(a) and human apolipoprotein B-100 since apo(a) does not covalently associated with mouse apoB to form Lp(a). In established mouse and rabbit models of atherosclerosis, Lp(a) levels are low, generally model whereas over 40 isoforms exist in humans. Mouse models should also ideally be studied in an LDL receptor negative background for atherosclerosis studies, as mice don't develop sufficiently elevated plasma cholesterol to study atherosclerosis in detail. With recent data that cardiovascular disease and calcific aortic valve stenosis is causally mediated by the LPA gene, development of optimized Lp(a)-transgenic animal models will provide an opportunity to further understand the mechanistic role of Lp(a) in atherosclerosis and aortic stenosis and provide a platform to test novel therapies for cardiovascular disease.

  13. Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis. (United States)

    Carlson, Erik S; Magid, Rhamy; Petryk, Anna; Georgieff, Michael K


    Neonatal brain iron deficiency occurs after insufficient maternal dietary iron intake, maternal hypertension, and maternal diabetes mellitus and results in short and long-term neurologic and behavioral deficits. Early iron deficiency affects the genomic profile of the developing hippocampus that persists despite iron repletion. The purpose of the present study was threefold: 1) quantitative PCR confirmation of our previous microarray results, demonstrating upregulation of a network of genes leading to beta-amyloid production and implicated in Alzheimer disease etiology in iron-deficient anemic rat pups at the time of hippocampal differentiation; 2) investigation of the potential contributions of iron deficiency anemia and iron treatment to this differential gene expression in the hippocampus; and 3) investigation of these genes over a developmental time course in a mouse model where iron deficiency is limited to hippocampus, is not accompanied by anemia and is not repletable. Quantitative PCR confirmed altered regulation in 6 of 7 Alzheimer-related genes (Apbb1, C1qa, Clu, App, Cst3, Fn1, Htatip) in iron-deficient rats relative to iron-sufficient controls at P15. Comparison of untreated to treated iron-deficient animals at this age suggested the strong role of iron deficiency, not treatment, in the upregulation of this gene network. The non-anemic hippocampal iron-deficient mouse demonstrated upregulation of all 7 genes in this pathway from P5 to P25. Our results suggest a role for neonatal iron deficiency in dysregulation of genes that may set the stage for long-term neurodegenerative disease and that this may occur through a histone modification mechanism.

  14. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. (United States)

    Hayashi, Chie; Madrigal, Andres G; Liu, Xinyan; Ukai, Takashi; Goswami, Sulip; Gudino, Cynthia V; Gibson, Frank C; Genco, Caroline A


    Studies in humans have established that polymorphisms in genes encoding the innate immune Toll-like receptors (TLRs) are associated with inflammatory atherosclerosis. In hyperlipidemic mice, TLR2 and TLR4 have been reported to contribute to atherosclerosis progression. Human and mouse studies support a role for the oral pathogen Porphyromonas gingivalis in atherosclerosis, although the mechanisms by which this pathogen stimulates inflammatory atherosclerosis via innate immune system activation is not known. Using a genetically defined apolipoprotein E-deficient (ApoE(-/-)) mouse model we demonstrate that pathogen-mediated inflammatory atherosclerosis occurs via both TLR2-dependent and TLR2-independent mechanisms. P. gingivalis infection in mice possessing functional TLR2 induced the accumulation of macrophages as well as inflammatory mediators including CD40, IFN-gamma and the pro-inflammatory cytokines IL-1 beta, IL-6 and tumor necrosis factor-alpha in atherosclerotic lesions. The expression of these inflammatory mediators was reduced in atherosclerotic lesions from P. gingivalis-infected TLR2-deficient (TLR2(-/-)) mice. These studies provide a mechanistic link between an innate immune receptor and pathogen-accelerated atherosclerosis by a clinically and biologically relevant bacterial pathogen.

  15. Expression of Urotensin Ⅱ and Its Receptor GPR14 in Diabetic Nephropathy Rats the Formation of Atherosclerosis and Intervention of Astragalus%尾加压素Ⅱ在糖尿病肾病大鼠动脉粥样硬化形成的表达及黄芪的干预

    Institute of Scientific and Technical Information of China (English)

    陈卫东; 丁志珍; 常保超; 杨萍; 张继强; 刘磊; 王静


    目的 观察糖尿病肾病大鼠主动脉、肾脏组织中尾加压素Ⅱ(urotensinⅡ,UⅡ)及其G蛋白耦联受体14(G-protein-coupled receptor14,GPR14)水平的变化,探讨UⅡ在糖尿病肾病动脉硬化形成的作用和发病机制及黄芪的干预效果.方法 采用高糖高脂饮食和链脲佐菌素(STZ)腹腔注射法建立大鼠糖尿病肾病模型.将大鼠分为正常对照组(NC)、糖尿病肾病组(DN)、黄芪治疗组(HZ)(予黄芪注射液5 ml/kg灌胃).于14周末处死动物,常规病理学检查,免疫组化观察UⅡ、GPR14蛋白表达;RT-PCR观察UⅡmRNA表达.结果 与NC组比较,DN组主动脉、肾组织UⅡ、GPR14表达增加,肾组织UⅡmRNA表达增加(P<0.01);与DN组比较,HZ组表达显著减少(P<0.05).结论 UⅡ及其受体GPR14的高表达提示其在糖尿病肾病动脉粥样硬化形成的过程中可能起重要作用;黄芪能够缓解肾脏病理损伤,其机制可能是通过抑制UⅡ和GPR14异常表达有关.%Objective: To observe the expression of urotensin Ⅱ(UⅡ ) and U II receptor G - protein - coupled receptorl4 ( GPR14 ) in the aorta and kidney of rats with diabetic nephropathy, so as to explore the function of U Ⅱ in diabetic nephropathy the formation of atherosclerosis and intervention of Astragalus. Methods; Rat model with diabetic nephropathy was established by high -carbonhydrate and high fat diet and intraperitoneal injection of streptozotocin( STZ ). The rats were randomly divided into 3 groups that is normal control group( NC),diabetic nephropathy group( DN), Astragalus treated group( HZ )( fed to the astragalus 5 ml/kg). Animals were sacrified at 14weeks, Pathology of renal tissues and thoracic aotra was examined. The expression of U Ⅱ -.GPR14 protein was detected by immunohistochemistry assay. The expression of U Ⅱ mRNA was measured by reverse transcription polymerase chain reac-tion( RT - PCR ). Results: Compared with NC group the expression of UⅡ and GPR14 protein were

  16. BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE(-/- mice.

    Directory of Open Access Journals (Sweden)

    Tin Kyaw

    Full Text Available AIMS: Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE(-/- mouse. METHODS AND RESULTS: To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE(-/- mice with the antibody while feeding them a high fat diet (HFD for 8 weeks. Mature CD93(- CD19(+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19(+ B cells, CD4(+ and CD8(+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE(-/- mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93(- CD19(+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment. CONCLUSION: Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE(-/- mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases.

  17. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hiroyuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Matsumura, Takeshi, E-mail: [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Takeya, Motohiro [Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan)


    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  18. Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kanako Miyabayashi

    Full Text Available Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.

  19. Association of periodontitis with rheumatoid arthritis and atherosclerosis: Novel paradigms in etiopathogeneses and management? (United States)

    Soory, Mena


    There is increasing documentation of a link between inflammatory periodontal disease affecting the supporting structure of teeth, rheumatoid arthritis, and coronary artery disease. Periodontitis is initiated predominantly by Gram-negative bacteria and progresses as a consequence of the host inflammatory response to periodontal pathogens. Lipopolysaccharide, a cell wall constituent stimulates the production of inflammatory cytokines via the activation of signaling pathways perpetuating inflammatory pathogenesis in a cyclical manner in susceptible individuals; with an element of autoimmune stimulation, not dissimilar to the sequential events seen in RA. Periodontitis, also implicated as a risk factor for cardiovascular disease, promotes mechanisms for atherosclerosis by enhancing an imbalance in systemic inflammatory mediators; more direct mechanisms attributed to microbial products are also implicated in both RA and atherogenesis. Severe periodontal disease characterized by clinical and radiographic parameters has been associated with ischemic stroke risk, significant levels of C-reactive protein and serum amyloid A, amongst others common to both periodontitis and atherosclerosis. Existing data supports the hypothesis that persistent localized infection in periodontitis may influence systemic levels of inflammatory markers and pose a risk for RA and atherosclerosis. A common nucleus of activity in their pathogeneses provides novel paradigms of therapeutic targeting for reciprocal benefit.

  20. Is hepcidin-25 a predictor of atherosclerosis in hemodialysis patients? (United States)

    Kali, Alaaddin; Yayar, Ozlem; Erdogan, Bulent; Eser, Baris; Buyukbakkal, Mehmet; Ercan, Zafer; Merhametsiz, Ozgur; Haspulat, Ayhan; Gök Oğuz, Ebru; Canbakan, Basol; Ayli, Mehmet D


    Atherosclerotic cardiovascular disease is an important cause of mortality and morbidity in hemodialysis patients. Iron accumulation in arterial wall macrophages is increased in atherosclerotic lesions. Hepcidin is a key hepatic hormone regulating iron balance. It inhibits iron release from macrophages and iron absorption from enterocytes by binding and inactivating the cellular iron exporter ferroportin. The aim of this study is to investigate the relation of hepcidin-25, iron parameters, and atherosclerosis measured by carotid intima media thickness (CIMT) in hemodialysis patients. Eighty-two hemodialysis patients were enrolled in this cross-sectional study. Predialysis blood samples were centrifuged at 1500 g and 4°C for 10 minutes and stored at -80°C for the measurement of hepcidin-25. DRG hepcidin enzyme-linked immunosorbent assay kit was used for the measurement of hepcidin-25. Ultrasonographical B-mode imaging of bilateral carotid arteries was performed with a high-resolution real-time ultrasonography (Mindray DC7). Mean age of the study population was 57.90 ± 16.08 years and 43.9% were men. Total study population was grouped into two according to median value of hepcidin-25. There was no difference between groups with respect to age, dialysis vintage, and C-reactive protein. CIMT was found to be statistically significantly higher in low hepcidin-25 group. In correlation analysis, CIMT was found to be correlated with age (P < 0.01, R = 0.33) and hepcidin-25 (P < 0.01, R = 0.46). In linear regression analysis, age (β = 0.31) and hepcidin-25 (β = 0.44) were found to be the determinants of CIMT in hemodialysis patients. Our results implicate that hepcidin may take part in pathophysiology of atherosclerosis and cardiovascular disease in hemodialysis patients.

  1. Effects of Rosiglitazone on Rabbit Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing; WEI Meng; ZHAO Bing-hui


    We sought to validate magnetic resonance imaging (MRI) for documenting the effects of rosiglitazone on rabbit atherosclerosis and the possible mechanism by treatment on the lesions.24 New Zealand white rabbits were randomly divided into normal group,control group and treatment group.After 4 weeks,all rabbits underwent MRI.After examination,the number of circulating endothelial progenitor cells (EPCs) and level of lipid,glucose,nitric oxide (NO) and superoxide anion (O-2.) were measured.MRI demonstrated the regression of atherosclerotic lesions by rosiglitazone which has good correlation with histopathology.Treatment not only increased the level of EPCs and NO,but also raised the ability of inhibition of O-2..MRI is a promising noninvasive technology to detect the effects of therapeutic interventions.Rosiglitazone slows the progression of atherosclerosis that may in part attribute to its improvement of mobilization of EPCs and the reduced oxidative stress.

  2. Connecting the Lines between Hypogonadism and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Akl C. Fahed


    Full Text Available Epidemiological studies show that atherosclerotic cardiovascular disease is a leading cause of morbidity and mortality worldwide and point to gender differences with ageing males being at highest risk. Atherosclerosis is a complex process that has several risk factors and mediators. Hypogonadism is a commonly undiagnosed disease that has been associated with many of the events, and risk factors leading to atherosclerosis. The mechanistic relations between testosterone levels, atherosclerotic events, and risk factors are poorly understood in many instances, but the links are clear. In this paper, we summarize the research journey that explains the link between hypogonadism, each of the atherosclerotic events, and risk factors. We look into the different areas from which lessons could be learned, including epidemiological studies, animal and laboratory experiments, studies on androgen deprivation therapy patients, and studies on testosterone-treated patients. We finish by providing recommendations for the clinician and needs for future research.

  3. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications. (United States)

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N


    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  4. Atherosclerosis in elderly patients with renal insufficiency

    Institute of Scientific and Technical Information of China (English)

    Sandeep S. Soman


    @@ Introduction As people age,cardiovascular structure and function change and this is superimposed on by specific pathophysiologic disease mechanism.In addition to lipid levels,diabetes,sedentary lifestyle,and genetic factors that are known risks for coronary disease,hypertension,and stroke - the quintessential cardiovascular (CV) diseases related to atherosclerosis within our society - advancing age unequivocally confers the major risk.(Fig.1) Mortality due to cardiovascular disease is more than any other disease and creates enormous costs for the health care system.The main underlying problem in cardiovascular disease is atherosclerosis,a process that obstructs major arteries with lipid deposits and cell accumulation.1 Decreased kidney function (estimated GFR<70 mL/min/1.73 m2) is an independent risk factor for cardiovascular disease and all-cause mortality in the general population.2

  5. AIP1-mediated stress signaling in atherosclerosis and arteriosclerosis. (United States)

    Zhang, Jiqin; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang


    AIP1 (ASK1-interacting protein-1; encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an apoptosis signal-regulating kinase 1 (ASK1)-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF, and endoplasmic reticulum (ER) stress in EC (therefore, AIP1 is an anti-inflammatory protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations.

  6. 肥胖合并动脉粥样硬化大鼠血管内皮依赖性舒张功能以及亲环素A和p-ERK1/2表达的变化%Endothelial-dependent Vasodilatation and Expressions of CyPA, p-ERK1/2 in Experimental Rats With Obesity Combining Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    李敏; 黎红华; 盛冲霄


    目的:观察肥胖合并动脉粥样硬化(动脉硬化)大鼠血管内皮功能的改变以及亲环素A(CyPA)和磷酸化细胞外信号调节激酶1/2(p-ERK1/2)的表达变化。  方法:雄性Wistar大鼠30只随机分为3组,对照组(10只)、动脉硬化组(10只),肥胖+动脉硬化组(10只)。对照组给予基础饲料+腹腔注射等量生理盐水;动脉硬化组基础饲料8周后给予高脂饲料+维生素D3注射液60万IU/kg一次性腹腔注射;肥胖+动脉硬化组给予高脂饲料(肥胖症模型,高脂喂养8周体重大于其余组大鼠20%)+维生素D3注射液60万IU/kg一次性腹腔注射。16周后测定血管内皮依赖性舒张功能;苏木素—伊红(HE)染色、免疫组化检测动脉血管壁CyPA及p-ERK1/2的表达。  结果:与对照组相比,动脉硬化组、肥胖+动脉硬化组血管内皮依赖性舒张功能下降[(72.49±3.27)% vs (96.63±3.85)%],[(42.28±2.62)% vs(96.63±3.85)%],且肥胖+动脉硬化组下降更明显[(42.28±2.62)%vs(72.49±3.27)%],三组比较差异均有统计学意义(P均  结论:肥胖+动脉硬化组大鼠血管内皮依赖性舒张功能显著下降,动脉硬化钙化斑块严重,CyPA及p-ERK1/2表达显著增加。推测CyPA、p-ERK1/2信号机制参与肥胖症加重血管动脉硬化进展,肥胖可能是动脉硬化病变的独立危险因素。%Objective: To observe the endothelial-dependent vasodilatation and expressions of cyclophilin A (CyPA), phosphorylated extracellular signal regulated kinase1/2 (p-ERK1/2) in experimental rats with obesity combining atherosclerosis. Methods: A total of 30 male Wistar rats were randomly divided into 3 groups:Control group, the rats received basic diet followed by intraperitoneal injection of normal saline;Atherosclerosis (AS) group, the rats received basic diet for 8 weeks followed by high cholesterol diet with intraperitoneal injection of a

  7. Low Levels of CD36 in Peripheral Blood Monocytes in Subclinical Atherosclerosis in Rheumatoid Arthritis: A Cross-Sectional Study in a Mexican Population

    Directory of Open Access Journals (Sweden)

    Eduardo Gómez-Bañuelos


    Full Text Available Patients with rheumatoid arthritis (RA have a higher risk for atherosclerosis. There is no clinical information about scavenger receptor CD36 and the development of subclinical atherosclerosis in patients with RA. The aim of this study was to evaluate the association between membrane expression of CD36 in peripheral blood mononuclear cells (PBMC and carotid intima-media thickness (cIMT in patients with RA. Methods. We included 67 patients with RA from the Rheumatology Department of Hospital Civil “Dr. Juan I. Menchaca,” Guadalajara, Jalisco, Mexico. We evaluated the cIMT, considering subclinical atherosclerosis when >0.6 mm. Since our main objective was to associate the membrane expression of CD36 with subclinical atherosclerosis, other molecules related with cardiovascular risk such as ox-LDL, IL-6, and TNFα were tested. Results. We found low CD36 membrane expression in PBMC from RA patients with subclinical atherosclerosis (P<0.001. CD36 mean fluorescence intensity had negative correlations with cIMT (r = −0.578, P<0.001, ox-LDL (r = −0.427, P = 0.05, TNFα (r = −0.729, P<0.001, and IL-6 (r = −0.822, P<0.001. Conclusion. RA patients with subclinical atherosclerosis showed low membrane expression of CD36 in PBMC and increased serum proinflammatory cytokines. Further studies are needed to clarify the regulation of CD36 in RA.

  8. [About etiology and pathogenesis of atherosclerosis]. (United States)

    Vitruk, S K


    On the ground own researches and researches of other authors etiology and pathogenesis of atherosclerosis are proved and refuted existing concept about leading role of disturbance of lipid exchange and atherogenicity of lipoproteins of low and very low density. Established basic etiological factors of damage intima of artery and reason of penetration of lipoproteins in intima after her damage. Is determined that development and progression of atherosclerosis do not depend also from quantitative content of lipoproteins of low density in blood and from normalization of them under influence of drugs. According to our researches atherosclerosis is the polyetiological chronic disease basis of pathogeny which is infringement of blood supply (chronic microcirculatory insufficiency) in arterial wall causing damage of it, and in first place, damage of intima with her most vulnerable microcirculation; inflammation intima hence influence of endogenous and exogenous factors; destruction of antiaggregatic and fibrinolytic properties of intima in places of her damage; formation atherosclerotic plaque with level-by-level imposing of lipoproteins in result of cyclic process of restoration or balance between coagulation and anticoagulation of blood systems.

  9. Zinc deficiency in chronic kidney disease: is there a relationship with adipose tissue and atherosclerosis? (United States)

    Lobo, Julie Calixto; Torres, João Paulo Machado; Fouque, Denis; Mafra, Denise


    Cardiovascular complications caused by an accelerated atherosclerotic disease consist the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). These patients present multiple atherosclerotic risk factors, considered traditional, as well as nontraditional risk factors such as inflammation and oxidative stress. These complications are also seen in obesity, in which endothelial dysfunction is one of the early stages of atherosclerosis. The impact of trace metal deficiencies on this process is not well studied in patients with CKD and in obese people, although the influence of trace elements depletion, particularly zinc (Zn), may have significant clinical implications. This brief review describes the functions of Zn as well as the respective role of this trace element in atherosclerosis processes, with a particular emphasis on obese patients with chronic kidney disease.

  10. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

    Directory of Open Access Journals (Sweden)

    Brian J Bennett


    Full Text Available Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP. The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden and human cholesteryl ester transfer protein (CETP. The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear

  11. Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1 ectodomain shedding

    Directory of Open Access Journals (Sweden)

    Illick Kerry A


    Full Text Available Abstract Background Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV glycoprotein 1 (GP1, and glycoprotein 2 (GP2; Immunization of non-human primates with viral vectors expressing the arenaviral glycoprotein complex (GPC confers full protective immunity against a lethal challenge with LASV. Thus, the development of native or quasi native recombinant LASV GP1 and GP2 as soluble, uncoupled proteins will improve current diagnostics, treatment, and prevention of Lassa fever. To this end, mammalian expression systems were engineered for production and purification of secreted forms of soluble LASV GP1 and GP2 proteins. Results Determinants for mammalian cell expression of secreted uncoupled Lassa virus (LASV glycoprotein 1 (GP1 and glycoprotein 2 (GP2 were established. Soluble GP1 was generated using either the native glycoprotein precursor (GPC signal peptide (SP or human IgG signal sequences (s.s.. GP2 was secreted from cells only when (1 the transmembrane (TM domain was deleted, the intracellular domain (IC was fused to the ectodomain, and the gene was co-expressed with a complete GP1 gene in cis; (2 the TM and IC domains were deleted and GP1 was co-expressed in cis; (3 expression of GP1 was driven by the native GPC SP. These data implicate GP1 as a chaperone for processing and shuttling GP2 to the cell surface. The soluble forms of GP1 and GP2 generated through these studies were secreted as homogeneously glycosylated proteins that contained high mannose glycans. Furthermore, observation of GP1 ectodomain shedding from cells expressing wild type LASV GPC represents a novel aspect of arenaviral glycoprotein expression. Conclusion These results implicate GP1 as a chaperone for the correct processing and shuttling of GP2 to the cell surface, and suggest that native GPC SP plays a role in this process. In the absence of GP1 and GPC SP the GP2 protein may be processed by an alternate pathway that produces

  12. The effects of prednisone and steroid-sparing agents on decay accelerating factor (CD55) expression: implications in myasthenia gravis. (United States)

    Auret, Jennifer; Abrahams, Amaal; Prince, Sharon; Heckmann, Jeannine M


    Decay accelerating factor (DAF) expression at the muscle endplate is an important defence against complement-mediated damage in myasthenia gravis. Previously we implicated the c.-198C>G DAF polymorphism with the development of treatment-resistant myasthenia-associated ophthalmoplegia by showing that the C>G DAF polymorphism prevented lipopolysaccharide-induced upregulation of lymphoblast DAF. We postulated that drugs used in myasthenia gravis may increase the susceptibility of extraocular muscles to complement-mediated damage and studied their effects on endogenous DAF using patient-derived lymphoblasts as well as mouse myotubes. We show that prednisone repressed C>G DAF expression in lymphoblasts and increased their susceptibility to cytotoxicity. Methotrexate, but not azathioprine or cyclosporine, increased DAF in C>G lymphoblasts. In mouse myotubes expressing wild-type Daf, prednisone also repressed Daf expression. Although cyclosporine, azathioprine, and methotrexate increased muscle Daf levels when used alone, upon co-treatment with prednisone only azathioprine maintained myotube Daf levels close to basal. Therefore, prednisone negatively influences DAF expression in C>G lymphoblasts and in myotubes expressing wild-type Daf. We speculate that myasthenic individuals at risk of developing the ophthalmoplegic complication, such as those with C>G DAF, may have inadequate endogenous levels of complement regulatory protein protection in their extraocular muscle in response to prednisone, increasing their susceptibility to complement-mediated damage.

  13. Facial Expression Recognition Deficits and Faulty Learning: Implications for Theoretical Models and Clinical Applications (United States)

    Sheaffer, Beverly L.; Golden, Jeannie A.; Averett, Paige


    The ability to recognize facial expressions of emotion is integral in social interaction. Although the importance of facial expression recognition is reflected in increased research interest as well as in popular culture, clinicians may know little about this topic. The purpose of this article is to discuss facial expression recognition literature…

  14. LDL biochemical modifications: a link between atherosclerosis and aging

    Directory of Open Access Journals (Sweden)

    Matilde Alique


    Full Text Available Atherosclerosis is an aging disease in which increasing age is a risk factor. Modified low-density lipoprotein (LDL is a well-known risk marker for cardiovascular disease. High-plasma LDL concentrations and modifications, such as oxidation, glycosylation, carbamylation and glycoxidation, have been shown to be proatherogenic experimentally in vitro and in vivo. Atherosclerosis results from alterations to LDL in the arterial wall by reactive oxygen species (ROS. Evidence suggests that common risk factors for atherosclerosis raise the likelihood that free ROS are produced from endothelial cells and other cells. Furthermore, oxidative stress is an important factor in the induction of endothelial senescence. Thus, endothelial damage and cellular senescence are well-established markers for atherosclerosis. This review examines LDL modifications and discusses the mechanisms of the pathology of atherosclerosis due to aging, including endothelial damage and oxidative stress, and the link between aging and atherosclerosis.

  15. LDL biochemical modifications: a link between atherosclerosis and aging (United States)

    Alique, Matilde; Luna, Carlos; Carracedo, Julia; Ramírez, Rafael


    Atherosclerosis is an aging disease in which increasing age is a risk factor. Modified low-density lipoprotein (LDL) is a well-known risk marker for cardiovascular disease. High-plasma LDL concentrations and modifications, such as oxidation, glycosylation, carbamylation and glycoxidation, have been shown to be proatherogenic experimentally in vitro and in vivo. Atherosclerosis results from alterations to LDL in the arterial wall by reactive oxygen species (ROS). Evidence suggests that common risk factors for atherosclerosis raise the likelihood that free ROS are produced from endothelial cells and other cells. Furthermore, oxidative stress is an important factor in the induction of endothelial senescence. Thus, endothelial damage and cellular senescence are well-established markers for atherosclerosis. This review examines LDL modifications and discusses the mechanisms of the pathology of atherosclerosis due to aging, including endothelial damage and oxidative stress, and the link between aging and atherosclerosis. PMID:26637360

  16. Low Levels of CD36 in Peripheral Blood Monocytes in Subclinical Atherosclerosis in Rheumatoid Arthritis: A Cross-Sectional Study in a Mexican Population


    Eduardo Gómez-Bañuelos; Beatriz Teresita Martín-Márquez; Erika Aurora Martínez-García; Mauricio Figueroa-Sanchez; Lourdes Nuñez-Atahualpa; Alberto Daniel Rocha-Muñoz; Pedro Ernesto Sánchez-Hernández; Rosa Elena Navarro-Hernandez; Perla Monserrat Madrigal-Ruiz; Adan Alberto Saldaña-Millan; Sergio Duran-Barragan; Laura Gonzalez-Lopez; Jorge Ivan Gamez-Nava; Mónica Vázquez-Del Mercado


    Patients with rheumatoid arthritis (RA) have a higher risk for atherosclerosis. There is no clinical information about scavenger receptor CD36 and the development of subclinical atherosclerosis in patients with RA. The aim of this study was to evaluate the association between membrane expression of CD36 in peripheral blood mononuclear cells (PBMC) and carotid intima-media thickness (cIMT) in patients with RA. Methods. We included 67 patients with RA from the Rheumatology Department of Hospita...

  17. Distinct Functions of Specialized Dendritic Cell Subsets in Atherosclerosis and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Alma Zernecke


    Full Text Available Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.

  18. Obstructive Sleep Apnea, Hypertension, and Their Additive Effects on Atherosclerosis


    Mario Francesco Damiani; Annapaola Zito; Pierluigi Carratù; Vito Antonio Falcone; Elioda Bega; Pietro Scicchitano; Marco Matteo Ciccone; Onofrio Resta


    Background and Aims. It is widely accepted that obstructive sleep apnea (OSA) is independently associated with atherosclerosis. Similar to OSA, hypertension (HTN) is a condition associated with atherosclerosis. However, to date, the impact of the simultaneous presence of OSA and HTN on the risk of atherosclerosis has not been extensively studied. The aim of this study was to evaluate the consequences of the coexistence of OSA and HTN on carotid intima-media thickness (IMT) and on inflammatory...

  19. The role of the vascular dendritic cell network in atherosclerosis


    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir; Jo, Hanjoong


    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only rec...

  20. Function of CD147 in atherosclerosis and atherothrombosis. (United States)

    Wang, Cuiping; Jin, Rong; Zhu, Xiaolei; Yan, Jinchuan; Li, Guohong


    CD147, a member of the immunoglobulin super family, is a well-known potent inducer of extracellular matrix metalloproteinases. Studies show that CD147 is upregulated in inflammatory diseases. Atherosclerosis is a chronic inflammatory disease of the artery wall. Further understanding of the functions of CD147 in atherosclerosis and atherothrombosis may provide a new strategy for preventing and treating cardiovascular disease. In this review, we discuss how CD147 contributes to atherosclerosis and atherothrombosis.

  1. Angiotensin II receptor mRNA expression and vasoconstriction in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Pantev, Emil; Emilson, Malin;


    Angiotensin II is a potent vasoconstrictor that is implicated in the pathogenesis of hypertension, heart failure and atherosclerosis. In the present study, angiotensin II receptor mRNA expression levels were quantified by real-time polymerase chain reaction and the vasocontractile responses...... to angiotensin II were characterised by in vitro pharmacology in endothelium-denuded human coronary arteries. Angiotensin II type 1 (AT(1)) and type 2 (AT(2)) receptor mRNA expression levels were significantly down-regulated in arteries from patients with heart failure as compared to controls. The angiotensin II...

  2. Differentially Expressed Genes Distributed Over Chromosomes and Implicated in Certain Biological Processes for Site Insertion Genetically Modified Rice Kemingdao

    Directory of Open Access Journals (Sweden)

    Zhi Liu, Yunhe Li, Jie Zhao, Xiuping Chen, Guiliang Jian, Yufa Peng, Fangjun Qi


    Full Text Available Release of genetically modified (GM plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11. The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.

  3. Relationship between serum adiopocyte fatty acid binding protein and atherosclerosis in chronic kidney disease

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the expression of serum adiopocyte fatty acid binding protein(A-FABP)in chronic kidney disease(CKD)and the role that A-FABP plays in CKD with atherosclerosis.Methods A total of 138 patients with CKD and 20 health control volunteers(HC)were involved in this study.The levels of serum AFABP,free fatty acid(FFA),interleukin-6(IL-6),

  4. Study on Atherosclerosis Treated with Theory of Detoxification

    Institute of Scientific and Technical Information of China (English)

    Xu Yingchun; Wang Hualiang; Ding Jing


    Starting with the contents, classification and pathogenic characteristics of the toxic pathogen and combining the modem medical research on the correlation of atherosclerosis with inflammation and immune reaction,authors have studied and expounded the interrelationship between the toxic pathogen and atherosclerosis.The toxic pathogen affecting the whole pathological process of atherosclerosis is a key factor for the disease to remain lingering and a cause of various cardiocerebrovascular diseases. Detoxification can be used to treat atherosclerosis so as to enhance the toxin-removing ability of the body and resist the damage to the body from the toxic pathogen.

  5. (-)-anipamil retards atherosclerosis in Watanabe heritable hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Hansen, B F; Mortensen, A; Hansen, J F


    Calcium antagonists have been reported to limit atherosclerosis in cholesterol fed rabbits. The purpose of this study was to examine the effect of the calcium antagonist (-)-anipamil on the spontaneous development of atherosclerosis in homozygote WHHL rabbits. From the age of 7 weeks, three groups...... differences were found in serum lipids (i.e., VLDL, IDL, LDL, HDL) in the study period among the three groups. Plasma anipamil at the end of the study was 0.23 +/- 6, and 202 +/- 19 ng/ml, respectively, in the three treatment groups. The degree of atherosclerosis in the abdominal aorta was significantly lower...... (p atherosclerosis in the abdominal aorta in WHHL rabbits....

  6. The expression of CD123 can decrease with basophil activation: implications for the gating strategy of the basophil activation test


    Santos, Alexandra F.; Bécares, Natalia; Stephens, Alick; Turcanu, Victor; Lack, Gideon


    Background Basophil activation test (BAT) reproduces IgE-mediated allergic reactions in vitro and has been used as a diagnostic test. Different markers can be used to identify basophils in whole blood and have implications for the outcome of the test. We aimed to assess changes in the expression of CD123 and HLA-DR following basophil activation and to select the best gating strategy for BAT using these markers. Methods BAT was performed in whole blood from 116 children. Peanut extract, anti-I...

  7. Role of prenatal undernutrition in the expression of serotonin, dopamine and leptin receptors in adult mice: implications of food intake. (United States)

    Manuel-Apolinar, Leticia; Rocha, Luisa; Damasio, Leticia; Tesoro-Cruz, Emiliano; Zarate, Arturo


    Perturbations in the levels of serotonin expression have a significant impact on behavior and have been implicated in the pathogenesis of several neuropsychiatric disorders including anxiety, mood and appetite. Fetal programming is a risk factor for the development of metabolic diseases during adulthood. Moreover, previous studies have shown that serotonin (5‑HT), dopamine and leptin are important in energy balance. In the present study, the impact of maternal malnutrition‑induced prenatal undernutrition (UN) was investigated in mice and the expression of 5‑HT1A, dopamine (D)1, D2 and Ob‑Rb receptors was analyzed in the hypothalamus during adulthood. The UN group showed a low birth weight compared with the control group. With regard to receptor expression, 5‑HT1A in the UN group was increased in the hypothalamus and D1 was reduced, whereas D2 showed an increase from postnatal day (P)14 in the arcuate nucleus. Ob‑Rb receptor expression was increased in the hypothalamus at P14 and P90. These observations indicated that maternal caloric restriction programs a postnatal body weight gain in offspring with an increased food intake in early postnatal life which continues into adulthood. In addition, UN in mice was found to be affected by Ob‑Rb, 5‑HT1A and D1/2 receptor expression, indicating that these observations may be associated with hyperphagia and obesity.

  8. Heterologous expression of a membrane-spanning auxin importer: implications for functional analyses of auxin transporters. (United States)

    Carrier, David John; Abu Bakar, Norliza Tendot; Lawler, Karen; Dorrian, James Matthew; Haider, Ameena; Bennett, Malcolm John; Kerr, Ian Derek


    Biochemical studies of plant auxin transporters in vivo are made difficult by the presence of multiple auxin transporters and auxin-interacting proteins. Furthermore, the expression level of most such transporters in plants is likely to be too low for purification and downstream functional analysis. Heterologous expression systems should address both of these issues. We have examined a number of such systems for their efficiency in expressing AUX1 from Arabidopsis thaliana. We find that a eukaryotic system based upon infection of insect cells with recombinant baculovirus provides a high level, easily scalable expression system capable of delivering a functional assay for AUX1. Furthermore, a transient transfection system in mammalian cells enables localization of AUX1 and AUX1-mediated transport of auxin to be investigated. In contrast, we were unable to utilise P. pastoris or L. lactis expression systems to reliably express AUX1.

  9. Copper induces the expression of cholesterogenic genes in human macrophages. (United States)

    Svensson, Per Arne; Englund, Mikael C O; Markström, Emilia; Ohlsson, Bertil G; Jernås, Margareta; Billig, Håkan; Torgerson, Jarl S; Wiklund, Olov; Carlsson, Lena M S; Carlsson, Björn


    Accumulation of lipids and cholesterol by macrophages and subsequent transformation into foam cells are key features in development of atherosclerosis. Serum copper concentrations have been shown to be associated with cardiovascular disease. However, the mechanism behind the proatherogenic effect of copper is not clear. We used DNA microarrays to define the changes in gene expression profile in response to copper exposure of human macrophages. Expression monitoring by DNA microarray revealed 91 genes that were regulated. Copper increased the expression of seven cholesterogenic genes (3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase, IPP isomerase, squalene synthase, squalene epoxidase, methyl sterol oxidase, H105e3 mRNA and sterol-C5-desaturase) and low-density lipoprotein receptor (LDL-R), and decreased the expression of CD36 and lipid binding proteins. The expression of LDL-R and HMG CoA reductase was also investigated using real time PCR. The expression of both of these genes was increased after copper treatment of macrophages (Pmechanism for the association between copper and atherosclerosis. The effect of copper on cholesterogenic genes may also have implications for liver steatosis in early stages of Wilson's disease.

  10. Functional Analysis of a Carotid Intima-Media Thickness Locus Implicates BCAR1 and Suggests a Causal Variant

    DEFF Research Database (Denmark)

    Boardman-Pretty, Freya; Smith, Andrew J. P.; Cooper, Jackie


    Carotid intima-media thickness (IMT) is a marker of subclinical atherosclerosis that can predict cardiovascular disease events over traditional risk factors. This study examined the BCAR1-CFDP1-TMEM170A locus on chromosome 16, associated with carotid IMT and coronary artery disease in the IMT...... associations of rs4888378 with BCAR1 in vascular tissues. Molecular studies suggest the lead SNP as a potentially causal SNP at the BCAR1-CFDP1-TMEM170A locus, and expression quantitative trait loci studies implicate BCAR1 as the causal gene. This variant showed stronger effects on common carotid IMT in women......, raising questions about the mechanism of the causal SNP on atherosclerosis....

  11. Speed, amplitude, and asymmetry of lip movement in voluntary puckering and blowing expressions: implications for facial assessment. (United States)

    Schmidt, Karen L; VanSwearingen, Jessie M; Levenstein, Rachel M


    The context of voluntary movement during facial assessment has significant effects on the activity of facial muscles. Using automated facial analysis, we found that healthy subjects instructed to blow produced lip movements that were longer in duration and larger in amplitude than when subjects were instructed to pucker. We also determined that lip movement for puckering expressions was more asymmetric than lip movement in blowing. Differences in characteristics of lip movement were noted using facial movement analysis and were associated with the context of the movement. The impact of the instructions given for voluntary movement on the characteristics of facial movement might have important implications for assessing the capabilities and deficits of movement control in individuals with facial movement disorders. If results generalize to the clinical context, assessment of generally focused voluntary facial expressions might inadequately demonstrate the full range of facial movement capability of an individual patient.

