WorldWideScience

Sample records for ataxic cacna1a-mutant mouse

  1. New ataxic tottering-6j mouse allele containing a Cacna1a gene mutation.

    Directory of Open Access Journals (Sweden)

    Weidong Li

    Full Text Available Voltage-gated Ca(2+ (Ca(v channels control neuronal functions including neurotransmitter release and gene expression. The Cacna1a gene encodes the α1 subunit of the pore-forming Ca(v2.1 channel. Mice with mutations in this gene form useful tools for defining channel functions. The recessive ataxic tottering-6j strain that was generated in the Neuroscience Mutagenesis Facility at The Jackson Laboratory has a mutation in the Cacna1a gene. However, the effect of this mutation has not been investigated in detail. In this study, mutation analysis shows a base substitution (C-to-A in the consensus splice acceptor sequence linked to exon 5, which results in the skipping of exon 5 and the splicing of exon 4 directly to exon 6. The effect of this mutation is expected to be severe as the expressed α1 subunit protein lacks a significant part of the S4-S5 linker, S5, and part of S5-S6 linker in domain I. Tottering-6j mice display motor dysfunctions in the footprint, rotating rod, and hind-limb extension tests. Although cytoarchitecture of the mutant brains appears normal, tyrosine hydroxylase was persistently expressed in cerebellar Purkinje cells in the adult mutant mice. These results indicate that tottering-6j is a useful model for functional studies of the Ca(v2.1 channel.

  2. [Pathophysiology of sensory ataxic neuropathy].

    Science.gov (United States)

    Sobue, G

    1996-12-01

    The main lesions of sensory ataxic neuropathy such as chronic idiopathic sensory ataxic neuropathy, (ISAN), carcinomatous neuropathy, Sjögren syndrome-associated neuropathy and acute autonomic and sensory neuropathy (AASN) are the large-diameter sensory neurons and dosal column of the spinal cord and the large myelinated fibers in the peripheral nerve trunks. In addition, afferent fibers to the Clarke's nuclei are also severely involved, suggesting Ia fibers being involved in these neuropathies. In NT-3 knockout mouse, an animal model of sensory ataxia, large-sized la neurons as well as muscle spindle and Golgi tendon organs are depleted, and are causative for sensory ataxia. Thus, the proprioceptive Ia neurons would play a role in pathogenesis of sensory ataxia in human sensory ataxic neuropathies, but the significance of dorsal column involvement in human sensory ataxia is still needed to evaluate.

  3. Transient developmental Purkinje cell axonal torpedoes in healthy and ataxic mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Lovisa Ljungberg

    2016-11-01

    Full Text Available Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wildtype and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11. This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occured largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6, and found elevated disease

  4. Perceptual Ratings of Subgroups of Ataxic Dysarthria

    Science.gov (United States)

    Spencer, Kristie A.; France, Ashley A.

    2016-01-01

    Background: The speech characteristics of ataxic dysarthria are known to be quite diverse. The varied presentation of this dysarthria challenges researchers and clinicians alike, and brings into question whether it is a single entity. While the possibility of subtypes of ataxic dysarthria has been suggested, the nature of these putative groups…

  5. Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice.

    Science.gov (United States)

    Chanda, Mona Lisa; Tuttle, Alexander H; Baran, Inna; Atlin, Cori; Guindi, Daniella; Hathaway, Georgia; Israelian, Nyrie; Levenstadt, Jeremy; Low, Daniel; Macrae, Lynn; O'Shea, Louise; Silver, Alex; Zendegui, Elaina; Mariette Lenselink, A; Spijker, Sabine; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Mogil, Jeffrey S

    2013-08-01

    Migraine is a highly prevalent, disabling and complex episodic brain disorder whose pathogenesis is poorly understood, due in part to the lack of valid animal models. Here we report behavioral evidence of hallmark migraine features, photophobia and unilateral head pain, in transgenic knock-in mice bearing human familial hemiplegic migraine, type 1 (FHM-1) gain-of-function missense mutations (R192Q or S218L) in the Cacna1a gene encoding the CaV2.1 calcium channel α1 subunit. Photophobia was demonstrated using a modified elevated plus maze in which the safe closed arms were brightly illuminated; mutant mice avoided the light despite showing no differences in the standard (anxiety) version of the test. Multiple behavioral measures suggestive of spontaneous head pain were found in 192Q mutants subjected to novelty and/or restraint stress. These behaviors were: (1) more frequent in mutant versus wildtype mice; (2) lateralized in mutant but not in wildtype mice; (3) more frequent in females versus males; and (4) dose-dependently normalized by systemic administration of 2 different acute analgesics, rizatriptan and morphine. Furthermore, some of these behaviors were found to be more frequent and severe in 218L compared to 192Q mutants, consistent with the clinical presentation in humans. We suggest that Cacna1a transgenic mice can experience migraine-related head pain and can thus serve as unique tools to study the pathogenesis of migraine and test novel antimigraine agents.

  6. Vitamin B nutrition in the Nigerian tropical ataxic neuropathy.

    OpenAIRE

    1985-01-01

    Assessment of nutritional status of vitamin B components by plasma or blood levels indicated riboflavin deficiency and possibly thiamine deficiency in Nigerian patients who suffered from tropical ataxic neuropathy and neurologically normal Nigerians who subsisted on predominant cassava diet. Serum levels of folate, niacin, pyridoxine and panthothenic acid were normal. Vitamin deficiencies probably are minor factors, if any, in the pathogenesis of tropical ataxic neuropathy in Nigerians.

  7. Therapeutic Intervention in a Case of Ataxic Dysarthria Associated with a History of Amateur Boxing

    Science.gov (United States)

    McMicken, Betty L.; Ostergren, Jennifer A.; Vento-Wilson, Margaret

    2011-01-01

    The goals of this study were to (a) describe the presenting features of ataxic dysarthria present in a participant with a long history of amateur boxing, (b) describe a novel application of behavioral principles in the treatment of this participant, and (c) discuss implications in the treatment of ataxic dysarthria secondary to boxing. The…

  8. Ataxic gait following total gastrectomy for gastric cancer

    Science.gov (United States)

    Hwang, Chang Ho; Park, Dong Jin; Kim, Gyu Yeol

    2016-01-01

    A 58-year-old woman, who had undergone total gastrectomy for early gastric cancer 9 years previously, visited the outpatient clinic complaining of progressive difficulty in walking for 15 d. Laboratory examinations showed macrocytic anemia and a decreased serum vitamin B12 concentration and increased serum concentrations of folate, vitamin E and copper. Magnetic resonance imaging showed multifocal high signal intensities along the posterior column of the cervical and thoracic spinal cord. Treatment consisted of intramuscular injections of vitamin B12 for 7 d, which increased her serum level of vitamin B12 to normal. This was followed by weekly intramuscular injections of vitamin B12 for another 2 wk and oral administration of vitamin B12 three times per day. After comprehensive rehabilitation for 4 wk, she showed sufficient improvements in strength and ataxic gait, enabling her to return to her normal daily activities. PMID:27729749

  9. Pyridoxine-induced sensory ataxic neuronopathy and neuropathy: revisited.

    Science.gov (United States)

    Kulkantrakorn, Kongkiat

    2014-11-01

    High dose pyridoxine is neurotoxic. Previous case reports were sparse and little is known about the clinical and electrodiagnostic findings. Three patients with pyridoxine-induced sensory ataxic neuropathy were studied and a review of the involved literature was performed. Three patients, aged 80, 83 and 83 years old, presented with sensory ataxia for 3-8 months. Examination showed signs of polyneuropathy and sensory ataxia. Six hundred milligrams of pyridoxine was consumed each day for 3-10 years, in the form of vitamin B1-6-12 combination tablet. Investigations for other causes of neuropathy were unremarkable. Blood levels of vitamin B6 were markedly elevated at 104.6, 81.4 and 66.9 times of upper normal limits. Electrodiagnostic tests showed symmetric axonal sensory polyneuropathy in two patients. Two years after vitamin discontinuation, all patients showed no significant improvement in the neuropathy and gait. In conclusion, consumption of high dose pyridoxine can cause sensory neuronopathy and axonal sensorimotor polyneuropathy, leading to sensory ataxia which may not be reversible.

  10. Can loss of muscle spindle afferents explain the ataxic gait in Riley–Day syndrome?

    OpenAIRE

    Macefield, Vaughan G.; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B.; Kaufmann, Horacio

    2011-01-01

    The Riley–Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10...

  11. Korean Version of the Scale for the Assessment and Rating of Ataxia in Ataxic Stroke Patients

    OpenAIRE

    Kim, Bo-Ram; Lee, Jin-Youn; Kim, Min Jeong; Jung, Heeyoune; Lee, Jongmin

    2014-01-01

    Objective To investigate the intra-rater and inter-rater reliability and usefulness of the Korean version of the Scale for the Assessment and Rating of Ataxia (K-SARA) in ataxic stroke patients. Methods The original SARA was translated into Korean, back translated to English, and compared to the original version. Stroke patients (n=60) with ataxia were evaluated using the K-SARA by one physiatrist and one occupational therapist. All subjects were rated twice. We divided the subjects into 5 gr...

  12. The Effects of Topic Knowledge on Intelligibility and Lexical Segmentation in Hypokinetic and Ataxic Dysarthria.

    Science.gov (United States)

    Utianski, Rene L; Lansford, Kaitlin L; Liss, Julie M; Azuma, Tamiko

    2011-12-01

    Benefits to speech intelligibility can be achieved by enhancing a listener's ability to decipher it. However, much remains to be learned about the variables that influence the effectiveness of various listener-based manipulations. This study examined the benefit of providing listeners with the topic of some phases produced by speakers with either hypokinetic or ataxic dysarthria. Total and topic word accuracy, topic-related substitutions, and lexical boundary errors were calculated from the listener transcripts. Data were compared with those who underwent a familiarization process (reported by Liss, Spitzer, Caviness, & Adler, 2002) and with those inexperienced with disordered speech (reported by Liss Spitzer, Caviness, & Adler, 2000). Results revealed that listeners of ataxic speech provided with topic knowledge obtained higher intelligibility scores than naïve listeners. The magnitude of benefit was similar to the familiarization condition. However, topic word and word substitution analyses revealed different underlying perceptual mechanisms responsible for the observed benefit. No differences attributable to listening condition were discovered in lexical segmentation patterns. Overall, the results support the need for further study of listener-based manipulations to elucidate the mechanisms responsible for the observed perceptual benefits for each dysarthria type.

  13. The effects of familiarization on intelligibility and lexical segmentation in hypokinetic and ataxic dysarthria

    Science.gov (United States)

    Liss, Julie M.; Spitzer, Stephanie M.; Caviness, John N.; Adler, Charles

    2002-12-01

    This study is the third in a series that has explored the source of intelligibility decrement in dysarthria by jointly considering signal characteristics and the cognitive-perceptual processes employed by listeners. A paradigm of lexical boundary error analysis was used to examine this interface by manipulating listener constraints with a brief familiarization procedure. If familiarization allows listeners to extract relevant segmental and suprasegmental information from dysarthric speech, they should obtain higher intelligibility scores than nonfamiliarized listeners, and their lexical boundary error patterns should approximate those obtained in misperceptions of normal speech. Listeners transcribed phrases produced by speakers with either hypokinetic or ataxic dysarthria after being familiarized with other phrases produced by these speakers. Data were compared to those of nonfamiliarized listeners [Liss et al., J. Acoust. Soc. Am. 107, 3415-3424 (2000)]. The familiarized groups obtained higher intelligibility scores than nonfamiliarized groups, and the effects were greater when the dysarthria type of the familiarization procedure matched the dysarthria type of the transcription task. Remarkably, no differences in lexical boundary error patterns were discovered between the familiarized and nonfamiliarized groups. Transcribers of the ataxic speech appeared to have difficulty distinguishing strong and weak syllables in spite of the familiarization. Results suggest that intelligibility decrements arise from the perceptual challenges posed by the degraded segmental and suprasegmental aspects of the signal, but that this type of familiarization process may differentially facilitate mapping segmental information onto existing phonological categories.

  14. Speech serial control in healthy speakers and speakers with hypokinetic or ataxic dysarthria: Effects of sequence length and practice

    Directory of Open Access Journals (Sweden)

    Kevin J Reilly

    2013-10-01

    Full Text Available The current study investigated the processes responsible for selection of sounds and syllables during production of speech sequences in 10 adults with hypokinetic dysarthria from Parkinson’s disease, 5 adults with ataxic dysarthria, and 14 healthy control speakers. Speech production data from a choice reaction time task were analyzed to evaluate the effects of sequence length and practice on speech sound sequencing. Speakers produced sequences that were between one and five syllables in length over five experimental runs of 60 trials each. In contrast to the healthy speakers, speakers with hypokinetic dysarthria demonstrated exaggerated sequence length effects for both inter-syllable intervals (ISIs and speech error rates. Conversely, speakers with ataxic dysarthria failed to demonstrate a sequence length effect on ISIs and were also the only group that did not exhibit practice-related changes in ISIs and speech error rates over the five experimental runs. The exaggerated sequence length effects in the hypokinetic speakers with Parkinson’s disease are consistent with an impairment of action selection during speech sequence production. The absent length effects observed in the speakers with ataxic dysarthria is consistent with previous findings that indicate a limited capacity to buffer speech sequences in advance of their execution. In addition, the lack of practice effects in these speakers suggests that learning-related improvements in the production rate and accuracy of speech sequences involves processing by structures of the cerebellum. Together, the current findings inform models of serial control for speech in healthy speakers and support the notion that sequencing deficits contribute to speech symptoms in speakers with hypokinetic or ataxic dysarthria. In addition, these findings indicate that speech sequencing is differentially impaired in hypokinetic and ataxic dysarthria.

  15. Sensory ataxic neuropathy with dysarthria/dysphagia and ophthalmoplegia (SANDO). Two case reports.

    Science.gov (United States)

    Gáti, István; Danielsson, Olof; Jonasson, Jon; Landtblom, Anne-Marie

    2011-12-01

    Case histories of two unrelated patients suffering from sensory ataxic neuropathy, dysarthria/dysphagia and external ophthalmoplegia (SANDO) are reported. Both patients showed compound heterozygosity for POLG1 gene mutations, and presented with symptom of the clinical characteristics of SANDO. A patient with a p.A467T and p.W748S, well-known mutations showed a progressive course with early onset and multisystem involvement, including symptoms characteristics for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). The second patient showed a less well-known p.T251I and p.G848S mutations with late onset and dysphagia/dysarthria dominated, moderate symptoms. This later is the second published case history, when these POLG1 gene mutations are the possible background of late onset SANDO, dominantly presenting with bulbar symptoms.

  16. Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients.

    Science.gov (United States)

    Bruttini, Carlo; Esposti, Roberto; Bolzoni, Francesco; Vanotti, Alessandra; Mariotti, Caterina; Cavallari, Paolo

    2015-01-01

    Voluntary movements induce postural perturbations, which are counteracted by anticipatory postural adjustments (APAs) that preserve body equilibrium. Little is known about the neural structures generating APAs, but several studies suggested a role of sensory-motor areas, basal ganglia, supplementary motor area and thalamus. However, the role of the cerebellum still remains an open question. The aim of this present paper is to shed further light on the role of cerebellum in APAs organization. Thus, APAs that stabilize the arm when the index finger is briskly flexed were recorded in 13 ataxic subjects (seven sporadic cases, four dominant ataxia type III and two autosomal recessive), presenting a slowly progressive cerebellar syndrome with four-limb dysmetria, and compared with those obtained in 13 healthy subjects. The pattern of postural activity was similar in the two groups [excitation in triceps and inhibition in biceps and anterior deltoid (AD)], but apparent modifications in timing were observed in all ataxic subjects in which, on average, triceps brachii excitation lagged the onset of the prime mover flexor digitorum superficialis by about 27 ms and biceps and AD inhibition were almost synchronous to it. Instead, in normal subjects, triceps onset was synchronous to the prime mover and biceps and AD anticipated it by about 40 ms. The observed disruption of the intra-limb APA organization confirms that the cerebellum is involved in APA control and, considering cerebellar subjects as a model of dysmetria, also supports the view that a proper APA chain may play a crucial role in refining movement metria.

  17. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  18. The effect of prior alcohol consumption on the ataxic response to alcohol in high-alcohol preferring mice.

    Science.gov (United States)

    Fritz, Brandon M; Boehm, Stephen L

    2014-12-01

    We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predisposed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance.

  19. Sequence complexity effects on speech production in healthy speakers and speakers with hypokinetic or ataxic dysarthria.

    Directory of Open Access Journals (Sweden)

    Kevin J Reilly

    Full Text Available The present study investigated the effects of sequence complexity, defined in terms of phonemic similarity and phonotoactic probability, on the timing and accuracy of serial ordering for speech production in healthy speakers and speakers with either hypokinetic or ataxic dysarthria. Sequences were comprised of strings of consonant-vowel (CV syllables with each syllable containing the same vowel, /a/, paired with a different consonant. High complexity sequences contained phonemically similar consonants, and sounds and syllables that had low phonotactic probabilities; low complexity sequences contained phonemically dissimilar consonants and high probability sounds and syllables. Sequence complexity effects were evaluated by analyzing speech error rates and within-syllable vowel and pause durations. This analysis revealed that speech error rates were significantly higher and speech duration measures were significantly longer during production of high complexity sequences than during production of low complexity sequences. Although speakers with dysarthria produced longer overall speech durations than healthy speakers, the effects of sequence complexity on error rates and speech durations were comparable across all groups. These findings indicate that the duration and accuracy of processes for selecting items in a speech sequence is influenced by their phonemic similarity and/or phonotactic probability. Moreover, this robust complexity effect is present even in speakers with damage to subcortical circuits involved in serial control for speech.

  20. Sequence complexity effects on speech production in healthy speakers and speakers with hypokinetic or ataxic dysarthria.

