WorldWideScience

Sample records for atf advanced toroidal

  1. Runaway studies in the ATF (Advanced Toroidal Facility) torsatron

    Energy Technology Data Exchange (ETDEWEB)

    England, A.C.; DeVan, W.R.; Eberle, C.C.; Fowler, R.H.; Gabbard, W.A.; Glowienka, J.C.; Harris, J.H.; Haste, G.R.; Kindsfather, R.R.; Morris, R.N.

    1989-01-01

    Pulsed torsatrons and heliotrons are susceptible to runaway electron formation and confinement resulting from the inherent good containment in the vacuum fields and the high loop voltages during the initiation and termination of the helical and vertical fields (''field ramping''). Because runaway electrons can cause an unacceptable level of hard X rays near the machine, a runaway suppression system was designed and included in the initial operation of the Advanced Toroidal Facility (ATF). The main component of the system is a rotating paddle that is normally left in the vacuum chamber during the field ramps. This device proved to be very effective in reducing the runaway population. Measurements of hard X rays from ATF have shown that the runaways are produced primarily during the field ramping but that usually a small steady-state runaway component is also present during the ''flat-top'' portion of the fields. The paddle is the main source of the hard X rays (thick-target bremsstrahlung), although other objects in the vacuum chamber also serve as targets for the runaways at various times. The maximum X-ray energy found by pulse height analysis is /approximately/12--15 MeV; the mean energy appears to be a few mega-electron-volts. A noticeable forward peaking of the bremsstrahlung from the paddle is evident. The limiters do not appear to be major sources of bremsstrahlung. 17 refs., 14 figs.

  2. Location and repair of air leaks in the ATF (Advanced Toroidal Facility) vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Schwenterly, S.W.; Gabbard, W.A.; Schaich, C.R.; Yarber, J.L. (Oak Ridge National Lab., TN (USA))

    1989-01-01

    On the basis of partial pressure rate-of-rise and base pressure measurements, it was determined that the Advanced Toroidal Facility (ATF) vacuum vessel had an air leak in the low 10{sup -4} mbar-{ell}/s range. Pinpointing this leak by conventional helium leak-checking procedures was not possible, because large portions of the outside of the vessel are covered by the helcial field coils and a structural shell. Various alternative leak-detection schemes that were considered are summarized and their advantages and disadvantages noted. In the method ultimately employed, gun-rubber patches of various sizes ranging from 12.7 by 12.7 cm to 20.3 by 30.5 cm were positioned on the inside surfaces of the vessel and evacuated by the leak detector (LD). After roughly 5% of the surface was inspected in this way, a leak of > 10{sup -5} mbar-{ell}/s was discovered and localized to an area of 5 by 5 cm. Dye penetrant applied to this area disclosed three pinholes. Two small slag pockets were discovered while these points were being ground out. After these were rewelded, no furthered leakage could be found in the repaired area. Global leak rates measured after the machine was reevacuated indicated that this leak was about 30% of the overall leak rate. 1 ref., 5 figs., 1 tab.

  3. On the role of neutral particles on edge turbulence and electric fields in the Advanced Toroidal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C.; Branas, B. (Asociacion Euratom-Ciemat, 28040 Madrid (Spain)); Uckan, T.; Harris, J.H.; Isler, R. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8072 (United States)); Ritz, C.P.; Wootton, A. (Fusion Research Center, The University of Texas at Austin, Texas 78712 (United States))

    1994-01-01

    Measurements of edge plasma turbulence properties have been carried out in the Advanced Toroidal Facility (ATF) [Fusion Technol. [bold 10], 179 (1986)] during experiments in which hydrogen and neon gas puffing are used to vary the edge temperature in the range 5[lt][ital T][sub [ital e

  4. Recent results from the ATF torsatron

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M.; Aceto, S.C.; Anabitarte, E.; Anderson, D.T.; Anderson, F.S.B.; Batchelor, D.B.; Branas, B.; Baylor, L.R.; Bell, G.L.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crocker, N.A.; Crume, E.C. Jr.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Fowler, R.H.; Gandy, R.F.; Glowienka, J.C.; Goldfinger, R.C.; Goulding, R.H.; Hanson, G.R.; Harris, J.H.; Hidalgo, C.; Hillis, D.L.; Hiroe, S.; Hirshman, S.P.; Horton, L.D.; Howe, H.C.; Hutchinson, D.P.; Isler, R.C.; Jernigan, T.C.; Kaneko, H.; Kwon, M.; Langley, R.A.; Leboeuf, J.N.; Lee, D.K.; Lo, D.H.C.; Lynch, V.E.; Lyon, J.F.; Ma, C.H.; Menon, M.M.; Mioduszewski, P.K.; Morita, S.; Morris, R.N.; Neilson, G.H.; Ochando, M.A.; Okamura, S.; Paul, S.; Qualls, A.L.; Rasmussen, D.A.; Richards, R.K.; Ritz, C.P.; Rome, J.A.; Sanchez, J.; Schwelberger, J.G.; Shaing, K.C.; Shepard, T.D.; Simpkins, J.E.; Thomas, C.E.; Tolliver, J.S.; Uckan, T.; Vander Sluis, K.L.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada,

    1991-08-01

    Recent experiments in the Advanced Toroidal Facility (ATF) torsatron ({ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1990 (IAEA, Vienna, in press)) have emphasized the role of magnetic configuration control in transport studies. Long-pulse plasma operation up to 20 sec has been achieved with electron cyclotron heating (ECH). With neutral beam injection (NBI) power of {ge}1 MW, global energy confinement times of 30 msec have been obtained with line-average densities up to 1.3{times}10{sup 20} m{sup {minus}3}. The energy confinement and the operational space in ATF are roughly the same as those in tokamaks of similar size and field. The empirical scaling observed is similar to gyro-reduced Bohm scaling with favorable dependences on density and field offsetting an unfavorable power dependence. The toroidal current measured during ECH is identified as the bootstrap current. The observed currents agree well with predictions of neoclassical theory in magnitude and in parametric dependence. Variations of the magnetic configuration in discharges heated by ECH alone and by NBI change plasma transport and plasma profiles. Magnetic fluctuations respond to the concomitant pressure profile variations. Comparative studies of edge fluctuations in the Texas experimental tokamak (TEXT) ({ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1990 (IAEA, Vienna, in press)) and the ATF stellarator showed remarkable similarity in the levels of fluctuations and the existence of a velocity shear layer.

  5. Advances in the Fabrication of Toroidal Field Coil Prototypes*

    Science.gov (United States)

    Pizzuto, A.; Cucchiaro, A.; Frosi, R.; Ramogida, G.; Boert, F.; Wobker, H. G.; Bianchi, A.; Parodi, B.; Coppi, B.

    2006-10-01

    The Bitter-type Toroidal Field Coils (TFC) adopted for Ignitor consist of plates that are cooled down to 30 K by Helium gas. Copper OFHC has been selected for these plates, allowing for an Electron Beam (EB) welding solution of the cooling channels. Kabel Metal set up the welding parameters and qualified the process to achieve full joint penetration with acceptable metallurgical structure. The qualification covers both the welding of the cooling channels and the inlet/outlet tube made on two full size samples. A metallographic examination and vacuum and pressure tests have been preformed to validate the basic suitability of the EB welding process. *Sponsored in part by ENEA of Italy and by the U.S. DOE.

  6. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  7. ATF2 Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, Boris Ivanovich; Logachev, Pavel; Podgorny, Fedor; Telnov, Valery; /Novosibirsk, IYF; Angal-Kalinin, Deepa; Appleby, Robert; Jones, James; Kalinin, Alexander; /Daresbury; Napoly, Olivier; Payet, Jacques; /DAPNIA, Saclay; Braun, Hans-Heinrich; Schulte, Daniel; Zimmermann, Frank; /CERN; Barlow, Roger; Bailey, Ian; Jenner, Leo; Jones, Roger; Kourevlev, German; /Daresbury; Walker, Nick; /DESY; Takahasi, Tohru; /Hiroshima U.; Gao, Jie; /Beijing, Inst. High Energy Phys. /Oxford U. /KEK, Tsukuba /Kyoto U., Inst. Chem. Res.

    2005-08-23

    This document is the first of two volumes describing the ATF2 project. The present volume discusses the technical justification for ATF2 and presents a design description. Since the International Committee for Future Accelerator (ICFA) decision on the choice of technology, a world-wide collaboration on the design of the International Linear Collider (ILC) has rapidly progressed [1]. The formation of the Global Design Effort (GDE) will accelerate the work towards a final design. An important technical challenge is obviously the high gradient acceleration but what is similarly challenging is the collision of extremely small beams of a few nanometer size. The latter challenge has three distinct issues: creating small emittance beams, preserving the emittance during acceleration and transport, and focusing the beams to nanometers. Most studies have been done using computer simulations but many issues still remain that require experimental verification. Accelerator Test Facility (ATF) at KEK was built to create small emittance beams, and succeeded in obtaining an emittance that almost satisfies the ILC requirements [2]. In this proposal we present a project, ATF2, which addresses the focusing of the beam into a nanometer spot. The ATF2 project will extend the extraction beamline of the ATF with an ILC-type final focus system to create a tightly focused, stable beam by making use of the small emittance of the ATF. The layout is shown in Figure 1.1. In the longer term, the ATF2 project would also provide invaluable input for the CLIC design of a future multi-TeV collider.

  8. Experimental evidence of EDGE turbulence driven by multiple mechanisms in ATF

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C.

    1993-07-01

    The scaling properties of edge fluctuations have been investigated using Langmuir probes in the edge region of the Advance Toroidal Facility (ATF). Fluctuations in the ion saturation current (ls/ls) and transport inferred from the fluctuations increase with increasing density gradient, while keeping unchanged local electron temperature. The modification of the electron temperature in the range (10-50) eV, Keeping constant the density profile, does not have any significant influence on ls/ ls. In regions were Er/B =0, the poloidal phase velocity of the fluctuations is given by vph 2Te/LnB. More then one of any so far proposed mechanisms must be invoked to explain all the experimental observations. (Author) 14 refs.

  9. ATF2 Proposal v. 2

    CERN Document Server

    Grishanov, B I; Alabau-Pons, M; Angal-Kalinin, Deepa; Appleby, R; Araki, S; Bailey, I; Bambade, P; Bane, Karl Leopold Freitag; Barlow, R; Blair, G A; Bolzon, B; Boorman, G; Bosco, A; Brachmann, A; Braun, Hans Heinrich; Burrows, P N; Carter, J; Choi, J; Christian, Glenn B; Clarke, C; Dabiri-Khah, A; Dadoun, O; Danagulyan, S; Delerue, N; Dixit, S; Driouichi, C; Elsen E; Gao, J; Geffroy, N; Gronberg, J; Hartin, Anthony F; Hayano, H; Higashi, Y; Himel, T; Honda, Y; Howell, D; Huang, J Y; Iwashita, Y; Jenner, L; Jones, J; Jones, R; Jérémie, A; Kalinin, A; Kanazawa, K; Kang, H S; Karyotakis, Yu; Kim, E S; Kim, S; Komamiya, S; Kourevlev, German Yu; Kubo, K; Kumada, M; Kume, T; Kuriki, M; Kuroda, S; Liu, W; Logatchev, P V; Lyapin, A; Malton, S; Markiewicz, T W; Masuzawa, M; Mihara, T; Miller, D J; Molloy, S; Mtingwa, S; Naito, T; Nan-Phinney, Y; Napoly, O; Nelson, J; Okugi, T; Payet, J; Pei, G X; Pivi, M T F; Podgorny, F; Price, M; Raubenheimer, T O; Reichold, A; Ross, M; Sanuki, T; Schulte, Daniel; Seryi, R A; Solyak, N; Soo Ko In; Spencer, C M; Suehara, T; Sugahara, R; Takahashi, T; Takashi-Boogert, S; Tauchi, T; Telnov, Valery I; Tenenbaum, P G; Terunuma, N; Toge, N; Torrence, E; Urakawa, J; Urner, D; Vogel, V; Walker, N; Wang, J Q; Wendt, M; White, G; Wing, M; Wolski, A; Woodley, M; Yamaoka, H; Yokoya, K; Zimmermann, Frank

    2006-01-01

    For achieving the high luminosity required at the International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System (BDS), and to maintain the beam collision with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, it has been proposed to implement an ILC-like final focus optics in an extension of the existing extraction beamline of ATF at KEK. The ATF is considered to be the best platform for this exercise, since it provides an adequate ultra-low emittance electron beam in a manner dedicated to the development of ILC. The two major goals for this facility, called ATF2, are : (A) Achievement of a 37 nm beam size, and (B) control of beam position down to 2 nm level. The scientific justification for the ATF2 project and its technical design have been described in Volume 1 of the ATF2 Proposal [1]. We present here Volume 2 of the ATF2 Proposal, in which we present specifics of the construction...

  10. Toroidal circular dichroism

    Science.gov (United States)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  11. Elevated cJUN expression and an ATF/CRE site within the ATF3 promoter contribute to activation of ATF3 transcription by the amino acid response.

    Science.gov (United States)

    Fu, Lingchen; Kilberg, Michael S

    2013-02-15

    Mammalian cells respond to amino acid deprivation through multiple signaling pathways referred to as the amino acid response (AAR). Transcription factors mediate the AAR after their activation by several mechanisms; examples include translational control (activating transcription factor 4, ATF4), phosphorylation (p-cJUN), and transcriptional control (ATF3). ATF4 induces ATF3 transcription through a promoter-localized C/EBP-ATF response element (CARE). The present report characterizes an ATF/CRE site upstream of the CARE that also contributes to AAR-induced ATF3 transcription. ATF4 binds to the ATF/CRE and CARE sequences and both are required for a maximal response to ATF4 induction. ATF3, which antagonizes ATF4 and represses its own gene, also exhibited binding activity to the ATF/CRE and CARE sequences. The AAR resulted in elevated total cJUN and p-cJUN protein levels and both forms exhibited binding activity to the ATF/CRE and CARE ATF3 sequences. Knockdown of AAR-enhanced cJUN expression blocked induction of the ATF3 gene and mutation of either the ATF/CRE or the CARE site prevented the cJUN-dependent increase in ATF3-driven luciferase activity. The results indicate that both increased cJUN and the cis-acting ATF/CRE sequence within the ATF3 promoter contribute to the transcriptional activation of the gene during the AAR.

  12. ATF2 Proposal v.1

    CERN Document Server

    Braun, H; Logatchev, P V; Podgorny, Fedor; Telnov, Valery I; Angal-Kalinin, Deepa; Appleby, Robert; Jones, James; Kalinin, Alexander; Napoly, Olivier; Payet, Jacques; Braun, Hans Heinrich; Schulte, Daniel; Zimmermann, Frank; Barlow, Roger J; Bailey, Ian Richard; Jenner, Leo; Jones, Roger; Kourevlev, German Yu; Walker, Nick; Takahasi, Tohru; Gao, Jie; Liu Wei Bin; Pei Guo Xi; Wang Jiu Qing; Delerue, Nicolas; Dixit, Sudhir; Howell, David Francis; Reichold, Armin; Agapov, Ilya V; Blair, Grahame A; Boorman, Gary; Carter, John; Driouichi, Chafik; Price, Michael T; Araki, Sakae; Hayano, Hitoshi; Higashi, Yasuo; Honda, Yosuke; Kanazawa, Ken Ichi; Kubo, Kiyoshi; Kume, Tatsuya; Kuriki, Masao; Kuroda, Shigeru; Masuzawa, Mika; Naito, Takashi; Okugi, Toshiyuki; Sugahara, Ryuhei; Tauchi, Toshiaki; Terunuma, Nobuhiro; Toge, Nobu; Urakawa, Junji; Vogel, Vladimir; Yamaoka, Hiroshi; Yokoya, Kaoru; Yoshihisa, Iwashita; Mihara, Takanori; Bambade, Philip; Wolski, Andrzej; Gronberg, Jeff; Takashi Boogert, Stewart; Lyapin, A; Malton, Stephen; Miller, David J; Kumada, Masayuki; Danagulyan, S; Torrence, Eric; Choi Jinh Yuk; Huang Jung Yun; Sik Kang Heung; Kim, E S; Kim Seungh Wan; Soo Ko In; Burrows, P N; Christian, Glenn B; Clarke, Christine; Hartin, Anthony F; Dabiri-Khah, Hamid; Molloy, Stephen; Bane, Karl Leopold Freitag; Brachmann, Axel; Himel, Thomas; Markiewicz, Thomas W; Nelson, Janice; Nosochkov, Yuri; Phinney, Nan; Torino, Mauro; Pivi, Francesco; Raubenheimer, T O; Ross, Marc; Ruland, R E; Seryi, Andrei; Spencer, Cherrill M; Tenenbaum, P G; Woodley, Mark; Komamiya, Sachio; Sanuki, Tomoyuki; Suehara, T

    2005-01-01

    Since the ICFA decision on the choice of technology, a world-wide collaboration on the design of the ILC has rapidly progressed. The formation of the GDE will accelerate the work towards a final design. An important technical challenge is obviously the high gradient acceleration but what is similarly challenging is the collision of extremely small beams of a few nanometer size. The latter challenge has three distinct issues: creating small emittance beams, preserving the emittance during acceleration and transport, and focusing the beams to nanometers. Most studies have been done using computer simulations but many issues still remain that require experimental verification. KEK-ATF was built to create small emittance beams, and succeeded in obtaining an emittance that almost satisfies the ILC requirements. In this proposal we present a project, ATF2, which addresses the third issue, namely the focusing of the beam into nanometer spot.ybr> In the longer term, the ATF2 project would also provide invaluable inpu...

  13. Filtration ATF in automatic transmissions (AT of cars

    Directory of Open Access Journals (Sweden)

    Tadeusz Dziubak

    2014-03-01

    Full Text Available Functions and conditions of work of suction ATF filters are presented. Requirements ofATF filters are discussed. Sources of contaminations ATF are presented. ATF filtration system wascharacterized. Classification of ATF filters and their selection of design solutions are presented. Filtermaterials used for the production of ATF suction filters are presented and characterized. Conditions ofthe work of suction ATF filters were analyzed. Hydraulic and filtration characteristics are discussed.[b]Keywords: AT[/b] — automatic transmissions, ATF — automatic transmission fluid, ATF filter

  14. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  15. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  16. Toroidal drive with half stator

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2015-06-01

    Full Text Available The toroidal drive can transmit large torque. However, it is a hard work to produce small toroidal stator which limits the miniaturization of the toroidal drive. Here, a novel toroidal drive with half stator is proposed for which the small stator can be produced easily. For the novel toroidal drive, three-dimensional design and the motion simulation are done; the forces and the contact stress in drive system are investigated; and the output torque is compared with one of the normal toroidal drives. Results show that the output torque of the toroidal drive with half stator is almost the same as the output torque of the normal toroidal drive, and the half stator toroidal drive is a good design for realizing the miniaturization of the toroidal drive.

  17. Status of the ATF2 Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; Tomas, R.; /CERN; Bambade, P.; /Orsay, LAL; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba; Seryi, A.; /Oxford U., JAI; White, G.; Woodley, M.; /SLAC

    2011-12-09

    The current status for the ATF2 Nominal and Ultra-low {beta}* lattices are presented in this paper. New lattice designs have been obtained in order to minimise the impact of the last interpretation of multipole measurements that have been included into the model. However, the new ATF2 Ultra-low design is not able to recover the expected vertical beam size at the IP with the current magnet distribution. Therefore, different quadrupole sorting have been studied. A significant gain is evident for the ATF2 Ultra-low lattice when sorting the magnets according to the skew-sextupolar components. The ATF2 Nominal lattice is also expected to benefit from the new sorting. Tuning results of the new ATF2 Ultra-low lattice under realistic imperfections are also reported.

  18. Toroidal runaway beams.

    Science.gov (United States)

    Fussmann, G

    2013-01-01

    We investigate the dynamics of a special group of runaway electrons which possibly play an important role in toroidal fusion devices. Starting from the torus center they are accelerated by a toroidal electric field and are hence forced to move across the toroidal magnetic field into regions with rising poloidal field in order to compensate for the centrifugal forces. Can such particles finally form a tight beam of relativistic runaways in the outboard region or is this prevented due to the perpendicular momentum they gain by passing the toroidal field? Since neither the energy nor the magnetic momentum of the particles is conserved this question has been treated by invoking the relativistic equations of motion. It turns out, however, that the problem can be essentially simplified since, apart from the centrifugal forces associated with the toroidal motion, the inertia forces are negligible. The resulting first order equation can be solved analytically. From the solution it is concluded that the formation of narrow runaway beams with diameters in the range of micrometers and very small pitch angles (v(perpendicular)/v(||)<10(-6)) appears feasible. Such electrons would perform low-frequency oscillations about three to four orders of magnitude lower than the gyrofrequency in the toroidal field. When passing the maximum poloidal magnetic field strength they are suddenly lost from the plasma region.

  19. Toroidal drive with half stator

    OpenAIRE

    Lizhong Xu; Linping Fu

    2015-01-01

    The toroidal drive can transmit large torque. However, it is a hard work to produce small toroidal stator which limits the miniaturization of the toroidal drive. Here, a novel toroidal drive with half stator is proposed for which the small stator can be produced easily. For the novel toroidal drive, three-dimensional design and the motion simulation are done; the forces and the contact stress in drive system are investigated; and the output torque is compared with one of the normal toroidal d...

  20. Progress in Compact Toroid Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  1. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters.

    Science.gov (United States)

    Verstrepen, Kevin J; Van Laere, Stijn D M; Vanderhaegen, Bart M P; Derdelinckx, Guy; Dufour, Jean-Pierre; Pretorius, Isak S; Winderickx, Joris; Thevelein, Johan M; Delvaux, Freddy R

    2003-09-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Delta atf2Delta double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.

  2. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation.

    Science.gov (United States)

    Lau, Eric; Feng, Yongmei; Claps, Giuseppina; Fukuda, Michiko N; Perlina, Ally; Donn, Dylan; Jilaveanu, Lucia; Kluger, Harriet; Freeze, Hudson H; Ronai, Ze'ev A

    2015-12-08

    Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)-mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients. Copyright © 2015, American Association for the Advancement of Science.

  3. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  4. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation

    Science.gov (United States)

    Lau, Eric; Feng, Yongmei; Claps, Giuseppina; Fukuda, Michiko N.; Perlina, Ally; Donn, Dylan; Jilaveanu, Lucia; Kluger, Harriet; Freeze, Hudson H.; Ronai, Ze’ev A.

    2016-01-01

    Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)–mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients. PMID:26645581

  5. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  6. Lifetime measurement of ATF damping ring

    Energy Technology Data Exchange (ETDEWEB)

    Okugi, T. [Tokyo Metropolitan Univ. (Japan); Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J. [High Energy Accelerator Research Organization, Tsukuba (Japan); Zimmermann, F. [Stanford Univ., CA (US). Stanford Linear Accelerator Center

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements.

  7. Toroidal equilibria in spherical coordinates

    OpenAIRE

    Tsui, K. H.

    2009-01-01

    The standard Grad-Shafranov equation for axisymmetric toroidal plasma equilibrium is customary expressed in cylindrical coordinates with toroidal contours, and through which benchmark equilibria are solved. An alternative approach to cast the Grad-Shafranov equation in spherical coordinates is presented. This equation, in spherical coordinates, is examined for toroidal solutions to describe low $\\beta$ Solovev and high $\\beta$ plasma equilibria in terms of elementary functions.

  8. The role of ATF2 in insulin action

    NARCIS (Netherlands)

    Baan, Bart

    2009-01-01

    We have identified ATF2 as a component of the cellular and in vivo insulin signaling systems. Insulin induced ATF2-phosphorylation in A14 fibroblasts, 3T3L1-adipocytes and several mouse tissues in vivo. In cell lines, the insulin-induced ATF2-phosphorylation was dependent on cooperation between two

  9. Analysis list: Atf7ip [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Atf7ip Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Atf7ip....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Atf7ip.5.tsv http://dbarchive.biosc...iencedbc.jp/kyushu-u/mm9/target/Atf7ip.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Atf7ip.Plurip...otent_stem_cell.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Pluripotent_stem_cell.gml ...

  10. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  11. Analysis list: Atf4 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Atf4 Blood,Embryonic fibroblast,Epidermis + mm9 http://dbarchive.biosciencedbc.jp/k...yushu-u/mm9/target/Atf4.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Atf4.5.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/target/Atf4.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Atf...4.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Atf4.Embryonic_fi...broblast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Atf4.Epidermis.tsv http://dbarchive.bioscience

  12. Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters

    OpenAIRE

    Verstrepen, Kevin J; Van Laere, Stijn D. M.; Vanderhaegen, Bart M. P.; Derdelinckx, Guy; Dufour, Jean-Pierre; Pretorius, Isak S.; Winderickx, Joris; Thevelein, Johan?M.; Delvaux, Freddy R

    2003-01-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing str...

  13. A superconducting magnet upgrade of the ATF2 final focus

    CERN Document Server

    Parker, B; Escallier, J; He, P; Jain, P; Marone, A; Wanderer, P; Wu, KC; Hauviller, C; Marin, E; Tomas, R; Zimmermann, F; Bolzon, B; Jeremie, A; Kimura, N; Kubo, K; Kume, T; Kuroda, S; Okugi, T; Tauchi, T; Terunuma, N; Tomaru, T; Tsuchiya, K; Urakawa, J; Yamamoto, A; Bambade, P; Coe, P; Urner, D; Seryi, A; Spencer, C; White, G

    2010-01-01

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF [1]. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF [2]. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction [3]. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC [4]. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet perfo...

  14. Plasmonic toroidal excitation with engineering metamaterials

    Science.gov (United States)

    Wu, Pin Chieh; Hsiao, Hui-Hsin; Liao, Chun Yen; Chung, Tsung Lin; Wu, Pei Ru; Savinov, Vassili; Zheludev, Nikolay I.; Tsai, Din Ping

    2017-08-01

    Natural toroidal molecules, such as biomolecules and proteins, possess toroidal dipole moments that are hard to be detected, which leads to extensive studies of artificial toroidal materials. Recently, toroidal metamaterials have been widely investigated to enhance toroidal dipole moments while the other multipoles are eliminated due to the spacial symmetry. In this talk, we will show several cases on the plasmonic toroidal excitation by engineering the near-field coupling between metamaterials, including their promising applications. In addition, a novel design for a toroidal metamaterial with engineering anapole mode will also be discussed.

  15. Analysis list: Atf3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Atf3 Blood,Pancreas + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Atf...3.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Atf3.5.tsv http://dbarchive.biosciencedbc.jp/k...yushu-u/mm9/target/Atf3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Atf3.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Atf3.Pancreas.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Pancreas.gml ...

  16. Analysis list: ATF4 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ATF4 Blood,Others + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ATF...4.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ATF4.5.tsv http://dbarchive.biosciencedbc.jp/...kyushu-u/hg19/target/ATF4.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ATF4.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/ATF4.Others.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Others.gml ...

  17. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  18. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Howard, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teague, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  19. Analytical solutions for Tokamak equilibria with reversed toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)

    2011-08-15

    In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.

  20. The complex and unique ATLAS Toroid family

    CERN Multimedia

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  1. Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2.

    Science.gov (United States)

    Van Laere, Stijn D M; Saerens, Sofie M G; Verstrepen, Kevin J; Van Dijck, Patrick; Thevelein, Johan M; Delvaux, Freddy R

    2008-04-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. In the brewers' yeast Saccharomyces cerevisiae, the major part of these esters is formed by two alcohol acetyltransferases, Atf1 and Atf2. In this paper, the existence of orthologues of these S. cerevisiae alcohol acetyltransferases in several ascomycetous fungi was investigated. Bioinformatic analysis of sequenced fungal genomes revealed the presence of multiple orthologues. The Saccharomyces sensu stricto yeasts all have two genes coding for orthologues. More distantly related fungi like Saccharomyces castelii, Candida glabrata, Kluyveromyces waltii and Kluyveromyces lactis have only one orthologue in their genome. The homology between the identified proteins and the S. cerevisiae alcohol acetyltransferases suggests a role for these orthologues in the aroma-active ester formation. To verify this, the K. lactis orthologue KlAtf was cloned and expressed in S. cerevisiae. Gas chromatographic analysis of small-scale fermentations with the transformant strains showed that, while S. cerevisiae ATF1 overexpression resulted in a substantial increase in acetate ester levels, S. cerevisiae ATF2 and K. lactis ATF overexpression only caused a moderate increase in acetate esters. This study is the first report of the presence of an ester synthesis gene in K. lactis.

  2. Onsager relaxation of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author). 36 refs.

  3. Lowering the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  4. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. ... evolution processes in a pulse RF plasma produced by toroidal helicons. 2. Experimental set-up and .... of probe potential to show initial hump and transient nature of sheath at the end of the pulse. It is to check the ...

  5. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to ...

  6. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick...

  7. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  8. Transporting the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.

  9. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  10. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  11. Micron Size Laser-Wire System at the ATF Extraction Line, Recent Results and ATF-II Upgrade

    CERN Document Server

    Blair, G A; Boorman, G; Bosco, A; Deacon, L; Karataev, P; Howell, D; Nevay, L J; Corner, L; Delerue, N; Foster, B; Gannaway, F; Newman, M; Senanayake, R; Walczak, R; Hayano, H; Aryshev, A; Terunuma, N; Urakawa, J

    2010-01-01

    The KEK Accelerator test facility (ATF) extraction line laser-wire system has been upgraded last year allowing the measurement of micron scale transverse size electron beams. The most recent measurements using the upgraded system are presented. The ATF-II extraction line design call for the major upgrade of the existing laser-wire system. We report on the hardware upgrades, including the major hardware upgrades to the laser transport, the laser beam diagnostics line, and the mechanical control systems.

  12. Evaluation of ATF-2 expression and its clinical significance in DLBCL

    Directory of Open Access Journals (Sweden)

    Xun-Xiu Ji

    2017-05-01

    Full Text Available Objective: Detection of Activating Transcription Factor-2 (ATF-2 expression in Diffuse Large B-cell Lymphoma (DLBCL and its relationship with clinicopathological significance. Method: Pathological diagnosis and clinical data were collected in DLBCL. Immunohistochemical (IHC was applied for ATF-2 expression in DLBCL. Result: Positive rate of ATF2 expression in DLBCL was 81% (64/79. We found ATF2 expression was not related to gender, age, clinical staging, immunological phenotype, and EBV infection, Ki- 67, CyclinD1 and Bcl-2. The positive rate of both ATF-2, Bcl-6 was 62.0% (49/79, ATF-2 was associated with Bcl-6; the higher expression of ATF-2 is correlated with the poor survival time in DLBCL. Conclusion: High expression of ATF-2 expression is associated with poor prognosis in DLBDL, suggesting that ATF-2 may be an independent prognostic factor for diffuse large B cell lymphoma.

  13. Toroidal-dipole induced plasmonic perfect absorber

    Science.gov (United States)

    Li, Jie; Wang, Ying-hua; Jin, Ren-chao; Li, Jia-qi; Dong, Zheng-gao

    2017-12-01

    We present a new kind of perfect absorber which roots in a toroidal dipole resonance. The toroidal metastructure consists of a metallic circular groove with a depth asymmetry, which couples to the toroidal dipole field in the near-infrared region and thus realizes nearly unit absorbance, acting as a perfect absorber. Moreover, this absorber owns a high sensitivity of 609.6 nm/RIU to the dielectric surroundings. Furthermore, by tuning the geometric parameters, both the toroidal dipole resonance and perfect absorbance characteristics are insensitive to the circular groove width, providing profound fabrication tolerance in future experiments.

  14. Observations on Tune and $\\beta$ Functions at the ATF Damping Ring

    CERN Document Server

    Potier, J P; Terunuma, N; Mimashi, T; Kubo, K; Korhonen, T T; Hayano, H; Okugi, T; Kashiwagi, S; Zimmermann, Frank

    1998-01-01

    The precise measurement of the transverse tunes and their spectra is a basic demand in accelerator commissioning. It provides a simple access to lattice characterisation and validation of the optical model. This contribution describes recent improvements of the tune monitor system at the Accelerator Test Facility Damping Ring (ATF-DR) and the performance achieved. We present preliminary measurement results of beta functions, chromaticity, and dispersion on a relaxed optics with 90 degree horizontal phase advance per cell and compare these with the theoretical predictions.

  15. Design and high order optimization of the ATF2 lattices

    CERN Document Server

    Marin, E; Woodley, M; Kubo, K; Okugi, T; Tauchi, T; Urakawa, J; Tomas, R

    2013-01-01

    The next generation of future linear colliders (LC) demands nano-meter beam sizes at the interaction point (IP) in order to reach the required luminosity. The final focus system (FFS) of a LC is meant to deliver such small beam sizes. The Accelerator Test Facility (ATF) aims to test the feasibility of the new local chromaticity correction scheme which the future LCs are based on. To this end the ATF2 nominal and ultra-low beta* lattices are design to vertically focus the beam at the IP to 37nm and 23nm, respectively if error-free lattices are considered. However simulations show that the measured field errors of the ATF2 magnets preclude to reach the mentioned spot sizes. This paper describes the optimization of high order aberrations of the ATF2 lattices in order to minimize the detrimental effect of the measured multipole components for both ATF2 lattices. Specifically three solutions are studied, the replacement of the last focusing quadrupole (QF1FF), insertion of octupole magnets and optics modification....

  16. ATF7 ablation prevents diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Liu, Yang; Maekawa, Toshio; Yoshida, Keisuke; Furuse, Tamio; Kaneda, Hideki; Wakana, Shigeharu; Ishii, Shunsuke

    2016-09-16

    The activating transcription factor (ATF)2 family of transcription factors regulates a variety of metabolic processes, including adipogenesis and adaptive thermogenesis. ATF7 is a member of the ATF2 family, and mediates epigenetic changes induced by environmental stresses, such as social isolation and pathogen infection. However, the metabolic role of ATF7 remains unknown. The aim of the present study is to examine the role of ATF7 in metabolism using ATF7-dificeint mice. Atf7(-/-) mice exhibited lower body weight and resisted diet-induced obesity. Serum triglycerides, resistin, and adipose tissue mass were all significantly lower in ATF7-deficient mice. Fasting glucose levels and glucose tolerance were unaltered, but systemic insulin sensitivity was increased, by ablation of ATF7. Indirect calorimetry revealed that oxygen consumption by Atf7(-/-) mice was comparable to that of wild-type littermates on a standard chow diet, but increased energy expenditure was observed in Atf7(-/-) mice on a high-fat diet. Hence, ATF7 ablation may impair the development and function of adipose tissue and result in elevated energy expenditure in response to high-fat-feeding obesity and insulin resistance, indicating that ATF7 is a potential therapeutic target for diet-induced obesity and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Fast Dump of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  18. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  19. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  20. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  1. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  2. ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Rousseau, Julie; Gagné, Vincent; Labuda, Malgorzata; Beaubois, Cyrielle; Sinnett, Daniel; Laverdière, Caroline; Moghrabi, Albert; Sallan, Stephen E; Silverman, Lewis B; Neuberg, Donna; Kutok, Jeffery L; Krajinovic, Maja

    2011-11-24

    Asparaginase is a standard and critical component in the therapy of childhood acute lymphoblastic leukemia. Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) and arginosuccinate synthase 1 (ASS1) have been shown to mediate the antileukemic effect of asparaginase and to display variable expression between leukemia cells that are resistant and sensitive to treatment. Fourteen polymorphisms in the regulatory and coding regions of these genes were investigated for an association with acute lymphoblastic leukemia outcome. Lower event-free survival (EFS) was associated with ATF5 T1562C, tandem-repeat ASNS polymorphism, derived haplotype, and ASS1 G1343T and G34T substitutions (P ≤ .03). Associations were limited to patients who received Escherichia coli asparaginase. Variations that sustained correction for multiple testing (ATF5 T1562C, P = .005; ASNS tandem-repeat and related haplotype, P ≤ .01) were subsequently analyzed in the replication cohort. The E coli-dependent association of the ATF5 T1562 allele with reduced EFS was confirmed (P = .01). A gene-reporter assay showed that the haplotype tagged by T1562 had higher promoter activity (P ≤ .01). The remaining regulatory polymorphisms also appeared to affect ATF5 function; 2 additional high-activity haplotypes were identified (P ≤ .02) and were further corroborated by quantitative mRNA analysis in lymphoblastoid cell lines. The ATF5-regulated increase in ASNS expression in response to more efficacious E coli-induced asparagine depletion may explain our observed results.

  3. File list: Oth.ALL.20.Atf4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Atf4.AllCell mm9 TFs and others Atf4 All cell types SRX119352,SRX122494,...SRX1437953,SRX247303,SRX119353,SRX122493 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Atf4.AllCell.bed ...

  4. Compact toroid injection into C-2U

    Science.gov (United States)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  5. Influence of toroidal rotation on tearing modes

    Science.gov (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  6. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  7. A role for ATF2 in regulating MITF and melanoma development.

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2010-12-01

    Full Text Available The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K::Ink4a⁻/⁻ with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In contrast to 7/21 of the Nras(Q61K::Ink4a⁻/⁻ mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf2⁻/⁻ mice, in primary human melanocytes, and in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB-dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E-dependent focus formation of melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma development through fine-tuning of MITF expression.

  8. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  9. Celebrating the Barrel Toroid commissioning

    CERN Multimedia

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  10. Fuel Cycle Research and Development Accident Tolerant Fuels Series 1 (ATF-1) Irradiation Testing FY 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Core, Gregory Matthew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report contains a summary of irradiation testing of Fuel Cycle Research and Development (FCRD) Accident Tolerant Fuels Series 1 (ATF 1) experiments performed at Idaho National Laboratory (INL) in FY 2016. ATF 1 irradiation testing work performed in FY 2016 included design, analysis, and fabrication of ATF-1B drop in capsule ATF 1 series experiments and irradiation testing of ATF-1 capsules in the ATR.