  12. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow


    L. ZENG; Zampetaki, A.; Margariti, A.; Pepe, A. E.; Alam, S.; MARTIN, D; Xiao, Q; Wang, W; Jin, Z.-G.; Cockerill, G.; MORI, K; Li, Y.-s. J.; Hu, Y.; Chien, S.; Xu, Q.


    X-box binding protein 1 (XBP1) is a key signal transducer in endoplasmic reticulum stress response, and its potential role in the atherosclerosis development is unknown. This study aims to explore the impact of XBP1 on maintaining endothelial integrity related to atherosclerosis and to delineate the underlying mechanism. We found that XBP1 was highly expressed at branch points and areas of atherosclerotic lesions in the arteries of ApoE−/− mice, which was related to the severity of lesion dev...

  13. Sex Steroids Block the Initiation of Atherosclerosis. (United States)

    Naftolin, Frederick; Mehr, Holly; Fadiel, Ahmed


    Atherosclerosis is the main cause of death in men and women. This so-called "hardening of the arteries" results from advanced atherogenesis, the accumulation and death of subendothelial fat-laden macrophages (vascular plaque). The macrophages are attracted as the result of signals from injured vessels recruiting and activating cells to quell the injury by inflammation. Among the recruited cells are circulating monocytes that may be captured by the formation of neural cell adhesion molecule (nCAM) tethers between the monocytes and vascular endothelium; the tethers are dependent on electrostatic binding between distal segments of apposed nCAM molecules. The capture of monocytes is followed by their entry into the subendothelial area as macrophages, many of which will remain and become the fat-laden foam cells in vascular plaque. Neural cell adhesion molecules are subject to sialylation that blocks their electrostatic binding. We showed that estradiol-induced nCAM sialylases are present in vascular endothelial cells and tested whether sex steroid pretreatment of human vascular endothelium could inhibit the capture of monocytes. Using in vitro techniques, pretreatment of human arterial endothelial cells with estradiol, testosterone, dehydroepiandrosterone and dihydrotestosterone all induced sialylation of endothelial cells and, in a dose-response manner, reduced the capture of monocytes. Steroid hormones are protective against atherogenesis and its sequellae. Sex steroid depletion is associated with atherosclerosis. Based on this knowledge plus our results using sex steroid pretreatment of endothelial cells, we propose that the blockade of the initial step in atherogenesis by sex steroid-induced nCAM sialylation may be crucial to hormonal prevention of atherosclerosis.

  14. Clinical Implications of Phosphorylated STAT3 Expression in de novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Ok, Chi Y; Chen, Jiayu; Xu-Monette, Ziju


    of phosphorylated STAT3 (pSTAT3) on prognosis are limited. EXPERIMENTAL DESIGN: We evaluated expression of pSTAT3 in de novo DLBCL using immunohistochemistry, gene expression profiling (GEP), and gene set enrichment analysis (GSEA). Results were analyzed in correlation with cell-of-origin (COO), critical lymphoma...

  15. Probiotics and atherosclerosis – a new challenge?

    Directory of Open Access Journals (Sweden)

    Chan Yee Kwan


    Full Text Available Background Atherosclerosis is the major cause of cardiovascular disease and stroke, which are among the top 10 leading causes of death worldwide. Pathogen-associated molecular patterns (PAMPs can activate toll-like receptors (TLRs and activate nuclear factor kappa B (NFκB signaling, a central pathway in inflammation, which regulates genes that encode proinflammatory molecules essential in atherogenesis. Lipopolysaccharides (LPS, which is unique to gram negative bacteria, as well as peptidoglycan (PGN, which is found in gram positive bacteria are PAMPS and ligands of TLR4 and TLR2, respectively, both of which are essential in plaque progression in atherosclerosis. Gastrointestinal tract is suggested to be the major site for absorption and translocation of TLR2 and TLR4 stimulants. Inflammation can result in a ‘leaky gut’ that leads to higher bacterial translocation, eventually the accumulation of LPS and PGN would activate TLRs and trigger inflammation through NFκB and promote further systemic complication like atherosclerosis. Probiotics, can protect the intestinal barrier to reduce bacterial translocation and have potential systemic anti-inflammatory properties.To evaluate whether probiotics can help reduce atherosclerotic development using in vivo study.Apolipoprotein E knockout (ApoE−/ −  mice were fed on high fat diet alone, with telmisartan (Tel (1 or 5 mg/kg/day, positive controls or with probiotics (VSL#3/LGG with or without Tel (1 mg/kg/day for 12 weeks.Probiotics, Tel, or a combination of both reduced lesion size at the aortic root significantly; VSL#3 reduced serum inflammatory adhesion molecules soluble E- (sE-selectin, soluble intercellular adhesion molecule 1 (sICAM-1, soluble vascular cell adhesion molecule 1 (sVCAM-1, and plaque disrupting factor matrix metalloproteinase (MMP-9 significantly; probiotics and Tel at 5 mg/kg/day could induce changes in gut microbiota population; the efficiency of lesion reduction seemed

  16. Expression of Adiponectin Receptors in Human Placenta and Its Possible Implication in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Naglaa F. Al Husseini


    Full Text Available Problem statement: Similar to obese patients and type 2 diabetic patients, adiponectin levels are reduced in former Gestational Diabetes Mellitus (GDM patients and are lower in GDM women during late pregnancy compared with pregnant control subjects matched for BMI. Diabetic insult at later stages in gestation, such as may occur in gestational diabetes, will foremost lead to short-term changes in a variety of molecules for key functions including gene expression in the placenta. Approach: In this study we assessed the expression of adiponectin receptors in human placenta to identify the site (s of expression and to clarify the effect of gestational diabetes in this expression. This study was carried on 10 normoglycemic pregnant women and 20 GDM women. The placental tissue was collected immediately after delivery and tissue biopsies were taken from both fetal and maternal sides of each placenta. One step-RT-PCR for ADIPOR1 and ADIPOR2 was done by Real Time PCR using Syber Green technique. Relative quantification of mRNA of the ADIPOR1 and ADIPOR2 genes was measured using ABI7900 Real Time machine. Results: Both types of Adiponectin Receptors (ADIPOR1 and ADIPOR2 are expressed in human placenta. ADIPOR1 is more highly expressed than ADIPOR2 in both fetal and maternal sides of GDM cases and normal pregnant women. ADIPOR1 mRNA expression was significantly up regulated in GDM women compared to normal pregnant women, whereas no significant difference in the expression of ADIPOR2 was detected between the two groups. There was no evidence of maternal-fetal side difference in the expression of adiponectin receptors in GDM cases but in normal pregnant women there is a statistically significant difference between both sides in the expression of both ADIPOR1 and ADIPOR2. Conclusion: We concluded that adiponectin plays an important role in mediation the glucose metabolism in fetal tissues through its receptors, mainly Adiponectin Receptor 1 (ADIPOR1.

  17. Novel function of histamine signaling in hyperlipidemia-induced atherosclerosis: Histamine H1 receptors protect and H2 receptors accelerate atherosclerosis. (United States)

    Yamada, Sohsuke; Wang, Ke-Yong; Tanimoto, Akihide; Sasaguri, Yasuyuki


    Histamine is not only essential for acute inflammatory reactions, but it also participates in a chronic inflammatory disorder. We generated apolipoprotein E (apoE) and histamine receptors (HHRs), including the major H1 and H2 receptors (HH1R, HH2R) double knockout mice (DKO) to clarify the role of HHRs in hyperlipidemia-induced atherosclerosis, in which apoE-KO and DKO mice were fed a high cholesterol diet. We found that pronounced hyperlipidemia-induced atherosclerotic progression occurred in HH1R/apoE-DKO mice, but in HH2R/apoE-DKO mice less atherosclerosis, despite pro-atherogenic serum cholesterol levels compared with apoE-KO mice. Furthermore, the increased expressions of scavenger receptors (SRs), such as SR-A, CD36 and lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), nuclear factor-kappa B (NFκB), monocyte chemoattractant protein (MCP-1), matrix metalloproteinases (MMPs) or liver X receptor (LXR)-related inflammatory signaling factors, were consistent with the pro-atherogenic phenotype of HH2R/apoE-DKO mice. We hypothesize that histamine/HH1R and HH2R signaling has conflicting innate functions, inflammatory/atherogenic and anti-inflammatory/anti-atherogenic actions, and that there are innate links between histamine signaling and hyperlipidemia-induced atherosclerosis, independently of serum cholesterol metabolism. Specific histamine signaling blockers, in particular, HH2R blockers, are a possible novel therapeutic target for hyperlipidemia-induced atherosclerosis.

  18. Expression of MTA2 Gene in Ovarian Epithelial Cancer and Its Clinical Implication

    Institute of Scientific and Technical Information of China (English)

    JI Yuxin; ZHANG Ping; LU Yunping; MA Ding


    In order to investigate the roles of MTA2 in the pathogenesis of ovarian epithelial cancer, the expression of MTA2 in 4 ovarian cell lines were detected by semi-quantitative RT-PCR and Western-blot assays. MTA2 expression in normal, borderline, benign and malignant epithelial o varian tissues was immunohistochemically examined. The expression of MTA2 mRNA and protein was detected in all of 4 cell lines of ovarian epithelial cancer. The expression of MTA2 mRNA and protein was higher in strong migration cell lines than in weak migration ones. In borderline and malignant ovarian tissues tested, MTA2 staining was dramatically stronger than in normal and benign tissues (P<0.01). The expression levels in malignant ovarian tissues were significantly higher than that in borderline epithelial ovarian tissues (P<0.01). The expression of MTA2 was correlated with clinical stage, histopathological grade and lymph node metastasis. It was concluded that the high expression of MTA2 was associated with more aggressive behaviors of epithelial ovarian cancer. MTA2 provides a novel indicator of ovarian cancer.

  19. Can an Antibiotic (Macrolide) Prevent Chlamydia pneumoniae-Induced Atherosclerosis in a Rabbit Model? (United States)

    Fong, Ignatius W.; Chiu, Brian; Viira, Esther; Jang, Dan; Fong, Michael W.; Peeling, Rosanna; Mahony, James B.


    There is increasing data implicating Chlamydia pneumoniae in the pathogenesis of atherosclerosis, and antibiotics may theoretically be useful to prevent secondary vascular complications. Three groups of New Zealand White specific-pathogen-free rabbits, fed cholesterol-free chow, were inoculated via the nasopharynx on three occasions, 2 weeks apart, with C. pneumoniae. Group I (n = 23) rabbits were untreated; group II (n = 24) rabbits were treated with azithromycin at 30 mg/kg of body weight daily for 3 days and then once every 6 days, starting 5 days after first inoculation and continuing until sacrifice (early treatment); and group III (n = 24) rabbits were treated with the same dose of azithromycin but initiated 2 weeks after the last inoculation. All animals were sacrificed at 10 to 11 weeks after initial inoculation and examined for signs of atherosclerosis of the aorta. Eight (34.8%) untreated rabbits developed early signs of atherosclerosis, whereas only one (4.2%) in the early-treatment group had such signs (P = 0.02). However, eight rabbits (33.3%) of the delayed-treatment group had atherosclerotic changes of the aorta and no significant reduction compared to untreated rabbits. Early treatment of C. pneumoniae-infected rabbits with azithromycin was highly effective (87%) in preventing atherosclerotic changes, but delayed treatment was ineffective. It is possible that longer or more aggressive antibiotic treatment may be needed to reverse preformed lesions or that antibiotics may not be of value once lesions have formed. PMID:10548582

  20. Coronary atherosclerosis is already ongoing in pre-diabeticstatus: Insight from intravascular imaging modalities

    Institute of Scientific and Technical Information of China (English)

    Osamu Kurihara; Masamichi Takano; Yoshihiko Seino; Wataru Shimizu; Kyoichi Mizuno


    Diabetes mellitus is a powerful risk factor of coronaryartery disease (CAD), leading to death and disability.In recent years, given the accumulating evidence thatprediabetes is also related to increasing risk of CADincluding cardiovascular events, a new guideline hasbeen proposed for the treatment of blood cholesterolfor primary prevention of cardiovascular events. Thisguideline recommends aggressive lipid-lowering statintherapy for primary prevention in diabetes and otherpatients. The ultimate goal of patient managementis to inhibit progression of systemic atherosclerosisand prevent fatal cardiovascular events such as acutecoronary syndrome (ACS). Because disruption ofatherosclerotic coronary plaques is a trigger of ACS,the high-risk atheroma is called a vulnerable plaque.Several types of novel diagnostic imaging technologieshave been developed for identifying the characteristicsof coronary atherosclerosis before the onset of ACS,especially vulnerable plaques. According to coronaryangioscopic evaluation, atherosclerosis severity andplaque vulnerability were more advanced in prediabeticthan in nondiabetic patients and comparable to thatin diabetic patients. In addition, pharmacologicalintervention by statin therapy changed plaque color andcomplexity, and the dynamic changes in plaque featuresare considered plaque stabilization. In this article, wereview the findings of atherosclerosis in prediabetes,detected by intravascular imaging modalities, and thetherapeutic implications.

  1. Expression of Apoptosis Related Protein in Skin Lesions of Lichen Planus and Its Implication

    Institute of Scientific and Technical Information of China (English)

    Xu'e CHEN; Yan WU; Jiawen LI; Zhixiang LIU; Qing YUE; Houjun LIU


    In order to investigate the role of Caspase-3 and Bax in the pathogenesis of lichen planus, immunohistochemistry was used to detect the expression of Caspase-3 and Bax in skin lesions of the patients with lichen planus and skin tissues of normal subjects. The results showed that positive rate of Caspase-3 and Bax expression in lichen planus were significantly higher than that in normal skins (both P<0.05). Meanwhile, there was a obvious correlation between the increase of Caspase-3 and that of Bax in lichen planus. The expression of Caspase-3 and Bax might play an important role in the development of lichen planus.

  2. Analysis of kinase gene expression in the frontal cortex of suicide victims: implications of fear and stress. (United States)

    Choi, Kwang; Le, Thien; Xing, Guoqiang; Johnson, Luke R; Ursano, Robert J


    Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p 1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.


    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-xu; GAO Ping-jin; SUN Bao-gui; ZHANG Jian-jun


    Objective To determine whether pravastatin exerts anti-oxidative effects on preventing aortic atherosclerosis via modulating p38 MAPK pathway.Methods Male 8-week-old apoE-/- mice fed a diet containing 1.25% cholesterol (wt/wt) were divided into pravastatin group administered with pravastatin (80 mg·kg-1·d-1) and atherosclerosis group administered with PBS; and male 8-week-old C57BL/6J mice fed a normal diet were as control group (n=12). In thoracoabdominal aortas of mice, levels of Malondialdehyde (MDA) and activities of superoxide dismutase (SOD) were measured and expression of phosphorylated p38 MAPK (p-p38 MAPK) and phosphorylated signal transducer and activator of transcription 1 (pSTAT1) were examined by Western blotting.Results After eight weeks, atherosclerosis in aortic root was significantly prevented by pravastatin. In aortic atherosclerosis lesion, the level of MDA was significantly reduced; adversely the activity of SOD was increased. Expressions of p-p38 MAPK and pSTAT1 were significantly decreased in aortic atherosclerosis lesion.Conclusion Our results suggests that anti-oxidative mechanisms of pravastatin preventing aortic atherosclerosis may partially depend on modulating p38 MAPK signal pathway.

  4. Atherosclerosis: a chronic inflammatory disease mediated by mast cells. (United States)

    Conti, Pio; Shaik-Dasthagirisaeb, Yazdami


    Inflammation is a process that plays an important role in the initiation and progression of atherosclerosis and immune disease, involving multiple cell types, including macrophages, T-lymphocytes, endothelial cells, smooth muscle cells and mast cells. The fundamental damage of atherosclerosis is the atheromatous or fibro-fatty plaque which is a lesion that causes several diseases. In atherosclerosis the innate immune response, which involves macrophages, is initiated by the arterial endothelial cells which respond to modified lipoproteins and lead to Th1 cell subset activation and generation of inflammatory cytokines and chemoattractant chemokines. Other immune cells, such as CD4+ T inflammatory cells, which play a critical role in the development and progression of atherosclerosis, and regulatory T cells [Treg], which have a protective effect on the development of atherosclerosis are involved. Considerable evidence indicates that mast cells and their products play a key role in inflammation and atherosclerosis. Activated mast cells can have detrimental effects, provoking matrix degradation, apoptosis, and enhancement as well as recruitment of inflammatory cells, which actively contributes to atherosclerosis and plaque formation. Here we discuss the relationship between atherosclerosis, inflammation and mast cells.

  5. Inflammation in atherosclerosis: Imaging, biomarkers and novel therapeutic opportunities

    NARCIS (Netherlands)

    van Wijk, D.F.


    The vast majority of cardiovascular-related morbidity and mortality is caused by atherosclerosis. Although many patients with atherosclerosis never develop any symptoms, clinical manifestations can vary between acute life-threatening situations to chronic minor complaints. Over the past decades, inf

  6. Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis

    NARCIS (Netherlands)

    Natarajan, Pradeep; Bis, Joshua C.; Bielak, Lawrence F.; Cox, Amanda J.; Dorr, Marcus; Feitosa, Mary F.; Franceschini, Nora; Guo, Xiuqing; Hwang, Shih-Jen; Isaacs, Aaron; Jhun, Min A.; Kavousi, Maryam; Li-Gao, Ruifang; Lyytikainen, Leo-Pekka; Marioni, Riccardo E.; Schminke, Ulf; Stitziel, Nathan O.; Tada, Hayato; van Setten, Jessica; Smith, Albert V.; Vojinovic, Dina; Yanek, Lisa R.; Yao, Jie; Yerges-Armstrong, Laura M.; Amin, Najaf; Baber, Usman; Borecki, Ingrid B.; Carr, J. Jeffrey; Chen, Yii-Der Ida; Cupples, L. Adrienne; de Jong, Pim A.; de Koning, Harry; de Vos, Bob D.; Demirkan, Ayse; Fuster, Valentin; Franco, Oscar H.; Goodarzi, Mark O.; Harris, Tamara B.; Heckbert, Susan R.; Heiss, Gerardo; Hoffmann, Udo; Hofman, Albert; Isgum, Ivana; Jukema, J. Wouter; Kahonen, Mika; Kardia, Sharon L. R.; Kral, Brian G.; Launer, Lenore J.; Massaro, Joe; Mehran, Roxana; Mitchell, Braxton D.; Jr, Thomas H. Mosley; de Mutsert, Renee; Newman, Anne B.; Nguyen, Khanh-dung; North, Kari E.; O'Connell, Jeffrey R.; Oudkerk, Matthijs; Pankow, James S.; Peloso, Gina M.; Post, Wendy; Province, Michael A.; Raffield, Laura M.; Raitakari, Olli T.; Reilly, Dermot F.; Rivadeneira, Fernando; Rosendaal, Frits; Sartori, Samantha; Taylor, Kent D.; Teumer, Alexander; Trompet, Stella; Turner, Stephen T.; Uitterlinden, Andre G.; Vaidya, Dhananjay; van der Lugt, Aad; Volker, Uwe; Wardlaw, Joanna M.; Wassel, Christina L.; Weiss, Stefan; Wojczynski, Mary K.; Becker, Diane M.; Becker, Lewis C.; Boerwinkle, Eric; Bowden, Donald W.; Deary, Ian J.; Dehghan, Abbas; Felix, Stephan B.; Gudnason, Vilmundur; Lehtimaki, Terho; Mathias, Rasika; Mook-Kanamori, Dennis O.; Psaty, Bruce M.; Rader, Daniel J.; Rotter, Jerome I.; Wilson, James G.; van Duijn, Cornelia M.; Volzke, Henry; Kathiresan, Sekar; Peyser, Patricia A.; O'Donnell, Christopher J.


    Background-The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease. We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the risk of

  7. Expression of MMP-9 and TIMP-1 in Lesions of Systemic Sclerosis and Its Implications

    Institute of Scientific and Technical Information of China (English)

    Chi MENG; Xu'e CHEN; Jiawen LI; Yan WU; Houjun LIU


    In order to investigate the role of MMP-9 and TIMP-1 in the pathogenesis of systemic sclerosis, the expression of MMP-9 and TIMP-1 was immunohistochemically detected in skin lesions of the patients with diffuse cutaneous systemic sclerosis, skin lesions of the patients with limited cutaneous systemic sclerosis, and skin tissues of normal subjects. The results showed that the expression of MMP-9 in lesions of diffuse cutaneous systemic sclerosis was significantly lower than that of normal skins (P<0.05). However, no significant difference in the level of MMP-9 in the limited cutaneous systemic sclerosis and normal skin was found. Meanwhile, the expression of TIMP-1 in lesions of diffuse cutaneous systemic sclerosis and limited cutaneous systemic sclerosis were significantly higher than that of normal skins (both P<0.05). It was suggested that the expression of MMP-9 and TIMP-1 might play an important role in the development of systemic sclerosis.

  8. Molecular imaging of atherosclerosis in translational medicine

    Energy Technology Data Exchange (ETDEWEB)

    Perrone-Filardi, Pasquale; Costanzo, Pierluigi; Marciano, Caterina; Vassallo, Enrico; Marsico, Fabio; Ruggiero, Donatella; Petretta, Maria Piera; Chiariello, Massimo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Dellegrottaglie, Santo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Mount Sinai Medical Center, Z. and M.A. Wiener Cardiovascular Institute and M.-J. and H.R. Kravis Center for Cardiovascular Health, New York, NY (United States); Rudd, James H.F. [University of Cambridge, School of Clinical Medicine, Cambridge (United Kingdom); Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy)


    Functional characterization of atherosclerosis is a promising application of molecular imaging. Radionuclide-based techniques for molecular imaging in the large arteries (e.g. aorta and carotids), along with ultrasound and magnetic resonance imaging (MRI), have been studied both experimentally and in clinical studies. Technical factors including cardiac and respiratory motion, low spatial resolution and partial volume effects mean that noninvasive molecular imaging of atherosclerosis in the coronary arteries is not ready for prime time. Positron emission tomography imaging with fluorodeoxyglucose can measure vascular inflammation in the large arteries with high reproducibility, and signal change in response to anti-inflammatory therapy has been described. MRI has proven of value for quantifying carotid artery inflammation when iron oxide nanoparticles are used as a contrast agent. Macrophage accumulation of the iron particles allows regression of inflammation to be measured with drug therapy. Similarly, contrast-enhanced ultrasound imaging is also being evaluated for functional characterization of atherosclerotic plaques. For all of these techniques, however, large-scale clinical trials are mandatory to define the prognostic importance of the imaging signals in terms of risk of future vascular events. (orig.)

  9. Endothelial dysfunction: the early predictor of atherosclerosis. (United States)

    Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans


    Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.

  10. Periodontitis as a Risk Factor of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jirina Bartova


    Full Text Available Over the last two decades, the amount of evidence corroborating an association between dental plaque bacteria and coronary diseases that develop as a result of atherosclerosis has increased. These findings have brought a new aspect to the etiology of the disease. There are several mechanisms by which dental plaque bacteria may initiate or worsen atherosclerotic processes: activation of innate immunity, bacteremia related to dental treatment, and direct involvement of mediators activated by dental plaque and involvement of cytokines and heat shock proteins from dental plaque bacteria. There are common predisposing factors which influence both periodontitis and atherosclerosis. Both diseases can be initiated in early childhood, although the first symptoms may not appear until adulthood. The formation of lipid stripes has been reported in 10-year-old children and the increased prevalence of obesity in children and adolescents is a risk factor contributing to lipid stripes development. Endothelium damage caused by the formation of lipid stripes in early childhood may lead to bacteria penetrating into blood circulation after oral cavity procedures for children as well as for patients with aggressive and chronic periodontitis.

  11. Environmental factors influencing the development of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Andrzej Brodziak


    Full Text Available The aim of the paper is to present an overview of recent findings on the environmental and behavioral factors influencing the development of atherosclerosis. The authors primarily concentrated on deliberations of possibile main causes of the damage of the endothelium. At the same time the following pathogenic mechanisms as cellular dysfunction, inflammation and coagulation disorders have been enumerated. The links between the state of the vascular endothelium and life style have been emphasized. It is also important to note that the primary causes of the endothelial damage should be traced as originally suggested many years ago viewing such factors as anger, hostility, aggression, impulsiveness and depression but with a new approach. The authors supplement the comments, on the environmental factors influencing the development of atherosclerosis, with basic data on family predisposition to the development of this disease. They highlight that current genetic research have not determined genes responsible for atheroscelosis. According to the authors the considerations and conclusions presented in this overview are important for the educational purposes related to the most frequent disease process resulting in many diseases in medical disciplines.

  12. The relationship between atherosclerosis and pulmonary emphysema

    Directory of Open Access Journals (Sweden)

    Vučević Danijela


    Full Text Available Introduction. The etiopathogenesis of atherosclerosis and subsequent pulmonary emphysema has not been fully elucidated. Experimental Studies Foam cells are of great importance in the development of these diseases. It is known that local cytokine secretion and modification of native lipoprotein particles, which are internalized by the vascular and alveolar macrophages via the scavenger receptors on the surfaces of these cells, lead to the formation of foam cells. Thus, the exacerbation of local inflammatory process in the vascular and lung tissue ensues due to a generation of reactive oxygen species, resulting in further lipoprotein modification and cytokine production. Accumulating evidence suggests that oxidants may facilitate the inflammatory response by impairing antiprotease function, directly attacking vascular and lung matrix proteins and by inactivating enzymes involved in elastin synthesis and vascular and lung repair. Clinical Studies Cigarette smoke is recognized as a rich source of oxidants. Nearly 90% of all patients with chronic obstructive pulmonary disease are smokers. The process of atherogenesis is also influenced by tobacco smoke. Conclusion The role of vascular and alveolar macrophages has become increasingly important in understanding the development of atherosclerosis and resulting pulmonary emphysema.[Projekat Ministarstva nauke Republike Srbije, br. 175015

  13. Probiotic bacteria change Echherichia coli-induced gene expression in cultured colonocytes: Implications in intestinal pathophysiology

    Institute of Scientific and Technical Information of China (English)


    AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria.METHODS: A 19200 gene/expressed sequence tag gene chip was used to examine expression of genes after infection of Caco-2 cells with strains of normal flora E.coli, Lactobacillus plantarum, and a combination of the two.RESULTS: The cDNA microarray revealed up-regulation of 155 and down-regulation of 177 genes by E. coli. L. plantarum up-regulated 45 and down-regulated 36 genes. During mixed infection, 27 genes were upregulated and 59 were down-regulated, with nullification of stimulatory/inhibitory effects on most of the genes. Expression of several new genes was noted in this group.CONCLUSION: The commensal bacterial strains used in this study induced the expression of a large number of genes in colonocyte-like cultured cells and changed the expression of several genes involved in important cellular processes such as regulation of transcription, protein biosynthesis, metabolism, cell adhesion, ubiquitination,and apoptosis. Such changes induced by the presence of probiotic bacteria may shape the physiologic and pathologic responses they trigger in the host.

  14. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis (United States)

    Zhang, Yong; Qin, Wei; Zhang, Longyin; Wu, Xianxian; Du, Ning; Hu, Yingying; Li, Xiaoguang; Shen, Nannan; Xiao, Dan; Zhang, Haiying; Li, Zhange; Zhang, Yue; Yang, Huan; Gao, Feng; Du, Zhimin; Xu, Chaoqian; Yang, Baofeng


    Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial apoptosis plays a vital role in the initiation and progression of atherosclerotic lesions. Although a subset of microRNAs (miRs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In our study, we found that miR-26a expression was substantially reduced in the aortic intima of ApoE-/- mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein (ox-LDL) suppressed miR-26a expression. Forced expression of miR-26a inhibited endothelial apoptosis as evidenced by MTT assay and TUNEL staining results. Further analysis identified TRPC6 as a target of miR-26a, and TRPC6 overexpression abolished the anti-apoptotic effect of miR-26a. Moreover, the cytosolic calcium and the mitochondrial apoptotic pathway were found to mediate the beneficial effects of miR-26a on endothelial apoptosis. Taken together, our study reveals a novel role of miR-26a in endothelial apoptosis and indicates a therapeutic potential of miR-26a for atherosclerosis associated with apoptotic cell death.

  15. Apolipoprotein E4 domain interaction accelerates diet-induced atherosclerosis in hypomorphic Arg-61 Apoe mice (United States)

    Eberlé, Delphine; Kim, Roy Y.; Luk, Fu Sang; de Mochel, Nabora Soledad Reyes; Gaudreault, Nathalie; Olivas, Victor R.; Kumar, Nikit; Posada, Jessica M.; Birkeland, Andrew C.; Rapp, Joseph H.; Raffai, Robert L.


    Objective Apolipoprotein (apo) E4 is an established risk factor for atherosclerosis, but the structural components underlying this association remain unclear. ApoE4 is characterized by two biophysical properties: domain interaction and molten globule state. Substituting Arg-61 for Thr-61 in mouse apoE introduces domain interaction without molten globule state, allowing us to delineate potential pro-atherogenic effects of domain interaction in vivo. Methods and Results We studied atherosclerosis susceptibility of hypomorphic Apoe mice expressing either Thr-61 or Arg-61 apoE (ApoeTh/h or ApoeRh/h mice). On a chow diet, both mouse models were normo-lipidemic with similar levels of plasma apoE and lipoproteins. However, on a high cholesterol diet, ApoeRh/h mice displayed increased levels of total plasma cholesterol and VLDL as well as larger atherosclerotic plaques in the aortic root, arch and descending aorta compared to ApoeTh/h mice. In addition, evidence of cellular dysfunction was identified in peritoneal ApoeRh/h macrophages which released lower amounts of apoE in culture medium and displayed increased expression of MHC class II molecules. Conclusions These data indicate that domain interaction mediates pro-atherogenic effects of apoE4 in part by modulating lipoprotein metabolism and macrophage biology. Pharmaceutical targeting of domain interaction could lead to new treatments for atherosclerosis in apoE4 individuals. PMID:22441102

  16. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4-NF-κB pathway. (United States)

    Luo, Hong; Wang, Jing; Qiao, Chenhui; Ma, Ning; Liu, Donghai; Zhang, Weihua


    Atherosclerosis is a leading cause of death worldwide and is characterized by lipid-laden foam cell formation. Recently, pycnogenol (PYC) has drawn much attention because of its prominent effect on cardiovascular disease (CVD). However, its protective effect against atherosclerosis and the underlying mechanism remains undefined. Here PYC treatment reduced areas of plaque and lipid deposition in atherosclerotic mice, concomitant with decreases in total cholesterol and triglyceride levels and increases in HDL cholesterol levels, indicating a potential antiatherosclerotic effect of PYC through the regulation of lipid levels. Additionally, PYC preconditioning markedly decreased foam cell formation and lipid accumulation in lipopolysaccharide (LPS)-stimulated human THP-1 monocytes. A mechanistic analysis indicated that PYC decreased the lipid-related protein expression of adipose differentiation-related protein (ADRP) and adipocyte lipid-binding protein (ALBP/aP2) in a dose-dependent manner. Further analysis confirmed that PYC attenuated LPS-induced lipid droplet formation via ADRP and ALBP expression through the Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) pathway, because pretreatment with anti-TLR4 antibody or a specific inhibitor of NF-κB (PDTC) strikingly mitigated the LPS-induced increase in ADRP and ALBP. Together, our results provide insight into the ability of PYC to attenuate bacterial infection-triggered pathological processes associated with atherosclerosis. Thus PYC may be a potential lead compound for the future development of antiatherosclerotic CVD therapy.

  17. A Role of RIP3-Mediated Macrophage Necrosis in Atherosclerosis Development

    Directory of Open Access Journals (Sweden)

    Juan Lin


    Full Text Available Necrotic death of macrophages has long been known to be present in atherosclerotic lesions but has not been studied. We examined the role of receptor interacting protein (RIP 3, a mediator of necrotic cell death, in atherosclerosis and found that RIP3−/−;Ldlr−/− mice were no different from RIP3+/+;Ldlr−/− mice in early atherosclerosis but had significant reduction in advanced atherosclerotic lesions. Similar results were observed in Apoe−/− background mice. Bone marrow transplantation revealed that loss of RIP3 expression from bone-marrow-derived cells is responsible for the reduced disease progression. While no difference was found in apoptosis between RIP3−/−;Ldlr−/− and RIP3+/+;Ldlr−/− mice, electron microscopy revealed a significant reduction of macrophage primary necrosis in the advanced lesions of RIP3−/− mice. In vitro cellular studies showed that RIP3 deletion had no effect on oxidized low-density lipoprotein (LDL-induced macrophage apoptosis, but prevented macrophage primary necrosis occurring in response to oxidized LDL under caspase inhibition or RIP3 overexpression conditions. RIP3-dependent necrosis is not postapoptotic, and the increased primary necrosis in advanced atherosclerotic lesions most likely resulted from the increase of RIP3 expression. Our data demonstrate that primary necrosis of macrophages is proatherogenic during advanced atherosclerosis development.

  18. Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis

    DEFF Research Database (Denmark)

    Ye, Yu-Xiang; Calcagno, Claudia; Binderup, Tina


    RATIONALE: Local plaque macrophage proliferation and monocyte production in hematopoietic organs promote progression of atherosclerosis. Therefore, noninvasive imaging of proliferation could serve as a biomarker and monitor therapeutic intervention. OBJECTIVE: To explore (18)F-FLT positron emission...... tomography-computed tomography imaging of cell proliferation in atherosclerosis. METHODS AND RESULTS: (18)F-FLT positron emission tomography-computed tomography was performed in mice, rabbits, and humans with atherosclerosis. In apolipoprotein E knock out mice, increased (18)F-FLT signal was observed...... with atherosclerosis, (18)F-FLT signal significantly increased in the inflamed carotid artery and in the aorta. CONCLUSIONS: (18)F-FLT positron emission tomography imaging may serve as an imaging biomarker for cell proliferation in plaque and hematopoietic activity in individuals with atherosclerosis....

  19. Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota. (United States)

    Org, Elin; Mehrabian, Margarete; Lusis, Aldons J


    Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD.

  20. In Utero exposure of soy protein diet inhibits atherosclerosis in F1 offsprings by promoting Th2 anti-inflammatory T cell responses (United States)

    Maternal hypercholesterolemia has been implicated with a higher incidence and earlier onset of atherosclerotic lesions in neonatal offspring. We have reported that feeding soy protein isolate (SPI) diet starting at postnatal day (PND) 21 prevented the progression of atherosclerosis in the hyperlipid...

  1. Biological and clinical implications of nicastrin expression in invasive breast cancer. (United States)

    Filipović, Aleksandra; Gronau, Julian Hendrik; Green, Andrew R; Wang, Jayson; Vallath, Sabari; Shao, Dongmin; Rasul, Sabeena; Ellis, Ian O; Yagüe, Ernesto; Sturge, Justin; Coombes, R Charles


    Nicastrin is an essential component of the gamma secretase (GS) enzyme complex, required for its synthesis and recognition of substrates for proteolytic cleavage. The purpose of this study was to investigate whether nicastrin has prognostic value or potential as a therapeutic target in breast cancer (BC). The suitability of nicastrin as a target in BC was assessed using BC tissue microarrays (TMAs) (n = 1050), and its biological role in vitro was evaluated in BC cell lines following gene silencing. Nicastrin blocking antibodies were developed and evaluated for their suitability as potential clinical therapeutics. TMA and cell line analysis confirmed that nicastrin expression was upregulated in BC compared to normal breast cells. In TMA patient samples, high nicastrin expression was observed in 47.5% of cases and correlated with ERα expression, patient age, and tumor grade. In pre-defined subset analysis, high nicastrin expression predicted for worse BC specific survival in the ERα -ve cohort. In vitro gene silencing of nicastrin resulted in disruption of the GS complex and a decrease in notch1 cleavage. This was sufficient to increase E-cadherin expression and its co-localization with p120 catenin at cell-cell junctions in MCF7 cells. Nicastrin silencing in invasive MDA-MB-231 cells resulted in loss of vimentin expression and a marked reduction in both cell motility and invasion; which was concomitant with the de novo formation of cell-cell junctions characterized by the colocalization of p120 catenin and F-actin. These data indicate that nicastrin can function to maintain epithelial to mesenchymal transition during BC progression. Anti-nicastrin polyclonal and monoclonal antibodies were able to decrease notch1 and vimentin expression and reduced the invasive capacity of BC cells in vitro. This supports our hypothesis that a nicastrin blocking antibody could be used to limit metastatic dissemination in invasive BC.

  2. Biophysical features of MagA expression in mammalian cells: implications for MRI contrast

    Directory of Open Access Journals (Sweden)

    Anindita eSengupta


    Full Text Available We compared overexpression of the magnetotactic bacterial gene MagA with the modified mammalian ferritin genes HF+LF, in which both heavy and light subunits lack iron response elements. Whereas both expression systems have been proposed for use in non-invasive, magnetic resonance (MR reporter gene expression, limited information is available regarding their relative potential for providing gene-based contrast. Measurements of MR relaxation rates in these expression systems are important for optimizing cell detection and specificity, for developing quantification methods, and for refinement of gene-based iron contrast using magnetosome associated genes. We measured the total transverse relaxation rate (R2*, its irreversible and reversible components (R2 and R2′, respectively and the longitudinal relaxation rate (R1 in MDA-MB-435 tumor cells. Clonal lines overexpressing MagA and HF+LF were cultured in the presence and absence of iron supplementation, and mounted in a spherical phantom for relaxation mapping at 3 Tesla. In addition to MR measures, cellular changes in iron and zinc were evaluated by inductively-coupled plasma mass spectrometry, in ATP by luciferase bioluminescence and in transferrin receptor by Western blot. Only transverse relaxation rates were significantly higher in iron-supplemented, MagA- and HF+LF-expressing cells compared to non-supplemented cells and the parental control. R2* provided the greatest absolute difference and R2′ showed the greatest relative difference, consistent with the notion that R2′ may be a more specific indicator of iron-based contrast than R2, as observed in brain tissue. Iron supplementation of MagA- and HF+LF-expressing cells increased the iron/zinc ratio approximately 20-fold, while transferrin receptor expression decreased approx. 10-fold. Level of ATP was similar across all cell types and culture conditions. These results highlight the potential of magnetotactic bacterial gene expression for

  3. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy (United States)

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.