    Science.gov (United States)

    Reilly, Kevin J; Spencer, Kristie A

    2013-01-01

    The present study investigated the effects of sequence complexity, defined in terms of phonemic similarity and phonotoactic probability, on the timing and accuracy of serial ordering for speech production in healthy speakers and speakers with either hypokinetic or ataxic dysarthria. Sequences were comprised of strings of consonant-vowel (CV) syllables with each syllable containing the same vowel, /a/, paired with a different consonant. High complexity sequences contained phonemically similar consonants, and sounds and syllables that had low phonotactic probabilities; low complexity sequences contained phonemically dissimilar consonants and high probability sounds and syllables. Sequence complexity effects were evaluated by analyzing speech error rates and within-syllable vowel and pause durations. This analysis revealed that speech error rates were significantly higher and speech duration measures were significantly longer during production of high complexity sequences than during production of low complexity sequences. Although speakers with dysarthria produced longer overall speech durations than healthy speakers, the effects of sequence complexity on error rates and speech durations were comparable across all groups. These findings indicate that the duration and accuracy of processes for selecting items in a speech sequence is influenced by their phonemic similarity and/or phonotactic probability. Moreover, this robust complexity effect is present even in speakers with damage to subcortical circuits involved in serial control for speech.

  1. Over-expression of corticotropin-releasing factor mRNA in inferior olivary neurons of rolling mouse Nagoya.

    Science.gov (United States)

    Sawada, Kazuhiko; Kawano, Michihiro; Tsuji, Hiroshi; Sakata-Haga, Hiromi; Hisano, Setsuji; Fukui, Yoshihiro

    2003-10-01

    Expression of corticotropin-releasing factor (CRF) mRNA was examined in the inferior olivary nucleus (ION) of an ataxic mutant, rolling mouse Nagoya (RMN) by semi-quantitative in situ hybridization. The most marked difference in the level of CRF mRNA signals between RMN and non-ataxic littermates (control mice) was observed in the beta-subnucleus and ventrolateral protrusion of the ION. The level of signals in these subnuclei was about twofold higher in RMN than in the controls. Signal levels in the dorsal nucleus, principal nucleus and subnucleus A were slightly but significantly higher in RMN than in the controls. In the other subnuclei, there were no differences in signal level between RMN and controls. These results suggest a region-related over-expression of CRF mRNA in the ION of RMN. This may be responsible for the increased sensitivity of some Purkinje cells to glutamate, resulting in ataxic symptoms of RMN.

  2. [A case of sensory ataxic neuropathy, dysarthria, and ophthalmoparesis with multiple mitochondrial DNA deletions].

    Science.gov (United States)

    Tanaka, Koji; Tateishi, Takahisa; Kawamura, Nobutoshi; Ohyagi, Yasumasa; Urata, Michiyo; Kira, Jun-ichi

    2013-01-01

    We report the case of a 62-year-old man with sensory ataxic neuropathy, dysarthria, and ophthalmoparesis (SANDO). He developed gait disturbance at 54 years of age, muscle weakness at 56 years, and difficulty hearing at 58 years. His brother had muscle weakness in both legs from age 20 years, and was diagnosed with Charcot-Marie-Tooth disease because he had muscle weakness of the four extremities, decreased CMAP and SNAP amplitudes on peripheral nerve conduction tests, and loss of large myelinated fibers and onion-bulb formations on sural nerve biopsy. His brother died aged 46 years, but no accurate cause of death was identified. Neurological examination of the present patient revealed bilateral ptosis, external ophthalmoparesis, dysarthria, dysphagia, sensorineural hearing loss, mild weakness and atrophy of proximal muscles in all four limbs, severe sensory ataxia, and disturbance of deep sensation in his legs. He showed elevation of lactate and pyruvate levels in cerebrospinal fluid and serum. An aerobic exercise test disclosed a marked increase in lactate and pyruvate levels in serum. On nerve conduction study, amplitudes of CMAP and SNAP, and F wave-evoked frequency were decreased. Needle electromyography showed chronic neurogenic patterns with fibrillation potentials in the extremity muscles. Head MRI demonstrated T2 prolonged lesions in the bilateral basal ganglia, while brain MRS revealed a small lactate peak. Biopsy of his left lateral vastus muscle showed ragged-red fibers and group atrophy, and some muscle fibers had decreased cytochrome c activity. Left sural nerve biopsy revealed a marked loss of large myelinated fibers, and some onion-bulb formations. Genetic testing disclosed a large mtDNA deletion in the biopsied muscle. Among nuclear genes, we found point mutations in ANT-1 (exon 1 c.105G>A, 5' untranslated region) and POLG-1 (exon 4, c.1218G>A, p. and exon 23 c.3920C>T, p.A1217V). We diagnosed SANDO. This is the first case of SANDO with large

  3. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  4. Alterations in local cerebral glucose metabolism and endogenous thyrotropin-releasing hormone levels in rolling mouse Nagoya and effect of thyrotropin-releasing hormone tartrate.

    Science.gov (United States)

    Nakayama, T; Nagai, Y

    1996-11-01

    To identify the brain region(s) responsible for the expression of ataxic gaits in an ataxic mutant mouse model, Rolling mouse Nagoya (RMN), changes in local cerebral glucose metabolism in various brain regions and the effect of thyrotropin-releasing hormone tartrate (TRH-T), together with alterations in endogenous thyrotropin-releasing hormone (TRH) levels in the brains of RMN, were investigated. Ataxic mice [RMN (rol/rol)] showed significant decreases in glucose metabolism in regions of the diencephalon: thalamic dorsomedial nucleus, lateral geniculate body and superior colliculus; brain stem: substantia nigra, raphe nucleus and vestibular nucleus; and cerebellar nucleus as compared with normal controls [RMN (+/+)]. When RMN (rol/rol) was treated with TRH-T (10 mg/kg, equivalent to 7 mg/kg free TRH), glucose metabolism was significantly increased in these regions. These results suggest that these regions may be responsible for ataxia. We also found that TRH levels in the cerebellum and brain stem of RMN (rol/rol) were significantly higher than those of RMN (+/+). These results suggest that ataxic symptoms in RMN (rol/rol) may relate to the abnormal metabolism of TRH and energy metabolism in the cerebellum and/or brain stem and that exogenously given TRH normalizes them.

  5. Sensory ataxic neuropathy dysarthria and ophthalmoparesis (SANDO) in a sibling pair with a homozygous p.A467T POLG mutation.

    LENUS (Irish Health Repository)

    McHugh, John C

    2012-02-01

    Two siblings who developed fifth-decade-onset, concurrent progressive sensory ataxia, dysarthria, and ophthalmoparesis were found to be homozygous for the p.A467T mutation of the polymerase gamma (POLG) gene. The clinical course in both subjects was progression to severe disability. The enlarging spectrum of sensory ataxic neuropathies associated with mitochondrial DNA (mtDNA) instability and POLG mutations should be recognized and considered in the differential diagnosis of this unusual presentation.

  6. Sensory ataxic neuropathy in golden retriever dogs is caused by a deletion in the mitochondrial tRNATyr gene.

    Directory of Open Access Journals (Sweden)

    Izabella Baranowska

    2009-05-01

    Full Text Available Sensory ataxic neuropathy (SAN is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNA(Tyr gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0-11% wild-type (wt sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNA(Tyr had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNA(Tyr gene is the causative mutation for SAN.

  7. A new spontaneous mouse mutation in the Kcne1 gene.

    Science.gov (United States)

    Letts, V A; Valenzuela, A; Dunbar, C; Zheng, Q Y; Johnson, K R; Frankel, W N

    2000-10-01

    A new mouse mutant, punk rocker (allele symbol Kcne1(pkr)), arose spontaneously on a C57BL/10J inbred strain background and is characterized by a distinctive head-tossing, circling, and ataxic phenotype. It is also profoundly and bilaterally deaf. The mutation resides in the Kcne1 gene on Chromosome (Chr) 16 and has been identified as a single base change within the coding region of the third exon. The C to T nucleotide substitution causes an arginine to be altered to a termination codon at amino acid position 67, and predictably this will result in a significantly truncated protein product. The Kcne1(pkr) mutant represents the first spontaneous mouse model for the human disorder, Jervell and Lange-Nielsen syndrome, associated with mutations in the homologous KCNE1 gene on human Chr 21.

  8. A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia.

    Science.gov (United States)

    Miyoshi, Yuka; Yoshioka, Yoshichika; Suzuki, Kinuko; Miyazaki, Taisuke; Koura, Minako; Saigoh, Kazumasa; Kajimura, Naoko; Monobe, Yoko; Kusunoki, Susumu; Matsuda, Junichiro; Watanabe, Masahiko; Hayasaka, Naoto

    2014-01-01

    Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)-PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants.

  9. A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia.

    Directory of Open Access Journals (Sweden)

    Yuka Miyoshi

    Full Text Available Spinocerebellar degenerations (SCDs are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC and abnormal morphology of cerebellar Purkinje cells (PC. Study by ultra-high voltage electron microscopy (UHVEM further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF-PC synapse formation and abnormal distal extension of climbing fibers (CF. Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2 and its ligand, cerebellin1 (Cbln1, are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2

  10. An increased expression of Ca(2+) channel alpha(1A) subunit immunoreactivity in deep cerebellar neurons of rolling mouse Nagoya.

    Science.gov (United States)

    Sawada, K; Sakata-Haga, H; Ando, M; Takeda, N; Fukui, Y

    2001-12-01

    Rolling mouse Nagoya (RMN) is an ataxic mutant and carries a mutation in the gene coding for the alpha(1A) subunit of the P/Q-type Ca(2+) channel. We examined the immunohistochemical expression of the alpha(1A) subunit in deep cerebellar nuclei of RMN. The antibody used recognized residues 865-883 of the mouse alpha(1A) subunit not overlapping the altered sequences in RMN. In RMN, many neurons exhibited definite alpha(1A) subunit-staining in the medial nucleus, interposed nucleus, and lateral nucleus of deep cerebellar nuclei. The number of positive neurons in these nuclei was significantly higher in RMN than in controls. Increased expression of the alpha(1A) subunit in deep cerebellar neurons might compensate for the altered function of the P/Q-type Ca(2+) channel of RMN.

  11. Rehabilitation of Sensory Ataxic Acute Guillain-Barre Syndrome:A Case Study%感觉性共济失调型急性格林-巴利综合征康复治疗个案分析

    Institute of Scientific and Technical Information of China (English)

    李鑫; 陈颖蓓; 李奎

    2013-01-01

    Objective To observe the effect of comprehensive rehabilitation based on motor control on sensory-ataxic acute Guillain-Barre syndrome. Methods A patient with sensory-ataxic acute Guillain-Barre syndrome was treated with kinesitherapy based on motor con-trol, included proprioceptive neuromuscular facilitation, coordination training, functional training, balance training, as well as sensory stimu-lation on the end of arms and legs, recumbent cross trainer therapy and cycle therapy for 2 months. Results After treatment, the score of In-ternational Cooperative Ataxia Rating Scale (ICARS) decreased 36 points, activities of daily living increased 9 points, Berg Balance Scale increased 9 points, and modified Barthel Index increased 50 points. Conclusion The comprehensive rehabilitation based on motor control is effective on this patient, but more cases and systematic curative effect evaluation are needed.%目的:观察基于运动控制的综合康复治疗对1例共济失调型急性格林-巴利综合征患者的疗效。方法运用本体感觉神经肌肉促进技术、协调性训练、功能训练、平衡训练等基于运动控制的运动疗法以及四肢末端感觉刺激、四肢联动、压力循环治疗等感觉运动治疗对1例共济失调型急性格林-巴利综合征患者进行2个月的综合康复治疗。结果治疗2个月后,患者国际合作共济失调评定量表(ICARS)下降36分,日常生活活动分析评估表提高9分,Berg平衡量表提高9分,改良Barthel指数提高50分。结论基于运动控制的综合康复治疗对该例共济失调型急性格林-巴利综合征患者疗效显著,但尚需进行病例积累和系统化疗效评价。

  12. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice.

    Directory of Open Access Journals (Sweden)

    Ewa Damrath

    Full Text Available Spinocerebellar Ataxia Type 2 (SCA2 is caused by expansion of a polyglutamine encoding triplet repeat in the human ATXN2 gene beyond (CAG(31. This is thought to mediate toxic gain-of-function by protein aggregation and to affect RNA processing, resulting in degenerative processes affecting preferentially cerebellar neurons. As a faithful animal model, we generated a knock-in mouse replacing the single CAG of murine Atxn2 with CAG42, a frequent patient genotype. This expansion size was inherited stably. The mice showed phenotypes with reduced weight and later motor incoordination. Although brain Atxn2 mRNA became elevated, soluble ATXN2 protein levels diminished over time, which might explain partial loss-of-function effects. Deficits in soluble ATXN2 protein correlated with the appearance of insoluble ATXN2, a progressive feature in cerebellum possibly reflecting toxic gains-of-function. Since in vitro ATXN2 overexpression was known to reduce levels of its protein interactor PABPC1, we studied expansion effects on PABPC1. In cortex, PABPC1 transcript and soluble and insoluble protein levels were increased. In the more vulnerable cerebellum, the progressive insolubility of PABPC1 was accompanied by decreased soluble protein levels, with PABPC1 mRNA showing no compensatory increase. The sequestration of PABPC1 into insolubility by ATXN2 function gains was validated in human cell culture. To understand consequences on mRNA processing, transcriptome profiles at medium and old age in three different tissues were studied and demonstrated a selective induction of Fbxw8 in the old cerebellum. Fbxw8 is encoded next to the Atxn2 locus and was shown in vitro to decrease the level of expanded insoluble ATXN2 protein. In conclusion, our data support the concept that expanded ATXN2 undergoes progressive insolubility and affects PABPC1 by a toxic gain-of-function mechanism with tissue-specific effects, which may be partially alleviated by the induction of FBXW

  13. Physical Therapy and Rehabilitation for Ataxic Patients

    Directory of Open Access Journals (Sweden)

    Ojoga Florina

    2013-05-01

    Full Text Available The goal of the study was to review the definition of ataxia, a movement disorder in which there is in coordination of movements and postural control, its subtypes, causes, to analyze the assessment methods in rehabilitation ant the treatment modalities from the point of view of the rehabilitation team.We observed that after a long term rehabilitation treatment, the patients with ataxia improved their balance and postural reactions, increased postural stabilization, developed new upper extremity functions and independent, functional gait.Physical therapy applications play a crucial part in the rehabilitation treatment of ataxia. Of major importance are the evaluation of the patient and the establishment of the treatment methods keeping in mind that every patient has a particular form of evolution of the disease.

  14. Sporadic hyperekplexia presenting with an ataxic gait.

    Science.gov (United States)

    Rouco, Idoia; Bilbao, Iker; Losada, Jose; Maestro, Iratxe; Zarranz, Juan Jose

    2014-02-01

    We describe a 62-year-old man with a sporadic form of hyperekplexia who presented with an unsteady gait, present since the age of 47. His clinical examination revealed an insecure broad-based gait and difficulty with tandem walking but no other abnormalities. For nearly a decade the patient was misdiagnosed with an idiopathic ataxia. A video electroencephalogram combined with an electromyogram during sudden auditory stimulus demonstrated an excessive startle response. An extensive work-up ruled out all the known causes of symptomatic hyperekplexia including anti-glycine receptor antibodies. Treatment with clonazepam markedly reduced the threshold and intensity of the startle response, enabling him to recover independence. Hyperekplexia is frequently associated with an awkward and hesitating gait, but these gait abnormalities might be confused with other causes of gait disorders if one is not aware of this disease. We report this patient to highlight that a correct diagnosis of hyperekplexia is crucial, because its treatment may change quality of life.

  15. FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum.

    Directory of Open Access Journals (Sweden)

    Florian Meier

    Full Text Available The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9 or antagonist (SU5402, we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.

  16. The Knockout Mouse Project

    OpenAIRE

    Austin, Christopher P.; Battey, James F.; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S; Dove, William F.; Duyk, Geoffrey; Dymecki, Susan; Eppig, Janan T.; Grieder, Franziska B.; Heintz, Nathaniel; Hicks, Geoff; Insel, Thomas R; Joyner, Alexandra

    2004-01-01

    Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and e...

  17. Replacing the computer mouse

    OpenAIRE

    Dernoncourt, Franck

    2014-01-01

    In a few months the computer mouse will be half-a-century-old. It is known to have many drawbacks, the main ones being: loss of productivity due to constant switching between keyboard and mouse, and health issues such as RSI. Like the keyboard, it is an unnatural human-computer interface. However the vast majority of computer users still use computer mice nowadays. In this article, we explore computer mouse alternatives. Our research shows that moving the mouse cursor can be done efficiently ...

  18. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    Science.gov (United States)

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  19. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  20. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  1. The MOUSE Squad

    Science.gov (United States)

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  2. Mouse genome database 2016.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  3. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  4. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  5. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  6. The Mouse SAGE Site: database of public mouse SAGE libraries.

    Science.gov (United States)

    Divina, Petr; Forejt, Jirí

    2004-01-01

    The Mouse SAGE Site is a web-based database of all available public libraries generated by the Serial Analysis of Gene Expression (SAGE) from various mouse tissues and cell lines. The database contains mouse SAGE libraries organized in a uniform way and provides web-based tools for browsing, comparing and searching SAGE data with reliable tag-to-gene identification. A modified approach based on the SAGEmap database is used for reliable tag identification. The Mouse SAGE Site is maintained on an ongoing basis at the Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and is accessible at the internet address http://mouse.biomed.cas.cz/sage/.

  7. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  8. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  9. RIKEN mouse genome encyclopedia.

    Science.gov (United States)

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  10. Mouse models in oncoimmunology.

    Science.gov (United States)

    Zitvogel, Laurence; Pitt, Jonathan M; Daillère, Romain; Smyth, Mark J; Kroemer, Guido

    2016-12-01

    Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.

  11. Isolation of Mouse Neutrophils.

    Science.gov (United States)

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E; Lionakis, Michail S

    2015-08-03

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments.

  12. Mouse genetics: catalogue and scissors.

    Science.gov (United States)

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin Soo; Lee, Han-Woong

    2012-12-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.

  13. Mouse genetics: Catalogue and scissors

    Directory of Open Access Journals (Sweden)

    Han-Woong Lee

    2012-12-01

    Full Text Available Phenotypic analysis of gene-specific knockout (KO mice hasrevolutionized our understanding of in vivo gene functions. Asthe use of mouse embryonic stem (ES cells is inevitable forconventional gene targeting, the generation of knockout miceremains a very time-consuming and expensive process. Toaccelerate the large-scale production and phenotype analyses ofKO mice, international efforts have organized global consortiasuch as the International Knockout Mouse Consortium (IKMCand International Mouse Phenotype Consortium (IMPC, andthey are persistently expanding the KO mouse catalogue that ispublicly available for the researches studying specific genes ofinterests in vivo. However, new technologies, adoptingzinc-finger nucleases (ZFNs or Transcription Activator-LikeEffector (TALE Nucleases (TALENs to edit the mouse genome,are now emerging as valuable and effective shortcuts alternativefor the conventional gene targeting using ES cells. Here, weintroduce the recent achievement of IKMC, and evaluate thesignificance of ZFN/TALEN technology in mouse genetics.