  11. Spontaneous Toroidal Rotation in Tokamaks

    Science.gov (United States)

    Haines, Malcolm

    2007-11-01

    When two-fluid MHD theory of stability is employed the resulting growth rates are complex, and the perturbing magnetic fields move with a velocity that depends both on the components of the electron drift and heat flux perpendicular to the equilibrium magnetic field and on the diamagnetic velocity. On diffusing into a resistive wall a drag force is exerted on the wall which is proportional to the square-root of the velocity of the perturbing fields. The equal and opposite force or torque will be on the plasma, centred at the singular rational surface for each mode[1]. For typical experimental conditions this leads to a spontaneous, or intrinsic toroidal rotation of 20km/s occurring in a few milliseconds for perturbing magnetic fields of 0.0025tesla. The induced poloidal rotation by this mechanism is generally much larger, but there is considerable poloidal damping due to trapped particles on the ion-ion collision time- scale[2]. Furthermore poloidal angular momentum is in general not conserved for an isolated plasma, and any up-down asymmetry can act as a source or sink[3]; for example, Pfirsch-Schluter diffusion [3 damping by trapped particles[2] and the Ware pinch[4]. [1] J.B.Taylor, Phys.Rev.Lett. 91, 115002 (2003). [2] R.C.Morris, M.G.Haines and R.J.Hastie, Phys.Plasmas 3, 4513 (1996). [3] M.G.Haines, Phys.Rev.Lett. 25, 1480 (1970). [4] M.G.Haines and P.Martin, Phys.Plasmas 3, 4536 (1996).

  12. Correlation reflectometry techniques for TJ-I and ATF

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, B.; Estrada, T. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)) (and others)

    1991-01-01

    Two point radial correlation reflectometry has been used on TJ-I tokamak and ATF stellarator, to extend deeper in the plasma bulk the successful studies on electrostatic edge turbulence already performed by Langmuir probes. The use of broadband homodyne systems allows access to a larger range of radial positions but imposes some constraints on the ability of reflectometry to determine correlation lengths and the k-spectrum of the density fluctuations: cos[phi] and not directly the phase delay [phi] is measured. Different techniques are used to overcome the ambiguities introduced by the homodyne measurement: slow frequency sweeping for TJ-I and dual sine/cosine detection with fringe counting algorithms for ATF. (author) 8 refs., 5 figs.

  13. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    Science.gov (United States)

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  14. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei.

    Science.gov (United States)

    Chen, Yong-Gui; Yue, Hai-Tao; Zhang, Ze-Zhi; Yuan, Feng-Hua; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-07-01

    A mitochondrial specific stress response termed mitochondrial unfolded protein response (UPR(mt)) is activated in responding to disturbance of protein homeostasis in mitochondria. The activating transcription factor associated with stress-1 (designated as ATFS-1) is the key regulator of UPR(mt). To investigating the roles of ATFS-1 (LvATFS-1) in Litopenaeus vannamei mitochondrial stress remission and immunity, it's full length cDNA was cloned. The open reading frame of LvATFS-1 was 1, 557 bp in length, deducing to a 268 amino acids protein. LvATFS-1 was highly expressed in muscle, hemocytes and eyestalk. Subcellular location assays showed that N-terminal of LvATFS-1 contained a mitochondrial targeting sequence, which could directed the fused EGFP located to mitochondria. And the C-terminal of LvATFS-1, which had a nuclear localization signal, expressed in nucleus. The in vitro experiments verified that LvATFS-1 could reduced the level of intracellular reactive oxygen species (ROS). And results of real-time RT-PCR indicated that LvATFS-1 might scavenge excess ROS via ROS-eliminating genes regulation. Reporter gene assays showed that LvATFS-1 could upregulated the expression of the antimicrobial peptide genes in Drosophila Schneider 2 cells. Results of real-time RT-PCR showed that Vibrio alginolyticus or white spot syndrome virus (WSSV) infection induced the expression of LvATFS-1. And knocked-down LvATFS-1 by RNAi resulted in a higher cumulative mortality of L. vannamei upon V. alginolyticus or WSSV infection. These results suggested that LvATFS-1 not only rolled in mitochondrial specific stress responding, but also important for L. vannamei immunologic defence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A New QF1 Magnet for ATF3

    OpenAIRE

    Vorozhtsov, Alexey; Modena, Michele

    2012-01-01

    Two high field quality quadrupole magnets QF1FF and QD0FF are required for the final focus system of the ATF3. In this paper we focus on the design of the QF1FF magnet. The proposed design is a permanent magnet quadrupole (PMQ) with adjustable strength. Alternative solutions such as conventional electromagnetic quadrupole (EMQ) and a hybrid quadrupole (combination of permanent magnet and electromagnet) are also presented and briefly discussed.

  16. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  17. Study of Abnormal Vertical Emittance Growth in ATF Extraction Line

    Energy Technology Data Exchange (ETDEWEB)

    Alabau, M.; Faus-Golfe, A.; /Valencia U., IFIC; Alabau, M.; Bambade, P.; Brossard, J.; Le Meur, G.; Rimbault, C.; Touze, F.; /Orsay, LAL; Angal-Kalinin, D.; Jones, J.K.; /Daresbury; Appleby, R.; Scarfe, A.; /Manchester U.; Kuroda, S.; /KEK, Tsukuba; White, G.R.; Woodley, M.; /SLAC; Zimmermann, F.; /CERN

    2011-11-04

    Since several years, the vertical beam emittance measured in the Extraction Line (EXT) of the Accelerator Test Facility (ATF) at KEK, that will transport the electron beam from the ATF Damping Ring (DR) to the future ATF2 Final Focus beam line, is significantly larger than the emittance measured in the DR itself, and there are indications that it grows rapidly with increasing beam intensity. This longstanding problem has motivated studies of possible sources of this anomalous emittance growth. One possible contribution is non-linear magnetic fields in the extraction region experimented by the beam while passing off-axis through magnets of the DR during the extraction process. In this paper, simulations of the emittance growth are presented and compared to observations. These simulations include the effects of predicted non-linear field errors in the shared DR magnets and orbit displacements from the reference orbit in the extraction region. Results of recent measurements using closed orbit bumps to probe the relation between the extraction trajectory and the anomalous emittance growth are also presented.

  18. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    Science.gov (United States)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was

  19. ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia

    OpenAIRE

    Rousseau, Julie; Gagné, Vincent; Labuda, Malgorzata; Beaubois, Cyrielle; Sinnett, Daniel; Laverdière, Caroline; Moghrabi, Albert; Sallan, Stephen E.; Silverman, Lewis B.; Neuberg, Donna; Kutok, Jeffery L.; Krajinovic, Maja

    2011-01-01

    Asparaginase is a standard and critical component in the therapy of childhood acute lymphoblastic leukemia. Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) and arginosuccinate synthase 1 (ASS1) have been shown to mediate the antileukemic effect of asparaginase and to display variable expression between leukemia cells that are resistant and sensitive to treatment. Fourteen polymorphisms in the regulatory and coding regions of these gene...

  20. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt

    Science.gov (United States)

    Nargund, Amrita M.; Fiorese, Christopher J.; Pellegrino, Mark W.; Deng, Pan; Haynes, Cole M.

    2015-01-01

    Summary Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity. PMID:25773600

  1. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: hf@ipfn.ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2011-10-15

    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  2. Gun Control: Statutory Disclosure Limitations on ATF Firearms Trace Data and Multiple Handgun Sales Reports

    Science.gov (United States)

    2006-06-16

    Order Code RS22458 June 16, 2006 Gun Control : Statutory Disclosure Limitations on ATF Firearms Trace Data and Multiple Handgun Sales Reports William J...AND SUBTITLE Gun Control : Statutory Disclosure Limitations on ATF Firearms Trace Data and Multiple Handgun Sales Reports 5a. CONTRACT NUMBER 5b...indicative of criminal activity by an FFL. In addition, with ATF data, gun control advocates began identifying and publishing the names of FFLs who in

  3. Quench modeling of the ATLAS superconducting toroids

    CERN Document Server

    Gavrilin, A V; ten Kate, H H J

    2001-01-01

    Details of the normal zone propagation and the temperature distribution in the coils of ATLAS toroids under quench are presented. A tailor-made mathematical model and corresponding computer code enable obtainment of computational results for the propagation process over the coils in transverse (turn-to-turn) and longitudinal directions. The slow electromagnetic diffusion into the pure aluminum stabilizer of the toroid's conductor, as well as the essentially transient heat transfer through inter-turn insulation, is appropriately included in the model. The effect of nonuniform distribution of the magnetic field and the thermal links to the coil casing on the temperature gradients within the coils is analyzed in full. (5 refs).

  4. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  5. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  6. Searching for novel ATF4 target genes in human hepatoma cells by microarray analysis.

    Science.gov (United States)

    Maruyama, Ryuto; Shimizu, Makoto; Ishijima, Tomoko; Nakai, Yuji; Inoue, Jun; Sato, Ryuichiro

    2016-06-01

    Activating transcription factor 4 (ATF4) is a transcription factor with an important biological activity. ATF4 is induced by various stresses, such as endoplasmic reticulum stress, through the phosphorylation of eukaryotic translation initiation factor 2α. ATF4 is also involved in lipid metabolism. In the present study, we performed a microarray experiment to identify new ATF4 target genes, particularly those involved in lipid metabolism, and identified C12orf39, CSTA, and CALCB as novel ATF4 target genes. An amino acid response element (AARE) as an ATF4-binding site is present in the promoter regions of these genes. In a detailed analysis using luciferase assay, we showed that ATF4 activated C12orf39 promoter activity and that this activation was diminished by deletion or mutation of the AARE sequence in the promoter region. Our results suggest that C12orf39, CSTA, and CALCB are novel ATF4 target genes and that C12orf39 promoter activity is activated by ATF4 through AARE.

  7. ATF2 knockdown reinforces oxidative stress-induced apoptosis in TE7 cancer cells.

    Science.gov (United States)

    Walluscheck, Diana; Poehlmann, Angela; Hartig, Roland; Lendeckel, Uwe; Schönfeld, Peter; Hotz-Wagenblatt, Agnes; Reissig, Kathrin; Bajbouj, Khuloud; Roessner, Albert; Schneider-Stock, Regine

    2013-08-01

    Cancer cells showing low apoptotic effects following oxidative stress-induced DNA damage are mainly affected by growth arrest. Thus, recent studies focus on improving anti-cancer therapies by increasing apoptosis sensitivity. We aimed at identifying a universal molecule as potential target to enhance oxidative stress-based anti-cancer therapy through a switch from cell cycle arrest to apoptosis. A cDNA microarray was performed with hydrogen peroxide-treated oesophageal squamous epithelial cancer cells TE7. This cell line showed checkpoint activation via p21(WAF1) , but low apoptotic response following DNA damage. The potential target molecule was chosen depended on the following demands: it should regulate DNA damage response, cell cycle and apoptosis. As the transcription factor ATF2 is implicated in all these processes, we focused on this protein. We investigated checkpoint activation via ATF2. Indeed, ATF2 knockdown revealed ATF2-triggered p21(WAF1) protein expression, suggesting p21(WAF1) transactivation through ATF2. Using chromatin immunoprecipitation (ChIP), we identified a hitherto unknown ATF2-binding sequence in the p21(WAF1) promoter. p-ATF2 was found to interact with p-c-Jun, creating the AP-1 complex. Moreover, ATF2 knockdown led to c-Jun downregulation. This suggests ATF2-driven induction of c-Jun expression, thereby enhancing ATF2 transcriptional activity via c-Jun-ATF2 heterodimerization. Notably, downregulation of ATF2 caused a switch from cell cycle arrest to reinforced apoptosis, presumably via p21(WAF1) downregulation, confirming the importance of ATF2 in the establishment of cell cycle arrest. 1-Chloro-2,4-dinitrobenzene also led to ATF2-dependent G2/M arrest, suggesting that this is a general feature induced by oxidative stress. As ATF2 knockdown also increased apoptosis, we propose ATF2 as a target for combined oxidative stress-based anti-cancer therapies. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation

  8. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min Kyung; Kim, Cho Hee [School of Korean Medicine, Pusan National University, 30 Beom-eo ri, Mulguem-eup, Yangsan-si, Gyeongnam 609-735 (Korea, Republic of); Seong, Je Kyung [Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr [School of Korean Medicine, Pusan National University, 30 Beom-eo ri, Mulguem-eup, Yangsan-si, Gyeongnam 609-735 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  9. Electromagnetic toroidal excitations in matter and free space

    Science.gov (United States)

    Papasimakis, N.; Fedotov, V. A.; Savinov, V.; Raybould, T. A.; Zheludev, N. I.

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  10. Brain-Derived Neurotrophic Factor Elevates Activating Transcription Factor 4 (ATF4 in Neurons and Promotes ATF4-Dependent Induction of Sesn2

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-03-01

    Full Text Available Activating transcription factor 4 (ATF4 plays important physiologic roles in the brain including regulation of learning and memory as well as neuronal survival and death. Yet, outside of translational regulation by the eIF2α-dependent stress response pathway, there is little information about how its levels are controlled in neurons. Here, we show that brain-derived neurotrophic factor (BDNF promotes a rapid and sustained increase in neuronal ATF4 transcripts and protein levels. This increase is dependent on tropomyosin receptor kinase (TrkB signaling, but independent of levels of phosphorylated eIF2α. The elevation in ATF4 protein occurs both in nuclei and processes. Transcriptome analysis revealed that ATF4 mediates BDNF-promoted induction of Sesn2 which encodes Sestrin2, a protector against oxidative and genotoxic stresses and a mTor complex 1 inhibitor. In contrast, BDNF-elevated ATF4 did not affect expression of a number of other known ATF4 targets including several with pro-apoptotic activity. The capacity of BDNF to elevate neuronal ATF4 may thus represent a means to maintain this transcription factor at levels that provide neuroprotection and optimal brain function without risk of triggering neurodegeneration.

  11. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  12. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  13. Ring stability of underground toroidal tanks

    Science.gov (United States)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  14. Quantum electron transport in toroidal carbon nanotubes

    Science.gov (United States)

    Jack, Mark; Encinosa, Mario

    2008-03-01

    Electron transport under bias is treated in tight-binding approximation using a non-equilibrium Green's function approach. Density-of-states D(E), transmissivity T(E), and current ISD are calculated through a (3,3) armchair nanotorus with laterally attached metallic leads and a magnetic field penetrating the toroidal plane. Plateaus in T(E) through the torus are observed as a function of both the relative angle between leads and magnetic flux. Initial computational studies performed with 1800 atoms and attached leads show substantial computational slowdown when increasing the system size by a factor of two. Results are generated by inverting the device Hamiltonian with a standard recursion method extended to account for unit cell toroidal closure. Significant computational speed-up is expected for a parallelized code on a multiprocessor computer cluster. The dependence of electronic features on torus size and torus curvature is tested for three tori with 900, 1800 and 3600 carbon atoms, respectively. References: 1. M. Jack and M. Encinosa, Quantum electron transport in toroidal carbon nanotubes with metallic leads. ArXiv: quant-ph/0709.0760. 2. M. Encinosa and M. Jack, Dipole and solenoidal magnetic moments of electronic surface currents on toroidal nanostructures. J. Comp.-Aided Mat. Design (Springer), 14 (1) (2007) 65 -- 71.

  15. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  16. Up-Regulated ATF4 Expression Increases Cell Sensitivity to Apoptosis in Response to Radiation

    Directory of Open Access Journals (Sweden)

    Ying Zong

    2017-02-01

    Full Text Available Background/Aims: Activating transcription factor 4 (ATF4 is a member of the activating transcription factor family which regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses. ATF4 is also over-expressed in human solid tumors, although its effect on responsiveness to radiation is largely unexplored. Methods: Real-time PCR was used to detect ATF4 mRNA levels in cells treated with different doses of 60Coγ radiation. Cell viability was assayed using a cell counting kit. The cell cycle was analyzed using flow cytometry, and cell apoptosis was assayed using Annexin V-PI double labeling. Small interfering RNA (siRNA against ATF4 was transfected into ECV304 cells using Lipofectamine 2000. An ATF4 over-expression plasmid (p-ATF4-CGN was transfected into HEK293 cells that endogenously expressed low levels of ATF4. The levels of intracellular reactive oxygen species (ROS were measured using CM-H2DCFDA as a probe. Results: ATF4 mRNA and protein expression levels were higher after radiation and increased in a dose- and time-dependent manner in AHH1 lymphoblast cells (P < 0.05. An increase in ATF4 levels was also observed after radiation in primary murine spleen cells, human endothelial ECV304 cells, human liver LO2 cells, breast cancer MCF7 cells, and human hepatocellular carcinoma HEPG2 cells. No change was observed in human embryonic kidney 293 (HEK293 cells. Over-expressing ATF4 in HEK293 cells inhibited cell proliferation, increased cell apoptosis and significantly increased the proportion of cells in G1 phase. Conversely, when ATF4 expression was knocked down using siRNA in ECV304 cells, it protected the cells from radiation-induced apoptosis. These findings suggest that ATF4 may play a role in radiation-induced cell killing by inhibiting cell proliferation and promoting cell apoptosis. Conclusions: In this study, we found that radiation up-regulated the expression of ATF4. We used ATF4

  17. Status of the ATF Damping Ring BPM Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Briegel, C.; /Fermilab; Eddy, N.; /Fermilab; Haynes, B.; /Fermilab; May, J.; /SLAC; McCormick, D.; /SLAC; Nelson, J.; /SLAC; Nicklaus, D.; /Fermilab; Prieto, P.; /Fermilab; Rechenmacher, R.; /Fermilab; Smith, T.; /SLAC; Teranuma, N.; /KEK, Tsukuba; Urakawa, J.; /KEK, Tsukuba; Voy, D.; /Fermilab; Wendt, M.; /Fermilab; Woodley, M.; /SLAC

    2011-12-01

    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it's finalization are presented.

  18. Turn by Turn Measurements at the KEK-ATF

    CERN Document Server

    Renier, Y; Tomas, R; Wendt, M; Eddy, N; Kubo, K; Kuroda, S; Naito, T; Okugi, T; Terunuma, N; Urakawa, J

    2013-01-01

    The ATF damping ring has been upgraded with new read-out electronics for the beam position monitors (BPM), capable to acquire the beam orbits on a turn-by-turn basis, as well as in a high resolution averaging mode. The new BPM system allows to improve optic corrections and to achieve an even smaller vertical emittance (<2pm). Experimental results are presented based on turn-by-turn beam orbit measurements in the ring, for estimating the β functions and dispersion along the lattice. A fast method to measure spectral line amplitude in a few turns is also presented, including the evaluation of chromaticity.

  19. Antenna Test Facility (ATF): User Test Planning Guide

    Science.gov (United States)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  20. Toroidal charge exchange recombination spectroscopy measurements on MST

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M.; Den Hartog, D. J.; Fiksel, G.; Kumar, S. T. A. [University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, 501 College Avenue, Wheaton, Illinois 60187 (United States)

    2010-10-15

    Charge exchange recombination spectroscopy measurements of the poloidal component of the C{sup +6} temperature and flow in the Madison Symmetric Torus have been vital in advancing the understanding of the ion dynamics in the reversed field pinch. Recent work has expanded the diagnostic capability to include toroidal measurements. A new toroidal view overcomes a small signal-to-background ratio (5%-15%) to make the first localized measurements of the parallel component of the impurity ion temperature in the core of the reversed field pinch. The measurement is made possible through maximal light collection in the optical design and extensive atomic modeling in the fitting routine. An absolute calibration of the system allowed the effect of Poisson noise in the signal on line fitting to be quantified. The measurement is made by stimulating emission with a recently upgraded 50 keV hydrogen diagnostic neutral beam. Radial localization is {approx}4 cm{sup 2}, and good temporal resolution (100 {mu}s) is achieved by making simultaneous emission and background measurements with a high-throughput double-grating spectrometer.

  1. Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Matus, Soledad; Lopez, Estefanía; Valenzuela, Vicente; Nassif, Melissa; Hetz, Claudio

    2013-01-01

    Endoplasmic reticulum (ER) stress represents an early pathological event in amyotrophic lateral sclerosis (ALS). ATF4 is a key ER stress transcription factor that plays a role in both adaptation to stress and the activation of apoptosis. Here we investigated the contribution of ATF4 to ALS. ATF4 deficiency reduced the rate of birth of SOD1(G86R) transgenic mice. The fraction of ATF4(-/-)-SOD1(G85R) transgenic mice that were born are more resistant to develop ALS, leading to delayed disease onset and prolonged life span. ATF4 deficiency completely attenuated the induction of pro-apoptotic genes, including BIM and CHOP, and also led to quantitative changes in the ER protein homeostasis network. Unexpectedly, ATF4 deficiency enhanced mutant SOD1 aggregation at the end stage of the disease. Studies in the motoneuron cell line NSC34 demonstrated that knocking down ATF4 enhances mutant SOD1 aggregation possibly due to alteration in the redox status of the cell. Our results support a functional role of ATF4 in ALS, offering a novel target for disease intervention.

  2. Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Soledad Matus

    Full Text Available Endoplasmic reticulum (ER stress represents an early pathological event in amyotrophic lateral sclerosis (ALS. ATF4 is a key ER stress transcription factor that plays a role in both adaptation to stress and the activation of apoptosis. Here we investigated the contribution of ATF4 to ALS. ATF4 deficiency reduced the rate of birth of SOD1(G86R transgenic mice. The fraction of ATF4(-/--SOD1(G85R transgenic mice that were born are more resistant to develop ALS, leading to delayed disease onset and prolonged life span. ATF4 deficiency completely attenuated the induction of pro-apoptotic genes, including BIM and CHOP, and also led to quantitative changes in the ER protein homeostasis network. Unexpectedly, ATF4 deficiency enhanced mutant SOD1 aggregation at the end stage of the disease. Studies in the motoneuron cell line NSC34 demonstrated that knocking down ATF4 enhances mutant SOD1 aggregation possibly due to alteration in the redox status of the cell. Our results support a functional role of ATF4 in ALS, offering a novel target for disease intervention.

  3. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    Science.gov (United States)

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  4. Integrals of motion from quantum toroidal algebras

    Science.gov (United States)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  5. METHODS TO DEVELOP A TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    DANAILA Ligia

    2017-05-01

    Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.

  6. Finite toroidal flow generated by unstable tearing mode in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, Y. H.; He, H. D.; Xu, M.; Qu, H. P.; Peng, X. D.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sun, Y. [Institute of Plasma Physics, Chinese Academic of Sciences, P.O. Box 1126, Hefei 230031 (China); Cui, S. Y. [School of Mathematics and Statistics Science, Ludong University, Yantai 264025 (China)

    2014-12-15

    The neoclassical toroidal plasma viscosity torque and electromagnetic torque, generated by tearing mode (TM) in a toroidal plasma, are numerically investigated using the MARS-Q code [Liu et al., Phys. Plasmas 20, 042503 (2013)]. It is found that an initially unstable tearing mode can intrinsically drive a toroidal plasma flow resulting in a steady state solution, in the absence of the external momentum input and external magnetic field perturbation. The saturated flow is in the order of 0.5%ω{sub A} at the q=2 rational surface in the considered case, with q and ω{sub A} being the safety factor and the Alfven frequency at the magnetic axis, respectively. The generation of the toroidal flow is robust, being insensitive to the given amplitude of the perturbation at initial state. On the other hand, the flow amplitude increases with increasing the plasma resistivity. Furthermore, the initially unstable tearing mode is fully stabilized by non-linear interaction with the self-generated toroidal flow.

  7. Aspects of Tokamak toroidal magnet protection

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.W.; Kazimi, M.S.

    1979-07-01

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The only potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting toroidal magnets. It is found that the two general classifications of protection methods are thermal and electrical. Computer programs were developed which allow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed.

  8. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development.

    Directory of Open Access Journals (Sweden)

    Julien Ackermann

    2011-04-01

    Full Text Available The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.

  9. Scenarios for the ATF2 Ultra-Low Betas Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Eduardo; /CERN; Tomas, Rogelio; /CERN; Bambade, Philip; /Orsay, LAL; Kuroda, Shigeru; /KEK, Tsukuba; Okugi, Toshiyuki; /KEK, Tsukuba; Tauchi, Toshiaki; /KEK, Tsukuba; Terunuma, Nobuhiro; /KEK, Tsukuba; Urakawa, Junji; /KEK, Tsukuba; Parker, Brett; /Brookhaven; Seryi, Andrei; /SLAC; White, Glen; /SLAC; Woodley, Mark; /SLAC

    2012-06-29

    The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors to the beam size at the interaction point (IP). The simplest approach consists in modifying the optics, but other solutions are studied as the introduction of super-conducting wigglers to reduce the emittance or the replacement of the normal-conducting focusing quadrupole in the Final Doublet (NC-QF1FF) with a super-conducting quadrupole one (SC-QF1FF). These are fully addressed in the paper.

  10. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    Science.gov (United States)

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  11. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization.

    Science.gov (United States)

    Fox, Daniel K; Ebert, Scott M; Bongers, Kale S; Dyle, Michael C; Bullard, Steven A; Dierdorff, Jason M; Kunkel, Steven D; Adams, Christopher M

    2014-08-01

    Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways. Copyright © 2014 the American Physiological Society.

  12. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  13. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  14. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  15. ATF-2 immunoreactivity in post-mitotic and terminally differentiated human odontoblasts.

    Science.gov (United States)

    Keklikoglu, Nurullah; Akinci, Sevtap

    2015-09-01

    Activating transcription factor 2 (ATF-2/CRE-BP1; cAMP-responsive element binding protein 1) is a member of nuclear transcription factor activator protein-1 (AP-1) family. AP-1 regulates cellular processes including growth, proliferation, differentiation and apoptosis. However, biological relationship of cellular process to each member of the AP-1 family is not clear yet. The objective of the present study was to compare the ATF-2 immunoreactivity in the post-mitotic and terminally differentiated odontoblasts and in the pulpal fibroblasts which can be divided by mitosis when required. Fibroblasts at various stages of differentiation co-exist in the human dental pulp. ATF-2 was investigated immunohistochemically in 20 permanent human teeth. According to the findings obtained, the mean percentage of ATF-2 positive cells was 68.5 ± 19.2% in the odontoblasts and 22.8 ± 13.7% in the pulpal fibroblasts. The comparison of ATF-2 positivity revealed a statistically significant difference between odontoblasts and pulpal fibroblasts. These findings have suggested that ATF-2 is more associated with cell survival rather than cell proliferation, and revealed much of effectiveness in maintaining terminal differentiation than the various differentiation stages of the cells.

  16. A Drosophila Reporter for the Translational Activation of ATF4 Marks Stressed Cells during Development.

    Directory of Open Access Journals (Sweden)

    Kwonyoon Kang

    Full Text Available Eukaryotic cells have evolved signaling pathways that help to restore cellular homeostasis in response to various physiological or pathological conditions. ATF4 is a transcription factor whose mRNA translation is stimulated in response to stress-activated eIF2alpha kinases. Established conditions that activate eIF2alpha phosphorylation and ATF4 translation include excessive stress in the endoplasmic reticulum (ER and amino acid deprivation. ATF4 is activated through a unique translational activation mechanism that involves multiple upstream open reading frames (uORFs in the 5'-untranslated region (UTR, which is conserved from yeast to mammals. Taking advantage of this, we developed a translational activation reporter of ATF4 in Drosophila, in which the dsRed reporter coding sequence was placed downstream of the Drosophila ATF4 5' UTR. This reporter remained inactive in most tissues under normal conditions, but showed dsRed expression when starved, or when challenged with conditions that imposed ER stress. In normally developing flies, a small number of cell types showed reporter expression even without exogenous stress, which included the salivary gland, gut, the male reproductive organ, and the photoreceptor cells, suggestive of inherent stress during the normal development of these cell types. These results establish a new tool to study ATF4-mediated stress response in Drosophila development and disease.

  17. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation.

    Science.gov (United States)

    Kwon, Osong; Soung, Nak Kyun; Thimmegowda, N R; Jeong, Sook Jung; Jang, Jae Hyuk; Moon, Dong-Oh; Chung, Jong Kyeong; Lee, Kyung Sang; Kwon, Yong Tae; Erikson, Raymond Leo; Ahn, Jong Seog; Kim, Bo Yeon

    2012-04-01

    Patulin is a fungal mycotoxin of Aspergilus and Penicillium that is commonly found in rotting fruits and exerts its potential toxic effect mainly by reactive oxygen species (ROS) generation. However, the effect of patulin on cancer cells as well as its intracellular mechanism has been controversial and not clearly defined yet. In this study, patulin was found to induce G1/S accumulation and cell growth arrest accompanied by caspase-3 activation, PARP cleavage and ATF3 expression in human colon cancer cell line HCT116. Ser/Thr phosphorylation of a transcription factor, EGR-1, was increased while its expression did not change upon patulin treatment to the cells. Knockdown of ATF3 and EGR-1 using their respective siRNAs showed EGR-1 dependent ATF3 expression. Moreover, treatment of the cells with antioxidants N-acetylcysteine (NAC) and glutathione (GSH) revealed that patulin induced ATF3 expression and apoptosis were dependent on ROS generation. ATF3 expression was also increased by patulin in other colorectal cancer cell types, Caco2 and SW620. Collectively, our data present a new anti-cancer molecular mechanism of patulin, suggesting EGR-1 and ATF3 as critical targets for the development of anti-cancer chemotherapeutics. In this regard, patulin could be a candidate for the treatment of colorectal cancers. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro.

    Science.gov (United States)

    Nancolas, Bethany; Bull, Ian D; Stenner, Richard; Dufour, Virginie; Curnow, Paul

    2017-06-01

    The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  19. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  20. 3D Gradient coil design - Toroidal surfaces

    Science.gov (United States)

    While, Peter T.; Forbes, Larry K.; Crozier, Stuart

    2009-05-01

    Gradient coil design typically involves optimisation of current densities or coil windings on familiar cylindrical, planar, spherical or conical surfaces. In this paper, an analytic inverse method is presented for the theoretical design of toroidal transverse gradient coils. This novel geometry is based on previous work involving a 3D current density solution, in which the precise geometry of the gradient coils was obtained as part of the optimisation process. Regularisation is used to solve for the toroidal current densities, whereby the field error is minimised in conjunction with the total power of the coil. The method is applied to the design of unshielded and shielded, whole-body and head coil gradient systems. Preliminary coil windings displaying high gradient homogeneity, low inductance, high efficiency and good force balancing are displayed and discussed. Potential benefits associated with this morphology include self-shielding gradient sets, greater access to cooling mechanisms, a reduction in acoustic noise due to force-balancing, a lessening of patient claustrophobia and greater patient access for clinicians.

  1. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  2. Low-frequency fluctuations in a pure toroidal magnetized plasma

    Indian Academy of Sciences (India)

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively.

  3. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    Science.gov (United States)

    Comer, Kathryn J.

    We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent

  4. Shear-dependant toroidal vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.

  5. 3D blob dynamics in toroidal geometry

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Reiser, Dirk

    point radial inward, see e.g. [1-2]. Here, the initial condition is implemented in two very different 3D numerical codes, ATTEMPT [3], and a new developed code, DIESEL (Disk version of ESEL), and the results are compared and discussed in detail. The ATTEMPT code has been employed to study the blob...... dynamics in a full 3D tokamak geometry including the edge and SOL region as well. Previous studies with the ATTEMPT code proved that density blobs appear for typical parameters in the TEXTOR tokamak. The code has been prepared for flux driven simulations with detailed control of the blob initial state....... The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak...

  6. Parallel closure theory for toroidally confined plasmas

    Science.gov (United States)

    Ji, Jeong-Young; Held, Eric D.

    2017-10-01

    We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  7. Helicity of the toroidal vortex with swirl

    CERN Document Server

    Bannikova, Elena Yu; Poslavsky, Sergey A

    2016-01-01

    On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.

  8. The theory of toroidally confined plasmas

    CERN Document Server

    White, Roscoe B

    2014-01-01

    This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...

  9. Damping of toroidal ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)

  10. Petascale Parallelization of the Gyrokinetic Toroidal Code

    Energy Technology Data Exchange (ETDEWEB)

    Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid

    2010-05-01

    The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.

  11. Active toroidal field ripple compensation and MHD feedback control coils in FAST

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: giuseppe.ramogida@enea.it [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.

  12. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    CERN Document Server

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  13. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  14. Overview, Progress, and Plans for the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Hartwell, G. J.; Allen, N. R.; Ennis, D. A.; Hanson, J. D.; Howell, E. C.; Johnson, C. A.; Knowlton, S. F.; Kring, J. D.; Ma, X.; Maurer, D. A.; Ross, K. G.; Schmitt, J. C.; Traverso, P. J.; Williamson, E. N.

    2017-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | function of applied 3D magnetic shaping, and to test and advance the V3FIT reconstruction code and NIMROD modeling of CTH. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased with no observed threshold for avoidance. Low-q operations (1.1 < q(a) < 2.0) are routine, with disruptions ceasing if the vacuum transform is raised above 0.07. Sawteeth are observed in CTH and have a similar phenomenology to tokamak sawteeth despite employing a 3D confining field. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges. Internal SXR diagnostics, in conjunction with external magnetics, extend the range of reconstruction accuracy into the plasma core. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  15. Studies on Plasmoid Merging using Compact Toroid Injectors

    Science.gov (United States)

    Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team

    2017-10-01

    C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.

  16. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  17. Analysis of the discharge of the ATLAS barrel toroid and end cap toroids with different configurations of the protection circuit

    CERN Document Server

    Acerbi, E; Broggi, F; Sorbi, M; Volpini, G

    2001-01-01

    An analysis of the discharge of the barrel toroid and end cap toroids with different protection circuits has been carried out in order to verify the possibility of a new simplified and cheaper configuration of the components of the circuit. In the study also the presence of short circuits has been considered. The comparison of the results and the analysis of the advantages and risks of the different configurations should allow the choice of the best solution for the economy and safety of the toroids. (4 refs).

  18. Visualizing the Formation and Collapse of DNA Toroids

    Science.gov (United States)

    van den Broek, Bram; Noom, Maarten C.; van Mameren, Joost; Battle, Christopher; MacKintosh, Fred C.; Wuite, Gijs J.L.

    2010-01-01

    Abstract In living organisms, DNA is generally confined into very small volumes. In most viruses, positively charged multivalent ions assist the condensation of DNA into tightly packed toroidal structures. Interestingly, such cations can also induce the spontaneous formation of DNA toroids in vitro. To resolve the condensation dynamics and stability of DNA toroids, we use a combination of optical tweezers and fluorescence imaging to visualize in real-time spermine-induced (de)condensation in single DNA molecules. By actively controlling the DNA extension, we are able to follow (de)condensation under tension with high temporal and spatial resolution. We show that both processes occur in a quantized manner, caused by individual DNA loops added onto or removed from a toroidal condensate that is much smaller than previously observed in similar experiments. Finally, we present an analytical model that qualitatively captures the experimentally observed features, including an apparent force plateau. PMID:20441754

  19. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  20. Supersymmetry of the extreme rotating toroidal black hole

    CERN Document Server

    Lemos, J P S

    2001-01-01

    We study the supersymmetry of the charged rotating toroidal black hole solutions found by Lemos and Zanchin, and show that the only configurations that are supersymmetric are: (i) the non-rotating electrically charged naked singularities already studied by Caldarelli and Klemm, and (ii) an extreme rotating toroidal black hole with zero magnetic and electric charges. For this latter case, the extreme uncharged black hole, we calculate the Killing spinors and show that the configuration preserves the same supersymmetries as the background spacetime.

  1. First axion dark matter search with toroidal geometry

    Science.gov (United States)

    Choi, J.; Themann, H.; Lee, M. J.; Ko, B. R.; Semertzidis, Y. K.

    2017-09-01

    We first report an axion haloscope search with toroidal geometry. In this pioneering search, we exclude the axion-photon coupling ga γ γ down to about 5 ×10-8 GeV-1 over the axion mass range from 24.7 to 29.1 μ eV at a 95% confidence level. The prospects for axion dark matter searches with larger scale toroidal geometry are also considered.

  2. Smads, Tak1, and Their Common Target Atf-2 Play a Critical Role in Cardiomyocyte Differentiation

    Science.gov (United States)

    Monzen, Koshiro; Hiroi, Yukio; Kudoh, Sumiyo; Akazawa, Hiroshi; Oka, Toru; Takimoto, Eiki; Hayashi, Doubun; Hosoda, Toru; Kawabata, Masahiro; Miyazono, Kohei; Ishii, Shunsuke; Yazaki, Yoshio; Nagai, Ryozo; Komuro, Issei

    2001-01-01

    We previously demonstrated that bone morphogenetic proteins (BMPs) induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1. Transcription factors Smads mediate transforming growth factor-β signaling and the ATF/CREB family transcription factor ATF-2 has recently been shown to act as a common target of the Smad and the TAK1 pathways. We here examined the role of Smads and ATF-2 in cardiomyocyte differentiation of P19CL6, a clonal derivative of murine P19 cells. Although P19CL6 efficiently differentiates into cardiomyocytes when treated with dimethyl sulfoxide, P19CL6noggin, a P19CL6 cell line constitutively overexpressing the BMP antagonist noggin, did not differentiate into cardiomyocytes. Cooverexpression of Smad1, a ligand-specific Smad, and Smad4, a common Smad, restored the ability of P19CL6noggin to differentiate into cardiomyocytes, whereas stable overexpression of Smad6, an inhibitory Smad, completely blocked differentiation of P19CL6, suggesting that the Smad pathway is necessary for cardiomyocyte differentiation. ATF-2 stimulated the βMHC promoter activity by the synergistic manner with Smad1/4 and TAK1 and promoted terminal cardiomyocyte differentiation of P19CL6noggin, whereas overexpression of the dominant negative form of ATF-2 reduced the promoter activities of several cardiac-specific genes and inhibited differentiation of P19CL6. These results suggest that Smads, TAK1, and their common target ATF-2 cooperatively play a critical role in cardiomyocyte differentiation. PMID:11352931

  3. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  4. Investigation of intrinsic toroidal rotation scaling in KSTAR

    Science.gov (United States)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  5. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yichao [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedurin, Mikhail [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  6. Toroidal regularization of the guiding center Lagrangian

    Science.gov (United States)

    Burby, J. W.; Ellison, C. L.

    2017-11-01

    In the Lagrangian theory of guiding center motion, an effective magnetic field B*=B +(m /e )v∥∇× b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. This letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, the Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.

  7. Turbulent Equipartition Theory of Toroidal Momentum Pinch

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt

    2008-01-31

    The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  8. Efficient magnetic fields for supporting toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Landreman, Matt, E-mail: mattland@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-03-15

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  9. Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications.