    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  4. Clinical implication of 14-3-3 epsilon expression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Mariana Ferreira Leal; Danielle Queiroz Calcagno; S(a)mia Demachki; Paulo Pimentel Assump(c)(a)o; Roger Chammas; Rommel Rodríguez Burbano; Marília de Arruda Cardoso Smith


    AIM:To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis.METHODS:14-3-3ε protein expression was determined by western blotting,and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples.RESULTS:Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue.Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology.Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process.CONCLUSION:Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process.

  5. Effect of Simvastatin and Metformin on Aortic Configurational Changes and CD40/CD40L Expression in Atherosclerosis Rats%辛伐他汀和二甲双胍对动脉粥样硬化大鼠动脉构型及CD40/CD40L表达的影响

    Institute of Scientific and Technical Information of China (English)

    黄皓章; 黄露霜; 尹明景; 朱继金


    目的 探讨辛伐他汀和二甲双胍对动脉粥样硬化(AS)大鼠血脂、动脉病理及构型变化、血清及动脉组织CD40L水平的影响及可能机制.方法 成年SD雄性大鼠50只,随机分为N组(对照组)、SF组(高盐高脂组)、ST组(辛伐他汀组)、MT组(二甲双胍组)、ST+MT组(辛伐他汀+二甲双胍组),每组10只,N组用标准饲料饲养,其他组用高盐高脂饲料饲养.喂养16周后,检测各组血脂、动脉组织病理及构型、血清及动脉组织CD40L水平.结果 (1)血脂:SF组总胆固醇、三酰甘油明显高于N组(P<0.01),ST组与N组比较差异无统计学意义(P>0.05);MT组、ST+MT组明显低于N组(P<0.01).(2)动脉组织病理:N组无异常;ST组、MT组、ST+MT组均有不同程度的中膜增厚,未形成典型AS斑块;SF组可见典型AS斑块.(3)主动脉构型变化:各组中膜层厚度均较N组增厚,增厚程度依次为SF>MT>ST>ST+MT.LA/TVA比值:SF组较N组、ST组、MT组及ST+MT组均减小(P<0.01),ST组与MT组、ST+MT组与N组均无差异(P均>0.05).(4)血清sCD40L水平:SF组浓度高于N组、ST组、MT组、ST+MT组(P<0.05),而N组、ST组、MT组、ST+MT组之间无明显差异(P>0.05).(5)动脉组织CD40L表达强度:SF组表达强度明显高于其他4组(P<0.05),ST组、MT组、ST+MT组与N组无差异(P>0.05).结论 动脉粥样硬化大鼠血清和动脉组织CD40L浓度增高.他汀类药物和双胍类药物均能通过降低血脂,抑制组织CD40/CD40L表达,减轻炎症反应而起到拮抗动脉粥样硬化的作用,其中双胍类药物的降血脂作用更加明显,他汀类药物则在保护血管,改善动脉粥样硬化方面占优.两药联用的效果明显优于单用任何一种.%Objective To investigate the effect of simvastatin and metformin on blood lipid, aortic pathological and configurational changes, serum sCD40L level and arterial tissue CD40L protein expression in atherosclerosis( AS ) rats, and to explore the potential

  6. Short communication: expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research. (United States)

    Zhou, Tian; Hu, Minlu; Cost, Marilyn; Poloyac, Samuel; Rohan, Lisa


    Topical vaginal microbicides have been considered a promising option for preventing the male-to-female sexual transmission of HIV; however, clinical trials to date have not clearly demonstrated robust and reproducible effectiveness results. While multiple approaches may help enhance product effectiveness observed in clinical trials, increasing the drug exposure in lower genital tract tissues is a compelling option, given the difficulty in achieving sufficient drug exposure and positive correlation between tissue exposure and microbicide efficacy. Since many microbicide drug candidates are substrates of transporters and/or metabolizing enzymes, there is emerging interest in improving microbicide exposure and efficacy through local modulation of transporters and enzymes in the female lower genital tract. However, no systematic information on transporter/enzyme expression is available for ectocervical and vaginal tissues of premenopausal women, the genital sites most relevant to microbicide drug delivery. The current study utilized reverse transcriptase polymerase chain reaction (RT-PCR) to examine the mRNA expression profile of 22 transporters and 19 metabolizing enzymes in premenopausal normal human ectocervix and vagina. Efflux and uptake transporters important for antiretroviral drugs, such as P-gp, BCRP, OCT2, and ENT1, were found to be moderately or highly expressed in the lower genital tract as compared to liver. Among the metabolizing enzymes examined, most CYP isoforms were not detected while a number of UGTs such as UGT1A1 were highly expressed. Moderate to high expression of select transporters and enzymes was also observed in mouse cervix and vagina. The implications of this information on microbicide research is also discussed, including microbicide pharmacokinetics, the utilization of the mouse model in microbicide screening, as well as the in vivo functional studies of cervicovaginal transporters and enzymes.

  7. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions. (United States)

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas


    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media.

  8. Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications

    Directory of Open Access Journals (Sweden)

    Kai Wang


    Full Text Available The development of human benign or malignant prostatic diseases is closely associated with androgens, primarily testosterone (T and dihydrotestosterone (DHT. T is converted to DHT by 5-alpha reductase (5-AR isozymes. Differential expression of 5-AR isozymes is observed in both human benign and malignant prostatic tissues. 5-AR inhibitors (5-ARI are commonly used for the treatment of benign prostatic hyperplasia (BPH and were once promoted as chemopreventive agents for prostate cancer (PCa. This review discusses the role of the differential expression of 5-AR in the normal development of the human prostate and in the pathogenesis and progression of BPH and PCa.

  9. Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer

    Directory of Open Access Journals (Sweden)

    Patani Neill


    Full Text Available Background: Ubiquitin modification of proteins influences cellular processes relevant to carcinogenesis. CHIP (carboxyl-terminus of Hsc70-interacting protein is a chaperone-dependent E3 ubiquitin ligase, regulating the stability of heat shock protein 90 (HSP90 interacting proteins. CHIP is implicated in the modulation of estrogen receptor (ESR1 and Her-2/neu (ERBB2 stability. LOX (lysyl-oxidase serves intracellular roles and catalyses the cross-linking of extracellular matrix (ECM collagens and elastin. LOX expression is altered in human malignancies and their peri-tumoral stroma. However, paradoxical roles are reported. In this study, the level of mRNA expression of CHIP and LOX were assessed in normal and malignant breast tissue and correlated with clinico-pathological parameters. Materials and Methods: Breast cancer (BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription; transcript levels were determined using real-time quantitative PCR and normalized against CK-19. Transcript levels were analyzed against TNM stage, nodal involvement, tumor grade and clinical outcome over a ten-year follow-up period. Results: CHIP expression decreased with increasing Nottingham Prognostic Index (NPI: NPI-1 vs. NPI-3 (12.2 vs. 0.2, P = 0.0264, NPI-2 vs. NPI-3 (3 vs. 0.2, P = 0.0275. CHIP expression decreased with increasing TNM stage: TNM-1 vs. TNM-2 (12 vs. 0, P = 0.0639, TNM-1 vs. TNM-2-4 (12 vs. 0, P = 0.0434. Lower transcript levels were associated with increasing tumor grade: grade 1 vs. grade 3 (17.7 vs. 0.3, P = 0.0266, grade 2 vs. grade 3 (5 vs. 0.3, P = 0.0454. The overall survival (OS for tumors classified as ′low-level expression′, was poorer than those with ′high-level expression′ (118.1 vs. 152.3 months, P = 0.039. LOX expression decreased with increasing NPI: NPI-1 vs. NPI-2 (3 vs. 0, P = 0.0301 and TNM stage: TNM-1 = 3854639, TNM-2 = 908900, TNM-3 = 329, TNM-4 = 1.232 (P = NS. Conclusion: CHIP

  10. Atherosclerosis in Watanabe heritable hyperlipidaemic rabbits. Evaluation by macroscopic, microscopic and biochemical methods and comparison of atherosclerosis variables

    DEFF Research Database (Denmark)

    Hansen, B F; Mortensen, A; Hansen, J F


    estimation of aortic atherosclerosis extent and by biochemical analysis of aortic cholesterol content. No noteworthy atherosclerosis was demonstrated within 19 months in heterozygous rabbits. In homozygous rabbits, atherosclerotic lesions were seen from the age of 4 months and progressed with age. All 19......-month-old rabbits had severe atherosclerotic disease. As much as 64% of the variation in atherosclerosis extent/severity could be explained by serum cholesterol and age. A highly significant correlation between the various methods for quantitation of atherosclerosis extent and/or severity...... was demonstrated, suggesting that quantitative microscopy, macroscopic morphometry and determination of aortic cholesterol content may be equally valid as a measure of atherosclerosis in WHHL rabbits and are therefore interchangeable....

  11. Molecules implicated in glucose homeostasis are differentially expressed in the trachea of lean and obese Zucker rats

    Directory of Open Access Journals (Sweden)

    F. Merigo


    Full Text Available Recent studies indicate that the processes mediated by the (T1R2/T1R3 glucose/sugar receptor of gustatory cells in the tongue, and hormones like leptin and ghrelin contribute to the regulation of glucose homeostasis. Altered plasma levels of leptin and ghrelin are associated with obesity both in humans and rodents. In the present study, we evaluated the ultrastructure of the mucosa, and the expression of molecules implicated in the regulation of glucose homeostasis (GLUT2, SGLT1, T1R3, ghrelin and its receptor in the trachea of an animal model of obesity (Zucker rats. We found that the tracheal epithelium of obese animals was characterized by the presence of poorly differentiated cells. Ciliated and secretory cells were the cell lineages with greatest loss of differentiation. Severe epithelial alterations were associated with marked deposit of extracellular matrix in the lamina propria. The expression pattern of GLUT2 and SGLT1 glucose transporters was similar in the trachea of both the Zucker rat genotypes, whereas that of T1R3 was reduced in ciliated cells of obese rats. A different immunolocalization for ghrelin was also found in the trachea of obese rats. In conclusion, the tracheal morphological alterations in obese animals seem to compromise the expression of molecules involved in the homeostasis of glucose.

  12. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis. (United States)

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed


    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance.

  13. Analysing Symbolic Expressions in Secondary School Chemistry: Their Functions and Implications for Pedagogy (United States)

    Liu, Yu; Taber, Keith S.


    Symbolic expressions are essential resources for producing knowledge, yet they are a source of learning difficulties in chemistry education. This study aims to employ social semiotics to analyse the symbolic representation of chemistry from two complementary perspectives, referred to here as contextual (i.e., historical) and functional. First, the…

  14. Clinical Implications of Phosphorylated STAT3 Expression in De Novo Diffuse Large B-cell Lymphoma

    NARCIS (Netherlands)

    Ok, C.Y.; Chen, J.; Xu-Monette, Z.Y.; Tzankov, A.; Manyam, G.C.; Li, L.; Visco, C.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Choi, W.W.; Krieken, J.H.J.M. van; Huh, J.; Zhao, X.; Ponzoni, M.; Ferreri, A.J.; Bertoni, F.; Farnen, J.P.; Moller, M.B.; Piris, M.A.; Winter, J.N.; Medeiros, L.J.; Young, K.H.


    PURPOSE: Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor growth, invasion, cell proliferation, angiogenesis, immune response, and survival. Data regarding expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and the impact of ph

  15. Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in extra-mitochondrial energy metabolism.

    Directory of Open Access Journals (Sweden)

    Jong-Min Lee


    Full Text Available The Huntington's disease (HD CAG repeat, encoding a polymorphic glutamine tract in huntingtin, is inversely correlated with cellular energy level, with alleles over approximately 37 repeats leading to the loss of striatal neurons. This early HD neuronal specificity can be modeled by respiratory chain inhibitor 3-nitropropionic acid (3-NP and, like 3-NP, mutant huntingtin has been proposed to directly influence the mitochondrion, via interaction or decreased PGC-1alpha expression. We have tested this hypothesis by comparing the gene expression changes due to mutant huntingtin accurately expressed in STHdh(Q111/Q111 cells with the changes produced by 3-NP treatment of wild-type striatal cells. In general, the HD mutation did not mimic 3-NP, although both produced a state of energy collapse that was mildly alleviated by the PGC-1alpha-coregulated nuclear respiratory factor 1 (Nrf-1. Moreover, unlike 3-NP, the HD CAG repeat did not significantly alter mitochondrial pathways in STHdh(Q111/Q111 cells, despite decreased Ppargc1a expression. Instead, the HD mutation enriched for processes linked to huntingtin normal function and Nf-kappaB signaling. Thus, rather than a direct impact on the mitochondrion, the polyglutamine tract may modulate some aspect of huntingtin's activity in extra-mitochondrial energy metabolism. Elucidation of this HD CAG-dependent pathway would spur efforts to achieve energy-based therapeutics in HD.

  16. Structure and expression of three Emx genes in the dogfish Scyliorhinus canicula: functional and evolutionary implications. (United States)

    Derobert, Y; Plouhinec, J L; Sauka-Spengler, T; Le Mentec, C; Baratte, B; Jaillard, D; Mazan, S


    We report the characterization of three Emx genes in a chondrichthyan, the dogfish Scyliorhinus canicula. Comparisons of these genes with their osteichthyan counterparts indicate that the gnathostome Emx genes belong to three distinct orthology classes, each containing one of the dogfish genes and either the tetrapod Emx1 genes (Emx1 class), the osteichthyan Emx2 genes (Emx2 class) or the zebrafish Emx1 gene (Emx3 class). While the three classes could be retrieved from the pufferfish genome data, no indication of an Emx3-related gene in tetrapods could be found in the databases, suggesting that this class may have been lost in this taxon. Expression pattern comparisons of the three dogfish Emx genes and their osteichthyan counterparts indicate that not only telencephalic, but also diencephalic Emx expression territories are highly conserved among gnathostomes. In particular, all gnathostomes share an early, dynamic phase of Emx expression, spanning presumptive dorsal diencephalic territories, which involves Emx3 in the dogfish, but another orthology class, Emx2, in tetrapods. In addition, the dogfish Emx2 gene shows a highly specific expression domain in the cephalic paraxial mesoderm from the end of gastrulation and throughout neurulation, which suggests a role in the segmentation of the cephalic mesoderm.


    The objective of this study was to determine the molecular bases of disordered hepatic function and disease susceptibility in obesity. We compared global gene expression in liver biopsies from morbidly obese (MO) women undergoing gastric bypass (GBP) surgery with that of women un...

  18. Hormonal Modulation of Breast Cancer Gene Expression: Implications for Intrinsic Subtyping in Premenopausal Women (United States)

    Bernhardt, Sarah M.; Dasari, Pallave; Walsh, David; Townsend, Amanda R.; Price, Timothy J.; Ingman, Wendy V.


    Clinics are increasingly adopting gene-expression profiling to diagnose breast cancer subtype, providing an intrinsic, molecular portrait of the tumor. For example, the PAM50-based Prosigna test quantifies expression of 50 key genes to classify breast cancer subtype, and this method of classification has been demonstrated to be superior over traditional immunohistochemical methods that detect proteins, to predict risk of disease recurrence. However, these tests were largely developed and validated using breast cancer samples from postmenopausal women. Thus, the accuracy of such tests has not been explored in the context of the hormonal fluctuations in estrogen and progesterone that occur during the menstrual cycle in premenopausal women. Concordance between traditional methods of subtyping and the new tests in premenopausal women is likely to depend on the stage of the menstrual cycle at which the tissue sample is taken and the relative effect of hormones on expression of genes versus proteins. The lack of knowledge around the effect of fluctuating estrogen and progesterone on gene expression in breast cancer patients raises serious concerns for intrinsic subtyping in premenopausal women, which comprise about 25% of breast cancer diagnoses. Further research on the impact of the menstrual cycle on intrinsic breast cancer profiling is required if premenopausal women are to benefit from the new technology of intrinsic subtyping. PMID:27896218

  19. Early Lexical Expression in Typically Developing Maltese Children: Implications for the Identification of Language Delay (United States)

    Gatt, Daniela; Grech, Helen; Dodd, Barbara


    Limited word production may be the first indicator of impaired language development. The unavailability of normative data and standardized assessments for young Maltese children hinders the identification of early language delays. This study aimed to document Maltese children's expressive vocabulary growth and accompanying range of variation, to…

  20. Assessment and Therapeutic Application of the Expressive Therapies Continuum: Implications for Brain Structures and Functions (United States)

    Lusebrink, Vija B.


    The Expressive Therapies Continuum (ETC) provides a theoretical model for art-based assessments and applications of media in art therapy. The three levels of the ETC (Kinesthetic/Sensory, Perceptual/Affective, and Cognitive/Symbolic) appear to reflect different functions and structures in the brain that process visual and affective information.…

  1. Prostate Specific Expression of Maspin in a Transgenic Mouse Model: Implications in Prostate Carcinogenesis (United States)


    metastasis talined by H&E. Arre•os ludicate tumor ells. expressing C2N-Maspin tumor cells had significant increase of apoptosis than that of C2N control... activity in human mammary epithelial cells [see comments]. Science, 263: 526-529, 1994. 5. Zhang, M., Maass, N., Magit, D., and Sager, R. Transactivation

  2. Pathobiological implications of mucin (MUC expression in the outcome of small bowel cancer.

    Directory of Open Access Journals (Sweden)

    Hiroaki Shibahara

    Full Text Available Mucins have been associated with survival in various cancer patients, but there have been no studies of mucins in small bowel carcinoma (SBC. In this study, we investigated the relationships between mucin expression and clinicopathologic factors in 60 SBC cases, in which expression profiles of MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC6 and MUC16 in cancer and normal tissues were examined by immunohistochemistry. MUC1, MUC5AC and MUC16 expression was increased in SBC lesions compared to the normal epithelium, and expression of these mucins was related to clinicopathologic factors, as follows: MUC1 [tumor location (p = 0.019, depth (p = 0.017 and curability (p = 0.007], MUC5AC [tumor location (p = 0.063 and lymph node metastasis (p = 0.059], and MUC16 [venous invasion (p = 0.016 and curability (p = 0.016]. Analysis of 58 cases with survival data revealed five factors associated with a poor prognosis: poorly-differentiated or neuroendocrine histological type (p<0.001, lymph node metastasis (p<0.001, lymphatic invasion (p = 0.026, venous invasion (p<0.001 and curative resection (p<0.001, in addition to expression of MUC1 (p = 0.042, MUC5AC (p = 0.007 and MUC16 (p<0.001. In subsequent multivariate analysis with curability as the covariate, lymph node metastasis, venous invasion, and MUC5AC and/or MUC16 expression were significantly related to the prognosis. Multivariate analysis in curative cases (n = 45 showed that SBC with MUC5AC and/or MUC16 expression had a significantly independent high hazard risk after adjusting for the effects of venous invasion (hazard ratio: 5.6, 95% confidence interval: 1.8-17. In conclusion, the study shows that a MUC5AC-positive and/or MUC16-positive status is useful as a predictor of a poor outcome in patients with SBC.

  3. Expression of eicosanoid receptors subtypes and eosinophilic inflammation: implication on chronic rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Van Cauwenberge Paul


    Full Text Available Abstract Background Eicosanoid receptors are G-protein-coupled receptors playing an important immunomodulatory role in airway diseases. However, there is little information on the expression of these receptors and their link with eosinophilic inflammation in paranasal sinus diseases. We aimed with this study to investigate the tissue expression of leukotrienes and prostaglandin E2 receptors in chronic rhinosinusitis patients and the link of this regulation with eosinophilic inflammation. Methods Samples were prepared from nasal tissue of patients with chronic rhinosinusitis without nasal polyps (CRS, n = 11, with nasal polyps (CRS-NP, n = 13 and healthy subjects (Controls, n = 6. mRNA expression of CysLT1, CysLT2, BLT1, BLT2, E-prostanoid receptors (EP1, EP2, EP3, EP4 and sol-IL-5Rα was determined by real-time PCR. Concentrations of PGE2, LTC4/D4/E4, LTB4 and sol-IL-5Rα were determined by ELISA and of ECP by ImmunoCap. Protein expression and tissue localization of eicosanoid receptors and activated eosinophils were evaluated by immunohistochemistry. Results CysLT1 mRNA expression was significantly increased in CRS-NP compared to CRS and controls, and CRS compared to controls, whereas CysLT2 mRNA was enhanced in both CRS groups without differences between them. Levels of both receptors correlated to the number of activated eosinophils, sol-IL-5Rα, ECP and LTC4/D4/E4 concentrations in the disease groups. PGE2 protein concentrations and prostanoid receptors EP1 and EP3 were down-regulated in the CRS-NP tissue vs. CRS and controls, whereas EP2 and EP4 expression was enhanced in CRS and CRS-NP patients vs. controls. No differences in BLT receptors were observed between patients and controls. Conclusion CyLTs receptors are up-regulated in nasal polyp tissue and their expression correlate with eosinophilic inflammation supporting previous results. Eicosanoid receptors mRNA pattern observed suggests that down-regulation of EP1 and EP3 in CRS-NP and

  4. Influence of blood-activating and blood-breaking medicines on the PCNA protein and VEGF mRNA, VEGFR-2 mRNA expression in the rat model with atherosclerosis%活血、破血药对动脉粥样硬化大鼠PCNA蛋白、VEGFmRNA、VEGFR-2mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    谢海波; 罗尧岳; 莫新民; 吴亦之; 卢青; 徐豫湘; 李武


    Objective To discuss the influence of blood-activating(angelica sinensis and ligusticum wallichii) and blood-breaking medicines(rhizoma sparganii and curcuma zedoary) on the PCNA protein and VEGFmRNA,VEGFR-2 mRNA expressions in the aortic tunica intima of rats with atherosclerosis (AS).Methods 60 male Wistar rats were randomly divided into 5 groups (including blank group,model group,statins group,blood-activating medicine group and blood-breaking medicine group) and AS rat model was established by feeding high-fat forage.These medicines were given by intragastric administration for 4 weeks.After treatment,PCNA protein expression level was detected with immunohistochemical staining method and the VEGF mRNA,VEGFR-2 mRNA gene expression levels were tested with hybridization in situ of the aortic tunica intima.Results The positive cell amount of PCNA in the blood-breaking medicine group was lower than that in the blood-activating medicine group (P<0.05).The VEGF mRNA and VEGFR-2 mRNA average gray values in the model group were higher than those in the blank group,statins group,blood-activating medicine group and blood-breaking medicine group,while there were no significant differences between blood-activating medicine group and blood-breaking medicine group.Conclusion Angelica sinensis,Ligusticum wallichii,rhizoma sparganii and curcuma zedoary can inhibit the expression of PCNA protein,VEGF mRNA and VEGFR-2 mRNA,and then inhibit the cell proliferation.The inhibiting effects on the PCNA expression of blood-breaking medicines (rhizoma sparganii and curcuma zedoary) are better than those of bloodactivating medicines(Angelica sinensis and Ligusticum wallichii).%目的 探讨活血药(当归、川芎)、破血药(三棱、莪术)对动脉粥样硬化(AS)的大鼠主动脉增殖细胞核抗原(PCNA)蛋白及血管内皮生长因子(VEGFmRNA)、血管内皮生长因子受体(VEGFR-AS)表达的影响.方法 将60只雄性Wistar大鼠随机分为5组(空白组、模型组、

  5. [Calcified aortic valve disease: association with atherosclerosis]. (United States)

    Toro, Rocío; Mangas, Alipio; Gómez, Francisco


    Calcified aortic valve disease (CAVD) is a prevalent condition, affecting 25% of people older than 65 years. CAVD and atherosclerosis share common risk factors and pathogenic mechanisms. Nevertheless, they present different pathologic lesions. The main factors involved in the pathogenesis of CAVD are genetic predisposition, the process of valvular calcification, deposition of lipoproteins, and chronic inflammation. Studies have suggested a potential benefit from early treatment with angiotensin converting enzyme inhibitors or angiotensin-II receptor blockers, and particularly with statins. Observational studies on risk factors for the CAVD, and randomized clinical trials on primary and secondary prevention in subjects with high risk for the disease, would be necessary to improve the clinical management of CAVD.

  6. A review of Chlamydia pneumoniae and atherosclerosis

    DEFF Research Database (Denmark)

    Lindholt, Jes Sanddal; Fasting, H; Henneberg, E W;


    Chlamydia pneumoniae is a Gram-negative obligate intracellular bacterium that causes acute upper and lower respiratory infections. Its distribution is worldwide. Seroepidemiological studies have shown an association between C. pneumoniae and atherosclerosis, and the risk of acute myocardial infar...... individuals who are or are not infected with C. pneumoniae. The latter are needed in order to clarify the impact of the presence of C. pneumoniae and to avoid indiscriminate use of antimicrobials....... of viable organisms. However, the pathogenicity is unknown, and the significance of detecting the organism is unresolved. In two minor controlled clinical trials, patients with ischaemic heart disease were randomised into antibiotic-treated and placebo groups. Both trials showed a significant reduction...

  7. Autophagy: An Exposing Therapeutic Target in Atherosclerosis. (United States)

    Luo, Yun; Lu, Shan; Zhou, Ping; Ai, Qi-Di; Sun, Gui-Bo; Sun, Xiao-Bo


    Autophagy is an evolutionarily conserved catabolic process whereby the cytoplasmic contents of a cell are sequestered within autophagosomes through a lysosome-dependent pathway. Increasing evidence shows that this process is of great importance in a wide range of diseases, including atherosclerosis (AS). Autophagy can be modulated in advanced AS plaques by cytokines, reactive lipids, lipopolysaccharides, advanced glycation end products, and microRNAs. Autophagy exerts both protective and detrimental functions in vascular disorders. However, despite an increasing interest in autophagy, it remains an underestimated and overlooked phenomenon in AS. Therefore, the precise role of autophagy and its relationship with apoptosis need to be described. This review highlights recent findings on the autophagy activities and signaling pathways in endothelial cells, macrophages, and smooth muscle cells that are accompanied by apoptosis in AS. We conclude with recent studies on autophagy modulation as a new therapeutic approach to treat AS.

  8. [Cholesterol and atherosclerosis. Historical considerations and treatment]. (United States)

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván


    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease.

  9. Chlamydia pneumoniae and Atherosclerosis: The End?

    Directory of Open Access Journals (Sweden)

    LE Nicolle


    Full Text Available In this issue of the Journal, Patrick et al (pages 298-300 report on the results of a pilot study testing the hypothesis that seropositivity to Chlamydia pneumoniae together with a specific bacteriophage protein is associated with first-episode myocardial infarction or unstable angina. The study evolved from an earlier report suggesting that C pneumoniae with phage seropositivity was strongly associated with the presence of abdominal aortic aneurysm. The phage association suggested a potential explanation for some of the variability in previous studies exploring C pneumoniae as a cause for atherosclerosis (ie, only selected strains of C pneumoniae were pathogenic. Patrick et al found no significant association or trend, and the authors concluded that the negative findings in their pilot study did not support further studies to address this potential association.

  10. Ventilatory chaos is impaired in carotid atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Laurence Mangin

    Full Text Available Ventilatory chaos is strongly linked to the activity of central pattern generators, alone or influenced by respiratory or cardiovascular afferents. We hypothesized that carotid atherosclerosis should alter ventilatory chaos through baroreflex and autonomic nervous system dysfunctions. Chaotic dynamics of inspiratory flow was prospectively evaluated in 75 subjects undergoing carotid ultrasonography: 27 with severe carotid stenosis (>70%, 23 with moderate stenosis (<70%, and 25 controls. Chaos was characterized by the noise titration method, the correlation dimension and the largest Lyapunov exponent. Baroreflex sensitivity was estimated in the frequency domain. In the control group, 92% of the time series exhibit nonlinear deterministic chaos with positive noise limit, whereas only 68% had a positive noise limit value in the stenoses groups. Ventilatory chaos was impaired in the groups with carotid stenoses, with significant parallel decrease in the noise limit value, correlation dimension and largest Lyapunov exponent, as compared to controls. In multiple regression models, the percentage of carotid stenosis was the best in predicting the correlation dimension (p<0.001, adjusted R(2: 0.35 and largest Lyapunov exponent (p<0.001, adjusted R(2: 0.6. Baroreflex sensitivity also predicted the correlation dimension values (p = 0.05, and the LLE (p = 0.08. Plaque removal after carotid surgery reversed the loss of ventilatory complexity. To conclude, ventilatory chaos is impaired in carotid atherosclerosis. These findings depend on the severity of the stenosis, its localization, plaque surface and morphology features, and is independently associated with baroreflex sensitivity reduction. These findings should help to understand the determinants of ventilatory complexity and breathing control in pathological conditions.

  11. Adiponectin and Atherosclerosis in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Patrick H. Dessein


    Full Text Available In the present study, we examined the potential impact of adiponectin on carotid ultrasound determined atherosclerosis in 210 (119 black and 91 white RA patients in mixed regression models. Total adiponectin concentrations were smaller in patients with compared to those without the metabolic syndrome (MetS defined waist criterion (median (range = 6.47 (1.23–34.54 versus 8.38 (0.82–85.30 ng/mL, P=0.02, resp.; both total and high molecular weight (HMW adiponectin concentrations were larger in patients with compared to those without joint deformities (7.97 (0.82–85.30 and 3.51 (0.01–35.40 versus 5.36 (1.29–19.49 and 2.34 (0.01–19.49 ng/mL, P=0.003 and 0.02, resp.. Total and HMW adiponectin concentrations were associated with carotid artery plaque in patients with MetS waist (odds ratio (95% CI = 0.87 (0.76–0.99 and 0.92 (0.85–0.99 per 1-standard deviation increment, P=0.02 for both and those without joint deformities (odds ratio (95% CI = 0.94 (0.88–0.99 and 0.94 (0.89–0.99, P=0.03 for both. Plaque prevalence was lower in patients without compared to those with joint deformities (23.4% versus 42.6, P=0.004 in multivariable analysis. In RA patients with abdominal obesity or no clinically evident joint damage, adiponectin concentrations are reduced but nevertheless associated with decreased carotid atherosclerosis.

  12. Effect of age on aortic atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Michael A. Chen; Miwa Kawakubo; Patrick M. Colletti; Dongxiang Xu; Laurie LaBree Dustin; Robert Detrano; Stanley P Azen; Nathan D. Wong; Xue-Qiao Zhao


    Objective To examine the association of atherosclerosis burden in the survivors of an asymptomatic elderly cohort study and its relationship to other coronary risk factors (specifically, age) by evaluating aortic atherosclerotic wall burden by magnetic resonance imaging (MRI). Methods A total of 312 participants in an ongoing observational cohort study underwent cardiac and descending thoracic aorta imaging by MRI. Maximum wall thickness was measured and the mean wall thickness calculated. Wall/outer wall ratio was used as a normalized wall index (NWI) adjusted for artery size difference among participants. Percent wall volume (PWV) was calculated as NWI × 100. Results In this asymptomatic cohort (mean age: 76 years), the mean (SD) aortic wall area and wall thickness were 222 ± 45 mm2 and 2.7 ± 0.4 mm, respectively. Maximum wall thickness was 3.4 ± 0.6 mm, and PWV was 32% ± 4%. Women appeared to have smaller wall area, but after correcting for their smaller artery size, had significantly higher PWV than men (P = 0.03). Older age was associated with larger wall area (P = 0.04 for trend) with similar PWVs. However, there were no statistically significant associations between standard risk factors, Framingham global risk, or metabolic syndrome status, therapy for cholesterol or hypertension, coronary or aortic calcium score, and the aortic wall burden. Aortic calcification was associated with coronary calcification. Conclusions Asymptomatic elderly in this cohort had a greater descending thoracic aortic wall volume that correlated with age, and women had a significantly increased PWV compared to men. In these survivors, the atherosclerotic aortic wall burden was not significantly associated with traditional risk factors or with coronary or aortic calcium scores or coronary calcium progression. Results suggest that age, or as yet unidentified risk factor(s), may be responsible for the increase in atherosclerosis.

  13. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications. (United States)

    Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal


    Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.

  14. Heat shock protein expression in relation to reproductive cycle in land snails: Implications for survival. (United States)

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev


    Land snails are subject to daily and seasonal variations in temperature and in water availability and use heat shock proteins (HSPs) as part of their survival strategy. We tested whether the reproductive cycle of land snails affects the endogenous levels of HSPs, and their involvement in the reproductive process. We examined HSP levels in the foot tissue of two Sphincterochila species, S. cariosa and S. zonata, before and after laying eggs, and analyzed the albumen gland (reproductive organ) of both species and eggs of S. cariosa for the presence and quantity of various HSPs. Our study shows reduction in the expression level of Hsp70 isoforms and Hsp90 in S. zonata foot and of Hsp74 in S. cariosa foot during the period preceding egg laying compared to the post-reproductive stage. Hsp70 isoforms and Hsp25 were highly expressed in both large albumen glands and in freshly laid eggs of S. cariosa, whereas large albumen glands of S. zonata expressed mainly Hsp70 isoforms. We conclude that a trade-off between survival and fertility is responsible for the expression level of HSPs in the foot tissue of Sphincterochila snails. Our study shows that HSPs are involved in the reproductive process. We propose that parental provision of HSPs may be part of a "be prepared" strategy of Sphincterochila snails, and that HSPs may play important roles in the survival strategy of land snails during the early life stages. Our observations also highlight the importance of the reproductive status in study of whole organisms, especially when assessing the HSP response to stress.

  15. A circadian gene expression atlas in mammals: implications for biology and medicine. (United States)

    Zhang, Ray; Lahens, Nicholas F; Ballance, Heather I; Hughes, Michael E; Hogenesch, John B


    To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional "rush hours" preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.

  16. Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption. (United States)

    Bayele, Henry K; Balesaria, Sara; Srai, Surjit K S


    Hepcidin is a liver-derived antimicrobial peptide that regulates iron absorption and is also an integral part of the acute phase response. In a previous report, we found evidence that this peptide could also be induced by toxic heavy metals and xenobiotics, thus broadening its teleological role as a defensin. However it remained unclear how its sensing of disparate biotic and abiotic stressors might be integrated at the transcriptional level. We hypothesized that its function in cytoprotection may be regulated by NFE2-related factor 2 (Nrf2), the master transcriptional controller of cellular stress defenses. In this report, we show that hepcidin regulation is inextricably linked to the acute stress response through Nrf2 signaling. Nrf2 regulates hepcidin expression from a prototypical antioxidant response element in its promoter, and by synergizing with other basic leucine-zipper transcription factors. We also show that polyphenolic small molecules or phytoestrogens commonly found in fruits and vegetables including the red wine constituent resveratrol can induce hepcidin expression in vitro and post-prandially, with concomitant reductions in circulating iron levels and transferrin saturation by one such polyphenol quercetin. Furthermore, these molecules derepress hepcidin promoter activity when its transcription by Nrf2 is repressed by Keap1. Taken together, the data show that hepcidin is a prototypical antioxidant response or cytoprotective gene within the Nrf2 transcriptional circuitry. The ability of phytoestrogens to modulate hepcidin expression in vivo suggests a novel mechanism by which diet may impact iron homeostasis.

  17. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. (United States)

    Hegeman, C E; Good, L L; Grabau, E A


    Phytic acid, a phosphorylated derivative of myo-inositol, functions as the major storage form of phosphorus in plant seeds. Myo-inositol phosphates, including phytic acid, play diverse roles in plants as signal transduction molecules, osmoprotectants, and cell wall constituents. D-myo-inositol-3-phosphate synthase (MIPS EC catalyzes the first step in de novo synthesis of myo-inositol. A soybean (Glycine max) MIPS cDNA (GmMIPS1) was isolated by reverse transcriptase-PCR using consensus primers designed from highly conserved regions in other plant MIPS sequences. Southern-blot analysis and database searches indicated the presence of at least four MIPS genes in the soybean genome. Northern-blot and immunoblot analyses indicated higher MIPS expression and accumulation in immature seeds than in other soybean tissues. MIPS was expressed early in the cotyledonary stage of seed development. The GmMIPS1 expression pattern suggested that it encodes a MIPS isoform that functions in seeds to generate D-myo-inositol-3-phosphate as a substrate for phytic acid biosynthesis.

  18. Functional expression of a proliferation-related ligand in hepatocellular carcinoma and its implications for neovascularization

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Okano; Norihiko Yamamoto; Kazushi Sugimoto; Kazumoto Murata; Takeshi Nakano; Katsuya Shiraki; Yutaka Yamanaka; Hidekazu Inoue; Tomoyuki Kawakita; Yukiko Saitou; Yumi Yamaguchi; Naoyuki Enokimura; Keiichi Ito


    AIM: To detect the expression of a proliferation-related ligand on human hepatocellular carcinoma (HCC) cell lines (SK-Hep1, HLE and HepG2) and in culture medium.METHODS: APRIL expression was analyzed by Western blotting in HCC cell lines. Effects of APRIL to cell count and angiogenesis were analyzed, too.RESULTS: Recombinant human APRIL (rhAPRIL) increased cell viability of HepG2 cells and, in HUVEC, rhAPRIL provided slight tolerance to cell death from serum starvation. Soluble APRIL (sAPRIL) from HLE cells increased after serum starvation, but did not change in SK-Hep1 or HepG2 cells. These cells showed down-regulation of VEGF after incubation with anti-APRIL antibody.Furthermore, culture medium from the HCC cells treated with anti-APRIL antibody treatment inhibited tube formation of HUVECs.CONCLUSION: Functional expression of APRIL might contribute to neovascularization via an upregulation of VEGF in HCC.