  14. Mouse models of medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    Xiaochong Wu; Paul A. Northcott; Sidney Croul; Michael D. Taylor

    2011-01-01

    Medulloblastoma is the most common malignant pediatric brain tumor. Despite its prevalence and importance in pediatric neuro-oncology, the genes and pathways responsible for its initiation, maintenance,and progression remain poorly understood. Genetically engineered mouse models are an essential tool for uncovering the molecular and cellular basis of human diseases, including cancer, and serve a valuable role as preclinical models for testing targeted therapies. In this review, we summarize how such models have been successfully applied to the study of medulloblastoma over the past decade and what we might expect in the coming years.

  15. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  16. Speech Motor Programming in Hypokinetic and Ataxic Dysarthria

    Science.gov (United States)

    Spencer, K.A.; Rogers, M.A.

    2005-01-01

    It is widely accepted that the cerebellar and basal ganglia control circuits contribute to the programming of movement. Converging evidence from neuroimaging, limb control, and neuropsychological studies suggests that (1) people with cerebellar disease have reduced ability to program movement sequences in advance of movement onset and (2) people…

  17. Gankyrin expression during mouse embryogenesis

    Institute of Scientific and Technical Information of China (English)

    秦建民; 刘淑琴; 曾锦章; 李慎菁; 付晓勇; 邱秀华; 吴孟超; 王红阳

    2004-01-01

    Objective: To observe the gene expression of Gankyrin during mouse embryogenesis and reveal the gene biological significance during organs and tissues formation. Methods: The expressions of Gankyrin mRNA in various organs and tissues were detected by in situ hybridization at indicated times during embryogenesis. Results: The expression of Gankyrin mRNA in mouse day 12.5 embryo was mainly in midbrain, interbrain and endbrain; in mouse day 14.5 embryo mainly in midbrain, aorta, liver, gonad, cranium and rib; in mouse day 16.5 embryo mainly in cranium, rib and vertebra;and in mouse day 18.5 embryo mainly in cranium, rib and intestinal mucosa. Conclusion: Gankyrin gene probably participates in the development of the neural tissues (such as midbrain, interbrain and endbrain etc. ), aorta, liver and gonad, intestinal mucosa and bone tissues, which may be closely associated with the function of the organs and tissues.

  18. MouseCyc: a curated biochemical pathways database for the laboratory mouse

    OpenAIRE

    Evsikov, Alexei V.; Dolan, Mary E.; Genrich, Michael P; Patek, Emily; Bult, Carol J.

    2009-01-01

    Linking biochemical genetic data to the reference genome for the laboratory mouse is important for comparative physiology and for developing mouse models of human biology and disease. We describe here a new database of curated metabolic pathways for the laboratory mouse called MouseCyc . MouseCyc has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human.

  19. Mouse models for cancer research

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Lynette Moore; Ping Ji

    2011-01-01

    Mouse models of cancer enable researchers to leamn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Joumnal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an overview of the development and applications of mouse models of cancer and directs the reader to upcoming papers describing the use of these models to be published in coming issues, beginning with three articles in the current issue.

  20. Computer Workstation: Pointer/Mouse

    Science.gov (United States)

    ... Safety and Health Program Recommendations It's the Law Poster REGULATIONS Law and Regulations Standard Interpretations Training Requirements ... when evaluating your computer workstation. Pointer Placement Pointer Size, Shape, and Settings Pointer/Mouse Quick Tips Keep ...

  1. Hand gestures mouse cursor control

    Directory of Open Access Journals (Sweden)

    Marian-Avram Vincze

    2014-05-01

    Full Text Available The paper describes the implementation of a human-computer interface for controlling the mouse cursor. The test reveal the fact: a low-cost web camera some processing algorithms are quite enough to control the mouse cursor on computers. Even if the system is influenced by the illuminance level on the plane of the hand, the current study may represent a start point for some studies on the hand tracking and gesture recognition field.

  2. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice.

    Science.gov (United States)

    Todorov, Boyan; Kros, Lieke; Shyti, Reinald; Plak, Petra; Haasdijk, Elize D; Raike, Robert S; Frants, Rune R; Hess, Ellen J; Hoebeek, Freek E; De Zeeuw, Chris I; van den Maagdenberg, Arn M J M

    2012-03-01

    The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.

  3. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  4. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  5. Gesture Recognition Based Mouse Events

    Directory of Open Access Journals (Sweden)

    Rachit Puri

    2013-12-01

    Full Text Available This paper presents the maneuver of mouse pointer a nd performs various mouse operations such as left click, right click, double click, drag etc using ge stures recognition technique. Recognizing gestures is a complex task which involves many aspects such as mo tion modeling, motion analysis, pattern recognition and machine learning. Keeping all the essential factors in mind a system has been created which recognizes the movement of fingers and various patterns formed by them. Color caps have been used for fingers to distinguish it f rom the background color such as skin color. Thus recog nizing the gestures various mouse events have been performed. The application has been created on MATL AB environment with operating system as windows 7.

  6. Teratology studies in the mouse.

    Science.gov (United States)

    Marsden, Edward; Leroy, Mariline

    2013-01-01

    The rat is the routine species of choice as the rodent model for regulatory safety testing of xenobiotics such as medicinal products, food additives, and other chemicals. However, the rat is not always suitable for pharmacological, toxicological, immunogenic, pharmacokinetic, or even practical reasons. Under such circumstances, the mouse offers an alternative for finding a suitable rodent model acceptable to the regulatory authorities. Since all essential routes of administration are possible, the short reproductive cycle and large litter size of the mouse make it a species well adapted for use in teratology studies. Given that good quality animals, including virgin mated females, can be acquired relatively easily and inexpensively, the mouse has been used in reproductive toxicity studies for decades and study protocols are well established.

  7. 4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia.

    Directory of Open Access Journals (Sweden)

    John S Stahl

    Full Text Available The potassium channel antagonist 4-aminopyridine (4-AP improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP's ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel, 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR and vision-enhanced vestibulo-ocular reflex (VVOR, and the optokinetic reflex (OKR about yaw and roll axes. Because tottering's deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further

  8. Mouse Stirs up Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Helen Pilcher; 孙雯

    2004-01-01

    @@ The humble house mouse could be more dangerous than we thought,according to a study that suggests a rodent① virus plays a role in the development of breast cancer. But the finding is contentious② and reignites③ a long-standing④wrangle⑤ about the potential⑥ causes of the disease.

  9. An encyclopedia of mouse genes.

    Science.gov (United States)

    Marra, M; Hillier, L; Kucaba, T; Allen, M; Barstead, R; Beck, C; Blistain, A; Bonaldo, M; Bowers, Y; Bowles, L; Cardenas, M; Chamberlain, A; Chappell, J; Clifton, S; Favello, A; Geisel, S; Gibbons, M; Harvey, N; Hill, F; Jackson, Y; Kohn, S; Lennon, G; Mardis, E; Martin, J; Mila, L; McCann, R; Morales, R; Pape, D; Person, B; Prange, C; Ritter, E; Soares, M; Schurk, R; Shin, T; Steptoe, M; Swaller, T; Theising, B; Underwood, K; Wylie, T; Yount, T; Wilson, R; Waterston, R

    1999-02-01

    The laboratory mouse is the premier model system for studies of mammalian development due to the powerful classical genetic analysis possible (see also the Jackson Laboratory web site, http://www.jax.org/) and the ever-expanding collection of molecular tools. To enhance the utility of the mouse system, we initiated a program to generate a large database of expressed sequence tags (ESTs) that can provide rapid access to genes. Of particular significance was the possibility that cDNA libraries could be prepared from very early stages of development, a situation unrealized in human EST projects. We report here the development of a comprehensive database of ESTs for the mouse. The project, initiated in March 1996, has focused on 5' end sequences from directionally cloned, oligo-dT primed cDNA libraries. As of 23 October 1998, 352,040 sequences had been generated, annotated and deposited in dbEST, where they comprised 93% of the total ESTs available for mouse. EST data are versatile and have been applied to gene identification, comparative sequence analysis, comparative gene mapping and candidate disease gene identification, genome sequence annotation, microarray development and the development of gene-based map resources.

  10. Mouse Models of Rheumatoid Arthritis.

    Science.gov (United States)

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  11. Preclinical Mouse Models of Neurofibromatosis

    Science.gov (United States)

    2009-10-01

    include astrocytoma, malignant peripheral nerve sheath tumor ( MPNST ), pheochromocytoma, and juvenile myelomonocytic leukemia (JMML). NF2 affects 1 in...features of NF1-associated mouse tumor models of MPNST /Triton tumor, astrocytoma, JMML, plexiform neurofibroma, and chemotherapy-induced leukemia...for an effective treatment for these previously untreatable tumors. Malignant Peripheral Nerve Sheath Tumors ( MPNSTs ). The Parada lab previously

  12. Human/mouse homology relationships

    Energy Technology Data Exchange (ETDEWEB)

    DeBry, R.W.; Seldin, M.F. [Duke Univ. Medical Center, Durham, NC (United States)

    1996-05-01

    Conservation of genomic organization in different mammalian species has long been recognized, but only recently has it been possible to examine these relationships systematically on a genome-wide scale in some detail. Mapping of several mammalian species in progressing rapidly, but by far the most detailed information is still to be found in the human and mouse databases. Perhaps the most important aspect of recent progress in genome mapping data. With mapping databases continuing to expand at a greater than linear rate, any attempt at a comprehensive comparative map is doomed to be out of date by the time it is published. However, we feel that it is valuable to provide a summary that is as nearly up to date as possible. We have made a particular effort to include recent human physical mapping data and to identify those mouse genes that have been well-mapped with respect to each other by virtue of having been examined in the same cross. As the human-mouse comparative map becomes more dense, it is not surprising that the observed number of conserved linkage groups continues to increase. Nadeau et al. placed 425 loci on both maps, which delineated over 100 conserved linkage groups. Copeland et al. put a total of 917 markers on both the human and the mouse maps, marking 101 segments of conserved linkage groups. In the present summary, we have placed 1416 loci, and these define at least 181 different conserved linkage groups. 47 refs., 1 fig.

  13. Mouse models of myasthenia gravis.

    Science.gov (United States)

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.

  14. GENE KICKED MOUSE: KNOCK OUT MOUSE AND ITS APPLICATION

    Directory of Open Access Journals (Sweden)

    Rajashekar B

    2013-07-01

    Full Text Available A knockout mouse is a laboratory mouse in which genes are inactivated, or "knocked out," an existing gene by replacing it or disrupting it with an artificial piece of DNA. The 2007 Nobel Prize in physiology or medicine is awarded to Drs Mario R. Capecchi, Martin J. Evans and Oliver Smithies for their discoveries of principles for introducing specific gene modifications in mice by using embryonic stem cells. Progress to gene targeting using embryonic cell was developed by Evans and his co-workers. Ingenious development of gene targeting has been made by introducing recognition sites for the enzyme Cre recombinase, called loxP sites, into existing genes. When mice carrying such "floxed" genes are mated with transgenic mice expressing Cre recombinase, the target gene of the offspring is modified through Cre action. Gene targeting has transformed scientific medicine by permitting experimental testing of hypotheses regarding the function of specific genes. The first area to which experimental geneticists turned their attention after the birth of gene targeting in mammals was monogenic diseases. Gene targeting has been exceptionally useful in cancer research. A large number of protooncogenes, tumor suppressor genes, angiogenetic factors etc have been targeted in different tissues in mice to shed light on the induction and spreading of tumours. Gene-targeted mouse models have also become increasingly important in studies of host defense against pathogens. Gene targeted mice have become indispensable in virtually all aspects of medical research.

  15. Mouse Models of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Timothy C. Wang

    2013-01-01

    Full Text Available Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field.

  16. Mouse models of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Marta Herreros-Villanueva; Elizabeth Hijona; Angel Cosme; Luis Bujanda

    2012-01-01

    Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer,currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed.In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes.In the last few years,several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed.These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer.Genetic alterations such as activating mutations in KRas,or TGFb and/or inactivation of tumoral suppressors such as p53,INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice.These mouse models have a spectrum of pathologic changes,from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system.These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches,chemopreventive and/or anticancer treatments.Here,we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.

  17. Preclinical Mouse Models of Neurofibromatosis

    Science.gov (United States)

    2007-10-01

    arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes & Development, 2002, 16:1060-1065. Kissil JL, Johnson KC, Eckman MS and...doubly mutant Nf1 and Wv hematopoietic cells. Blood 2003; 101: 1984-1986. Shannon, K.M. 35 Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe M, and... Paul E. McKeever, Shannon, K.M. 38 Megan Lim, Simon J. Conway, Luis F. Parada, Yuan Zhu, and Sean J. Morrison. 2007. The loss of Nf1 transiently

  18. Take care of your mouse!

    CERN Multimedia

    IT Department

    2011-01-01

    “Stop --- Think --- Click" is the basic recommendation for securely browsing the Internet and for securely reading e-mails. Users who have followed this recommendation in the past were less likely to have their computer infected or their computing account compromised. We would like to thank all those who donated their mouse to the CERN Animal Shelter for Computer Mice (http://cern.ch/c-a-s). For those who still use a mouse, please stay vigilant and  alert: do not click on links whose origin you do not trust or which look like gibberish. Do not install untrusted software or plug-ins, since software from untrusted sources may infect or compromise your computer, or violate copyrights. Finally, take particular care with e-mails: Do not open unexpected or suspicious e-mails or attachments. Delete them if they do not concern you or if they appear strange. If in doubt, or if you have questions, please do not hesitate to contact Computer.Security@cern.ch

  19. A physical map of the mouse genome

    NARCIS (Netherlands)

    Gregory, SG; Sekhon, M; Schein, J; Zhao, SY; Osoegawa, K; Scott, CE; Evans, RS; Burridge, PW; Cox, TV; Fox, CA; Hutton, RD; Mullenger, IR; Phillips, KJ; Smith, J; Stalker, J; Threadgold, GJ; Birney, E; Wylie, K; Chinwalla, A; Wallis, J; Hillier, L; Carter, J; Gaige, T; Jaeger, S; Kremitzki, C; Layman, D; McGrane, R; Mead, K; Walker, R; Jones, S; Smith, M; Asano, J; Bosdet, I; Chan, S; Chittaranjan, S; Chiu, R; Fjell, C; Fuhrmann, D; Girn, N; Gray, C; Guin, R; Hsiao, L; Krzywinski, M; Kutsche, R; Lee, SS; Mathewson, C; McLeavy, C; Messervier, S; Ness, S; Pandoh, P; Prabhu, AL; Saeedi, P; Smailus, D; Spence, L; Stott, J; Taylor, S; Terpstra, W; Tsai, M; Vardy, J; Wye, N; Yang, G; Shatsman, S; Ayodeji, B; Geer, K; Tsegaye, G; Shvartsbeyn, A; Gebregeorgis, E; Krol, M; Russell, D; Overton, L; Malek, JA; Holmes, M; Heaney, M; Shetty, J; Feldblyum, T; Nierman, WC; Catanese, JJ; Hubbard, T; Waterston, RH; Rogers, J; de Jong, PJ; Fraser, CM; Marra, M; McPherson, JD; Bentley, DR

    2002-01-01

    A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs w

  20. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha;

    2015-01-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laborato...

  1. The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.

    Science.gov (United States)

    Eppig, Janan T; Bult, Carol J; Kadin, James A; Richardson, Joel E; Blake, Judith A; Anagnostopoulos, A; Baldarelli, R M; Baya, M; Beal, J S; Bello, S M; Boddy, W J; Bradt, D W; Burkart, D L; Butler, N E; Campbell, J; Cassell, M A; Corbani, L E; Cousins, S L; Dahmen, D J; Dene, H; Diehl, A D; Drabkin, H J; Frazer, K S; Frost, P; Glass, L H; Goldsmith, C W; Grant, P L; Lennon-Pierce, M; Lewis, J; Lu, I; Maltais, L J; McAndrews-Hill, M; McClellan, L; Miers, D B; Miller, L A; Ni, L; Ormsby, J E; Qi, D; Reddy, T B K; Reed, D J; Richards-Smith, B; Shaw, D R; Sinclair, R; Smith, C L; Szauter, P; Walker, M B; Walton, D O; Washburn, L L; Witham, I T; Zhu, Y

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  2. The mouse forced swim test.

    Science.gov (United States)

    Can, Adem; Dao, David T; Arad, Michal; Terrillion, Chantelle E; Piantadosi, Sean C; Gould, Todd D

    2012-01-29

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.

  3. Radiosensitivity of cultured human and mouse keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, E.K.; Hume, W.J.; Potten, C.S.

    1986-10-01

    Clonogenic survival assays after ..gamma..-radiation in vitro were performed on freshly isolated and subcultured keratinocytes from mouse skin, mouse tongue and human skin. Survival curves were constructed by fitting the data to a multi-target model of cell survival. When subcultured, keratinocytes from all sites produced survival curves which showed a reduced shoulder region and an increased D/sub 0/ when compared with their freshly isolated counterparts. Freshly isolated human skin keratinocytes were more radiosensitive than mouse keratinocytes from either skin or tongue.

  4. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community.

  5. Neuronal mechanism of epileptogenesis in EL mouse

    OpenAIRE

    2013-01-01

    The convulsions of the EL mouse (EL) were described by Imaizumi et al. in 1954 and were established as epilepsy by Suzuki in 1976. The EL mouse has been kept as an inbred strain and is considered one of the best animal models originated in Japan. The mode of inheritance is autosomal dominant, and environmental risk factors for seizure occurrence are hypothesised to contribute to the polygenic background. Paroxysmal activities in the EL brain arise from the parietal cortex (PCX) and are augmen...