    Science.gov (United States)

    Mizuuchi, Masahito; Cindrova-Davies, Tereza; Olovsson, Matts; Charnock-Jones, D Stephen; Burton, Graham J; Yung, Hong Wa

    2016-03-01

    Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early-onset pre-eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high-risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early-onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down-regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early-onset PE, but not of late-onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = - 0.73, p pregnancy complications. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  10. The Fungal bZIP Transcription Factor AtfB Controls Virulence-Associated Processes in Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    Josephine Wee

    2017-09-01

    Full Text Available Fungal basic leucine zipper (bZIP transcription factors mediate responses to oxidative stress. The ability to regulate stress response pathways in Aspergillus spp. was postulated to be an important virulence-associated cellular process, because it helps establish infection in humans, plants, and animals. Previous studies have demonstrated that the fungal transcription factor AtfB encodes a protein that is associated with resistance to oxidative stress in asexual conidiospores, and AtfB binds to the promoters of several stress response genes. Here, we conducted a gene silencing of AtfB in Aspergillus parasiticus, a well-characterized fungal pathogen of plants, animals, and humans that produces the secondary metabolite and carcinogen aflatoxin, in order to determine the mechanisms by which AtfB contributes to virulence. We show that AtfB silencing results in a decrease in aflatoxin enzyme levels, the down-regulation of aflatoxin accumulation, and impaired conidiospore development in AtfB-silenced strains. This observation is supported by a decrease of AtfB protein levels, and the down-regulation of many genes in the aflatoxin cluster, as well as genes involved in secondary metabolism and conidiospore development. Global expression analysis (RNA Seq demonstrated that AtfB functionally links oxidative stress response pathways to a broader and novel subset of target genes involved in cellular defense, as well as in actin and cytoskeleton arrangement/transport. Thus, AtfB regulates the genes involved in development, stress response, and secondary metabolism in A. parasiticus. We propose that the bZIP regulatory circuit controlled by AtfB provides a large number of excellent cellular targets to reduce fungal virulence. More importantly, understanding key players that are crucial to initiate the cellular response to oxidative stress will enable better control over its detrimental impacts on humans.

  11. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robert P Shivers

    2010-04-01

    Full Text Available Innate immunity in Caenorhabditis elegans requires a conserved PMK-1 p38 mitogen-activated protein kinase (MAPK pathway that regulates the basal and pathogen-induced expression of immune effectors. The mechanisms by which PMK-1 p38 MAPK regulates the transcriptional activation of the C. elegans immune response have not been identified. Furthermore, in mammalian systems the genetic analysis of physiological targets of p38 MAPK in immunity has been limited. Here, we show that C. elegans ATF-7, a member of the conserved cyclic AMP-responsive element binding (CREB/activating transcription factor (ATF family of basic-region leucine zipper (bZIP transcription factors and an ortholog of mammalian ATF2/ATF7, has a pivotal role in the regulation of PMK-1-mediated innate immunity. Genetic analysis of loss-of-function alleles and a gain-of-function allele of atf-7, combined with expression analysis of PMK-1-regulated genes and biochemical characterization of the interaction between ATF-7 and PMK-1, suggest that ATF-7 functions as a repressor of PMK-1-regulated genes that undergoes a switch to an activator upon phosphorylation by PMK-1. Whereas loss-of-function mutations in atf-7 can restore basal expression of PMK-1-regulated genes observed in the pmk-1 null mutant, the induction of PMK-1-regulated genes by pathogenic Pseudomonas aeruginosa PA14 is abrogated. The switching modes of ATF-7 activity, from repressor to activator in response to activated PMK-1 p38 MAPK, are reminiscent of the mechanism of regulation mediated by the corresponding ancestral Sko1p and Hog1p proteins in the yeast response to osmotic stress. Our data point to the regulation of the ATF2/ATF7/CREB5 family of transcriptional regulators by p38 MAPK as an ancient conserved mechanism for the control of innate immunity in metazoans, and suggest that ATF2/ATF7 may function in a similar manner in the regulation of mammalian innate immunity.

  12. ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer.

    Science.gov (United States)

    Shi, Yanhua; Wang, Wei; Yang, Baozhi; Tian, Hongge

    2017-10-01

    Cervical cancer is one of the most common cancers among women worldwide. It is highly lethal yet can be treated when found in early stage. Thus, early detection is of significant important for early diagnosis of cervical cancer. Exosomes have been used as biomarkers in clinical diagnosis. It is unknown that whether blood exosomes associated with cervical cancer can be detected and if these exosomes can accurately represent the developmental stage of cervical cancer. Mouse models were made out of a relapsed cervical cancer patient's tumour sample for original and recurrent cervical cancer, and gene analysis in both tumours and exosomes in these mouse models were performed. We found that activating transcription factor 1 (ATF1) and RAS genes were significantly up-regulated in tumours of both primary and recurrent cervical cancer mouse model, and they can also be detected in the blood exosomes of the mouse model. Our results indicated that ATF1 and RAS could be potential candidate biomarkers for cervical cancer in early diagnosis. ATF1 and RAS genes were found significantly elevated in tumours of primary and recurrent cervical cancer mouse model, and they were also detected in the blood exosomes. Therefore, ATF1 and RAS could be used as a diagnostic marker for cervical cancer in the future. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  14. An FPGA-based Bunch-by-Bunch Position and Angle Feedback System at ATF2

    CERN Document Server

    Christian, G B; Bett, D R; Burrows, P N; Constance, B; Davis, M R; Gerbershagen, A; Perry, C; Resta Lopez, J

    2011-01-01

    The FONT5 intra-train feedback system serves as a prototype for an interaction point beam-based feedback system for future electron-positron colliders, such as the International Linear Collider. The system has been tested on the KEK Accelerator Test Facility (ATF) and is deployed to stabilise the beam orbit at the ATF2. The goal of this system is to correct both position and angle jitter in the vertical plane, providing stability of ~1 micron at the entrance to the ATF2 final-focus system. The system comprises three stripline beam position monitors (BPMs) and two stripline kickers, custom low-latency analogue front-end BPM processors, a custom FPGA-based digital processing board with fast ADCs, and custom kicker-drive amplifiers. An overview of the hardware, and the latest results from beam tests at ATF2, will be presented. The total latency of the system with coupled position and angle feedback loops operating simultaneously was measured to be approximately 140 ns. The greatest degree of correction observed ...

  15. BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) laser: A status report

    Science.gov (United States)

    Polyanskiy, Mikhail N.; Babzien, Marcus; Pogorelsky, Igor V.

    2017-03-01

    Development of a next-generation CO2 laser aiming at 100 TW peak power at a wavelength of 10 µm ts underway at the Brookhaven Accelerator Test Facility (ATF). A new laser facility is being deployed as part of the ATF-II upgrade. New high-pressure power amplifiers are being fabricated and assembled, while R&D continues with ATF's present 2 TW CO2 laser system. Our plan for increasing the peak laser power envisions several discrete steps in the upgrade. First will be demonstration of a 10 TW capability utilizing chirped pulse amplification, with an extended power amplifier chain filled with high-pressure isotopic gas. Further development aimed at a demonstration of 25 TW operation will require the addition of a nonlinear compressor system to shrink the pulse width below the nominal gain-bandwidth limit. These upgrades will then enable a longer-term R&D effort to achieve the 100 TW goal. Over the last two years, significant R&D effort has been focused on the development of chirped-pulse amplification, the study of the behavior of optical materials under the action of high-peak-power mid-IR pulses, and the optimization of the beam quality, which is required for nonlinear pulse compression. The results of this R&D have been implemented into the ongoing operation of the ATF's CO2 laser and have already benefited our users in their experimental programs.

  16. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Erhu Zhao

    2016-01-01

    Full Text Available The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here, we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9 trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation.

  17. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  18. Physics models in the toroidal transport code PROCTR

    Energy Technology Data Exchange (ETDEWEB)

    Howe, H.C.

    1990-08-01

    The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.

  19. Activating transcription factor 5 (ATF5) is essential for the maturation and survival of mouse basal vomeronasal sensory neurons.

    Science.gov (United States)

    Nakano, Haruo; Iida, Yoshitaka; Suzuki, Makoto; Aoki, Marie; Umemura, Mariko; Takahashi, Shigeru; Takahashi, Yuji

    2016-03-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of transcription factors, which is highly expressed in olfactory chemosensory tissues, the main olfactory epithelium and vomeronasal epithelium (VNE) in mice. The vomeronasal sensory neurons in the VNE detect pheromones in order to regulate social behaviors such as mating and aggression; however, the physiological role of ATF5 in the vomeronasal sensory system remains unknown. In this study, we found that the differentiation of mature vomeronasal sensory neurons, assessed by olfactory marker protein expression, was inhibited in ATF5-deficient VNE. In addition, many apoptotic vomeronasal sensory neurons were evident in ATF5-deficient VNE. The vomeronasal sensory neurons consist of two major types of neuron expressing either vomeronasal 1 receptor (V1r)/Gαi2 or vomeronasal 2 receptor (V2r)/Gαo. We demonstrated that the differentiation, survival and axonal projection of V2r/Gαo-type rather than V1r/Gαi2-type vomeronasal sensory neurons were severely inhibited in ATF5-deficient VNE. These results suggest that ATF5 is one of the transcription factors crucial for the vomeronasal sensory formation.

  20. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  1. The Proximity Cryogenic System for the ATLAS Toroidal Magnets

    CERN Document Server

    Baynham, D Elwyn; Brown, G; Cragg, D; Crook, M; Haug, F; Mayri, C; Orlowska, A H; Passardi, Giorgio; Pengo, R; ten Kate, H H J; Rochford, J; Sole, D

    2002-01-01

    ATLAS is a very high-energy detector for the Large Hadron Collider (LHC) at CERN. The superconducting magnet used to provide the required magnetic field consists of four sub-systems: a central solenoid and a very large toroidal magnet comprising two end-cap magnets and the barrel toroid magnet. The associated cryogenic system, currently in the final specification and procurement phase has been sub-divided into three parts: internal, proximity and external. The internal cryogenics minimizes and extracts the heat loads to/from the 4.5 K cold mass and its thermal shields, while the proximity cryogenics takes the cooling capacity generated by the external common system and distributes it to the four magnets according to the various operating scenarios. Two independent proximity cryogenic systems have been designed taking into account the difference in cooling principle of the solenoid and the three toroids, respectively.

  2. The proximity cryogenic system for the ATLAS toroidal magnets

    Science.gov (United States)

    Haug, F.; Passardi, G.; Pengo, R.; ten Kate, H.; Baynham, E.; Bradshaw, T.; Brown, G.; Cragg, D.; Crook, M.; Orlowska, A. H.; Rochford, J.; Sole, D.; Mayri, C.

    2002-05-01

    ATLAS is a very high-energy detector for the Large Hadron Collider (LHC) at CERN. The superconducting magnet used to provide the required magnetic field consists of four sub-systems: a central solenoid and a very large toroidal magnet comprising two end-cap magnets and the barrel toroid magnet. The associated cryogenic system, currently in the final specification and procurement phase has been sub-divided into three parts: internal, proximity and external. The internal cryogenics minimizes and extracts the heat loads to/from the 4.5 K cold mass and its thermal shields, while the proximity cryogenics takes the cooling capacity generated by the external common system and distributes it to the four magnets according to the various operating scenarios. Two independent proximity cryogenic systems have been designed taking into account the difference in cooling principle of the solenoid and the three toroids, respectively.

  3. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  4. Efficiency of Wave-Driven Rigid Body Rotation Toroidal Confinement

    CERN Document Server

    Rax, J -M; Fisch, N J

    2016-01-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared to compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  5. Magnetic cloud fit by uniform-twist toroidal flux ropes

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2017-12-01

    Context. Detailed studies of magnetic cloud observations in the solar wind in recent years indicate that magnetic clouds are interplanetary flux ropes with a low twist. Commonly, their magnetic fields are fit by the axially symmetric linear force-free field in a cylinder (Lundquist field), which in contrast has a strong and increasing twist toward the boundary of the flux rope. Therefore another field, the axially symmetric uniform-twist force-free field in a cylinder (Gold-Hoyle field) has become employed to analyze magnetic clouds. Aims: Magnetic clouds are bent, and for some observations, a toroidal rather than a cylindrical flux rope is needed for a local approximation of the cloud fields. We therefore try to derive an axially symmetric uniform-twist force-free field in a toroid, either exactly, or approximately, and to compare it with observations. Methods: Equations following from the conditions of solenoidality and force-freeness in toroidally curved cylindrical coordinates were solved analytically. The magnetic field and velocity observations of a magnetic cloud were compared with solutions obtained using a nonlinear least-squares method. Results: Three solutions of (nearly) uniform-twist magnetic fields in a toroid were obtained. All are exactly solenoidal, and in the limit of high aspect ratios, they tend to the Gold-Hoyle field. The first solution has an exactly uniform twist, the other two solutions have a nearly uniform twist and approximate force-free fields. The analysis of a magnetic cloud observation showed that these fields may fit the observed field equally well as the already known approximately linear force-free (Miller-Turner) field, but it also revealed that the geometric parameters of the toroid might not be reliably determined from fits, when (nearly) uniform-twist model fields are used. Sets of parameters largely differing in the size of the toroid and its aspect ratio yield fits of a comparable quality.

  6. Activating transcription factor-3 (ATF3 functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90 inhibition

    Directory of Open Access Journals (Sweden)

    Dietmeier Wolfgang

    2010-12-01

    Full Text Available Abstract Background Activating transcription factor-3 (ATF3 is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Methods Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90 antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. Results The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. Conclusion In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti

  7. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  8. Compactification of M(atrix) theory on noncommutative toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Konechny, Anatoly E-mail: konechny@thsrv.lbl.gov; Schwarz, Albert E-mail: schwarz@math.ucdavis.edu

    2000-12-25

    It was shown by A. Connes, M. Douglas and A. Schwarz that noncommutative tori arise naturally in consideration of toroidal compactifications of M(atrix) theory. A similar analysis of toroidal Z{sub 2} orbifolds leads to the algebra B{sub {theta}} that can be defined as a crossed product of noncommutative torus and the group Z{sub 2}. Our paper is devoted to the study of projective modules over B{sub {theta}} (Z{sub 2}-equivariant projective modules over a noncommutative torus). We analyze the Morita equivalence (duality) for B{sub {theta}} algebras working out the two-dimensional case in detail.

  9. Induction Motor with Switchable Number of Poles and Toroidal Winding

    Directory of Open Access Journals (Sweden)

    MUNTEANU, A.

    2011-05-01

    Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.

  10. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...... by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations...

  11. Toroidal sensor arrays for real-time photoacoustic imaging

    Science.gov (United States)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  12. Toroidal sensor arrays for real-time photoacoustic imaging.

    Science.gov (United States)

    Bychkov, Anton S; Cherepetskaya, Elena B; Karabutov, Alexander A; Makarov, Vladimir A

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  13. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  14. Lipopolysaccharide preconditioning protects hepatocytes from ischemia/reperfusion injury (IRI through inhibiting ATF4-CHOP pathway in mice.

    Directory of Open Access Journals (Sweden)

    Jianhua Rao

    Full Text Available BACKGROUND: Low-dose lipopolysaccharide (LPS preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI. METHODS: LPS (100 µg/kg/d was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA. Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA. RESULTS: LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS-3 suppressor were induced. Importantly, ATF4 siRNA is

  15. Metformin Suppresses Lipopolysaccharide (LPS)-induced Inflammatory Response in Murine Macrophages via Activating Transcription Factor-3 (ATF-3) Induction*

    Science.gov (United States)

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-01-01

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. PMID:24973221

  16. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction.

    Science.gov (United States)

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-08-15

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Preparing an ATLAS toroid magnet end-cap for lowering

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.

  18. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Document Server

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  19. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  20. Plasma Properties of Microwave Produced Plasma in a Toroidal Device

    Science.gov (United States)

    Singh, Ajay; Edwards, W. F.; Held, Eric

    2011-10-01

    We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.

  1. A toroidal inductor integrated in a standard CMOS process

    DEFF Research Database (Denmark)

    Vandi, Luca; Andreani, Pietro; Temporiti, Enrico

    2007-01-01

    This paper presents a toroidal inductor integrated in a standard 0.13 um CMOS process. Finite-elements preliminary simulations are provided to prove the validity of the concept. In order to extract fundamental parameters by means of direct calculations, two different and well-known approaches...

  2. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  3. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...

  4. Toroidal midplane neutral beam armor and plasma limiter

    Science.gov (United States)

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  5. Barrel Toroid fully charged to nominal field, and it works!

    CERN Document Server

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  6. Beam-based alignment at the KEK-ATF damping ring

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Mark D.; Nelson, Janice; Ross, Marc; Turner, James; Wolski, A.; Kubo, Kiyoshi

    2004-06-30

    The damping rings of a future linear collider will have demanding alignment and stability requirements in order to achieve the low vertical emittance necessary for high luminosity. The Accelerator Test Facility (ATF) at KEK has successfully demonstrated the vertical emittance below 5 pm that is specified for the GLC/NLC Main Damping Rings. One contribution to this accomplishment has been the use of Beam Based Alignment (BBA) techniques. The mode of operation of the ATF presents particular challenges for BBA, and we describe here how we have deduced the offsets of the BPMs with respect to the quadrupoles. We also discuss a technique that allows for direct measurements of the beam-to-quad offsets.

  7. Parameters Optimization for a Novel Vacuum Laser Acceleration Test at BNL-ATF

    CERN Document Server

    Shao, Lei; Zhou, Feng

    2005-01-01

    This paper presents a new VLA theory model which has revealed that the injection electrons with low energy and small incident angle relative to the laser beam are captured and significantly accelerated in a strong laser field. For the further step for verifying the novel-VLA mechanics, we propose to use the BNL-ATF Terawatt CO2 laser and a high-brightness electron beam to carry out a proof-of-principle beam experiment. Experiment setup including the laser injection optics and electron extraction system and beam diagnostics is presented. Extensive optimized simulation results with ATF practical parameters are also presented, which shows that even when the laser intensity is not very high, the net energy gain still can be seen obviously. This could be prospect for a new revolution of vacuum laser acceleration.

  8. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation.

    Science.gov (United States)

    Salat-Canela, Clàudia; Paulo, Esther; Sánchez-Mir, Laura; Carmona, Mercè; Ayté, José; Oliva, Baldo; Hidalgo, Elena

    2017-08-18

    Adaptation to stress triggers the most dramatic shift in gene expression in fission yeast ( Schizosaccharomyces pombe ), and this response is driven by signaling via the MAPK Sty1. Upon activation, Sty1 accumulates in the nucleus and stimulates expression of hundreds of genes via the nuclear transcription factor Atf1, including expression of atf1 itself. However, the role of stress-induced, Sty1-mediated Atf1 phosphorylation in transcriptional activation is unclear. To this end, we expressed Atf1 phosphorylation mutants from a constitutive promoter to uncouple Atf1 activity from endogenous, stress-activated Atf1 expression. We found that cells expressing a nonphosphorylatable Atf1 variant are sensitive to oxidative stress because of impaired transcription of a subset of stress genes whose expression is also controlled by another transcription factor, Pap1. Furthermore, cells expressing a phospho-mimicking Atf1 mutant display enhanced stress resistance, and although expression of the Pap1-dependent genes still relied on stress induction, another subset of stress-responsive genes was constitutively expressed in these cells. We also observed that, in cells expressing the phospho-mimicking Atf1 mutant, the presence of Sty1 was completely dispensable, with all stress defects of Sty1-deficient cells being suppressed by expression of the Atf1 mutant. We further demonstrated that Sty1-mediated Atf1 phosphorylation does not stimulate binding of Atf1 to DNA but, rather, establishes a platform of interactions with the basal transcriptional machinery to facilitate transcription initiation. In summary, our results provide evidence that Atf1 phosphorylation by the MAPK Sty1 is required for oxidative stress responses in fission yeast cells by promoting transcription initiation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress.

    Science.gov (United States)

    Kristensen, Ulrik; Epanchintsev, Alexey; Rauschendorf, Marc-Alexander; Laugel, Vincent; Stevnsner, Tinna; Bohr, Vilhelm A; Coin, Frédéric; Egly, Jean-Marc

    2013-06-18

    Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.

  10. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  11. Detection of Ground Motion effects on the beam trajectory at ATF2

    CERN Document Server

    Renier, Y; Tomas, R; Schulte, D

    2012-01-01

    The ATF2 experiment is currently demonstrating the feasibility of the beam delivery system for the future linear collider. The orbit feedback is very critical to obtain the nanometer vertical beam size at the interaction point and in the case of CLIC, ground motion effects on the beam must be corrected. In this respect, as a proof of principle of a ground motion feed forward, the ground motion effects on the beam trajectory are extracted from the beam position monitor readings.

  12. Adsorption of ATF additives on wet clutch friction interfaces under water contaminated lubricant conditions

    OpenAIRE

    Fatima, Nowshir; Minami, Ichiro; Holmgren, Allan; Marklund, Pär; Larsson, Roland

    2014-01-01

    Stable friction and positive slope of friction-speed is the typical criterion for a good clutch performance. Lubricated friction interfaces used for wet clutches produces different friction behaviour depending on the lubricant conditions. Usually the lubricant conditions vary for different automatic transmission fluid (ATF) formulations implying e.g. water contamination and these conditions might influence the deterioration of the clutch plates. The aim of this paper is to verify additive ads...

  13. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  15. Systems analysis of ATF3 in stress response and cancer reveals opposing effects on pro-apoptotic genes in p53 pathway.

    Directory of Open Access Journals (Sweden)

    Yujiro Tanaka

    Full Text Available Stress-inducible transcription factors play a pivotal role in cellular adaptation to environment to maintain homeostasis and integrity of the genome. Activating transcription factor 3 (ATF3 is induced by a variety of stress and inflammatory conditions and is over-expressed in many kinds of cancer cells. However, molecular mechanisms underlying pleiotropic functions of ATF3 have remained elusive. Here we employed systems analysis to identify genome-wide targets of ATF3 that is either induced by an alkylating agent methyl methanesulfonate (MMS or over-expressed in a prostate tumour cell line LNCaP. We show that stress-induced and cancer-associated ATF3 is recruited to 5,984 and 1,423 targets, respectively, in the human genome, 89% of which are common. Notably, ATF3 targets are highly enriched for not only ATF/CRE motifs but also binding sites of several other stress-inducible transcription factors indicating an extensive network of stress response factors in transcriptional regulation of target genes. Further analysis of effects of ATF3 knockdown on these targets revealed that stress-induced ATF3 regulates genes in metabolic pathways, cell cycle, apoptosis, cell adhesion, and signalling including insulin, p53, Wnt, and VEGF pathways. Cancer-associated ATF3 is involved in regulation of distinct sets of genes in processes such as calcium signalling, Wnt, p53 and diabetes pathways. Notably, stress-induced ATF3 binds to 40% of p53 targets and activates pro-apoptotic genes such as TNFRSF10B/DR5 and BBC3/PUMA. Cancer-associated ATF3, by contrast, represses these pro-apoptotic genes in addition to CDKN1A/p21. Taken together, our data reveal an extensive network of stress-inducible transcription factors and demonstrate that ATF3 has opposing, cell context-dependent effects on p53 target genes in DNA damage response and cancer development.

  16. ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Koji Hashida

    Full Text Available Accumulating evidence suggests a crucial role for the unfolded protein response (UPR in Parkinson's disease (PD. In this study, we investigated the relevance of the UPR in a mouse model of chronic MPTP/probenecid (MPTP/P injection, which causes severe and persistent degeneration of dopaminergic neurons. Enhanced activation of the UPR branches, including ATF6α and PERK/eIF2α/ATF4, was observed after MPTP/P injections into mice. Deletion of the ATF6α gene accelerated neuronal degeneration and ubiquitin accumulation relatively early in the MPTP/P injection course. Surprisingly, astroglial activation was strongly suppressed, and production of the brain-derived neurotrophic factor (BDNF and anti-oxidative genes, such as heme oxygenase-1 (HO-1 and xCT, in astrocytes were reduced in ATF6α -/- mice after MPTP/P injections. Decreased BDNF expression in ATF6α -/- mice was associated with decreased expression of GRP78, an ATF6α-dependent molecular chaperone in the ER. Decreased HO-1 and xCT levels were associated with decreased expression of the ATF4-dependent pro-apoptotic gene CHOP. Consistent with these results, administration of the UPR-activating reagent tangeretin (5,6,7,8,4'-pentamethoxyflavone; IN19 into mice enhanced the expression of UPR-target genes in both dopaminergic neurons and astrocytes, and promoted neuronal survival after MPTP/P injections. These results suggest that the UPR is activated in a mouse model of chronic MPTP/P injection, and contributes to the survival of nigrostriatal dopaminergic neurons, in part, through activated astrocytes.

  17. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    Science.gov (United States)

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  18. Toroidal magnetized iron neutrino detector for a neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

  19. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    Science.gov (United States)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  20. Toroidal coupling in the kinetic response to edge magnetic perturbations

    Science.gov (United States)

    Spizzo, G.; Agostini, M.; Scarin, P.; White, R. B.; Schmitz, O.; Spolaore, M.; Terranova, D.; Veranda, M.; Vianello, N.

    2017-12-01

    The magnetic topology of the stochastic edge of a helical reversed-field pinch, with helicity m/n , shows to be deeply influenced by higher harmonics (m +/- 1)/ n , with the same n, due to toroidal coupling. As a consequence, by measuring kinetic quantities in a particular θ, φ location, one can incur in substantial errors or mis-interpretations of the kinetic plasma response: only a full 3D coverage of θ, φ angles can reveal the real topology of the plasma. This can be a caveat for MP application in tokamaks, because it shows that toroidal and poloidal sidebands, though smaller than the base mode by a factor  ∼ \

  1. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  2. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng; N.N. Gorelenkov; G.J. Kramer; E. Fredrickson

    2004-09-03

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions.

  3. Initial value problem of the toroidal ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.

    1998-06-01

    The initial value problem of the toroidal ion temperature gradient mode is studied based on the Laplace transform of the ion gyrokinetic equation and the electron Boltzmann relation with the charge neutrality condition. Due to the toroidal magnetic drift, the Laplace-transformed density and potential perturbations have a branch cut as well as poles on the complex-frequency plane. The inverse Laplace transform shows that the temporal evolution of the density and potential perturbations consists of the normal modes and the continuum mode, which correspond to contributions from the poles and the branch cut, respectively. The normal modes have exponential time dependence with the eigenfrequencies determined by the dispersion relation while the continuum mode shows power-law decay oscillation. For the stable case, the long-time asymptotic behavior of the potential and density perturbations is dominated by the continuum mode which decays slower than the normal modes. (author)

  4. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Betz, Michael; Caspers, Fritz [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Institute for Particle Physics Phenomenology, Durham (United Kingdom); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Semertzidis, Yannis [Brookhaven National Lab., Upton, NY (United States); Sikivie, Pierre [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Zioutas, Konstantin [Patras Univ. (Greece)

    2011-10-15

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  5. Heavy ion beam probing—diagnostics to study potential and turbulence in toroidal plasmas

    Science.gov (United States)

    Melnikov, A. V.; Krupnik, L. I.; Eliseev, L. G.; Barcala, J. M.; Bravo, A.; Chmyga, A. A.; Deshko, G. N.; Drabinskij, M. A.; Hidalgo, C.; Khabanov, P. O.; Khrebtov, S. M.; Kharchev, N. K.; Komarov, A. D.; Kozachek, A. S.; Lopez, J.; Lysenko, S. E.; Martin, G.; Molinero, A.; de Pablos, J. L.; Soleto, A.; Ufimtsev, M. V.; Zenin, V. N.; Zhezhera, A. I.; T-10 Team; TJ-II Team

    2017-07-01

    Heavy ion beam probing (HIBP) is a unique diagnostics to study the core plasma potential and turbulence. Advanced HIBPs operate in the T-10 tokamak and TJ-II flexible heliac with fine focused (potential φ (by the beam extra energy), plasma density n e (by the beam current), poloidal magnetic field B pol (by the beam toroidal shift), poloidal electric filed E pol that allows one to derive the electrostatic turbulent particle flux ΓE×B. The cross-phase of density oscillations produces the phase velocity of their poloidal propagation or rotation; also it gives the poloidal mode number. Dual HIBP, consisting of two identical HIBPs located ¼ torus apart provide the long-range correlations of core plasma parameters. Low-noise high-gain electronics allows us to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes and Alfvén eigenmodes.

  6. Characterization of compact-toroid injection during formation, translation, and field penetration

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Roche, T.; Allfrey, I.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  7. Characterization of compact-toroid injection during formation, translation, and field penetration

    Science.gov (United States)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  8. Characterization of compact-toroid injection during formation, translation, and field penetration.

    Science.gov (United States)

    Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  9. Plasma production and transport in a simple magnetised toroidal plasma

    OpenAIRE

    Podestà, Mario

    2007-01-01

    This Thesis addresses questions related to transport phenomena and the plasma production mechanisms by injection of microwaves in the electron-cyclotron frequency range in the simple magnetised toroidal plasma TORPEX. The second subject is investigated in detail in Part II. The mechanisms of the interaction between the injected microwaves and the plasma are identified. The experimental results highlight the different roles played by the electron-cyclotron and upper-hybrid plasma resonances in...

  10. Plasma production and transport in a simple magnetised toroidal plasma

    OpenAIRE

    Podestà, Mario; Fasoli, Ambrogio

    2008-01-01

    This Thesis addresses questions related to transport phenomena and the plasma production mechanisms by injection of microwaves in the electron-cyclotron frequency range in the simple magnetised toroidal plasma TORPEX. The second subject is investigated in detail in Part II. The mechanisms of the interaction between the injected microwaves and the plasma are identified. The experimental results highlight the different roles played by the electron-cyclotron and upper-hybrid plasma resonances in...

  11. Toroidal flow measurement in CT injected STOR-M tokamak

    Science.gov (United States)

    Asai, Tomohiko; Morelli, Jordan; Singh, Ajay; Xiao, Chijin; Hirose, Akira; Nagata, Masayoshi; Uyama, Tadao

    2002-11-01

    Compact Torus (CT) injection is a technology being developed for fueling of large tokamak reactors. It has been demonstrated in the STOR-M tokamak that tangential CT injection is capable of inducing an improved confinement mode (H-mode). It has been conjectured that tangential CT injection may enhance the toroidal rotation of the bulk tokamak plasma which is responsible for the H-mode by preventing or reducing microinstabilities[1]. In order to investigate the mechanisms of the L-H transition induced by enhanced toroidal flow (particularly that caused by CT injection), an Ion Doppler Spectroscope (IDS) has been developed. The IDS employs a 0.75 m focal length Czerny-Turner spectrometer with a resolution of 0.1 Åand a 16-channel PMT array. Data of plasma flow measurements will be presented with and without CT injection. Also, the results will be compared with toroidal flow measurement obtained using a 4-sided Mach probe in the plasma edge region. [1] S. Sen et al., Phys. Rev. Lett. 88, 185001 (2002).

  12. Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies

    Directory of Open Access Journals (Sweden)

    Ahmet YILDIZ

    2014-04-01

    Full Text Available The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely.Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature

  13. Neoclassical offset toroidal velocity and auxiliary ion heating in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, E., E-mail: lazzaro@ifp.cnr.it [Istituto di Fisica del Plasma CNR (Italy)

    2016-05-15

    In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g., RF or any isotropic auxiliary heating) cannot give rise to net forces or torques. Experimental evidence on contemporary tokamaks shows that the near central absorption of RF heating power (ICH and ECH) and current drive in presence of MHD activity drives a bulk plasma rotation in the co-I{sub p} direction, opposite to the initial one. Also the appearance of classical or neoclassical tearing modes provides a nonlinear magnetic braking that tends to clamp the rotation profile at the q-rational surfaces. The physical origin of the torque associated with P{sub RF} absorption could be due the effects of asymmetry in the equilibrium configuration or in power deposition, but here we point out also an effect of the response of the so-called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity due to internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by kinetic and fluid calculations, that the absorption of auxiliary power by ions modifies this offset proportionally to the injected power thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.

  14. HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection.

    Science.gov (United States)

    Jiang, Guochun; Santos Rocha, Clarissa; Hirao, Lauren A; Mendes, Erica A; Tang, Yuyang; Thompson, George R; Wong, Joseph K; Dandekar, Satya

    2017-05-02

    Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4 + T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4 + T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4 + T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy. IMPORTANCE Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and

  15. Cockayne's Syndrome A and B Proteins Regulate Transcription Arrest after Genotoxic Stress by Promoting ATF3 Degradation.

    Science.gov (United States)

    Epanchintsev, Alexey; Costanzo, Federico; Rauschendorf, Marc-Alexander; Caputo, Manuela; Ye, Tao; Donnio, Lise-Marie; Proietti-de-Santis, Luca; Coin, Frederic; Laugel, Vincent; Egly, Jean-Marc

    2017-12-21

    Cockayne syndrome (CS) is caused by mutations in CSA and CSB. The CSA and CSB proteins have been linked to both promoting transcription-coupled repair and restoring transcription following DNA damage. We show that UV stress arrests transcription of approximately 70% of genes in CSA- or CSB-deficient cells due to the constitutive presence of ATF3 at CRE/ATF sites. We found that CSB, CSA/DDB1/CUL4A, and MDM2 were essential for ATF3 ubiquitination and degradation by the proteasome. ATF3 removal was concomitant with the recruitment of RNA polymerase II and the restart of transcription. Preventing ATF3 ubiquitination by mutating target lysines prevented recovery of transcription and increased cell death following UV treatment. Our data suggest that the coordinate action of CSA and CSB, as part of the ubiquitin/proteasome machinery, regulates the recruitment timing of DNA-binding factors and provide explanations about the mechanism of transcription arrest following genotoxic stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis

    Science.gov (United States)

    Sekyrova, Petra; Bohmann, Dirk; Jindra, Marek; Uhlirova, Mirka

    2010-01-01

    Epithelial sheet spreading and fusion underlie important developmental processes. Well-characterized examples of such epithelial morphogenetic events have been provided by studies in Drosophila, and include embryonic dorsal closure, formation of the adult thorax and wound healing. All of these processes require the basic region-leucine zipper (bZIP) transcription factors Jun and Fos. Much less is known about morphogenesis of the fly abdomen, which involves replacement of larval epidermal cells (LECs) with adult histoblasts that divide, migrate and finally fuse to form the adult epidermis during metamorphosis. Here, we implicate Drosophila Activating transcription factor 3 (Atf3), the single ortholog of human ATF3 and JDP2 bZIP proteins, in abdominal morphogenesis. During the process of the epithelial cell replacement, transcription of the atf3 gene declines. When this downregulation is experimentally prevented, the affected LECs accumulate cell-adhesion proteins and their extrusion and replacement with histoblasts are blocked. The abnormally adhering LECs consequently obstruct the closure of the adult abdominal epithelium. This closure defect can be either mimicked and further enhanced by knockdown of the small GTPase Rho1 or, conversely, alleviated by stimulating ecdysone steroid hormone signaling. Both Rho and ecdysone pathways have been previously identified as effectors of the LEC replacement. To elicit the gain-of-function effect, Atf3 specifically requires its binding partner Jun. Our data thus identify Atf3 as a new functional partner of Drosophila Jun during development. PMID:20023169

  17. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    Science.gov (United States)

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip, atf4, and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  18. ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types.

    Science.gov (United States)

    Chüeh, Anderly C; Tse, Janson W T; Dickinson, Michael; Ioannidis, Paul; Jenkins, Laura; Togel, Lars; Tan, BeeShin; Luk, Ian; Davalos-Salas, Mercedes; Nightingale, Rebecca; Thompson, Matthew R; Williams, Bryan R G; Lessene, Guillaume; Lee, Erinna F; Fairlie, Walter D; Dhillon, Amardeep S; Mariadason, John M

    2017-09-15

    Purpose: Histone deacetylase inhibitors (HDACi) are epigenome-targeting small molecules approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma. They have also demonstrated clinical activity in acute myelogenous leukemia, non-small cell lung cancer, and estrogen receptor-positive breast cancer, and trials are underway assessing their activity in combination regimens including immunotherapy. However, there is currently no clear strategy to reliably predict HDACi sensitivity. In colon cancer cells, apoptotic sensitivity to HDACi is associated with transcriptional induction of multiple immediate-early (IE) genes. Here, we examined whether this transcriptional response predicts HDACi sensitivity across tumor type and investigated the mechanism by which it triggers apoptosis.Experimental Design: Fifty cancer cell lines from diverse tumor types were screened to establish the correlation between apoptotic sensitivity, induction of IE genes, and components of the intrinsic apoptotic pathway.Results: We show that sensitivity to HDACi across tumor types is predicted by induction of the IE genes FOS, JUN, and ATF3, but that only ATF3 is required for HDACi-induced apoptosis. We further demonstrate that the proapoptotic function of ATF3 is mediated through direct transcriptional repression of the prosurvival factor BCL-XL (BCL2L1) These findings provided the rationale for dual inhibition of HDAC and BCL-XL, which we show strongly cooperate to overcome inherent resistance to HDACi across diverse tumor cell types.Conclusions: These findings explain the heterogeneous responses of tumor cells to HDACi-induced apoptosis and suggest a framework for predicting response and expanding their therapeutic use in multiple cancer types. Clin Cancer Res; 23(18); 5573-84. ©2017 AACR. ©2017 American Association for Cancer Research.

  19. A Synthetic Cell-Penetrating Dominant-Negative ATF5 Peptide Exerts Anticancer Activity against a Broad Spectrum of Treatment-Resistant Cancers.

    Science.gov (United States)

    Karpel-Massler, Georg; Horst, Basil A; Shu, Chang; Chau, Lily; Tsujiuchi, Takashi; Bruce, Jeffrey N; Canoll, Peter; Greene, Lloyd A; Angelastro, James M; Siegelin, Markus D

    2016-09-15

    Despite significant progress in cancer research, many tumor entities still have an unfavorable prognosis. Activating transcription factor 5 (ATF5) is upregulated in various malignancies and promotes apoptotic resistance. We evaluated the efficacy and mechanisms of the first described synthetic cell-penetrating inhibitor of ATF5 function, CP-d/n-ATF5-S1. Preclinical drug testing was performed in various treatment-resistant cancer cells and in vivo xenograft models. CP-d/n-ATF5-S1 reduced the transcript levels of several known direct ATF5 targets. It depleted endogenous ATF5 and induced apoptosis across a broad panel of treatment-refractory cancer cell lines, sparing non-neoplastic cells. CP-d/n-ATF5-S1 promoted tumor cell apoptotic susceptibility in part by reducing expression of the deubiquitinase Usp9X and led to diminished levels of antiapoptotic Bcl-2 family members Mcl-1 and Bcl-2. In line with this, CP-d/n-ATF5-S1 synergistically enhanced tumor cell apoptosis induced by the BH3-mimetic ABT263 and the death ligand TRAIL. In vivo, CP-d/n-ATF5-S1 attenuated tumor growth as a single compound in glioblastoma, melanoma, prostate cancer, and triple receptor-negative breast cancer xenograft models. Finally, the combination treatment of CP-d/n-ATF5-S1 and ABT263 significantly reduced tumor growth in vivo more efficiently than each reagent on its own. Our data support the idea that CP-d/n-ATF5-S1, administered as a single reagent or in combination with other drugs, holds promise as an innovative, safe, and efficient antineoplastic agent against treatment-resistant cancers. Clin Cancer Res; 22(18); 4698-711. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Suomi-NPP Mission On-Orbit Experience with Toroid Ball Bearing Retainers Under Unidirectional and Reversing Motion

    Science.gov (United States)

    Bruegman, Otto; Thakore, Kamal; Loewenthal, Stu; Cymerman, John

    2016-01-01

    The Advanced Technology Microwave Sounder (ATMS) instrument scan system on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft has experienced several randomly occurring increased torque 'events' since its on-orbit activation in November 2011. Based on a review of on-orbit telemetry data and data gathered from scan mechanism bearing life testing on the ground, the conclusion was drawn that some degradation of Teflon toroid ball retainers was occurring in the instrument Scan Drive Mechanism. A life extension program was developed and executed on-orbit with very good results to date. The life extension program consisted of reversing the mechanism for a limited number of consecutive scans every day.