  19. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. (United States)

    Curtin, James F; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R; Castro, Maria G


    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.

  20. Avolition and expressive deficits capture negative symptom phenomenology: implications for DSM-5 and schizophrenia research. (United States)

    Messinger, Julie W; Trémeau, Fabien; Antonius, Daniel; Mendelsohn, Erika; Prudent, Vasthie; Stanford, Arielle D; Malaspina, Dolores


    The DSM-5 formulation presents an opportunity to refine the negative symptom assessments that are crucial for a schizophrenia diagnosis. This review traces the history of negative symptom constructs in neuropsychiatry from their earliest conceptualizations in the 19th century. It presents the relevant literature for distinguishing between different types of negative symptoms. Although a National Institute of Mental Health consensus initiative proposed that there are five separate negative symptom domains, our review of the individual items demonstrates no more than three negative symptom domains. Indeed, numerous factor analyses of separate negative symptom scales routinely identify only two domains: 1) expressive deficits, which include affective, linguistic and paralinguistic expressions, and 2) avolition for daily life and social activities. We propose that a focus on expressive deficits and avolition will be of optimum utility for diagnosis, treatment-considerations, and research purposes compared to other negative symptom constructs. We recommend that these two domains should be assessed as separate dimensions in the DSM-5 criteria.

  1. Gender-dependent Expression of Murine Irf5 Gene: Implications for Sex Bias in Autoimmunity (United States)

    Shen, Hui; Panchanathan, Ravichandran; Rajavelu, Priya; Duan, Xin; Gould, Karen A.; Choubey, Divaker


    Molecular mechanisms that contribute to sex bias in the development of systemic lupus erythematosus (SLE), an autoimmune disease, remain unknown. We found that the expression levels of interferon regulatory factor 5 (IRF5), a lupus susceptibility factor, depend on gender of mice. We found that steady-state levels of the Irf5 mRNA were relatively higher in splenic cells from certain autoimmune-prone mice (for example, NZB and NZB/W F1) than in non-autoimmune C57BL/6 mice. Additionally, levels of Irf5 mRNA and protein were higher in females than in strain and age-matched males. Accordingly, splenic cells from estrogen receptor-alpha (ERα) knockout, when compared with the wild-type (ERα+/+), female mice expressed relatively lower levels of Irf5 mRNA and the treatment of splenic cells with 17β-estradiol increased the levels. Furthermore, splenic B cells from the female mice had relatively more IRF5 protein in the nucleus than the male mice. Collectively, our observations demonstrate a gender bias in the expression and sub-cellular localization of the murine IRF5. PMID:20802013

  2. Micro-minicircle Gene Therapy: Implications of Size on Fermentation, Complexation, Shearing Resistance, and Expression (United States)

    Stenler, Sofia; Wiklander, Oscar PB; Badal-Tejedor, Maria; Turunen, Janne; Nordin, Joel Z; Hallengärd, David; Wahren, Britta; Andaloussi, Samir EL; Rutland, Mark W; Smith, CI Edvard; Lundin, Karin E; Blomberg, Pontus


    The minicircle (MC), composed of eukaryotic sequences only, is an interesting approach to increase the safety and efficiency of plasmid-based vectors for gene therapy. In this paper, we investigate micro-MC (miMC) vectors encoding small regulatory RNA. We use a construct encoding a splice-correcting U7 small nuclear RNA, which results in a vector of 650 base pairs (bp), as compared to a conventional 3600 bp plasmid carrying the same expression cassette. Furthermore, we construct miMCs of varying sizes carrying different number of these cassettes. This allows us to evaluate how size influences production, super-coiling, stability and efficiency of the vector. We characterize coiling morphology by atomic force microscopy and measure the resistance to shearing forces caused by an injector device, the Biojector. We compare the behavior of miMCs and plasmids in vitro using lipofection and electroporation, as well as in vivo in mice. We here show that when the size of the miMC is reduced, the formation of dimers and trimers increases. There seems to be a lower size limit for efficient expression. We demonstrate that miMCs are more robust than plasmids when exposed to shearing forces, and that they show extended expression in vivo. PMID:24399204

  3. Low and high expressing alleles of the LMNA gene: implications for laminopathy disease development.

    Directory of Open Access Journals (Sweden)

    Sofía Rodríguez

    Full Text Available Today, there are at least a dozen different genetic disorders caused by mutations within the LMNA gene, and collectively, they are named laminopathies. Interestingly, the same mutation can cause phenotypes with different severities or even different disorders and might, in some cases, be asymptomatic. We hypothesized that one possible contributing mechanism for this phenotypic variability could be the existence of high and low expressing alleles in the LMNA locus. To investigate this hypothesis, we developed an allele-specific absolute quantification method for lamin A and lamin C transcripts using the polymorphic rs4641(C/TLMNA coding SNP. The contribution of each allele to the total transcript level was investigated in nine informative human primary dermal fibroblast cultures from Hutchinson-Gilford progeria syndrome (HGPS and unaffected controls. Our results show differential expression of the two alleles. The C allele is more frequently expressed and accounts for ∼70% of the lamin A and lamin C transcripts. Analysis of samples from six patients with Hutchinson-Gilford progeria syndrome showed that the c.1824C>T, p.G608G mutation is located in both the C and the T allele, which might account for the variability in phenotype seen among HGPS patients. Our method should be useful for further studies of human samples with mutations in the LMNA gene and to increase the understanding of the link between genotype and phenotype in laminopathies.

  4. Connective tissue diseases and noninvasive evaluation of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ardita G


    Full Text Available Giorgio Ardita, Giacomo Failla, Paolo Maria Finocchiaro, Francesco Mugno, Luigi Attanasio, Salvatore Timineri, Michelangelo Maria Di SalvoCardiovascular Department, Angiology Unit, Ferrarotto Hospital, Catania, ItalyAbstract: Connective tissue diseases (CTDs are associated with increased risk of cardiovascular disease due to accelerated atherosclerosis. In patients with autoimmune disorders, in addition to traditional risk factors, an immune-mediated inflammatory process of the vasculature seems to contribute to atherogenesis. Several pathogenetic mechanisms have been proposed, including chronic inflammation and immunologic abnormalities, both able to produce vascular damage. Macrovascular atherosclerosis can be noninvasively evaluated by ultrasound measurement of carotid or femoral plaque. Subclinical atherosclerosis can be evaluated by well-established noninvasive techniques which rely on ultrasound detection of carotid intima-media thickness. Flow-mediated vasodilatation and arterial stiffness are considered markers of endothelial dysfunction and subclinical atherosclerosis, respectively, and have been recently found to be impaired early in a wide spectrum of autoimmune diseases. Carotid intima-media thickness turns out to be a leading marker of subclinical atherosclerosis, and many studies recognize its role as a predictor of future vascular events, both in non-CTD individuals and in CTD patients. In rheumatic diseases, flow-mediated dilatation and arterial stiffness prove to be strongly correlated with inflammation, disease damage index, and with subclinical atherosclerosis, although their prognostic role has not yet been conclusively shown. Systemic lupus erythematosus, rheumatoid arthritis, and likely antiphospholipid syndrome are better associated with premature and accelerated atherosclerosis. Inconclusive results were reported in systemic sclerosis.Keywords: rheumatic disease, subclinical atherosclerosis, arterial stiffness

  5. Tissue elasticity regulated tumor gene expression: implication for diagnostic biomarkers of primitive neuroectodermal tumor.

    Directory of Open Access Journals (Sweden)

    Long T Vu

    Full Text Available The tumor microenvironment consists of both physical and chemical factors. Tissue elasticity is one physical factor contributing to the microenvironment of tumor cells. To test the importance of tissue elasticity in cell culture, primitive neuroectodermal tumor (PNET stem cells were cultured on soft polyacrylamide (PAA hydrogel plates that mimics the elasticity of brain tissue compared with PNET on standard polystyrene (PS plates. We report the molecular profiles of PNET grown on either PAA or PS.A whole-genome microarray profile of transcriptional expression between the two culture conditions was performed as a way to probe effects of substrate on cell behavior in culture. The results showed more genes downregulated on PAA compared to PS. This led us to propose microRNA (miRNA silencing as a potential mechanism for downregulation. Bioinformatic analysis predicted a greater number of miRNA binding sites from the 3' UTR of downregulated genes and identified as specific miRNA binding sites that were enriched when cells were grown on PAA-this supports the hypothesis that tissue elasticity plays a role in influencing miRNA expression. Thus, Dicer was examined to determine if miRNA processing was affected by tissue elasticity. Dicer genes were downregulated on PAA and had multiple predicted miRNA binding sites in its 3' UTR that matched the miRNA binding sites found enriched on PAA. Many differentially regulated genes were found to be present on PS but downregulated on PAA were mapped onto intron sequences. This suggests expression of alternative polyadenylation sites within intron regions that provide alternative 3' UTRs and alternative miRNA binding sites. This results in tissue specific transcriptional downregulation of mRNA in humans by miRNA. We propose a mechanism, driven by the physical characteristics of the microenvironment by which downregulation of genes occur. We found that tissue elasticity-mediated cytokines (TGFβ2 and TNFα signaling

  6. Experimental Study on the Preventive Mechanism of Salviae Miltiorrhizae Against Atherosclerosis in Rabbits Models

    Institute of Scientific and Technical Information of China (English)

    李树生; 万磊


    Summary: The preventive mechanism of salviae miltiorrhizae (SM) against experimental atherosclerosis (AS) in rabbits models was investigated. The experimental AS rabbit models were reproduced by feeding the high cholesterol diet. The changes of atherosclerotic plaques in normal group, model group and SM treated group were observed. The levels of serum TG, TC, HDL-C and LDL-C were determined. The immunohistochemistry was used to detect the expression of Bcl-2,Bax and IL-6 proteins in atherosclerotic plaques. The results showed that the level of serum TG in SM treated group was significantly lower than in model group (P<0.01). Immunohistochemistry revealed that the expression of Bcl-2, Bax ano IL-6 in model group was significantly higher than in normal group.In the SM group, the expression of Bcl-2 protein was up-regulated and that of Bax was down-regulated. It was suggested that SM could inhibit formation of AS in experimental rabbits. To decrease the expression of Bax and increase the expression of Bcl-2 protein may be one of the mechanisms of SM against atherosclerosis.

  7. Water-Soluble Components of Sesame Oil Reduce Inflammation and Atherosclerosis. (United States)

    Narasimhulu, Chandrakala Aluganti; Selvarajan, Krithika; Burge, Kathryn Young; Litvinov, Dmitry; Sengupta, Bhaswati; Parthasarathy, Sampath


    Atherosclerosis, a major form of cardiovascular disease, is now recognized as a chronic inflammatory disease. Nonpharmacological means of treating chronic diseases have gained attention recently. We previously reported that sesame oil aqueous extract (SOAE) has anti-inflammatory properties, both in vitro and in vivo. In this study, we have investigated the antiatherosclerotic properties of SOAE, and the mechanisms, through genes and inflammatory markers, by which SOAE might modulate atherosclerosis. Low-density lipoprotein receptor (LDL-R) knockout female mice were fed with either a high-fat (HF) diet or an HF diet supplemented with SOAE. Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Plasma samples were used for global cytokine array. RNA was extracted from both liver tissue and the aorta, and used for gene analysis. The high-fat diet supplemented with SOAE significantly reduced atherosclerotic lesions, plasma cholesterol, and LDL cholesterol levels in LDL-R(-/-) mice. Plasma inflammatory cytokines were reduced in the SOAE diet-fed animals, but not significantly, demonstrating potential anti-inflammatory properties of SOAE. Gene analysis showed the HF diet supplemented with SOAE reduced gene expression involved in inflammation and induced genes involved in cholesterol metabolism and reverse cholesterol transport, an anti-inflammatory process. Our studies suggest that a SOAE-enriched diet could be an effective nonpharmacological treatment for atherosclerosis by controlling inflammation and regulating lipid metabolism.

  8. Regulation of tubulin expression by micro-RNAs: implications for drug resistance. (United States)

    Lobert, Sharon; Graichen, Mary E


    In this chapter, we provide an overview of methods for studying micro-RNA regulation of tubulin isotypes. In clinical studies, β-tubulin isotypes were found to be biomarkers for tumor formation. In addition, because changes in the levels of specific β-tubulin isotypes alter the stability of microtubules in mitotic spindles in vitro, it has been hypothesized that changes in microtubule protein levels could contribute to chemotherapy resistance. Over the past 15 years, micro-RNAs have been shown to target mRNAs in signaling pathways involved in tumor suppression, as well as tumorigenesis. Investigating micro-RNA regulation of tubulin isotypes will shed light on the mechanisms underlying the processes that implicate tubulin isotypes as biomarkers for aggressive tumors or chemotherapy resistance. The methods discussed in this chapter include the use of micro-RNA superarrays, next-generation sequencing, real-time PCR experiments, upregulation of micro-RNAs, and immunoprecipitation of RNA-induced silencing complex. We will show examples of data collected using these methods and how these data contribute to understanding paclitaxel resistance.

  9. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver


    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  10. Differential expression of CD10 in prostate cancer and its clinical implication

    Directory of Open Access Journals (Sweden)

    Porter Michael P


    Full Text Available Abstract Background CD10 is a transmembrane metallo-endopeptidase that cleaves and inactivates a variety of peptide growth factors. Loss of CD10 expression is a common, early event in human prostate cancer; however, CD10 positive cancer cells frequently appear in lymph node metastasis. We hypothesize that prostate tumors expressing high levels of CD10 have a more aggressive biology with an early propensity towards lymph node metastasis. Methods Eighty-seven patients, 53 with and 34 without pathologically organ confined prostate cancer at the time of radical prostatectomy (RP, were used for the study. Fourteen patients with lymph node metastasis found at the time of surgery were identified and included in this study. Serial sections from available frozen tumor specimens in OCT were processed for CD10 immunohistochemistry. Cancer glands were graded for the presence and intensity of CD10 staining, and overall percentage of glands staining positive was estimated. Clinical characteristics including pre- and post-operative PSA and Gleason score were obtained. A similar study as a control for the statistical analysis was performed with CD13 staining. For statistical analysis, strong staining was defined as > 20% positivity based on the observed maximum separation of the cumulative distributions. Results CD10 expression significantly correlated with Gleason grade, tumor stage, and with pre-operative serum PSA. Seventy percent of RP specimens from patients with node metastasis showed strong staining for CD10, compared to 30% in the entire cohort (OR = 3.4, 95% CI: 1.08–10.75, P = 0.019. Increased staining for CD10 was associated with PSA recurrence after RP. CD13 staining did not correlate significantly with any of these same clinical parameters. Conclusion These results suggest that the expression of CD10 by prostate cancer corresponds to a more aggressive phenotype with a higher malignant potential, described histologically by the Gleason score. CD10

  11. NPAS3 Regulates Transcription and Expression of VGF: Implications for Neurogenesis and Psychiatric Disorders (United States)

    Yang, Dongxue; Zhang, Wenbo; Padhiar, Arshad; Yue, Yao; Shi, Yonghui; Zheng, Tiezheng; Davis, Kaspar; Zhang, Yu; Huang, Min; Li, Yuyuan; Sha, Li


    Neuronal PAS domain protein 3 (NPAS3) and VGF (VGF Nerve Growth Factor (NGF) Inducible) are important for neurogenesis and psychiatric disorders. Previously, we have demonstrated that NPAS3 regulates VGF at the transcriptional level. In this study, VGF (non-acronymic) was found regulated by NPAS3 in neuronal stem cells. However, the underlying mechanism of this regulation remains unclear. The aim of this study was to explore the correlation of NPAS3 and VGF, and their roles in neural cell proliferation, in the context of psychiatric illnesses. First, we focused on the structure of NPAS3, to identify the functional domain of NPAS3. Truncated NPAS3 lacking transactivation domain was also found to activate VGF, which suggested that not only transactivation domain but other structural motifs were also involved in the regulation. Second, Mutated enhancer box (E-box) of VGF promoter showed a significant response to this basic helix-loop-helix (bHLH) transcription factor, which suggested an indirect regulatory mechanism for controlling VGF expression by NPAS3. κB site within VGF promoter was identified for VGF activation induced by NPAS3, apart from direct binding to E-box. Furthermore, ectopically expressed NPAS3 in PC12 cells produced parallel responses for nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB (P65)] expression, which specifies that NPAS3 regulates VGF through the NF-κB signaling pathway. Over-expression of NPAS3 also enhances the cell proliferation, which can be blocked by knockdown of VGF. Finally, NPAS3 was found to influence proliferation of neural cells through VGF. Therefore, downstream signaling pathways that are responsible for NPAS3-VGF induced proliferation via glutamate receptors were explored. Combining this work and published literature, a potential network composed by NPAS3, NF-κB, Brain-Derived Neurotrophic Factor (BDNF), NGF and VGF, was proposed. This network collectively detailed how NPAS3 connects with VGF and

  12. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  13. CD1c-Expression by Monocytes - Implications for the Use of Commercial CD1c+ Dendritic Cell Isolation Kits.

    Directory of Open Access Journals (Sweden)

    Martine Schrøder

    Full Text Available Conventional dendritic cells (cDCs comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14- cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs.

  14. Microparticle-Induced Coagulation Relates to Coronary Artery Atherosclerosis in Severe Aortic Valve Stenosis.

    Directory of Open Access Journals (Sweden)

    Patrick Horn

    Full Text Available Circulating microparticles (MPs derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC by computed tomography. Thrombin-antithrombin complex (TATc levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs, endothelial-derived MPs (EMPs and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.

  15. Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Svati H Shah


    Full Text Available Neuropeptide Y (NPY is a strong candidate gene for coronary artery disease (CAD. We have previously identified genetic linkage to familial CAD in the genomic region of NPY. We performed follow-up genetic, biostatistical, and functional analysis of NPY in early-onset CAD. In familial CAD (GENECARD, N = 420 families, we found increased microsatellite linkage to chromosome 7p14 (OSA LOD = 4.2, p = 0.004 in 97 earliest age-of-onset families. Tagged NPY SNPs demonstrated linkage to CAD of a 6-SNP block (LOD = 1.58-2.72, family-based association of this block with CAD (p = 0.02, and stronger linkage to CAD in the earliest age-of-onset families. Association of this 6-SNP block with CAD was validated in: (a 556 non-familial early-onset CAD cases and 256 controls (OR 1.46-1.65, p = 0.01-0.05, showing stronger association in youngest cases (OR 1.84-2.20, p = 0.0004-0.09; and (b GENECARD probands versus non-familial controls (OR 1.79-2.06, p = 0.003-0.02. A promoter SNP (rs16147 within this 6-SNP block was associated with higher plasma NPY levels (p = 0.04. To assess a causal role of NPY in atherosclerosis, we applied the NPY1-receptor-antagonist BIBP-3226 adventitially to endothelium-denuded carotid arteries of apolipoprotein E-deficient mice; treatment reduced atherosclerotic neointimal area by 50% (p = 0.03. Thus, NPY variants associate with atherosclerosis in two independent datasets (with strong age-of-onset effects and show allele-specific expression with NPY levels, while NPY receptor antagonism reduces atherosclerosis in mice. We conclude that NPY contributes to atherosclerosis pathogenesis.

  16. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress

    Directory of Open Access Journals (Sweden)

    Nel Andre E


    Full Text Available Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles ( Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.

  17. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications (United States)



    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  18. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Gillis John


    Full Text Available Abstract Background In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. Methods Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. Results In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. Conclusion Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines.

  19. Bidirectional promoters of insects: genome-wide comparison, evolutionary implication and influence on gene expression. (United States)

    Behura, Susanta K; Severson, David W


    Bidirectional promoters are widespread in insect genomes. By analyzing 23 insect genomes we show that the frequency of bidirectional gene pairs varies according to genome compactness and density of genes among the species. The density of bidirectional genes expected based on number of genes per megabase of genome explains the observed density suggesting that bidirectional pairing of genes may be due to random event. We identified specific transcription factor binding motifs that are enriched in bidirectional promoters across insect species. Furthermore, we observed that bidirectional promoters may act as transcriptional hotspots in insect genomes where protein coding genes tend to aggregate in significantly biased (p promoters. Natural selection seems to have an association with the extent of bidirectionality of genes among the species. The rate of non-synonymous-to-synonymous changes (dN/dS) shows a second-order polynomial distribution with bidirectionality between species indicating that bidirectionality is dependent upon evolutionary pressure acting on the genomes. Analysis of genome-wide microarray expression data of multiple insect species suggested that bidirectionality has a similar association with transcriptome variation across species. Furthermore, bidirectional promoters show significant association with correlated expression of the divergent gene pairs depending upon their motif composition. Analysis of gene ontology showed that bidirectional genes tend to have a common association with functions related to "binding" (including ion binding, nucleotide binding and protein binding) across genomes. Such functional constraint of bidirectional genes may explain their widespread persistence in genome of diverse insect species.

  20. Otx2 expression and implications for olfactory imprinting in the anemonefish, Amphiprion percula

    Directory of Open Access Journals (Sweden)

    Heather D. Veilleux


    The otx2 gene encodes a transcription factor (OTX2 essential in the formation of the brain and sensory systems. Specifically, OTX2-positive cells are associated with axons in the olfactory system of mice and otx2 is upregulated in odour-exposed zebrafish, indicating a possible role in olfactory imprinting. In this study, otx2 was used as a candidate gene to investigate the molecular mechanisms of olfactory imprinting to settlement cues in the coral reef anemonefish, Amphiprion percula. The A. percula otx2 (Ap-otx2 gene was elucidated, validated, and its expression tested in settlement-stage A. percula by exposing them to behaviourally relevant olfactory settlement cues in the first 24 hours post-hatching, or daily throughout the larval phase. In-situ hybridisation revealed expression of Ap-otx2 throughout the olfactory epithelium with increased transcript staining in odour-exposed settlement-stage larval fish compared to no-odour controls, in all scenarios. This suggests that Ap-otx2 may be involved in olfactory imprinting to behaviourally relevant settlement odours in A. percula.

  1. Implication of expression of Nanog in prostate cancer cells and their stem cells. (United States)

    Gong, Chen; Liao, Hui; Guo, Fengjin; Qin, Liang; Qi, Jun


    Recent studies suggested that the prostate cancer may arise from prostate cancer stem cells that share some same characteristics with normal stem cells. The purpose of this study was to detect the differences of Nanog expression between PC3 prostate cancer cell line and its tumor stem cells, and the relationship was preliminarily examined between Nanog and prostate cancer and its tumor stem cells. By using magnetic active cell sorting (MACS), we isolated a population of CD44(+)/CD133(+) prostate cancer cells that display stem cell characteristics from PC3 cell line. Immunohistochemistry revealed positive expressions of CD44, CD133 and α(2)β(1)-integin in the isolated cells. CCK-8 analysis showed that isolated cells had a strong proliferative ability. The formation of the cell spheres in serum-free medium and holoclones in serum-supplied medium showed that the cells were capable of self-renewing, indicating that the isolated cells were a population of cancer stem-like cells derived from PC3 cell line. Western blotting exhibited that the isolated cells had higher experession of Nanog, an embryonic stem marker, as compared with PC3 cells. Our study showed that Nanog might be helpful in sustaining the self-renewal and the undifferentiation of prostate cancer stem cells, and may serve as a marker for prostate cancer stem cells for isolation and identification.

  2. Angiogenin expression in burn blister fluid: implications for its role in burn wound neovascularization. (United States)

    Pan, Shin-Chen; Wu, Li-Wha; Chen, Chung-Lin; Shieh, Shyh-Jou; Chiu, Haw-Yen


    Deep partial thickness burn (DPTB) wound fluids have a greater propensity for establishing neovascularization than did superficial partial thickness burn (SPTB) wound fluids in our previous study. To investigate the factors responsible for this activity, cytokine array and enzyme-linked immunosorbent assay were used to perform an expression analysis of angiogenic factors in burn fluid. Although present in approximately equal amounts in both SPTB and DPTB blister fluids from burn patients, angiogenin does appear to be involved in the ability of DPTB blister fluid to promote neovascularization in vitro and in vivo. Angiogenin alone was sufficient to induce endothelial differentiation of circulating angiogenic cells (CAC) without vascular endothelial growth factor A involvement. In addition, angiogenin was positively associated with CAC differentiation in the burn blister fluid. Blocking the effect of angiogenin in burn blister fluids resulted in a significant reduction of endothelial cell proliferation, CAC differentiation, and new blood vessels formation in vivo. Moreover, immunohistochemistry revealed that high angiogenin expression colocalizes with high vascularity in human burn wounds at day 7, further supporting our hypothesis that angiogenin is involved in burn wound neovascularization.

  3. Allometry of facial mobility in anthropoid primates: implications for the evolution of facial expression. (United States)

    Dobson, Seth D


    Body size may be an important factor influencing the evolution of facial expression in anthropoid primates due to allometric constraints on the perception of facial movements. Given this hypothesis, I tested the prediction that observed facial mobility is positively correlated with body size in a comparative sample of nonhuman anthropoids. Facial mobility, or the variety of facial movements a species can produce, was estimated using a novel application of the Facial Action Coding System (FACS). I used FACS to estimate facial mobility in 12 nonhuman anthropoid species, based on video recordings of facial activity in zoo animals. Body mass data were taken from the literature. I used phylogenetic generalized least squares (PGLS) to perform a multiple regression analysis with facial mobility as the dependent variable and two independent variables: log body mass and dummy-coded infraorder. Together, body mass and infraorder explain 92% of the variance in facial mobility. However, the partial effect of body mass is much stronger than for infraorder. The results of my study suggest that allometry is an important constraint on the evolution of facial mobility, which may limit the complexity of facial expression in smaller species. More work is needed to clarify the perceptual bases of this allometric pattern.

  4. Differentially expressed genes implicated in embryo abortion of mango identified by suppression subtractive hybridization. (United States)

    He, J H; Ma, F W; Chen, Y Y; Shu, H R


    Embryo abortion in mango severely damages mango production worldwide. The mechanisms by which the mango embryos abort have long been an intriguing question. We used subtractive suppression hybridization to investigate the differentially expressed genes involved in this process. We generated 2 cDNA libraries from normal seed and aborted seed embryos of mango cultivar 'Jinhuang'. One thousand five hundred and seventy-two high-quality expressed sequence tags (ESTs) were obtained, with 1092 from the normal seed tester library and 480 from the aborted seed tester library. These ESTs were assembled into 783 unigenes, including 147 contigs and 636 singletons in contigs; 297 singletons in gene ontology (GO) indicated coverage of a broad range of GO categories. Seven candidate genes from different categories were selected for semi-quantitative PCR analysis, and their possible functions in embryo abortion are discussed. These data provide new insight into the genetic regulation of embryo abortion in mango and may aid in further identification of novel genes and their functions.

  5. Regulations of the key mediators in inflammation and atherosclerosis by Aspirin in human macrophages

    Directory of Open Access Journals (Sweden)

    Zhang Li


    Full Text Available Abstract Although its role to prevent secondary cardiovascular complications has been well established, how acetyl salicylic acid (ASA, aspirin regulates certain key molecules in the atherogenesis is still not known. Considering the role of matrix metalloproteinase-9 (MMP-9 to destabilize the atherosclerotic plaques, the roles of the scavenger receptor class BI (SR-BI and ATP-binding cassette transporter A1 (ABCA1 to promote cholesterol efflux in the foam cells at the plaques, and the role of NF-κB in the overall inflammation related to the atherosclerosis, we addressed whether these molecules are all related to a common mechanism that may be regulated by acetyl salicylic acid. We investigated the effect of ASA to regulate the expressions and activities of these molecules in THP-1 macrophages. Our results showed that ASA inhibited MMP-9 mRNA expression, and caused the decrease in the MMP-9 activities from the cell culture supernatants. In addition, it inhibited the nuclear translocation of NF-κB p65 subunit, thus the activity of this inflammatory molecule. On the contrary, acetyl salicylic acid induced the expressions of ABCA1 and SR-BI, two molecules known to reduce the progression of atherosclerosis, at both mRNA and protein levels. It also stimulated the cholesterol efflux out of macrophages. These data suggest that acetyl salicylic acid may alleviate symptoms of atherosclerosis by two potential mechanisms: maintaining the plaque stability via inhibiting activities of inflammatory molecules MMP-9 and NF-κB, and increasing the cholesterol efflux through inducing expressions of ABCA1 and SR-BI.

  6. [Glycation of extracellular matrix proteins and its role in atherosclerosis]. (United States)

    Kuzan, Aleksandra; Chwiłkowska, Agnieszka; Kobielarz, Magdalena; Pezowicz, Celina; Gamian, Andrzej


    Glycation consists in formation of advanced glycation end-products (AGE) during non-enzymatic reaction between reducing sugars and proteins, lipids or nucleic acids. This review is focused mainly on glycation of collagen and its role in acceleration of vascular disease. Collagen is an extracellular matrix protein characterized by unique structure forming fibrils with great anti-tensile and anti-breaking strength. The protein builds the connective tissue and is responsible for biomechanical properties of blood vessels. It is reported that higher content of glycated collagen correlates with lower elasticity and greater toughness of the vessel walls and, as a consequence, a faster rate of atherosclerosis development. Numerous mechanisms connected with AGE formation are involved in atherogenesis, among others: receptor-mediated production of free radicals, triggering an inflammatory process, activation of leukocytes and thrombocytes, facilitation of LDL binding, change in level of growth factors, adhesion molecules, MMP and some other proteins' expression. The coverages allow the development of therapeutic strategies to prevent or slow down the pathological processes connected with glycation of collagen and other proteins in the artery wall. The main strategies are based on limitation of exogenous AGE, consumption of products which contain rutin, treatment with drugs which inhibit AGE formation, such as pyridoxamine, and chemicals which are able to cleave already formed AGE protein-protein crosslinks, such as ALT-711.

  7. Clinical Implication of Cyclooxygenase-2 Expression for Rectal Cancer Patients with Lymph Node Involvement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Sik; Choi, Young Min; Hur, Won Joo; Kim, Su Jin; Kim, Dae Cheol; Roh, Mee Sook; Hong, Young Seoub; Park, Ki Jae [Dona-A University School of Medicine, Busan (Korea, Republic of)


    To assess the influence of cyclooxygenase-2 (COX-2) expression on the survival of patients with a combination of rectal cancer and lymph node metastasis. The study included rectal cancer patients treated by radical surgery and postoperative radiotherapy at the Dong-A university hospital from 1998 to 2004. A retrospective analysis was performed on a subset of patients that also had lymph node metastasis. After excluding eight of 86 patients, due to missing tissue samples in three, malignant melanoma in one, treatment of gastric cancer around one year before diagnosis in one, detection of lung cancer after one year of diagnosis in one, liver metastasis in one, and refusal of radiotherapy after 720 cGy in one, 78 patients were analyzed. The immunohistochemistry for COX-2 was conducted with an autostainer (BenchMark; Ventana, Tucson, AZ, USA). An image analyzer (TissueMine; Bioimagene, Cupertino, CA, USA) was used for analysis after scanning (ScanScope; Aperio, Vista, CA, USA). A survival analysis was performed using the Kaplan Meier method and significance was evaluated using the log rank test. COX-2 was stained positively in 62 patients (79.5%) and negatively in 16 (20.5%). A total of 6 (7.7%), 15 (19.2%), and 41 (52.6%) patients were of grades 1, 2, and 3, respectively for COX-2 expression. No correlation was found between being positive of COX-2 patient characteristics, which include age (<60-year old vs. {>=}60), sex, operation methods (abdominoperineal resection vs. lower anterior resection), degrees of differentiation, tumor size (<5 cm vs. {>=}5 cm), T stages, N stages, and stages (IIIa, IIIb, IIIc). The 5-year overall and 5-year disease free survival rates for the entire patient population were 57.0% and 51.6%, respectively. The 5-year overall survival rates for the COX-2 positive and negative patients were 53.0% and 72.9%, respectively (p=0.146). Further, the 5-year disease free survival rates for the COX-2 positive and negative patients were 46.3% and 72

  8. Inflammatory and Autoimmune Reactions in Atherosclerosis and Vaccine Design Informatics

    Directory of Open Access Journals (Sweden)

    Michael Jan


    Full Text Available Atherosclerosis is the leading pathological contributor to cardiovascular morbidity and mortality worldwide. As its complex pathogenesis has been gradually unwoven, the regime of treatments and therapies has increased with still much ground to cover. Active research in the past decade has attempted to develop antiatherosclerosis vaccines with some positive results. Nevertheless, it remains to develop a vaccine against atherosclerosis with high affinity, specificity, efficiency, and minimal undesirable pathology. In this review, we explore vaccine development against atherosclerosis by interpolating a number of novel findings in the fields of vascular biology, immunology, and bioinformatics. With recent technological breakthroughs, vaccine development affords precision in specifying the nature of the desired immune response—useful when addressing a disease as complex as atherosclerosis with a manifold of inflammatory and autoimmune components. Moreover, our exploration of available bioinformatic tools for epitope-based vaccine design provides a method to avoid expenditure of excess time or resources.

  9. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. (United States)

    Meng, Lingjun; Jin, Wei; Wang, Yuhui; Huang, Huanwei; Li, Jia; Zhang, Cai


    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE -/- mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come.

  10. [¹⁸F]-fluorodeoxyglucose PET imaging of atherosclerosis

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Høilund-Carlsen, Poul Flemming


    [(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk of atheros......[(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk...... of atherosclerosis-related disease, such as stroke and myocardial infarction. With excellent reproducibility, (18)FDG PET can be a surrogate end point in clinical drug trials, improving trial efficiency. This article summarizes key findings in the literature, discusses limitations of (18)FDG PET imaging...... of atherosclerosis, and reports recommendations to optimize imaging protocols....

  11. MicroRNA-33 in atherosclerosis etiology and pathophysiology. (United States)

    Chen, Wu-Jun; Zhang, Min; Zhao, Guo-Jun; Fu, Yuchang; Zhang, Da-Wei; Zhu, Hai-Bo; Tang, Chao-Ke


    MicroRNAs are a group of endogenous, small non-coding RNA molecules that can induce translation repression of target genes within metazoan cells by specific base pairing with the mRNA of target genes. Recently, microRNA-33 has been discovered as a key regulator in the initiation and progression of atherosclerosis. This review highlights the impact of microRNA-33-mediated regulation in the major cardiometabolic risk factors of atherosclerosis including lipid metabolism (HDL biogenesis and cholesterol homeostasis, fatty acid, phospholipid and triglyceride, bile acids metabolism), inflammatory response, insulin signaling and glucose/energy homeostasis, cell cycle progression and proliferation, and myeloid cell differentiation. Understanding the etiology and pathophysiology of microRNA-33 in atherosclerosis may provide basic knowledge for the development of novel therapeutic targets for ameliorating atherosclerosis and cardiovascular disease.

  12. Risk Analysis on Uric Acid Resulting in Carotid Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    肖敏; 李河; 郭兰; 石美铃; 麦劲壮


    Objectives To explore the risk of uric acid (UA) resulting in carotid atherosclerosis. Methods With a cross sectional study, 643 subjects (aged 41-83 yrs, male 552 and female 91)were surveyed in 1999 in Guangdong Province, China.The main research variables were uric acid (UA), occurrence and the size of carotid artery plaque. Results There was no statistical significance between the UA means of plaque occurrence and no-occurrence groups (t=0.60, df=242, P=0.5495). It seemed UA was not a possible risk factor of carotid atherosclerosis (OR=1.060, P=-0.8448>0.05, n=244) based on the logistic regression analysis. Conclusions Our results are not consistent with serum UA being an independent risk factor for atherosclerosis and coronary heart disease (CHD). It is necessary to do more research to learn the risk degree of UA during the progress of atherosclerosis/CHD.

  13. Factor VIII deficiency does not protect against atherosclerosis

    NARCIS (Netherlands)

    Biere-Rafi, S.; Tuinenburg, A.; Haak, B.W.; Peters, M.; Huijgen, R.; de Groot, E.; Verhamme, P.; Peerlinck, K.; Visseren, F.L.J.; Kruip, M.J.H.A.; Laros-van Gorkom, B.A.P.; Gerdes, V.E.A.; Buller, H.R.; Schutgens, R.E.G.; Kamphuisen, P.W.


    Summary. Background: Hemophilia A patients have a lower cardiovascular mortality rate than the general population. Whether this protection is caused by hypocoagulability or decreased atherogenesis is unclear. Objectives: To evaluate atherosclerosis and endothelial function in hemophilia A patients w

  14. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz


    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  15. Expression, refolding and preliminary characterization of recombinant snake venom metalloproteinases: Implication for the hemorrhagic mechanism

    Institute of Scientific and Technical Information of China (English)

    XIANG Kaijun; ZOU Chunsen; ZHU Zhiqiang; TENG Maikun; NIU Liwen; LIU Jing


    Two cDNAs encoding hemorrhagic snake venom metalloproteinase acutolysin A and non-hemorrhagic metalloproteinase (BR) were cloned into the expression vector pET-22b, respectively, and the corresponding two recombinant proteins, A-22b and BR-22b, were produced in inclusion bodies in E. coli BL21(DE3). The recombinant proteins were then subjected to solubilization, purification and refolding in vitro. A-22b showed hemorrhagic activity but no detectable proteolytic activities toward fibrinogen and fibronectin. Natural acutolysin A had both hemorrhagic activity and proteolytic activity toward these substrates. BR-22b showed the proteolytic activities toward fibrinogen, but no hemorrhagic activity. In addition, two chimeric genes, Cl and C2, were constructed and cloned into pET-22b, and the corresponding recombinant proteins, C1-22b and C2-22b,were also expressed in inclusion bodies. C1-22b involved N-terminal 110 amino acids of BR and C-terminal 95 amino acids of acutolysin A, while C2-22b contained N-terminal 108amino acids of acutolysin A and C-terminal 112 amino acids of BR. The biological activities of C2-22b and C1-22b were similar to those of A-22b and BR-22b, respectively. Our results suggested that N-terminal major subdomain of a snake venom metalloproteinase might play a key role in hemorrhagic activity and have an appreciable effect on the selectivity for protein substrates.