  6. Aging, Breast Cancer and the Mouse Model

    Science.gov (United States)

    2005-05-01

    Presenescent or senescent hBF (1.2 or 18x×10 4/well, respectively) [M, Stampfer , P. Yaswen, Lawrence Berkeley National Laboratory wdre suspended in 60 l cold...2.8 1 2.8 Inducing a human-like senescent phenotype in mouse fibroblasts Jean-Philihoo Copp , Simona Parrinello, Ana Krtolica, Christopher K. Patil...MAMMARY EPITHELIAL CELL PROLIFERATION AND TUMORIGENESIS: A MOUSE MODEL FOR HUMAN AGING. Jean-Philippe Coppe, Simona Parrinello, Ana Krtolica, Christopher

  7. Mouse cell culture: methods and protocols

    OpenAIRE

    Elvira M. Guerra Shinohara

    2010-01-01

    The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases), starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward ...

  8. Ethical Considerations in Mouse Experiments.

    Science.gov (United States)

    Baertschi, Bernard; Gyger, Marcel

    2011-03-01

    Mice count morally because they can be harmed. This raises a moral issue in animal experimentation. Three main ethical attitudes towards animals are reviewed here. The Kantian view denies moral value to animals because they lack reason. The second view, by Singer, considers animals as sentient creatures (i.e., able to suffer). Finally, Regan considers that animals are subjects of their own life; they are autonomous and therefore have moral rights. Singer is a reformist and allows animal experimentation under certain conditions. Regan is abolitionist, saying that animals have moral rights that cannot be negotiated. Current animal protection legislation strives to put in balance the human and animal interests to decide whether an animal experiment is morally justified or not. An ethical evaluation process is conducted based on the harm-benefit assessment of the experiment. The researcher has to implement the 3Rs (Replacement, Reduction, Refinement) to minimize the harms to the animals and make sure that the outcomes are scientifically significant and that the quality of the science is high, in order to maximize benefits to humans and animals. Curr. Protoc. Mouse Biol. 1:155-167. © 2011 by John Wiley & Sons, Inc.

  9. Mouse behavioral endophenotypes for schizophrenia.

    Science.gov (United States)

    Amann, Laura C; Gandal, Michael J; Halene, Tobias B; Ehrlichman, Richard S; White, Samantha L; McCarren, Hilary S; Siegel, Steven J

    2010-09-30

    An endophenotype is a heritable trait that is generally considered to be more highly, associated with a gene-based neurological deficit than a disease phenotype itself. Such, endophenotypic deficits may therefore be observed in the non-affected relatives of disease patients. Once endophenotypes have been established for a given illness, such as schizophrenia, mechanisms of, action may then be established and treatment options developed in order to target such measures. The, current paper describes and assesses the merits and limitations of utilizing behavioral and, electrophysiological endophenotypes of schizophrenia in mice. Such endophenotypic deficits include: decreased auditory event related potential (ERP) amplitude and gating (specifically, that of the P20, N40, P80 and P120); impaired mismatch negativity (MMN); changes in theta and gamma frequency, analyses; decreased pre-pulse inhibition (PPI); impaired working and episodic memories (for instance, novel object recognition [NOR], contextual and cued fear conditioning, latent inhibition, Morris and, radial arm maze identification and nose poke); sociability; and locomotor activity. A variety of, pharmacological treatments, including ketamine, MK-801 and phencyclidine (PCP) can be used to, induce some of the deficits described above, and numerous transgenic mouse strains have been, developed to address the mechanisms responsible for such endophenotypic differences. We also, address the viability and validity of using such measures regarding their potential clinical implications, and suggest several practices that could increase the translatability of preclinical data.

  10. Mouse Models for Filovirus Infections

    Directory of Open Access Journals (Sweden)

    Kelly L. Warfield

    2012-09-01

    Full Text Available The filoviruses marburg- and ebolaviruses can cause severe hemorrhagic fever (HF in humans and nonhuman primates. Because many cases have occurred in geographical areas lacking a medical research infrastructure, most studies of the pathogenesis of filoviral HF, and all efforts to develop drugs and vaccines, have been carried out in biocontainment laboratories in non-endemic countries, using nonhuman primates (NHPs, guinea pigs and mice as animal models. NHPs appear to closely mirror filoviral HF in humans (based on limited clinical data, but only small numbers may be used in carefully regulated experiments; much research is therefore done in rodents. Because of their availability in large numbers and the existence of a wealth of reagents for biochemical and immunological testing, mice have become the preferred small animal model for filovirus research. Since the first experiments following the initial 1967 marburgvirus outbreak, wild-type or mouse-adapted viruses have been tested in immunocompetent or immunodeficient mice. In this paper, we review how these types of studies have been used to investigate the pathogenesis of filoviral disease, identify immune responses to infection and evaluate antiviral drugs and vaccines. We also discuss the strengths and weaknesses of murine models for filovirus research, and identify important questions for further study.

  11. Mouse models of intracranial aneurysm.

    Science.gov (United States)

    Wang, Yutang; Emeto, Theophilus I; Lee, James; Marshman, Laurence; Moran, Corey; Seto, Sai-wang; Golledge, Jonathan

    2015-05-01

    Subarachnoid hemorrhage secondary to rupture of an intracranial aneurysm is a highly lethal medical condition. Current management strategies for unruptured intracranial aneurysms involve radiological surveillance and neurosurgical or endovascular interventions. There is no pharmacological treatment available to decrease the risk of aneurysm rupture and subsequent subarachnoid hemorrhage. There is growing interest in the pathogenesis of intracranial aneurysm focused on the development of drug therapies to decrease the incidence of aneurysm rupture. The study of rodent models of intracranial aneurysms has the potential to improve our understanding of intracranial aneurysm development and progression. This review summarizes current mouse models of intact and ruptured intracranial aneurysms and discusses the relevance of these models to human intracranial aneurysms. The article also reviews the importance of these models in investigating the molecular mechanisms involved in the disease. Finally, potential pharmaceutical targets for intracranial aneurysm suggested by previous studies are discussed. Examples of potential drug targets include matrix metalloproteinases, stromal cell-derived factor-1, tumor necrosis factor-α, the renin-angiotensin system and the β-estrogen receptor. An agreed clear, precise and reproducible definition of what constitutes an aneurysm in the models would assist in their use to better understand the pathology of intracranial aneurysm and applying findings to patients.

  12. Optimization of the virtual mouse HeadMouse to foster its classroom use by children with physical disabilities

    Directory of Open Access Journals (Sweden)

    Merce TEIXIDO

    2014-03-01

    Full Text Available This paper presents the optimization of a virtual mouse called HeadMouse in order to foster its classroom use by children with physical disabilities. HeadMouse is an absolute virtual mouse that converts head movements in cursor displacement and facial gestures in click actions. The virtual mouse combines different image processing algorithms: face detection, pattern matching and optical flow in order to emulate the behaviour of a conventional computer mouse. The original implementation of HeadMouse requires large computational power and this paper proposes specific optimizations in order to enable its use by children with disabilities in standard low cost classroom computers.

  13. Surfing the internet with a BCI mouse

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Gu, Zhenghui

    2012-06-01

    In this paper, we present a new web browser based on a two-dimensional (2D) brain-computer interface (BCI) mouse, where our major concern is the selection of an intended target in a multi-target web page. A real-world web page may contain tens or even hundreds of targets, including hyperlinks, input elements, buttons, etc. In this case, a target filter designed in our system can be used to exclude most of those targets of no interest. Specifically, the user filters the targets of no interest out by inputting keywords with a P300-based speller, while keeps those containing the keywords. Such filtering largely facilitates the target selection task based on our BCI mouse. When there are only several targets in a web page (either an original sparse page or a target-filtered page), the user moves the mouse toward the target of interest using his/her electroencephalographic signal. The horizontal movement and vertical movement are controlled by motor imagery and P300 potential, respectively. If the mouse encounters a target of no interest, the user rejects it and continues to move the mouse. Otherwise the user selects the target and activates it. With the collaboration of the target filtering and a series of mouse movements and target selections/rejections, the user can select an intended target in a web page. Based on our browser system, common navigation functions, including history rolling forward and backward, hyperlink selection, page scrolling, text input, etc, are available. The system has been tested on seven subjects. Experimental results not only validated the efficacy of the proposed method, but also showed that free internet surfing with a BCI mouse is feasible.

  14. Mouse models in male fertility research

    Institute of Scientific and Technical Information of China (English)

    Duangporn Jamsai; Moira K O'Bryan

    2011-01-01

    Limited knowledge of the genetic causes of male infertility has resulted in few treatment and targeted therapeutic options.Although the ideal approach to identify infertility causing mutations is to conduct studies in the human population,this approach has progressed slowly due to the limitations described herein.Given the complexity of male fertility,the entire process cannot be modeled in vitro.As such,animal models,in particular mouse models,provide a valuable alternative for gene identification and experimentation.Since the introduction of molecular biology and recent advances in animal model production,there has been a substantial acceleration in the identification and characterization of genes associated with many diseases,including infertility.Three major types of mouse models are commonly used in biomedical research,including knockout/knockin/gene-trapped,transgenic and chemical-induced point mutant mice.Using these mouse models,over 400 genes essential for male fertility have been revealed.It has,however,been estimated that thousands of genes are involved in the regulation of the complex process of male fertility,as many such genes remain to be characterized.The current review is by no means a comprehensive list of these mouse models,rather it contains examples of how mouse models have advanced our knowledge of post-natal germ cell development and male fertility regulation.

  15. In amnio MRI of mouse embryos.

    Directory of Open Access Journals (Sweden)

    Thomas A Roberts

    Full Text Available Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px. To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community.

  16. Peripheral Neuropathy in Mouse Models of Diabetes.

    Science.gov (United States)

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-09-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc.

  17. Biotransformation in Egyptian spiny mouse Acomys cahirinus.

    Science.gov (United States)

    Watkins, J B; LaFollette, J W; Sanders, R A

    1995-01-01

    The activities of several representative biotransformation enzymes were determined in male and female spiny mouse tissues. Cytochrome P450 monooxygenase activity toward benzo(a)pyrene was significantly greater in female spiny mouse intestine than in males. Activity toward benzphetamine in both sexes was high in the liver, with little activity in the kidney and intestine. Sulfotransferase activity was high in kidney and intestine of female spiny mice but undetectable in the same tissues in males. Hepatic glutathione S-transferase activity towards 1-chloro-2,4-dinitrobenzene in females was significantly higher than in males. UDP-Glucuronosyltransferase activity toward 1-naphthol in both sexes in the kidney was significantly higher than hepatic and intestinal activity. Intestinal N-acetyltransferase activity towards 2-aminofluorene and beta-naphthylamine was significantly greater in females than males. No consistent relation appeared to exist between biotransformation activities in spiny mouse and those in other related rodent species.

  18. Mouse Simulation Using Two Coloured Tapes

    CERN Document Server

    Kumar, Vikram; Mahe, Swapnil; Vyawahare, Swapnil; 10.5121/ijist.2012.2206

    2012-01-01

    In this paper, we present a novel approach for Human Computer Interaction (HCI) where, we control cursor movement using a real-time camera. Current methods involve changing mouse parts such as adding more buttons or changing the position of the tracking ball. Instead, our method is to use a camera and computer vision technology, such as image segmentation and gesture recognition, to control mouse tasks (left and right clicking, double-clicking, and scrolling) and we show how it can perform everything as current mouse devices can. The software will be developed in JAVA language. Recognition and pose estimation in this system are user independent and robust as we will be using colour tapes on our finger to perform actions. The software can be used as an intuitive input interface to applications that require multi-dimensional control e.g. computer games etc.

  19. Citrobacter rodentium mouse model of bacterial infection.

    Science.gov (United States)

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete.

  20. Sphingolipid metabolism in organotypic mouse keratinocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. (Univ. of Iowa College of Medicine, Iowa City (USA))

    1990-12-01

    Ceramides are the dominant component of the stratum corneum intercellular lipid lamellae, which constitute the epidermal permeability barrier. Only pig and human epidermal ceramides have been extensively characterized and the structures of the ceramides of cultured keratinocytes have not been previously investigated. In the present studies, we have characterized the ceramides synthesized by organotypic lifted mouse keratinocyte cultures for the first time and compared them to the ceramides of intact mouse epidermis. Both mouse epidermis and cultures contained five ceramides, ceramide 1 being the least polar and ceramide 5 the most polar. Ceramide 1 was a group of acylceramides, i.e., very-long-chain omega-hydroxyceramides with an ester-linked nonhydroxy fatty acid. Ceramide 2 contained medium-length saturated nonhydroxy fatty acids. (In culture, the ceramide 2 band was split into two parts with the slightly more polar ceramide 2' containing short-chain saturated nonhydroxy fatty acids.) Ceramide 5 contained short-chain alpha-hydroxy fatty acids. The structures of ceramides 1, 2, and 5 were analagous to those of pig and human epidermis. Mouse epidermal ceramide 3 was quite unusual, containing beta-hydroxy fatty acids, a structure not previously identified among mammalian ceramides. In contrast, culture ceramide 3 was composed of omega-hydroxy fatty acids with a chain-length distribution similar to that of ceramide 1. Mouse ceramide 4 was composed of fatty acids with chromatographic mobility similar to hydroxy fatty acids but with different chemical reactivity; it remains only partially characterized. Culture ceramide 4 was present in quantities too small for analysis. All ceramides in mouse epidermis and cultures contained only sphingosine bases, whereas pig and human ceramides also contain phytosphingosine.

  1. An Intelligent Multilingual Mouse Gesture Recognition System

    Directory of Open Access Journals (Sweden)

    Nidal F. Shilbayeh

    2005-01-01

    Full Text Available A comprehensive mouse gesture system is designed and tested successfully. The system is based on UNIPEN algorithm in terms of mouse movements and applies its geometrical principles such as angles and transposition steps. The system incorporates Neural Networks as its learning and recognition engine. The designed algorithm is not only capable of translating discrete gesture moves, but also continuous sentences and complete paragraphs. Hopfield Network is also used for initial learning to add a feature of language independence to the system.

  2. The Riken mouse genome encyclopedia project.

    Science.gov (United States)

    Hayashizaki, Yoshihide

    2003-01-01

    The Riken mouse genome encyclopedia a comprehensive full-length cDNA collection and sequence database. High-level functional annotation is based on sequence homology search, expression profiling, mapping and protein-protein interactions. More than 1000000 clones prepared from 163 tissues were end-sequenced and classified into 128000 clusters, and 60000 representative clones were fully sequenced representing 24000 clear protein-encoding genes. The application of the mouse genome database for positional cloning and gene network regulation analysis is reported.

  3. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...... the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment...

  4. Primary 3-dimensional culture of mouse hepatocytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Complex 3-dimensional structures with good functions have been obtained under the primary mixcoculture of mouse hepatocytes with mouse liver fibroblasts without serum. Albumin secretion is kept above 10 μg/106 cells and urea synthesis reaches 25 μg/106 on the 7th day of culture. Avoiding serum affection, liver fibroblasts' effects on hepatocytes' viability, functions and 3-dimensional structure forming in primary serum-free culture have been studied. Important effects of the mesenchyma, especially the direct adherence of fibroblasts to hepatocytes, are shown.

  5. A Color Based Touchless Finger Mouse

    Directory of Open Access Journals (Sweden)

    Kah-Meng Kwong

    2012-01-01

    Full Text Available People work with computers almost anytime, everywhere  in the current trend. However, continuously controlling a computer with mouse for a long time might cause much strains to people’s wrist. This work proposes a touchless finger mouse using webcam. A marker with different colours representing different actions is used. The webcam will capture the information on the marker and trigger the associated actions. This prototype is proven to be able to perform most of the actions a normal mouser can perform.

  6. Mouse polyoma virus and adenovirus replication in mouse cells temperature-sensitive in DNA synthesis.

    Science.gov (United States)

    Sheinin, R; Fabbro, J; Dubsky, M

    1985-01-01

    Mouse adenovirus multiplies, apparently without impediment, in temperature-inactivated ts A1S9, tsC1 and ts2 mouse fibroblasts. Thus, the DNA of mouse adenovirus can replicate in the absence of functional DNA topoisomerase II, a DNA-chain-elongation factor, and a protein required for traverse of the G1/S interface, respectively, encoded in the ts A1S9, tsC1 and ts2 genetic loci. These results are compared with those obtained with polyoma virus.

  7. Recovery Outline: New Mexico Jumping Mouse (Zapus hudsonius luteus)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this recovery outline is to provide an interim strategy to guide the conservation and recovery of the New Mexico meadow jumping mouse (jumping mouse)...

  8. Recombinant mouse interferon-gamma regulation of antibody production.

    OpenAIRE

    1983-01-01

    Interferon-gamma produced in monkey cells by transfection with mouse interferon-gamma cDNA suppressed the mouse in vitro antibody response in a manner similar to that of natural mouse interferon-gamma. Significant suppression was obtained with as little as 1 U of interferon. Recombinant human interferon-gamma produced by cloning in a similar fashion was not suppressive. Both the suppressive and the antiviral activities of recombinant interferon-gamma were neutralized by antibodies to mouse na...

  9. Effects of verbenalin on prostatitis mouse model

    Science.gov (United States)

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  10. Progress of gene targeting in mouse

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Gene targeting is a powerful approach of study- ing the genefunction in vivo. Specific genetic modifications, including simple gene disruption, point mutations, large chromosomal deletions and rearrangements, targeted incor- poration of foreign genes, could be introduced into the mouse genome by gene targeting. Recent studies make it possible to do the gene targeting with temporal and spatial control.

  11. Agglutination of Mouse Erythrocytes by Eperythrozoon coccoides

    OpenAIRE

    Iralu, Vichazelhu; Ganong, Kevin D.

    1983-01-01

    Erythrocytes from blood of mice infected with Eperythrozoon coccoides for 3 or 4 days agglutinated spontaneously. Washed E. coccoides particles agglutinated washed erythrocytes of uninfected mice. E. coccoides-mediated agglutination of normal mouse erythrocytes would be an excellent system for studies of bacterial adhesion.

  12. Mouse gestation length is genetically determined.

    Directory of Open Access Journals (Sweden)

    Stephen A Murray

    Full Text Available BACKGROUND: Preterm birth is an enormous public health problem, affecting over 12% of live births and costing over $26 billion in the United States alone. The causes are complex, but twin studies support the role of genetics in determining gestation length. Despite widespread use of the mouse in studies of the genetics of preterm birth, there have been few studies that actually address the precise natural gestation length of the mouse, and to what degree the timing of labor and birth is genetically determined. METHODOLOGY/PRINCIPAL FINDINGS: To further develop the mouse as a genetic model of preterm birth, we developed a high-throughput monitoring system and measured the gestation length in 15 inbred strains. Our results show an unexpectedly wide variation in overall gestation length between strains that approaches two full days, while intra-strain variation is quite low. Although litter size shows a strong inverse correlation with gestation length, genetic difference alone accounts for a significant portion of the variation. In addition, ovarian transplant experiments support a primary role of maternal genetics in the determination of gestation length. Preliminary analysis of gestation length in the C57BL/6J-Chr#(A/J/NaJ chromosome substitution strain (B.A CSS panel suggests complex genetic control of gestation length. CONCLUSIONS/SIGNIFICANCE: Together, these data support the role of genetics in regulating gestation length and present the mouse as an important tool for the discovery of genes governing preterm birth.