  1. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system.

    Science.gov (United States)

    Lee, J; Yun, G S; Lee, J E; Kim, M; Choi, M J; Lee, W; Park, H K; Domier, C W; Luhmann, N C; Sabbagh, S A; Park, Y S; Lee, S G; Bak, J G

    2014-06-01

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α* of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α* is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  2. Geometric wakefield regimes study of a rectangular tapered collimator for ATF2

    CERN Document Server

    Fuster-Martinez, Nuria; Latina, Andrea; Snuverink, Jochem

    2016-01-01

    In this paper we study the discrepancy found between the wakefield impact effect induced by a rectangular tapered collimator prototype for ATF2 calculated using analytical models, calculated from CST PS numerical simulations and implemented in the tracking code PLACET v1.0.0. In order to get consistent results between the analytical calculations, CST PS simulations and the tracking code PLACET v1.0.0 the collimator wakefield module in PLACET v1.0.0 has to be modified. The changes have been implemented in the tracking code PLACET v1.0.1.

  3. Achievement of ultra-low emittance beam in the ATF damping ring

    CERN Document Server

    Honda, Y; Araki, S; Bane, Karl Leopold Freitag; Brachmann, A; Frisch, J; Fukuda, M; Hasegawa, K; Hayano, H; Hendrickson, L; Higashi, Y; Higo, T; Hirano, K; Hirose, T; Iida, K; Imai, T; Inoue, Y; Karataev, P; Kubo, K; Kurihara, Y; Kuriki, M; Kuroda, R; Kuroda, S; Luo, X; Matsuda, M; McCormick, D; Muto, T; Nakajima, K; Nelson, J; Nomura, M; Ohashi, A; Okugi, T; Omori, T; Ross, M; Sakai, H; Sakai, I; Sasao, N; Smith, S; Suzuki, T; Takano, M; Takashi, N; Taniguchi, T; Terunuma, N; Toge, N; Turner, J; Urakawa, J; Vogel, V; Wolski, A; Woodley, M; Yamazaki, I; Yamazaki, Y; Yocky, J; Young, A; Zimmermann, Frank

    2003-01-01

    We report on the smallest vertical emittance achieved in single-bunch-mode operation of the ATF. The emittances were measured with a laser-wire beam-profile monitor installed in the damping ring. The bunch length and the momentum spread of the beam were also recorded under the same conditions. The smallest vertical rms emittance measured is 4 pm in the limit of zero current. It increases by a factor of 1.5 for a bunch intensity of 10^10 electrons. There are no discrepancies between the measured data and the calculations of intra-beam scattering.

  4. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  5. Latest Performance Results from the FONT5 Intra-train Beam Position and Angle Feedback System at ATF2

    CERN Document Server

    Christian, G B; Bett, D R; Blaskovic Kraljevic, N; Burrows, P N; Davis, M R; Gerbershagen, A; Perry, C; Constance, B; Resta-Lopez, J

    2012-01-01

    A prototype Interaction Point beam-based feedback system for future electron-positron colliders, such as the International Linear Collider, has been designed and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The FONT5 intra-train feedback system aims to stabilize the beam orbit by correcting both the position and angle jitter in the vertical plane on bunch-tobunch time scales, providing micron-level stability at the entrance to the ATF2 final-focus system. The system comprises three stripline beam position monitors (BPMs) and two stripline kickers, custom low-latency analogue front-end BPM processors, a custom FPGA-based digital processing board with fast ADCs, and custom kickerdrive amplifiers. The latest results from beam tests at ATF2 will be presented, including the system latency and correction performance.

  6. Comparison of edge fluctuations in toroidal confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.Y.W.; Lin, H.; Meier, M.; Ritz, C.; Wooton, A.J. (Texas Univ., Austin, TX (United States). Fusion Research Center)

    1991-01-01

    Tokamak, Stellarator and RFP confinement systems have similar topology but differ markedly in their equilibrium configurations. Experiments to date show that the particles and energy losses in these systems are higher than those predicted from (neo)classical theories. The anomalously high particle and energy fluxes are often attributed to turbulence-induced transport. Although experimental results indicated that fluctuation-induced fluxes are significant in the edge plasma of these systems, it is not known whether the driving mechanisms or the origins of the turbulence are the same. Here, we compare the edge fluctuations and their associated transport by applying similar Langmuir probe diagnostics and analysis techniques to discharges in TEXT Tokamak, ATF Stellarator and ZT40M RFP. (author) 5 refs., 2 figs., 2 tabs.

  7. Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance.

    Science.gov (United States)

    Chen, Xu; Fan, Wenhui

    2017-05-15

    A planar terahertz metamaterial consisting of square split ring resonators is proposed, and the excitation of toroidal dipolar resonance is demonstrated. Moreover, we theoretically investigate the strong interaction between graphene and toroidal dipolar resonance of the metamaterial. By varying its Fermi energy, the simulations show that graphene can actively modulate the transmission amplitude of toroidal dipolar resonance and even switch it off. The interaction of the toroidal dipolar resonance with monolayer graphene further highlights the ultrasensitive sensing characteristic of the planar metamaterial, which can be utilized for other graphene-like two-dimensional materials. These intriguing properties of the proposed metamaterial may have potential applications in terahertz modulators and ultrasensitive sensors.

  8. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sabot, R. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V. [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  9. Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway.

    Science.gov (United States)

    Hou, Lei; Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Li, Zixuan; Liu, Jue

    2017-10-03

    An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.

  10. (Injection of compact toroids for tokamak fueling and current drive)

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, D.Q.; Rogers, J.H.; Thomas, J.C.; Evans, R.; Foley, R.; Hillyer, T.

    1991-01-01

    The experimental goals for the 1990--1991 period were the operation of the Davis Diverted Tokamak(DDT), the beat wave experiment, and the construction of the compact toroid injection experiment(CTIX). The experiment results from these areas are summarized in the posters given in the APS meeting past November. Here we shall describe the technical progress of the development of the diagnostic system for beat wave experiment, and CT injection especially in relation to the up coming injection experiments into DDT tokamak. The tokamak operation of DDT over the past year has been focused in two parameter ranges. The long pulse discharges (over 100 msec), and the low q short pulse discharges (about 10 msec). We found that the long pulse discharges required a position feedback more sophisticated than the simple passive program that we have. We are in the process of assembling this system. We also found an interesting low q(a) operating regime. Here an equilibrium can be established for a toroidal field between .5 and 1 kG. The typical plasma current is > 5kA. The density of the plasma is between 10{sup 12} and 10{sup 13} cm{sup {minus}3}. The plasma condition in these discharge are sufficiently mild that diagnostic probes can be used to measure various plasma fluctuations. We believe that this will be the regime best suited to study the interaction between the tokamak plasma and the compact toroid. A sophisticated probe system of both electrostatic and electromagnetic types similar to those used in the beat wave experiment has been designed for the up coming experiments.

  11. Non-destructive Preirradiation Assessment of UN / U-Si “LANL1” ATF formulation

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian Simon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pokharel, Reeju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ickes, Timothy Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tremsin, Anton S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McClellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-15

    The goal of the Advanced Non-destructive Fuel Examination (ANDE) work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels, ultimately also to irradiated fuels. The results of these characterizations provide complete pre- and post-irradiation on length scales ranging from mm to nm, guide destructive examination, and inform modelling efforts. Besides technique development and application to samples to be irradiated, the ANDE work package also examines possible technologies to provide these characterization techniques pool-side, e.g. at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) using laser-driven intense pulsed neutron and gamma sources. Neutron tomography and neutron diffraction characterizations were performed on nine pellets; four UN/ U-Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels), and two reject pellets with visible flaws (to qualify the technique). The 235U enrichments ranged from 0.2 to 8.8 wt. %. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. We have also proposed a data format to build a database for characterization results of individual pellets. Neutron data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. This report provides the results for the characterized samples and discussion in the context of ANDE and APIE. We quantified the gamma spectra of several samples in their received state as well as after neutron irradiation to ensure that the neutron irradiation does not add significant activation that would complicate shipment and

  12. System design of toroidal field power supply of CDD tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng Zhi

    1996-12-01

    This report deals with system design of Toroidal Field Power Supply of CDD tokamak (CDD-TFPS). The general design philosophy and design variations are introduced. After the outline of CDD-TFPS, the short-circuit calculation, the evaluation of converter parameters, the compatibility of converter and line are carried out. the specifications of major components, semi-conductor devices and accessories are given. High attention is paid to protection system. The design of sub-control and grounding system are described too. Some more general material for power supply design are attached in appendices for reference. (author). 30 tabs., 21 figs.

  13. Simulation of dust streaming in toroidal traps: Stationary flows

    Energy Technology Data Exchange (ETDEWEB)

    Reichstein, Torben; Piel, Alexander [IEAP, Christian-Albrechts-Universitaet, D-24098 Kiel (Germany)

    2011-08-15

    Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.

  14. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    Energy Technology Data Exchange (ETDEWEB)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Wilms, Jochen [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany)

    2016-07-15

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where the critical condition for the hydraulic jump is located.

  15. Experimental observation of crystalline particle flows in toroidal dust clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jochen, E-mail: wilms@physik.uni-kiel.de; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); Reichstein, Torben [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); DME, Kiel University of Applied Sciences, Grenzstr. 3, D-24147 Kiel (Germany)

    2015-06-15

    The dust flow in a toroidal dust trap is studied experimentally. The flow is driven by the Hall component of the ion drag force in a magnetized plasma. Dust density waves are found in a torus with a large minor radius a, which allows for several wavelength, 2a>5λ, in the (mostly) radial direction of the ion flow. Beyond an intermediate state with radial sloshing oscillations, a crystalline dust flow with suppressed wave activity could be realized for 2a<2λ. The particles arrange themselves in distinct layers with hexagonal-like local order. Smooth transitions between states with different numbers of layers are found in the inhomogeneous flow.

  16. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  17. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  18. Zonal flow excitation by drift waves in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    L Chen; Z. Lin; R. White

    2000-06-13

    Recent 3D gyrokinetic and gyrofluid simulations in toroidal plasmas have demonstrated that zonal flows play a crucial role in regulating the nonlinear evolution of electrostatic drift-wave instabilities such as the ion temperature gradient (ITG) modes and, as a consequence, the level of the anomalous ion thermal transport, and that zonal flows could be spontaneously excited by ITG turbulence, suggesting parametric instability processes as the generation mechanism. Diamond et. al. have proposed the modulational instability of drift-wave turbulence ( plasmons ) in a slab-geometry treatment.

  19. Overexpression of ATF3 or the combination of ATF3, c-Jun, STAT3 and Smad1 promotes regeneration of the central axon branch of sensory neurons but without synergistic effects

    NARCIS (Netherlands)

    Fagoe, Nitish D; Attwell, Callan L; Kouwenhoven, Dorette; Verhaagen, J.; Mason, M.R.J.

    2015-01-01

    Peripheral nerve injury results in the activation of a number of transcription factors (TFs) in injured neurons, some of which may be key regulators of the regeneration-associated gene (RAG) programme. Among known RAG TFs, ATF3, Smad1, STAT3 and c-Jun have all been linked to successful axonal

  20. Phospho-mimicking Atf1 mutants bypass the transcription activating function of the MAP kinase Sty1 of fission yeast.

    Science.gov (United States)

    Sánchez-Mir, Laura; Salat-Canela, Clàudia; Paulo, Esther; Carmona, Mercè; Ayté, José; Oliva, Baldo; Hidalgo, Elena

    2018-02-01

    Stress-dependent activation of signaling cascades is often mediated by phosphorylation events, but the exact nature and role of these phosphorelays are frequently poorly understood. Here, we review which are the consequences of the stress-dependent phosphorylation of a transcription factor on gene activation. In fission yeast, the MAP kinase Sty1 is activated upon several environmental hazards and promotes cell adaptation and survival, greatly through activation of a gene program mediated by the transcription factor Atf1. Although described decades ago, the role of the phosphorylation of Atf1 by Sty1 is still a matter of debate. We present here a brief review of recent data, obtained through the characterization of several phosphorylation mutant derivatives of Atf1, demonstrating that Atf1 phosphorylation does not stabilize the factor nor stimulates its binding to DNA. Rather, it provides a structural platform of interaction with the transcriptional machinery. Based on these findings, future work will establish how this phosphorylated trans-activation domain promotes the massive gene expression shift allowing cellular adaptation to stress.

  1. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 158B/159A

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walker, Billy Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 158B/159A which were measured by the Radiation Measurements Laboratory (RML).

  2. Octagonal toroid microcavity for mechanically robust optical coupling

    Directory of Open Access Journals (Sweden)

    Ryo Suzuki

    2015-05-01

    Full Text Available Light is usually coupled to a whispering gallery mode cavity using a tapered fiber. However, it is difficult to stabilize the optical coupling against mechanical vibration because it requires sub-μm control of the gap distance between the fiber and cavity. In this study, we experimentally demonstrate mechanically robust coupling that we realize by allowing the tapered fiber to touch the sidewall of the cavity. By using an octagonal toroid microcavity, we prevent the cavity-waveguide system from over coupling and achieve critical coupling even when the fiber is in contact with the surface of the cavity. We show by numerical analysis that such a deformed microcavity is required if we need to control the coupling, since a circular cavity usually overcouples when the fiber contacts the surface. The fabricated octagonal silica toroid microcavity exhibits a quality factor of 2.2 × 104 when the tapered fiber touches a cavity with a diameter of 80 μm.

  3. Computations of Vertical Displacement Events with Toroidal Asymmetry

    Science.gov (United States)

    Sovinec, C. R.; Bunkers, K. J.

    2017-10-01

    Nonlinear numerical MHD modeling with the NIMROD code [https://nimrodteam.org] is being developed to investigate asymmetry during vertical displacement events. We start from idealized up/down symmetric tokamak equilibria with small levels of imposed toroidally asymmetric field errors. Vertical displacement results when removing current from one of the two divertor coils. The Eulerian reference-frame modeling uses temperature-dependent resistivity and anisotropic thermal conduction to distinguish the hot plasma region from surrounding cold, low-density conditions. Diffusion through a resistive wall is slow relative to Alfvenic scales but much faster than resistive plasma diffusion. Loss of the initial edge pressure and current distributions leads to a narrow layer of parallel current, which drives low-n modes that may be related to peeling-dominated ELMs. These modes induce toroidal asymmetry in the conduction current, which connects the simulated plasma to the wall. Work supported by the US DOE through Grant Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  4. The computation of resistive MHD instabilities in axisymmetric toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harley, T.R.; Cheng, C.Z.; Jardin, S.C.

    1991-03-01

    We describe the linear MHD eigenmode code NOVA-R, which calculates the resistive stability of axisymmetric toroidal equilibria. A formulation has been adopted which accurately resolves the continuum spectrum of the ideal MHD operator. The resistive MHD stability equations are transformed into three coupled second order equations, one of which recovers the equation solved by the NOVA code in the ideal limit. The eigenfunctions are represented by a Fourier expansion and cubic B-spline finite elements which are packed about the internal boundary layer. Accurate results are presented for dimensionless resistivities as low as 10{sup {minus}30} in cylindrical geometry. For axisymmetric toroidal plasmas we demonstrate the accuracy of the NOVA-R code by recovering ideal results in the {eta} {yields} 0 limit, and cylindrical resistive interchange results in the a/R {yields} limit. {Delta}{prime} analysis performed using the eigenfunctions computed by the NOVA-R code agree with the asymptotic matching results from the resistive PEST code for zero beta equilibria. 33 refs., 30 figs.

  5. REVIEW ARTICLE: Control of non-axisymmetric toroidal plasmas

    Science.gov (United States)

    Boozer, Allen H.

    2010-10-01

    The control of non-axisymmetric toroidal plasmas, stellarators, has a different character than the control of tokamaks for two reasons. Non-axisymmetric magnetic fields (1) can provide an arbitrarily large fraction of the poloidal magnetic field and (2) can strongly center the plasma in the chamber making it impossible to lose position control. The focus of stellarator design is on plasmas that are stable without feedback, need little or no change in the external magnetic field as the plasma evolves, and require no external power to maintain the desired magnetic configuration. The physics of non-axisymmetric fields is the same whether in a tokamak or a stellarator and whether introduced intentionally or accidentally. Fundamental physics indicates that plasma shape, which is controlled by the distribution of the external magnetic field that is normal to the plasma surface, is the primary control for fusion plasmas. The importance of non-axisymmetric control is set by the importance of toroidal plasma physics. Informed decisions on the development strategy of tokamaks, as well as magnetic fusion in general, require an understanding of the capabilities and difficulties of plasma control at various levels of non-axisymmetric shaping.

  6. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, Glenn; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-06-16

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  7. Last End Cap Toroid installation : The Pharaonic enterprise

    CERN Document Server

    Arnaud Foussat

    After the successful and impressive transport feat from Building 191 to Point 1 was carried out by the Friderici crew on 28th June, the second and last Toroid End Cap, ECT-C, was transferred into the surface building, SX1, on 2nd July. The ECT-C was installed in the ATLAS cavern on the C-side on 12th July. As the person responsible for the project, in my opinion, one of the crucial points of this project was to design all the tooling and installation sequences taking into account the building infrastructure dimensional constraints. View of the ECT installation tooling and preparation for the ECT-C descent into the ATLAS 80m-shaft by the ATLAS magnet group and DBS teams. The movement of the 240-ton magnet and 12-m diameter toroid end-cap was achieved in collaboration with SCALES, a subcontractor company, using a hydraulic gantry able to lower the ECT inside the shaft by 5m below the floor level . This allowed the DBS team to attach the end-cap with the 2 x 140 tons overhead crane and lower it onto the c...

  8. Design study of toroidal traction CVT for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  9. Neutronic analysis of the JT-60SA toroidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Villari, R. [Association EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy)], E-mail: villari@frascati.enea.it; Barabaschi, P. [JT-60SA European Home Team, 85748 Garching (Germany); Cucchiaro, A.; Della Corte, A.; Di Zenobio, A. [Association EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati (Italy); Dolgetta, N.; Lacroix, B. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-Lez-Durance (France); Moro, F.; Muzzi, L. [Association EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy); Nicollet, S. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-Lez-Durance (France); Petrizzi, L.; Pizzuto, A.; Polli, G.M. [Association EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati (Italy); Portafaix, C. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-Lez-Durance (France); Ramogida, G.; Reccia, L.; Roccella, S. [Association EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati (Italy); Sukegawa, A. [Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193 (Japan); Turtu, S. [Association EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati (Italy); Yoshida, K. [Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193 (Japan)] (and others)

    2009-06-15

    In the present study a complete neutronic analysis has been performed for the current design of the JT-60SA toroidal field coil (TFC) system. The MCNP5 Monte Carlo code has been used to calculate the nuclear heating, neutron spectra and absorbed dose in the TFC components, assuming a DD neutron emission rate of 1.5 x 10{sup 17} n/s (and 1% DT). Nuclear heating of the winding pack is lower than 0.3 mW/cm{sup 3} and the maximum nuclear heating of the TFC case is 0.4 mW/cm{sup 3}. The overall nuclear heating, including the safety margin, is less than 8 kW. Spatial distribution of the nuclear heating has been provided along poloidal, radial and toroidal directions as to be used for thermo-hydraulic analysis and the design of TFC system. The absorbed dose to insulator is as low as to avoid the replacement during the whole life of the machine. Neutron fluxes have been used as input for a preliminary activation analysis performed with FISPACT inventory code. Activity and contact dose rates have been calculated at different cooling times, after 10 years of operations in some representative zone of the winding pack and the case. All the TFC materials can be easily recycled within the first day after shutdown and the hands-on recycling is possible within less than 30 years.

  10. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II; Calculo de modificacion al campo magnetico toroidal del Tokamak nivillo. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1992-03-15

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  11. Modulating toroidal flow stabilization of edge localized modes with plasma density

    CERN Document Server

    Cheng, Shikui; Banerjee, Debabrata

    2016-01-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high-$n$ edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high-$n$ modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high-$n$ modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in recent EAST experiments.

  12. Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Faus-Golfe, A. [Instituto de Física Corpuscular (CSIC-UV) (Spain); Laboratoire de L' Accélérateur Linéaire (LAL) (France); Navarro, J.; Fuster Martinez, N. [Instituto de Física Corpuscular (CSIC-UV) (Spain); Resta Lopez, J. [Cockcroft Institute and University of Liverpool (United Kingdom); Giner Navarro, J. [Instituto de Física Corpuscular (CSIC-UV) (Spain); European Organization for Nuclear Research CERN (Switzerland)

    2016-05-21

    The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi-station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.

  13. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  14. ATF3 promotes migration and M1/M2 polarization of macrophages by activating tenascin‑C via Wnt/β‑catenin pathway.

    Science.gov (United States)

    Sha, Hao; Zhang, Dianzhong; Zhang, Yunfei; Wen, Yanhua; Wang, Yucai

    2017-09-01

    There are different polarization states of macrophages, including the classically activated M1 phenotype and the alternatively activated M2 phenotype. These have different functions in the inflammation process. Activating transcription factor 3 (ATF3) is a key transcriptional regulator that inhibits the inflammatory response. However, the effects of ATF3 on migration and anti‑inflammatory control mechanisms of macrophages have not been thoroughly investigated. The present study investigated the effect of ATF3 on macrophage migration and M1/M2 polarization. Results revealed that overexpression of ATF3 promoted macrophage migration and the expression of the M2 phenotype markers [cluster of differentiation (CD) 163, mannose receptor C type 1, arginase 1 and peroxisome proliferator‑activated receptor γ] and inhibited expression of the M1 phenotype markers (monocyte chemoattractant protein‑1, inducible nitric oxide synthase, CD16 and tumor necrosis factor‑α), whereas knockdown of ATF3 resulted in a contrary effect. In addition, the wingless‑type MMTV integration site family member (Wnt)/β‑catenin signaling pathway was activated and the expression level of tenascin (TNC) was significantly upregulated by overexpression of ATF3. Additionally, inhibition of Wnt/β‑catenin signaling significantly attenuated the upregulatory effect of ATF3 on TNC. Finally, the effect of ATF3 on macrophage migration and markers of the M1 or M2 state was investigated using TNC‑specific siRNA. In conclusion, the results of the present study suggested that ATF3 promotes macrophage migration and reverses M1‑polarized macrophages to the M2 phenotype by upregulation of TNC via the Wnt/β‑catenin signaling pathway.

  15. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Siemon, R.E. (comp.)

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  16. 3D toroidal physics: testing the boundaries of symmetry breaking

    Science.gov (United States)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  17. Matter in the form of toroidal electromagnetic vortices

    Science.gov (United States)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact

  18. Identification and molecular cloning of Atlantic cod (Gadus morhua) activating transcription factor 3 (ATF3) transcript and its induction in spleen following intraperitoneal polyriboinosinic polyribocytidylic acid injection.

    Science.gov (United States)

    Feng, Charles Y; Rise, Matthew L

    2011-09-01

    Activating transcription factor 3 (ATF3) participates in cellular processes to adapt to various extra- and intra-cellular changes including the modulation of immunity to prevent uncontrolled immune responses to pathogens. In teleost fishes, the involvement of ATF3 in immune response has not been documented. In this study, the putative Atlantic cod (Gadus morhua) ATF3 transcript was identified by performing rapid amplification of cDNA ends (RACE) based on unknown expressed sequence tags (ESTs) that are potentially inducible by polyriboinosinic polyribocytidylic acid (pIC, a synthetic double-stranded RNA viral mimic) in Atlantic cod. ATF3-like ESTs were the most abundant unknown transcript (i.e. lacking significant BLAST hits) generated from a previously constructed cDNA library enriched for pIC inducible transcripts in Atlantic cod spleen. The full-length cDNA of cod ATF3 consists of 2329 nucleotides with an open reading frame (ORF) of 735 bp encoding 244 amino acids. The deduced amino acid sequence of Atlantic cod ATF3 shares over 45% identity with its putative orthologs from other vertebrates. In addition, the presence of a conserved basic region leucine zipper (bZIP) domain in the deduced Atlantic cod ATF3-like protein further supports its identity as an ATF3 homolog. In the spleen of Atlantic cod challenged with intraperitoneal (IP) injections of pIC, the time-course transcript expression of ATF3 was studied using quantitative reverse transcription-polymerase chain reaction (QPCR). At 6 h following the pIC injection, the relative expression level of ATF3 mRNA was significantly up-regulated in comparison to a pre-injected control (61.9-fold) and its time-matched saline-injected control (97.3-fold). At 24 h following the pIC injection, the mRNA expression level of cod ATF3 had subsided and was no longer significantly different from its pre-injected control, but significantly higher (1.88-fold) than its time-matched saline-injected control. Collectively, these

  19. Specialized psychological and pharmacological treatments for obsessive-compulsive disorder throughout the lifespan: a special series by the Accreditation Task Force (ATF) of The Canadian Institute for Obsessive Compulsive Disorders (CIOCD, www.ciocd.ca).

    Science.gov (United States)

    Sookman, Debbie; Fineberg, Naomi A

    2015-05-30

    The World Health Organization ranks obsessive compulsive disorder (OCD) among the leading causes of worldwide medical disability. Affecting approximately 3% of the population, OCD, with its damaging effect on psychosocial function, is among the most severe and impairing of mental disorders. In Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5), OCD and related disorders form a separate classification, consistent with convergent research that indicates OCD is distinct from anxiety disorders in psychopathology and treatment requirements. Although evidence-based treatments have been developed for OCD, these are not accessible to many sufferers. Timely evidence-based treatment is recommended to avoid unnecessary progression to chronicity, disability, and intransigence of symptoms. Improvement in existing training models is needed to disseminate advanced specialty clinical skills to optimize illness recovery. This special series by The Canadian Institute for Obsessive Compulsive Disorders (CIOCD) Accreditation Task Force (ATF) critically reviews evidence-based psychological and pharmacological treatments for OCD throughout the lifespan. The ATF mandate is to establish specialty OCD certification/accreditation standards and competencies. This pioneering initiative aims to achieve transformational change in accessibility to evidence-based clinical care so urgently needed for young people and adults suffering from OCD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Nondiffusive suprathermal ion transport in simple magnetized toroidal plasmas

    CERN Document Server

    Gustafson, K; Furno, I; Fasoli, A

    2011-01-01

    We investigate suprathermal ion dynamics in simple magnetized toroidal plasmas in the pres- ence of electrostatic turbulence driven by the ideal interchange instability. Turbulent fields from fluid simulations are used in the non-relativistic equation of ion motion to compute suprathermal tracer ion trajectories. Suprathermal ion dispersion starts with a brief ballistic phase, during which particles do not interact with the plasma, followed by a turbulence interaction phase. In this one simple system, we observe the entire spectrum of suprathermal ion dynamics, from subdiffusion to superdiffusion, depending on beam energy and turbulence amplitude. We estimate the duration of the ballistic phase and identify basic mechanisms during the interaction phase that determine the character of suprathermal ion dispersion upon the beam energy and turbulence fluctuation amplitude.

  1. MHD Stability of Free Boundary Toroidal Z Pinch

    Science.gov (United States)

    Sugisaki, Kiwamu

    1990-06-01

    The Magnetohydrodynamic (MHD) stability of a free boundary toroidal Z pinch plasma is investigated. Equilibrium field profiles are chosen so that μ is nearly uniform in the central region, μ and dμ/dr vanish on the boundary and Suydam’s criterion is satisfied throughout the plasma. The stability of the equilibrium is examined for the ratio b of the conducting wall radius to the plasma radius and plasma pressure. The stability of non-resonant ideal modes is determined mainly from the safty factor on the axis. Non-resonant modes are dominant for low plasma pressure, whereas resonant modes are dominant for high plasma pressure. Tearing modes are stable only for b below 1.04. The width of the magnetic islands produced from the tearing modes is evaluated. As b increases, overlap of the magnetic islands occurs over a wide area in the plasma.

  2. Manufacturing aspects of the ATLAS barrel toroid double pancakes

    CERN Document Server

    Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R

    2002-01-01

    In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...

  3. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  4. Stress Distribution on the Fe Based Amorphous Toroidal Transducer Core

    Directory of Open Access Journals (Sweden)

    Mustafa Göktepe

    2014-01-01

    Full Text Available The basic principles of sensors are the transmission of energy from one system to another. In general, an electrical signal is produced by the change of a physical property induced by the applied change of a second parameter. In the case of magnetic transducers either the property or the parameter would have a magnetic context. For example, in magnetoelastic toroidal transducers, the induced changes of a physical property, that is, the variation of permeability caused by the applied external force are used to produce a variation in output signal. The linearity, magnitude, sensitivity, and repeatability of the relationship between the output signal of the transducer and the physical property define the quality of the transducer.

  5. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  6. Recent results of studies of acceleration of compact toroids

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.

    1984-03-02

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10/sup 11/ gravities.

  7. Excitation of low frequency Alfven eigenmodes in toroidal plasmas

    Science.gov (United States)

    Liu, Yaqi; Lin, Zhihong; Zhang, Huasen; Zhang, Wenlu

    2017-11-01

    Global gyrokinetic simulations find that realistic density gradients of energetic particles can simultaneously excite low frequency Alfven eigenmodes in toroidal geometry, beta-induced Alfven-acoustic eigenmode (BAAE) and beta-induced Alfven eigenmode (BAE), with similar radial mode widths and comparable linear growth rates even though damping rate of BAAE is much larger than BAE in the absence of energetic particles. This surprising result is attributed to non-perturbative effects of energetic particles that modify ideal BAAE mode polarizations and nonlocal geometry effects that invalidate radially local dispersion relation. Dominant mode changes from BAAE in a larger tokamak to BAE in a smaller tokamak due to the dependence of wave-particle resonance condition on the tokamak size.

  8. Toroidal deuteron accelerator for Mo-98 neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L., E-mail: wagner.leite@ifnmg.edu.br, E-mail: tprcampos@pq.cnpq.br [Instituto Federal do Norte de Minas Gerais (IFN-MG), Montes Claros, MG (Brazil); Campos, Tarcisio P.R. Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The radionuclide Tc-{sup 99m} is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10{sup 13} n.s{sup -1}. In a arrangement of 30 column samples, TTS provides 230 mCi s{sup -1} Mo{sup 99} in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  9. Impurity effect on geodesic acoustic mode in toroidally rotating tokamak plasmas

    Science.gov (United States)

    Xie, Baoyi; Guo, Wenfeng; Xiang, Nong

    2018-02-01

    The geodesic acoustic modes (GAMs) are analytically investigated in toroidally rotating tokamak plasmas with impurity ions such as carbon and tungsten by using the gyrokinetic equation. The non-trace and trace impurity effect on the GAM with or without toroidal rotation are studied and compared, respectively. The results show that in the non-rotation case, the non-trace impurity decreases (increases) the frequency (damping rate) of the GAM mainly due to the polarization current, while the trace impurity has little effect on the GAM. When toroidal rotation is considered, the non-trace impurity still significantly decreases (increases) the frequency (damping rate) of the GAM. Furthermore, as toroidal rotation increases, the frequency (damping rate) of the GAM with the non-trace impurity increases (decreases) more slowly than that without the non-trace impurity, especially when the non-trace impurity concentration is relatively large. Nevertheless, the trace impurity has little effect on the GAM in the weak rotation regime, while it greatly increases (decreases) the frequency (damping rate) of the GAM when toroidal rotation is sufficiently large. These results are mainly due to the additional drifts induced by toroidal rotation. In addition, it is found that the isotope effect has significant influence on the GAM and it also affects both the non-trace and trace impurity as well as toroidal rotation effect on the GAM.

  10. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    Directory of Open Access Journals (Sweden)

    Staszczak Andrzej

    2016-01-01

    Full Text Available We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ħ and 140ħ, which follow the same (multi-particle–(multi-hole systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC experiments.

  11. EMC3-EIRENE modeling of toroidally-localized divertor gas injection experiments on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Lore, J.D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Reinke, M.L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); LaBombard, B. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Churchill, R.M. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)

    2015-08-15

    Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ∼50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modeling, with the simulation yielding a toroidal asymmetry in the heat flow to the outer strike point. Toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.

  12. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats

    OpenAIRE

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-01-01

    Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammato...

  13. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  14. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.

    Science.gov (United States)

    Waterfield, Michael; Khan, Imran S; Cortez, Jessica T; Fan, Una; Metzger, Todd; Greer, Alexandra; Fasano, Kayla; Martinez-Llordella, Marc; Pollack, Joshua L; Erle, David J; Su, Maureen; Anderson, Mark S

    2014-03-01

    The maintenance of immunological tolerance requires the deletion of self-reactive T cells in the thymus. The expression of genes encoding tissue-specific antigens (TSAs) by thymic epithelial cells is critical for this process and depends on activity of the transcriptional regulator Aire; however, the molecular mechanisms Aire uses to target loci encoding TSAs are unknown. Here we identified two Aire-interacting proteins known to be involved in gene repression, ATF7ip and MBD1, that were required for Aire's targeting of loci encoding TSAs. Moreover, Mbd1(-/-) mice developed pathological autoimmunity and had a defect in Aire-dependent thymic expression of genes encoding TSAs, which underscores the importance of Aire's interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance.

  15. A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector

    Science.gov (United States)

    Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team

    2016-10-01

    Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.

  16. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.

    Science.gov (United States)

    Ding, Bao-Jian; Lager, Ida; Bansal, Sunil; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2016-04-01

    Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with Ea DAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to Ea DAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast.

  17. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    Energy Technology Data Exchange (ETDEWEB)

    Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  18. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    Science.gov (United States)

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  19. Internal ribosome entry site-mediated translational regulation of ATF4 splice variant in mammalian unfolded protein response.

    Science.gov (United States)

    Chan, Ching-Ping; Kok, Kin-Hang; Tang, Hei-Man Vincent; Wong, Chi-Ming; Jin, Dong-Yan

    2013-10-01

    Activating transcription factor 4 (ATF4) is a master regulator of genes involved in unfolded protein response (UPR) and its translation is regulated through reinitiation at upstream open reading frames. Here, we demonstrate internal ribosome entry site (IRES)-mediated translation of an alternatively spliced variant of human ATF4. This variant that contains four upstream open reading frames in the 5' leader region was expressed in leukocytes and other tissues. mRNA and protein expression of this variant was activated in the UPR. Its translation was neither inhibited by steric hindrance nor affected by eIF4G1 inactivation, indicating a cap-independent and IRES-dependent mechanism not mediated by ribosome scanning-reinitiation. The IRES activity mapped to a highly structured region that partially overlaps with the third and fourth open reading frames was unlikely attributed to cryptic promoter or splicing, but was activated by PERK-induced eIF2α phosphorylation. Taken together, our findings reveal a new mechanism for translational regulation of ATF4 in mammalian UPR. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis.

    Science.gov (United States)

    Chang, Yi Seok; Jalgaonkar, Swati P; Middleton, Justin D; Hai, Tsonwin

    2017-08-22

    Chemotherapy is a double-edged sword. It is anticancer because of its cytotoxicity. Paradoxically, by increasing chemoresistance and cancer metastasis, it is also procancer. However, the underlying mechanisms for chemotherapy-induced procancer activities are not well understood. Here we describe the ability of paclitaxel (PTX), a frontline chemotherapeutic agent, to exacerbate metastasis in mouse models of breast cancer. We demonstrate that, despite the apparent benefit of reducing tumor size, PTX increased the circulating tumor cells in the blood and enhanced the metastatic burden at the lung. At the primary tumor, PTX increased the abundance of the tumor microenvironment of metastasis, a landmark microanatomical structure at the microvasculature where cancer cells enter the blood stream. At the metastatic lung, PTX improved the tissue microenvironment (the "soil") for cancer cells (the "seeds") to thrive; these changes include increased inflammatory monocytes and reduced cytotoxicity. Importantly, these changes in the primary tumor and the metastatic lung were all dependent on Atf3, a stress-inducible gene, in the noncancer host cells. Together, our data provide mechanistic insights into the procancer effect of chemotherapy, explaining its paradox in the context of the seed-and-soil theory. Analyses of public datasets suggest that our data may have relevance to human cancers. Thus, ATF3 in the host cells links a chemotherapeutic agent-a stressor-to immune modulation and cancer metastasis. Dampening the effect of ATF3 may improve the efficacy of chemotherapy.

  1. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei; Masuzawa, Mika; /KEK, Tsukuba; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  2. Activation of the EIF2α/ATF4 and ATF6 Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron Intake.

    Science.gov (United States)

    Kobylewski, Sarah E; Henderson, Kimberly A; Yamada, Kristin E; Eckhert, Curtis D

    2017-04-01

    Fruits, nuts, legumes, and vegetables are rich sources of boron (B), an essential plant nutrient with chemopreventive properties. Blood boric acid (BA) levels reflect recent B intake, and men at the US mean intake have a reported non-fasting level of 10 μM. Treatment of DU-145 prostate cancer cells with physiological concentrations of BA inhibits cell proliferation without causing apoptosis and activates eukaryotic initiation factor 2 (eIF2α). EIF2α induces cell differentiation and protects cells by redirecting gene expression to manage endoplasmic reticulum stress. Our objective was to determine the temporal expression of endoplasmic reticulum (ER) stress-activated genes in DU-145 prostate cells treated with 10 μM BA. Immunoblots showed post-treatment increases in eIF2α protein at 30 min and ATF4 and ATF6 proteins at 1 h and 30 min, respectively. The increase in ATF4 was accompanied by an increase in the expression of its downstream genes growth arrest and DNA damage-induced protein 34 (GADD34) and homocysteine-induced ER protein (Herp), but a decrease in GADD153/CCAAT/enhancer-binding protein homologous protein (CHOP), a pro-apoptotic gene. The increase in ATF6 was accompanied by an increase in expression of its downstream genes GRP78/BiP, calreticulin, Grp94, and EDEM. BA did not activate IRE1 or induce cleavage of XBP1 mRNA, a target of IRE1. Low boron status has been associated with increased cancer risk, low bone mineralization, and retinal degeneration. ATF4 and BiP/GRP78 function in osteogenesis and bone remodeling, calreticulin is required for tumor suppressor p53 function and mineralization of teeth, and BiP/GRP78 and EDEM prevent the aggregation of misfolded opsins which leads to retinal degeneration. The identification of BA-activated genes that regulate its phenotypic effects provides a molecular underpinning for boron nutrition and biology.