  16. Baroreflex dysfunction promotes the induction of atherosclerosis in rats

    Institute of Scientific and Technical Information of China (English)

    Guo-junCAI; Chao-yuMIAO; He-huiXIE; Ding-fengSU


    AIM: To testify the hypothesis that arterial baroreflex dysfunction promotes the induction of atherosclerosis. METHODSAND RESULTS: Experiment 1 : The baroreflex sensitivity (BRS) was measured in 30 SD rats in conscious state with a computerized blood pressure monitoring system. Four weeks later, the rats were fed with a high-cholesterol diet for 8-week duration to induce atherosclerosis. The hearts and aortae were removed for pathological examination and the scores of coronary and aortic

  17. Inflammatory markers and extent and progression of early atherosclerosis

    DEFF Research Database (Denmark)

    Willeit, Peter; Thompson, Simon G; Agewall, Stefan


    BACKGROUND: Large-scale epidemiological evidence on the role of inflammation in early atherosclerosis, assessed by carotid ultrasound, is lacking. We aimed to quantify cross-sectional and longitudinal associations of inflammatory markers with common-carotid-artery intima-media thickness (CCA...... in its assessment within a limited time period. Our findings for 'inflammatory load' suggest important combined effects of the three inflammatory markers on early atherosclerosis....

  18. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice.

    Directory of Open Access Journals (Sweden)

    Changchun Cao

    Full Text Available AIMS: Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS: C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1 wild-type (WT, (2 ApoE knockout (AK, (3 IKKε knockout (IK, (4 or both ApoE and IKKε knockout (DK. Each group of mice were fed with a high fat diet (HFD for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION: The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.

  19. Obstructive Sleep Apnea, Hypertension, and Their Additive Effects on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Mario Francesco Damiani


    Full Text Available Background and Aims. It is widely accepted that obstructive sleep apnea (OSA is independently associated with atherosclerosis. Similar to OSA, hypertension (HTN is a condition associated with atherosclerosis. However, to date, the impact of the simultaneous presence of OSA and HTN on the risk of atherosclerosis has not been extensively studied. The aim of this study was to evaluate the consequences of the coexistence of OSA and HTN on carotid intima-media thickness (IMT and on inflammatory markers of atherosclerosis (such as interleukin- [IL-] 6 and pentraxin- [PTX-] 3. Methods. The study design allowed us to define 4 groups: (1 controls (n=30; (2 OSA patients without HTN (n=30; (3 HTN patients without OSA (n=30; (4 patients with OSA and HTN (n=30. In the morning after portable monitoring (between 7 am and 8 am, blood samples were collected, and carotid IMT was measured. Results. Carotid IMT, IL-6, and PTX-3 in OSA normotensive patients and in non-OSA HTN subjects were significantly higher compared to control subjects; in addition, in OSA hypertensive patients they were significantly increased compared to OSA normotensive, non-OSA HTN, or control subjects. Conclusions. OSA and HTN have an additive role in the progression of carotid atherosclerosis and in blood levels of inflammatory markers for atherosclerosis, such as interleukin-6 and pentraxin-3.

  20. Efeito dos ácidos graxos n-3 e n-6 na expressão de genes do metabolismo de lipídeos e risco de aterosclerose Effects of n-3 and n-6 fatty acids on the expression of genes involved in the lipid metabolism and risk of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Helena Fonseca Raposo


    Full Text Available A aterosclerose, principal responsável pela patogênese do infarto miocárdico e cerebral, bem como pela gangrena e por outras doenças vasculares periféricas, permanece como principal causa de morbidade e mortalidade nas populações "ocidentalizadas". Estima-se que 17,5 milhões de pessoas morreram por doenças cardiovasculares em 2005, o que representou 30% das causas de morte nesse ano, e que, em 2015, 20 milhões de pessoas morrerão por doenças cardiovasculares no mundo. Os ácidos graxos n-3, principalmente os de cadeia longa, encontrados nos peixes, têm-se mostrado particularmente úteis na prevenção e tratamento de doenças como dislipidemias, diabetes mellitus e obesidade, apresentando importante efeito cardioprotetor. Nesse contexto, pesquisas têm evidenciado que ao menos parte dos benefícios dos ácidos graxos eicosapentaenóico e docosahexaenóico sobre o risco de doenças cardiovasculares é decorrente da modulação de genes responsivos aos receptores ativados por proliferadores de peroxissomos e envolvidos no metabolismo lipídico. Nesta revisão, pretende-se expor alguns mecanismos de ação dos ácidos graxos n-3 e n-6 sobre o metabolismo de lipídeos e de lipoproteínas. Conclui-se que muitos aspectos que contribuem para o risco de doenças cardiovasculares são afetados pela ingestão de n-3. Além da redução de triglicérides, fatores como o aumento de adiponectina, a redução da concentração de colesterol plasmático e a melhora do transporte reverso de colesterol também são responsáveis pela redução do risco de aterosclerose promovida pelos ácidos graxos n-3. No entanto, ainda são necessários estudos adicionais para definir mais claramente os mecanismos celulares e moleculares responsáveis pelo efeito cardioprotetor dos ácidos graxos n-3.Atherosclerosis, the main cause of myocardial infarction, stroke, gangrene and other peripheral vascular diseases, also persists as the main cause of morbidity and

  1. Comparative expression analysis of the phosphocreatine circuit in extant primates: Implications for human brain evolution. (United States)

    Pfefferle, Adam D; Warner, Lisa R; Wang, Catrina W; Nielsen, William J; Babbitt, Courtney C; Fedrigo, Olivier; Wray, Gregory A


    While the hominid fossil record clearly shows that brain size has rapidly expanded over the last ~2.5 M.yr. the forces driving this change remain unclear. One popular hypothesis proposes that metabolic adaptations in response to dietary shifts supported greater encephalization in humans. An increase in meat consumption distinguishes the human diet from that of other great apes. Creatine, an essential metabolite for energy homeostasis in muscle and brain tissue, is abundant in meat and was likely ingested in higher quantities during human origins. Five phosphocreatine circuit proteins help regulate creatine utilization within energy demanding cells. We compared the expression of all five phosphocreatine circuit genes in cerebral cortex, cerebellum, and skeletal muscle tissue for humans, chimpanzees, and rhesus macaques. Strikingly, SLC6A8 and CKB transcript levels are higher in the human brain, which should increase energy availability and turnover compared to non-human primates. Combined with other well-documented differences between humans and non-human primates, this allocation of energy to the cerebral cortex and cerebellum may be important in supporting the increased metabolic demands of the human brain.

  2. Upregulation of SET expression by BACE1 and its implications in Down syndrome. (United States)

    Zhang, Xiaozhu; Wu, Yili; Duan, Xiaoling; Chen, Wei; Zou, Haiyan; Zhang, Mingming; Zhang, Shuting; Cai, Fang; Song, Weihong


    Down syndrome (DS) is one of the most common genetic diseases. Patients with DS display growth delay and intellectual disabilities and develop Alzheimer's disease (AD) neuropathology after middle age, including neuritic plaques and neurofibrillary tangles. Beta-site amyloid β precursor protein (APP) cleaving enzyme 1 (BACE1), essential for Aβ production and neuritic plaque formation, is elevated in DS patients. However, its homolog, β-site APP cleaving enzyme 2 (BACE2), functions as θ-secretase and plays a differential role in plaque formation. In this study, by using Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) and LC-MS/MS proteomic profiling analysis, we found that the SET oncogene protein (SET) expression was associated with BACE1 but not BACE2. SET protein was increased in BACE1 overexpressing cells and was markedly reduced in the BACE1 knockout mice. We found that the overexpression of BACE1 or SET significantly inhibited cell proliferation. Moreover, knockdown of SET in BACE1 overexpression cells significantly rescued BACE1-induced cell growth suppression. Furthermore, both BACE1 and SET protein levels were increased in Down syndrome patients. It suggests that BACE1 overexpression-induced SET upregulation may contribute to growth delay and cognitive impairment in DS patients. Our work provides a new insight that BACE1 overexpression not only promotes neuritic plaque formation but may also potentiate neurodegeneration mediated by SET elevation in Alzheimer-associated dementia in DS.

  3. Atherosclerosis in ancient humans, accelerated aging syndromes and normal aging: is lamin a protein a common link? (United States)

    Miyamoto, Michael I; Djabali, Karima; Gordon, Leslie B


    Imaging studies of ancient human mummies have demonstrated the presence of vascular calcification that is consistent with the presence of atherosclerosis. These findings have stimulated interest in the underlying biological processes that might impart to humans an inherent predisposition to the development of atherosclerosis. Clues to these processes may possibly be found in accelerated aging syndromes, such as Hutchinson-Gilford progeria syndrome (HGPS), an ultra-rare disorder characterized by premature aging phenotypes, including very aggressive forms of atherosclerosis, occurring in childhood. The genetic defect in HGPS eventuates in the production of a mutant form of the nuclear structural protein lamin A, called progerin, which is thought to interfere with normal nuclear functioning. Progerin appears to be expressed in vascular cells, resulting in vessel wall cell loss and replacement by fibrous tissue, reducing vessel compliance and promoting calcification, leading to the vascular dysfunction and atherosclerosis seen in HGPS. Interestingly, vascular progerin is detectable in lower levels, in an age-related manner, in the general population, providing the basis for further study of the potential role of abnormal forms of lamin A in the atherosclerotic process of normal aging.

  4. Effects of oral administration of tripeptides derived from type I collagen (collagen tripeptide) on atherosclerosis development in hypercholesterolemic rabbits. (United States)

    Tang, Lihua; Sakai, Yasuo; Ueda, Yoshimichi; Katsuda, Shogo


    Digestion of type I collagen with a collagenase-type protease yields a collagen tripeptide (Ctp) fraction comprising Gly-X-Y sequences that exhibit diverse biological activities. We previously demonstrated that Ctp inhibits the proliferation and migration of cultured aortic smooth muscle cells (SMCs) in vitro. These cells contribute to the pathogenesis of atherosclerosis and other cardiovascular diseases. In order to evaluate the effects of Ctp on atherosclerosis development in vivo, here we used the Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbit model of familial hypercholesterolemia to determine the effects of oral administration of Ctp for three months. Ctp induced a significant decrease in the area occupied by atherosclerotic plaques in the aorta and in the level of total serum cholesterol. The components of atherosclerotic plaques underwent distinct changes, including reduction in the populations of macrophages and SMCs and a significant decrease in the proportion of macrophages to SMCs. Ctp administration decreased the number of cells in plaques that expressed proliferating cell nuclear antigen and the number of cells with oxidative damage to DNA as indicated by 8-hydroxy-2'-deoxyguanine detection. These findings are the first to define the mechanism underlying the inhibitory effects of Ctp on atherosclerosis development in hypercholesterolemic rabbits, and suggest that Ctp provides an effective therapy for treating atherosclerosis.

  5. A Systems Approach Implicates a Brain Mitochondrial Oxidative Homeostasis Co-expression Network in Genetic Vulnerability to Alcohol Withdrawal (United States)

    Walter, Nicole A. R.; Denmark, DeAunne L.; Kozell, Laura B.; Buck, Kari J.


    Genetic factors significantly affect vulnerability to alcohol dependence (alcoholism). We previously identified quantitative trait loci on distal mouse chromosome 1 with large effects on predisposition to alcohol physiological dependence and associated withdrawal following both chronic and acute alcohol exposure in mice (Alcdp1 and Alcw1, respectively). We fine-mapped these loci to a 1.1–1.7 Mb interval syntenic with human 1q23.2-23.3. Alcw1/Alcdp1 interval genes show remarkable genetic variation among mice derived from the C57BL/6J and DBA/2J strains, the two most widely studied genetic animal models for alcohol-related traits. Here, we report the creation of a novel recombinant Alcw1/Alcdp1 congenic model (R2) in which the Alcw1/Alcdp1 interval from a donor C57BL/6J strain is introgressed onto a uniform, inbred DBA/2J genetic background. As expected, R2 mice demonstrate significantly less severe alcohol withdrawal compared to wild-type littermates. Additionally, comparing R2 and background strain animals, as well as reciprocal congenic (R8) and appropriate background strain animals, we assessed Alcw1/Alcdp1 dependent brain gene expression using microarray and quantitative PCR analyses. To our knowledge this includes the first Weighted Gene Co-expression Network Analysis using reciprocal congenic models. Importantly, this allows detection of co-expression patterns limited to one or common to both genetic backgrounds with high or low predisposition to alcohol withdrawal severity. The gene expression patterns (modules) in common contain genes related to oxidative phosphorylation, building upon human and animal model studies that implicate involvement of oxidative phosphorylation in alcohol use disorders (AUDs). Finally, we demonstrate that administration of N-acetylcysteine, an FDA-approved antioxidant, significantly reduces symptoms of alcohol withdrawal (convulsions) in mice, thus validating a phenotypic role for this network. Taken together, these studies

  6. Is Sudden Hearing Loss Associated with Atherosclerosis? (United States)

    Rajati, Mohsen; Azarpajooh, Mahmoud Reza; Mouhebati, Mohsen; Nasrollahi, Mostafa; Salehi, Maryam; Khadivi, Ehsan; Nourizadeh, Navid; Hashemi, Firoozeh; Bakhshaee, Mehdi


    Introduction: Sudden sensorineural hearing-loss (SSNHL) patients constitute approximately 2–3% of referrals to ear, nose and throat (ENT) clinics. Several predisposing factors have been proposed for this condition; one of which is vascular disorders and perfusion compromise. In this research the atherosclerotic changes and their known risk factors are studied in SSNHL patients. Materials and Methods: Thirty SSNHL patients and 30 controls were evaluated with regard to cardiovascular risks including history, heart examination, blood pressure, body mass index, waist circumference, electrocardiogram, blood sugar, triglycerides, cholesterol, high-sensitivity C-reactive protein (HSCRP); also, carotid artery color Doppler study was undertaken to measure intima media thickness(IMT). Results: IMT and HSCRP showed an increased risk in the case group compared with the controls (P= 0.005 & P=0.001). However, waist circumference, history of smoking, fasting blood sugar, lipid profile, and electrocardiogram revealed no significant difference between the two groups. Interestingly, blood pressure and body mass index were higher in the controls in this study. Conclusion: Sudden sensorineural hearing loss may be associated with subclinical atherosclerosis. PMID:27429947

  7. Oxidative stress in atherosclerosis and diabetes. (United States)

    Lankin, V Z; Lisina, M O; Arzamastseva, N E; Konovalova, G G; Nedosugova, L V; Kaminnyi, A I; Tikhaze, A K; Ageev, F T; Kukharchuk, V V; Belenkov, Yu N


    We measured the content of lipid peroxides in plasma LDL from patients with chronic CHD not accompanied by hypercholesterolemia; CHD and hypercholesterolemia; type 2 diabetes mellitus and decompensation of carbohydrate metabolism; and CHD, circulatory insufficiency, and type 2 diabetes mellitus (without hypercholesterolemia). The content of lipid peroxides in LDL isolated from blood plasma by differential ultracentrifugation in a density gradient was estimated by a highly specific method with modifications (reagent Fe(2+) xylene orange and triphenylphosphine as a reducing agent for organic peroxides). The content of lipid peroxides in LDL from patients was much higher than in controls (patients without coronary heart disease and diabetes). Hypercholesterolemia and diabetes can be considered as factors promoting LDL oxidation in vivo. Our results suggest that stimulation of lipid peroxidation in low-density lipoproteins during hypercholesterolemia and diabetes is associated with strong autooxidation of cholesterol and glucose during oxidative and carbonyl (aldehyde) stress, respectively. These data illustrate a possible mechanism of the progression of atherosclerosis in patients with diabetes mellitus.

  8. Is Sudden Hearing Loss Associated with Atherosclerosis?

    Directory of Open Access Journals (Sweden)

    Mohsen Rajati


    Full Text Available Introduction: Sudden sensorineural hearing-loss (SSNHL patients constitute approximately 2–3% of referrals to ear, nose and throat (ENT clinics. Several predisposing factors have been proposed for this condition; one of which is vascular disorders and perfusion compromise. In this research the atherosclerotic changes and their known risk factors are studied in SSNHL patients.   Materials and Methods: Thirty SSNHL patients and 30 controls were evaluated with regard to cardiovascular risks including history, heart examination, blood pressure, body mass index, waist circumference, electrocardiogram, blood sugar, triglycerides, cholesterol, high-sensitivity C-reactive protein (HSCRP; also, carotid artery color Doppler study was undertaken to measure intima media thickness(IMT.   Results: IMT and HSCRP showed an increased risk in the case group compared with the controls (P= 0.005 & P=0.001. However, waist circumference, history of smoking, fasting blood sugar, lipid profile, and electrocardiogram revealed no significant difference between the two groups. Interestingly, blood pressure and body mass index were higher in the controls in this study.   Conclusion:  Sudden sensorineural hearing loss may be associated with subclinical atherosclerosis.

  9. Research Advances of Atherosclerosis in Translational Medicine

    Institute of Scientific and Technical Information of China (English)

    YANG Zhuo-xin; DENG Rong; PI Min; YU Hai-bo


    Atherosclerotic cardiovascular diseases (ASCVD) are defined as a series of diseases caused by atherosclerosis (AS), including coronary heart disease (CHD), myocardial infarction (MI), stable or unstable angina pectoris, revascularization of coronary artery or other arteries, stroke, transient cerebral ischemic onset or atherosclerotic peripheral arterial disease. AS has common pathological basis with ASCVD as it is a general arterial regressive disease of human beings. With the industrialization progression, AS morbidity increases annually and it also leads to coronary atherosclerotic heart disease, cerebral stroke and peripheral artery stenosed occlusion or dilation, thus becoming the main cause for high disability and mortality. The main purpose of translational medicine is to break the intrinsic barrier between basic medicine with drug research and development as well as clinical and public healthcare, and establish a direct connection between them. It is also can rapidly transform basic research results to new clinical preventive and therapeutic methods. This study mainly reviewed AS from the aspect of translational medicine, aiming to provide a reliable basis for the prevention and treatment of AS.

  10. Noninvasive indicators of atherosclerosis in subclinical hypothyroidism

    Directory of Open Access Journals (Sweden)

    Ismail Dogu Kilic


    Full Text Available Introduction: Cardiovascular system is rich in thyroid hormone receptors and is one of the major sites of action for thyroid hormones. However, the effect of subclinical hypothyroidism (SCH on atherosclerosis has not been cleared yet. Materials and Methods: SCH is defined as high thyroid-stimulating hormone (TSH levels in the presence of normal serum T4 and T3 levels. A total of 32 patients with SCH and 29 controls were included in the study. Carotid intima-media thickness, flow-mediated dilatation, and aortic distensibility were compared between the groups. Results: FMD was lower in patients with SCH than in controls. GTN-induced vasodilatation was similar in the patients with SCH and controls. There was no statistically significant difference between the patients with SCH and controls with respect to CIMT and aortic distensibility. Conclusion: SCH is associated with endothelial dysfunction as established by FMD. Inconsistent results of CIMT and aortic stiffness can be explained by these parameters being measures of structural changes whereas FMD is a dynamic measure that reflects the impact of both acute and chronic influences on endothelial function.

  11. Atherosclerosis: from biology to pharmacological treatment

    Institute of Scientific and Technical Information of China (English)

    Graziano Riccioni; Valeriana Sblendorio


    A recent explosion in the amount of cardiovascular risk has swept across the globe. Primary prevention is the preferred method to lower cardiovascular risk. Lowering the prevalence of obesity is the most urgent matter, and is pleiotropic since it affects blood pressure, lipid profiles, glucose metabolism, inflammation, and atherothrombotic disease progression. Given the current obstacles, success of primary prevention remains uncertain. At the same time, the consequences of delay and inaction will inevitably be disastrous, and the sense of urgency mounts. Pathological and epidemiological data confirm that atherosclerosis begins in early childhood, and advances seamlessly and inexorably throughout life. Risk factors in childhood are similar to those in adults, and track between stages of life. When indicated, aggressive treatment should begin at the earliest indication, and be continued for many years. For those patients at intermediate risk according to global risk scores, C-reactive protein, coronary artery calcium, and carotid intima-media thickness are available for further stratification. Using statins for primary prevention is recommended by guidelines, is prevalent, but remains under prescribed. Statin drugs are unrivaled, evidence-based, major weapons to lower cardiovascular risk. Even when low density lipoprotein cholesterol targets are attained, over half of patients continue to have disease progression and clinical events. Though clinical evidence is incomplete, altering or raising the blood high density lipoprotein cholesterol level continues to be pursued. The aim of this review is to point out the attention of key aspects of vulnerable plaques regarding their pathogenesis and treatment.

  12. Genomic correlates of atherosclerosis in ancient humans. (United States)

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes


    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  13. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis

    Directory of Open Access Journals (Sweden)

    Monica De Gaetano


    Full Text Available Atherosclerosis is an inflammatory disease caused by endothelial injury, lipid deposition and oxidative stress. This progressive disease can be converted into an acute clinical event by plaque rupture and thrombosis. In the context of atherosclerosis, the underlying cause of myocardial infarction and stroke, macrophages uniquely possess a dual functionality, regulating lipid accumulation and metabolism and sustaining the chronic inflammatory response, two of the most well documented pathways associated with the pathogenesis of the disease. Macrophages are heterogeneous cell populations and it is hypothesized that, during the pathogenesis of atherosclerosis, macrophages in the developing plaque can switch from a pro-inflammatory (MΦ1 to an anti-inflammatory (MΦ2 phenotype and vice versa, depending on the microenvironment. The aim of this study was to identify changes in macrophage subpopulations in the progression of human atherosclerotic disease. Established atherosclerotic plaques from symptomatic and asymptomatic patients with existing coronary artery disease undergoing carotid endarterectomy were recruited to the study. Comprehensive histological and immunohistochemical analyses were performed to quantify the cellular content and macrophage subsets of atherosclerotic lesion. In parallel, expression of MΦ1 and MΦ2 macrophage markers were analysed by real time-PCR and Western blot analysis.Gross analysis and histological staining demonstrated that symptomatic plaques presented greater haemorrhagic activity and the internal carotid was the most diseased segment, based on the predominant prevalence of fibrotic and necrotic tissue, calcifications and haemorrhagic events. Immunohistochemical analysis showed that both MΦ1 and MΦ2 macrophages are present in human plaques. However, MΦ2 macrophages are localised to more stable locations within the lesion. Importantly, gene and protein expression analysis of MΦ1/ MΦ2 markers evidenced that MΦ1

  14. Ginseng Extracts Restore High-Glucose Induced Vascular Dysfunctions by Altering Triglyceride Metabolism and Downregulation of Atherosclerosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Gabriel Hoi-huen Chan


    Full Text Available The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.

  15. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells. (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L


    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  16. The impact of purslane fatty oil on reverses cholesterol transport-related gene expression in rats with atherosclerosis%马齿苋脂肪油对动脉粥样硬化大鼠胆固醇逆向转运相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵仁宏; 赵心童; 贺圣文; 贺圣光; 王守训; 邵丽军


    Objective To explore the effects of portulaca oleracea fatty oil active ingredients on hepatic lecithin cholesterol acyl transferase(LCAT), apolipoproteinAl(apoAl) and high density lipoprotein receptor(SR-BI) gene expression and to analyze the molecular mechanism of regulating reverse cholesterol transportation RCT) pathway by purslane. Methods Twenty four healthy male SD rats were randomly divided into four groups: model group, duoxikang group, portulaca group and the control group (6 rats each group). Animal model of atherosclerosis (AS) was prepared with high-fat and high-cholesterol diet. RT-PCR was used to detect the expression levels of hepatic LCAT, apoAI and SR-BI mRNA. The serum apoAI and HDL-C levels were measured with immune turbidimetry and precipitation methods. Results The expression levels of hepatic LCAT mRNA and apoAI mRNA in model group were 0.43±0.20 and 2.33±0.35 respectively, which were significantly lower than those (1.49±0.32 and 6.30±0.82) in control group, those (1.15±0.16 and 4.32±0.69) in duoxikang group and those (1.12±0.12 and 4.21 ±0.76) in portulaca group (P<0.05). The serum apoAI and HDL-C levels in model group were (0.15±0.03) g/L and (0.53±0.25) mmol/L respectively, which were significantly lower than those[(0.39±0.09) g/L and (0.86±0.04) mmol/L] in portulaca group(P<0.05). There were positive correlation between hepatic expression levels and serum HDL-C levels in duoxikang group, portulaca group and model group (r=0.935, 0.927 and 0.892, P<0.01). The hepatic SR-BI mRNA expression level (1.33±0.57) in model group was obviously lower than that (3.20±0.41) in portulaca group (P<0.05). Conclusion The molecular mechanisms of purslane anti-AS effects may be due to own-regulating hepatic LCAT, apoAI and SR-BI mRNA expression and improving RCT.%目的 探讨马齿苋脂肪油有效成分对肝脏卵磷脂胆固醇酯酰转移酶(LCAT)、载脂蛋白AI (apoAI)和高密度脂蛋白受体(SR-BI)基因表达的干预作用,分

  17. Hostility, Anger and Risk of Coronary Artery Atherosclerosis

    Directory of Open Access Journals (Sweden)

    E Masoudnia


    Full Text Available Introduction: The previous researches about the etiology of coronary artery atherosclerosis have accentuated on clinical and medical risk factors, such as cigarette smoking, hypertension, diabetes mellitus, hyperlipidemia, positive family background, myocardial ischemia history in family, atherogenic diet, increase of A lipoprotein, inflammatory factors such as increase of cross-reactive protein and so on. Although factors in behavioral medicine are recognized as an independent risk factor in coronary artery atherosclerosis, few researches have been done on hostility and anger. The aim of this study was to determine the difference between normal people(Control group and people with coronary artery atherosclerosis(Case group with regards to hostility and anger. Methods: This study was performed as a case-control design. Data was collected from seventy-seven patients with coronary artery atherosclerosis who had referred to Afshar Hospital Professional Heart Clinic in Yazd city and seventy-eight normal people were used as control. Two groups completed the Buss and Perry Aggression Questionnaire(BPAQ to measure their hostility and anger. Results: The results of the analysis showed that there was a statistically significant difference regarding hostility(p<.05 and anger(p<.001 between the two groups. Hierarchical multiple logistic regression analysis showed that the sociodemographic and clinical variables(step 1 explained 35.5 % to 47.4%, while hostility and anger(step 2 explained 6.7% to 9% of the variance in incidence of coronary artery atherosclerosis. Conclusion: Hostility and anger are strong risk factors for coronary artery atherosclerosis or CAD in Iran. Therefore, in order to decrease the incidence rate of coronary artery atherosclerosis in Iran, alongside medical interventions, attention should also be paid towards behavioral interventions in order to modify hostile and angrily behavior.

  18. Ultrasound screening of multifocal atherosclerosis: markers for coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    Lachezar Grozdinski; Mario Stankev; Alexander Doganov


    Background and Objective The frequency of multifocal atherosclerosis (MFA) in patients with coronary heart disease (CHD) has not been thoroughly studied. The purpose of our study was to perform ultrasound screening for MFA in patients with coronary atherosclerosis and make evaluation of the sensitivity and significance of different atherosclerosis markers. Methods Using Color Dupplex Ultrasound (CDU), we studied 32 clinically healthy persons and 87 patients of the city of B with clinical data for CHD where we also performed coronarography. Results In patients with coronary atherosclerosis we found high frequency of carotid atherosclerosis (93%) and peripheral artery disease (PAD) (81%). We established verifiable thickening of the intima-media (IMT) of the common carotid artery (CCA) and common femoral artery (CFA) in patients with CHD. There is a correlation between the frequency of carotid and femoral stenoses and CHD proven by coronarography. Patients with CHD had a high relative risk to develop carotid (RR = 5) and peripheral atherosclerosis (RR=3.5) and high frequency of asymptomatic stenoses and thromboses of the internal carotid artery (86.9%) and femoral artery (78.3%), as well as aneurisms of the abdominal aorta (8.1%). Markers for CAD with high sensitivity were the atherosclerotic plaques of ICA (0.93) and CFA (0.81) as well as IMT of the CFA (0.84). Conclusions MFA are common among patients with CHD. Ultrasound diagnosis is the method of choice for simultaneous non-invasive screening of carotid, peripheral and MFA and provides sensitive markers for coronary atherosclerosis. The most sensitive and specific markers for CHD are the combination of the IMT and atherosclerotic plaques of CCA, ICA and CFA (100% sensitivity and 0.92 specificity).

  19. Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes (United States)

    Soro-Paavonen, Aino; Watson, Anna M.D.; Li, Jiaze; Paavonen, Karri; Koitka, Audrey; Calkin, Anna C.; Barit, David; Coughlan, Melinda T.; Drew, Brian G.; Lancaster, Graeme I.; Thomas, Merlin; Forbes, Josephine M.; Nawroth, Peter P.; Bierhaus, Angelika; Cooper, Mark E.; Jandeleit-Dahm, Karin A.


    OBJECTIVE—Activation of the receptor for advanced glycation end products (RAGE) in diabetic vasculature is considered to be a key mediator of atherogenesis. This study examines the effects of deletion of RAGE on the development of atherosclerosis in the diabetic apoE−/− model of accelerated atherosclerosis. RESEARCH DESIGN AND METHODS—ApoE−/− and RAGE−/−/apoE−/− double knockout mice were rendered diabetic with streptozotocin and followed for 20 weeks, at which time plaque accumulation was assessed by en face analysis. RESULTS—Although diabetic apoE−/− mice showed increased plaque accumulation (14.9 ± 1.7%), diabetic RAGE−/−/apoE−/− mice had significantly reduced atherosclerotic plaque area (4.9 ± 0.4%) to levels not significantly different from control apoE−/− mice (4.3 ± 0.4%). These beneficial effects on the vasculature were associated with attenuation of leukocyte recruitment; decreased expression of proinflammatory mediators, including the nuclear factor-κB subunit p65, VCAM-1, and MCP-1; and reduced oxidative stress, as reflected by staining for nitrotyrosine and reduced expression of various NADPH oxidase subunits, gp91phox, p47phox, and rac-1. Both RAGE and RAGE ligands, including S100A8/A9, high mobility group box 1 (HMGB1), and the advanced glycation end product (AGE) carboxymethyllysine were increased in plaques from diabetic apoE−/− mice. Furthermore, the accumulation of AGEs and other ligands to RAGE was reduced in diabetic RAGE−/−/apoE−/− mice. CONCLUSIONS—This study provides evidence for RAGE playing a central role in the development of accelerated atherosclerosis associated with diabetes. These findings emphasize the potential utility of strategies targeting RAGE activation in the prevention and treatment of diabetic macrovascular complications. PMID:18511846

  20. Effect of paired using tangerine peel and ternate pinellia tuber on the expressions of phosphatidylinositol 3-kinase and phosphorylation of protein kinase B/Akt in rabbits with carotid atherosclerosis%配对使用陈皮半夏对颈动脉粥样硬化家兔磷脂酰肌醇3激酶和磷酸化蛋白激酶B表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈文强; 黄小波; 王宁群; 陈玉静


    Objective To investigate paired using tangerine peel and ternate pinellia tuber to regulate phosphatidylinositol 3-kinase (PI3K)and protein kinase B (p-Akt)signal pathways in rabbits in order to treat carotid atherosclerosis. Methods According to a random number table,20 rabbits were divided into 4 groups:a control,a model,a tangerine peel and ternate pinellia tuber,and a tangerine peel and ternate pinellia tuber+LY294002 (a PI3K/Akt signal pathway specific inhibitor)group (n=5 in each group). The rabbits in the control group were fed with basal diet,while those in other groups were given high-cholesterol diet and air drying of carotid artery intima were performed. After procedure,the rabbits in the tangerine peel and ternate pinellia tuber group and the tangerine peel and ternate pinellia tuber +LY294002 group were treated with the decoction of traditional Chinese medicine. Carotid atherosclerosis was observed via HE staining;the effect of tangerine peel and ternate pinellia tuber on the expressions of PI3K and p-Akt in rabbits with carotid atherosclerosis was observed by western blot. Results (1)the expressions of PI3K and p-Akt in carotid in the model group were 107. 0 ± 2. 6 and 113. 0 ± 1. 7,and those in the tangerine peel and ternate pinellia tuber group were 174. 7 ± 14. 5 and 186. 3 ± 18. 3. There were significant differences between the two groups (P <0. 01). After using PI3K/Akt signal pathway specific inhibitor LY294002,the expressions of PI3K and p-Akt (117. 0 ± 4. 0,127. 3 ± 4. 7)were lower than the tangerine peel and ternate pinellia tuber group. There were significant differences between the two groups (P <0. 01). (2)The tangerine peel and ternate pinellia tuber group had mild intimal hyperplasia and foam cell formation under the artery intima,however,they were better than those of the model group and the tangerine peel and ternate pinellia tuber+LY294002 group. Conclusion Tangerine peel and ternate pinellia tuber may play a role in the

  1. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant

    DEFF Research Database (Denmark)

    Al-Mashhadi, Rozh H; Sørensen, Charlotte B; Kragh, Peter M


    dominant hypercholesterolemia and accelerates atherosclerosis in humans. Using Sleeping Beauty DNA transposition and cloning by somatic cell nuclear transfer, we created Yucatan minipigs with liver-specific expression of human D374Y-PCSK9. D374Y-PCSK9 transgenic pigs displayed reduced hepatic low...

  2. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress. (United States)

    Cheng, Long; Pan, Guo-feng; Zhang, Xiao-dong; Wang, Jian-lu; Wang, Wan-dan; Zhang, Jian-yong; Wang, Hui; Liang, Ri-xin; Sun, Xiao-bo


    Yindanxinnaotong (YD), a traditional Chinese medicine, has been introduced to clinical medicine for more than a decade, while its pharmacological properties are still not to be well addressed. This report aimed to explore the anti-atherosclerosis properties and underlying mechanisms of YD. We initially performed a computational prediction based on a network pharmacology simulation, which clued YD exerted synergistically anti-atherosclerosis properties by vascular endothelium protection, lipid-lowering, anti-inflammation, and anti-oxidation. These outcomes were then validated in atherosclerosis rats. The experiments provided evidences indicating YD's contribution in this study included, (1) significantly reduced the severity of atherosclerosis, inhibited reconstruction of the artery wall and regulated the lipid profile; (2) enhanced antioxidant power, strengthened the activity of antioxidant enzymes, and decreased malondialdhyde levels; (3) significantly increased the viability of umbilical vein endothelial cells exposed to oxidative stress due to pretreatment with YD; (4) significantly reduced the level of pro-inflammatory cytokines; (5) significantly down-regulated NF-kB/p65 and up-regulated IkB in the YD-treated groups. Overall, these results demonstrated that YD intervention relieves atherosclerosis through regulating lipids, reducing lipid particle deposition in the endothelial layer of artery, enhancing antioxidant power, and repressing inflammation activity by inhibiting the nuclear factor-kappa B signal pathway.

  3. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. (United States)

    Hirase, Tetsuaki; Hara, Hiromitsu; Miyazaki, Yoshiyuki; Ide, Noriko; Nishimoto-Hazuku, Ai; Fujimoto, Hirokazu; Saris, Christiaan J M; Yoshida, Hiroki; Node, Koichi


    Chronic inflammation in arterial wall that is driven by immune cells and cytokines plays pivotal roles in the development of atherosclerosis. Interleukin 27 (IL-27) is a member of the IL-12 family of cytokines that consists of IL-27p28 and Epstein-Barr virus induced gene 3 (EBI3) and has anti-inflammatory properties that regulate T cell polarization and cytokine production. IL-27-deficient (Ldlr-/-Ebi3-/-) and IL-27 receptor-deficient (Ldlr-/-WSX-1-/-) Ldlr-/- mice were generated and fed with a high-cholesterol diet to induce atherosclerosis. Roles of bone marrow-derived cells in vivo and macrophages in vitro were studied using bone marrow reconstitution by transplantation and cultured peritoneal macrophages, respectively. We demonstrate that mice lacking IL-27 or IL-27 receptor are more susceptible to atherosclerosis compared with wild type due to enhanced accumulation and activation of macrophages in arterial walls. The number of circulating proinflammatory Ly6C(hi) monocytes showed no significant difference between wild-type mice and mice lacking IL-27 or IL-27 receptor. Administration of IL-27 suppressed the development of atherosclerosis in vivo and macrophage activation in vitro that was indicated by increased uptake of modified low-density lipoprotein and augmented production of proinflammatory cytokines. These findings define a novel inhibitory role for IL-27 in atherosclerosis that regulates macrophage activation in mice.