  13. MPHASYS: a mouse phenotype analysis system

    Directory of Open Access Journals (Sweden)

    Mian I

    2007-06-01

    Full Text Available Abstract Background Systematic, high-throughput studies of mouse phenotypes have been hampered by the inability to analyze individual animal data from a multitude of sources in an integrated manner. Studies generally make comparisons at the level of genotype or treatment thereby excluding associations that may be subtle or involve compound phenotypes. Additionally, the lack of integrated, standardized ontologies and methodologies for data exchange has inhibited scientific collaboration and discovery. Results Here we introduce a Mouse Phenotype Analysis System (MPHASYS, a platform for integrating data generated by studies of mouse models of human biology and disease such as aging and cancer. This computational platform is designed to provide a standardized methodology for working with animal data; a framework for data entry, analysis and sharing; and ontologies and methodologies for ensuring accurate data capture. We describe the tools that currently comprise MPHASYS, primarily ones related to mouse pathology, and outline its use in a study of individual animal-specific patterns of multiple pathology in mice harboring a specific germline mutation in the DNA repair and transcription-specific gene Xpd. Conclusion MPHASYS is a system for analyzing multiple data types from individual animals. It provides a framework for developing data analysis applications, and tools for collecting and distributing high-quality data. The software is platform independent and freely available under an open-source license 1.

  14. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    2008-01-01

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  15. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  16. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse...

  17. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  18. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  19. Having Fun with a Cordless Mouse

    Science.gov (United States)

    Nunn, John

    2016-01-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in…

  20. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse.

    Science.gov (United States)

    Blake, Judith A; Bult, Carol J; Eppig, Janan T; Kadin, James A; Richardson, Joel E

    2014-01-01

    The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the community model organism database resource for the laboratory mouse, a premier animal model for the study of genetic and genomic systems relevant to human biology and disease. MGD maintains a comprehensive catalog of genes, functional RNAs and other genome features as well as heritable phenotypes and quantitative trait loci. The genome feature catalog is generated by the integration of computational and manual genome annotations generated by NCBI, Ensembl and Vega/HAVANA. MGD curates and maintains the comprehensive listing of functional annotations for mouse genes using the Gene Ontology, and MGD curates and integrates comprehensive phenotype annotations including associations of mouse models with human diseases. Recent improvements include integration of the latest mouse genome build (GRCm38), improved access to comparative and functional annotations for mouse genes with expanded representation of comparative vertebrate genomes and new loads of phenotype data from high-throughput phenotyping projects. All MGD resources are freely available to the research community.

  1. Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse.

    Science.gov (United States)

    Gibertini, Sara; Zanotti, Simona; Savadori, Paolo; Curcio, Maurizio; Saredi, Simona; Salerno, Franco; Andreetta, Francesca; Bernasconi, Pia; Mantegazza, Renato; Mora, Marina

    2014-05-01

    The Sgcb-null mouse, with knocked-down β-sarcoglycan, develops severe muscular dystrophy as in type 2E human limb girdle muscular dystrophy. The mdx mouse, lacking dystrophin, is the most used model for Duchenne muscular dystrophy (DMD). Unlike DMD, the mdx mouse has mild clinical features and shows little fibrosis in limb muscles. To characterize ECM protein deposition and the progression of muscle fibrosis, we evaluated protein and transcript levels of collagens I, III and VI, decorin, and TGF-β1, in quadriceps and diaphragm, at 2, 4, 8, 12, 26, and 52 weeks in Sgcb-null mice, and protein levels at 12, 26, and 52 weeks in mdx mice. In Sgcb-null mice, severe morphological disruption was present from 4 weeks in both quadriceps and diaphragm, and included conspicuous deposition of extracellular matrix components. Histopathological features of Sgcb-null mouse muscles were similar to those of age-matched mdx muscles at all ages examined, but, in the Sgcb-null mouse, the extent of connective tissue deposition was generally greater than mdx. Furthermore, in the Sgcb-null mouse, the amount of all three collagen isoforms increased steadily, while, in the mdx, they remained stable. We also found that, at 12 weeks, macrophages were significantly more numerous in mildly inflamed areas of Sgcb-null quadriceps compared to mdx quadriceps (but not in highly inflamed regions), while, in the diaphragm, macrophages did not differ significantly between the two models, in either region. Osteopontin mRNA was also significantly greater at 12 weeks in laser-dissected highly inflamed areas of the Sgcb-null quadriceps compared to the mdx quadriceps. TGF-β1 was present in areas of degeneration-regeneration, but levels were highly variable and in general did not differ significantly between the two models and controls. The roles of the various subtypes of macrophages in muscle repair and fibrosis in the two models require further study. The Sgcb-null mouse, which develops early fibrosis

  2. Radiation response of the mouse tongue epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Moses, R.; Kummermehr, J.

    1986-01-01

    Mouse tongue mucosa has been used as a model to study dose responses to local irradiation. Although the irradiation procedures is less feasible and more time-consuming than e.g. snout irradiation, the tongue is the only location where a reasonable area of intraoral, multilayered epithelium in the mouse can be locally treated and scored, and a relatively small burden is imposed on the animal. In pilot experiments with external 300 kV x-irradiation just tolerated by the lip, the authors did not see critical damage to the tongue. In the present model, the onset of denudation was not correctly predicted by the normal turnover time of the tissue.

  3. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes......The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...

  4. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  5. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  6. Mouse Models for Studying Diabetic Nephropathy.

    Science.gov (United States)

    Chow, Bryna S M; Allen, Terri J

    2015-06-01

    Diabetic nephropathy (DN) is a term used to describe kidney damage cause by diabetes. With DN as one of the leading causes of end-stage renal disease worldwide, there is a strong need for appropriate animal models to study DN pathogenesis and develop therapeutic strategies. To date, most experiments are carried out in mouse models as opposed to other species for several reasons including lower cost, ease of handling, and easy manipulation of the mouse genome to generate transgenic and knockout animals. This unit provides detailed insights and technical knowledge in setting up one of the most widely used models of DN, the streptozotocin (STZ)-induced model. This model has been extensively exploited to study the mechanism of diabetic renal injury. The advantages and limitations of the STZ model and the availability of other genetic models of DN are also discussed.

  7. Engineering a new mouse model for vitiligo.

    Science.gov (United States)

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  8. Ultrastructure of the mouse spinal cord ependyma.

    OpenAIRE

    Bjugn, R; Haugland, H K; Flood, P R

    1988-01-01

    This study was done in order to investigate the normal ultrastructure of well-preserved mouse spinal canal ependyma using light, scanning and transmission electron microscopy. The ependymal lining was found to consist of a simple, cuboidal epithelium essentially similar to the unspecialized cuboidal ependyma of the brain ventricles. Apart from great variation in kinociliary density, no intracellular difference was noted between the ependymal cells. In contrast to earlier findings, indications...

  9. Hedgehog Signalling in the Embryonic Mouse Thymus

    OpenAIRE

    Barbarulo, Alessandro; Lau, Ching-In; Mengrelis, Konstantinos; Ross, Susan; Solanki, Anisha; Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate\\ud specification, and for the differentiation of multipotent progenitor cells into major histocompatibility\\ud complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog\\ud signalling pathway in T cell development, thymic epithelial cell (TEC) development, and\\ud thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation.\\ud

  10. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    Science.gov (United States)

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.

  11. Biological characteristics of mouse skin melanocytes.

    Science.gov (United States)

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse.

  12. Digenic Inheritance in Cystinuria Mouse Model.

    Directory of Open Access Journals (Sweden)

    Meritxell Espino

    Full Text Available Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months and late stage (8-months of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/- present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/- and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.

  13. Effects of the use of a special computer mouse : The HandShoe Mouse

    OpenAIRE

    VAN ZWIETEN K. J.; K. Schmidt; Helder, P.; Lippens, P.; Zoubova, I.; Zinkovsky, A.

    2011-01-01

    With a conventional mouse a combination of thumb, ring- and little finger is required to realize optimal control in the horizontal (X-Y) plane. By providing a supporting contour for hand palm and fingers, it was noted that gripping and pinching of thumb and fingers (m. extensor carpi radialis longus and brevis) to control the mouse in the X-Y plane was no longer necessary. The supporting contour enables a near to fully relaxed flexor and extensor muscle position which is reflected by a signif...

  14. A report from the Sixth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Saint Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  15. Prostaglandin modulation of mouse and human sperm capacitation.

    Science.gov (United States)

    Herrero, M B; Viggiano, J M; Boquet, M; Gimeno, M A

    1997-09-01

    To determine whether prostaglandins produce a capacitation and/or acrosome reaction, the effect of prostaglandins on capacitated mouse spermatozoa and the effect of prostaglandin pre-incubation on human and mouse spermatozoa were studied. Prostaglandins did not induce an acrosome reaction in capacitated mouse sperm. PGE1 pre-incubation in a protein-free medium enhanced acrosome loss of mouse sperm challenged with A-23187 or solubilized mouse zona pellucida. Human sperm were pre-incubated in media containing prostaglandins, and an acrosome reaction was induced with calcium ionophore or human follicular fluid. PGE1 pre-incubation enhanced acrosome loss by human sperm when the action was induced with calcium ionophore, but had no effect on follicular fluid induction. We conclude that PGE1 acts as a capacitating factor in vitro for mouse spermatozoa, and enhances acrosome-reaction induction with calcium ionophore in human spermatozoa.

  16. Extremely underwound chromosomal DNA in nucleoids of mouse sarcoma cells.

    Science.gov (United States)

    Hartwig, M; Matthes, E; Arnold, W

    1981-07-01

    The superhelical properties of chromosomal DNA from cells of a mouse sarcoma were investigated in neutral sucrose gradients containing ethidium bromide. Removal of negative supercoiling from the DNA of the sarcoma cells required a substantially higher dye concentration than was necessary in the case of DNA from cultured mouse fibroblasts. The calculated value of the mean superhelical density in malignant cells (sigma = -0.14) appears abnormally high compared with the value (sigma = -0.09) obtained for DNA of mouse fibroblasts. Chromosomal DNA from mouse sarcoma cells is therefore concluded to be highly deficient in helical turns.

  17. A humanoid mouse model of autism.

    Science.gov (United States)

    Takumi, Toru

    2010-10-01

    Even now fruit of the human genome project is available, we have difficulties to approach neuropsychiatric disorders at the molecular level. Autism is a complex psychiatric illness but has received considerable attention as a developmental brain disorder not only from basic researchers but also from society. Substantial evidence suggests that chromosomal abnormalities contribute to autism risk. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We succeeded to generate mice with a 6.3-Mb-wide interstitial duplication in mouse chromosome 7c that is highly syntenic to human 15q11-13 by using a Cre-loxP-based chromosome-engineering technique. The only paternally duplicated mice display autistic behavioral features such as poor social interaction and stereotypical behavior, and exhibit a developmental abnormality in ultrasonic vocalizations as well as anxiety. The detailed analysis focusing on a non-coding small nucleolar RNA, MBII52, within the duplicated region, revealed that the paternally duplicated mice alter the editing ratio of serotonin (5-HT) 2c receptor pre-mRNA and intracellular calcium responses by a 5-HT2c receptor specific agonist are changed in neurons. This result may explain one of molecular mechanisms of abnormal behaviors in the paternal duplicated mice. The first chromosome-engineered mouse model for human chromosome 15q11-13 duplication fulfills not only face validity of human autistic phenotypes but also construct validity based on human chromosome abnormality. This model will be a founder mouse for forward genetics of autistic disease and an invaluable tool for its therapeutic development.

  18. Mouse hypospadias: A critical examination and definition.

    Science.gov (United States)

    Sinclair, Adriane Watkins; Cao, Mei; Shen, Joel; Cooke, Paul; Risbridger, Gail; Baskin, Laurence; Cunha, Gerald R

    2016-12-01

    Hypospadias is a common malformation whose etiology is based upon perturbation of normal penile development. The mouse has been previously used as a model of hypospadias, despite an unacceptably wide range of definitions for this malformation. The current paper presents objective criteria and a definition of mouse hypospadias. Accordingly, diethylstilbestrol (DES) induced penile malformations were examined at 60 days postnatal (P60) in mice treated with DES over the age range of 12 days embryonic to 20 days postnatal (E12-P20). DES-induced hypospadias involves malformation of the urethral meatus, which is most severe in DES E12-P10, DES P0-P10 and DES P5-P15 groups, and less so or absent in the other treatment groups. A frenulum-like ventral tether between the penis and the prepuce was seen in the most severely affected DES-treated mice. Internal penile morphology was also altered in the DES E12-P10, DES P0-P10 and DES P5-P15 groups (with little effect in the other DES treatment groups). Thus, adverse effects of DES are a function of the period of DES treatment and most severe in the P0-P10 period. In "estrogen mutant mice" (NERKI, βERKO, αERKO and AROM+) hypospadias was only seen in AROM+ male mice having genetically-engineered elevation is serum estrogen. Significantly, mouse hypospadias was only seen distally at and near the urethral meatus where epithelial fusion events are known to take place and never in the penile midshaft, where urethral formation occurs via an entirely different morphogenetic process.

  19. Significant determinants of mouse pain behaviour.

    Directory of Open Access Journals (Sweden)

    Michael S Minett

    Full Text Available Transgenic mouse behavioural analysis has furthered our understanding of the molecular and cellular mechanisms underlying damage sensing and pain. However, it is not unusual for conflicting data on the pain phenotypes of knockout mice to be generated by reputable groups. Here we focus on some technical aspects of measuring mouse pain behaviour that are often overlooked, which may help explain discrepancies in the pain literature. We examined touch perception using von Frey hairs and mechanical pain thresholds using the Randall-Selitto test. Thermal pain thresholds were measured using the Hargreaves apparatus and a thermal place preference test. Sodium channel Nav1.7 knockout mice show a mechanical deficit in the hairy skin, but not the paw, whilst shaving the abdominal hair abolished this phenotype. Nav1.7, Nav1.8 and Nav1.9 knockout mice show deficits in noxious mechanosensation in the tail, but not the paw. TRPA1 knockout mice, however, have a loss of noxious mechanosensation in the paw but not the tail. Studies of heat and cold sensitivity also show variability depending on the intensity of the stimulus. Deleting Nav1.7, Nav1.8 or Nav1.9 in Nav1.8-positive sensory neurons attenuates responses to slow noxious heat ramps, whilst responses to fast noxious heat ramps are only reduced when Nav1.7 is lost in large diameter sensory neurons. Deleting Nav1.7 from all sensory neurons attenuates responses to noxious cooling but not extreme cold. Finally, circadian rhythms dramatically influence behavioural outcome measures such as von Frey responses, which change by 80% over the day. These observations demonstrate that fully characterising the phenotype of a transgenic mouse strain requires a range of behavioural pain models. Failure to conduct behavioural tests at different anatomical locations, stimulus intensities, and at different points in the circadian cycle may lead to a pain behavioural phenotype being misinterpreted, or missed altogether.

  20. Mouse models of the metabolic syndrome.

    Science.gov (United States)

    Kennedy, Arion J; Ellacott, Kate L J; King, Victoria L; Hasty, Alyssa H

    2010-01-01

    The metabolic syndrome (MetS) is characterized by obesity concomitant with other metabolic abnormalities such as hypertriglyceridemia, reduced high-density lipoprotein levels, elevated blood pressure and raised fasting glucose levels. The precise definition of MetS, the relationships of its metabolic features, and what initiates it, are debated. However, obesity is on the rise worldwide, and its association with these metabolic symptoms increases the risk for diabetes and cardiovascular disease (among many other diseases). Research needs to determine the mechanisms by which obesity and MetS increase the risk of disease. In light of this growing epidemic, it is imperative to develop animal models of MetS. These models will help determine the pathophysiological basis for MetS and how MetS increases the risk for other diseases. Among the various animal models available to study MetS, mice are the most commonly used for several reasons. First, there are several spontaneously occurring obese mouse strains that have been used for decades and that are very well characterized. Second, high-fat feeding studies require only months to induce MetS. Third, it is relatively easy to study the effects of single genes by developing transgenic or gene knockouts to determine the influence of a gene on MetS. For these reasons, this review will focus on the benefits and caveats of the most common mouse models of MetS. It is our hope that the reader will be able to use this review as a guide for the selection of mouse models for their own studies.

  1. The vasculome of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Shuzhen Guo

    Full Text Available The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties - actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons, cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer's disease, Parkinson's disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly

  2. Isolation and analysis of mouse microglial cells.

    Science.gov (United States)

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  3. Mouse Model of Human Hereditary Pancreatitis

    Science.gov (United States)

    2016-09-01

    models that recapitulate the human disease . Therefore, we introduced mutations in the endogenous mouse T7 cationic trypsinogen gene and obtained several...ACCOMPLISHMENTS: What were the major goals of the project? Our original proposal had three specific aims. Aim 1. Identify and biochemically characterize...pancreatitis in mutant mice which do not develop spontaneous disease (strains T7-D23del-Cre, T7-D23del-Neo, T7-K24R-Cre and T7- K24R-Neo), will be

  4. Mouse models for understanding human developmental anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  5. Apoptosis in the lens anlage of the heritable lens aplastic mouse (lap mouse).