  3. Toroidal actions on level 1 modules of $U_q(\\overline{sl_n})$

    CERN Document Server

    Saitô, Y; Uglov, D B

    1997-01-01

    We propose a proof of the recent observation due to Varagnolo and Vasserot that the q-deformed Fock spaces are modules of the quantum toroidal algebra U(sl_n,tor) (n > 2) with the level (0,1).The quantum toroidal action on the Fock space depends on a certain parameter. We find that with a specific choice of this parameter the action on the Fock spaces gives rise to the toroidal action on irreducible level-1 highest weight modules of the affine quantum algebra U_q(\\hat{sl_n}). Similarly, by a specific choice of the parameter, the level (1,0) vertex representation of the quantum toroidal algebra gives rise to a U(sl_n,tor)-module structure on irreducible level-1 highest weight U_q(\\hat{sl_n})-modules.

  4. Effects of compact torus injection on toroidal flow in the STOR-M tokamak

    Science.gov (United States)

    Onchi, T.; Liu, Y.; Dreval, M.; McColl, D.; Elgriw, S.; Liu, D.; Asai, T.; Xiao, C.; Hirose, A.

    2013-03-01

    In compact torus injection (CTI) experiments on the STOR-M tokamak, an ion Doppler spectrometer is installed to observe the effects of CTI on toroidal plasma flows. The intrinsic toroidal flow in ohmic discharges without CTI is sheared with counter plasma current flow in the core region and co-current direction at the periphery. With tangential CTI along the co-current direction, the flow velocity in the core region decreases by more than 5 km s-1, while in the periphery the flow velocity increases by 3-4 km s-1. These data indicate that the observed flow change is due to the injection of toroidal momentum. Density increase and high soft x-ray emission after CTI are observed during the changes in the toroidal flow.

  5. Installation of the eighth and final coil of the ATLAS barrel toroid magnet

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    In the underground cavern where the ATLAS detector is being constructed, the last of eight 25-m long toroid magnet coils has been put into place, to complete a huge magnetic barrel that forms a major part of the detector.

  6. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  7. Black holes with toroidal horizons in (d+1)-dimensional space-time

    Science.gov (United States)

    Sharifian, Elham; Mirza, Behrouz; Mirzaiyan, Zahra

    2017-12-01

    We investigate black holes with toroidal horizons in (d+1)-dimensional space-time. Using the solution phase space method, we calculated conserved charges for these black holes before exploring some features of this metric including its entropy and thermodynamic quantities. Another aspect of the study involves obtaining a general exact static interior solution for uncharged black holes with toroidal horizons in (d+1)-dimensional space-time. Finally, an interior solution for charged black holes is obtained.

  8. Calculation about a modification to the toroidal magnetic field of the Tokamak Novillo. Part I; Calculo sobre una modificacion al campo magnetico toroidal del Tokamak Novillo. Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Chavez A, E.; Melendez L, L.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1991-07-15

    The charged particles that constitute the plasma in the tokamaks are located in magnetic fields that determine its behavior. The poloidal magnetic field of the plasma current and the toroidal magnetic field of the tokamak possess relatively big gradients, which produce drifts on these particles. These drifts are largely the cause of the continuous lost of particles and of energy of the confinement region. In this work the results of numerical calculations of a modification to the 'traditional' toroidal magnetic field that one waits it diminishes the drifts by gradient and improve the confinement properties of the tokamaks. (Author)

  9. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kook Hwan [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Jeong, Yeon Taek [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Kim, Seong Hun [Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Jung, Hye Seung; Park, Kyong Soo [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong Chongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Hae-Youn [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Lee, Myung-Shik, E-mail: mslee0923@skku.edu [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of)

    2013-10-11

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found that metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin.

  10. First End Cap Toroid knocking on the door of SX1

    CERN Multimedia

    Herman Ten Kate

    On Tuesday May 29, the first Toroid End Cap for the A-side was transported from its test station next to B180 to the front of the ATLAS surface building SX1. The 240-ton and 12-m high toroid end-cap moved on a special trailer at walking speed, got over various slopes and survived the difficult turn left in front of the entrance at gate B. The toroid had to wait for almost two months to commence its journey to its destination as the cryogenic test down to 80K was already successfully completed by early April. In the next days, the toroid will slide into the SX1 building, turn around its axes by 90 degrees and then gently slide over the first shaft and land on top of the A-side shaft on Wednesday. There, it will descend by 5 m into the shaft using special lifting tooling before it can be connected to the 2x140 tons overhead cranes which will let the toroid go further down to the cavern. End Cap Toroid A on the trailer on its way to the cavern at Point 1. Crossing the main road near entrance A while t...

  11. Observing and modeling the poloidal and toroidal fields of the solar dynamo

    Science.gov (United States)

    Cameron, R. H.; Duvall, T. L.; Schüssler, M.; Schunker, H.

    2018-01-01

    Context. The solar dynamo consists of a process that converts poloidal magnetic field to toroidal magnetic field followed by a process that creates new poloidal field from the toroidal field. Aims: Our aim is to observe the poloidal and toroidal fields relevant to the global solar dynamo and to see if their evolution is captured by a Babcock-Leighton dynamo. Methods: We used synoptic maps of the surface radial field from the KPNSO/VT and SOLIS observatories, to construct the poloidal field as a function of time and latitude; we also used full disk images from Wilcox Solar Observatory and SOHO/MDI to infer the longitudinally averaged surface azimuthal field. We show that the latter is consistent with an estimate of the longitudinally averaged surface azimuthal field due to flux emergence and therefore is closely related to the subsurface toroidal field. Results: We present maps of the poloidal and toroidal magnetic fields of the global solar dynamo. The longitude-averaged azimuthal field observed at the surface results from flux emergence. At high latitudes this component follows the radial component of the polar fields with a short time lag of between 1-3 years. The lag increases at lower latitudes. The observed evolution of the poloidal and toroidal magnetic fields is described by the (updated) Babcock-Leighton dynamo model.

  12. Variation of Lower Hybrid Parallel Refractive Index due to Non-Toroidal Effects.

    Science.gov (United States)

    Smirnov, Alexander; Harvey, R. W.

    1996-11-01

    Takahashi(H.Takahashi, D.W.Ignat, and S.Bernabei, EC-9 Conf., Ed. John Lohr, Borrego Springs, 23-26 Jan., 1996.) has examined LH rays in "straight" tokamak geometry with axial density variations, and finds that axial wavenumber varies only to an extent comparable to the density variation, and thus n_allel variations are not much affected for small density fluctuations. We study ray propagation in fully toroidal geometry taking into consideration two sources of the toroidal inhomogeniety: ripple variations of the toroidal magnetic field, and (2) the toroidal and poloidal plasma density fluctuations. The ray-tracing code GENRAY(A.P.Smirnov, R.W.Harvey, BAPS 40, 1837 (1995).) is used, applicable for non-axisymmetric plasma with arbitrary form of the flux surfaces. Additional toroidal effects, mixed with the toroidal inhomogeneity are analyzed as a source of the n_allel variation expected for filling the "spectral gap". Applications are made to several LH experiments.

  13. Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance

    Science.gov (United States)

    Talebi, Nahid; Guo, Surong; van Aken, Peter A.

    2018-01-01

    Dipole selection rules underpin much of our understanding in characterization of matter and its interaction with external radiation. However, there are several examples where these selection rules simply break down, for which a more sophisticated knowledge of matter becomes necessary. An example, which is increasingly becoming more fascinating, is macroscopic toroidization (density of toroidal dipoles), which is a direct consequence of retardation. In fact, dissimilar to the classical family of electric and magnetic multipoles, which are outcomes of the Taylor expansion of the electromagnetic potentials and sources, toroidal dipoles are obtained by the decomposition of the moment tensors. This review aims to discuss the fundamental and practical aspects of the toroidal multipolar moments in electrodynamics, from its emergence in the expansion set and the electromagnetic field associated with it, the unique characteristics of their interaction with external radiations and other moments, to the recent attempts to realize pronounced toroidal resonances in smart configurations of meta-molecules. Toroidal moments not only exhibit unique features in theory but also have promising technologically relevant applications, such as data storage, electromagnetic-induced transparency, unique magnetic responses and dichroism.

  14. First qualification of ITER Toroidal Field Coil conductor jacketing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Kazuya, E-mail: hamada.kazuya@jaea.go.jp [Japan Atomic Energy Agency (Japan); Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; Okuno, Kiyoshi [Japan Atomic Energy Agency (Japan); Matsuda, Hidemitsu; Yano, Yoshitaka [Nippon Steel Engineering Co. Ltd (Japan); Devred, Arnauld; Bessette, Denis [ITER Organization (France)

    2011-10-15

    The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field Coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA started to produce strand, cables and jacket sections and to construct a conductor manufacturing (jacketing) facility in 2008. Following preparation in December 2009 of the jacketing facility, the dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling, JAEA manufactured a 760 m long Cu dummy conductor for process qualification. Into the 760 m long Cu dummy conductor jacketing, JAEA successfully inserted the cable with a maximum force of 32 kN. The outer diameter of the cross section of the spooled conductor was 43.7 {+-} 0.15 mm, which complies with the ITER target requirement of 43.7 {+-} 0.3 mm. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.

  15. Phase Relationships of Solar Hemispheric Toroidal and Poloidal Cycles

    Science.gov (United States)

    Muraközy, J.

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12-23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1-4 and 7-10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12-23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  16. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  17. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  18. MHD simulation study of compact toroid injection into magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Kishimoto, Yasuaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hayashi, Takaya [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-06-01

    To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)

  19. Control of Compact-Toroid Characteristics by External Copper Shell

    Science.gov (United States)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  20. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  1. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    Energy Technology Data Exchange (ETDEWEB)

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electric and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.

  2. Interaction of Accelerated Compact Toroid with External Magnetic Fields

    Science.gov (United States)

    Hwang, D. Q.; Howard, S. J.; Horton, R. D.; Brockington, S. E.; Evans, R. W.; Klauser, R.; Buchenauer, D.; Clift, W. M.

    2007-11-01

    The potential use of accelerated compact toroids (SCT) to fuel magnetically confined fusion devices requires a clear understanding of the CT interaction with external magnetic fields. Previous experiment using simple probe diagnostics has illuminate the interaction physics [1]. With an array of new diagnostics, we will perform more detailed measurements of the interaction. With the new fast 2-D optical camera, the interaction in the target chamber can be systematically studied. The newly developed deflectometor can differentiate the effects on the main CT plasma versus the trailing plasma following the main CT. It is expected the external magnetic field will affect the magnetized CT differently than the un-magnetized trailing plasma. In addition the effect of the external magnetic field on the impurity ion in the CT will be studies using particle collection probes. In addition the oriental of the external field may tilt stabilize the CT after its detachment from the acceleration electrodes. *This work supported by U.S. DOE Grant DE-FG02-03ER54732. [1] D.Q. Hwang, H.S. McLean, K.L. Baker, R.W. Evans, R.D. Horton, S.D. Terry, S. Howard, G.L. Schmidt, Nuclear Fusion, Vol. 40, No. 5, pg 897 (2000)

  3. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, P. J.; Ennis, D. A.; Hartwell, G. J.; Kring, J. D.; Maurer, D. A.

    2017-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two-color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YAG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and routed via a fiber bundle through a Holospec f/1.8 spectrograph. The red-shifted scattered light from 533-563 nm will be collected by an array of Hamamatsu H11706-40 PMTs. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Stray light and calibration data for a single wavelength channel will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  4. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  5. The cardiac maladaptive ATF3-dependent cross-talk between cardiomyocytes and macrophages is mediated by the IFNγ-CXCL10-CXCR3 axis.

    Science.gov (United States)

    Koren, L; Barash, U; Zohar, Y; Karin, N; Aronheim, A

    2017-02-01

    Pressure overload induces adaptive and maladaptive cardiac remodeling processes in the heart. Part of the maladaptive process is the cross-talk between cardiomyocytes and macrophages which is dependent on the function of the Activating Transcription Factor 3, ATF3. Yet, the molecular mechanism involved in cardiomyocytes-macrophages communication leading to macrophages recruitment to the heart and cardiac maladaptive remodeling is currently unknown. Isolated peritoneal macrophages from either wild type or ATF3-KO mice were cultured in serum free medium to collect conditioned medium (CM). CM was used to probe an antibody cytokine/chemokine array. The interferon γ induced protein 10kDa, CXCL10, was found to be enriched in wild type macrophages CM. Wild type cardiomyocytes treated with CXCL10 in vitro, resulted in significant increase in cell volume as compared to ATF3-KO cardiomyocytes. In vivo, pressure overload was induced by phenylephrine (PE) infusion using micro-osmotic pumps. Consistently, CXCL11 (CXCL10 competitive agonist) and CXCL10 receptor antagonist (AMG487) attenuated PE-dependent maladaptive cardiac remodeling. Significantly, we show that the expression of the CXCL10 receptor, CXCR3, is suppressed in cardiomyocytes and macrophages derived from ATF3-KO mice. CXCR3 is positively regulated by ATF3 through an ATF3 transcription response element found in its proximal promoter. Finally, mice lacking CXCR3 display a significant reduction of cardiac remodeling processes following PE infusion. Chronic PE infusion results in a unique cardiomyocytes-macrophages cross-talk that is mediated by IFNγ. Subsequently, macrophages that are recruited to the heart secrete CXCL10 resulting in maladaptive cardiac remodeling mediated by the CXCR3 receptor. ATF3-KO mice escape from PE-dependent maladaptive cardiac remodeling by suppressing the IFNγ-CXCL10-CXCR3 axis at multiple levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Inductive Eigenmodes of a resistive toroidal surface in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione

    1999-07-01

    In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente

  7. Edge and divertor physics with reversed toroidal field in JET

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, R.A. [Ecole Polytechnique Federale, Association Euratom-Confederation Suisse, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Andrew, P.; Corrigan, G.; Erents, S.K.; Fundamenski, W.; Lomas, P.J.; Matthews, G.F.; Stamp, M.F. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX (United Kingdom); Bonnin, X.; Corre, Y.; Tsitrone, E. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chankin, A.V.; Coster, D.; Eich, T. [Max-Planck-Institut fuer Plasmaphysik, Euratom-Association, Garching (Germany); Duran, I. [Institute of Plasma Physics, Association Euratom-IPP.CR, Prague (Czech Republic); Huber, A.; Lehnen, M.; Rapp, J. [FZJ Julich GmbH/Euratom Institut fur Plasmaphysik, TEC, Julich D (Germany); Jachmich, S. [Association Euratom-Belgian State, LPP, ERM/KMS (Belgium); Kirnev, G. [Moscow Nuclear Fusion Institute, RRC Kurchatov Institute, Moscow (Russian Federation); Loarte, A. [Max-Planck-Institut fur Plasmaphysik, EFDA-CSU, Garching (Germany); Silva, C. [Association Euratom-IST, Lisbon (Portugal); Strachan, J.D. [Princeton Univ., NJ (United States). Plasma Physics Lab

    2004-07-01

    Results from the most recent reversed field campaign at JET in combination with numerical modelling are providing some valuable insights into the pattern of scrape-off layer (SOL) flows and divertor energy and particle asymmetries. This has been made possible by comparing carefully matched discharges in both field directions. Earlier measurements of strong parallel flow at the top of the machine from outer to inner divertor in normal field operation have been confirmed and improved upon. New data in reversed field show an almost stagnant flow throughout most of the SOL except near the separatrix. The forward field flow is almost an order of magnitude larger than be accounted for by EDGE2D code simulations including all classical drifts. Likewise, the model does not reproduce the flow offset (M{sub ||} {approx} 0.2) from outer to inner target seen experimentally for both field directions. A number of avenues are being pursued to increase the predicted EDGE2D forward field flow - the inclusion of anomalous convective pinch terms, ballooning like diffusive particle transport and the perturbing effect of the probe. Divertor energy asymmetries are observed to be strongly dependent on the sign of toroidal field but not its magnitude. This finding is a direct consequence of radial energy transport which is independent of field direction and which scales inversely with B{sub {phi}}. It is strong evidence for drift effects being the main driver for the observed change in in/out asymmetry with field reversal. Divertor tile temperature measurements using infra-red thermography have revealed the build-up of a thermally resistant surface layer on the outer target during reversed field operation, implying that the outer divertor switches from a region of net erosion (the case in forward field) to net redeposition. This new observation is not inconsistent with the rearrangement of the poloidal distribution of parallel SOL flow seen when the field is reversed in EDGE2D simulations

  8. Silicon-Embedding Approaches to 3-D Toroidal Inductor Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Yu, XH; Kim, M; Herrault, F; Ji, CH; Kim, J; Allen, MG

    2013-06-01

    This paper presents complementary-metal-oxide-semiconductor-compatible silicon-embedding techniques for on-chip integration of microelectromechanical-system devices with 3-D complex structures. By taking advantage of the "dead volume" within the bulk of the silicon wafer, functional devices with large profile can be embedded into the substrate without consuming valuable die area on the wafer surface or increasing the packaging complexity. Furthermore, through-wafer interconnects can be implemented to connect the device to the circuitry on the wafer surface. The key challenge of embedding structures within the wafer volume is processing inside deep trenches. To achieve this goal in an area-efficient manner, straight-sidewall trenches are desired, adding additional difficulty to the embedding process. Two approaches to achieve this goal are presented in this paper, i.e., a lithography-based process and a shadow-mask-based process. The lithography-based process utilizes a spray-coating technique and proximity lithography in combination with thick epoxy processing and laminated dry-film lithography. The shadow-mask-based process employs a specially designed 3-D silicon shadow mask to enable simultaneous metal patterning on both the vertical sidewall and the bottom surface of the trench during deposition, eliminating multiple lithography steps and reducing the process time. Both techniques have been demonstrated through the embedding of the topologically complex 3-D toroidal inductors into the silicon substrate for power supply on-chip (PwrSoC) applications. Embedded 3-D inductors that possess 25 turns and a diameter of 6 mm in a silicon trench of 300-mu m depth achieve overall inductances of 45-60 nH, dc resistances of 290-400 m Omega, and quality factors of 16-17.5 at 40-70 MHz.

  9. Flow balancing orifice for ITER toroidal field coil

    Science.gov (United States)

    Litvinovich, A. V.; Y Rodin, I.; Kovalchuk, O. A.; Safonov, A. V.; Stepanov, D. B.; Guryeva, T. M.

    2017-12-01

    Flow balancing orifices (FBOs) are used in in International thermonuclear experimental reactor (ITER) Toroidal Field coil to uniform flow rate of cooling gas in the side double pancakes which have a different conductor length: 99 m and 305 m, respectively. FBOs consist of straight parts, elbows produced from a 316L stainless steel tube 21.34 x 2.11 mm and orifices made from a 316L stainless steel rod. Each of right and left FBOs contains 6 orifices, straight FBOs contain 4 and 6 orifices. Before manufacturing of qualification samples D.V. Efremov Institute of Electrophysical Apparatus (JSC NIIEFA) proposed to ITER a new approach to provide the seamless connection between a tube and a plate therefore the most critical weld between the orifice with 1 mm thickness and the tube removed from the FBOs final design. The proposed orifice diameter is three times less than the minimum requirement of the ISO 5167, therefore it was tasked to define accuracy of calculation flow characteristics at room temperature and compare with the experimental data. In 2015 the qualification samples of flow balancing orifices were produced and tested. The results of experimental data showed that the deviation of calculated data is less than 7%. Based on this result and other tests ITER approved the design of FBOs, which made it possible to start the serial production. In 2016 JSC NIIEFA delivered 50 FBOs to ITER, i.e. 24 left side, 24 right side and 2 straight FBOs. In order to define the quality of FBOs the test facility in JSC NIIEFA was prepared. The helium tightness test at 10-9 m3·Pa/s the pressure up to 3 MPa, flow rate measuring at the various pressure drops, the non-destructive tests of orifices and weld seams (ISO 5817, class B) were conducted. Other tests such as check dimensions and thermo cycling 300 - 80 - 300 K also were carried out for each FBO.

  10. Ecl1 is activated by the transcription factor Atf1 in response to H2O2 stress in Schizosaccharomyces pombe.

    Science.gov (United States)

    Shimasaki, Takafumi; Ohtsuka, Hokuto; Naito, Chikako; Murakami, Hiroshi; Aiba, Hirofumi

    2014-08-01

    The Ecl1 family genes extend the lifespan of fission yeast when overexpressed. They also cause resistance against H(2)O(2) stress. In this study, we found that the bZip transcription factor Atf1 is a direct activator of the induction of extender of chronological lifespan (ecl1 (+)) by H(2)O(2) stress. Based on ChIP analysis, we identified that Atf1 binds to the upstream DNA region of ecl1(+). Previously, we reported that overexpression of ecl1(+) increased the expression of the catalase-encoding ctt1(+). This ecl1(+)-dependent increase of ctt1(+) expression occurred in ∆atf1 mutant. On the other hand, the activation of ctt1 (+) caused by the ∆pyp1 mutation, which enhances Sty1-Atf1 activity, could occur in ∆ecl1 mutant. Based on these results, we propose that Atf1 can regulate ctt1(+) in both an Ecl1-dependent and an Ecl1-independent manner.

  11. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells.

    Science.gov (United States)

    Henderson, Kimberly A; Kobylewski, Sarah E; Yamada, Kristin E; Eckhert, Curtis D

    2015-02-01

    Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca(+2)) channel, and lowers endoplasmic reticulum (ER) [Ca(2+)]. Low ER [Ca(2+)] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron.

  12. Motion and equilibrium of a spheromak in a toroidal flux conserver

    Science.gov (United States)

    Brown, M. R.; Cutrer, D. M.; Bellan, P. M.

    1991-05-01

    A number of experiments have been performed on spheromaks injected into the empty vacuum vessel of the Caltech ENCORE tokamak (i.e., without tokamak plasma) [Phys. Rev. Lett. 64, 2144 (1990); Phys. Fluids B 2, 1306 (1990)]. Magnetic probe arrays (in a number of configurations) have been used to make single shot, unaveraged, in situ measurements of the spheromak equilibrium. These measurements are important because (i) they reveal for the first time the equilibrium structure of spheromaks in a toroidal geometry, (ii) they provide a reliable estimate of magnetic helicity and energy of spheromak plasmas used in injection experiments [Phys. Rev. Lett. 64, 2144 (1990)], and (iii) they constitute the first measurements of spheromak motion across and interaction with static magnetic fields (which are useful in corroborating recent theories). Probe measurements in the tokamak dc toroidal field show for the first time that the spheromak exhibits a ``double tilt.'' The spheromak first tilts while in the cylindrical entrance region, emerging into the tokamak vessel antialigned to the dc toroidal field, then expands into the tokamak vacuum vessel, and finally tilts again to form an oblate (nonaxisymmetric, m=1) configuration. In addition, the spheromak drifts vertically in the direction given by Jcenter×Btok, where Jcenter is the unbalanced poloidal current that threads the center of the spheromak torus. Probe arrays at different toroidal locations show that the spheromak shifts toroidally (horizontally left or right) in the direction opposite that of the static toroidal field. In the absence of toroidal flux, the m=1 object develops a helical pitch, the sense of the pitch depending on the sign of the spheromak helicity. The spheromak equilibrium in the toroidal vessel is well fit by a pressureless infinite cylindrical model; however, there is evidence of deviation from m=1 symmetry because of toroidal effects, nonuniform J/B profile, and finite β. Experiments performed in a

  13. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation.

    Science.gov (United States)

    Ren, Ping; Yue, Ming; Xiao, Daibiao; Xiu, Ruijuan; Gan, Lei; Liu, Hudan; Qing, Guoliang

    2015-01-01

    Amplification of the MYCN gene in human neuroblastoma predicts poor prognosis and resistance to therapy. We previously showed that MYCN-amplified neuroblastoma cells constantly require large amounts of glutamine to support their unabated growth. However, the identity and regulation of the transporter(s) that capture glutamine in MYCN-amplified neuroblastoma cells and the clinical significance of the transporter(s) in neuroblastoma diagnosis remain largely unknown. Here, we performed a systemic glutamine influx analysis and identified that MYCN-amplified neuroblastoma cells predominantly rely on activation of ASCT2 (solute carrier family 1 member 5, SLC1A5) to maintain sufficient levels of glutamine essential for the TCA cycle anaplerosis. Consequently, ASCT2 depletion profoundly inhibited glutaminolysis, concomitant with a substantial decrease in cell proliferation and viability in vitro and inhibition of tumourigenesis in vivo. Mechanistically, we identified ATF4 as a novel regulator which coordinates with N-Myc to directly activate ASCT2 expression. Of note, ASCT2 expression, which correlates with that of N-Myc and ATF4, is markedly elevated in high-stage neuroblastoma tumour samples compared with low-stage ones. More importantly, high ASCT2 expression is significantly associated with poor prognosis and survival of neuroblastoma patients. In aggregate, these findings elucidate a novel mechanism depicting how cell autonomous insults (MYCN amplification) and microenvironmental stresses (ATF4 induction) in concert coordinate ASCT2 activation to promote aggressive neuroblastoma progression, and establish ASCT2 as a novel biomarker in patient prognosis and stratification. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Effects of magnetic islands on resonant field penetration and toroidal torques at slow plasma flow

    Science.gov (United States)

    Li, L.; Liu, Y. Q.; Wang, N.; Zhong, F. C.; Luan, Q.; Wang, Y.

    2017-12-01

    The presence of a chain of magnetic islands, produced by externally applied tri-dimensional fields at a rational surface, is numerically found to have significant effects on the resonant response, as well as on the associated toroidal torques, in a toroidal tokamak plasma with conventional aspect ratio, strong shaping, and in the regime of slow toroidal flow. With an ad hoc assumption of the local flattening of the equilibrium pressure profile by the islands, it is found that the primary effect is the increasing of the resonant response by islands, at slow flow, due to the reduction of the favourable average curvature effect. This also leads to the reduction of the toroidal torques, in particular that associated with the neoclassical toroidal viscosity. Partial or complete flattening of the local pressure profile, depending on the island size, results in partial or full recovering of the so called constant-ψ plasma response regime. Computational results are well fitted by analytic models for the two extreme cases: the case of complete flattening and the case of no flattening of the local pressure.

  15. Advanced Design of a Novel Stellarator Using the Free Boundary VMEC Magnetic Equilibrium Code. Final Technical Report for period March 1, 1999 - February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, S. F.

    2005-06-01

    This report describes the goals and accomplishments of a 3-year EPSCoR Laboratory Partnership award to design an advanced stellarator device for magnetic confinement of toroidal plasmas for fusion research.

  16. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue.

    Science.gov (United States)

    Pernhorst, Katharina; Herms, Stefan; Hoffmann, Per; Cichon, Sven; Schulz, Herbert; Sander, Thomas; Schoch, Susanne; Becker, Albert J; Grote, Alexander

    2013-10-01

    Data from animal models has nicely shown that inflammatory processes in the central nervous system (CNS) can modulate seizure frequency. However, a potential relationship between the modulation of seizure frequency and gene expression of key inflammatory factors in human epileptic tissue is still unresolved. Brain tissue from pharmacoresistant patients with mesial temporal lobe epilepsy (mTLE) provides a unique prerequisite for clinico-neuropathological correlations. Here, we have concentrated on gene expression of the human key inflammatory mediators, TLR4, ATF-3 and IL8, in correlation to seizure frequency and additional clinical parameters in human epileptic brain tissue of pharmacoresistant mTLE patients. Furthermore, we characterized the cell types expressing the respective proteins in epileptic hippocampi. Total RNAs were isolated from n=26 hippocampi of pharmacoresistant mTLE patients using AllPrep DNA/RNA Mini Kit. cRNA was used for hybridization on Human HT-12 v3 Expression BeadChips with Illumina Direct Hybridization Assay Kit and resulting gene expression data was normalized based on the Illumina BeadStudio software suite by means of quantile normalization with background subtraction. Corresponding human hippocampal sections for immunohistochemistry were probed with antibodies against TLR4, ATF-3, IL8 and glial fibrillary acidic protein (GFAP), neuronal nuclear protein (NeuN) and the microglial marker HLA-DR. We observed abundant TLR4 gene expression to relate to seizure frequency per month. For ATF-3, we found an inverse correlation of expression to seizure frequency. Lower expression of IL8 was significantly associated with high seizure frequency. Further, we detected TLR4 expression in neurons and GFAP-positive astrocytes of pharmacoresistant mTLE patients. Only neurons of human epileptic hippocampi express ATF-3. IL8 was expressed in microglia and reactive astrocytes. Our results suggest a differential correlation of key inflammatory factor

  17. Interplay of CREB and ATF2 in Ionizing Radiation-Induced Neuroendocrine Differentiation of Prostate Cancer Cells

    Science.gov (United States)

    2012-06-01

    regulatory networks in Saccharomyces cerevisiae . Science 298, 799–804 Second NES in N Terminus of ATF2 8632 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287...C4-2B or LN3) or VCaP cells were cultured in androgen-free medium in the presence or absence of the Hh inhibitor, cyclopamine. Smoothened (Smo) siRNA...To determine how these clones respond to androgen depletion treatment, we treated cells in phenol-free medium supplemented with 10% CD-FBS for 3

  18. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    Science.gov (United States)

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of Nε-(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum Nε-(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between Nε-(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the Nε-(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017 American

  19. Continuous cooling from 10 to 4 K using a toroidal ADR

    Energy Technology Data Exchange (ETDEWEB)

    DiPirro, Michael; Canavan, Edgar; Shirron, Peter; Tuttle, James [NASA/Goddard Space Flight Center, Code 552, Greenbelt, MD (United States)

    2004-08-01

    Future large infrared space telescopes will require cooling to 4 K to achieve background limited performance for submillimeter wavelengths. These observatories will require lifetimes of many years and will have relatively large cooling requirements making stored helium dewars impractical. We have designed and are building an adiabatic demagnetization refrigerator (ADR) for use in cooling relatively large loads (10-100 mW) at 4 K and rejecting that heat to a cryocooler operating at 10 K. The ADR magnet consists of eight short coils wired in series and arranged in a toroid to provide self shielding of its magnetic field. We will use gas gap heat switches to alternately connect the toroid to the cold load and the warm heat sink. A small continuous stage will maintain the cold end at 4 K while the main toroid is recycled. (Author)

  20. A minimal discrete model for toroidal moments and its experimental realization

    Science.gov (United States)

    Xiang, Hong; Ge, Lixin; Liu, Liang; Jiang, Tianshu; Zhang, Z. Q.; Chan, C. T.; Han, Dezhuan

    2017-01-01

    It is well known that a closed loop of magnetic dipoles can give rise to the rather elusive toroidal moment. However, artificial structures required to generate the necessary magnetic moments in metamaterials are typically optically large, complex to make, and easily compromised by the kinetic inductance at high frequencies. Instead of using magnetic dipoles, we propose a minimal model based on just three aligned discrete electric dipoles in which the occurrence of resonant toroidal modes is guaranteed by symmetry. The advantage of this model is its simplicity and the same model supports toroidal moments from the microwave regime up to optical frequencies as exemplified by a three-antenna array and a system consisting of three nanosized plasmonic particles. Both the microwave and high-frequency configurations exhibit nonradiating "anapoles." Experiments in the microwave regime confirm the theoretical predictions.

  1. Passing particle toroidal precession induced by electric field in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); Ilgisonis, V. I.; Sorokina, E. A. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); NRC “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles.

  2. Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J. E.; Greenwald, M. J.; Podpaly, Y. A.; Reinke, M. L.; Hughes, J. W.; Howard, N. T.; Ma, Y.; Cziegler, I.; Ennever, P. C.; Ernst, D.; Fiore, C. L.; Gao, C.; Irby, J. H.; Marmar, E. S.; Porkolab, M.; Tsujii, N.; Wolfe, S. M. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Diamond, P. H. [UCSD, La Jolla, California 92903 (United States); Duval, B. P. [CRPP, EPFL, Lausanne 1015 (Switzerland)

    2012-05-15

    Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.

  3. Aberrant hypertrophy in Smad3-deficient chondrocytes is rescued by restoring TAK1-ATF-2 signaling: a potential clinical implication for osteoarthritis

    Science.gov (United States)

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R.; Flick, Lisa M.; Konttinen, Yrjo T.; Chen, Di; Schwarz, Edward M.; Zuscik, Michael J.; Jonason, Jennifer H.; O’Keefe, Regis J.

    2010-01-01

    Objective To investigate the biological significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and ATF-2 in the TGF-β signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Methods Joint disease in Smad3 knockout (Smad3−/−) mice was examined by micro-CT and histology. Numerous in vitro methods including immunostaining, real-time PCR, Western blotting, an ATF-2 DNA-binding assay and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3−/− mice. Results Smad3−/− mice gradually developed an end-stage OA phenotype. TGF-β-induced TAK1-ATF-2 signaling was disrupted in Smad3−/− chondrocytes at the level of p38 MAP kinase activation resulting in reduced ATF-2 phosphorylation and transcriptional activity. Re-introduction of Smad3 into the Smad3−/− cells restored the normal p38 response to TGF-β. Phospho-p38 formed a complex with Smad3 by binding to the Smad3 MH1-linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAP kinase phosphatase-1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild type and Smad3−/− chondrocytes. p38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms α, β and γ, but not δ. Conclusions Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1-ATF-2 signaling, most likely by disrupting the Smad3-phospho-p38 complex and, thereby, promoting p38 dephosphorylation and inactivation by MKP-1. p38 and ATF-2 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA. PMID:20506210

  4. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maolong; Ryals, Matthew; Ali, Amir; Blandford, Edward; Jensen, Colby; Condie, Keith; Svoboda, John; O' Brien, Robert

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentally investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.

  5. Hamiltonian guiding center drift orbit calculation for toroidal plasmas of arbitrary cross section

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Chance, M.S.

    1984-02-01

    A Hamiltonian guiding center drift orbit formalism is developed which permits the efficient calculation of particle trajectories in toroidal devices of arbitrary cross section with arbitrary plasma ..beta... The magnetic field is assumed to be a small perturbation from a zero order toroidal equilibrium field possessing either axial or helical symmetry. The equilibrium field can be modelled analytically or obtained numerically from equilibrium codes. A numerical code based on the formalism is used to study particle orbits in circular and bean-shaped tokamak configurations.

  6. Optimizing dc-resistance of a foil wounded toroidal inductor combining matlab and comsol

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    An optimization routine is presented to optimize the shape of a foil winding of a toroid inductor in terms of the DC resistance. MATLAB was used to define the geometry of the foil winding and COMSOL was used to import the geometry and create a 3D finite element model. The initial parameters......, the execution and the results of the optimization routine were all managed from a graphical user interface and the feedback from COMSOL in terms of DC resistance was used to find and plot the optimal shape of the foil. The DC resistance was improvement by 31 % compared with previous work for a 10 turn toroidal...

  7. Bifurcation to 3D helical magnetic equilibrium in an axisymmetric toroidal device.

    Science.gov (United States)

    Bergerson, W F; Auriemma, F; Chapman, B E; Ding, W X; Zanca, P; Brower, D L; Innocente, P; Lin, L; Lorenzini, R; Martines, E; Momo, B; Sarff, J S; Terranova, D

    2011-12-16

    We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established. © 2011 American Physical Society

  8. Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tonghui, E-mail: thshi@ipp.ac.cn; Wan, B. N.; Sun, Y.; Shen, B.; Qian, J. P. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Zheng, L. J. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-08-15

    Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.

  9. Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Reusch, Joshua

    2017-10-01

    A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  10. Observation and characterization of the effect of electron cyclotron waves on toroidal rotation in EAST L-mode discharges

    Science.gov (United States)

    Chen, Jun; Hu, Ruiji; Lyu, Bo; Wang, Fudi; Wang, Xiaojie; Xu, Handong; Li, Yingying; Fu, Jia; Yin, Xianghui; Wu, Dajun; Liu, Fukun; Zang, Qing; Liu, Haiqing; Shi, Yuejiang; Mao, Shifeng; Yu, Yi; Wang, Baonian; Ye, Minyou; Shen, Yongcai; EAST Team

    2017-10-01

    The change in the toroidal rotation of plasma caused by electron cyclotron wave (ECW) injection has been observed in EAST. It is found that the response of the rotation is similar for all possible ECW toroidal injection angles. The core toroidal rotation velocity increases in the co-current direction along with a rise in the plasma temperature and stored energy. The profile of the electron temperature, ion temperature and toroidal rotation velocity gradually become peaked. The change in toroidal rotation in the core increases with the ECW injection power. Different behavior is observed when the ECWs are injected into low hybrid current drive (LHCD) target plasmas, where the electron temperature and rotation profile become peaked, while the ion temperature profile flattens after ECW injection, suggesting different transport characteristics in energy and momentum.

  11. Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD

    Directory of Open Access Journals (Sweden)

    H. Tanaka

    2017-08-01

    Full Text Available Toroidal distributions of divertor particle flux during neon (Ne and nitrogen (N2 seeded discharges were investigated in the Large Helical Device (LHD. By using 14 toroidally distributed divertor probe arrays, which were positioned at radially inner side where the divertor flux concentrates in the inward-shifted magnetic axis configuration, it is found that Ne puffing leads to toroidally quasi-uniform reduction of divertor particle fluxes; whereas toroidally localized reductions were observed with N2 puffing. The toroidally asymmetric reduction pattern with N2 puffing is strongly related to the magnetic field structure around the N2 puffing port. Assuming that nitrogen particles do not recycle, EMC3-EIRENE simulation shows similar reduction pattern with the experiment around the N2 puffing port.