  4. [Prevalence of carotid atherosclerosis in a cohort of Mexico City]. (United States)

    Rodríguez Saldaña, J; Cantú Brito, C; Sosa Espinosa, P; Reynoso Marenco, M T; Zuckermann Foullón, D; Barinagarrementería Aldatz, F


    In order to investigate the prevalence of atherosclerosis in Mexico, high resolution ultrasound and color Doppler flow imaging of carotid arteries were carried out in a group of participants in CUPA project, a cohort study started in 1989 among persons 60 years and older living permanently in a high rise in México City. Imaging studies included identification of 4 atherosclerosis related abnormalities: 1) intima media thickness; 2) kinkings and tortuousness; 3) non-stenosing plaques; and 4) significant carotid stenosis (> 50%). Analysis of 198 Doppler ultrasonographic studies in 56 males and 142 females showed an overall prevalence of atherosclerosis related lesions of 65.6%, with increasing frequency by age groups: 33% in younger than 65 year-old, 71% in 65-74 years, and up to 88% in the 75 years and older group. The prevalence of high grade stenosis was low (6%) whereas the overall frequency of non-stenosing plaques and intima-media thickness was higher than 60%. Intima-media thickness was more common in males while non-stenosing plaques and high grade stenosis were more frequent in females. However, there were not significant differences among women and men when atherosclerotic lesions were analyzed by age groups. This is the first report on the prevalence of atherosclerosis in a Mexican population using ultrasonography. Findings of the investigation document the high prevalence of atherosclerosis among elderly resident in Mexico City.

  5. Vascular wall shear stress in zebrafish model of early atherosclerosis (United States)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon


    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  6. Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases

    Directory of Open Access Journals (Sweden)

    Carolina eCebrián


    Full Text Available Neuronal expression of major histocompatibility complex I (MHC-I has been implicated in developmental synaptic plasticity and axonal regeneration in the central nervous system (CNS, but recent findings demonstrate that constitutive neuronal MHC-I can also be involved in neurodegenerative diseases by playing a neuroinflammtory role. Recent reports demonstrate its expression in vitro and in human postmortem samples and support a role in neurodegeneration involving proinflammatory cytokines, activated microglia and increased cytosolic oxidative stress. MHC-I may be important for both normal development and pathogenesis of some CNS diseases including Parkinson’s.

  7. The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake. (United States)

    Salter, Rebecca C; Foka, Pelagia; Davies, Thomas S; Gallagher, Hayley; Michael, Daryn R; Ashlin, Tim G; Ramji, Dipak P


    The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis.

  8. The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake (United States)

    Salter, Rebecca C.; Foka, Pelagia; Davies, Thomas S.; Gallagher, Hayley; Michael, Daryn R.; Ashlin, Tim G.; Ramji, Dipak P.


    The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis. PMID:27687241

  9. Iron and hepcidin as risk factors in atherosclerosis

    DEFF Research Database (Denmark)

    Galesloot, Tessel E; Janss, Luc L; Burgess, Stephen;


    -wide association meta-analysis on iron status, and assessed associations of individual SNPs and quartiles of a multi-SNP score with NIMA. Quartile 4 versus quartile 1 of the multi-SNP score showed directionally consistent associations with the hypothesized direction of effect for all NIMA in women, indicating...... that increased body iron status is a risk factor for atherosclerosis in women. We observed no single SNP associations that fit the hypothesized directions of effect between iron and NIMA, except for rs651007, associated with decreased ferritin concentration and decreased atherosclerosis risk. Two of six NIMA......-related SNPs showed association with the ratio hepcidin/ferritin, suggesting that an increased hepcidin/ferritin ratio increases atherosclerosis risk. Genomic correlations were close to zero, except for hepcidin and ferritin with ABI at rest [-0.27 (SE 0.34) and -0.22 (SE 0.35), respectively] and ABI after...

  10. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. (United States)

    Psarros, Costas; Lee, Regent; Margaritis, Marios; Antoniades, Charalambos


    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in developed countries, with an increasing prevalence due to an aging population. The pathology underpinning CVD is atherosclerosis, a chronic inflammatory state involving the arterial wall. Accumulation of low density lipoprotein (LDL) laden macrophages in the arterial wall and their subsequent transformation into foam cells lead to atherosclerotic plaque formation. Progression of atherosclerotic lesions may gradually lead to plaque related complications and clinically manifest as acute vascular syndromes including acute myocardial or cerebral ischemia. Nanotechnology offers emerging therapeutic strategies, which may have advantage overclassical treatments for atherosclerosis. In this review, we present the potential applications of nanotechnology toward prevention, identification and treatment of atherosclerosis.

  11. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Wang [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China); Chaoshu, Tang [Department of Physiology and Pathophysiology, Health Sciences Center, Peking University, Beijing 100034 (China); Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education (China); Hongfang, Jin, E-mail: [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China); Junbao, Du, E-mail: [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China)


    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  12. Role of Helicobacter pylori infection in pathogenesis of atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Rajesh; Vijayvergiya; Ramalingam; Vadivelu


    Though a century old hypothesis, infection as a cause for atherosclerosis is still a debatable issue. Epidemiological and clinical studies had shown a possible association but inhomogeneity in the study population and study methods along with potential confounders have yielded conflicting results. Infection triggers a chronic inflammatory state which along with other mechanisms such as dyslipidemia, hyper-homocysteinemia, hypercoagulability, impaired glucose metabolism and endothelial dysfunction, contribute in pathogenesis of atherosclerosis. Studies have shown a positive relations between Cytotoxic associated gene-A positive strains of Helicobacter pylori and vascular diseases such as coronary artery disease and stroke. Infection mediated genetic modulation is a new emerging theory in this regard. Further large scale studies on infection and atherosclerosis focusing on multiple pathogenetic mechanisms may help in refining our knowledge in this aspect.

  13. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG


    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  14. Relationship between leukocyte count and angiographical characteristics of coronary atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    En-zhi JIA; Zhi-jian YANG; Biao YUAN; Xiao-ling ZANG; Rong-hu WANG; Tie-bing ZHU; Lian-sheng WANG; Bo CHEN; Wen-zhu MA


    Aim: To explore the relationship between differential leucocyte count and coronary atherosclerosis. Methods: The study population consisted of 507 consecutive patients (376 male and 131 female) who underwent coronary angiography for suspected or known coronary atherosclerosis. The patients' smoking and drinking habits were investigated, and anthropometric measurements, serum measurements, and hematological measurements were conducted for every patient.The severity of coronary atherosclerosis was defined by using Gensini' s score system. One-way ANOVA, Spearman's correlation analysis, and multivariate stepwise linear regression analysis were employed to explore the relationship between differential leucocyte count and coronary atherosclerosis. Results: Oneway ANOVA indicated that the diastolic blood pressure, glucose, urea, creatinine,leukocyte count, neutrophil count, monocyte count, hemoglobin, and platelet count differed among the groups according to Gensini's score, the tertile values of which were used as cutoff points. Spearman's correlation analysis suggested that Gensini's score was significantly correlated with age, diastolic blood pressure,glucose, urea, creatinine, leukocyte count, neutrophil count, monocyte count,hemoglobin, and erythrocyte count, respectively. Multivariate stepwise linear regression analysis show that neutrophil count (β=0.247, P=0.000), age (β=0.141,P=0.001), glucose (β=0.173, P=0.000), creatinine (β=0.088, P=0.063), hemoglobin (β=-0.168, P=0.013) and sex (men were coded as 1 and women were coded as 2;β=-0.121, P=0.012) were significantly independently associated with the Gensini's score. Conclusion: The independent association of neutrophil count with the angiographical characteristics of coronary atherosclerosis, as estimated by Gensini's score, strongly suggests that granulocytosis may play a role in the development of coronary atherosclerosis.

  15. 75 FR 62544 - Proposed Collection; Comment Request; the Atherosclerosis Risk in Communities Study (ARIC) (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request; the Atherosclerosis... and Budget (OMB) for review and approval. Proposed Collection: Title: The Atherosclerosis Risk...

  16. Neuroendocrine mechanisms of left ventricular dysfunction stimulated by anger stress in rats with atherosclerosis-a putative role of natriuretic peptide

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Xian-Zhi He; Qi-Ming Liu


    Objective: To investigate the role of natriuretic peptide in the process of left ventricular dysfunction caused by emotional stress. Methods: Adult male SD rats (n=30) and Wistar rats (n=60) were selected in this study. Atherosclerosis models were induced with high-fat diet and excess VD3 injection (eight consecutive weeks), and anger stress models were prepared by resident-intruder stress experiment (two consecutive weeks). Furthermore, left ventricular functions were examined by high-resolution echocardiograph, after which left ventricular myocardium and coronary arteries were prepared for pathological section and observed with electron microscope. At the same time, the hypothalamus, medulla oblongata and left ventricular myocardium were also prepared for pathological sections to detect the localization and expression of ANP, BNP and NPR-A with immunofluorescence and western blot. Results: We found that left ventricular functions of atherosclerosis or emotional stress modeled rats were both inferior to the healthy ones and superior to the combined (atherosclerosis and emotional stress) modeled ones (P<0.05). We also found that atherosclerosis and emotional stress could both cause morphological changes of left ventricular cells and capillary which contribute to apoptosis and hyperblastosis. Further more, there was NPR-A distributed in hypothalamus, medulla oblongata, as well as left ventricular tissues with the same express trend between groups, with atherosclerosis modeled rats the highest and the healthy rats the lowest. Conclusions: The results of our study suggest that anger stress could cause an excess consumption of ANP, BNP and NPR-A in nervous and cardiovascular system which inhibit the compensatory self-repair function of atherosclerosis rats, leading to a promotion of fibrosis and lipid peroxidation, offering insight into the neuroendocrine mechanisms of left heart function obstacle.

  17. α4β7 Integrin (LPAM-1 is Upregulated at Atherosclerotic Lesions and is Involved in Atherosclerosis Progression

    Directory of Open Access Journals (Sweden)

    Kangkang Zhi


    Full Text Available Background/Aims: Integrin activation and lymphocyte migration to the vascular intima is a key event in early atherosclerosis. α4β7 integrin (LPAM-1 and its ligand, mucosal addressin cell adhesion molecule (MAdCAM-1 are known to play an important role in homing of activated lymphocytes to gut-associated lymphoid tissues. However, it is unclear whether α4β7 integrin is involved in the pathogenesis of atherosclerosis. Methods: The expressions of α4β7 integrin and its ligands in atherosclerosis plaques from 12 week high fat diet (HFD fed ApoE-/- and C57BL/6 mice were examined using immunofluorescent and immunohistochemical assays, respectively. We also generated ApoE/β7 double deficient mice and compared atherosclerotic lesion development in β7+/+ApoE-/- and β7-/-ApoE-/- mice that were fed with HFD for 12 weeks. Results: We found an upregulation of α4β7 integrin and its ligands VCAM-1 and MAdCAM-1 at atherosclerosis plaques in Apolipoprotein E deficient (ApoE-/- mice fed with HFD for 12 weeks. Over the 12 week HFD period, peripheral blood lymphocyte (PBL expression of α4β7 integrin increased in parallel with aortic lesion size. A removal of α4β7 integrin by genetic deletion of the β7 chain in the ApoE-/- mouse resulted in a markedly decreased 12 week-HFD atherosclerotic plaque area. β7-/- ApoE-/- macrophages showed reduced acetylated and native LDL uptake and phagocytic activity, revealing possible roles for α4β7 at two distinct stages of macrophage dysfunction during atherogenesis. Finally, a reduced activity of integrin downstream signalling components focal adhesion kinase (FAK and MAPK/ERK1/2 in macrophage indicates their possible engagement during α4β7 integrin signalling in atherosclerosis. Conclusions: Together our results reveal a critical role of α4β7 in diet-induced atherosclerosis in mouse.

  18. Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions. (United States)

    Mehanna, Emile; Hamik, Anne; Josephson, Richard A


    Historically, the relationship between exercise and the cardiovascular system was viewed as unidirectional, with a disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercise-induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome.

  19. Cardiovascular disease due to accelerated atherosclerosis in systemic vasculitides. (United States)

    Cohen Tervaert, Jan Willem


    Patients with different forms of systemic vasculitis experience long-term morbidity and mortality caused by cardiovascular disease due to premature atherosclerosis. Epidemiologic reports of patients with GCA suggest that long-term mortality in this disease is not increased compared with the general population of the same age. The risk of a stroke, however, in particular in the vertebrobasilar territory, is increased. In addition, the occurrence of aortic aneurysmal disease and aortic dissection is also clearly increased in GCA. Mortality due to ischaemic heart disease, however, is not increased. In Takayasu arteritis accelerated atherosclerosis has been clearly documented both clinically and in autopsy reports. Atherosclerotic plaques in the carotid artery may be present in the carotid arteries especially in patients with a documented history of arteritis involving the carotid artery. It is controversial whether Kawasaki disease is associated with accelerated atherosclerosis. Young adults with a history of Kawasaki disease may have abnormal brachial artery reactivity, increased carotid IMT values and increased arterial stiffness. At autopsy examinations of KD patients, however, no significant atherosclerotic lesions are detected and carotid IMT measurements were found to be clearly different from those in young adults with familiar hypercholesterolaemia, suggesting that the remodeling process in KD is different from atherosclerosis. In ANCA-associated vasculitis (AAV), an increased mortality as a consequence of cardiovascular disease is well-documented. In these patients the relative risk for coronary heart disease is two- to fourfold that in control subjects. In addition, a similar relative risk has been found for stroke. Diabetes, hypertension, dyslipidemia, abdominal obesity (metabolic syndrome), impaired renal function, persistent proteinuria and increased production of C-reactive protein are common risk factors for premature atherosclerosis in patients with

  20. Fetal programming of atherosclerosis: possible role of the mitochondria. (United States)

    Leduc, Line; Levy, Emile; Bouity-Voubou, Maurice; Delvin, Edgard


    Growing evidence indicates that being small size at birth from malnutrition is associated with an increased risk of developing type 2 diabetes (T2D), metabolic syndrome and cardiovascular disease in adulthood. Atherosclerosis is common to these aforementioned disorders, and oxidative stress and chronic inflammation are now considered as initiating events in its development, with endothelial cell dysfunction being an early, fundamental step. According to the fetal programming hypothesis, growth-restricted neonates exposed to placental insufficiency exhibit endothelial cell dysfunction very early in life that later on predisposes them to atherosclerosis. Although many investigations have reported early alterations in vascular function in children and adolescents with low birth weight, the mechanisms of such fetal programming of atherosclerosis remain largely unknown. Experimental studies have demonstrated that low birth weight infants are prenatally subjected to conditions of oxidative stress and inflammation that might be involved in the later occurrence of atherosclerosis. Arterial endothelial dysfunction has been encountered in term infants, children and young adults with low birth weight. The loss of appropriate endothelium function with decreased nitric oxide production or activity, manifested as impaired vasodilatation, is considered a basic step in atherosclerosis development and progression. Several lines of evidence indicate that mitochondrial damage is central to this process and that reactive oxygen species (ROS) may act as a double-edged sword. On the one hand, it is well-accepted that the mitochondria are a major source of chronic ROS production under physiological conditions. On the other hand, it is known that ROS generation damages lipids, proteins and mitochondrial DNA, leading to dysregulated mitochondrial function. Elevated mitochondrial ROS production is associated with endothelial cell dysfunction as well as vascular smooth muscle cell

  1. Effect of uremia on HDL composition, vascular inflammation, and atherosclerosis in wild-type mice

    DEFF Research Database (Denmark)

    Bang, Christian A; Bro, Susanne; Bartels, Emil D


    Wild-type mice normally do not develop atherosclerosis, unless fed cholic acid. Uremia is proinflammatory and increases atherosclerosis 6- to 10-fold in apolipoprotein E-deficient mice. This study examined the effect of uremia on lipoproteins, vascular inflammation, and atherosclerosis in wild...... in cholic acid-fed sham mice. The results suggest that moderate uremia neither induces aortic inflammation nor atherosclerosis in C57BL/6J mice despite increased LDL/HDL cholesterol ratio and altered HDL composition....

  2. Production of a plant-derived immunogenic protein targeting ApoB100 and CETP: toward a plant-based atherosclerosis vaccine. (United States)

    Salazar-Gonzalez, Jorge Alberto; Rosales-Mendoza, Sergio; Romero-Maldonado, Andrea; Monreal-Escalante, Elizabeth; Uresti-Rivera, Edith Elena; Bañuelos-Hernández, Bernardo


    In an effort to initiate the development of a plant-based vaccination model against atherosclerosis, a cholera toxin B subunit (CTB)-based chimeric protein was designed to target both ApoB100 and CETP epitopes associated with immunotherapeutic effects in atherosclerosis. Epitopes were fused at the C-terminus of CTB to yield a protein called CTB:p210:CETPe. A synthetic gene coding for CTB:p210:CETPe was successfully transferred to tobacco plants with no phenotypic alterations. Plant-derived CTB:p210:CETPe was expressed and assembled in the pentameric form. This protein retained the target antigenic determinants, as revealed by GM1-ELISA and Western blot analyses. Higher expresser lines reached recombinant protein accumulation levels up to 10 µg/g fresh weight in leaf tissues and these lines carry a single insertion of the transgene as determined by qPCR. Moreover, when subcutaneously administered, the biomass from these CTB:p210:CETPe-producing plants was able to elicit humoral responses in mice against both ApoB100 and CETP epitopes and human serum proteins. These findings evidenced for the first time that atherosclerosis-related epitopes can be expressed in plants retaining immunogenicity, which opens a new path in the molecular farming field for the development of vaccines against atherosclerosis.

  3. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4–NF-κB pathway (United States)

    Luo, Hong; Wang, Jing; Qiao, Chenhui; Ma, Ning; Liu, Donghai; Zhang, Weihua


    Atherosclerosis is a leading cause of death worldwide and is characterized by lipid-laden foam cell formation. Recently, pycnogenol (PYC) has drawn much attention because of its prominent effect on cardiovascular disease (CVD). However, its protective effect against atherosclerosis and the underlying mechanism remains undefined. Here PYC treatment reduced areas of plaque and lipid deposition in atherosclerotic mice, concomitant with decreases in total cholesterol and triglyceride levels and increases in HDL cholesterol levels, indicating a potential antiatherosclerotic effect of PYC through the regulation of lipid levels. Additionally, PYC preconditioning markedly decreased foam cell formation and lipid accumulation in lipopolysaccharide (LPS)-stimulated human THP-1 monocytes. A mechanistic analysis indicated that PYC decreased the lipid-related protein expression of adipose differentiation-related protein (ADRP) and adipocyte lipid-binding protein (ALBP/aP2) in a dose-dependent manner. Further analysis confirmed that PYC attenuated LPS-induced lipid droplet formation via ADRP and ALBP expression through the Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) pathway, because pretreatment with anti-TLR4 antibody or a specific inhibitor of NF-κB (PDTC) strikingly mitigated the LPS-induced increase in ADRP and ALBP. Together, our results provide insight into the ability of PYC to attenuate bacterial infection-triggered pathological processes associated with atherosclerosis. Thus PYC may be a potential lead compound for the future development of antiatherosclerotic CVD therapy. PMID:26492950

  4. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis. (United States)

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D


    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.

  5. Leukocyte TLR5 deficiency inhibits atherosclerosis by reduced macrophage recruitment and defective T-cell responsiveness (United States)

    Ellenbroek, Guilielmus H.J.M.; van Puijvelde, Gijs H.M.; Anas, Adam A.; Bot, Martine; Asbach, Miriam; Schoneveld, Arjan; van Santbrink, Peter J.; Foks, Amanda C.; Timmers, Leo; Doevendans, Pieter A.; Pasterkamp, Gerard; Hoefer, Imo E.; van der Poll, Tom; Kuiper, Johan; de Jager, Saskia C.A.


    Toll-like receptors (TLR) provide a critical link between innate and adaptive immunity, both important players in atherosclerosis. Since evidence for the role of TLR5 is lacking, we aimed to establish this in the immune axis of atherosclerosis. We assessed the effect of the TLR5-specific ligand Flagellin on macrophage maturation and T-cell polarisation. Next, we generated TLR5−/−LDLr−/− chimeras to study the effect of hematopoietic TLR5 deficiency on atherosclerosis formation. Flagellin stimulation did not influence wildtype or TLR5−/− macrophage maturation. Only in wildtype macrophages, Flagellin exposure increased MCP-1 and IL6 expression. Flagellin alone reduced T-helper 1 proliferation, which was completely overruled in the presence of T-cell receptor activation. In vivo, hematopoietic TLR5 deficiency attenuated atherosclerotic lesion formation by ≈25% (1030*103 ± 63*103 vs. 792*103 ± 61*103 μm2; p = 0.013) and decreased macrophage area (81.3 ± 12.0 vs. 44.2 ± 6.6 μm2; p = 0.011). In TLR5−/− chimeric mice, we observed lower IL6 plasma levels (36.4 ± 5.6 vs. 15.1 ± 2.2 pg/mL; p = 0.003), lower (activated) splenic CD4+ T-cell content (32.3 ± 2.1 vs. 21.0 ± 1.2%; p = 0.0018), accompanied by impaired T-cell proliferative responses. In conclusion, hematopoietic TLR5 deficiency inhibits atherosclerotic lesion formation by attenuated macrophage accumulation and defective T-cell responsiveness. PMID:28202909

  6. Clopidogrel significantly lowers the development of atherosclerosis in ApoE-deficient mice in vivo. (United States)

    Heim, Christian; Gebhardt, Julia; Ramsperger-Gleixner, Martina; Jacobi, Johannes; Weyand, Michael; Ensminger, Stephan M


    The anti-platelet drug clopidogrel has been shown to modulate adhesion molecule and cytokine expression, both playing an important role in the pathogenesis of atherosclerosis. The aim of this study was to investigate the impact of clopidogrel on the development and progression of atherosclerosis. ApoE(-/-) mice fed an atherogenic diet (cholesterol: 1 %) for 6 months received a daily dose of clopidogrel (1 mg/kg) by i.p. injection. Anti-platelet treatment was started immediately in one experimental group, and in another group clopidogrel was started 2 month after beginning of the atherogenic diet. Blood was analysed at days 30, 60 and 120 to monitor the lipid profile. After 6 months the aortic arch and brachiocephalic artery were analysed by Sudan IV staining for plaque size and by morphometry for luminal occlusion. Serum levels of various adhesion molecules were investigated by ELISA and the cellular infiltrate was analysed by immunofluorescence. After daily treatment with 1 mg/kg clopidogrel mice showed a significant reduction of atherosclerotic lesions in the thoracic aorta and within cross sections of the aortic arch [plaque formation 55.2 % (clopidogrel/start) vs. 76.5 % (untreated control) n = 8, P clopidogrel P-/E-selectin levels and cytokine levels of MCP-1 and PDGFβ were significantly reduced as compared to controls. The cellular infiltrate showed significantly reduced macrophage and T-cell infiltration in clopidogrel-treated animals. These results show that clopidogrel can effectively delay the development and progression of 'de-novo' atherosclerosis. However, once atherosclerotic lesions were already present, anti-platelet treatment alone did not result in reverse remodelling of these lesions.

  7. The interaction of estrogen and CSE/H2S pathway in the development of atherosclerosis. (United States)

    Li, Hongzhu; Mani, Sarathi; Wu, Lingyun; Fu, Ming; Shuang, Tian; Xu, Changqing; Wang, Rui


    Both estrogen and hydrogen sulfide (H2S) have been shown to inhibit the development of atherosclerosis. We previously reported that cystathionine γ-lyase knockout (CSE-KO) male mice develop atherosclerosis earlier than male wild-type (WT) mice. The present study investigated the interaction of CSE/H2S pathway and estrogen on the development of atherosclerosis in female mice. Plasma estrogen levels were significantly lower in female CSE-KO mice than in female WT mice. NaHS treatment had no effect on plasma estrogen levels in both WT and CSE-KO female mice. After CSE-KO and WT female mice were fed with atherogenic diet for 12 wk, plasma lipid levels were significantly increased and triglyceride levels decreased compared with those of control diet-fed mice. Atherogenic diet induced more atherosclerotic lesion, oxidative stress, intracellular adhesion molecule-1 (ICAM-1), and NF-κB in CSE-KO mice than in WT mice. Estrogen treatment of atherogenic diet-fed WT mice attenuated hypercholesterolemia, oxidative stress, ICAM-1 expression, and NF-κB in WT mice but not in atherogenic diet-fed CSE-KO mice. Furthermore, H2S production in both the liver and vascular tissues was enhanced by estrogen in WT mice but not in CSE-KO mice. It is concluded that the antiatherosclerotic effect of estrogen is mediated by CSE-generated H2S. This study provides new insights into the interaction of H2S and estrogen signaling pathways on the regulation of cardiovascular functions.NEW & NOTEWORTHY Female cystathionine γ-lyase (CSE)-knockout mice have significantly lower plasma estrogen levels and more severe early atherosclerotic lesion than female wild-type mice. H2S production in liver and vascular tissues is enhanced by estrogen via its stimulatory effect on CSE activity. The antiatherosclerotic effect of estrogen is mediated by CSE-generated H2S.

  8. Effect of probucol on vascular remodeling due to atherosclerosis in rabbits: an intravascular ultrasound study

    Institute of Scientific and Technical Information of China (English)

    LI Ting-ting; XIE Yi; GUO Yuan; TIAN Hong-bo; ZHANG Jian-ning; PENG Jie; ZHANG Yun


    Background Probucol is known to reduce the development of atherosclerotic lesions, but its impact on vascular remodeling associated with de novo atherosclerosis is incompletely understood. We therefore examined the effect of probucol on vascular remodeling in a rabbit model of established atherosclerosis.Methods Aortic atherosclerosis was induced by a combination of endothelial injury and 10 weeks' atherogenic diet. Animals were then randomized to receive the foregoing diet without or with 1% (wt/wt) probucol for 16 weeks. At the end of week 26, in vivo intravascular ultrasound, pathological, immunohistochemical and gene expression studies were performed.Results Probucol significantly decreased vessel cross-sectional area, plaque area and plaque burden without effect on lumen area. More negative remodeling and less positive remodeling occurred in the abdominal aortas of probucol group than the control group (56% vs. 21%, 18% vs. 54%, respectively, both P<0.01). In addition, the probucol group showed a smaller mean remodeling index relative to the control group (0.93 ± 0.13 vs. 1.05 ±0.16, P<0.01). Furthermore, probucol treatment decreased macrophage infiltration, inhibited apoptosis of cells within plaques, and reduced the production of matrix metalloproteinases-2, -9, cathepsin K and cathepsin S (all P<0.01).Conclusions These findings suggest that probucol may attenuate the enlargement of atherosclerotic vessel walls and be associated with a negative remodeling pattern without affecting the lumen size. This effect may involve inhibition of extracellular matrix degradation and prevention of apoptosis in atherosclerotic plaques.

  9. Levels of soluble adhesion molecules in patients with various clinical presentations of coronary atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    LU Hui-he; SHENG Zheng-qiang; WANG Yi; ZHANG Li


    Background Adhesion molecules play an important role in the development and progression of coronary atherosclerosis. The aim of this study was to compare concentrations of soluble forms of adhesion molecules in patients with different clinical presentations of coronary artery disease (CAD).Methods One hundred and twenty-eight patients with CAD were divided into three groups; the first group was acute myocardial infarction group (AMI group, n=45), the second group was unstable angina pectoris group (UAP group, n=48),the third group was stable angina pectoris group (SAP group, n=35). We compared them with patients with normal coronary arteries (control group, n=31). The serum levels of vascular cell adhesion molecule (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin and P-selectin were measured in all subjects.Results The serum level of VCAM-1 in the AMI group was significantly higher than in the UAP, SAP and control groups (P <0.01). The level in the UAP group was significantly higher than the SAP group and control group (P <0.01) and the level in the SAP group was significantly higher than in the control group (P <0.01). The serum ICAM-1 level was significantly elevated in the AMI, UAP and SAP groups as compared to the control group (P <0.01). The levels of serum E-selectin and P-selectin in the AMI and UAP groups were significantly higher than in the SAP and control groups (P<0.01).Conclusions Increased levels of VCAM-1 and ICAM-1, E-selectin and P-selectin, as markers of inflammation, showed the importance of inflammatory processes in the development of atherosclerosis and clinical expression of CAD. Soluble ICAM-1, VCAM-1, E-selectin and P-selectin concentrations are useful indicators of the presence of atherosclerosis and the severity of CAD clinical presentation.

  10. DMPD: Toll-like receptors in atherosclerosis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031244 Toll-like receptors in atherosclerosis. Tobias PS, Curtiss LK. Biochem Soc... Trans. 2007 Dec;35(Pt 6):1453-5. (.png) (.svg) (.html) (.csml) Show Toll-like receptors in atherosclerosis.... PubmedID 18031244 Title Toll-like receptors in atherosclerosis. Authors Tobias PS, Curtiss LK. Publication

  11. 75 FR 46945 - Proposed Collection; Comment Request; Multi-Ethnic Study of Atherosclerosis (MESA) Event... (United States)


    ... Atherosclerosis (MESA) Event Surveillance SUMMARY: In compliance with the requirement of Section 3506(c)(2)(A) of... Budget (OMB) for review and approval. Proposed Collection: Title: Multi-Ethnic Study of Atherosclerosis... and progression of subclinical cardiovascular disease (CVD)-- that is, atherosclerosis and other...

  12. 78 FR 77138 - Proposed Collection; 60-day Comment Request: The Atherosclerosis Risk in Communities Study (ARIC) (United States)


    ... Atherosclerosis Risk in Communities Study (ARIC) Summary: In compliance with the requirement of Section 3506(c) (2... days of the date of this publication. Proposed Collection: The Atherosclerosis Risk in Communities... primary objectives of the study are to: (1) investigate factors associated with both atherosclerosis...

  13. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah


    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  14. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress1 (United States)

    Alimirah, Fatouma; Panchanathan, Ravichandran; Davis, Francesca J; Chen, Jianming; Choubey, Divaker


    Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53-mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53-mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress. PMID:17534448

  15. Melatonin ameliorates vascular endothelial dysfunction, inflammation, and atherosclerosis by suppressing the TLR4/NF-κB system in high-fat-fed rabbits. (United States)

    Hu, Ze-Ping; Fang, Xiao-Ling; Fang, Nan; Wang, Xiao-Bian; Qian, Hai-Yan; Cao, Zhong; Cheng, Yuan; Wang, Bang-Ning; Wang, Yuan


    Vascular endothelial dysfunction (VED) and inflammation contribute to the initiation and progression of atherosclerosis. Melatonin (MLT) normalizes lipid profile, improves endothelial function, and possesses anti-inflammatory properties. However, the precise mechanisms are still unclear. This study investigated whether MLT could ameliorate VED, inflammation, and atherosclerosis by suppressing the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) system in high-fat-fed rabbits. Rabbits were randomly divided into three groups that received a standard diet (control group), high-cholesterol diet (atherosclerosis group), or high-cholesterol diet plus 10 mg/kg/day MLT (MLT group) for 12 wk. After treatment, high-fat diet significantly increased serum lipid and inflammatory markers in rabbits in atherosclerosis group compared with that in control group. In addition, high-fat diet also induced VED and typical atherosclerotic plaque formation and increased intima/media thickness ratio, which were significantly improved by MLT therapy as demonstrated in MLT group. Histological and immunoblot analysis further showed that high-fat diet enhanced the expressions of TLR4, myeloid differentiation primary response protein (MyD88), and NF-κB p65, but decreased inhibitor of NF-κB (IκB) expression. By contrast, MLT therapy decreased the expressions of TLR4, MyD88, and NF-κB p65 and increased IκB expression. This study has demonstrated that MLT ameliorates lipid metabolism, VED, and inflammation and inhibits the progression of atherosclerosis in high-fat-fed rabbits. Moreover, our study indicates for the first time that suppression of the TLR4/NF-κB system in local vasculature with atherosclerotic damage is important for the protective effects of MLT.

  16. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression (United States)

    Aryal, Binod; Rotllan, Noemi; Araldi, Elisa; Ramírez, Cristina M.; He, Shun; Chousterman, Benjamin G.; Fenn, Ashley M.; Wanschel, Amarylis; Madrigal-Matute, Julio; Warrier, Nikhil; Martín-Ventura, Jose L.; Swirski, Filip K.; Suárez, Yajaira; Fernández-Hernando, Carlos


    Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.

  17. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)


    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  18. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang


    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  19. Increased LDL susceptibility to oxidation accelerates future carotid artery atherosclerosis

    Directory of Open Access Journals (Sweden)

    Aoki Toshinari


    Full Text Available Abstract Background We analyzed the causal relationship between LDL susceptibility to oxidation and the development of new carotid artery atherosclerosis over a period of 5 years. We previously described the determinants related to a risk of cardiovascular changes determined in a Japanese population participating in the Niigata Study, which is an ongoing epidemiological investigation of the prevention of cardiovascular diseases. Methods We selected 394 individuals (169 males and 225 females who underwent a second carotid artery ultrasonographic examination in 2001 - 2002 for the present study. The susceptibility of LDL to oxidation was determined as the photometric absorbance and electrophoretic mobility of samples that had been collected in 1996 - 1997. The measurements were compared with ultrasonographic findings obtained in 2001 - 2002. Results The multivariate-adjusted model showed that age (odds ratio (OR, 1.034; 95% confidence interval (95%CI, 1.010 - 1.059, HbA1c (OR, 1.477; 95%CI, 0.980 - 2.225, and photometric O/N (OR, 2.012; 95%CI, 1.000 - 4.051 were significant variables that could independently predict the risk of new carotid artery atherosclerosis. Conclusion The susceptibility of LDL to oxidation was a significant parameter that could predict new carotid artery atherosclerosis over a 5-year period, and higher susceptibility was associated with a higher incidence of new carotid artery atherosclerosis.

  20. The Role of Atherosclerosis, Hormones and Genes in Stroke

    NARCIS (Netherlands)

    M. Hollander (Monika)


    textabstractThis thesis describes the relation between atherosclerosis, hormones and genetic factors in relation to the risk of stroke. The results are based on the Rotterdam Study, a large population based cohort study among 7,983 persons aged 55 years or older. A total of 7,721 persons were free f

  1. Imaging Techniques for Diagnosis of Thoracic Aortic Atherosclerosis

    NARCIS (Netherlands)

    Jansen Klomp, W.W.; Brandon Bravo Bruinsma, G.J.; Hof, van 't A.W.; Grandjean, J.G.; Nierich, A.P.


    The most severe complications after cardiac surgery are neurological complications including stroke which is often caused by emboli merging from atherosclerosis in the ascending aorta to the brain. Information about the thoracic aorta is crucial in reducing the embolization risk for both surgical op

  2. Atherosclerosis induced by diabetogenic diet in New Zealand white rabbits

    Institute of Scientific and Technical Information of China (English)


    To observe the effects of diabetogenic (high fat high sucrose, lacking choleserol) diet on atherogenesis in New Zealand white rabbits. Two groups of New Zealand white rabbits received regular rabbit chow (the normal control), or high fat high sucrose diet for 4 months. The levels of plasma total cholesterol, HDL cholesterol, triglycerides, insulin, and glucose were investigated, the areas of fatty streak of the aortae were measured after staining with Sodan IV, and the aortic, coronary specimens were observed with light and electron microscopies. The plasma glucose, triglycerides, and total cholesterol were increased significantly by high fat high sucrose feeding. At the end of 4 months, the early charateristics of atherosclerosis were present in the animals' vascular specimens. Our findings suggest that high fat high sucrose feeding can induce hyperglycemia, hypertriglyceridemia and atherosclerosis in New Zealand white rabbits, and this could be a potential animal model for studying the mechanisms of diabetes-accelerated atherosclerosis. This study raised a question: What is the mechanism by which high fat high sucrose feeding induces atherosclerosis?. The related hypothesis was given in this article.

  3. Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander?

    DEFF Research Database (Denmark)

    Nordestgaard, B G; Zacho, J


    exclude that genetically elevated CRP cause CVD. CONCLUSION: These data suggest that elevated CRP per se does not cause CVD; however, inflammation per se possibly contributes to CVD. Elevated CRP levels more likely is a marker for the extent of atherosclerosis or for the inflammatory activity...

  4. Venous Thrombosis and Atherosclerosis is There a link

    Institute of Scientific and Technical Information of China (English)

    LIU MIN-JUAN; LiU Ze-lin


    @@ Venous thrombosis and arterial thrombotic disorders have long been viewed as separate pathophysiological entities, partly as a result of the obvious anatomical differences, as well as their distinct clinical presentations. Recently, the potential association between venous thromboembolism(VTE) and atherosclerosis was described for the first time in 2003. Subsequently, numerous investigations have addressed the topic.

  5. A Role of the Bile Salt Receptor FXR in Atherosclerosis

    NARCIS (Netherlands)

    Hageman, Jurre; Herrema, Hilde; Groen, Albert K.; Kuipers, Folkert


    This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly

  6. Fibrinogen and atherosclerosis: A study in transgenic mice

    NARCIS (Netherlands)

    Koopman, J.; Maas, A.; Rezaee, F.; Havekes, L.; Verheijen, J.; Gijbels, M.; Haverkate, F.


    Atherosclerosis is a multifactorial disease that is influenced by both genetic and environmental factors. Recent epidemiological studies have shown that the combination of elevated VLDL/LDL concentrations and elevated fibrinogen levels results in a strong increase of the risk for cardiovascular dise

  7. Fibrinogen and atherosclerosis: A study in transgenic mice

    NARCIS (Netherlands)

    Koopman, J.; Havekes, L.; Verheijen, J.; Gijbels, M.; Haverkate, F.