    Science.gov (United States)

    Aso, S; Tashiro, M; Baba, R; Sawaki, M; Noda, S; Fujita, M

    1998-08-01

    Adult homozygous lap mice show various eye abnormalities, such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode seems to develop normally. However, the lens vesicle progresses abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. We examined cell death in the lens anlage of this mutant. The lens anlagen of homozygous lap and normal mice from days 10 to 12 of gestation were observed by light microscopy after DNA end-labeling by immunohistochemistry and by transmission electron microscopy. By light microscopy, a slight frequency of cell death was detected in the lens anlage encircling the surface ectoderm and in the anlage or in the anlage of both homozygous lap mice and normal mice at day 10 of gestation. Cell death was seen in the lens anlage encircling the surface ectoderm in the normal mouse and sporadically in the anlage of the homozygous lap mouse at day 10.5 of gestation. Cell death was visible at the area of the lens vesicle attached to the surface ectoderm and encircling the surrounding surface ectoderm in the normal mouse, and in the lens anlage encircling the surface ectoderm and the apex areas of the lens anlage in the homozygous lap mouse at day 11 of gestation. At day 12 of gestation, almost no cell death was observed in the lens anlage of the normal mouse. However, extensive areas of cell death were still seen in the lens anlage at its apex, at the inner region, and encircling the surface ectoderm in the homozygous lap mouse. Electron microscopic observation showed that the dead cells observed in the lens anlagen by light microscopy in normal and lap mice are the result of apoptosis. In lap mice, cells with cytoplasmic condensation were observed mainly at days 10 and 10.5 of gestation. Many apoptotic bodies which had been phagocytosed by adjacent cells were seen predominantly at day 11 of gestation. At day 12 of

  6. Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Akihiro, E-mail: ayoneda@sci.hokudai.ac.jp [Laboratory of Animal Breeding and Reproduction, Graduate School of Agriculture, Hokkaido University (Japan); Division of Molecular Therapeutics, Center for Food & Medical Innovation, Hokkaido University (Japan); Watanabe, Tomomasa [Laboratory of Animal Breeding and Reproduction, Graduate School of Agriculture, Hokkaido University (Japan)

    2015-05-01

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequence of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.

  7. Mouse models of anemia of cancer.

    Directory of Open Access Journals (Sweden)

    Airie Kim

    Full Text Available Anemia of cancer (AC may contribute to cancer-related fatigue and impair quality of life. Improved understanding of the pathogenesis of AC could facilitate better treatment, but animal models to study AC are lacking. We characterized four syngeneic C57BL/6 mouse cancers that cause AC. Mice with two different rapidly-growing metastatic lung cancers developed the characteristic findings of anemia of inflammation (AI, with dramatically different degrees of anemia. Mice with rapidly-growing metastatic melanoma also developed a severe anemia by 14 days, with hematologic and inflammatory parameters similar to AI. Mice with a slow-growing peritoneal ovarian cancer developed an iron-deficiency anemia, likely secondary to chronically impaired nutrition and bleeding into the peritoneal cavity. Of the four models, hepcidin mRNA levels were increased only in the milder lung cancer model. Unlike in our model of systemic inflammation induced by heat-killed Brucella abortus, ablation of hepcidin in the ovarian cancer and the milder lung cancer mouse models did not affect the severity of anemia. Hepcidin-independent mechanisms play an important role in these murine models of AC.

  8. Germ cell transplantation in infertility mouse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This work investigated the spermatogenesis in an infertility BALB/c-nu mouse model by reinfusing germline stem cells into seminiferous tubules.Donor germ cells were isolated from male FVB/NJ-GFP transgenic mice.Seminiferous tubule microiniection was applied to achieve intratubular germ cell transfer.The germ cells were injected into exposed testes of the infertility mice.We used green fluorescence and DNA analysis of donor cells from GFP transgenic mice as genetic marker.The natural mating and Southern blot methods were applied to analyze the effect of sperm cell transplantation and the sperm function after seminiferous tubule microinjecUon.The spermatogenesis was morphologically observed from the seminiferous tubules in 41/60(68.33%)of the injected recipient mice using allogeneic donor cells.In the colonized testes,matured spermatozoa were seen in the lumen of the seminiferous tubules.In this research,BALB/c-nu infertility mouse model,the recipient animal,was used to avoid immunological rejection of donor cells,and germ cell transplantation was applied to overcome infertility caused by busulfan treatment.These results demonstrate that this technique of germ cell transplantation is of great use.Germ cell transplantation could be potentially valuable to oncological patients.

  9. ROCK inhibition prevents early mouse embryo development.

    Science.gov (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  10. Candida albicans escapes from mouse neutrophils.

    Science.gov (United States)

    Ermert, David; Niemiec, Maria J; Röhm, Marc; Glenthøj, Andreas; Borregaard, Niels; Urban, Constantin F

    2013-08-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed that murine neutrophils exhibited a significantly lower ability to kill C. albicans than their human counterparts. Strikingly, C. albicans yeast cells formed germ tubes upon internalization by murine neutrophils, eventually rupturing the neutrophil membrane and thereby, killing the phagocyte. On the contrary, growth and subsequent escape of C. albicans are blocked inside human neutrophils. According to our findings, this blockage in human neutrophils might be a result of higher levels of MPO activity and the presence of α-defensins. We therefore outline differences in antifungal immune defense between humans and mouse strains, which facilitates a more accurate interpretation of in vivo results.

  11. Genetic Networks in Mouse Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Felix L Struebing

    2016-09-01

    Full Text Available Retinal ganglion cells (RGCs are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.

  12. Mouse genome engineering using designer nucleases.

    Science.gov (United States)

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-04-02

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.

  13. Endonucleases : new tools to edit the mouse genome

    NARCIS (Netherlands)

    Wijshake, Tobias; Baker, Darren J.; van de Sluis, Bart

    2014-01-01

    Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it

  14. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  15. Development of hematopoietic stem cell activity in the mouse embryo.

    NARCIS (Netherlands)

    A.M. Müller (Albrecht); A. Medvinsky; J. Strouboulis (John); F.G. Grosveld (Frank); E.A. Dzierzak (Elaine)

    1994-01-01

    textabstractThe precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipie

  16. The mammalian gene function resource: The International Knockout Mouse Consortium

    NARCIS (Netherlands)

    A. Bradley (Allan); K. Anastassiadis (Konstantinos); A. Ayadi (Abdelkader); J.F. Battey (James); C. Bell (Cindy); M.-C. Birling (Marie-Christine); J. Bottomley (Joanna); S.D.M. Brown (Steve); F. Bürger (Friederike); C.J. Bult (Carol); W. Bushell (Wendy); F.S. Collins (Francis); C. Desaintes (Christian); B. Doe (Brendan); E. Aris (Economides); J.T. Eppig (Janan); R.H. Finnell (Richard); C. Fletcher (Colin); M. Fray (Martin); D. Frendewey (David); R.H. Friedel (Roland); F.G. Grosveld (Frank); J. Hansen; Y. Hérault (Yann); G. Hicks (Geoffrey); A. Hörlein (Andreas); C. Houghton (Catherine); M. Hrabé De Angelis (Martin); D. Huylebroeck (Danny); V. Iyer (Vivek); P.J. de Jong (Pieter); J.A. Kadin (James); C. Kaloff (Cornelia); K. Kennedy (Karen); M. Koutsourakis (Manousos); K.C. Kent Lloyd (K.); S. Marschall (Susan); J. Mason (Jeremy); C. McKerlie (Colin); M.P. McLeod (Michael); H. von Melchner (Harald); M. Moore (Matt); A.O. Mujica (Alejandro); A. Nagy (Andras); M. Nefedov (Mikhail); L.M. Nutter (Lauryl); G. Pavlovic (Guillaume); J.L. Peterson (Jane); I. Pollock; R. Ramirez-Solis (Ramiro); D.E. Rancourt (Derrick); M. Raspa (Marcello); J.E. Remacle (Jacques); M. Ringwald (Martin); B. Rosen (Barry); N. Rosenthal (Nadia); J. Rossant (Janet); P. Ruiz Noppinger (Patricia); S. Ryder; J.Z. Schick (Joel Zupicich); F. Schnütgen (Frank); C.J. Schofield (Christopher); C. Seisenberger (Claudia); M. Selloum (Mohammed); E.M. Simpson (Elizabeth); W.C. Skarnes (William); D. Smedley (Damian); W.L. Stanford (William); A. Francis Stewart (A.); K. Stone (Kevin); K. Swan (Kate); H. Tadepally (Hamsa); J.L. Teboul (Jean Louis); G.P. Tocchini-Valentini (Glauco); D. Valenzuela (David); A.P. West (Anthony); K.-I. Yamamura (Ken-Ichi); Y. Yoshinaga (Yuko); M. Wurst (Martin)

    2012-01-01

    textabstractIn 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, i

  17. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    Science.gov (United States)

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  18. Radioimmunodetection of human choriocarcinoma xenograft in nude mouse

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the efficiency of radioimmuno-detection in locating the xenograft of human chorio-carcinoma in nude mouse. Methods: Radioimmuno-detection was performed using cocktail antibodies of 131I-labeled mouse anti-human chorionic gonadotropin monoclonal antibodies to locate the xenograft of human choriocarcinoma in nude mouse. Radioactivity in different tissues was measured and the tumor/non-tumor ratio was calculated. Normal mouse IgG was used as control IgG. Results: The accumulation of radioactivity in the xenograft area could be recognized as early as 24 h after the injection of the radiolabelled antibodies. 72-96 h after the injection, the xenograft could be clearly shown. The minimal shown xenograft was 0.8 cm in diameter. The tumor/non-tumor ratio increased with the time and was obviously higher than that in control group. Conclusion: Radioimmunodetection can efficiently locate human choriocarcinoma xenograft in nude mouse.

  19. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    2008-01-01

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35: 296-30

  20. The reproductive ecology of the house mouse.

    Science.gov (United States)

    Bronson, F H

    1979-09-01

    This paper attempts to integrate the physiological and ecological perspectives of the reproductive biology of the house mouse (Mus musculus). The endeavor is made within a larger context to provide a prototype for mammalian reproductive ecology in general. Specifically, the environmental regulation of the reproduction of Mus musculus is examined in relation to its ecological opportunism and, in particular, in relation to its history of global colonization. House mice can live as commensals of man or under totally feral conditions. Stable, high density, commensal populations are characterized by an insular division of the living space into demeterritories, each dominated by a single male. Feral populations typically are characterized by temporal, spatial, and social instability. Territoriality is improbable under such conditions, particularly given the necessity for large home ranges in most feral habitats. In both feral and commensal populations, however, male aggressiveness promotes the large-scale dispersal of young, all of which are potential colonizers. Of the ten or so environmental factors known to influence reproduction in house mice, seven probably are of routine importance in natural populations: diurnal modulation by daily light:dark cycles; caloric intake; nutrition; extreme temperature; agaonistic stimuli; socio-tactile cues; and priming pheronomes. The last two factors named operate directly on the secretion of luteinizing hormone or prolactin; the others act at many points in the reproductive system. Reproduction in the house mouse seems divorced from photoperiodically induced seasonality; indeed, this species breeds well even in constant darkness. Seasonal breeding may or may not then occur, depending upon dietary considerations, with or without a secondary interaction with variation in ambient temperature. There is no evidence for a dependence upon secondary plant compounds. Some of the effects of priming pheromones that have been observed

  1. Mouse, man, and meaning: bridging the semantics of mouse phenotype and human disease.

    Science.gov (United States)

    Hancock, John M; Mallon, Ann-Marie; Beck, Tim; Gkoutos, Georgios V; Mungall, Chris; Schofield, Paul N

    2009-08-01

    Now that the laboratory mouse genome is sequenced and the annotation of its gene content is improving, the next major challenge is the annotation of the phenotypic associations of mouse genes. This requires the development of systematic phenotyping pipelines that use standardized phenotyping procedures which allow comparison across laboratories. It also requires the development of a sophisticated informatics infrastructure for the description and interchange of phenotype data. Here we focus on the current state of the art in the description of data produced by systematic phenotyping approaches using ontologies, in particular, the EQ (Entity-Quality) approach, and what developments are required to facilitate the linking of phenotypic descriptions of mutant mice to human diseases.

  2. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Liane B.

    2013-10-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  3. Rosiglitazone induces mitochondrial biogenesis in mouse brain.

    Science.gov (United States)

    Strum, Jay C; Shehee, Ron; Virley, David; Richardson, Jill; Mattie, Michael; Selley, Paula; Ghosh, Sujoy; Nock, Christina; Saunders, Ann; Roses, Allen

    2007-03-01

    Rosiglitazone was found to simulate mitochondrial biogenesis in mouse brain in an apolipoprotein (Apo) E isozyme-independent manner. Rosiglitazone induced both mitochondrial DNA (mtDNA) and estrogen-stimulated related receptor alpha (ESRRA) mRNA, a key regulator of mitochondrial biogenesis. Transcriptomics and proteomics analysis suggested the mitochondria produced in the presence of human ApoE3 and E4 were not as metabolically efficient as those in the wild type or ApoE knockout mice. Thus, we propose that PPARgamma agonism induces neuronal mitochondrial biogenesis and improves glucose utilization leading to improved cellular function and provides mechanistic support for the improvement in cognition observed in treatment of Alzheimer's patients with rosiglitazone.

  4. Photobiomodulation of early mouse embryo development

    Science.gov (United States)

    Sviridova-Chailakhyan, T. A.; Fakhranurova, L. I.; Simonova, N. B.; Khramov, R. N.; Manokhin, A. A.; Paskevich, S. I.; Chailakhyan, L. M.

    2008-04-01

    The effect of artificial sunlight (AS) from a xenon source and of converted AS with an additional orange-red luminescent (λ MAX=626 nm) component (AS+L) on the development of mouse zygotes was investigated. A plastic screen with a photoluminophore layer was used for production of this orange-red luminescent (L) component. A single short-term (15 min) exposure produced a long-term stable positive effect on early embryo development of mice, which persisted during several days. After exposure to AS+L, a stimulating influence on preimplantation development was observed, in comparison with the control group without AS exposure. The positive effects were as follows: increase in percent of embryos (P <= 0.05) developed to the blastocyst stage (96.2 %) with hatching from the zona pellucida (80.8 %) within 82-96 hours in vitro compared to the control (67.1 % and 28.8 %, respectively).

  5. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  6. Multiphoton microscopy of cleared mouse organs

    Science.gov (United States)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  7. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  8. Memory B cells in mouse models.

    Science.gov (United States)

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases.

  9. An extended retinotopic map of mouse cortex

    Science.gov (United States)

    Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack

    2017-01-01

    Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700

  10. Isolation and culture of neonatal mouse cardiomyocytes.

    Science.gov (United States)

    Ehler, Elisabeth; Moore-Morris, Thomas; Lange, Stephan

    2013-09-06

    Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.

  11. Quantitative bioluminescence imaging of mouse tumor models.

    Science.gov (United States)

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  12. Mouse Models of Neurofibromatosis 1 and 2

    Directory of Open Access Journals (Sweden)

    David H. Gutmann

    2002-01-01

    Full Text Available The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1 are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2 develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors.

  13. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  14. Mouse models for BRAF-induced cancers.

    Science.gov (United States)

    Pritchard, C; Carragher, L; Aldridge, V; Giblett, S; Jin, H; Foster, C; Andreadi, C; Kamata, T

    2007-11-01

    Oncogenic mutations in the BRAF gene are detected in approximately 7% of human cancer samples with a particularly high frequency of mutation in malignant melanomas. Over 40 different missense BRAF mutations have been found, but the vast majority (>90%) represent a single nucleotide change resulting in a valine-->glutamate mutation at residue 600 ((V600E)BRAF). In cells cultured in vitro, (V600E)BRAF is able to stimulate endogenous MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK phosphorylation leading to an increase in cell proliferation, cell survival, transformation, tumorigenicity, invasion and vascular development. Many of these hallmarks of cancer can be reversed by treatment of cells with siRNA (small interfering RNA) to BRAF or by inhibiting MEK, indicating that BRAF and MEK are attractive therapeutic targets in cancer samples with BRAF mutations. In order to fully understand the role of oncogenic BRAF in cancer development in vivo as well as to test the in vivo efficacy of anti-BRAF or anti-MEK therapies, GEMMs (genetically engineered mouse models) have been generated in which expression of oncogenic BRaf is conditionally dependent on the Cre recombinase. The delivery/activation of the Cre recombinase can be regulated in both a temporal and spatial manner and therefore these mouse models can be used to recapitulate the somatic mutation of BRAF that occurs in different tissues in the development of human cancer. The data so far obtained following Cre-mediated activation in haemopoietic tissue and the lung indicate that (V600E)BRAF mutation can drive tumour initiation and that its primary effect is to induce high levels of cyclin D1-mediated cell proliferation. However, hallmarks of OIS (oncogene-induced senescence) are evident that restrain further development of the tumour.

  15. Cardiac mouse lymphatics: developmental and anatomical update.

    Science.gov (United States)

    Flaht-Zabost, Aleksandra; Gula, Grzegorz; Ciszek, Bogdan; Czarnowska, Elżbieta; Jankowska-Steifer, Ewa; Madej, Maria; Niderla-Bielińska, Justyna; Radomska-Leśniewska, Dorota; Ratajska, Anna

    2014-06-01

    The adult mouse heart possesses an extensive lymphatic plexus draining predominantly the subepicardium and the outer layer of the myocardial wall. However, the development of this plexus has not been entirely explored, partially because of the lack of suitable methods for its visualization as well as prolonged lymphatic vessel formation that starts prenatally and proceeds during postnatal stages. Also, neither the course nor location of collecting vessels draining lymph from the mouse heart have been precisely characterized. In this article, we report that murine cardiac lymphatic plexus development that is limited prenatally only to the subepicardial area, postnatally proceeds from the subepicardium toward the myocardial wall with the base-to-apex gradient; this plexus eventually reaches the outer half of the myocardium with a predominant location around branches of coronary arteries and veins. Based on multiple marker immunostaining, the molecular marker-phenotype of cardiac lymphatic endothelial cells can be characterized as: Prox-1(+), Lyve-1(+), VEGFR3(+), Podoplanin(+), VEGFR2(+), CD144(+), Tie2(+), CD31(+), vWF(-), CD34(-), CD133(-). There are two major collecting vessels: one draining the right and left ventricles along the left conal vein and running upwards to the left side of the pulmonary trunk and further to the nearest lymph nodes (under the aortic arch and near the trachea), and the other one with its major branch running along the left cardiac vein and further on the surface of the coronary sinus and the left atrium to paratracheal lymph nodes. The extracardiac collectors gain the smooth muscle cell layer during late postnatal stages.

  16. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model.

    Science.gov (United States)

    Li, Yang; Li, Zheng; Shi, Lei; Zhao, Chenxu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-07-01

    Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo.

  17. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues.