  12. Cluster and toroidal aspects of isoscalar dipole excitations in 12C

    Science.gov (United States)

    Kanada-En'yo, Yoshiko; Shikata, Yuki; Morita, Horiyuki

    2018-01-01

    We investigate cluster and toroidal aspects of isoscalar dipole excitations in 12C based on the shifted basis antisymmetrized molecular dynamics combined with the generator coordinate method, which can describe 1p-1h excitations and 3 α dynamics. In the E =10 -15 MeV region, we find two low-energy dipole modes separating from the giant dipole resonance. One is the developed 3 α -cluster state and the other is the toroidal dipole mode. The cluster state is characterized by the high-amplitude cluster motion beyond the 1p-1h model space, whereas the toroidal dipole mode is predominantly described by 1p-1h excitations in the ground state. The low-energy dipole states are remarkably excited by the toroidal dipole operator, which can measure the nuclear vorticity. For compressive dipole transition strengths, a major part is distributed in the 30- to 50-MeV region for the giant dipole resonance, and 5% of the total energy-weighted sum exists in the E <20 MeV region.

  13. High-beta equilibria in tokamaks with pressure anisotropy and toroidal flow

    Science.gov (United States)

    Layden, B.; Hole, M. J.; Ridden-Harper, R.

    2015-12-01

    We extend previous analytical calculations of 2D high-β equilibria in order-unity aspect ratio tokamaks with toroidal flow to include pressure anisotropy, assuming guiding-center theory for a bi-Maxwellian plasma and the ideal MHD Ohm's law. Equilibrium solutions are obtained in the core region (which fills most of the plasma volume) and the boundary layer. We find that pressure anisotropy with p∥>p⊥ ( p∥diamagnetism relative to the isotropic case whenever an equilibrium solution exists. Sufficiently fast toroidal flows ( Ω>Ωmin ) were previously found to suppress the field-free region (diamagnetic hole) that exists in static isotropic high-β equilibria. We find that all equilibrium solutions with pressure anisotropy suppress the diamagnetic hole. For the static case with a volume-averaged toroidal beta of 70%, plasmas with max (p∥/p⊥)>α1=1.07 have equilibrium solutions. We find that α1 decreases with increasing toroidal flow speed, and above the flow threshold Ωmin we find α1=1 , so that all p∥>p⊥ plasmas have equilibrium solutions. On the other hand, for p∥diamagnetic hole in the isotropic case), equilibrium solutions exist for α2p⊥ , while the converse is true for p∥

  14. Light radiating-manipulation in toroidal metamaterial by the gain in quantum dots

    Science.gov (United States)

    Li, Jie; Dong, Zhenggao

    Toroidal dipolar response in a metallic metastructure, composed of double flat rings, is utilized to manipulate the radiation pattern of a single dipolar emitter (e.g., florescent molecule/atom or quantum dot). Strong Fano-type radiation spectrum can be obtained when these two coupling dipoles are spatially overlapped, leading to significant radiation suppression (so-called nonradiating source) attributed to the dipolar destructive interference. Moreover, this nonradiating configuration will become a directionally super-radiating nanoantenna after a radial displacement of the emitter with respect to the toroidal flat-ring geometry, which emits linearly polarized radiation with orders of power enhancement in a particular orientation. Furthermore, via surface plasmon amplification with the assistance of the gain medium of PbS quantum dots, not only toroidal dipole response can be greatly strengthened but also the directional super-radiating intensity also obtains strong enhancement. Our results are promising in manipulating the radiation power and direction of a single emitter, such as fluorescent molecule/atom and quantum dot, by utilizing the intriguing toroidal dipolar response based on the proposed flat-ring metastructure.

  15. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; M. Lewenstein

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  16. Complete suppression of Pfirsch-Schlueter current in a toroidal l=3 stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yasuhiko; Wakatani, Masahiro [Graduate School of Energy Science, Kyoto Univ., Uji, Kyoto (Japan); Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Pustovitov, V.D. [Russian Research Center, Kurchatov Institute' , Moscow (Russian Federation)

    1999-10-01

    Pfirsch-Schlueter (P-S) current is an inherent property of a finite pressure toroidal equilibrium of tokamak and stellarator. However, it was pointed out recently (V.D. Pustovitov, Nuclear Fusion 36 (1996) 583) that the P-S current would be suppressed completely if the external vertical field could be adjusted to satisfy the condition {omega}=<{omega}> in an l=3 stellarator. Here {omega}=/B{sub 0}{sup 2}-2{epsilon} cos{theta}, l is a pole number, |B tilde| the vacuum helical magnetic field, B{sub 0} the toroidal field, {epsilon} the inverse aspect ratio, {theta} the poloidal angle and <...> denotes the average over the toroidal angle. An example of such a stellarator equilibrium is presented in this paper. For this stellarator equilibrium, behavior of rotational transform and Boozer magnetic spectrum is clarified when the pressure is increased. Both formation of helical magnetic axis and reduction of toroidal curvature are important ingredients to reduce the P-S current. However, the collisionless particle confinement is not improved in this example. (author)

  17. On the fundamental mode of the optical resonator with toroidal mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  18. Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory

    CERN Document Server

    Shilon, I.; Silva, H.; ten Kate, H.H.J.

    2013-01-01

    The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current state-of-the-art detector, represented by the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into x-ray photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large superconducting toroidal magnet is currently being designed at CERN to provide the required magnetic field. The new toroid will be built up from eight, one meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in diameter and 22 m in length. It is designed to realize a peak magnetic field of 5.4 T with a ...

  19. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect

    NARCIS (Netherlands)

    Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim

    2008-01-01

    The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based

  20. The effect of toroidal plasma rotation on low-frequency reversed shear Alfven eigenmodes in tokamaks

    NARCIS (Netherlands)

    Haverkort, J. W.

    2012-01-01

    The influence of toroidal plasma rotation on the existence of reversed shear Alfven eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence of RSAEs.

  1. Toroidal rotation braking with n = 1 magnetic perturbation field on JET

    DEFF Research Database (Denmark)

    Sun, Y; Liang, Y; Koslowski, H R

    2010-01-01

    A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value...

  2. The Dynamics of an Isolated Plasma Filament at the Edge of a Toroidal Device, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2006-09-28

    The dynamics of an isolated plasma filament (an isolated blob) in the far scrape-off layer (SOL) of a toroidal device is described, with a proper averaging of the geometrical parameters as well as plasma parameters along the filament. The analysis is limited to the magnetohydrodynamic description. The effects of the anchored ends and finite plasma resistivity are also discussed.

  3. Spontaneous onset of magnetic reconnection in toroidal plasma caused by breaking of 2D symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Egedal, Jan; Katz, Noam; Bonde, Jeff; Fox, Will; Le, Ari; Porkolab, Miklos; Vrublevskis, Arturs [Department of Physics/Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-11-15

    Magnetic reconnection is studied in the collisionless limit at the Versatile Toroidal Facility (VTF) at MIT. Two distinct magnetic configurations are applied in the experiments; an open magnetic cusp and a closed cusp. In the open cusp configurations, the field lines intersect the the vacuum vessel walls and here axisymmetric oscillatory reconnection is observed. Meanwhile, in the closed cusp configuration, where the field lines are confined inside the experiment, the coupling between global modes and a current sheet leads to powerful bursts of 3D spontaneous reconnection. These spontaneous events start at one toroidal location, and then propagate around the toroidal direction at the Alfven speed (calculated with the strength of the dominant guide field). The three dimensional measurements include the detailed time evolution of the plasma density, current density, the magnetic flux function, the electrostatic potential, and the reconnection rate. The vastly different plasma behavior in the two configurations can be described using a simple theoretical framework, linking together the interdependencies of the reconnection rate, the in-plane electrostatic potential, and the parallel electron currents. We find that it is the breaking of toroidal symmetry by the global mode that allows for a localized disruption of the x-line current and hereby facilitates the onset of spontaneous reconnection.

  4. Performance assessment and optimization of the ITER toroidal field coil joints

    NARCIS (Netherlands)

    Rolando, G.; Foussat, A.; Knaster, J.; Ilyin, Y.; Nijhuis, Arend

    2013-01-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the

  5. Subduction induced mantle flow: Length-scales and orientation of the toroidal cell

    Science.gov (United States)

    Király, Ágnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio

    2017-12-01

    Subduction-induced mantle circulation plays an important role in the dynamics of convergent margins. Different components of the flow, i.e. toroidal and poloidal, provide relevant driving forces for back-arc basin formation, overriding plate deformation, curvature of subduction zones and volcanic activity. Here, we investigate on the emergence and controls on the toroidal component of the subduction-induced mantle flow by means of numerical modeling. To characterize the toroidal cell's three-dimensional flow, size and length-scales and its disposing factors, we test separately a series of lithospheric and mantle parameters, such as the density difference and viscosity ratio between the slab and the mantle, the width of the slab, as opposed to the size, the stratification and the rheology of the mantle. Out of the tested parameters, the numerical results show that the strength of the flow depends on the mantle viscosity and the magnitude of the slab pull force, that is slab-mantle density difference and the mantle thickness, however the characteristic length, axis and the shape of the toroidal cell are almost independent of the slab's properties and mainly depend on the thickness of the convecting mantle.

  6. The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications

    Science.gov (United States)

    Hu, Qiang; Linton, Mark G.; Wood, Brian E.; Riley, Pete; Nieves-Chinchilla, Teresa

    2017-11-01

    This article completes and extends a recent study of the Grad-Shafranov (GS) reconstruction in toroidal geometry, as applied to two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchmark study of an analytic solution to the toroidal GS equation with added noise shows deviations in the reconstructed geometry of the flux rope configuration, characterized by the orientation of the rotation axis, the major radius, and the impact parameter. On the other hand, the physical properties of the flux rope, including the axial field strength, and the toroidal and poloidal magnetic flux, agree between the numerical and exact GS solutions. We also present a real-event study of a magnetic cloud flux rope from in situ spacecraft measurements. The devised procedures for toroidal GS reconstruction are successfully executed. Various geometrical and physical parameters are obtained with associated uncertainty estimates. The overall configuration of the flux rope from the GS reconstruction is compared with the corresponding morphological reconstruction based on white-light images. The results show overall consistency, but also discrepancy in that the inclination angle of the flux rope central axis with respect to the ecliptic plane differs by about 20 - 30 degrees in the plane of the sky. The results, in terms of the magnetic flux content, are also consistent with the original straight-cylinder GS reconstruction when using exactly the same reconstruction interval in this case.

  7. Momentum transport studies in JET H-mode discharges with an enhanced toroidal field ripple

    NARCIS (Netherlands)

    de Vries, P. C.; Versloot, T. W.; Salmi, A.; Hua, M. D.; Howell, D. H.; Giroud, C.; Parail, V.; Saibene, G.; Tala, T.

    2010-01-01

    In this study, enhancement of the toroidal field (TF) ripple has been used as a tool in order to reveal the impact of the momentum pinch on the rotation profiles in H-mode JET discharges. The analysis showed that flatter rotation profiles were obtained in discharges with a high TF ripple, attributed

  8. Computer Simulation of the Toroidal Equilibrium and Stability of a Plasma in Three Dimensions

    Science.gov (United States)

    Betancourt, Octavio; Garabedian, Paul

    1975-01-01

    A computer program has been written to solve the equations for sharp boundary magnetohydrodynamic equilibrium of a toroidal plasma in three dimensions without restriction to axial symmetry. The numerical method is based on a variational principle that indicates whether the equilibria obtained are stable. Applications have been made to Tokamak, Stellarator, and Scyllac configurations. PMID:16592233

  9. Genomic Binding Profiling of the Fission Yeast Stress-Activated MAPK Sty1 and the bZIP Transcriptional Activator Atf1 in Response to H2O2

    Science.gov (United States)

    Eshaghi, Majid; Lee, Jong Hoon; Zhu, Lei; Poon, Suk Yean; Li, Juntao; Cho, Kwang-Hyun; Chu, Zhaoqing; Karuturi, R. Krishna M.; Liu, Jianhua

    2010-01-01

    Background The evolutionally conserved MAPK Sty1 and bZIP transcriptional activator Atf1 are known to play a pivotal role in response to the reactive oxygen species in S. pombe. However, it is unclear whether all of the H2O2-induced genes are directly regulated by the Sty1-Atf1 pathway and involved in growth fitness under H2O2-induced stress conditions. Methodology/Principal Findings Here we present the study on ChIP-chip mapping of the genomic binding sites for Sty1, Atf1, and the Atf1's binding partner Pcr1; the genome-wide transcriptional profiling of the atf1 and pcr1 strains in response to H2O2; and the phenotypic assessment of ∼90 Atf1/Pcr1-bound or unbound genes for growth fitness under H2O2 conditions. ChIP-chip analysis shows that Atf1 and Pcr1 binding sites are overlapped in the genome and constitutively present before H2O2 stress. On the other hand, Sty1 recruitment primarily occurs at the Atf1/Pcr1 binding sites and is induced by H2O2. We found that Atf1/Pcr1 is clearly responsible for the high-level transcriptional response to H2O2. Furthermore, phenotypic assessment indicates that among the H2O2-induced genes, Atf1/Pcr1-bound genes exhibit a higher likelihood of functional requirement for growth fitness under the stress condition than the Atf1/Pcr1-unbound genes do. Notably, we found that the Atf1/Pcr1-bound genes regardless of their responsiveness to H2O2 show a high probability of requirement for growth fitness. Conclusion/Significance Together, our analyses on global mapping of protein binding sites, genome-wide transcriptional profiling, and phenotypic assessment provide insight into mechanisms for global transcriptional regulation by the Sty1-Atf1 pathway in response to H2O2-induced reactive oxygen species. PMID:20661279

  10. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3 as a prominent node in a cholesterol-sensing network.

    Directory of Open Access Journals (Sweden)

    Jayoung Kim

    Full Text Available Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1 ventral prostate from male mice with chronically elevated circulating cholesterol and (2 human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.

  11. Amino acid availability controls TRB3 transcription in liver through the GCN2/eIF2α/ATF4 pathway.

    Directory of Open Access Journals (Sweden)

    Valérie Carraro

    Full Text Available In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver.

  12. Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera.

    Science.gov (United States)

    Errico Provenzano, Alfredo; Posteri, Riccardo; Giansanti, Francesco; Angelucci, Francesco; Flavell, Sopsamorn U; Flavell, David J; Fabbrini, Maria Serena; Porro, Danilo; Ippoliti, Rodolfo; Ceriotti, Aldo; Branduardi, Paola; Vago, Riccardo

    2016-11-14

    The big challenge in any anti-tumor therapeutic approach is represented by the development of drugs selectively acting on the target with limited side effects, that exploit the unique characteristics of malignant cells. The urokinase (urokinase-type plasminogen activator, uPA) and its receptor uPAR have been identified as preferential target candidates since they play a key role in the evolution of neoplasms and are associated with neoplasm aggressiveness and poor clinical outcome in several different tumor types. To selectively target uPAR over-expressing cancer cells, we prepared a set of chimeric proteins (ATF-SAP) formed by the human amino terminal fragments (ATF) of uPA and the plant ribosome inactivating protein saporin (SAP). Codon-usage optimization was used to increase the expression levels of the chimera in the methylotrophic yeast Pichia pastoris. We then moved the bioprocess to bioreactors and demonstrated that the fed-batch production of the recombinant protein can be successfully achieved, obtaining homogeneous discrete batches of the desired constructs. We also determined the cytotoxic activity of the obtained batch of ATF-SAP which was specifically cytotoxic for U937 leukemia cells, while another construct containing a catalytically inactive mutant form of SAP showed no activity. Our results demonstrate that the uPAR-targeted, saporin-based recombinant fusion ATF-SAP can be produced in a fed-batch fermentation with full retention of the molecules selective cytotoxicity and hence therapeutic potential.

  13. Pro-inflammatory cytokines enhance ERAD and ATF6α pathway activity in salivary glands of Sjögren's syndrome patients.

    Science.gov (United States)

    Barrera, María-José; Aguilera, Sergio; Castro, Isabel; Cortés, Juan; Bahamondes, Verónica; Quest, Andrew F G; Molina, Claudio; González, Sergio; Hermoso, Marcela; Urzúa, Ulises; Leyton, Cecilia; González, María-Julieta

    2016-12-01

    Salivary gland (SG) acinar-cells are susceptible to endoplasmic reticulum (ER) stress related to their secretory activity and the complexity of synthesized secretory products. SGs of Sjögren's syndrome patients (SS)-patients show signs of inflammation and altered proteostasis, associated with low IRE1α/XBP-1 pathway activity without avert increases in apoptosis. Acinar-cells may avoid apoptosis by activation of the ATF6α pathway and ER-associated protein degradation (ERAD). The aim of this study was to evaluate the role of pro-inflammatory cytokines in ATF6α pathway/ERAD activation and cell viability in labial salivary glands (LSG) of SS-patients. In biopsies from SS-patients increased ATF6α signaling pathway activity, as evidenced by generation of the ATF6f cleavage fragment, and increased expression of ERAD machinery components, such as EDEM1, p97, SEL1L, gp78, UBE2J1, UBE2G2, HERP and DERLIN1, were observed compared to controls. Alternatively, for pro- (active-caspase-3) and anti-apoptotic (cIAP2) markers no significant difference between the two experimental groups was detected. Increased presence of ATF6f and ERAD molecules correlated significantly with increased expression of pro-inflammatory cytokines. These observations were corroborated in vitro in 3D-acini treated with TNF-α and/or IFN-γ, where an increase in the expression and activation of the ATF6α sensor and ERAD machinery components was detected under ER stress conditions, while changes in cell viability and caspase-3 activation were not observed. Cytokine stimulation protected cells from death when co-incubated with an ERAD machinery inhibitor. Alternatively, when cytokines were eliminated from the medium prior to ERAD inhibition, cell death increased, suggesting that the presence of pro-inflammatory cytokines in the medium is essential to maintain cell viability. In conclusion, the ATF6α pathway and the ERAD machinery are active in LSG of SS-patients. Both were also activated by TNF

  14. The basic leucine zipper domain transcription factor Atf1 directly controls Cdc13 expression and regulates mitotic entry independently of Wee1 and Cdc25 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Bandyopadhyay, Sushobhana; Dey, Isha; Suresh, Megalakshmi; Sundaram, Geetanjali

    2014-06-01

    Progression into mitosis is a major point of regulation in the Schizosaccharomyces pombe cell cycle, and its proper control is essential for maintenance of genomic stability. Investigation of the G(2)/M progression event in S. pombe has revealed the existence of a complex regulatory process that is responsible for making the decision to enter mitosis. Newer aspects of this regulation are still being revealed. In this paper, we report the discovery of a novel mode of regulation of G(2)/M progression in S. pombe. We show that the mitogen-activated protein kinase (MAPK)-regulated transcription factor Atf1 is a regulator of Cdc13 (mitotic cyclin) transcription and is therefore a prominent player in the regulation of mitosis in S. pombe. We have used genetic approaches to study the effect of overexpression or deletion of Atf1 on the cell length and G(2)/M progression of S. pombe cells. Our results clearly show that Atf1 overexpression accelerates mitosis, leading to an accumulation of cells with shorter lengths. The previously known major regulators of entry into mitosis are the Cdc25 phosphatase and the Wee1 kinase, which modulate cyclin-dependent kinase (CDK) activity. The significantly striking aspect of our discovery is that Atf1-mediated G(2)/M progression is independent of both Cdc25 and Wee1. We have shown that Atf1 binds to the Cdc13 promoter, leading to activation of Cdc13 expression. This leads to enhanced nuclear localization of CDK Cdc2, thereby promoting the G(2)/M transition. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats.

    Science.gov (United States)

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-03-22

    Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.

  16. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats

    Science.gov (United States)

    2013-01-01

    Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865

  17. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation.

    Science.gov (United States)

    Vlug, Angela S; Teuling, Eva; Haasdijk, Elize D; French, Pim; Hoogenraad, Casper C; Jaarsma, Dick

    2005-10-01

    To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription factors' ATF3 and phospho-c-Jun. Immunocytochemistry and in situ hybridization showed that a subset of motoneurons express ATF3 from a relatively early phase of disease before the onset of active caspase 3 expression and motoneuron loss. The highest number of ATF3-expressing motoneurons occurred at symptom onset. The onset of ATF3 expression correlated with the appearance of ubiquitinated neurites. Confocal double-labelling immunofluorescence showed that all ATF3-positive motoneurons were immunoreactive for phosphorylated c-Jun. Furthermore, the majority of ATF3 and phospho-c-Jun-positive motoneurons were also immunoreactive for CHOP (GADD153) and showed Golgi fragmentation. A subset of ATF3 and phosphorylated c-Jun-immunoreactive motoneurons showed an abnormal appearance characterized by a number of distinctive features, including an eccentric flattened nucleus, perikaryal accumulation of ubiquitin immunoreactivity, juxta-nuclear accumulation of the Golgi apparatus and the endoplasmic reticulum, and intense Hsp70 immunoreactivity. These abnormal cells were not immunoreactive for active caspase 3. We conclude that motoneurons in ALS-SOD1 mice prior to their death and disappearance experience a prolonged sick phase, characterized by the gradual accumulation of ubiquitinated material first in the neurites and subsequently the cell body.

  18. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    Science.gov (United States)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  19. Modification of toroidal flow velocity through momentum Injection by compact torus injection into the STOR-M tokamak

    Science.gov (United States)

    Rohollahi, A.; Elgriw, S.; Basu, D.; Wolfe, S.; Hirose, A.; Xiao, C.

    2017-05-01

    In the Saskatchewan torus-modified (STOR-M) tokamak, tangential compact torus injection (CTI) experiments have been performed with normal (counter-clockwise, CCW, top view) and reversed (clockwise, CW, top view) plasma current directions while the compact torus (CT) injection direction remains in the CCW direction. The intrinsic toroidal flow direction reverses when the discharge current is reversed. However, the change in the toroidal flow direction is always toward the CTI direction (CCW). It has been determined that the momentum in high density and high velocity CT is more than ten times larger than the intrinsic toroidal rotation momentum in the typical STOR-M plasma. Therefore, the modification of the plasma toroidal rotation velocity is attributed to momentum transfer from CT to the tokamak discharge.

  20. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    Two- dimensional numerical fluid turbulence simulations demonstrating the formation and radial propagation of blob structures in toroidally magnetized plasmas are presented and analysed in detail. A salient feature of the model is a linearly unstable edge plasma region with localized sources...... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  1. A new quasilinear formulation for ICRF plasmas in a toroidal geometry

    Directory of Open Access Journals (Sweden)

    Lee Jungpyo

    2017-01-01

    Full Text Available We present a new formulation for quasilinear velocity space diffusion for ICRF plasmas that considers two different aspects: (1 finite Larmor radius approximation and (2 includes the effect of toroidal geometry and constructs a positive definite form. In the first aspect, the Kennel-Engelmann (K-E quasilinear diffusion coefficients are successfully approximated in a small Larmor radius limit and implemented for the numerical codes (TORIC-CQL3D. In the second aspect, the quasilinear diffusion is reformulated in a toroidal geometry in order to include the parallel dynamics in the inhomogeneous plasmas and magnetic fields. We use these two quasilinear formulations to simulate ITER plasmas with ICRF injection for minority fundamental heating and Tritium second harmonic cyclotron heating.

  2. A new quasilinear formulation for ICRF plasmas in a toroidal geometry

    Science.gov (United States)

    Lee, Jungpyo; Wright, John; Bertelli, Nicola; Smithe, David; Valeo, Ernest; Petrov, Yuri; Jaeger, Erwin F.; Berry, Lee; Harvey, Robert; Bonoli, Paul

    2017-10-01

    We present a new formulation for quasilinear velocity space diffusion for ICRF plasmas that considers two different aspects: (1) finite Larmor radius approximation and (2) includes the effect of toroidal geometry and constructs a positive definite form. In the first aspect, the Kennel-Engelmann (K-E) quasilinear diffusion coefficients are successfully approximated in a small Larmor radius limit and implemented for the numerical codes (TORIC-CQL3D). In the second aspect, the quasilinear diffusion is reformulated in a toroidal geometry in order to include the parallel dynamics in the inhomogeneous plasmas and magnetic fields. We use these two quasilinear formulations to simulate ITER plasmas with ICRF injection for minority fundamental heating and Tritium second harmonic cyclotron heating.

  3. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  4. A second-order focusing electrostatic toroidal electron spectrometer with 2pi radian collection.

    Science.gov (United States)

    Khursheed, Anjam; Hoang, Hung Quang

    2008-12-01

    This paper presents a toroidal electron energy spectrometer designed to capture electrons in the full 2pi azimuthal angular direction while at the same time having second-order focusing optics. Simulation results based upon direct ray tracing predict that the relative energy resolution of the spectrometer will be 0.146% and 0.0188% at input angular spreads of +/- 6 degrees and +/- 3 degrees, respectively, comparable to the theoretically best resolution of the cylindrical mirror analyzer (CMA), and an order of magnitude better than existing toroidal spectrometers. Also predicted for the spectrometer is a parallel energy acquisition mode of operation, where the energy bandwidth is expected to be > +/- 10% (20% total) of the pass energy. The spectrometer is designed to allow for retardation of the pass energy without the need to incorporate auxiliary lenses.

  5. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  6. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  7. Relation between the toroidal field in the solar convective layer and the BI-polar field of sunspots

    Science.gov (United States)

    Zhao, Dao-qi

    1982-12-01

    In the solar convective layer, there is a strong toroidal field and a vertical gradient in the turbulent magnetic diffusivity. As a fluid blob rises through magnetic buoyancy, a steep gradient in the turbulent magnetic diffusivity across the surface of the blob is generated. This will perturb the toroidal field, resulting in the formation of a magnetic ring around the blob. An attempt is made to account for the concentration of the bipolar sunspot field in terms of this ring.

  8. Mesoscale transport properties induced by near critical resistive pressure-gradient-driven turbulence in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gonzalo, Luis [ORNL; Carreras, Benjamin A [ORNL

    2006-02-01

    Numerical calculations of resistive pressure-gradient-driven turbulence in toroidal geometry in a range of beta values where the pressure profile is close to critical show self-similarity of space and time scales. These self-similarity properties lead to a fractional diffusive equation for mesoscale tracer-particle transport. The indices of the fractional derivates are consistent with the ones found for resistive pressure-gradient-driven turbulence in cylindrical geometry.

  9. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities.

    Science.gov (United States)

    Frassetto, F; Trabattoni, A; Anumula, S; Sansone, G; Calegari, F; Nisoli, M; Poletto, L

    2014-10-01

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10(11) W/cm(2).

  10. Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner

    2013-01-01

    This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested...... experimentally to verify the simulation results. Finally COMSOL LiveLink to CAD is utilized to highlight a bottleneck for this kind of winding scheme....

  11. GPS-derived surface imprint of toroidal flow at the Calabrian slab edges

    Science.gov (United States)

    Palano, Mimmo; Piromallo, Claudia; Chiarabba, Claudio

    2017-04-01

    Tearing of the lithosphere and toroidal upper mantle circulation have been modeled and proposed at slab edges of several retreating subduction zones. While tear faults laterally decouple the subducting lithosphere during retreat and promote strike-slip motion in the overriding plate, toroidal flow around slab edges accommodates the displacement, from beneath the stiff slab, of less viscous mantle material towards the mantle wedge. Edge processes jointly contribute to surface crustal deformation, which can be revealed both by geodetic and geological observations. We document this effect in the Calabrian subduction system, where the Ionian slab rollback has been taking place since 30 Ma, following a step-wise process accompanied by migration of lithospheric tearing. We observe GPS velocities with symmetric toroidal patterns around the slab hinges: a counterclockwise rotation rate of 1.29 °/Ma around a pole located in the Sibari Gulf for the northern slab edge and a clockwise rotation rate of 1.74 °/Ma around a pole close to the NE Sicily coastal area at the southern slab edge. These small-scale, opposite rotations occur at complex sets of active faults representing the lithospheric tears currently accommodating the SE-ward migration of the subduction system. At depth, the mantle flow field imaged by seismic anisotropy reveals instead an asymmetry: a toroidal pattern of sub-slab return flow appears only at the southern slab edge, while at the northern end SKS-splitting fast directions are trench parallel. A possible cause for this asymmetric coupling of the upper plate deformation with underlying mantle flow is the immature stage of the northern slab tear.

  12. Neoclassical quasilinear transport theory of fluctuations in toroidal plasmas: Further considerations

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, K.C. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (USA))

    1990-04-01

    The effects of the radial electric field {ital E}{sub {ital r}} on fluctuation-induced transport fluxes and the fluctuation spectrum in toroidal plasmas are further studied to clarify the ideas originally developed in an earlier paper (Phys. Fluids {bold 31}, 2249 (1988)). A specific tokamak example is employed in the discussion. It is found that even in the presence of fluctuations, the parallel flow in tokamaks is damped by the neoclassical viscosity on a time scale of the order of {nu}{sub {ital ii}}{sup {minus}1}, with {nu}{sub {ital ii}} the collision frequency. The toroidal flow is damped by the anomalous ion viscosity on a time scale of the order of the confinement time. The radial electric field always has an effect on the fluctuation spectrum and fluctuation-induced transport fluxes in tokamaks except when {ital d}({ital E}{sub {ital r}}q/{ital r})/{ital dr}=0 (where {ital q} is the safety factor and {ital r} is the minor radius) if the radial dependence of the toroidal magnetic field is neglected by considering the invariant property of the drift kinetic equation when there is a change in {ital E}{sub {ital r}}. The condition implies the rigid-body toroidal rotation associated with {bold E}{times}{bold B} drift, with {bold E} ({bold B}) the electric (magnetic) field. The fact that the fluctuation-induced transport fluxes can depend on {ital E}{sub {ital r}} through the fluctuation spectrum and the thermodynamic force does not contradict their intrinsic ambipolarity property. The results are shown to be invariant under Galilean transformation.

  13. Radiative gravitational collapse to spherical, toroidal and higher genus black holes

    Science.gov (United States)

    Mena, Filipe C.; Oliveira, João M.

    2017-12-01

    We derive the matching conditions between FLRW and generalised Vaidya spacetimes with spherical, planar or hyperbolic symmetry, across timelike hypersurfaces. We then construct new models of gravitational collapse of FLRW spacetimes with a negative cosmological constant having electromagnetic radiation in the exterior. The final state of the collapse are asymptotically AdS black holes with spherical, toroidal or higher genus topologies. We analyse the collapse dynamics including trapped surface formation, for various examples.

  14. Low-threshold parametric decay of the ordinary wave in ECRH experiments at toroidal devices

    Science.gov (United States)

    Gusakov, E. Z.; Popov, A. Yu; Saveliev, A. N.; Sysoeva, E. V.

    2017-07-01

    In this paper we analyse low-threshold parametric decay instability (PDI) of the ordinary wave in first harmonic O-mode ECRH experiments at toroidal devices. The corresponding expressions for the PDI power threshold and its growth rate are derived analytically and evaluated numerically for the conditions of the ECRH experiments on the W7-A stellarator. The possibility of low-threshold parametric decay of the pump ordinary wave on the FTU tokamak is also considered.

  15. Toroidal current profile control during low confinement mode plasma discharges in DIII-D via first-principles-driven model-based robust control synthesis

    Science.gov (United States)

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; Schuster, Eugenio; Luce, Tim C.; Ferron, John R.; Walker, Michael L.; Humphreys, David A.; Penaflor, Ben G.; Johnson, Robert D.

    2012-12-01

    In order for ITER to be capable of operating in advanced tokamak operating regimes, characterized by a high fusion gain, good plasma confinement, magnetohydrodynamic stability and a non-inductively driven plasma current, for extended periods of time, several challenging plasma control problems still need to be solved. Setting up a suitable toroidal current density profile in the tokamak is key for one possible advanced operating scenario characterized by non-inductive sustainment of the plasma current. At the DIII-D tokamak, the goal is to create the desired current profile during the ramp-up and early flat-top phases of the plasma discharge and then actively maintain this target profile for the remainder of the discharge. The evolution in time of the toroidal current profile in tokamaks is related to the evolution of the poloidal magnetic flux profile, which is modelled in normalized cylindrical coordinates using a first-principles, nonlinear, dynamic partial differential equation (PDE) referred to as the magnetic diffusion equation. The magnetic diffusion equation is combined with empirical correlations developed from physical observations and experimental data from DIII-D for the electron temperature, the plasma resistivity and the non-inductive current drive to develop a simplified, control-oriented, nonlinear, dynamic PDE model of the poloidal flux profile evolution valid for low confinement mode discharges. In this work, we synthesize a robust feedback controller to reject disturbances and track a desired reference trajectory of the poloidal magnetic flux gradient profile by employing the control-oriented model of the system. A singular value decomposition of the static gain matrix of the plant model is utilized to identify the most relevant control channels and is combined with the dynamic response of system around a given operating trajectory to design the feedback controller. A general framework for real-time feedforward + feedback control of magnetic and

  16. On the decay of strong magnetization in global disc simulations with toroidal fields

    Science.gov (United States)

    Fragile, P. Chris; Sądowski, Aleksander

    2017-05-01

    Strong magnetization in accretion discs could resolve a number of outstanding issues related to stability and state transitions in low-mass X-ray binaries. However, it is unclear how real discs become strongly magnetized and, even if they do, whether they can remain in such a state. In this paper, we address the latter issue through a pair of global disc simulations. Here, we only consider cases of initially purely toroidal magnetic fields contained entirely within a compact torus. We find that over only a few tens of orbital periods, the magnetization of an initially strongly magnetized disc, Pmag/Pgas ≥ 10, drops to ≲ 0.1, similar to the steady-state value reached in initially weakly magnetized discs. This is consistent with recent shearing box simulations with initially strong toroidal fields, the robust conclusion being that strongly magnetized toroidal fields cannot be locally self-sustaining. These results appear to leave net poloidal flux or extended radial fields as the only avenues for establishing strongly magnetized discs, ruling out the thermal collapse scenario.

  17. Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame.

    Science.gov (United States)

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25-300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50-5,000 Hz) and high magnetic flux (0.2-1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs.

  18. Buckling, driven by constrained phase separation, of toroid-shaped hydrogels

    Science.gov (United States)

    Dimitriyev, Michael S.; Chang, Ya-Wen; Souslov, Anton; Fernandez-Nieves, Alberto; Goldbart, Paul M.

    We investigate the buckling process observed in connection with the temperature-induced shrinking of an elastic toroid composed of hydrogel. Hydrogels are polymeric network media that become swollen when mixed with water, provided the temperature is low enough. As the temperature is increased beyond a certain point, such gels undergo a first-order de-swelling transition to a de-mixed state, in which the network segregates from the water, resulting in a shrunken phase. It is known that the rapid heating of swollen hydrogels beyond the de-swelling transition results in the formation of a shrunken-phase boundary region, or shell. This shell hinders the expulsion of fluid associated with the equilibration of the sample interior, and gives rise to a prolonged period of coexistence between shrunken and swollen domains in the interior of the sample. In contrast with the spherical case, toroidal samples have been observed to undergo a constrained phase separation that is accompanied by a global buckling (or ``Pringling'') deformation of the sample shape. We present a model of hydrogel toroid Pringling in which such deformations are driven by this phase separation process.

  19. New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory

    CERN Document Server

    Shilon, I; Silva, H; Wagner, U; Kate, H H J ten

    2013-01-01

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored e...

  20. Internal Field of Homogeneously Magnetized Toroid Sensor for Proton Free Precession Magnetometer

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Merayo, José M.G.; Brauer, Peter

    2005-01-01

    The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis...... of the toroid. The theoretical shift is estimated for water by computing the additional magnetic field from the magnetization of the liquid and comparing it to the theoretical field in a spherical container. Along the axis the estimated average shift is -0.08 nT and perpendicular to the axis the shift is +0.......08 nT relative to that of a spherical sensor. The field inhomogeneity introduced by the toroid shape amounts to 0.32 nT over the volume of the sensor and is not expected to significantly affect the signal decay time, when considering the typical water line width of about 2.5 InT....

  1. 3D Monte-Carlo study of toroidally discontinuous limiter SOL configurations of Aditya tokamak

    Science.gov (United States)

    Sahoo, Bibhu Prasad; Sharma, Devendra; Jha, Ratneshwar; Feng, Yühe

    2017-08-01

    The plasma-neutral transport in the scrape-off layer (SOL) region formed by toroidally discontinuous limiters deviates from usual uniform SOL approximations when 3D effects caused by limiter discreteness begin to dominate. In an upgrade version of the Aditya tokamak, originally having a toroidally localized poloidal ring-like limiter, the newer outboard block and inboard belt limiters are expected to have smaller connection lengths and a multiple fold toroidal periodicity. The characteristics of plasma discharges may accordingly vary from the original observations of large diffusivity, and a net improvement and the stability of the discharges are desired. The estimations related to 3D effects in the ring limiter plasma transport are also expected to be modified and are updated by predictive simulations of transport in the new block limiter configuration. A comparison between the ring limiter results and those from new simulations with block limiter SOL shows that for the grids produced using same core plasma equilibrium, the modified SOL plasma flows and flux components have enhanced poloidal periodicity in the block limiter case. These SOL modifications result in a reduced net recycling for the equivalent edge density values. Predictions are also made about the relative level of the diffusive transport and its impact on the factors limiting the operational regime.

  2. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    Science.gov (United States)

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  3. The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations

    Science.gov (United States)

    Hornsby, W. A.; Migliano, P.; Buchholz, R.; Kroenert, L.; Weikl, A.; Peeters, A. G.; Zarzoso, D.; Poli, E.; Casson, F. J.

    2015-02-01

    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η1/7 scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.

  4. The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.; Kroenert, L.; Weikl, A.; Peeters, A. G. [Theoretical Physics V, Department of Physics, Universitaet Bayreuth, Bayreuth D-95447 (Germany); Zarzoso, D.; Poli, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching bei München (Germany); Casson, F. J. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-02-15

    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.

  5. The transcriptional regulator Aire co-opts the repressive ATF7ip-MBD1 complex for induction of immune tolerance

    Science.gov (United States)

    Waterfield, Michael; Khan, Imran S.; Cortez, Jessica T.; Fan, Una; Metzger, Todd; Greer, Alexandra; Fasano, Kayla; Martinez-Llordella, Marc; Pollack, Joshua L.; Erle, David J.; Su, Maureen; Anderson, Mark S.