    Atherosclerosis is a multifactorial disease that is influenced by both genetic and environmental factors. Recent epidemiological studies have shown that the combination of elevated VLDL/LDL concentrations and elevated fibrinogen levels results in a strong increase of the risk for cardiovascular dise

  8. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development

    NARCIS (Netherlands)

    Berbeé, J.F.P.; Boon, M.R.; Khedoe, P.P.S.J.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; Jung, C.; Vazirpanah, N.; Brouwers, L.P.J.; Gordts, P.L.S.M.; Esko, J.D.; Hiemstra, P.S.; Havekes, L.M.; Scheja, L.; Heeren, J.; Rensen, P.C.N.


    Brown adipose tissue (BAT) combusts high amounts of fatty acids, thereby lowering plasma triglyceride levels and reducing obesity. However, the precise role of BAT in plasma cholesterol metabolism and atherosclerosis development remains unclear. Here we show that BAT activation by b3-adrenergic rece

  9. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6 Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Gwang-woong Go


    Full Text Available Low-density lipoprotein receptor-related protein 6 (LRP6 is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention.

  10. Correlation of arterial stiffness index with carotid atherosclerosis in patients with primary hypertension

    Institute of Scientific and Technical Information of China (English)

    Wen-Hua Cai; Li-Min Li; Xue-Min Wang; Cui-Qing Sun; Hai-Wei Zhao; Hui Wang; Rui-Chao Liu


    Objective:To explore the correlation of arterial stiffness index with carotid atherosclerosis in patients with primary hypertension.Methods:A total of 86 patients with primary hypertension who were admitted in our hospital from January, 2013 to September, 2015 were included in the study, and divided into the carotid atherosclerosis group (IMT≥0.9 mm, with plaque being detected) and the pure hypertension group (normal IMT) according to the carotid artery color Doppler ultrasound results. According to the ambulatory blood pressure monitoring results, the carotid atherosclerosis group was divided into the low BPV (7.02-9.57) group and the high BPV (>9.57-14.29) group. The non-invasive ambulatory blood pressure monitoring apparatus was used for 24 h blood pressure monitoring, measuring time in the daytime: 6:00-21:59, measuring one time every 30 min; measuring time in the nighttime: 22:00-5:59, measuring one time every 60 min. The dSBP, dDBP, nSBP, nDBP, 24 h SBP, and 24 h DBP were recorded. BPV was expressed as 24 h SCV and 24 h DCV.Results:The dSBP, nSBP, 24 h SBP, 24 h DBP, and 24 h SCV in the carotid atherosclerosis group were significantly higher than those in the pure hypertension group, while the comparison of dDBP, nDBP, and 24 h DCV between the two groups was not statistically significant. The common carotid artery and external carotid artery IMT, and the mean IMT in the high BPV group were significantly higher than those in the low BPV group, and the number of carotid plaques being detected was significantly greater than that in the low BPV group.Conclusions:BPV is involved in the arterial functional and structural changes, resulting in the target organ damage. Detection of carotid IMT is of great significance in evaluating the early vascular damage and predicting the cardiovascular events; therefore, BPV monitoring should be strengthened during the diagnosis and treatment of hypertension.

  11. Proteomic identification of proteins in exosomes of patients with atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    JIANG Mei; QUAN Jing; ZHANG Heng; DING Qian-qian; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng


    AIM:Atherosclerosis primarily involved systemic arteries .Luminal surface , a monolayer of endothelial cells , of artery directly exposes to blood and is susceptible to active substances in the blood .Exosomes contain significantly amount of proteins and RNAs .Ex-osomes can be good and bad for cells , depending on their component .Thus, exosomes may contribute to atherosclerosis by affecting endothelial cells .This study analyzed the relationship of exosome proteins and atherosclerosis .METHODS: Fifty-six patients and healthy subjects were recruited and divided into two comparisons:healthy subjects vs atherosclerosis ( HS vs AS) , and hypertension vs hypertension plus atherosclerosis ( HT vs HT+AS) .Serum exosomes were decoded by protein mass spectrometry .The protein profile and function were analyzed by gene ontology ( GO) .RESULTS:It was found that five child terms repeatedly appeared in “response to stimulus” and “immune system process” of BP of the two categories ( HS vs AS and AS vs HT+AS):“positive regulation of innate immune response”,“immune response-activating signal transduction”,”activation of innate immune response”,“innate immune re-sponse-activating signal transduction” and “innate immune response activating cell surface receptor signaling pathway ”.Two child terms repeatedly showed in “binding” of MF of the two categories:“antigen binding” and “enzyme binding”.Two proteins, PSMA6 and PSMA7, were repeatedly shown in the two categories .CONCLUSION:GO analysis was utilized for structure hierarchy “tree” to illustrate these proteins involved in various terms in BP , CC and MF.The PPI analysis supplied proteins which may play potentially im-portant roles in AS process .Innate immune system and blood coagulation pathway contribute to AS formation .The proteins, PSMA6, PSMA7 and Annexin A2, may can be the new target proteins for prevention and treatment of AS .

  12. Improved animal models for testing gene therapy for atherosclerosis. (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A


    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  13. Expressions of beta-catenin, APC Protein, C-myc and Cyclin D1 in Ovarian Epithelial Tumor and Their Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can


    Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coli protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P<0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P<0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P<0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P<0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.

  14. Long-term activation of the innate immune system in atherosclerosis. (United States)

    Christ, Anette; Bekkering, Siroon; Latz, Eicke; Riksen, Niels P


    Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.

  15. Atherosclerosis risk factors in American Indians with Alzheimer disease: preliminary findings. (United States)

    Weiner, Myron F; Rosenberg, Roger N; Womack, Kyle B; Svetlik, Doris A; Fuller, Carey; Fields, Julie; Hynan, Linda S


    Factors predisposing to and associated with atherosclerosis may impact the onset and progression of Alzheimer disease (AD). The high prevalence of atherosclerosis and associated risk factors in American Indians makes them ideal subjects to test this association. We compared frequency of history of hypertension, myocardial infarction, stroke, diabetes, and high cholesterol in 34 American Indians with AD with 34 age-matched American Indian controls, and 34 age-matched whites with probable AD. We also measured waist size, height, and weight, and acquired blood for determination of plasma homocysteine and apolipoprotein E genotype. The 3 groups did not differ significantly in age or sex. History of hypertension and diabetes was significantly more common among American Indian AD patients than Indian controls or whites with AD. The 3 groups did not differ in history of stroke or myocardial infarction. Body mass index was significantly greater in both Indian groups than the white AD group. Plasma homocysteine levels were greater, but not significantly so, in the Indian AD than the Indian control group. Thus, there is preliminary evidence of a modest association between history of hypertension and diabetes and AD in a small sample of American Indians. This suggests that changes in lifestyle factors could influence the expression of AD in American Indians.

  16. [Hyperinsulinemia--the common denominator in type II diabetes mellitus,obesity, hypertension, hypertriglyceridemia and atherosclerosis]. (United States)

    Málková, J; Andĕl, M; Stolba, P; Kimlová, I


    During the last twenty years we witnessed a remarkable increase in knowledge of the mechanism as regards insulin action, the central hormone of metabolic regulations. Interest in cellular and molecular mechanisms of action was conditioned by a high prevalence of insulin resistance and the fact that insulin resistance holds a key position in the pathogenesis of many diseases, in particular atherosclerosis, obesity, hypertension, diabetes mellitus type II, ovarian hyperandrogenism and others. The syndrome of hyperinsulinaemia/insulin resistance is the basic component of the so-called X syndrome defined in 1988 by Reaven. It is encountered in subjects with a normal glucose tolerance but a predisposition for diabetes type II. If this disposition, probably genetic by nature, is potentiated by the central type of obesity and a sedentary lifestyle it can influence the development of hypertension and dyslipidemia. The sum of these factors promotes acceleration of atherosclerosis and frequently its premature manifestations: myocardial infarction and other cardiovascular diseases which hold the first place as regards causes of death on a world wide scale. It is important to identify but also to treat this complex not only metabolic risk factors for macrovascular diseases. It is a paradox that some drugs used as antihypertensives can cause deterioration of insulin resistance, subsequently influence in an adverse manner dyslipidemia and thus increase the metabolic risk of cardiovascular diseases. In the submitted paper the authors tried to summarize hitherto expressed views on the syndrome of hyperinsulinaemia and insulin resistance, using as a basic the results of their own work.

  17. GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure

    Directory of Open Access Journals (Sweden)

    Wu Meei-Maan


    Full Text Available Abstract Background Arsenic is a strong stimulus of heme oxygenase (HO-1 expression in experimental studies in response to oxidative stress caused by a stimulus. A functional GT-repeat polymorphism in the HO-1 gene promoter was inversely correlated to the development of coronary artery disease in diabetics and development of restenosis following angioplasty in patients. The role of this potential vascular protective factor in carotid atherosclerosis remains unclear. We previously reported a graded association of arsenic exposure in drinking water with an increased risk of carotid atherosclerosis. In this study, we investigated the relationship between HO-1 genetic polymorphism and the risk of atherosclerosis related to arsenic. Methods Three-hundred and sixty-seven participants with an indication of carotid atherosclerosis and an additional 420 participants without the indication, which served as the controls, from two arsenic exposure areas in Taiwan, a low arsenic-exposed Lanyang cohort and a high arsenic-exposed LMN cohort, were studied. Carotid atherosclerosis was evaluated using a duplex ultrasonographic assessment of the extracranial carotid arteries. Allelic variants of (GTn repeats in the 5'-flanking region of the HO-1 gene were identified and grouped into a short (S allele ( Results Analysis results showed that arsenic's effect on carotid atherosclerosis differed between carriers of the class S allele (OR 1.39; 95% CI 0.86-2.25; p = 0.181 and non-carriers (OR 2.65; 95% CI 1.03-6.82; p = 0.044 in the high-exposure LMN cohort. At arsenic exposure levels exceeding 750 μg/L, difference in OR estimates between class S allele carriers and non-carriers was borderline significant (p = 0.051. In contrast, no such results were found in the low-exposure Lanyang cohort. Conclusions This exploratory study suggests that at a relatively high level of arsenic exposure, carriers of the short (GTn allele (

  18. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection. (United States)

    Yeaman, Grant R; Howell, Alexandra L; Weldon, Sally; Demian, Douglas J; Collins, Jane E; O'Connell, Denise M; Asin, Susana N; Wira, Charles R; Fanger, Michael W


    Human immunodeficiency virus-1 (HIV-1) is primarily a sexually transmitted disease. Identification of cell populations within the female reproductive tract that are initially infected, and the events involved in transmission of infection to other cells, remain to be established. In this report, we evaluated expression of HIV receptors and coreceptors on epithelial cells in the uterus and found they express several receptors critical for HIV infection including CD4, CXCR4, CCR5 and galactosylceramide (GalC). Moreover, expression of these receptors varied during the menstrual cycle. Expression of CD4 and CCR5 on uterine epithelial cells is high throughout the proliferative phase of the menstrual cycle when blood levels of oestradiol are high. In contrast, CXCR4 expression increased gradually throughout the proliferative phase. During the secretory phase of the cycle when both oestradiol and progesterone are elevated, CD4 and CCR5 expression decreased whereas CXCR4 expression remained elevated. Expression of GalC on endometrial glands is higher during the secretory phase than during the proliferative phase of the menstrual cycle. Because epithelial cells line the female reproductive tract and express HIV receptors and coreceptors, it is likely that they are one of the first cell types to become infected. The hormonal regulation of HIV receptor expression may affect a woman's susceptibility to HIV infection during her menstrual cycle. Moreover, selective coreceptor expression could account for the preferential transmission of R5-HIV-1 strains to women. In addition, these studies provide evidence that the uterus, and potentially the entire upper reproductive tract, are important sites for the initial events involved in HIV infection.

  19. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta (United States)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.


    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  20. Molecular characterization and developmental expression pattern of the chicken apolipoprotein D gene: implications for the evolution of vertebrate lipocalins. (United States)

    Ganfornina, María D; Sánchez, Diego; Pagano, Aldo; Tonachini, Laura; Descalzi-Cancedda, Fiorella; Martínez, Salvador


    The insect Lazarillo and the mammalian apolipoprotein D (ApoD) are orthologous members of the lipocalin protein family. We report the cloning and embryonic expression of chicken ApoD, the first molecularly characterized nonmammalian ApoD. We also report the ApoD expression in mouse during postnatal development and some novel aspects of the expression of the paralogous lipocalin prostaglandin D-synthase (PGDS) and discuss these results in view of the lipocalin family evolution in vertebrates. ApoD is expressed in subsets of central nervous system (CNS) neurons and glia during late chicken embryogenesis. Contrary to mouse ApoD, no expression appears in neural crest-derived cephalic mesenchyme and blood vessel pericytes. Also, ApoD is expressed in developing chicken feathers. These expressions are corroborated by quantitative reverse transcriptase-polymerase chain reaction profiles. ApoD is expressed during mouse postnatal development in a subset of CNS neurons, astrocytes and oligodendrocytes, but also in meninges and pericytes. Chicken PGDS is expressed in brain meninges and perivascular cells. Our results suggest that the amniote last common ancestor expressed ApoD and PGDS in the brain during embryogenesis. ApoD appears restricted to ectodermal derivatives, whereas PGDS is expressed by derivatives of the three germ layers.

  1. Antibodies against electronegative LDL inhibit atherosclerosis in LDLr-/- mice

    Directory of Open Access Journals (Sweden)

    D.M. Grosso


    Full Text Available In order to determine the effect of antibodies against electronegative low-density lipoprotein LDL(- on atherogenesis, five groups of LDL low receptor-deficient (LDLr-/- mice (6 per group were immunized with the following antibodies (100 µg each: mouse anti-LDL(- monoclonal IgG2b, rabbit anti-LDL(- polyclonal IgG or its Fab fragments and mouse irrelevant monoclonal IgG and non-immunized controls. Antibodies were administered intravenously one week before starting the hypercholesterolemic diet (1.25% cholesterol and then every week for 21 days. The passive immunization with anti-LDL(- monoclonal IgG2b, polyclonal antibody and its derived Fab significantly reduced the cross-sectional area of atherosclerotic lesions at the aortic root of LDLr-/- mice (28.8 ± 9.7, 67.3 ± 17.02, 56.9 ± 8.02 µm² (mean ± SD, respectively compared to control (124.9 ± 13.2 µm². Vascular cell adhesion molecule-1 protein expression, quantified by the KS300 image-analyzing software, on endothelium and the number of macrophages in the intima was also decreased in aortas of mice treated with anti-LDL(- monoclonal antibody (3.5 ± 0.70 per field x 10 compared to controls (21.5 ± 3.5 per field x 10. Furthermore, immunization with the monoclonal antibody decreased the concentration of LDL(- in blood plasma (immunized: 1.0 ± 1.4; control: 20.5 ± 3.5 RLU, the amount of cholesterol oxides in plasma (immunized: 4.7 ± 2.7; control: 15.0 ± 2.0 pg COx/mg cholesterol and liver (immunized: 2.3 ± 1.5; control: 30.0 ± 26.0 pg COx/mg cholesterol, and the hepatic content of lipid hydroperoxides (immunized: 0.30 ± 0.020; control: 0.38 ± 0.15 ng/mg protein. In conclusion, antibodies against electronegative LDL administered intravenously may play a protective role in atherosclerosis.

  2. Commensal Microbe-specific Activation of B2 Cell Subsets Contributes to Atherosclerosis Development Independently of Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Lin Chen


    Full Text Available The relation between B2 cells and commensal microbes during atherosclerosis remains largely unexplored. Here we show that under hyperlipidemic conditions intestinal microbiota resulted in recruitment and ectopic activation of B2 cells in perivascular adipose tissue, followed by an increase in circulating IgG, promoting disease development. In contrast, disruption of the intestinal microbiota by a broad-spectrum antibiotic cocktail (AVNM led to the attenuation of atherosclerosis by suppressing B2 cells, despite the persistence of serum lipid abnormalities. Furthermore, pharmacological depletion of B2 cells with an anti-B2-cell surface CD23 antibody also attenuated commensal microbe-induced atherosclerosis. Moreover, expression analysis of TLR-signaling-related genes in the activated B2 cell subsets, assessed using the Toll-Like Receptor Signaling Pathway RT2 Profiler PCR Array, confirmed activation of the B2-cell autoantibody-production axis, which was associated with an increased capacity of B2 cells to bind to intestinal microbiota. Together, our findings reveal the critical role of commensal microbe-specific activation of B2 cells in the development of atherogenesis through lipid metabolism-independent mechanisms.

  3. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. (United States)

    Bäck, Magnus; Sultan, Ariane; Ovchinnikova, Olga; Hansson, Göran K


    Transforming growth factor-beta (TGF-beta) is a major antiinflammatory mediator in atherosclerosis. Transgenic ApoE(-/-) mice with a dominant-negative TGFbeta type II receptor (dnTGFbetaRII) on CD4(+) and CD8(+) T cells display aggravated atherosclerosis. The aim of the present study was to elucidate the mechanisms involved in this enhanced inflammatory response. Gene array analyses identified the 5-lipoxygenase-activating protein (FLAP) among the most upregulated genes in both the aorta and adipose tissue of dnTGFbetaRII transgenic ApoE(-/-) mice compared with their ApoE(-/-) littermates, a finding that was confirmed by real-time quantitative RT-PCR. Aortas from the former mice in addition produced increased amounts of the lipoxygenase product leukotriene B(4) after ex vivo stimulation. FLAP protein expression in both the aorta and adipose tissue was detected in macrophages, but not in T cells. Four weeks of treatment with the FLAP inhibitor MK-886 (10 mg/kg in 1% tylose delivered by osmotic pumps) significantly reduced atherosclerotic lesion size and T-cell content. Finally, FLAP mRNA levels were upregulated approximately 8-fold in adipose tissue derived from obese ob/ob mice. In conclusion, the results of the present study suggest a key role for mediators of the 5-lipoxygenase pathway in inflammatory reactions of atherosclerosis and metabolic disease.

  4. A Unique Combination of Nutritionally Active Ingredients Can Prevent Several Key Processes Associated with Atherosclerosis In Vitro.

    Directory of Open Access Journals (Sweden)

    Joe W E Moss

    Full Text Available Atherosclerosis is the underlying cause of cardiovascular disease that leads to more global mortalities each year than any other ailment. Consumption of active food ingredients such as phytosterols, omega-3 polyunsaturated fatty acids and flavanols are known to impart beneficial effects on cardiovascular disease although the combined actions of such agents in atherosclerosis is poorly understood. The aim of this study was to screen a nutritional supplement containing each of these active components for its anti-atherosclerotic effect on macrophages in vitro.The supplement attenuated the expression of intercellular adhesion molecule-1 and macrophage chemoattractant protein-1 in human and murine macrophages at physiologically relevant doses. The migratory capacity of human monocytes was also hindered, possibly mediated by eicosapentaenoic acid and catechin, while the ability of foam cells to efflux cholesterol was improved. The polarisation of murine macrophages towards a pro-inflammatory phenotype was also attenuated by the supplement.The formulation was able to hinder multiple key steps of atherosclerosis development in vitro by inhibiting monocyte recruitment, foam cell formation and macrophage polarisation towards an inflammatory phenotype. This is the first time a combination these ingredients has been shown to elicit such effects and supports its further study in preclinical in vivo models.

  5. Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis (United States)

    Pan, Xiaoyue; Bradfield, Christopher A.; Hussain, M. Mahmood


    Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe−/− and Ldlr−/− mice and its liver-specific ablation in Apoe−/− (L-Bmal1−/−Apoe−/−) mice increases, whereas overexpression of BMAL1 in L-Bmal1−/−Apoe−/− and Apoe−/−mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and diminishes cholesterol excretion to the bile. Further, Bmal1 deficiency reduces expression of Shp and Gata4. Reductions in Shp increase Mtp expression and lipoprotein production, whereas reductions in Gata4 diminish Abcg5/Abcg8 expression and biliary cholesterol excretion. Forced SHP expression normalizes lipoprotein secretion with no effect on biliary cholesterol excretion, while forced GATA4 expression increases cholesterol excretion to the bile and reduces plasma lipids in L-Bmal1−/−Apoe−/− and Apoe−/− mice. Thus, our data indicate that Bmal1 modulates lipoprotein production and biliary cholesterol excretion by regulating the expression of Mtp and Abcg5/Abcg8 via Shp and Gata4. PMID:27721414

  6. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)


    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  7. Variable cytochrome P450 2D6 expression and metabolism of codeine and other opioid prodrugs: implications for the Australian anaesthetist. (United States)

    Wilcox, R A; Owen, H


    Codeine is a popular opioid prodrug dependent on the activity of the specific cytochrome P450 enzyme 2D6 (CYP2D6). This enzyme catalyses the production of the potent analgesic metabolite morphine, but genetic studies have demonstrated that individuals from different ethnic groups exhibit considerable variability in the functional capacities of their expressed CYP2D6 enzymes, and pharmacological studies have shown many commonly prescribed drugs can reduce the action of CYP2D6 enzymes. These findings have significant clinical implications for the rational prescription of effective analgesia, especially in a multicultural country like Australia.

  8. AINTEGUMENTA homolog expression in Gnetum (gymnosperms) and implications for the evolution of ovulate axes in seed plants. (United States)

    Yamada, Toshihiro; Hirayama, Yumiko; Imaichi, Ryoko; Kato, Masahiro


    The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.

  9. Low and Maternal-specific Expression of p57KIP2 in Hydatidiform Mole and Its Clinical Implication

    Institute of Scientific and Technical Information of China (English)

    熊雅丽; 曹阳; 李红发


    Summary: In situ hybridization was applied to locate and detect the expression of p57KIP2 in hydatidi form mole (5 cases of partial hydatidiform mole and 18 cases of complete hydatidiform mole) and nor-mal villi (23 cases). The positive signals of p57KIP2 expression were analyzed by HPIAS-1000 Image Analysis System. p57KIP2 was highly expressed in normal villi but showed distinct low expression in hydatidiform mole (P<0. 01). Furthermore, the locus of low expression of p57KIP2 accorded with the place where lesion of trophoblast occurred. Detection of p57KIP2 made it possible to study the genetics of hydatidiform mole at the transcriptional level. Low expression of p57IP2 could be a molecular marker in hydatidiform mole and a target for therapy.

  10. Cholecalciferol (vitamin D) differentially regulates antimicrobial peptide expression in bovine mammary epithelial cells: implications during Staphylococcus aureus internalization. (United States)

    Téllez-Pérez, Ana Dolores; Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E


    Vitamin D has immunomodulatory functions regulating the expression of host defense genes. The aim of this study was to determine the effect of cholecalciferol (vitamin D3) on S. aureus internalization into bovine mammary epithelial cells (bMEC) and antimicrobial peptide (AP) mRNA expression. Cholecalciferol (1-200 nM) did not affect S. aureus growth and bMEC viability; but it reduced bacterial internalization into bMEC (15-74%). Also, bMEC showed a basal expression of all AP genes evaluated, which were induced by S. aureus. Cholecalciferol alone or together with bacteria diminished tracheal antimicrobial peptide (TAP) and bovine neutrophil β-defensin (BNBD) 5 mRNA expression; while alone induced the expression of lingual antimicrobial peptide (LAP), bovine β-defensin 1 (DEFB1) and bovine psoriasin (S100A7), which was inhibited in the presence of S. aureus. This compound (50 nM) increased BNBD10 mRNA expression coinciding with the greatest reduction in S. aureus internalization. Genes of vitamin D pathway (25-hydroxylase and 1 α-hydroxylase) show basal expression, which was induced by cholecalciferol or bacteria. S. aureus induced vitamin D receptor (VDR) mRNA expression, but not in the presence of cholecalciferol. In conclusion, cholecalciferol can reduce S. aureus internalization and differentially regulates AP expression in bMEC. Thus, vitamin D could be an effective innate immunity modulator in mammary gland, which leads to a better defense against bacterial infection.

  11. Intermittent Hypoxia Promote the Formation of Atherosclerosis by Increasing Expression of Lipoprotein-Associated Phospholipase A2 and Oxidized Low Density Lipoprotein%间歇性低氧通过上调脂蛋白相关磷脂酶A2和氧化型低密度脂蛋白表达促进动脉粥样硬化形成

    Institute of Scientific and Technical Information of China (English)

    李月春; 刘国荣; 王宝军; 郝喜娃; 张京芬; 庞江霞; 闫洁


    increasing expression of lipoprotein-associated phospholipase A, (Lp-PLA,) and oxidized low density lipoprotein (ox-LDL). Methods Using randomized controlled study, prospective animal and factorial experiment, the animal models were established by intermittent hypoxia and high-fat diet. 24 New-Zealand white rabbits (4 months old) were divided into the following 4 groups; control group, intermittent hypoxia group(IH), high-fat-feeding group(HFD) and intermittent hypoxia & high-fat-feeding group (IH + HFD). Each group had 6 rabbits. Rabbits in IH group and IH + HFD group were placed in a cabin which nitrogen and air were periodically infused every 5 minutes for 8 h/day. The lowest level of oxygen concentration was at 8%. The highest level of oxygen concentration was at 21%. The HFD group and IH + HFD group were fed with fat-rich-stoyer. The intervention experiment lasted for 12 weeks. Blood samples for measurements of Lp-PLA; and ox-LDL were collected at 0 w, 4 w, 8 w and 12 w. The formation of atherosclerosis in the aortic arch and abdominal aorta was observed. Result The Lp-PLA2 level of IH group, HFD group and IH + HFD group al 8th and 12th week was higher than control group and at 4th week, the difference has statistic significance (P<0.05). The Lp-PLA, level of IH + HFD group at 4th, 8th and 12th week was higher than control group, IH group and HFD group) P < 0.05). The two factors of IH and HFD had significant syneTgistic effects on the Lp-PIA2 al 4th, 8ih and 12th week(f = 0.000,P =0.001 ,P =0.000). The ox-LDL level of IH group, HFD group and IH + HFD group at 4th, 8th and 12th week was higher than control group(P<0. 05). It was higher at 4th week than at 8th and 12th week (P<0.05). The ox-LDL level of IH + HFD group at 4th, 8th and 12th week was higher than control group, IH group and HFD group (P < 0.05). The two factors of IH and HFD had significant synergistic effects on the ox-LDL at 4th week( P = 0.000), however they had no significant synergistic effects at 8th

  12. Regulation of AT1R expression through HuR by insulin

    NARCIS (Netherlands)

    Paukku, Kirsi; Backlund, Michael; De Boer, Rudolf A.; Kalkkinen, Nisse; Kontula, Kimmo K.; Lehtonen, Jukka Y. A.


    Angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. Type 2 diabetes is hyperinsulinemic state and a major risk factor for atherosclerosis and hypertension. It is known that hyperinsulinemia upregulates AT1R expression post-transcrip

  13. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications (United States)

    Yang, Xuyu; Zhou, Xiaoling; Tone, Paul; Durkin, Marian E.; Popescu, Nicholas C.


    Human hepatocellular carcinoma (HCC) is one of the most common types of cancer and has a very poor prognosis; thus, the development of effective therapies for the treatment of advanced HCC is of high clinical priority. In the present study, the anti-oncogenic effect of combined knockdown of c-Myc expression and ectopic restoration of deleted in liver cancer 1 (DLC1) expression was investigated in human liver cancer cells. Expression of c-Myc in human HCC cells was knocked down by stable transfection with a Myc-specific short hairpin (sh) RNA vector. DLC1 expression in Huh7 cells was restored by adenovirus transduction, and the effects of DLC1 expression and c-Myc knockdown on Ras homolog gene family, member A (RhoA) levels, cell proliferation, soft agar colony formation and cell invasion were measured. Downregulation of c-Myc or re-expression of DLC1 led to a marked reduction in RhoA levels, which was associated with decreases in cell proliferation, soft agar colony formation and invasiveness; this inhibitory effect was augmented with a combination of DLC1 transduction and c-Myc suppression. To determine whether liver cell-specific delivery of DLC1 was able to enhance the inhibitory effect of c-Myc knockdown on tumor growth in vivo, DLC1 vector DNA complexed with galactosylated polyethylene glycol-linear polyethyleneimine was administered by tail vein injection to mice bearing subcutaneous xenografts of Huh7 cells transfected with shMyc or control shRNA. A cooperative inhibitory effect of DLC1 expression and c-Myc knockdown on the growth of Huh7-derived tumors was observed, suggesting that targeted liver cell delivery of DLC1 and c-Myc shRNA may serve as a possible gene therapy modality for the treatment of human HCC. PMID:27446476

  14. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage. (United States)

    Guévremont, Melanie; Martel-Pelletier, Johanne; Massicotte, Frédéric; Tardif, Ginette; Pelletier, Jean-Pierre; Ranger, Pierre; Lajeunesse, Daniel; Reboul, Pascal


    HGF is increased in human OA cartilage, possibly from Ob's. RT-PCR shows HGF isoforms are differently regulated between chondrocytes and Ob. A paracrine cross-talk between subchondral bone and cartilage may occur during OA. Recently, hepatocyte growth factor (HGF) has been identified by immunohistochemistry in cartilage and more particularly in the deep zone of human osteoarthritic (OA) cartilage. By investigating HGF expression in cartilage, we found that chondrocytes did not express HGF; however, they expressed the two truncated isoforms, namely HGF/NK1 and HGF/NK2. Because the only other cells localized near the deep zone are osteoblasts from the subchondral bone plate, we hypothesized that they were expressing HGF. Indeed, we found that HGF was synthesized by osteoblasts from the subchondral bone plate. Moreover, OA osteoblasts produced five times more HGF than normal osteoblasts and almost no HGF/NK1, unlike normal osteoblasts. Because prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6 are involved in OA progression, we investigated whether these factors impact HGF produced by normal osteoblasts. PGE2 was the only factor tested that was able to stimulate HGF synthesis. However, the addition of NS398, a selective inhibitor of cyclo-oxygenase-2 (COX-2) had no effect on HGF produced by OA osteoblasts. HGF/NK2 had a moderate stimulating effect on HGF production by normal osteoblasts, whereas osteocalcin was not modulated by either HGF or HGF/NK2. When investigating signaling routes that might be implicated in OA osteoblast-produced HGF, we found that protein kinase A was at least partially involved. In summary, this study raises the hypothesis that the HGF found in articular cartilage is produced by osteoblasts, diffuses into the cartilage, and may be implicated in the OA process.

  15. The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Kyung Mook Choi


    Full Text Available Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.

  16. Mutations of mitochondrial genome in patients with carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Margarita A Sazonova


    Full Text Available With aim of detection the spectrum of mitochondrial DNA mutations in patients with carotid atherosclerosis from Moscow Region, we used a Roche 454 high-throughput sequencing of the whole mitochondrial genome. We have found that the presence of a number of homoplasmic mitochondrial DNA mutations in genes of 16S ribosomal RNA, subunits 2, 4 and 5 NADH dehydrogenase, subunits 1 and 2 cytochrome C oxidase, subunit 6 ATP-synthase, tRNA- Leu 2 and cytochrome B differed between conventionally healthy participants of the study and patients with carotid atherosclerosis. We also found heteroplasmic mutations, including insertions one or several nucleotides, that occurred more frequently in mitochondrial DNA of conventionally healthy participants of the study or patients with atherosclerotic lesions.

  17. [Morphological manifestations of systemic atherosclerosis found in fundus (experimental study)]. (United States)

    Budzinskaia, M V; Fedorov, A A; Pliukhova, A A; Voevodina, T M; Balatskaia, N V


    Results of angiography and morphology of 32 eyes (16 chinchilla rabbits) with experimental atherosclerosis are presented. N.N. Anichkov and S.S. Khalatova experimental hypercholesterolemia model (1912) was used. The animals were divided into the following groups: initial and advanced atherosclerosis, control group, follow-up 3 and 6 months. After 3 months progressive reduction of perfused retinal vessels and early degenerative changes of neurons and photoreceptors were found. In 6 months these changes became more significant and generalized. Due to ongoing small vessel reduction blood flow went to the major vessels and changed its distribution followed by ischemia of adjacent retina. No changes in choriocapillary layer and retinal pigment epithelium were found in any of groups studied.

  18. Novel anti-inflammatory therapies for the treatment of atherosclerosis. (United States)

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L


    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  19. Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: implications for neurogenesis

    NARCIS (Netherlands)

    Saaltink, D.J.; Håvik, B.; Verissimo, C.; Lucassen, P.J.; Vreugdenhil, E.


    We have characterized the expression of doublecortin-like (DCL), a microtubule-associated protein involved in embryonic neurogenesis that is highly homologous to doublecortin (DCX), in the adult mouse brain. To this end, we developed a DCL-specific antibody and used this to compare DCL expression wi

  20. Large animal models of atherosclerosis--new tools for persistent problems in cardiovascular medicine. (United States)

    Shim, J; Al-Mashhadi, R H; Sørensen, C B; Bentzon, J F


    Coronary heart disease and ischaemic stroke caused by atherosclerosis are leading causes of illness and death worldwide. Small animal models have provided insight into the fundamental mechanisms driving early atherosclerosis, but it is increasingly clear that new strategies and research tools are needed to translate these discoveries into improved prevention and treatment of symptomatic atherosclerosis in humans. Key challenges include better understanding of processes in late atherosclerosis, factors affecting atherosclerosis in the coronary bed, and the development of reliable imaging biomarker tools for risk stratification and monitoring of drug effects in humans. Efficient large animal models of atherosclerosis may help tackle these problems. Recent years have seen tremendous advances in gene-editing tools for large animals. This has made it possible to create gene-modified minipigs that develop atherosclerosis with many similarities to humans in terms of predilection for lesion sites and histopathology. Together with existing porcine models of atherosclerosis that are based on spontaneous mutations or severe diabetes, such models open new avenues for translational research in atherosclerosis. In this review, we discuss the merits of different animal models of atherosclerosis and give examples of important research problems where porcine models could prove pivotal for progress.

  1. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide. (United States)

    Ghosh, Siddhartha S; Righi, Samuel; Krieg, Richard; Kang, Le; Carl, Daniel; Wang, Jing; Massey, H Davis; Sica, Domenic A; Gehr, Todd W B; Ghosh, Shobha


    A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.

  2. High Fat High Cholesterol Diet (Western Diet Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Siddhartha S Ghosh

    Full Text Available A high fat meal, frequently known as western diet (WD, exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx or WD (Nx+WD. The controls were sham operated animals on normal diet (control and WD (WD. To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM, a known LPS antagonist, and curcumin (CU, a compound known to ameliorate chronic kidney disease (CKD, was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively. Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.

  3. Expression of very low density lipoprotein receptor in the vascular wall. Analysis of human tissues by in situ hybridization and immunohistochemistry

    DEFF Research Database (Denmark)

    Multhaupt, H A; Gåfvels, M E; Kariko, K;


    The recently cloned very low density lipoprotein (VLDL) receptor binds triglyceride-rich, apolipoprotein-E-containing lipoproteins with high affinity. The observation that VLDL receptor mRNA is abundantly expressed in extracts of tissues such as skeletal muscle and heart, but not liver, has led...... to the hypothesis that this receptor may facilitate the peripheral uptake of triglyceride-rich lipoproteins. However, little information is available concerning the types of cells that express this receptor in vivo. As expression of the VLDL receptor in the vascular wall might have important implications...... for the uptake and transport of triglyceride-rich lipoproteins, and perhaps facilitate the development of atherosclerosis in hypertriglyceridemic individuals, we used in situ hybridization and immunohistochemistry to determine whether VLDL receptor mRNA and protein was expressed in human vascular tissue. We...

  4. Review: the physiological and computational approaches for atherosclerosis treatment. (United States)

    Wang, Wuchen; Lee, Yugyung; Lee, Chi H


    The cardiovascular disease has long been an issue that causes severe loss in population, especially those conditions associated with arterial malfunction, being attributable to atherosclerosis and subsequent thrombotic formation. This article reviews the physiological mechanisms that underline the transition from plaque formation in atherosclerotic process to platelet aggregation and eventually thrombosis. The physiological and computational approaches, such as percutaneous coronary intervention and stent design modeling, to detect, evaluate and mitigate this malicious progression were also discussed.

  5. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Kazim; Husain; Wilfredo; Hernandez; Rais; A; Ansari; Leon; Ferder


    Atherosclerosis is a chronic inflammatory disease associated with cardiovascular dysfunction including myocardial infarction, unstable angina, sudden cardiac death, stroke and peripheral thromboses. It has been predicted that atherosclerosis will be the primary cause of death in the world by 2020. Atherogenesis is initiated by endothelial injury due to oxidative stress associated with cardiovascular risk factors including diabetes mellitus, hypertension, cigarette smoking, dyslipidemia, obesity, and metabolic syndrome. The impairment of the endothelium associated with cardiovascular risk factors creates an imbalance between vasodilating and vasoconstricting factors, in particular, an increase in angiotensin Ⅱ(Ang Ⅱ) and a decrease in nitric oxide. The renin-angiotensin system(RAS), and its primary mediator Ang Ⅱ, also have a direct influence on the progression of the atherosclerotic process via effects on endothelial function, inflammation, fibrinolytic balance, and plaque stability. Anti-inflammatory agents [statins, secretory phospholipase A2 inhibitor, lipoprotein-associated phospholipase A2 inhibitor, 5-lipoxygenase activating protein, chemokine motif ligand-2, C-C chemokine motif receptor 2 pathway inhibitors, methotrexate, IL-1 pathway inhibitor and RAS inhibitors(angiotensin-converting enzyme inhibitors)], Ang Ⅱ receptor blockers and ranin inhibitors may slow inflammatory processes and disease progression. Several studies in human using anti-inflammatory agents and RAS inhibitors revealed vascular benefits and reduced progression of coronary atherosclerosis in patients with stable angina pectoris; decreased vascular inflammatory markers, improved common carotid intima-media thickness and plaque volume in patients with diagnosed atherosclerosis. Recent preclinical studies have demonstrated therapeutic efficacy of vitamin D analogs paricalcitol in Apo E-deficient atherosclerotic mice.