    Science.gov (United States)

    Petyuk, Vladislav A; Qian, Wei-Jun; Hinault, Charlotte; Gritsenko, Marina A; Singhal, Mudita; Monroe, Matthew E; Camp, David G; Kulkarni, Rohit N; Smith, Richard D

    2008-08-01

    The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of types 1 and 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2612 proteins having at least two unique peptides per protein. The data set also identified approximately 60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic data sets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at (http://ncrr.pnl.gov), provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields.

  18. Identification of glutamate transporters and receptors in mouse testis

    Institute of Scientific and Technical Information of China (English)

    Jia-hua HU; Na YANG; Ying-hua MA; Jie JIANG; Jin-fu ZHANG; Jian FEI; Li-he GUO

    2004-01-01

    AIM: To investigate the presence of glutamate transporters and receptors in mouse testis. METHODS: Glutamate uptake analysis was performed to study the function of glutamate transporters in mouse testis. Comparative RT-PCR technique and sequencing analysis were used to study the expression of glutamate receptors and transporters in mouse testis. RESULTS: Mouse testis possessed glutamate uptake capacity with sodium-dependence. Vmax value of glutamate uptake was (1.60 ± 0.21) pmol/min per mg protein and Km value of glutamate uptake was (11.0±1.6) μmol/L in mouse testis according to saturation analysis. Furthermore, the uptake activity could be inhibited by DHK (GLT1 selective inhibitor) and THA (glutamate uptake inhibitor). In addition, RT-PCR results revealed that glutamate transporters (GLT1 and EAAC1) and ionotropic glutamate receptors (NR1, NR2B, GluR6 and KA2) were expressed in mouse testis. CONCLUSION: Glutamate transporters and receptors do exist in mouse testis.

  19. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  20. Engineering subtle targeted mutations into the mouse genome.

    Science.gov (United States)

    Menke, Douglas B

    2013-09-01

    Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label-specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881-D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis-regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice.

  1. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  2. Comparative anatomy of marmoset and mouse cortex from genomic expression.

    Science.gov (United States)

    Mashiko, Hiromi; Yoshida, Aya C; Kikuchi, Satomi S; Niimi, Kimie; Takahashi, Eiki; Aruga, Jun; Okano, Hideyuki; Shimogori, Tomomi

    2012-04-11

    Advances in mouse neural circuit genetics, brain atlases, and behavioral assays provide a powerful system for modeling the genetic basis of cognition and psychiatric disease. However, a critical limitation of this approach is how to achieve concordance of mouse neurobiology with the ultimate goal of understanding the human brain. Previously, the common marmoset has shown promise as a genetic model system toward the linking of mouse and human studies. However, the advent of marmoset transgenic approaches will require an understanding of developmental principles in marmoset compared to mouse. In this study, we used gene expression analysis in marmoset brain to pose a series of fundamental questions on cortical development and evolution for direct comparison to existing mouse brain atlas expression data. Most genes showed reliable conservation of expression between marmoset and mouse. However, certain markers had strikingly divergent expression patterns. The lateral geniculate nucleus and pulvinar in the thalamus showed diversification of genetic organization between marmoset and mouse, suggesting they share some similarity. In contrast, gene expression patterns in early visual cortical areas showed marmoset-specific expression. In prefrontal cortex, some markers labeled architectonic areas and layers distinct between mouse and marmoset. Core hippocampus was conserved, while afferent areas showed divergence. Together, these results indicate that existing cortical areas are genetically conserved between marmoset and mouse, while differences in areal parcellation, afferent diversification, and layer complexity are associated with specific genes. Collectively, we propose that gene expression patterns in marmoset brain reveal important clues to the principles underlying the molecular evolution of cortical and cognitive expansion.

  3. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth.

    Science.gov (United States)

    Dickinson, Hayley; Walker, David W; Cullen-McEwen, Luise; Wintour, E Marelyn; Moritz, Karen

    2005-08-01

    The spiny mouse is relatively mature at birth. We hypothesized that like other organs, the kidney may be more developed in the spiny mouse at birth, than in other rodents. If nephrogenesis is complete before birth, the spiny mouse may provide an excellent model with which to study the effects of an altered intrauterine environment on renal development. Due to its desert adaptation, the spiny mouse may have a reduced cortex-to-medulla ratio but an equivalent total nephron number to the C57/BL mouse. Kidneys were collected from fetal and neonatal spiny mice and sectioned for gross examination of metanephric development. Kidneys were collected from adult spiny mice (10 wk of age), and glomerular number, volume, and cortex-to-medulla ratios were determined using unbiased stereology. Nephrogenesis is complete in spiny mouse kidneys before birth. Metanephrogenesis begins at approximately day 18, and by day 38 of a 40-day gestation, the nephrogenic zone is no longer present. Spiny mice have a significantly (P < 0.001) lower total nephron number compared with C57/BL mice, although the total glomerular volume is similar. The cortex-to-medulla ratio of the spiny mouse is significantly (P < 0.01) smaller. The spiny mouse is the first rodent species shown to complete nephrogenesis before birth. This makes it an attractive candidate for the study of fetal and neonatal kidney development and function. The reduced total nephron number and cortex-to-medulla ratio in the spiny mouse may contribute to its ability to highly concentrate its urine under stressful conditions (i.e., dehydration).

  4. Sequence and chromosomal localization of the mouse brevican gene

    DEFF Research Database (Denmark)

    Rauch, U; Meyer, H; Brakebusch, C

    1997-01-01

    Brevican is a brain-specific proteoglycan belonging to the aggrecan family. Phage clones containing the complete mouse brevican open reading frame of 2649 bp and the complete 3'-untranslated region of 341 bp were isolated from a mouse brain cDNA library, and cosmid clones containing the mouse bre...... to an alternative brevican cDNA, coding for a GPI-linked isoform. Single strand conformation polymorphism analysis mapped the brevican gene (Bcan) to chromosome 3 between the microsatellite markers D3Mit22 and D3Mit11....

  5. Mouse models of rhinovirus infection and airways disease.

    Science.gov (United States)

    Bartlett, Nathan W; Singanayagam, Aran; Johnston, Sebastian L

    2015-01-01

    Mouse models are invaluable tools for gaining insight into host immunity during virus infection. Until recently, no practical mouse model for rhinovirus infection was available. Development of infection models was complicated by the existence of distinct groups of viruses that utilize different host cell surface proteins for binding and entry. Here, we describe mouse infection models, including virus purification and measurement of host immune responses, for representative viruses from two of these groups: (1) infection of unmodified Balb/c mice with minor group rhinovirus serotype 1B (RV-1B) and (2) infection of transgenic Balb/c mice with major group rhinovirus serotype 16 (RV-16).

  6. Generation of targeted mouse mutants by embryo microinjection of TALENs.

    Science.gov (United States)

    Wefers, Benedikt; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2014-08-15

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes.

  7. Cellular and genetic analysis of mouse blastocyst development

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, R A; Spindle, A I

    1979-01-01

    The development of mouse embryos was studied by both cellular and genetic approaches. In the cellular analysis, determination of cell fate in blastocysts and in cell populations derived from them was studied in an attempt to estimate the time that these cells become committed to their fate. In the genetic analysis, existing mutations that are lethal to mouse embryos were used to discern essential features of early development. In this review, the timing of cell determination in the inner cell mass and the primary ectoderm, and the manifestation of defects in mouse embryos that are homozygous for the A/sup y/ allele of the agouti locus were considered.

  8. Mouse models for studying the formation and propagation of prions.

    Science.gov (United States)

    Watts, Joel C; Prusiner, Stanley B

    2014-07-18

    Prions are self-propagating protein conformers that cause a variety of neurodegenerative disorders in humans and animals. Mouse models have played key roles in deciphering the biology of prions and in assessing candidate therapeutics. The development of transgenic mice that form prions spontaneously in the brain has advanced our understanding of sporadic and genetic prion diseases. Furthermore, the realization that many proteins can become prions has necessitated the development of mouse models for assessing the potential transmissibility of common neurodegenerative diseases. As the universe of prion diseases continues to expand, mouse models will remain crucial for interrogating these devastating illnesses.

  9. Cloning and sequencing of mouse GABA transporter complementary DNA

    Institute of Scientific and Technical Information of China (English)

    TAMANTHONYC.W.; LIHEGUO; 等

    1994-01-01

    A cDNA encoding the mouse GABA transporter has been isolated and sequenced.The results show that the mouse GABA transporter cDNA differs from that of the rat by 60 base pairs at the open reading frame region but the deduced amino acid sequences of the two cDNAs are identical and both composed of 599 amino acids.However,the amino acid sequence is different from the sequence deduced from a recently published mouse GABA transporter cDNA.

  10. 网络口碑 Word of mouse

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    英文里“word of mouth”意思是“口碑”,但是大家听说过“word of mouse”吗?这两个短语有什么关系呢?Word of mouse is an electronic version of the time—tested idea of WOrd of mouth. Numerous advertisers have jumped on the word of mouse bandwagon using a variety of innovative techniques to get their message out to consumers,and businesses all over the world rely on word of mouse to promote good reputations.

  11. Mouse embryos' fusion for the tetraploid complementation assay.

    Science.gov (United States)

    Gertsenstein, Marina

    2015-01-01

    Production of the germline-competent chimeras using genetically modified ES cell lines is an essential step in the establishment of novel mouse models. In addition chimeras provide a powerful tool to study the cell lineage and to analyze complex phenotypes of mutant mice. Mouse chimeras with tetraploid embryos are used to rescue extraembryonic defects, to analyze an impact of gene function on specific lineage, to study the interaction between embryonic and extraembryonic tissues, and to produce mutant embryos and mice for the phenotype analysis. Tetraploid embryos are generated by the fusion of two blastomeres of the mouse embryo. The applications of tetraploid complementation assay and the protocol are described below.

  12. Neuron Loss in Transgenic Mouse Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Oliver Wirths

    2010-01-01

    Full Text Available Since their initial generation in the mid 1990s, transgenic mouse models of Alzheimers's disease (AD have been proven to be valuable model systems which are indispensable for modern AD research. Whereas most of these models are characterized by extensive amyloid plaque pathology, inflammatory changes and often behavioral deficits, modeling of neuron loss was much less successful. The present paper discusses the current achievements of modeling neuron loss in transgenic mouse models based on APP/Aβ and Tau overexpression and provides an overview of currently available AD mouse models showing these pathological alterations.

  13. Meeting Report: The Twelfth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  14. A Mouse Model of Chronic West Nile Virus Disease

    Science.gov (United States)

    Graham, Jessica B.; Swarts, Jessica L.; Wilkins, Courtney; Thomas, Sunil; Green, Richard; Sekine, Aimee; Voss, Kathleen M.; Mooney, Michael; Choonoo, Gabrielle; Miller, Darla R.; Pardo Manuel de Villena, Fernando; Gale, Michael

    2016-01-01

    Infection with West Nile virus (WNV) leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013)F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans. PMID:27806117

  15. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources.

  16. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec...

  17. Experimental Characterization of the Twin-Eye Laser Mouse Sensor

    Directory of Open Access Journals (Sweden)

    Javier Moreno

    2016-01-01

    Full Text Available This paper proposes the experimental characterization of a laser mouse sensor used in some optical mouse devices. The sensor characterized is called twin-eye laser mouse sensor and uses the Doppler effect to measure displacement as an alternative to optical flow-based mouse sensors. The experimental characterization showed similar measurement performances to optical flow sensors except in the sensitivity to height changes and when measuring nonlinear displacements, where the twin-eye sensor offered better performance. The measurement principle of this optical sensor can be applied to the development of alternative inexpensive applications that require planar displacement measurement and poor sensitivity to z-axis changes such as mobile robotics.

  18. The functional diversity of retinal ganglion cells in the mouse.

    Science.gov (United States)

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems.

  19. A comparative encyclopedia of DNA elements in the mouse genome.

    Science.gov (United States)

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.

  20. Mouse Karyotype Obtained by Combining DAPI Staining with Image Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, mitotic metaphase chromosomes in mouse were identified by a new chromosome fluorescence banding technique combining DAPI staining with image analysis. Clear 4', 6-diamidino-2-phenylindole (DAPI) multiple bands like G-bands could be produced in mouse. The MetaMorph software was then used to generate linescans of pixel intensity for the banded chromosomes from short arm to long arm. These linescans were sufficient not only to identify each individual chromosome but also analyze the physical sites of bands in chromosome. Based on the results, the clear and accurate karyotype of mouse metaphase chromosomes was established. The technique is therefore considered to be a new method for cytological studies of mouse.

  1. FDA Scientists Develop Mouse Model for Zika Research

    Science.gov (United States)

    ... news/fullstory_162111.html FDA Scientists Develop Mouse Model for Zika Research Researchers hope strain of mice will help speed development of vaccines, treatments To use the sharing features on this page, please enable JavaScript. (*this news ...

  2. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    Science.gov (United States)

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  3. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  4. An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

    KAUST Repository

    Ravasi, Timothy

    2010-03-01

    Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.

  5. An approach for ergonomic design of mouse wheel

    Institute of Scientific and Technical Information of China (English)

    Gao Sande; Nakana Keijiro; and Huang Loulin

    2012-01-01

    A new method for ergonomic design of a computer mouse is proposed in this paper. In the method, the movements of joints and tip of the forefinger during operating a mouse was captured by a high-speed video camera. The captured videos were ana- lyzed and an algorithm was developed to decide the size and location of the mouse wheel according to ergonomic principles. The al- gorithm was then coded in a software package with Visual C++ and OpenGL languages. Results of the calculation and simulation agreed well with those of the experiments. The software can also be used for shape design of mouse body, buttons and their layouts.

  6. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  7. "The Lion and the Mouse"教学案例

    Institute of Scientific and Technical Information of China (English)

    欧阳胜美

    2010-01-01

    @@ 一、教学内容(Teaching content) There is a lion. He is big. He is very strong. His teeth are big and sharp. This is a mouse. She is small. Her teeth are small and sharp. The lion is hungryv. The mouse is afraid, "Don't eat me,please." Oh! The lion is in the net! He is very afraid, "Help! Help! Who can help me?"

  8. End Sequencing and Finger Printing of Human & Mouse BAC Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, C

    2005-09-27

    This project provided for continued end sequencing of existing and new BAC libraries constructed to support human sequencing as well as to initiate BAC end sequencing from the mouse BAC libraries constructed to support mouse sequencing. The clones, the sequences, and the fingerprints are now an available resource for the community at large. Research and development of new metaodologies for BAC end sequencing have reduced costs and increase throughput.

  9. Endodcytic labelling of visceral endoderm of mouse perigastrulation embryos

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yoh Wada, Minako Aoyama, Ge-Hong Sun-Wada, Nobuyuki Kawamura & Hiroyuki Tabata ### Abstract In this protocol we describe methods for observation endocytic activity in the mouse embryos. The methods are optimised for mouse embryos at E5.5~E7.2 pregastrulation/gastrulation stages. We optimise three different experimental schemes for tracing the embryonic endocytosis. In utero labelling scheme, an endocytic tracer is introduced into circulation of a pregnant mother to follow...

  10. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues

    Energy Technology Data Exchange (ETDEWEB)

    Petyuk, Vladislav A.; Qian, Weijun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2008-08-01

    The pancreatic islets of Langerhans and insulin-producing beta cells in particular play a central role in the maintenance of glucose homeostasis and the islet dysfunction is associated with the pathogenesis of both type 1 and type 2 diabetes mellitus. To contribute to the understanding of the biology of the pancreatic islets we applied proteomic techniques based on liquid chromatography coupled with mass spectrometry. Here as an initial step we present the first comprehensive proteomic characterization of pancreas islets of the mouse, the commonly used animal model for diabetes research. Two-dimensional SCX LC/RP LC-MS/MS has been applied to characterize of the mouse islet proteome, resulting in the confident identification of 17,350 different tryptic peptides covering 2,612 proteins with at least two unique peptide identifications per protein. The dataset also allowed identification of a number of post-translational modifications including several modifications relevant to oxidative stress and phosphorylation. While many of the identified phosphorylation sites corroborates with previous known sites, the oxidative modifications observed on cysteinyl residues potentially reveal novel information related to the role of oxidation stress in islet functions. Comparative analysis of the islet proteome database with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 68 proteins uniquely detected only in the pancreatic islets. Besides proteins with known functions, like islet secreted peptide hormones, this unique set contains a number of proteins with yet unknown functions. The resulting peptide and protein database will be available at ncrr.pnl.gov web site of the NCRR proteomic center (ncrr.pnl.gov).

  11. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    Science.gov (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  12. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  13. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro.

    Science.gov (United States)

    Wang, X; Tolstonog, G; Shoeman, R L; Traub, P

    1996-03-01

    Mouse vimentin intermediate filaments (IFs) reconstituted in vitro were analyzed for their capacity to select certain DNA sequences from a mixture of about 500-bp-long fragments of total mouse genomic DNA. The fragments preferentially bound by the IFs and enriched by several cycles of affinity binding and polymerase chain reaction (PCR) amplification were cloned and sequenced. In general, they were G-rich and highly repetitive in that they often contained Gn, (GT)n, and (GA)n repeat elements. Other, more complex repeat sequences were identified as well. Apart from the capacity to adopt a Z-DNA and triple helix configuration under superhelical tension, many fragments were potentially able to form cruciform structures and contained consensus binding sites for various transcription factors. All of these sequence elements are known to occur in introns and 5'/3'-flanking regions of genes and to play roles in DNA transcription, recombination and replication. A FASTA search of the EMBL data bank indeed revealed that sequences homologous to the mouse repetitive DNA fragments are commonly associated with gene-regulatory elements. Unexpectedly, vimentin IFs also bound a large number of apparently overlapping, AT-rich DNA fragments that could be aligned into a composite sequence highly homologous to the 234-bp consensus centromere repeat sequence of gamma-satellite DNA. Previous experiments have shown a high affinity of vimentin for G-rich, repetitive telomere DNA sequences, superhelical DNA, and core histones. Taken together, these data support the hypothesis that, after penetration of the double nuclear membrane via an as yet unidentified mechanism, vimentin IFs cooperatively fix repetitive DNA sequence elements in a differentiation-specific manner in the nuclear periphery subjacent to the nuclear lamina and thus participate in the organization of chromatin and in the control of transcription, replication, and recombination processes. This includes aspects of global

  14. Teratogenic evaluation of epichlorohydrin in the mouse and rat and glycidol in the mouse.

    Science.gov (United States)

    Marks, T A; Gerling, F S; Staples, R E

    1982-01-01

    Pregnant outbred albino rats (CD) and mice (CD-1) were given epichlorohydrin by gastric intubation on d 6-15 of gestation. The rats were killed on d 21 (d 18 for mice) and the offspring checked for gross, visceral, and skeletal malformations. Epichlorohydrin caused a significant reduction in the weight gain of pregnant rats at 80 mg/kg.d as compared with the control group treated only with the vehicle. However, there was no evidence of teratogenicity in the rat fetuses even at a dose level (160 mg/kg.d) that caused the death of some of the treated dams. Epichlorohydrin also did not produce a statistically significant increase in the average percent of malformed mouse fetuses, even at 160 mg/kg.d, a dose that killed 3 of 32 treated dams. The 120 and 160 mg/kg.d levels did cause a significant (p less than 0.05) reduction in the average fetal weight as compared with controls. In addition, the 120 mg/kg.d dose produced the statistically significantly increase in the liver weight of the pregnant mouse. These observations indicate that the 120 and 160 mg/kg.d dose levels were toxic toward the dams and their unborn offspring. In a similar mouse study, glycidol showed no evidence of teratogenicity. There was a significant increase in the number of stunted fetuses at 200 mg/kg.d, but all of these were present in a single litter. Further, the same dose killed 5 of 30 dams.