    2014-01-01

    The maintenance of immune tolerance requires the deletion of self-reactive T cells in the thymus. The expression of tissue-specific antigen genes (TSAs) by thymic epithelial cells is critical for this process and depends on the activity of the Autoimmune Regulator (Aire) protein, however, the molecular mechanism(s) Aire uses to target TSA gene loci are unknown. Here we identified two Aire-interacting proteins – activating transcription factor 7 interacting protein (ATF7ip) and methyl CpG binding protein 1 (MBD1) –that are required for Aire’s targeting of TSA geneloci. Moreover, Mbd1−/− mice developed pathological autoimmunity and had a defect in Aire-dependent thymic TSA gene expression underscoring the critical importance of Aire’s interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance. PMID:24464130

  6. Hysteresis and fast timescales in transport relations of toroidal plasmas

    Science.gov (United States)

    Itoh, K.; Itoh, S.-I.; Ida, K.; Inagaki, S.; Kamada, Y.; Kamiya, K.; Dong, J. Q.; Hidalgo, C.; Evans, T.; Ko, W. H.; Park, H.; Tokuzawa, T.; Kubo, S.; Kobayashi, T.; Kosuga, Y.; Sasaki, M.; Yun, G. S.; Song, S. D.; Kasuya, N.; Nagashima, Y.; Moon, C.; Yoshinuma, M.; Makino, R.; Tsujimura, T.; Tsuchiya, H.; Stroth, U.

    2017-10-01

    This article assesses current understanding of hysteresis in transport relations, and its impact on the field. The rapid changes of fluxes compared to slow changes of plasma parameters are overviewed for both core and edge plasmas. The modulation ECH experiment is explained, in which the heating power cycles on-and-off periodically, revealing hysteresis and fast changes in the gradient-flux relation. The key finding is that hystereses were observed simultaneously in both the the gradient-flux and gradient-fluctuation relations. Hysteresis with rapid timescale exists in the channels of energy, electron and impurity densities, and plausibly in momentum. Advanced methods of data analysis are explained. Transport hysteresis can be studied by observing the higher harmonics of temperature perturbation δ Tm in heating modulation experiments. The hysteresis introduces the term δ Tm , which depends on the harmonic number m in an algebraic manner (not exponential decay). Next, the causes of hysteresis and its fast timescale are discussed. The nonlocal-in-space coupling works here, but does not suffice. One mechanism for ‘the heating heats turbulence’ is that the external source S in phase space for heating has its fluctuation in turbulent plasma. This coupling can induce the direct input of heating power into fluctuations. The height of the jump in transport hysteresis is smaller for heavier hydrogen isotopes, and could be one of the origins of isotope effects on confinement. Finally, the impacts of transport hysteresis on the control system are assessed. Control systems must be designed so as to protect the system from sudden plasma loss.

  7. Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5, c/EBPα, and PROX1 transduction.

    Science.gov (United States)

    Nakamori, Daiki; Takayama, Kazuo; Nagamoto, Yasuhito; Mitani, Seiji; Sakurai, Fuminori; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-15

    Hepatocyte-like cells differentiated from human iPS cells (human iPS-HLCs) are expected to be utilized in drug development and research. However, recent hepatic characterization of human iPS-HLCs showed that these cells resemble fetal hepatocytes rather than adult hepatocytes. Therefore, in this study, we aimed to develop a method to enhance the hepatic function of human iPS-HLCs. Because the gene expression levels of the hepatic transcription factors (activating transcription factor 5 (ATF5), CCAAT/enhancer-binding protein alpha (c/EBPα), and prospero homeobox protein 1 (PROX1)) in adult liver were significantly higher than those in human iPS-HLCs and fetal liver, we expected that the hepatic functions of human iPS-HLCs could be enhanced by adenovirus (Ad) vector-mediated ATF5, c/EBPα, and PROX1 transduction. The gene expression levels of cytochrome P450 (CYP) 2C9, 2E1, alpha-1 antitrypsin, transthyretin, Na+/taurocholate cotransporting polypeptide, and uridine diphosphate glucuronosyl transferase 1A1 and protein expression levels of CYP2C9 and CYP2E1 were upregulated by ATF5, c/EBPα, and PROX1 transduction. These results suggest that the hepatic functions of the human iPS-HLCs could be enhanced by ATF5, c/EBPα, and PROX1 transduction. Our findings would be useful for the hepatic maturation of human iPS-HLCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Genome-wide Association Study Identifies Loci at ATF7IP and KLK2 Associated with Percentage of Circulating Free PSA

    Directory of Open Access Journals (Sweden)

    Guangfu Jin

    2013-01-01

    RESULTS: We identified two loci that were associated with %fPSA at a genome-wide significance level (P <5 ×10−8. The first associated SNP was rs3213764 (P = 6.45 × 10−10, a nonsynonymous variant (K530R in the ATF7IP gene at 12p13. This variant was also nominally associated with tPSA (P = .015. The second locus was

  9. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bohan Wang

    2017-02-01

    Full Text Available Low-intensity extracorporeal shock wave therapy (Li-ESWT is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF. Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER kinase (PERK pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α, and enhanced activating transcription factor 4 (ATF4 in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF1α or glial cell-derived neurotrophic factor (GDNF in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  10. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells.

    Science.gov (United States)

    Dietze, Raimund; Konrad, Lutz; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2013-03-01

    Sertoli cells express α1 and α4 isoforms of the catalytic subunit of Na(+),K(+)-ATPase (sodium pump). Our recent findings demonstrated that interactions of the α4 isoform with cardiotonic steroids (CTS) like ouabain induce signaling cascades that resemble the so-called non-classical testosterone pathway characterized by activation of the c-Src/c-Raf/Erk1/2/CREB signaling cascade. Here we investigate a possible physiological significance of the activated cascade. The results obtained in the current investigation show that the ouabain-induced signaling cascade also leads to the activation of the CREB-related activating transcription factor 1 (ATF-1) in the Sertoli cell line 93RS2 in a concentration- and time-dependent manner, as demonstrated by detection of ATF-1 phosphorylated on Ser63 in western blots. The ouabain-activated ATF-1 protein was found to localize to the cell nuclei. The sodium pump α4 isoform mediates this activation, as it is ablated when cells are incubated with siRNA to the α4 isoform. Ouabain also leads to increased expression of steroidogenic acute regulator (StAR) protein, which has been shown to be a downstream consequence of CREB/ATF-1 activation. Taking into consideration that CTS are most likely produced endogenously, the demonstrated induction of StAR expression by ouabain establishes a link between CTS, the α4 isoform of the sodium pump, and steroidogenesis crucial for male fertility and reproduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Tunicamycin aggravates endoplasmic reticulum stress and airway inflammation via PERK-ATF4-CHOP signaling in a murine model of neutrophilic asthma.

    Science.gov (United States)

    Guo, Qinyue; Li, Huixia; Liu, Jiali; Xu, Lin; Yang, Lan; Sun, Zhongmin; Zhou, Bo

    2017-03-01

    Endoplasmic reticulum (ER) stress has been considered to be an important regulator of airway inflammation in the pathogenesis of bronchial asthma, but the mechanism of ER stress involved in neutrophilic asthma remain not fully understood. Tunicamycin is a mixture of homologous nucleoside antibiotics, which is used to induce ER stress. In the present study, Tunicamycin was administered to mouse bronchial epithelial cells and a neutrophilic asthma model (OVALPS-OVA mice), and ER stress indicators and inflammatory cytokines were measured by Western blotting and Elisa. Tunicamycin not only induced ER stress in mouse bronchial epithelial cells, but also increased expression of inflammation indicators such as IL-6, IL-8, and TNF-α via PERK-ATF4-CHOP signaling. Additionally, the phosphorylation of PERK and the expression levels of ATF4 and CHOP proteins and inflammatory cytokines (IL-6, IL-8 and TNF-α) were elevated in the lung tissue of OVALPS-OVA mice. Administering tunicamycin further increased protein expression levels of ER stress indicators and inflammatory cytokines, and resulted in more severe asthma phenotypes in OVALPS-OVA mice, suggesting that PERK-ATF4-CHOP signaling is associated with airway inflammation in neutrophil-dominant asthma. These data support the emerging notion that regulation of ER stress could be strongly associated with the development of neutrophilic asthma.

  12. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression

    Science.gov (United States)

    Wang, Ji; Kang, Rongyan; Huang, He; Xi, Xueyan; Wang, Bei; Wang, Jianwei; Zhao, Zhendong

    2014-01-01

    HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the –253 to –99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression. PMID:24589849

  13. The GCN2-ATF4 Signaling Pathway Induces 4E-BP to Bias Translation and Boost Antimicrobial Peptide Synthesis in Response to Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Deepika Vasudevan

    2017-11-01

    Full Text Available Bacterial infection often leads to suppression of mRNA translation, but hosts are nonetheless able to express immune response genes through as yet unknown mechanisms. Here, we use a Drosophila model to demonstrate that antimicrobial peptide (AMP production during infection is paradoxically stimulated by the inhibitor of cap-dependent translation, 4E-BP (eIF4E-binding protein; encoded by the Thor gene. We found that 4E-BP is induced upon infection with pathogenic bacteria by the stress-response transcription factor ATF4 and its upstream kinase, GCN2. Loss of gcn2, atf4, or 4e-bp compromised immunity. While AMP transcription is unaffected in 4e-bp mutants, AMP protein levels are substantially reduced. The 5′ UTRs of AMPs score positive in cap-independent translation assays, and this cap-independent activity is enhanced by 4E-BP. These results are corroborated in vivo using transgenic 5′ UTR reporters. These observations indicate that ATF4-induced 4e-bp contributes to innate immunity by biasing mRNA translation toward cap-independent mechanisms, thus enhancing AMP synthesis.

  14. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane.

    Science.gov (United States)

    Hellriegel, Christian; Caiolfa, Valeria R; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-09-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.

  15. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Bai, Sha; /Beijing, Inst. High Energy Phys.; Bambade, Philip; /KEK, Tsukuba; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  16. Dielectric response of shelled toroidal particles carrying localized surface charge distributions. The effect of concentric and confocal shells.

    Science.gov (United States)

    Di Biasio, A; Ambrosone, L; Cametti, C

    2014-08-01

    Dielectric models of biological cells are generally based on spherical or ellipsoidal geometries, where the different adjoining dielectric media are arranged as distinct core and shells, representing the cytosol and the cell membrane. For ellipsoidal particles, this approach implies the assumption of confocal shells that, in turn, means a cell membrane of ill-defined thickness. A quantitative analysis of the influence of a non-uniform thickness of the cell membrane has been not considered so far. In the case of a toroidal particle, this problem can be conveniently addressed by considering the solution of the Laplace equation in two different coordinate systems, i.e., toroidal coordinates (confocal shells and hence non-uniform thickness of the shell membrane) and toroidal polar coordinate, (concentric shells and hence a uniform thickness of the shell membrane). In the present paper, we compare the dielectric spectra of a toroidal particle aqueous suspension obtained from the two above stated solutions of the Laplace equation and we furnish a first quantitative estimate of the differences arising from considering the presence of confocal or concentric shells. This approach offers a complete view of the influence of the membrane thickness on the whole dielectric spectrum of a biological particle suspension, at least as far as toroidal objects are concerned. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of toroidal torque by non-resonant magnetic perturbations in tokamaks for resonant transport regimes using a Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kernbichler, Winfried; Martitsch, Andreas F. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology,” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2016-08-15

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.

  18. [Injection of compact toroids for tokamak fueling and current drive]. Progress report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, D.Q.; Rogers, J.H.; Thomas, J.C.; Evans, R.; Foley, R.; Hillyer, T.

    1991-12-31

    The experimental goals for the 1990--1991 period were the operation of the Davis Diverted Tokamak(DDT), the beat wave experiment, and the construction of the compact toroid injection experiment(CTIX). The experiment results from these areas are summarized in the posters given in the APS meeting past November. Here we shall describe the technical progress of the development of the diagnostic system for beat wave experiment, and CT injection especially in relation to the up coming injection experiments into DDT tokamak. The tokamak operation of DDT over the past year has been focused in two parameter ranges. The long pulse discharges (over 100 msec), and the low q short pulse discharges (about 10 msec). We found that the long pulse discharges required a position feedback more sophisticated than the simple passive program that we have. We are in the process of assembling this system. We also found an interesting low q(a) operating regime. Here an equilibrium can be established for a toroidal field between .5 and 1 kG. The typical plasma current is > 5kA. The density of the plasma is between 10{sup 12} and 10{sup 13} cm{sup {minus}3}. The plasma condition in these discharge are sufficiently mild that diagnostic probes can be used to measure various plasma fluctuations. We believe that this will be the regime best suited to study the interaction between the tokamak plasma and the compact toroid. A sophisticated probe system of both electrostatic and electromagnetic types similar to those used in the beat wave experiment has been designed for the up coming experiments.

  19. Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly

    Science.gov (United States)

    West, Edward A.; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph

    2009-01-01

    Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings.

  20. Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Hollerbach, Rainer

    2018-01-01

    We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star’s surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0.°4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the P{--}\\dot{P} diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the P{--}\\dot{P} diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.

  1. Evidence for Toroidal B-Field Components in AGN Jets on Kiloparsec Scales

    Directory of Open Access Journals (Sweden)

    Sebastian Knuettel

    2017-10-01

    Full Text Available Though helical magnetic fields are generally believed to arise when the jets of Active Galactic Nuclei (AGN are launched, it is still unclear what role they play (and if they survive to the largest jet scales. A helical or toroidal B-field may contribute substantially to the collimation of the jet. This B-field structure can be detected in images of the Faraday rotation measure (RM—a measure of the change in polarisation angle of an electromagnetic wave as it passes through a magneto-ionic medium. The Faraday rotation measure is directly proportional to the line-of-sight magnetic field; therefore a monotonic gradient in the RM transverse to the jet indicates similar behaviour of the line-of-sight B-field component. This type of analysis has mostly been done on parsec scales using VLBI observations at centimetre wavelengths, while relatively few studies have probed decaparsec to kiloparsec scales. The detection of RM gradients with significances of 3 σ or more on such large scales can demonstrate the presence of a toroidal field component, which may be associated with a helical field that has persisted to these distances from the centre of the AGN. We present the results of new Faraday rotation analyses for 2 AGN on kiloparsec scales based on multiwavelength VLA observations, with robust transverse RM gradients detected in both. Furthermore, the direction of the inferred toroidal B-fields on the sky supports previous results indicating a predominance of outward currents in the jets on kiloparsec scales.

  2. Controlling Confinement with Induced Toroidal Current in the Flexible Heliac TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. A.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Ascasibar, E.; TJ-II Team

    2002-07-01

    A method to control plasma particle an energy confinement in the TJ-II Heliac devices is reported A small toroidal current is induced in the plasma with the aid of a 0.2 Wb air core transformer. Plasma particle and energy confinement improve (degrade) with negative (positive) plasma current. For typical TJ-II discharges plasma density and temperature broaden considerably when plasma current is sufficiently negative, accounting for a 40% increase in stored energy. The experimental results agree qualitatively with the paradigm of instability growth rate modifications with magnetic shear. (Author) 18 refs.

  3. Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting.

    Science.gov (United States)

    Miccio, Lisa; Paturzo, Melania; Grilli, Simonetta; Vespini, Veronica; Ferraro, Pietro

    2009-04-01

    We found that by opportune functionalization of a polar dielectric substrate, a self-arrangement of hemicylindrical or toroidal-shaped liquid droplets can be obtained. The process takes place when a thermal stimulus is provided to a poled substrate whose surface is covered by an oily substance layer. Liquid droplet self-arrangement is due to the pyroelectric effect, and interferometric characterization of the droplets is also reported. We investigated this open microfluidic system for exploring the possibility to obtain liquid cylindrical microlens with variable focal length. Liquid microtoroidal structures arrays are also realized. They could find application as resonant liquid microcavities for whispering gallery modes.

  4. Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S

    2005-08-15

    This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications

  5. Spectrally Efficient OFDMA Lattice Structure via Toroidal Waveforms on the Time-Frequency Plane

    Directory of Open Access Journals (Sweden)

    Sultan Aldirmaz

    2010-01-01

    Full Text Available We investigate the performance of frequency division multiplexed (FDM signals, where multiple orthogonal Hermite-Gaussian carriers are used to increase the bandwidth efficiency. Multiple Hermite-Gaussian functions are modulated by a data set as a multicarrier modulation scheme in a single time-frequency region constituting toroidal waveform in a rectangular OFDMA system. The proposed work outperforms in the sense of bandwidth efficiency compared to the transmission scheme where only single Gaussian pulses are used as the transmission base. We investigate theoretical and simulation results of the proposed methods.

  6. Thermodynamics of acetone sorption from vapor phase by Keplerate and toroid polyoxomolybdate nanoclusters

    Science.gov (United States)

    Ostroushko, A. A.; Adamova, L. V.; Eremina, E. V.; Grzhegorzhevskii, K. V.; Velichko, E. V.; Bogdanov, S. G.; Pirogov, A. N.

    2017-07-01

    The sorption of acetone from the vapor phase by Keplerate polyoxomolybdate (POM) nanoclusters, Mo132 and Mo72Fe30, and Mo138, a POM with a toroid structure, is studied via equilibrium interval sorption (a modification of vapor sorption gravimetry). The highest sorption capacity is registered for Mo132, while the other two show performance an order of magnitude lower. The specific Gibbs energy of the interaction between the POMs and acetone is reported. Small-angle X-ray and neutron scattering analysis indicates a considerable difference between the natures of Mo132 and Mo138 surfaces.

  7. External kinks in plasmas with helical boundary deformation and net toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Ardelea, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-11-01

    The investigation of the global ideal magnetohydrodynamic (MHD) stability of plasmas with helical boundary shape and nonvanishing toroidal plasma current constitutes the principal aim of this work. Global external modes with small values of m,n (typically n = 1,2,3 and m = n+1) are studied, where m and n are the poloidal and toroidal mode numbers, respectively. The first and main part of the work concentrates on fixed boundary equilibria generated by systematically varying parameters such as the type and the magnitude of the boundary deformation, the number of equilibrium field periods N{sub per}, the aspect ratio, the toroidal current density profile, {beta} and the pressure profile. Due to the periodicity of the equilibrium, couplings between Fourier perturbation components with different toroidal mode numbers n occur and lead to the apparition of families of modes. The study of a particular (m,n) mode has to take into account all (m{sub l}, n{sub l}) perturbation components with n{sub 1} belonging to the same family as n. The stability analysis is carried out in the parameter region where the inverse rotational transform (the safety factor in the traditional tokamak notation) q{<=}2.0 and {beta}{<=}2%. A particular property of the configurations investigated is that equilibrium Fourier components (m{sub e}, N{sub per}n{sub e}) which are involved in the couplings between the (m,n) mode studied and the (m{sub k},n{sub k}) perturbation components with m{sub k}>n{sub k}>n that exhibit resonances in the q>1 region are very small. As a consequence, the contributions of the (m,n)x(m{sub k},n{sub k}) couplings to the potential energy are very weak. It is shown that a helical boundary deformation can stabilize the n=1,2,3 external modes; if {delta} is a measure of the plasma boundary deformation, then windows of stability [{delta}{sub min}, {delta}{sub max}] may exist for a large variety of equilibrium parameters. (author) figs., tabs., 44 refs.

  8. Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kosior, Amelia [Maria Curie-Sklodowska University, Poland; Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL

    2017-01-01

    Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.

  9. A novel synthetic aperture technique for breast tomography with toroidal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE

    2009-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. This paper introduces a new method for three-dimensional synthetic aperture diffraction tomography that maximizes the resolution in the scanning direction and provides quantitative reconstructions of the acoustic properties of the object. The method is validated by means of numerical simulations.

  10. SKF TOROIDAL ROLLER BEARING CARB – PRODUCTIVITY IMPROVEMENT AND MAINTENANCE COST REDUCTION THROUGH RELIABILITY AND SUSTAINABILITY

    Directory of Open Access Journals (Sweden)

    Tiberiu LAURIAN

    2010-06-01

    Full Text Available The CARB bearing is a single row bearing with long, slightly crowned symmetrical rollers. It combines the self-aligning capability of the spherical roller bearing with the unconstrained axial displacement ability of the cylindrical roller bearing. The optimal combination of both raceway profiles provides a favorable load distribution in the bearing, as well as low frictional running. This paper emphasizes the functioning characteristics of the SKF CARB toroidal roller bearing by means of a multibody dynamics simulation. Different conditions like load direction, races relative position or angular misalignment, are taken into consideration.

  11. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuan [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Casa, Diego; Kim, Jungho; Gog, Thomas [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Li, Chengyang [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China); Burns, Clement [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States)

    2016-08-15

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  12. ATLAS End Cap Toroid Magnets cold mass design and manufacturing status

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Densham, C J; Holtom, E; Morrow, D; Towndrow, E F; Luijckx, G; Geerinck, J

    2004-01-01

    The End Cap Toroid Magnets for the ATLAS experiment at LHC, CERN will contain eight racetrack coils mounted as a single cold mass in a cryostat vessel of approximately 10 m diameter. This paper presents the engineering design of the cold mass and gives the status of the industrial production. The cold mass mechanical structure consisting of 8 coils and keystone boxes is described. Coil fabrication from component assembly, coil winding to final impregnation will be reviewed. The design and industrial manufacture of the keystone box elements is given. The cold mass assembly methods and status are described. 3 Refs.

  13. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.

    1976-10-26

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.

  14. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.

    2012-01-01

    advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera...

  15. Photoluminescent toroids formed by temperature-driven self-assembly of rhodamine B end-capped poly(N-isopropylacrylamide).

    Science.gov (United States)

    Hsu, Chih-Yuan; Chang, Shih-Chieh; Hsu, Keh-Ying; Liu, Ying-Ling

    2013-04-25

    In this paper, self-assembled polymeric toroids formed by a temperature-driven process are reported. Rhodamine B (RhB) end-capped poly(N-isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two-phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature-driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self-assembly of polymers. Moreover, the photoluminescent behavior of the RhB end-capped PNIPAAm species formed by the process is also studied and discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Theory and simulations of toroidal and rod-like structures in single-molecule DNA condensation.

    Science.gov (United States)

    Cortini, Ruggero; Caré, Bertrand R; Victor, Jean-Marc; Barbi, Maria

    2015-03-14

    DNA condensation by multivalent cations plays a crucial role in genome packaging in viruses and sperm heads, and has been extensively studied using single-molecule experimental methods. In those experiments, the values of the critical condensation forces have been used to estimate the amplitude of the attractive DNA-DNA interactions. Here, to describe these experiments, we developed an analytical model and a rigid body Langevin dynamics assay to investigate the behavior of a polymer with self-interactions, in the presence of a traction force applied at its extremities. We model self-interactions using a pairwise attractive potential, thereby treating the counterions implicitly. The analytical model allows to accurately predict the equilibrium structures of toroidal and rod-like condensed structures, and the dependence of the critical condensation force on the DNA length. We find that the critical condensation force depends strongly on the length of the DNA, and finite-size effects are important for molecules of length up to 10(5)μm. Our Langevin dynamics simulations show that the force-extension behavior of the rod-like structures is very different from the toroidal ones, so that their presence in experiments should be easily detectable. In double-stranded DNA condensation experiments, the signature of the presence of rod-like structures was not unambiguously detected, suggesting that the polyamines used to condense DNA may protect it from bending sharply as needed in the rod-like structures.

  17. Entropy production and onsager symmetry in neoclassical transport processes of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Horton, W.

    1995-07-01

    Entropy production and Onsager symmetry in neoclassical transport processes of magnetically confined plasmas are studied in detail for general toroidal systems including nonaxisymmetric configurations. We find that the flux surface average of the entropy production defined from the linearized collision operator and the gyroangle-averaged distribution function coincides with the sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the Pfirsch-Schlueter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel current. We prove from the self-adjointness of the linearized collision operator that the Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. We also derive the full transport coefficients for the banana-plateau and nonaxisymmetric parts, separately, and investigate their symmetry properties. The nonaxisymmetric transport equations are obtained for arbitrary collision frequencies in the Pfirsch-Schlueter and plateau regimes, and it is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the Onsager symmetry. (author).

  18. Linear stability of toroidal Alfvén eigenmodes in the Chinese Fusion Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenjun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230026 (China); Li, Guoqiang, E-mail: ligq@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Hu, Youjun; Gao, Xiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2017-01-15

    The Chinese Fusion Engineering Test Reactor (CFETR) is under design. It aims to fill the gaps between ITER and DEMO. In the reactor, the deuterium-tritium fusion reaction and the auxiliary heating will generate a lot of energetic particles. It is possible that these energetic particles will drive toroidal Alfvén eigenmode (TAE) instabilities under the conditions of CFETR plasma parameters. These instabilities can result in energetic particles redistribution or loss, so it’s vital to study TAE instabilities in CFETR. The aim of this paper is to study the possibility of reducing TAE instabilities by changing safety factor profiles in CFETR. NOVA and NOVA-K codes are used to study TAE stability. The equilibria are constructed using the CORSICA code. Safety factor profiles are selected as the three typical profiles of ITER scenarios. For the three different safety factor profiles, we use NOVA to scan and calculate their continuum spectrum and eigenmode structures, then use NOVA-K to calculate the different damping and driving mechanisms for different toroidal mode numbers. The numerical calculations show that if the safety factor profiles are chosen appropriately, then all the TAEs can be stable. Thus, it’s possible to reduce the TAE instabilities by changing safety factor profiles in CFETR. We also scan the temperature and density profiles to see their effects on the TAE instabilities. It shows that the TAE instabilities keep unchanged for a wide range of profiles.

  19. Rotation and toroidal magnetic field effects on the stability of two-component jets

    Science.gov (United States)

    Millas, Dimitrios; Keppens, Rony; Meliani, Zakaria

    2017-09-01

    Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of 'spine and sheath' models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization σ, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, mpi-amrvac code.

  20. The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies

    Science.gov (United States)

    Hu, Qiang

    2017-09-01

    We develop an approach of the Grad-Shafranov (GS) reconstruction for toroidal structures in space plasmas, based on in situ spacecraft measurements. The underlying theory is the GS equation that describes two-dimensional magnetohydrostatic equilibrium, as widely applied in fusion plasmas. The geometry is such that the arbitrary cross-section of the torus has rotational symmetry about the rotation axis, Z, with a major radius, r0. The magnetic field configuration is thus determined by a scalar flux function, Ψ, and a functional F that is a single-variable function of Ψ. The algorithm is implemented through a two-step approach: i) a trial-and-error process by minimizing the residue of the functional F(Ψ) to determine an optimal Z-axis orientation, and ii) for the chosen Z, a χ2 minimization process resulting in a range of r0. Benchmark studies of known analytic solutions to the toroidal GS equation with noise additions are presented to illustrate the two-step procedure and to demonstrate the performance of the numerical GS solver, separately. For the cases presented, the errors in Z and r0 are 9° and 22%, respectively, and the relative percent error in the numerical GS solutions is smaller than 10%. We also make public the computer codes for these implementations and benchmark studies.

  1. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    Science.gov (United States)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  2. Estafette of drift resonances, stochasticity and control of particle motion in a toroidal magnetic trap

    Energy Technology Data Exchange (ETDEWEB)

    Shishkin, Alexander A. [Institute of Plasma Physics, National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2001-02-01

    A new method of particle motion control in toroidal magnetic traps with rotational transform using the estafette of drift resonances and stochasticity of particle trajectories is proposed. The use of the word estafette' here means that the particle passes through a set of resonances in consecutive order from one to another during its motion. The overlapping of adjacent resonances can be moved radially from the center to the edge of the plasma by switching on the corresponding perturbations in accordance with a particular rule in time. In this way particles (e.g. cold alpha-particle) can be removed from the center of the confinement volume to the plasma periphery. For the analytical treatment of the stochastic behaviour of particle motion the stochastic diffusion coefficients D{sub r,}r, D{sub r,{theta}}, D{sub {theta}}{sub ,{theta}} are introduced. The new approach is demonstrated by numerical computations of the test helium particle trajectories in the toroidal trap Large Helical Device. (author)

  3. Evaluation of mechanical strength of the joints in JT-60 toroidal field coil conductors

    Science.gov (United States)

    Nishio, S.; Ohkubo, M.; Sasajima, H.

    1980-04-01

    Toroidal field (TF) coils of JT-60 produce a toroidal field of 45 KG at a plasma axis, they have an inner bore of 3.90 m and a weight of about 80 metric tons per coil. Eighteen TF coils are located around a torus axis at regular intervals. TF coil conductors are mostly jointed by high frequency induction brazing, the rest jointed by welding. In deciding the details of the jointing procedures, the conductor size and the requested mechanical strength are mainly taken into consideration. Described are non-destructive inspection methods for the brazed joints, strength evaluation, and the inspection criteria. Ultrasonic testing method is found to be the most effective in evaluation of mechanical properties of the brazed joints especially in terms of fatigue strength. The ultrasonic inspection method and the detectability of this apparatus are described in detail, and the defects of known size are compared with the indication values and display figures. The apparatus developed for JT-60 is operated automatically also recording the inspection results. Mechanical strength of the brazed joints with initial defects is discussed.

  4. Shot noise in a toroidal carbon nanotube coupled with Majorana fermion states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn; Wang, Qing

    2016-03-24

    Highlights: • The toroidal carbon nanotube interferometer coupled with Majorana fermions is considered. • The terminal current and shot noise have been investigated through equation of motion method. • The Andreev and cross-Andreev reflections contribute to the current and shot noise. • The enhancement of shot noise is generated by the application of Majorana fermions. • The periodic oscillations versus Aharonov–Bohm flux exhibit the controlling of Majorana fermions. - Abstract: The shot noise of a toroidal carbon nanotube (TCN) interferometer coupled with Majorana fermions is deduced from evaluating the current correlation. Many novel channels are opened for electrons to transport, and the energy gap of the semiconducting TCN becomes narrower. The Majorana fermions cause additional current correlations among the normal tunneling currents and Andreev reflection currents, and hence the shot noise and Fano factor are enhanced. The conductance, current, and shot noise are modified by Majorana fermions to exhibit different oscillation and resonance structures. The detailed behaviors of these quantities are quite different from the metal and semiconducting TCNs.

  5. The upgraded JET toroidal Alfvén eigenmode diagnostic system

    Science.gov (United States)

    Puglia, P.; Pires de Sa, W.; Blanchard, P.; Dorling, S.; Dowson, S.; Fasoli, A.; Figueiredo, J.; Galvão, R.; Graham, M.; Jones, G.; Perez von Thun, C.; Porkolab, M.; Ruchko, L.; Testa, D.; Woskov, P.; Albarracin-Manrique, M. A.; Contributors, JET

    2016-11-01

    The main characteristics of toroidal Alfvén eigenmodes (TAEs) have been successfully investigated in JET (Joint European Torus) using the scheme of sweeping-frequency external excitation with tracking of the synchronously-detected resonances. However, due to technical limitations, only modes with low values of the toroidal mode number n≤slant 7 could be effectively excited and unambiguously identified by the Alfvén Eigenmode Active Diagnostic (AEAD) system. This represents a serious restriction because theoretical models indicate that medium-n Alfvén eigenmodes (AEs) are the most prone to be destabilized by energetic particles in ignited plasmas and, therefore, reliable measurement of their damping rates remains a relevant issue to properly access their effect in ignited plasmas. For this reason, a major upgrade of the AEAD system has been carried out aiming at providing a state-of-the-art excitation and real-time detection system for the planned DT campaign in JET. This required the development of a new type of radio frequency amplifier and filter, not commercially available, and also a control system. In this paper, details of the concepts that are relevant to understand the operation of the new system in the next experimental campaigns are presented, as are the results of numerical simulations to model its performance.

  6. Mixed poloidal-toroidal magnetic configuration and surface abundance distributions of the Bp star 36 Lyn★

    Science.gov (United States)

    Oksala, M. E.; Silvester, J.; Kochukhov, O.; Neiner, C.; Wade, G. A.; the MiMeS Collaboration

    2018-01-01

    Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman-Doppler imaging code INVERSLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.

  7. The common cryogenic test facility for the ATLAS barrel and end-cap toroid magnets

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requ...

  8. The Common Cryogenic Test Facility for the Atlas Barrel and End-Cap Toroid Magnet

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific re...

  9. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  10. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  11. Results from Active Excitation of Toroidal Alfvén Eigenmodes in Alcator C-Mod

    Science.gov (United States)

    Sears, J.; Burke, W.; Parker, R.; Snipes, J.; Tang, V.; Wolfe, S.; Fasoli, A.

    2006-10-01

    Toroidal Alfvén Eigenmodes (TAEs) are weakly damped MHD waves in tokamak plasmas. Interaction with fast particles such as fusion-born alphas can overcome the damping and lead to the spontaneous appearance of unstable TAEs. The Active MHD diagnostic on Alcator C-Mod is used to investigate the relationship between the TAE margin to instability and controllable plasma parameters. The diagnostic identifies the frequency response of the plasma in the TAE frequency range, fTAE=vA/4πqR. It perturbs the magnetic field with two antennas and detects the plasma response with an array of pick-up coils. The total damping rate and toroidal mode number of the TAE are extracted from a parametric model fitted to the frequency response. Particular attention is paid to signal processing techniques for minimizing uncertainty. The relationship between the TAE damping rate and ICRF heating is investigated with the aid of a neutral particle analyzer to quantify the fast ion population. Other parameters investigated for their effect on damping rate are collisionality, normalized ion gyro-radius, beta, triangularity, and the direction of the ∇B drift with respect to the x-point in diverted plasmas.

  12. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1; Diseno mecanico del encapsulado de las bobinas de campo toroidal del Tokamak TPM1

    Energy Technology Data Exchange (ETDEWEB)

    Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  13. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    Energy Technology Data Exchange (ETDEWEB)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [Deutsch] Untersucht werden magnetohydrodynamische Stroemungen in einer U-Umlenkung und in einer rechtwinkligen Umleknung, als Elemente eines selbstgekuehlten radial-toroidal-radialen Fluessigmetell-Blankets. Das angelegte Magnetfeld zeigt in Richtung des toroidalen Kanals und steht senkrecht zur radialen Richtung. Fuer grosse Hartmann-Zahlen teilt sich das Stroemungsgebiet in Kernstroemungsbereiche (Cores) und in Grenzschichten. Die magnetohydrodynamischen Gleichungen lassen sich zu einem System von partiellen Differentialgleichungen zur Bestimmung des elektrischen Potentials der Kanalwand und des Core-Drucks vereinfachen. Dieses System wird mit zwei verschiedenen Verfahren numerisch geloest. Bei der ersten Methode handelt es sich um ein iteratives Verfahren mit Iterationen zwischen den Werten des Wandpotentials und des Core-Drucks. Das zweite Verfahren ist ein allgemeines Verfahren zur Loesung der Kernstroemungsgleichungen in

  14. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni

    2005-01-01

    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  15. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.R. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-15

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document.

  16. A Dip Structure in the Intrinsic Toroidal Rotation Near the Edge of the Ohmic Plasmas in EAST

    DEFF Research Database (Denmark)

    Xu, Guosheng; Naulin, Volker; Wan, Baonian

    2011-01-01

    Ion's toroidal velocity, vt, in both the outermost 4 cm of the confined region and the scrap-off layer of Ohmic L-mode plasmas in EAST was measured using Mach probes. At about 1 cm inside the separatrix a local minimum in vt was observed, from which a cocurrent rotation increased both inwards and...

  17. The effect of toroidal plasma rotation on low-frequency reversed shear Alfvén eigenmodes in tokamaks

    NARCIS (Netherlands)

    J.W. Haverkort (Willem)

    2012-01-01

    htmlabstractThe influence of toroidal plasma rotation on the existence of reversed shear Alfvén eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence

  18. A novel system for rapid measurement of high-frequency magnetic properties of toroidal cores of different sizes

    CERN Document Server

    Derebasi, N; Moses, A J; Fox, D

    2000-01-01

    A novel system for power loss and B-H measurements on toroidal magnetic cores was built to operate up to 200 kHz. Measurement data taken using sophisticated software at 10 MHz sampling rate and 16-bit resolution shows the system is versatile and can be used to test a wide range of core sizes and materials with an error <+-3%.

  19. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.

  20. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  1. Curvature-induced defect unbinding and dynamics in active nematic toroids

    Science.gov (United States)

    Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto

    2018-01-01

    Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

  2. Nanocrystalline material in toroidal cores for current transformer: analytical study and computational simulations

    Directory of Open Access Journals (Sweden)

    Benedito Antonio Luciano

    2005-12-01

    Full Text Available Based on electrical and magnetic properties, such as saturation magnetization, initial permeability, and coercivity, in this work are presented some considerations about the possibilities of applications of nanocrystalline alloys in toroidal cores for current transformers. It is discussed how the magnetic characteristics of the core material affect the performance of the current transformer. From the magnetic characterization and the computational simulations, using the finite element method (FEM, it has been verified that, at the typical CT operation value of flux density, the nanocrystalline alloys properties reinforce the hypothesis that the use of these materials in measurement CT cores can reduce the ratio and phase errors and can also improve its accuracy class.

  3. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    -core toroidal transformer configuration for use in very high frequency power conversion applications. Two prototype transformers (10:10 and 12:12) have been implemented using conventional four layer printed circuit board technology. The transformers have been characterized by two port Z-parameters, which have...... power converters for very high frequencies. The magnetic coupling factor of both transformers is approx. 60 % and the mutual coupling inductance is dominant up to a frequency of 50 MHz.......The quest for higher power density has led to research of very high frequency (30-300 MHz) power converters. Magnetic components based on ferrite cores have limited application within this frequency range due to increased core loss. Air-core magnetics is a viable alternative as they do not exhibit...

  4. Aggregation on a toroidal domain of the random walk systems based on a record function

    Science.gov (United States)

    Amarie, Dragoş; Gherman, Corneliu; Ignat, Margareta

    2000-06-01

    In previous papers by Oprisan et al. the evolution of stochastic systems based on the record function was studied. The present study concerning this problem shows that the boundary conditions which appear in the system have an influence on the aggregation velocity only. Such a system, omitting these boundary conditions is studied. This is done by closing the environment into a toroidal one and studying the behavior of the system which is influenced only by the record function. We use the same record function as in a previous Letter [D. Amarie, S.A. Oprisan, M. Ignat, Phys. Lett. A 254 (1999) 112]. A new method of system aggregation analysis is introduced here. Theoretical arguments and numerical simulation supporting this idea are presented.

  5. Nonlinear electromagnetic formulation for particle simulation of lower hybrid waves in toroidal geometry

    CERN Document Server

    Bao, J; Kuley, A; Wang, Z X

    2016-01-01

    Electromagnetic particle simulation model has been formulated and verified for nonlinear processes of lower hybrid (LH) waves in fusion plasmas. Electron dynamics is described by the drift kinetic equation using either kinetic momentum or canonical momentum. Ion dynamics is treated as the fluid system or by the Vlasov equation. Compressible magnetic perturbation is retained to simulate both the fast and slow LH waves. Numerical properties are greatly improved by using electron continuity equation to enforce consistency between electrostatic potential and vector potential, and by using the importance sampling technique. The simulation model has been implemented in the gyrokinetic toroidal code (GTC), and verified for the dispersion relation and nonlinear particle trapping of the electromagnetic LH waves.