  6. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. (United States)

    Lin, Yan; Chen, Yulong; Zhu, Ninghong; Zhao, Sihai; Fan, Jianglin; Liu, Enqi


    Hydrogen sulfide (H2S) is an important gaseous signaling molecule that serves many important regulatory roles in physiological and pathophysiological conditions. H2S exerts an anti-atherosclerotic effect through mediating the biological functions of nitric oxide (NO). However, its mechanism of action is unclear. The purpose of this study is to explore the effect mechanism of H2S on the development of atherosclerosis with regard to protein S-nitrosylation. A total of 45 male apoE(-/-) mice were randomly divided into three groups. Atherosclerosis was induced by Western diet (21% fat and 0.15% cholesterol) with/without administration of a H2S donor (NaHS) or an endogenous cystathionine γ-lyase inhibitor (d, l-propargylglycine) for 12 weeks. After 12 weeks, plasma lipid and plasma NO levels were measured. Aortic gross lesion area and histopathological features of aortic lesion were determined. Additionally, the level of S-nitrosylated proteins in vascular smooth muscle cells (VSMCs) was detected using immunofluorescence in aorta. Rat VSMCs were performed in an in vitro experiment. Inducible nitric oxide synthase (iNOS) protein expression, NO generation, protein S-nitrosylation, and cell proliferation and migration were measured. We found that H2S significantly reduced the aortic atherosclerotic lesion area (P=0.006) and inhibited lipid and macrophage accumulation (P=0.004, P=0.002) and VSMC proliferation (P=0.019) in apoE(-/-) mice. H2S could up-regulate levels of plasma NO and protein S-nitrosylation in aorta VSMCs. However, d, l- propargylglycine had the opposite effect, increasing the lesion area and the content of lipids and macrophages in the lesions of apoE(-/-) mice and down-regulating plasma NO levels and protein S-nitrosylation in aorta VSMCs. In vitro experiments, H2S could significantly reverse the reduction of iNOS expression and NO generation induced by oxidized low-density lipoprotein in VSMCs. Moreover, H2S could increase the protein S

  7. Role of maraviroc in a dyslipidemic murine model of atherosclerosis RTV-induced

    Directory of Open Access Journals (Sweden)

    S Cipriani


    Full Text Available Purpose Chemokines and their receptors play a crucial role in the development of atherosclerosis. CCR5 is considered to be crucial to monocyte recruitment during development of atherosclerosis. CCR5, known as a co-receptor of HIV-1, is the target of the approved CCR5 antagonist maraviroc (MVC. Therefore we investigated whether MVC reduces inflammation and atherosclerosis in a rodent model of dyslipidemia (ApoE-/-mice treated or not with Ritonavir (RTV. Methods Two-month-old mice (8 per group: wild type, ApoE-/- plus vehicle; ApoE-/- plus RTV; ApoE-/- plus RTV in combination with MVC. Nine-month-old mice (13 per group: wild type; Apo E-/- + vehicle; and Apo E-/- + MVC. Animals were sacrificed after 3 months treatments and plasma, aortas and epididymal fat were collected. Areas of aortas plaque were measured. Immunohistochemistry was performed to evaluate macrophages infiltration, and protein levels of cytokines/chemokines (i.e. ICAM, PAI, VCAM, IL-10, IL-17, MCP1, Rantes, TNFα, INFγ were evaluated in aorta lysates. Summary of results RTV enhances the plaque areas percentage in two month old ApoE-/- mice and is significantly reduced by MVC. The ritonavir-enhanced Mac3 expression on plaques is also reduced by MVC. Treatment with MVC lowers aortic concentration of cytokines/chemokines and plasmatic level of CRP that are increased by RTV. Ritonavir, enhancing mRNA expression of IL-6, Rantes and Mip1α, induces lipoatrophy in epididymal fat; MVC revertes this lipoatrophy and reduces mRNA levels of these cytokines-chemokines. Moreover, in ApoE-/- mice 9 months old, MVC significantly reduces the percentage of plaque areas (from 16.6±3.35% to 7.13±1.44% (en-face coloration, lowers aortic MAC3 staining and reduces the aortic concentration of cytokines/chemokines. Conclusions In a dyslipidemic rodent model the CCR5 inhibitor Maraviroc significantly reduces the percentage of aortic plaque areas, aortic inflammation and lipoatrophy of the epididymal fat

  8. IDOL N342S Variant, Atherosclerosis Progression and Cardiovascular Disorders in the Italian General Population.

    Directory of Open Access Journals (Sweden)

    Ashish Dhyani

    Full Text Available Inducible degrader of the low density lipoprotein receptor (IDOL, is an E3 ubiquitin ligase that negatively modulates low density lipoprotein receptor (LDL-R expression. Genome-wide association studies (GWAS indicated that genetic variants in IDOL gene contributes to variation in LDL-C plasma levels and the detailed analysis of a specific locus resulted in the identification of the functional common single nucleotide polymorphism (SNP rs9370867 (c.G1025A, p.N342S associates with increased LDL-R degradation and increased LDL-C levels. These findings, however, were not confirmed in two other independent cohorts and no data about the impact of this variant on atherosclerosis progression and cardiovascular risk are available. Aim of this study was to investigate the association between a functional variant in IDOL and atherosclerosis progression in an Italian general population. 1384 subjects enrolled in the PLIC study (Progression of Lesions in the Intima of Carotid were genotyped by Q-PCR allelic discrimination and the association with anthropometric parameters, plasma lipids and the carotid intima media thickness (cIMT and the impact on cardiovascular disease (CVD incidence were investigated. The N342S variant was not associated with changes of the plasma lipid profile among GG, AG or AA carriers, including total cholesterol (249±21, 249±19 and 248±21 mg/dl respectively, LDL-C (158±25, 161±22 and 160±23 mg/dL, cIMT (0.74±0.14, 0.75±0.17 and 0.77±0.15 mm and CVD incidence. In agreement, the expression of LDLR and the uptake of LDL was similar in macrophages derived from GG and AA carriers. Taken together our findings indicate that the N342S variant does not impact plasma lipid profile and is not associated with atherosclerosis progression and CVD in the general population, suggesting that other variants in the IDOL gene might be functionally linked with cholesterol metabolism.

  9. Biomarkers of Subclinical Atherosclerosis in Patients with Autoimmune Disorders

    Directory of Open Access Journals (Sweden)

    Elisabetta Profumo


    Full Text Available Atherosclerosis is accelerated in rheumatoid arthritis (RA and psoriatic arthritis (PsA. We investigated a possible association of oxidized low-density lipoproteins (ox-LDLs, nitric oxide (NO, 3-nitrotyrosine, vitamin A, vitamin E, and β-carotene serum levels with subclinical atherosclerosis in RA and PsA. By the use of ELISA, we observed higher ox-LDL levels in patients with intima-media thickness (IMT > 1 than in patients with IMT ≤ 1 and a negative correlation between NO levels and IMT values. By the use of high-performance liquid chromatography, we determined higher levels of vitamin A in patients with PsA and IMT ≤ 1 than in controls and lower levels of β-carotene in patients with RA and PsA than in controls. β-carotene concentrations were negatively correlated to the duration of disease in RA. Our study confirms that ox-LDLs and NO may be markers of accelerated atherosclerosis in RA and PsA whereas vitamins seem to be associated only to the presence of the autoimmune disorders.

  10. Aterosclerose experimental em coelhos Experimental atherosclerosis in rabbits

    Directory of Open Access Journals (Sweden)

    Waleska C. Dornas


    Full Text Available Numerosas pesquisas têm sido realizadas utilizando modelos experimentais para estudar o desenvolvimento da aterosclerose com dieta induzindo hiperlipidemia. Devido ao fato de que coelhos são muito sensíveis a dietas ricas em colesterol e acumulam grandes quantidades no plasma, a utilização destes animais como modelo experimental para avaliar o desenvolvimento de aterosclerose é de grande relevância, trazendo informação sobre fatores que contribuem para progressão e regressão aplicadas a situações humanas. Sendo assim, nessa revisão a função aterogênica do colesterol é mostrada em trabalhos que incluem o coelho como modelo experimental, uma vez que este animal tornou-se o mais popular modelo experimental de aterosclerose.Many researches have been conducted in experimental models in order to study the development of atherosclerosis from hyperlipidemia-inducing diets. Since rabbits are very sensitive to cholesterol-rich diets and accumulate large amounts of cholesterol in their plasma, their use as experimental models to evaluate the development of atherosclerosis is highly relevant and brings information on factors that contribute to the progression and regression of this condition that can be applied to humans. As such, this review includes studies on the atherogenic function of cholesterol based on rabbits as the experimental model, since they have become the most largely used experimental model of atherosclerosis.

  11. Roles of oxidative stress and redox regulation in atherosclerosis. (United States)

    Kondo, Takahito; Hirose, Makoto; Kageyama, Kan


    Oxidative stress is believed to be a cause of aging and cardiovascular disorders. In response to inflam-mation or endothelial cell injury, production of reactive oxygen species (ROS) is enhanced in vascular cells. These changes contribute to the initiation of atherosclerosis. Vascular cells possess anti-oxidant systems to protect against oxidative stress, in addition to the redox system. The redox status of pro-tein thiols is important for cellular functions. The Akt signaling pathway exerts effects on survival and apoptosis, and is regulated by the glutathione (GSH)/glutaredoxin (GRX)-dependent redox sys-tem. Sex hormones such as estrogens protect against oxidative stress by protecting the Akt signaling pathway but the physiological role of the extracellular GSH/GRX system has not been clarified, although found an increase in the levels of S-glutathionylated serum proteins in patients with athero-sclerosis obliterans. The results suggested that impaired serum redox potential is a marker of the development vascular dysfunction and estrogen has a possible role in the prevention of atherosclerosis.

  12. DNA modifications in atherosclerosis: from the past to the future. (United States)

    Borghini, Andrea; Cervelli, Tiziana; Galli, Alvaro; Andreassi, Maria Grazia


    The role of DNA damage in the pathogenesis of atherosclerosis has been extensively investigated in recent decades. There is now clear that oxidative stress is an important inducer of both DNA damage and telomere attrition which, in turn, can gives rise to genome instability and vascular senescence. This review discusses the role of the DNA damage response, including the key DNA repair pathways (base excision repair, nucleotide excision repair, homologous recombination and non-homologous end joining), deregulated cell cycle and apoptosis in atherosclerosis. We also highlight emerging evidence suggesting that epigenetic changes (DNA methylation and microRNA-mediated mechanisms), not associated with alterations in DNA sequences, may play a critical role in the regulation of the DNA damage response. Nevertheless, further investigation is still required to better understand the complexity of DNA repair and DNA damage response in atherosclerosis, making this topic an exciting and promising field for future investigation. Unraveling these molecular mechanisms provide the rationale for the development of novel efficient therapies to combat the vascular aging process.

  13. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis. (United States)

    Sage, Andrew P; Mallat, Ziad


    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  14. eNOS protects from atherosclerosis despite relevant superoxide production by the enzyme in apoE mice.

    Directory of Open Access Journals (Sweden)

    Padmapriya Ponnuswamy

    Full Text Available BACKGROUND: All three nitric oxide synthase (NOS isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS modulates leukocyte/endothelial- (L/E and platelet/endothelial- (P/E interactions in atherosclerosis and the production of nitric oxide (NO and superoxide by the enzyme. PRINCIPAL FINDINGS: Intravital microscopy (IVM of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE(-/-/eNOS(-/-, while P/E-interactions did not differ, compared to apoE(-/-. eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1 expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS in plaques, Electron Spin Resonance (ESR measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE(-/- vessels. CONCLUSION: Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE(-/-/eNOS(-/- vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE(-/- atherosclerosis but does not negate the enzyme's strong protective effects.

  15. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. (United States)

    Chen, Fang-Yuan; Zhou, Juan; Guo, Ning; Ma, Wang-Ge; Huang, Xin; Wang, Huan; Yuan, Zu-Yi


    Lipoprotein cholesterol metabolism dysfunction in the arterial wall is a major contributor to atherosclerosis, and excessive lipid intake and failed cholesterol homeostasis may accelerate the atherogenic process. Curcumin exerts multiple effects by alleviating inflammation, hyperlipidemia, and atherosclerosis; however, its role in cholesterol transport homeostasis and its underlying impact on inflammatory M1 macrophages are poorly understood. This work aimed to investigate the effect of curcumin on cholesterol transport, the inflammatory response and cell apoptosis in M1 macrophages. RAW264.7 macrophages (M0) were induced with LPS plus IFN-γ for 12 h to develop a M1 subtype and were then incubated with curcumin at different concentrations (6.25 and 12.5 μmol/L) in the presence or absence of oxLDL. Then, cholesterol influx/efflux and foam cell formation as well as inflammation and apoptosis were evaluated. It was found that curcumin increased cholesterol uptake measured by the Dil-oxLDL binding assay, and simultaneously increased cholesterol efflux carried out by Apo-A1 and HDL in M1 cells. Curcumin further reinforced ox-LDL-induced cholesterol esterification and foam cell formation as determined by Oil Red O and BODIPY staining. Moreover, curcumin dramatically reduced ox-LDL-induced cytokine production such as IL-1β, IL-6 as well as TNF-α and M1 cell apoptosis. We also found that curcumin upregulated CD36 and ABCA1 in M1 macrophages. Curcumin increased PPARγ expression, which in turn promoted CD36 and ABCA1 expression. In conclusion, curcumin may increase the ability of M1 macrophages to handle harmful lipids, thus promoting lipid processing, disposal and removal, which may support cholesterol homeostasis and exert an anti-atherosclerotic effect.

  16. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Natalia I Dmitrieva

    Full Text Available Cardiovascular diseases (CVDs are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs, we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779 demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a

  17. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. (United States)

    Dmitrieva, Natalia I; Burg, Maurice B


    Cardiovascular diseases (CVDs) are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs), we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779) demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a risk factor for

  18. Implications of calpains in health and diseases. (United States)

    Chakraborti, Sajal; Alam, Md Nur; Paik, Dibyendu; Shaikh, Soni; Chakraborti, Tapati


    The number of mammalian calpain protease family members has grown as many as 15 till recent count. Although initially described as a cytosolic protease, calpains have now been found in almost all subcellular locations i.e., from mitochondria to endoplasmic reticulum and from caveolae to Golgi bodies. Importantly, some calpains do not possess the 28 kDa regulatory subunit and have only the 80 kDa catalytic subunit. In some instances, the 80 kDa subunit by itself confers the calpain proteolytic activity. Calpains have been shown to be involved in a number of physiological processes such as cell cycle progression, remodeling of cytoskeletal-cell membrane attachments, signal transduction, gene expression and apoptosis. Recent studies have linked calpain deficiencies or it's over production with a variety of diseases, such as muscular dystrophies, gastropathy, diabetes, Alzheimer's and Parkinson's diseases, atherosclerosis and pulmonary hypertension. Herein, we present a brief overview on some implications of calpains on human health and some diseases.

  19. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology (United States)

    Martinez, Victor D.; Vucic, Emily A.; Thu, Kelsie L.; Hubaux, Roland; Enfield, Katey S.S.; Pikor, Larissa A.; Becker-Santos, Daiana D.; Brown, Carolyn J.; Lam, Stephen; Lam, Wan L.


    Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology. PMID:26013764

  20. MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors

    Directory of Open Access Journals (Sweden)

    Brian Shuch


    Full Text Available Aims. Inhibitors of the MET pathway hold promise in the treatment for metastatic kidney cancer. Assessment of predictive biomarkers may be necessary for appropriate patient selection. Understanding MET expression in metastases and the correlation to the primary site is important, as distant tissue is not always available. Methods and Results. MET immunofluorescence was performed using automated quantitative analysis and a tissue microarray containing matched nephrectomy and distant metastatic sites from 34 patients with clear cell renal cell carcinoma. Correlations between MET expressions in matched primary and metastatic sites and the extent of heterogeneity were calculated. The mean expression of MET was not significantly different between primary tumors when compared to metastases (P=0.1. MET expression weakly correlated between primary and matched metastatic sites (R=0.5 and a number of cases exhibited very high levels of discordance between these tumors. Heterogeneity within nephrectomy specimens compared to the paired metastatic tissues was not significantly different (P=0.39. Conclusions. We found that MET expression is not significantly different in primary tumors than metastatic sites and only weakly correlates between matched sites. Moderate concordance of MET expression and significant expression heterogeneity may be a barrier to the development of predictive biomarkers using MET targeting agents.

  1. Expression Profiling and Functional Implications of a Set of Zinc Finger Proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in Primary Osteoarthritic Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Maria Mesuraca


    Full Text Available Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA. To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.

  2. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. (United States)

    Hsieh, En-Jung; Waters, Brian M


    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots.

  3. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. (United States)

    Panchanathan, Ravichandran; Choubey, Divaker


    Systemic lupus erythematosus (SLE) in patients and certain mouse models exhibits a strong sex bias. Additionally, in most patients, increased serum levels of type I interferon (IFN-α) are associated with severity of the disease. Because increased levels of B cell activating factor (BAFF) in SLE patients and mouse models are associated with the development of SLE, we investigated whether the female sex hormone estrogen (E2) and/or IFNs (IFN-α or γ) could regulate the expression of murine BAFF. We found that steady-state levels of BAFF mRNA and protein were measurably higher in immune cells (CD11b(+), CD11c(+), and CD19(+)) isolated from C57BL/6 females than the age-matched male mice. Treatment of immune cells with IFN or E2 significantly increased levels of BAFF mRNA and protein and a deficiency of estrogen receptor-α, IRF5, or STAT1 expression in splenic cells decreased expression of BAFF. Moreover, treatment of RAW264.7 macrophage cells with IFN-α, IFN-γ, or E2 induced expression of BAFF. Interestingly, increased expression of p202, an IFN and estrogen-inducible protein, in RAW264.7 cells significantly increased the expression levels of BAFF and also stimulated the activity of the BAFF-luc-reporter. Accordingly, the increased expression of the p202 protein in lupus-prone B6.Nba2-ABC than non lupus-prone C57BL/6 and B6.Nba2-C female mice was associated with increased expression levels of BAFF. Together, our observations demonstrated that estrogen and IFN-induced increased levels of the p202 protein in immune cells contribute to sex bias in part through up-regulation of BAFF expression.

  4. The atherosclerosis burden score (ABS): a convenient ultrasound-based score of peripheral atherosclerosis for coronary artery disease prediction. (United States)

    Yerly, Patrick; Marquès-Vidal, Pedro; Owlya, Reza; Eeckhout, Eric; Kappenberger, Lukas; Darioli, Roger; Depairon, Michèle


    Ultrasonographic detection of subclinical atherosclerosis improves cardiovascular risk stratification, but uncertainty persists about the most discriminative method to apply. In this study, we found that the "atherosclerosis burden score (ABS)", a novel straightforward ultrasonographic score that sums the number of carotid and femoral arterial bifurcations with plaques, significantly outperformed common carotid intima-media thickness, carotid mean/maximal thickness, and carotid/femoral plaque scores for the detection of coronary artery disease (CAD) (receiver operating characteristic (ROC) curve area under the curve (AUC) = 0.79; P = 0.027 to ABS was also more correlated with CAD extension (R = 0.55; P ABS was weakly correlated with the European Society of Cardiology chart risk categories (R(2) = 0.21), indicating that ABS provided information beyond usual cardiovascular risk factor-based risk stratification. Pending prospective studies on hard cardiovascular endpoints, ABS appears as a promising tool in primary prevention.

  5. Analysis of gene expression and regulation implicates C2H9orf152 has an important role in calcium metabolism and chicken reproduction. (United States)

    Liu, Long; Fan, Yanfeng; Zhang, Zhenhe; Yang, Chan; Geng, Tuoyu; Gong, Daoqing; Hou, Zhuocheng; Ning, Zhonghua


    The reproductive system of a female bird is responsible for egg production. The genes highly expressed in oviduct are potentially important. From RNA-seq analysis, C2H9orf152 (an orthologous gene of human C9orf152) was identified as highly expressed in chicken uterus. To infer its function, we obtained and characterized its complete cDNA sequence, determined its spatiotemporal expression, and probed its transcription factor(s) through pharmaceutical approach. Data showed that the complete cDNA sequence was 1468bp long with a 789bp of open reading frame. Compared to other tested tissues, this gene was highly expressed in the oviduct and liver tissues, especially uterus. Its expression in uterus was gradually increased during developmental and reproductive periods, which verified its involvement in the growth and maturity of reproductive system. In contrast, its expression was not significant different between active and quiescent uterus, suggesting the role of C2H9orf152 in reproduction is likely due to its long-term effect. Moreover, based on its 5'-flanking sequence, Foxd3 and Hnf4a were predicted as transcription factors of C2H9orf152. Using berberine or retinoic acid (which can regulate the activities of Hnf4a and Foxd3, respectively), we demonstrated suppression of C2H9orf152 by the chemicals in chicken primary hepatocytes. As retinoic acid regulates calcium metabolism, and Hnf4a is a key nuclear factor to liver, these findings suggest that C2H9orf152 is involved in liver function and calcium metabolism of reproductive system. In conclusion, C2H9orf152 may have a long-term effect on chicken reproductive system by regulating calcium metabolism, suggesting this gene has an important implication in the improvement of egg production and eggshell quality.

  6. Succinate Dehydrogenase Subunit B (SDHB Is Expressed in Neurofibromatosis 1-Associated Gastrointestinal Stromal Tumors (Gists: Implications for the SDHB Expression Based Classification of Gists

    Directory of Open Access Journals (Sweden)

    Jeanny H. Wang, Jerzy Lasota, Markku Miettinen


    Full Text Available Gastrointestinal Stromal Tumor (GIST is the most common mesenchymal tumor of the digestive tract. GISTs develop with relatively high incidence in patients with Neurofibromatosis-1 syndrome (NF1. Mutational activation of KIT or PDGFRA is believed to be a driving force in the pathogenesis of familial and sporadic GISTs. Unlike those tumors, NF1-associated GISTs do not have KIT or PGDFRA mutations. Similarly, no mutational activation of KIT or PDGFRA has been identified in pediatric GISTs and in GISTs associated with Carney Triad and Carney-Stratakis Syndrome. KIT and PDGFRA-wild type tumors are expected to have lesser response to imatinib treatment. Recently, Carney Triad and Carney-Stratakis Syndrome -associated GISTs and pediatric GISTs have been shown to have a loss of expression of succinate dehydrogenase subunit B (SDHB, a Krebs cycle/electron transport chain interface protein. It was proposed that GISTs can be divided into SDHB- positive (type 1, and SDHB-negative (type 2 tumors because of similarities in clinical features and response to imatinib treatment. In this study, SDHB expression was examined immunohistochemically in 22 well-characterized NF1-associated GISTs. All analyzed tumors expressed SDHB. Based on SDHB-expression status, NF1-associated GISTs belong to type 1 category; however, similarly to SDHB type 2 tumors, they do not respond well to imatinib treatment. Therefore, a simple categorization of GISTs into SDHB-positive and-negative seems to be incomplete. A classification based on both SDHB expression status and KIT and PDGFRA mutation status characterize GISTs more accurately and allow subdivision of SDHB-positive tumors into different clinico-genetic categories.

  7. The Use of L-sIDOL Transgenic Mice as a Murine Model to Study Hypercholesterolemia and Atherosclerosis. (United States)

    Zerenturk, Eser J; Calkin, Anna C


    There are many advantages to the use of mice as a model to study the regulation of cholesterol metabolism. Common models of hypercholesterolemia include low-density lipoprotein receptor deficient (LDLR -/-) mice and apolipoprotein E deficient (ApoE) -/- mice. Herein, we describe the recently generated mouse model, L-sIDOL Tg mice, which express a dominant active form of Inducible Degrader Of the Low-density lipoprotein receptor (IDOL) in a liver-specific manner. This murine model offers significant advantages over previously established models for the study of hypercholesterolemia and atherosclerosis.

  8. Simvastatin suppresses vascular inflammation and atherosclerosis in ApoE-/-mice by downregulating the HMGB1-RAGE axis

    Institute of Scientific and Technical Information of China (English)

    Ming LIU; Ying YU; Hong JIANG; Lei ZHANG; Pei-pei ZHANG; Peng YU; Jian-guo JIA


    Aim:High mobility group box protein 1 (HMGB1) and receptor for the advanced glycation end product (RAGE) play pivotal roles in vascular inflammation and atherosclerosis.The aim of this study was to determine whether the HMGB1-RAGE axis was involved in the actions of simvastatin on vascular inflammation and atherosclerosis in ApoE-/-mice.Methods:Five-week old ApoE-/-mice and wild-type C57BL/6 mice were fed a Western diet.At 8 weeks of age,ApoE-/-mice were administered simvastatin (50 mg.kg1.d-1) or vehicle by gavage,and the wild-type mice were treated with vehicle.The mice were sacrificed at 11 weeks of age,and the atherosclerotic lesions in aortic sinus were assessed with Oil Red 0 staining.Macrophage migration was determined with scanning EM and immunohistochemistry.Human umbilical vein endothelial cells (HUVECs) were used for in vitro study.Western blots were used to quantify the protein expression of HMGB1,RAGE,vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1).Results:Vehicle-treated ApoE-/-mice exhibited significant increases in aortic inflammation and atherosclerosis as well as enhanced expression of HMGB1,RAGE,VCAM-1,and MCP-1 in aortic tissues as compared to the wild-type mice.Furthermore,serum total cholesterol,triglyceride and LDL levels were markedly increased,while serum HDL level was decreased in vehicle-treated ApoE-/-mice.Administration with simvastatin in ApoE-/-mice markedly attenuated the vascular inflammation and atherosclerotic lesion area,and decreased the aortic expression of HMGB1,RAGE,VCAM-1,and MCP-1.However,simvastatin did not affect the abnormal levels of serum total cholesterol,triglyceride,LDL and HDL in ApoE-/-mice.Exposure of HUVECs to HMGB1 (100 ng/mL) markedly increased the expression of HMGB1,RAGE and VCAM-1,whereas pretreatment of the cells with simvastatin (10 μmol/L) blocked the HMGB1-caused changes.Conclusion:Simvastatin inhibits vascular inflammation and atherosclerosis in Apo

  9. Expression of PinX1 and hTERT in basal cell carcinoma and their implications

    Institute of Scientific and Technical Information of China (English)

    Long Qin; Jing Ge


    Objective This study aimed to investigate the expression and significance of PIN2/TERF1 interacting, telomerase inhibitor 1 (PinX1) and human telomerase reverse transcriptase (hTERT) in basal cel carcino-ma (BCC). Methods Real-time polymerase chain reaction and immunohistochemistry were performed to quantify the mRNA expressions and integrated optical density (IOD), respectively, of PinX1 and hTERT in BCC specimens (n = 30), as wel as in normal skin specimens (n = 15). Results The mRNA expression level and IOD of PinX1 in the BCC samples were both significantly lower than those in the control specimens (P 0.05). Conclusion Downregulation of PinX1 and upregulation of hTERT expression may be associated with the activation and maintenance of telomerases in the induction of BCC.

  10. Atherosclerosis, cholesterol, nutrition, and statins – a critical review

    Directory of Open Access Journals (Sweden)

    Gebbers, Jan-Olaf


    Full Text Available Atherosclerosis, which causes approximately half of all deaths of adults over age 60 in industrialized nations, is a pandemic among inappropriately nourished and/or physically hypoactive children, adolescents, and adults world wide. Although nowadays statins are widely prescribed to middle age and elderly adults with high blood lipid levels as pharmacological prevention for the late complications of atherosclerosis, from a critical point of view statins seem not to solve the problem, especially when compared with certain natural ingredients of our nutrition like micronutrients as alternative strategy. Statin ingestion is associated with lowering of serum cholesterol and low-density lipoprotein concentrations; some prospective studies have shown statistical associations with subsequent modest reduction of mortality from cardiovascular disease. However, specific biochemical pathways and pharmacological roles of statins in prevention of atherosclerosis, if any, are unknown. Moreover, there have been no systematic cost-benefit analyses of life-style prophylaxis versus statin prophylaxis versus combined life-style plus statin prophylaxis versus neither life-style nor statin prophylaxis for clinically significant complications of cardiovascular diseases in the elderly. Further, in the trials of effectiveness statins were not compared with management of nutrition, which is the most appropriate alternative intervention. Such studies seem to be important, as the ever increasing world population, especially in developing countries, now demand expensive statins, which may be unaffordable for mitigating the pandemic. Studies of this kind are necessary to identify more precisely those patients for whom cardiovascular benefits will outweigh the risks and costs of the statin treatment in comparison with nutritional interventions. Against the background of the current pathogenetic concept of atherogenesis some of its possible risk factors, particularly the

  11. Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis.

    Directory of Open Access Journals (Sweden)

    Sukhwinder Kaur

    Full Text Available Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines.Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting.MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC. MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12 to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001. In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28, both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06. However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9.The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma.

  12. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I. (United States)

    Yeaman, Grant R; Asin, Susana; Weldon, Sally; Demian, Douglas J; Collins, Jane E; Gonzalez, Jorge L; Wira, Charles R; Fanger, Michael W; Howell, Alexandra L


    Human immunodeficiency virus-type 1 (HIV-1) is a sexually transmitted pathogen that can infect cells in the female reproductive tract (FRT). The mechanism of viral transmission within the FRT and the mode of viral spread to the periphery are not well understood. To characterize the frequency of potential targets of HIV infection within the FRT, we performed a systematic study of the expression of HIV receptors (CD4, galactosyl ceramide (GalCer)) and coreceptors (CXCR4 and CCR5) on epithelial cells and leucocytes from the ectocervix. The ectocervix is a likely first site of contact with HIV-1 following heterosexual transmission, and expression of these receptors is likely to correlate with susceptibility to viral infection. We obtained ectocervical tissue specimens from women undergoing hysterectomy, and compared expression of these receptors among patients who were classified as being in the proliferative or secretory phases of their menstrual cycle at the time of hysterectomy, as well as from postmenopausal tissues. Epithelial cells from tissues at early and mid-proliferative stages of the menstrual cycle express CD4, although by late proliferative and secretory phases, CD4 expression was absent or weak. In contrast, GalCer expression was uniform in all stages of the menstrual cycle. CXCR4 expression was not detected on ectocervical epithelial cells and positive staining was only evident on individual leucocytes. In contrast, CCR5 expression was detected on ectocervical epithelial cells from tissues at all stages of the menstrual cycle. Overall, our results suggest that HIV infection of cells in the ectocervix could most likely occur through GalCer and CCR5. These findings are important to define potential targets of HIV-1 infection within the FRT, and for the future design of approaches to reduce the susceptibility of women to infection by HIV-1.

  13. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease. (United States)

    Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M


    The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.

  14. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia


    Taussig, David C.; Pearce, Daniel J; Simpson, Catherine; Rohatiner, Ama Z; Lister, T. Andrew; Kelly, Gavin; Luongo, Jennifer L.; Danet-Desnoyers, Gwenn-aël H.; Bonnet, Dominique


    Human hematopoietic stem cells (HSCs) are generally regarded as being devoid of the markers expressed by differentiated blood cells, the lineage-specific antigens. However, recent work suggests that genes associated with the myeloid lineage are transcribed in mouse HSCs. Here, we explore whether myeloid genes are actually translated in human HSCs. We show that CD33, CD13, and CD123, well-established myeloid markers, are expressed on human long-term repopulating cells from cord blood and bone ...

  15. Pigment epithelium derived factor suppresses expression of Sost/Sclerostin by osteocytes: implication for its role in bone matrix mineralization. (United States)

    Li, Feng; Song, Na; Tombran-Tink, Joyce; Niyibizi, Christopher


    Mutations in Serpinf1 gene which encodes pigment epithelium derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective mineralization. Mechanisms by which PEDF regulates matrix mineralization remain unknown. We examined effect of exogenous PEDF on expression of osteoblastic and osteocytic related genes and proteins in mineralizing osteoblast culture. Mineralizing human osteoblasts supplemented with exogenous PEDF for 14 days deposited 47% more mineral than cells cultured without PEDF. Analysis of selected gene expression by cells in mineralizing cultures supplemented with exogenous PEDF showed reduction in expression of Sclerostin (Sost) by 70%, matrix extracellular phosphoglycoprotein (MEPE) by 75% and dentin matrix protein (DMP-1) by 20% at day 14 of culture. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) expression was not affected. Western blotting and immunoprecipitation showed that sclerostin and MEPE synthesis by osteocytes were reduced by 50% and 60% respectively in mineralizing osteoblasts containing exogenous PEDF. Primary osteocytes exposed to PEDF also reduced synthesis of Sost/sclerostin by 50% within 24 h. For osteoblastic genes, Bone sialoprotein (BSP) was expressed at 75% higher by day 7 in cultures containing exogenous PEDF while Col1A1 expression remained high at all-time points. Total beta-catenin was increased in mineralizing osteoblastic cells suggesting increased Wnt activity. Taken together, the data indicate that PEDF suppressed expression of factors that inhibit mineralization while enhancing those that promote mineralization. The findings also suggest that PEDF may regulate Sost expression by osteocytes leading to enhanced osteoblastic differentiation and increased matrix mineralization.

  16. Uncoupling of PUMA Expression and Apoptosis Contributes to Functional Heterogeneity in Renal Cell Carcinoma - Prognostic and Translational Implications. (United States)

    Zhou, Xiaoguang; Li, Jielin; Marx, Christina; Tolstov, Yanis; Rauch, Geraldine; Herpel, Esther; Macher-Goeppinger, Stephan; Roth, Wilfried; Grüllich, Carsten; Pahernik, Sascha; Hohenfellner, Markus; Duensing, Stefan


    Renal cell carcinoma (RCC) is characterized by a profound disruption of proapoptotic signaling networks leading to chemo- and radioresistance. A key mediator of DNA damage-induced apoptosis is the BH3-only protein PUMA. Given its central role in proapoptotic signaling, we analyzed a series of more than 600 precision-annotated primary RCC specimens for PUMA protein expression. We found a reduced expression of PUMA in 22.6% of RCCs analyzed. Unexpectedly, however, PUMA deficiency was not associated with more aggressive tumor characteristic as expected. Instead, a reduced PUMA expression was associated with a lower TNM stage, lower histopathologic grade, and more favorable cancer-specific patient survival. A direct correlation in a separate patient cohort revealed a profound disconnection between PUMA expression and apoptosis as exemplified by the fact that the tumor with the highest level of apoptotic cells was PUMA deficient. In a series of in vitro studies, we corroborated these results and discovered the highest propensity to undergo apoptosis in an RCC cell line with virtually undetectable PUMA expression. At the same time, PUMA expression was not necessarily associated with stronger apoptosis induction, which underscores the striking functional heterogeneity of PUMA expression and apoptosis in RCC. Collectively, our findings suggest that PUMA-independent mechanisms of cell death exist and may play an important role in suppressing malignant progression. They underscore the functional heterogeneity of RCCs and suggest that PUMA expression alone may not be a suitable predictive biomarker. A better understanding of alternative proapoptotic pathways, however, may help to design novel therapeutic strategies for patients with advanced RCC.

  17. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China); Wu, Chao-Qun [Genetics Institute, Fudan University, No. 220 Handan Road, Shanghai 200433 (China); Zhang, Zong-Qi [Department of Cardiology, No. 3 Hospital, Shanghai Jiao Tong University Medical school, No.280 Mohe Road, Shanghai 201900 (China); Yao, Ding-Kang; Zhu, Liang, E-mail: [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China)


    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  18. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. (United States)

    Mendes-Ferreira, Ana; Barbosa, Catarina; Jimenez-Marti, Elena; Del Olmo, Marcel Li; Mendes-Faia, Arlete


    Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here we investigated by real time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16 and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. Strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120h and 72h, respectively. In the presence of 267mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently up-regulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated to sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for genetic improvement of wine yeasts.

  19. Expression of Wnt-1,beta-catenin and c-myc in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; HU Zhuo-ying


    Objective:To investigate the expression of Wnt-1, beta-catenin and c-myc in normal ovarian epithelial cell and malignant ovarian epithelial tumor. Methods:Immunohistochemical staining with SP method was conducted to identify the expression of Wnt-1,beta-catenin and c-myc in 18 samples of normal epithelial tissue and 34 cases of malignant epithelial tumor of ovary. Results:The expression rate of Wnt-1 and c-myc in malignant epithelial tumors was higher than those in normal epithelial cell(P<0.05).The abnormal expression rate of beta-catenin in malignant ovarian epithelial tumors was higher than that in normal epithelial cell(P<0.05).A significant positive correlation was found between Wnt-1, beta-catenin and c-myc in malignant ovarian epithelial tumor(P<0.05).A significant difierence of expressions of Beta-catenin and C-myc was found between serous and mutinous tumors (P<0.05). Conclusion:The abnormal expression of Wnt-1,beta-catenin and c-myc might indicate the malignant transformation in ovarian epithelial tumors.

  20. Detailed analysis of association between common single nucleotide polymorphisms and subclinical atherosclerosis: The Multi-ethnic Study of Atherosclerosis. (United States)

    Vargas, Jose D; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Rotter, Jerome I; Post, Wendy S; Polak, Joseph F; Budoff, Matthew J; Bluemke, David A


    Previously identified single nucleotide polymorphisms (SNPs) in genome wide association studies (GWAS) of cardiovascular disease (CVD) in participants of mostly European descent were tested for association with subclinical cardiovascular disease (sCVD), coronary artery calcium score (CAC) and carotid intima media thickness (C