  6. Spectrum of multi-region-relaxed magnetohydrodynamic modes in topologically toroidal geometry

    CERN Document Server

    Dewar, Robert L; Tuen,; Hole, Matthew J

    2016-01-01

    A general formulation of the problem of calculating the spectrum of stable and unstable eigenmodes of linearized perturbations about a magnetically confined toroidal plasma is presented. The analysis is based on a new hydromagnetic dynamical model, Multi-region Relaxed Magnetohydrodynamics (MRxMHD), which models the plasma-magnetic field system as consisting of multiple regions, containing compressible Euler fluid and Taylor-relaxed magnetic field, separated by flexible ideal-MHD current sheets. This is illustrated using a first-principles analysis of a two-region slab geometry, with periodic boundary conditions to model the outer regions of typical tokamak or reversed-field pinch plasmas. The lowest and second-lowest eigenvalues in plasmas unstable to tearing and kink-tearing modes are calculated. Very near marginal stability the lowest mode obtained using the incompressible approximation to the kinetic energy normalization of the present study is shown to correspond to the eigenvalues found in previous stud...

  7. High Resolution Transmission Grating Spectrometer for Edge Toroidal Rotation Measurements of Tokamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A; May, M; Beiersdorfer, P; Magee, E; Lawrence, M; Terry, J; Rice, J

    2004-04-29

    We present a high throughput (f/3) visible (3500 - 7000 Angstrom) Doppler spectrometer for toroidal rotation velocity measurements of the Alcator C-Mod tokamak plasma. The spectrometer has a temporal response of 1 ms and a rotation velocity sensitivity of {approx}10{sup 5} cm/s. This diagnostic will have a tangential view and map out the plasma rotation at several locations along the outer half of the minor radius (r/a > 0.5). The plasma rotation will be determined from the Doppler shifted wavelengths of D{sub alpha} and magnetic and electric dipole transitions of highly ionized impurities in the plasma. The fast time resolution and high spectral resolving power are possible due to a 6' diameter circular transmission grating that is capable of {lambda}/{Delta}{lambda} {approx} 15500 at 5769 Angstrom in conjunction with a 50 {micro}m slit.

  8. The implementation of a toroidal limiter model into the gyrokinetic code ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Leerink, S.; Janhunen, S.J.; Kiviniemi, T.P.; Nora, M. [Euratom-Tekes Association, Helsinki University of Technology (Finland); Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Ogando, F. [Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2008-03-15

    The ELMFIRE full nonlinear gyrokinetic simulation code has been developed for calculations of plasma evolution and dynamics of turbulence in tokamak geometry. The code is applicable for calculations of strong perturbations in particle distribution function, rapid transients and steep gradients in plasma. Benchmarking against experimental reflectometry data from the FT2 tokamak is being discussed and in this paper a model for comparison and studying poloidal velocity is presented. To make the ELMFIRE code suitable for scrape-off layer simulations a simplified toroidal limiter model has been implemented. The model is be discussed and first results are presented. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Stabilization of ion fishbone activities by electron cyclotron resonance heating in a toroidal plasma

    Science.gov (United States)

    Chen, W.; Yu, L. M.; Shi, P. W.; Ma, R.; Ji, X. Q.; Jiang, M.; Zhu, X. L.; Shi, Z. B.; Yu, D. L.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Cao, J. Y.; Song, S. D.; Zhong, W. L.; He, H. D.; Dong, J. Q.; Ding, X. T.; Yan, L. W.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.

    2018-01-01

    We report an experimental result on the stabilization of the energetic–ion driven internal kink mode (ion fishbone) by electron cyclotron resonance heating (ECRH), observed for the first time in a toroidal plasma. The mode asserts itself a resistive branch close to the marginal stability point. The resulting fishbone mode depends not only on the injected power but also on the radial deposition location of ECRH, and the instability can be completely suppressed when the injected ECRH power exceeds certain threshold. Analysis by the fishbone dispersion relation, including the resistive effect, suggests that the magnetic Reynolds number plays a key role in the mode stabilization—it weakens the mode growth-rate and enhances the critical energetic–ion beta without changing the energetic–ion population. This ion fishbone stabilization mechanism can be important for future devices such as ITER, which has significant ECRH capability.

  10. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  11. Nonlinear evolution of the internal kink mode in toroidal geometry for shaped tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.A.; Carreras, B.A.; Charlton, L.A.; Lynch, V.E.; Hastie, R.J.; Hender, T.C.

    1987-09-01

    The nonlinear evolution of the internal kink mode is studied in toroidal geometry for noncircular cross section tokamak plasmas. The study is focused on very low shear and hollow q profiles with q(rho) greater than or equal to 1 for which the internal kink is unstable, in the latter case even at ..beta.. - 0. The nonlinear evolution is dominated by ideal magnetohydrodynamics (MHD), and the instability saturates, giving a quasi-helical shift to the magnetic axis. The nonlinear saturation is caused by increased field line bending. Time scales of 10/sup 3/ tau/sub Hp/ and axis shifts of 20% are reached when changes in q on the order of 3 x 10/sup -3/ from the marginal profile are produced. 25 refs., 27 figs.

  12. Elastic-plastic analysis of the toroidal field coil inner leg of the compact ignition tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Horie, T.

    1987-07-01

    Elastic-plastic analyses were made for the inner leg of the Compact Ignition Tokamak toroidal field (TF) coil, which is made of copper-Inconel composite material. From the result of the elastic-plastic analysis, the effective Young's moduli of the inner leg were determined by the analytical equations. These Young's moduli are useful for the three-dimensional, elastic, overall TF coil analysis. Comparison among the results of the baseline design (R = 1.324 m), the bucked pressless design, the 1.527-m major radius design, and the 1.6-m major radius design was also made, based on the elastic-plastic TF coil inner leg analyses.

  13. Experimental Verification of the Kruskal-Shafranov Stability Limit in Line-Tied Partial Toroidal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Xie, J.

    2011-07-19

    The stability properties of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas, 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).

  14. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.).

  15. Curvature driven motion of a bubble in a toroidal Hele-Shaw cell.

    Science.gov (United States)

    Mughal, A; Cox, S J; Schröder-Turk, G E

    2017-08-06

    We investigate the equilibrium properties of a single area-minimizing bubble trapped between two narrowly separated parallel curved plates. We begin with the case of a bubble trapped between concentric spherical plates. We develop a model which shows that the surface energy of the bubble is lower when confined between spherical plates than between flat plates. We confirm our findings by comparing against Surface Evolver simulations. We then derive a simple model for a bubble between arbitrarily curved parallel plates. The energy is found to be higher when the local Gaussian curvature of the plates is negative and lower when the curvature is positive. To check the validity of the model, we consider a bubble trapped between concentric tori. In the toroidal case, we find that the sensitivity of the bubble's energy to the local curvature acts as a geometric potential capable of driving bubbles from regions with negative to positive curvature.

  16. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    CERN Document Server

    Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A

    2016-01-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  17. Exact time-dependent states for throat quantized toroidal AdS black holes

    Science.gov (United States)

    Maeda, Hideki; Kunstatter, Gabor

    2017-11-01

    We investigate exact nonstationary quantum states of vacuum toroidal black holes with a negative cosmological constant in arbitrary dimensions using the framework of throat quantization pioneered by Louko and Mäkelä for Schwarzschild black holes. The system is equivalent to a harmonic oscillator on the half line, in which the central singularity is resolved quantum mechanically by imposing suitable boundary conditions that preserve unitarity. We identify two suitable families of exact time-dependent wave functions with Dirichlet or Neumann boundary conditions at the location of the classical singularity. We find that for highly nonstationary states of large-mass black holes, quantum fluctuations are not negligible in one family, while they are greatly suppressed in the other. The latter, therefore, may provide candidates for describing the dynamics of semiclassical black holes.

  18. Destabilization of Fast Magnetoacoustic Waves by Circulating Energetic Ions in Toroidal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.S. Belikov; Ya. I. Kolesnichenko; R. B. White

    2003-08-21

    An instability of fast magnetoacoustic waves (FMW) driven by circulating energetic ions in axisymmetric toroidal plasmas and characterized by the frequencies below the ion gyrofrequency is considered. An important role of the l=0 resonance (l is the number of a cyclotron harmonic) in the wave-particle interaction is revealed: It is shown that this resonance considerably extends an unstable region in the space of the pitch-angles of the energetic ions and the wave frequencies. The analysis is carried out for a ''slow'' instability, which has the growth rate less than the bounce frequency of the energetic ions. Specific examples relevant to the National Spherical Torus Experiment (NSTX) [J. Spitzer et al., Fusion Technol. 30 (1996) 1337], where instabilities of this kind were observed, are considered.

  19. Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code

    Energy Technology Data Exchange (ETDEWEB)

    S. Klasky; S. Ethier; Z. Lin; K. Martins; D. McCune; R. Samtaney

    2003-09-15

    We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory.

  20. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C., E-mail: chrystal@fusion.gat.com [Department of Physics, University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Burrell, K. H.; Lao, L. L.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution is improved. Significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.

  1. Induction spectrometry using an ultrafast hollow-cored toroidal-coil (HTC) detector

    Science.gov (United States)

    Arbelo, Yunieski; Bleiner, Davide

    2017-02-01

    Ultrafast photoelectron and photoion spectroscopy (as well as their combination known as "coincidence spectroscopy") utilizes detectors based on different electron multipliers such as microchannel plates or single-channel electron multipliers. These detectors have a few important limitations such as fast-signal distortion (low pass operation), mutually exclusive positive or negative mode, dead time, and requirement of trigger. A high-pass induction detector, based on a hollow-cored toroidal coil, was developed that overcomes the above-mentioned limitations. The frequency-dispersive response and linearity of different configurations were analyzed. It is shown that the response is enhanced for ultrafast electron signals, dependent on construction parameters, thus offering response flexibility by design. Kinetic energy distributions of pseudospark-induced electron pulses are characterized in order to validate the capabilities in real applications.

  2. High-throughput Toroidal Grating Beamline for Photoelectron Spectroscopy at CAMD.

    Science.gov (United States)

    Kizilkaya, O; Jiles, R W; Patterson, M C; Thibodeaux, C A; Poliakoff, E D; Sprunger, P T; Kurtz, R L; Morikawa, E

    A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50-120 eV and 100-240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation.

  3. Diffraction and coherence in breast ultrasound tomography: a study with a toroidal array

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLL.; Duric, Neb [KCI; Littrup, Peter [KCI

    2008-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. In this paper, two sets of experiments performed with a prototype ultrasound scanner on a phantom and a human breast in vivo are used to investigate the effects of diffraction and coherence in ultrasound tomography. Reconstructions obtained with transmission diffraction tomography (TDT) are compared with conventional reflection imaging and computerized ultrasound tomography showing a substantial improvement. The in vivo tests demonstrate that TDT can image the complex boundary of a cancer mass and suggest that it can reveal the anatomy of milk ducts and Cooper's ligaments.

  4. Toroidal inhomogeneity of plasma density fluctuations during ECR plasma heating in the L-2M stellarator

    Science.gov (United States)

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Stepakhin, V. D.; Kharchev, N. K.

    2017-11-01

    Correlation between short-wavelength ( k ⊥ ≈ 20-30 cm-1) and long-wavelength ( k ⊥ ≈ 1-2 cm-1) plasma density fluctuations in two poloidal cross sections of the stellarator chamber separated by 1/14 or 5/14 of the torus perimeter was studied using collective scattering of radiation of two 75-GHz gyrotrons and radiation of a 37-GHz Doppler reflectometer at an ECR heating power density of 1.6-3.2 MW/m3. It is found that excitation of turbulent fluctuations is bursty in character and that fluctuations excited in different L-2M cross sections are uncorrelated. It is shown that the energy of turbulent fluctuations is modulated by a low frequency of 5-20 kHz. An idea is put forward that anomalous transport is toroidally inhomogeneous.

  5. NIMROD calculations of energetic particle driven toroidal Alfvén eigenmodes

    Science.gov (United States)

    Hou, Yawei; Zhu, Ping; Kim, Charlson C.; Hu, Zhaoqing; Zou, Zhihui; Wang, Zhengxiong; Nimrod Team

    2018-01-01

    Toroidal Alfvén eigenmodes (TAEs) are gap modes induced by the toroidicity of tokamak plasmas in the absence of continuum damping. They can be excited by energetic particles (EPs) when the EP drive exceeds other dampings, such as electron and ion Landau damping, and collisional and radiative damping. A TAE benchmark case, which was proposed by the International Tokamak Physics Activity group, is studied in this work. The numerical calculations of linear growth of TAEs driven by EPs in a circular-shaped, large aspect ratio tokamak have been performed using the Hybrid Kinetic-MHD (HK-MHD) model implemented in the NIMROD code. This HK-MHD model couples a δf particle-in-cell representation of EPs with the 3D MHD representation of the bulk plasma through moment closure for the momentum conservation equation. Both the excitation of TAEs and their transition to energetic particle modes (EPMs) have been observed. The influence of EP density, temperature, density gradient, and position of the maximum relative density gradient, on the frequency and the growth rate of TAEs are obtained, which are consistent with those from the eigen-analysis calculations, kinetic-MHD, and gyrokinetic simulations for an initial Maxwellian distribution of EPs. The relative pressure gradient of EP at the radial location of the TAE gap, which represents the drive strength of EPs, can strongly affect the growth rate of TAEs. It is demonstrated that the mode transition due to EP drive variation leads to not only the change of frequency but also the change of the mode structure. This mechanism can be helpful in understanding the nonlinear physics of TAE/EPM, such as frequency chirping.

  6. Upgrade of DIII-D toroidal magnetic field power supply controls

    Energy Technology Data Exchange (ETDEWEB)

    Petrach, P.M.; Rouleau, A.R.; McNulty, R.D.; Patrick, D.B.; Walin, J.L.

    1993-11-01

    The toroidal magnetic field power supply for the DIII-D tokamak is of the 12 pulse line commutated variety. It consists of four individual modules and a main system control cabinet which are combined to deliver 127,000 A and 1000 V to the toroidal field coil. The modules are connected in a series-parallel configuration but can be run alone or two at a time as well. Normally on DIII-D experiments, the series-parallel configuration is required. The original design provided each individual module with its own voltage and current control loop and a main control loop. A problem with this design was that the individual control loops would cause a current sharing imbalance in the parallel modules if the calibrated loops drifted by the slightest amount. It was determined that individual control loops were not needed and a single phase lock firing circuit was employed in the system cabinet with fiber optic links to the modules for gate drive signals. Since all four modules have to be on line for DIII-D to operate, a problem in any of the five E&I control loops resulted in the supply, and, therefore, the tokamak, being idled. By reducing the number of control loops to one, the sharing problem was eliminated, as well as 4 out of 5 potential control failures. The original supply employed relay logic for sequence control and fault monitoring. There were over 130 relays in each module plus an additional 100 in the system cabinet. The combination of the number of relays with the required interconnecting wiring, the age of the supply, the vibrations of the cabinets and the harsh environment, resulted in a continuously escalating number of phantom, and often intermittent, faults. The fault and sequence logic relays were replaced by a new Programmable Logic Controller (PLC). All existing interconnect wire was removed and replaced with multiconductor cables that connect directly from fault sensors and input devices to the PLC.

  7. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

    Science.gov (United States)

    Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-02-01

    H-mode is obtained at A˜ 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to {{H}98y,2}˜ 1 . The L-H power threshold {{P}\\text{LH}} increases with density, and there is no {{P}\\text{LH}} minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured {{P}\\text{LH}} is ˜ 15 × higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and {{P}\\text{LH}}/{{P}\\text{ITPA08}} increases as A\\to 1 . Small ELMs are present at low input power {{P}\\text{IN}}˜ {{P}\\text{LH}} , with toroidal mode number n≤slant 4 . At {{P}\\text{IN}}\\gg {{P}\\text{LH}} , they transition to large ELMs with intermediate 5. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.

  8. Toroidal Rotation and Core Ion Confinement with RF Heating in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    deGrassie, J.S.; Greenfield, C.M.; Baker, D.R.; Burrell, K.H.; Lin-Liu, Y.R.; Lohr, J.; Luce, T.C.; Petty, C.C.; Prater, R.; Staebler, G.M.; Heidbrink, W.W.; Rice, B.W. Rice, Mau, T.K.; Porkolab, M.

    1999-07-01

    Shear in the E x B flow velocity can stabilize turbulent transport [1], and so it is of interest to understand the physics behind electric field generation and modification in the tokamak. In DIII-D the core radial electric field in many regimes is generated by flow velocities driven by momentum input from neutral beam injection (NBI). In a variety of conditions it is observed that direct electron heating is accompanied by a reduction in the NBI driven toroidal rotation velocity, U{sub {phi}}, and the ion temperature, T{sub i}, primarily in the core, {rho} <0.5 (where {rho} is a radial coordinate of the normalized toroidal flux). This electron heating can be done with either electron cyclotron heating (ECH) or fast wave electron heating (FWEH). Both can be accompanied by the reduction in U{sub {phi}} and T{sub i} [2-4]. Details of the parallel wavenumber (k//) spectrum of the launched rf do not seem to be important in either case for the effect to exist. Reductions are observed for EC waves launched with nonzero k// for current drive or launched radially with k//=0; and for FWEH with waves directed either co or counter, using the DIII-D four strap antennas [5], This universality indicates that increased electron temperature, T{sub e}, is increasing ion momentum and thermal transport, at least in the parameter regimes of these experiments. It is also possible that nonambipolar transport of resonantly heated particles is playing a role. To date, the great majority of the DIII-D experiments have been conducted with the rf target discharges driven by co-injected NBI.

  9. The toroidal mirror for single-pulse experiments on ID09B

    Science.gov (United States)

    Eybert, Laurent; Wulff, Michael; Reichenbach, Wolfgang; Plech, A.; Schotte, F.; Gagliardini, E.; Zhang, Lin; Hignette, Olivier; Rommeveaux, Amparo; Freund, Andreas K.

    2002-12-01

    ID09 is a dual-purpose beamline dedicated to time-resolved and high-pressure experiments. The time-resolved experiments use a high-speed chopper to isolate single pulses of x-rays. The chopper is installed near the sample (focal spot) and the shortest opening time depends on the height of the tunnel in the chopper, i.e. the sharpness of the vertical focus. In the 16-bunch mode, the opening window of the chopper has to be smaller than 0.352 μs in order to isolate single pulses of x-rays. This requires reducing the height of the tunnel to 0.143 mm. To ensure a reasonable transmission though the tunnel, we have designed a very precise toroidal mirror that focuses the beam 22.4 m downstream with a magnification M = 0.677. The 1.0 m long silicon mirror is curved by gravity into a nearly perfect toroid with a meridional radius of 9.9 km. The curvature is fine-tuned by a stepper motor that pushes via a spring from below the mirror. The overall figure error from the gravity sag and the corrective force is less than 0.3 μrad. The polishing error is 0.7 μrad (rms) averaged over the central 450 mm of the 1000 mm long mirror. The measured size of the polychromatic focus is 0.100 mm × 0.070 mm (h x v) in agreement with the prediction from the ESRF long trace profiler data. The small focal spot, which integrates the full central cone of the U17 undulator, is the result of very high optical quality, curvature fine-tuning, strain-free mount, vibration free cooling and careful alignment.

  10. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  11. β-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Luca Grumolato

    Full Text Available The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4 inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2 family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the

  12. Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection.

    Science.gov (United States)

    Bretin, Alexis; Carrière, Jessica; Dalmasso, Guillaume; Bergougnoux, Agnès; B'chir, Wafa; Maurin, Anne-Catherine; Müller, Stefan; Seibold, Frank; Barnich, Nicolas; Bruhat, Alain; Darfeuille-Michaud, Arlette; Nguyen, Hang Thi Thu

    2016-05-03

    The intestinal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC). Upon AIEC infection, autophagy is induced in host cells to restrain bacterial intracellular replication. The underlying mechanism, however, remains unknown. Here, we investigated the role of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway in the autophagic response to AIEC infection. We showed that infection of human intestinal epithelial T84 cells with the AIEC reference strain LF82 activated the EIF2AK4-EIF2A-ATF4 pathway, as evidenced by increased phospho-EIF2AK4, phospho-EIF2A and ATF4 levels. EIF2AK4 depletion inhibited autophagy activation in response to LF82 infection, leading to increased LF82 intracellular replication and elevated pro-inflammatory cytokine production. Mechanistically, EIF2AK4 depletion suppressed the LF82-induced ATF4 binding to promoters of several autophagy genes including MAP1LC3B, BECN1, SQSTM1, ATG3 and ATG7, and this subsequently inhibited transcription of these genes. LF82 infection of wild-type (WT), but not eif2ak4(-/-), mice activated the EIF2AK4-EIF2A-ATF4 pathway, inducing autophagy gene transcription and autophagy response in enterocytes. Consequently, eif2ak4(-/-) mice exhibited increased intestinal colonization by LF82 bacteria and aggravated inflammation compared to WT mice. Activation of the EIF2AK4-EIF2A-ATF4 pathway was observed in ileal biopsies from patients with noninflamed CD, and this was suppressed in inflamed CD, suggesting that a defect in the activation of this pathway could be one of the mechanisms contributing to active disease. In conclusion, we show that activation of the EIF2AK4-EIF2A-ATF4 pathway upon AIEC infection serves as a host defense mechanism to induce functional autophagy to control AIEC intracellular replication.

  13. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Cline, David B. [Univ. of California, Los Angeles, CA (United States)

    2016-09-07

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  14. Advanced commercial tokamak study

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  15. Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas

    Science.gov (United States)

    Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.

    2018-02-01

    The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature

  16. On the use of a toroidal mirror to focus neutrons at the ILL neutron spin echo spectrometer IN15

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, C. [Institut Laue-Langevin, Grenoble (France); Alefeld, B. [Forschungszentrum Juelich GmbH, Juelich (Germany); Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)] [and others

    1997-09-01

    The IN15 neutron spin echo spectrometer at the Institut Laue-Langevin (Grenoble) has been designed to accomodate a toroidal focusing mirror. This mirror will be used to increase the intensity at the sample position for measurements at long neutron wavelengths and to perform measurements in the low q-range (10{sup -3} {angstrom}{sup -1}). This paper summarizes the results of ray-tracing simulations for the toroidal mirror system. These calculations were performed in order to assess the effects of the neutron wavelength, gravitational fall, wavelength resolution and spherical aberrations on the quality of the focused beam. The gain in flux that can be expected from the focusing geometry is estimated. The recent installation and characterisation of the mirror is also briefly described.

  17. Measured and simulated poloidal asymmetries of the FTU S.O.L. in the toroidal limiter configuration

    Science.gov (United States)

    Leigheb, M.; Ridolfini, V. Pericoli; Zagorski, R.

    The scrape-off layer (SOL) of FTU in the magnetic configuration generated by a TZM (Molybdenum) toroidal limiter has been studied by an array of reciprocating Langmuir probes extended over a large part of the poloidal angle, and the results have been compared with the 2-dimensional multifluid SOL code EPIT. A comparison with the previous poloidal limiter configuration with the same main plasma conditions, showed at the last closed magnetic surface (LCMS) longer and more poloidally uniform connection lengths, and a corresponding better uniformity of SOL plasma parameters. Asymmetry of electron density is observed, which can be associated with the recycling of plasma near the toroidal limiter plates in a configuration with long connection lengths. Electron temperature appears to be less dependent of power entering the SOL than in the old poloidal limiter configuration. Experimentally observed dependence of the edge plasma condition on Lcon has been confirmed by the results of the 2D code EPIT.

  18. Nutritional Stress Induced by Tryptophan-Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid Transporter Profile in Tumor Cells.

    Science.gov (United States)

    Timosenko, Elina; Ghadbane, Hemza; Silk, Jonathan D; Shepherd, Dawn; Gileadi, Uzi; Howson, Lauren J; Laynes, Robert; Zhao, Qi; Strausberg, Robert L; Olsen, Lars R; Taylor, Stephen; Buffa, Francesca M; Boyd, Richard; Cerundolo, Vincenzo

    2016-11-01

    Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in ATF4-dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake. Importantly, SLC1A5 failed to be upregulated in resting human T cells kept under low tryptophan conditions but was enhanced upon cognate antigen T-cell receptor engagement. Our results highlight key differences in the ability of tumor and T cells to adapt to tryptophan starvation and provide important insights into the poor prognosis of tumors coexpressing IDO and SLC1A5. Cancer Res; 76(21); 6193-204. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4) which has implications for the treatment of proteasome inhibitor-resistant multiple myeloma.

    Science.gov (United States)

    Dunlap, Katherine M; Bartee, Mee Y; Bartee, Eric

    2015-01-01

    The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor-relapsed or -refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF)4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1.

  20. Local properties of magnetic reconnection in nonlinear resistive- and extended-magnetohydrodynamic toroidal simulations of the sawtooth crash

    Science.gov (United States)

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.

    2017-02-01

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.

  1. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  2. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  3. Frequency spectrum of toroidal Alfv\\'en mode in a neutron star with Ferraro's form of nonhomogeneous poloidal magnetic field

    OpenAIRE

    Bastrukov, S. I.; Chang, H. -K.; Molodtsova, I. V.; Wu, E. H.; Chen, G. -T.; Lan, S. -H.

    2009-01-01

    Using the energy variational method of magneto-solid-mechanical theory of a perfectly conducting elastic medium threaded by magnetic field, the frequency spectrum of Lorentz-force-driven global torsional nodeless vibrations of a neutron star with Ferraro's form of axisymmetric poloidal nonhomogeneous internal and dipole-like external magnetic field is obtained and compared with that for this toroidal Alfv\\'en mode in a neutron star with homogeneous internal and dipolar external magnetic field...

  4. NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2α-ATF4 signalling in breast cancer.

    Science.gov (United States)

    Gupta, A; Hossain, M M; Miller, N; Kerin, M; Callagy, G; Gupta, S

    2016-11-10

    XBP1 is a multitasking transcription factor and a key component of the unfolded protein response (UPR). Despite the wealth of knowledge about the role of XBP1 in luminal/ER-positive breast cancer, not much is known about the effectors of XBP1 in this context. Here we show that NCOA3 is a transcriptional target of XBP1. We observed increased expression of NCOA3 during conditions of UPR and oestrogen (E2) stimulation. Further investigations revealed a role for the IRE1-XBP1 axis in the induction of NCOA3 during UPR and oestrogen signalling. We identify a novel role for NCOA3 in activation of PERK-ATF4 axis during UPR where knockdown of NCOA3 compromised the optimal activation of the PERK-ATF4 pathway. We found that NCOA3 is required for induction of XBP1 during E2 stimulation and uncover a positive feedback regulatory loop that maintains high levels of NCOA3 and XBP1 in breast cancer. Furthermore, upregulated NCOA3 was required for XBP1-mediated resistance to antihormonal agents. Increased expression of NCOA3 was associated with poor prognosis and higher levels of XBP1-S in breast cancer tissues. Our results uncover a novel steroid hormone-independent role for NCOA3 in UPR signalling. Further we identify a positive feedback regulatory loop consisting of XBP1 and NCOA3 that maintains high levels of NCOA3 and XBP1 expression in breast cancer tissues. Taken together our data identify XBP1-NCOA3 axis that regulates cell fate decisions in ER-positive breast cancer cells.

  5. Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein.

    Science.gov (United States)

    Pullikotil, Philomena; Vincent, Martin; Nichol, Stuart T; Seidah, Nabil G

    2004-04-23

    Processing of membrane-bound transcription factors such as sterol regulatory element-binding proteins (SREBPs) and the ER-stress response factor ATF6, and glycoproteins of some hemorrhagic fever viruses are initiated by the proprotein convertase SKI-1/S1P. So far, no cellular protein-based inhibitor of the hydrophobic-amino acid specific SKI-1 is known. The prosegment of the basic-amino acid specific convertases (e.g. furin and PC5) or alpha(1)-PDX, a variant of alpha(1)-antitrypsin (alpha(1)-AT) exhibiting an RIPR(358) sequence at the reactive site loop, were shown to potently inhibit these secretory proteinases. Accordingly, we tested the SKI-1-inhibitory potential of various point mutants of either the 198 amino acid preprosegment of SKI-1-(1-198) or alpha(1)-AT. Transient transfections data showed that, out of numerous mutants studied, the R134E prosegment mutant or the alpha(1)-AT reactive site loop variants RRVL(358), RRYL(358) and RRIL(358) are the best specific cellular inhibitors of SKI-1. The observed inhibition of the processing of endogenous SREBP-2, exogenous ATF6 and a PDGF-A (RRLL(86)) variant were >55% and reach approximately 80% in stable transfectants. We also show that SKI-1 forms SDS-stable complexes with these alpha(1)-AT variants, but not with wild-type alpha(1)-AT or alpha(1)-PDX. Finally, these inhibitors were also shown to affect the processing and stability of the Crimean-Congo hemorrhagic fever virus glycoprotein.

  6. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Gopinathan Pillai Sreekanth

    Full Text Available Dengue virus (DENV infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs, including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.

  7. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Rong Peng

    Full Text Available Expression of sterol carrier protein-2 (SCP-2 in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream -1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the -1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the -1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled -1.6/-1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP and activating transcription factor-2 (ATF-2, antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between -1.6 to -1.3 kb 5' upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression.

  8. Thermal ablation produced using a surgical toroidal high-intensity focused ultrasound device is independent from hepatic inflow occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Melodelima, D; N' Djin, W A; Favre-Cabrera, J; Parmentier, H; Rivoire, M; Chapelon, J Y [Inserm, U556, Lyon, F-69003 (France); Universite de Lyon, Lyon, F-69003 (France)

    2009-10-21

    In the liver, the efficacy of radiofrequency or high-intensity focused ultrasound (HIFU) ablation is impaired by blood perfusion. This can be overcome by hepatic inflow occlusion. Here we report the in vivo evaluation of ablations performed in the liver using a surgical toroidal HIFU device used during an open procedure with and without hepatic inflow occlusion. The HIFU device was composed of 256 toroidal-shaped emitters working at 3 MHz and an integrated ultrasound imaging probe working at 7.5 MHz. Using an intermittent Pringle maneuver (IPM), thermal ablations were created in three pigs with hepatic inflow occlusion (IPM group) and in three pigs with normal perfusion (NoIPM group). The ablations were studied on sonograms, macroscopically and microscopically 14 days after the treatment. In the NoIPM group, the average coagulated volume obtained after a 40 s exposure was 7.4 {+-} 3.8 cm{sup 3} (2.2-16.6). In the IPM group, the average ablated volume was 6.3 {+-} 2.9 cm{sup 3} (2.6-12.1). There was no significant difference between the two groups in terms of ablated volume (p = 0.25), diameter (p = 0.37) or depth (p = 0.61). Therefore, a toroidal-shaped HIFU device allows treatment in the liver that can be considered as independent from hepatic inflow occlusion.

  9. Mechanical Hybrid KERS Based on Toroidal Traction Drives: An Example of Smart Tribological Design to Improve Terrestrial Vehicle Performance

    Directory of Open Access Journals (Sweden)

    Francesco Bottiglione

    2013-01-01

    Full Text Available We analyse in terms of efficiency and traction capabilities a recently patented traction drive, referred to as the double roller full-toroidal variator (DFTV. We compare its performance with the single roller full-toroidal variator (SFTV and the single roller half-toroidal variator (SHTV. Modeling of these variators involves challenging tribological issues; the traction and efficiency performances depend on tribological phenomena occurring at the interface between rollers and disks, where the lubricant undergoes very severe elastohydrodynamic lubrication regimes. Interestingly, the DFTV shows an improvement of the mechanical efficiency over a wide range of transmission ratios and in particular at the unit speed ratio as in such conditions in which the DFTV allows for zero-spin, thus strongly enhancing its traction capabilities. The very high mechanical efficiency and traction performances of the DFTV are exploited to investigate the performance of a flywheel-based Kinetic Energy Recovery System (KERS, where the efficiency of the variator plays an important role in determining the overall energy recovery performance. The energy boost capabilities and the round-trip efficiency are calculated for the three different variators considered in this study. The results suggest that the energy recovery potential of the mechanical KERS can be improved with a proper choice of the variator.

  10. Magnetohydrodynamic investigations of a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, J. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany); Barleon, L. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany); Bucenieks, I. [Latvian Academy of Sciences, IP Salaspils 1, 229021 Riga (Latvia); Buehler, L. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany); Lenhart, L. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany); Malang, S. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany); Molokov, S. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany); Platnieks, I. [Latvian Academy of Sciences, IP Salaspils 1, 229021 Riga (Latvia); Stieglitz, R. [Association KfK-EURATOM, Kernforschungszentrum Karlsruhe, IATF, Postfach 3640, D-76021 Karlsruhe (Germany)

    1995-03-01

    For self-cooled liquid metal blankets, the magnetohydrodynamic (MHD) pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-related Pb-17Li blanket, where the coolant flows downwards in rear poloidal ducts; turned around by 180 at the blanket bottom; is diverted from poloidal ducts into short radial channels which feed to toroidal First wall coolant ducts; flows through the subsequent radial channels; is collected again in poloidal channels and leaves the blanket segment at the blanket top. To reduce the pressure drop and to decouple electrically parallel channels, flow channel inserts are used for all the ducts except the first wall ducts. A previous pressure drop assessment resulted in significant values for duct geometries with flow distribution or collection, and multichannel effects for the system of U-bends. As a result of the uncertainty of these assessments, corresponding investigations were carried out recently. Characteristic results are presented in this paper. It is shown that, for both geometries, the pressure drops are considerably lower than those previously assessed. First results from experiments on the velocity distribution in a radial-toroidal-radial U-bend are also presented. Here, it is shown that, with an increasing interaction parameter, the liquid preferentially flows close to the First wall. Additionally, a pair of strong vortices was observed in a toroidal duct. Both effects are supposed very favourable for heat transfer. (orig.).

  11. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, J.; Barleon, L.; Buehler, L. [IATF, Karlsruhe (Germany)] [and others

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segment at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.

  12. Toroidal momentum transport in a tokamak caused by symmetry breaking parallel derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Sung, T.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Migliano, P.; Peeters, A. G. [Physics Department, University of Bayreuth, Universitaetsstrasse 30 Bayreuth (Germany); Casson, F. J.; Fable, E. [Max Planck Institut fuer Plasmaphysik, EURATOM association, Boltzmannstrasse 2, 85748 Garching (Germany)

    2013-04-15

    A new mechanism for toroidal momentum transport in a tokamak is investigated using the gyro-kinetic model. First, an analytic model is developed through the use of the ballooning transform. The terms that generate the momentum transport are then connected with the poloidal derivative of the ballooning envelope, which are one order smaller in the normalised Larmor radius, compared with the derivative of the eikonal. The mechanism, therefore, does not introduce an inhomogeneity in the radial direction, in contrast with the effect of profile shearing. Numerical simulations of the linear ion temperature gradient mode with adiabatic electrons, retaining the finite {rho}{sub *} effects in the E Multiplication-Sign B velocity, the drift, and the gyro-average, are presented. The momentum flux is found to be linear in the normalised Larmor radius ({rho}{sub *}) but is, nevertheless, generating a sizeable counter-current rotation. The total momentum flux scales linear with the aspect ratio of the considered magnetic surface, and increases with increasing magnetic shear, safety factor, and density and temperature gradients.

  13. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    Science.gov (United States)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  14. Design study of toroidal magnets for tokamak experimental power reactors. [NbTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stekly, Z.J.J.; Lucas, E.J. (eds.)

    1976-12-01

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed.

  15. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    Science.gov (United States)

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  16. Massless spectra and gauge couplings at one-loop on non-factorisable toroidal orientifolds

    Directory of Open Access Journals (Sweden)

    Mikel Berasaluce-González

    2018-01-01

    Full Text Available So-called ‘non-factorisable’ toroidal orbifolds can be rewritten in a factorised form as a product of three two-tori by imposing an additional shift symmetry. This finding of Blaszczyk et al. [1] provides a new avenue to Conformal Field Theory methods, by which the vector-like massless matter spectrum – and thereby the type of gauge group enhancement on orientifold invariant fractional D6-branes – and the one-loop corrections to the gauge couplings in Type IIA orientifold theories can be computed in addition to the well-established chiral matter spectrum derived from topological intersection numbers among three-cycles. We demonstrate this framework for the Z4×ΩR orientifolds on the A3×A1×B2-type torus. As observed before for factorisable backgrounds, also here the one-loop correction can drive the gauge groups to stronger coupling as demonstrated by means of a four-generation Pati–Salam example.

  17. Optical Image Encryption Using Devil’s Vortex Toroidal Lens in the Fresnel Transform Domain

    Directory of Open Access Journals (Sweden)

    Hukum Singh

    2015-01-01

    Full Text Available We have carried out a study of optical image encryption in the Fresnel transform (FrT domain, using a random phase mask (RPM in the input plane and a phase mask based on devil’s vortex toroidal lens (DVTL in the frequency plane. The original images are recovered from their corresponding encrypted images by using the correct parameters of the FrT and the parameters of DVTL. The use of a DVTL-based structured mask enhances security by increasing the key space for encryption and also aids in overcoming the problem of axis alignment associated with an optical setup. The proposed encryption scheme is a lensless optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a. The scheme has been validated for a grayscale and a binary image. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE between the recovered and the original images. We have also investigated the scheme’s sensitivity to the encryption parameters and examined its robustness against occlusion and noise attacks.

  18. Segmented Limiter Biasing and Toroidal Current Drive on the STOR-M Tokamak

    Science.gov (United States)

    White, D.; Hirose, A.; Xiao, C.; Furkal, E.

    1996-11-01

    A segmented limiter has recently been installed on the upgraded STOR-M tokamak (R/a=46/12 cm, B_t<1 T, I_p<= 50 kA, barn_e=(0.5 - 1)×10^13 cm-3). The limiter consists of two sets of four stainless steel plates mounted back to back in a ceramic housing. Each plate is electrically isolated from its neighbours, and can be individually biased with respect to the chamber wall by one of eight independent capacitor banks (15 mF, 900 V). Using a voltage sweeper connected to a double probe, measurements of the DC value and fluctuation level in electron temperature and density will be taken, to reveal the effects of limiter biasing on the plasma parameters at the edge and in the SOL. In particular, poloidal asymmetry of plasma parameters under various biasing configurations will be studied. In addition, feasibility of driving toroidal current with the segmented limiter will be investigated.

  19. Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W. [JET Joint Undertaking, Abingdon (United Kingdom); Berk, H.L. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1996-12-17

    A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.

  20. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    Science.gov (United States)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.