  15. Preclinical fluorescent mouse models of pancreatic cancer

    Science.gov (United States)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  16. Multistage chemical carcinogenesis in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Slaga, T.J.; Fischer, S.M.; Weeks, C.E.; Klein-Szanto, A.J.P.

    1979-01-01

    Skin tumors in mice can be induced by the sequential application of a subthreshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a noncarcinogenic tumor promoter. The initiation phase requires only a single application of either a direct acting carcinogen or a procarcinogen which has to be metabolized before being active and is essentially an irreversible step which probably involves a somatic cell mutation. There is a good correlation between the skin tumor initiating activites of several polycyclic aromatic hydrocarbons (PAH) and their ability to bind covalently to epidermal DNA. Laboratory results suggest that bay region diol-epoxides are the ultimate carcinogenic form of PAH carcinogens. Potent inhibitors and stimulators of PAH tumor initiation appear to affect the level of the PAH diol-epoxide reacting with specific DNA bases. Reecent data suggests that the tumor promotion stage involves at least three important steps: (1) the induction of embryonic looking cells (dark cells) in adult epidermis; (2) an increased production of epidermal prostaglandins and polyamines; (3) sustained proliferation of dark cells. Retinoic acid specifically inhibits step two whereas the anti-inflammatory steriod fluocinolone acetonide is a potent inhibitor of steps one and three. The mechanism and the importance of a specific sequence for each step in chemical carcinogenesis in mouse skin are detailed.

  17. Mouse lung adhesion assay for Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Burns, K.A.; Freer, J.H. (Department of Microbiology, Alexander Stone Building, Bearsden, Glasgow, Scotland)

    1982-03-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 ..mu..Ci (37 K Bq) of (/sup 14/C)glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation.

  18. Neural localization of addicsin in mouse brain.

    Science.gov (United States)

    Akiduki, Saori; Ochiishi, Tomoyo; Ikemoto, Mitsushi J

    2007-10-22

    Addicsin is a member of the prenylated Rab acceptor (PRA) 1 domain family and a murine homolog of the rat glutamate-transporter-associated protein 3-18 (GTRAP3-18). This protein is considered to function as a modulator of the neural glutamate transporter excitatory amino acid carrier 1 (EAAC1). However, its molecular functions remain largely unknown. Here, we examined the regional and cellular localization of addicsin in the central nervous system (CNS) by using a newly generated antibody specific for the protein. Distribution analysis by Western blot and immunohistochemistry demonstrated that the protein was widely distributed in various regions of the mature CNS, including the olfactory bulbs, cerebral cortex, amygdala, hippocampus CA1-3 fields, dentate gyrus, and cerebellum. Double immunofluorescence analysis revealed that addicsin was expressed in the somata of principal neurons in the CNS such as the pyramidal cells and gamma-aminobutyric acid (GABA)-ergic interneurons scattered in the hippocampal formation. Furthermore, the protein showed pre-synaptic localization in the stratum lucidum of the CA3 field of the hippocampal formation. Subcellular localization analysis of highly purified synaptic fractions prepared from mouse forebrain supported the cytoplasmic and pre-synaptic distribution of addicsin. These results suggest that addicsin has neural expression and may play crucial roles in the basic physiological functions of the mature CNS.

  19. Computer simulations of the mouse spermatogenic cycle

    Directory of Open Access Journals (Sweden)

    Debjit Ray

    2014-12-01

    Full Text Available The spermatogenic cycle describes the periodic development of germ cells in the testicular tissue. The temporal–spatial dynamics of the cycle highlight the unique, complex, and interdependent interaction between germ and somatic cells, and are the key to continual sperm production. Although understanding the spermatogenic cycle has important clinical relevance for male fertility and contraception, there are a number of experimental obstacles. For example, the lengthy process cannot be visualized through dynamic imaging, and the precise action of germ cells that leads to the emergence of testicular morphology remains uncharacterized. Here, we report an agent-based model that simulates the mouse spermatogenic cycle on a cross-section of the seminiferous tubule over a time scale of hours to years, while considering feedback regulation, mitotic and meiotic division, differentiation, apoptosis, and movement. The computer model is able to elaborate the germ cell dynamics in a time-lapse movie format, allowing us to trace individual cells as they change state and location. More importantly, the model provides mechanistic understanding of the fundamentals of male fertility, namely how testicular morphology and sperm production are achieved. By manipulating cellular behaviors either individually or collectively in silico, the model predicts causal events for the altered arrangement of germ cells upon genetic or environmental perturbations. This in silico platform can serve as an interactive tool to perform long-term simulation and to identify optimal approaches for infertility treatment and contraceptive development.

  20. Glycidol degrades scrapie mouse prion protein.

    Science.gov (United States)

    Yamamoto, M; Horiuchi, M; Ishiguro, N; Shinagawa, M; Matsuo, T; Kaneko, K

    2001-09-01

    Agents of transmissible spongiform encephalopathy (prion) are known to be extremely resistant to physicochemical inactivation procedures such as heat, radiation, chemical disinfectants such as detergents, alcohols, glutaraldehyde, formalin, and so on. Because of its remarkable resistance, it is difficult to inactivate prion. Chemical inactivation seems to be a practical method because it is applicable to large or fixed surfaces and complicated equipment. Here, three epoxides: beta-propiolactone, propylene oxide, and glycidol (GLD) were examined of their inactivation ability against scrapie-mouse prion protein (PrP(Sc)) under various conditions of chemical concentration, incubation time, and temperature. Among these chemicals, GLD worked most effectively and degraded PrP into small fragments. As a result of the bioassay, treatment with 3% GLD for 5 hr and 5% GLD for 2, 5 hr or 12 hr at room temperature prolonged the mean incubation time by 44, 30, 110 and 73 days, respectively. From dose-incubation time standard curve, the decrease in infectivity titers were estimated as 10(3) or more. Therefore, degradation of PrP(Sc) by GLD decreased the scrapie infectivity. It is also suggested that pH and salt concentrations influence the effect of GLD. Although further study is necessary to determine the optimal condition, GLD may be a potential prion disinfectant.

  1. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  2. Transcriptional divergence and conservation of human and mouse erythropoiesis.

    Science.gov (United States)

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C; Sankaran, Vijay G; Lodish, Harvey F

    2014-03-18

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease.

  3. Variables influencing DNA-binding in mouse liver.

    Science.gov (United States)

    Neumann, H G

    1987-01-01

    The suitability of certain mouse strains for carcinogenicity testing has been questioned. Some chemicals increase the incidence of liver tumors above a relatively high background, an effect not seen in rats. This raises the question whether species and tissue specific effects are involved which are reflected in the DNA binding of metabolites. DNA binding indices in mouse liver have been determined in only a few instances. They are comparable to those found for rat liver DNA with aniline, benzo(a)-pyrene, butadiene, dimethylnitrosamine, methylnitrosourea and they are lower in the mouse with aflatoxin B1, trans-4-acetylaminostilbene and 2-aminofluorene derivatives. The available data on DNA binding in mouse liver suggest that the same adducts are formed as in rats but that metabolism and repair are variables which can modify the extent of DNA damage. However, the extent of DNA binding does not always correlate with the susceptibility of this tissue to carcinogenesis. But mouse liver is no exception in this respect. It is concluded that the formation of mouse liver tumors in long term studies with genotoxic chemicals indicates tumor initiating potential. In contrast, there are other chemicals such as chlorinated hydrocarbon insecticides which do not bind to DNA to any extent and which are not genotoxic in common short term tests and yet give rise to liver tumors in mice but not in rats. Positive results in long term studies are suggested to indicate promoting properties of such compounds.

  4. Mouse models to study dengue virus immunology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Raphaël M. Zellweger

    2014-04-01

    Full Text Available The development of a compelling murine model of dengue virus (DENV infection has been challenging, because dengue virus clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows to investigate questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of antiviral drug or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.

  5. Gene expression profile analysis of type 2 diabetic mouse liver.

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    Full Text Available Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases.

  6. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

  7. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus

    Directory of Open Access Journals (Sweden)

    Daniel eDenman

    2016-03-01

    Full Text Available The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat. While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN. Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called ‘visual mammals’, we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates.

  8. The LEGSKO mouse: a mouse model of age-related nuclear cataract based on genetic suppression of lens glutathione synthesis.

    Directory of Open Access Journals (Sweden)

    Xingjun Fan

    Full Text Available Age-related nuclear cataracts are associated with progressive post-synthetic modifications of crystallins from various physical chemical and metabolic insults, of which oxidative stress is a major factor. The latter is normally suppressed by high concentrations of glutathione (GSH, which however are very low in the nucleus of the old lens. Here we generated a mouse model of oxidant stress by knocking out glutathione synthesis in the mouse in the hope of recapitulating some of the changes observed in human age-related nuclear cataract (ARNC. A floxed Gclc mouse was generated and crossed with a transgenic mouse expressing Cre in the lens to generate the LEGSKO mouse in which de novo GSH synthesis was completely abolished in the lens. Lens GSH levels were reduced up to 60% in homozygous LEGSKO mice, and a decreasing GSH gradient was noticed from cortical to nuclear region at 4 months of age. Oxidation of crystallin methionine and sulfhydryls into sulfoxides was dramatically increased, but methylglyoxal hydroimidazolones levels that are GSH/glyoxalase dependent were surprisingly normal. Homozygous LEGSKO mice developed nuclear opacities starting at 4 months that progressed into severe nuclear cataract by 9 months. We conclude that the LEGSKO mouse lens mimics several features of human ARNC and is thus expected to be a useful model for the development of anti-cataract agents.

  9. DIFFERENTIATION AND MALIGNANT SUPPRESSION INDUCED BY MOUSE ERYTHROID DIFFERENTIATION AND DENUCLEATION FACTOR ON MOUSE ERYTHROLEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    韩代书; 赵青; 葛晔华; 周建平; 马静; 陈克铨; 薛社普

    2002-01-01

    Objective. To investigate the roles of mouse erythroid differentiation and denueleation factor (MEDDF), a novel factor cloned in our laboratory recently, in erythroid terminal differentiation.Methods. Mouse erythroleukemia (MEL) cells were transfected with eukaryotic expression plasmid pcD-NA-MEDDF. Then we investigated the changes on characteristics of cell growth by analyzing cells growth rate,mitotic index and colony-forming rate in semi-solid medium. The expressions of c-myc and β-globin genes were analysed by semi-quantitative RT-PCR.Results. MEL ceils transfected with pcDNA-MEDDF showed significant lower growth rate, mitotic index,and colony-forming rate in semi-solid medium ( P<0.01 ). The percentage of benzidine-positive cells was 32.8% after transfection. The expression of β-globin in cells transfected with pcDNA-MEDDF was 3.43 times higher than that of control (MEL transfected with blank vector, pcDNA3. 1 ), and the expression of c-myc decreased by 66.3%.Conclusions. MEDDF can induce differentiation of MEL cell and suppress its malignancy.

  10. Phenotype of the taurine transporter knockout mouse.

    Science.gov (United States)

    Warskulat, Ulrich; Heller-Stilb, Birgit; Oermann, Evelyn; Zilles, Karl; Haas, Helmut; Lang, Florian; Häussinger, Dieter

    2007-01-01

    This chapter reports present knowledge on the properties of mice with disrupted gene coding for the taurine transporter (taut-/- mice). Study of those mice unraveled some of the roles of taurine and its membrane transport for the development and maintenance of normal organ functions and morphology. When compared with wild-type controls, taut-/- mice have decreased taurine levels in skeletal and heart muscle by about 98%, in brain, kidney, plasma, and retina by 80 to 90%, and in liver by about 70%. taut-/- mice exhibit a lower body mass as well as a strongly reduced exercise capacity compared with taut+/- and wild-type mice. Furthermore, taut-/- mice show a variety of pathological features, for example, subtle derangement of renal osmoregulation, changes in neuroreceptor expression, and loss of long-term potentiation in the striatum, and they develop clinically relevant age-dependent disorders, for example, visual, auditory, and olfactory dysfunctions, unspecific hepatitis, and liver fibrosis. Taurine-deficient animal models such as acutely dietary-manipulated foxes and cats, pharmacologically induced taurine-deficient rats, and taurine transporter knockout mouse are powerful tools allowing identification of the mechanisms and complexities of diseases mediated by impaired taurine transport and taurine depletion (Chapman et al., 1993; Heller-Stilb et al., 2002; Huxtable, 1992; Lake, 1993; Moise et al., 1991; Novotny et al., 1991; Pion et al., 1987; Timbrell et al., 1995; Warskulat et al., 2004, 2006b). Taurine, which is the most abundant amino acid in many tissues, is normally found in intracellular concentrations of 10 to 70 mmol/kg in mammalian heart, brain, skeletal muscle, liver, and retina (Chapman et al., 1993; Green et al., 1991; Huxable, 1992; Timbrell et al., 1995). These high taurine levels are maintained by an ubiquitous expression of Na(+)-dependent taurine transporter (TAUT) in the plasma membrane (Burg, 1995; Kwon and Handler, 1995; Lang et al., 1998

  11. TRPM3 expression in mouse retina.

    Directory of Open Access Journals (Sweden)

    R Lane Brown

    Full Text Available Transient receptor potential (TRP channels constitute a large family of cation permeable ion channels that serve crucial functions in sensory systems by transducing environmental changes into cellular voltage and calcium signals. Within the retina, two closely related members of the melastatin TRP family, TRPM1 and TRPM3, are highly expressed. TRPM1 has been shown to be required for the depolarizing response to light of ON-bipolar cells, but the role of TRPM3 in the retina is unknown. Immunohistochemical staining of mouse retina with an antibody directed against the C-terminus of TRPM3 labeled the inner plexiform layer (IPL and a subset of cells in the ganglion cell layer. Within the IPL, TRPM3 immunofluorescence was markedly stronger in the OFF sublamina than in the ON sublamina. Electroretinogram recordings showed that the scotopic and photopic a- and b-waves of TRPM3(-/- mice are normal indicating that TRPM3 does not play a major role in visual processing in the outer retina. TRPM3 activity was measured by calcium imaging and patch-clamp recording of immunopurified retinal ganglion cells. Application of the TRPM3 agonist, pregnenolone sulfate (PS, stimulated increases in intracellular calcium in ~40% of cells from wild type and TRPM1(‑/‑ mice, and the PS-stimulated increases in calcium were blocked by co-application of mefenamic acid, a TRPM3 antagonist. No PS-stimulated changes in fluorescence were observed in ganglion cells from TRPM3(-/- mice. Similarly, PS-stimulated currents that could be blocked by mefenamic acid were recorded from wild type retinal ganglion cells but were absent in ganglion cells from TRPM3-/- mice.

  12. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  13. Carcinogenic effects in a phenylketonuria mouse model.

    Directory of Open Access Journals (Sweden)

    Neil Sidell

    Full Text Available Phenylketonuria (PKU is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH. This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA. In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAH(enu2 which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ PAH(enu2 mice were >12-fold those of heterozygous (HTZ littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA. Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAH(enu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAH(enu2 mice were not protective against cancer.

  14. Integrative analysis of the mouse embryonic transcriptome.

    Science.gov (United States)

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-04-10

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  15. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry

    2012-03-01

    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  16. The recombinational anatomy of a mouse chromosome.

    Directory of Open Access Journals (Sweden)

    Kenneth Paigen

    2008-07-01

    Full Text Available Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.

  17. Distribution of cytoglobin in the mouse brain

    Directory of Open Access Journals (Sweden)

    Stefan eReuss

    2016-04-01

    Full Text Available Cytoglobin (Cygb is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex, in the olfactory bulb (in particular periglomerular cells, in the hippocampal formation (strongly stained pyramidal cells with long processes, basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum, and in the amygdala (neurons with unlabeled processes were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei, epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus. The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide-synthase in neurons, which supports a functional association.

  18. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  19. Mouse models for inherited endocrine and metabolic disorders.

    Science.gov (United States)

    Piret, Siân E; Thakker, Rajesh V

    2011-12-01

    In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described.

  20. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  1. A Comprehensive Atlas of the Adult Mouse Penis.

    Science.gov (United States)

    Phillips, Tiffany R; Wright, David K; Gradie, Paul E; Johnston, Leigh A; Pask, Andrew J

    2015-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.

  2. Mouse tissues express multiple splice variants of prominin-1.

    Directory of Open Access Journals (Sweden)

    Kristel Kemper

    Full Text Available Prominin-1, a heavily glycosylated pentaspan membrane protein, is mainly known for its function as a marker for (cancer stem cells, although it can also be detected on differentiated cells. Mouse prominin-1 expression is heavily regulated by splicing in eight different variants. The function or the expression pattern of prominin-1 and its splice variants (SVs is thus far unknown. In this study, we analyzed the expression of the prominin-1 splice variants on mRNA level in several mouse tissues and found a broad tissue expression of the majority of SVs, but a specific set of SVs had a much more restricted expression profile. For instance, the testis expressed only SV3 and SV7. Moreover, SV8 was solely detected in the eye. Intriguingly, prominin-1 knockout mice do not suffer from gross abnormalities, but do show signs of blindness, which suggest that SV8 has a specific function in this tissue. In addition, databases searches for putative promoter regions in the mouse prominin-1 gene revealed three potential promoter regions that could be linked to specific SVs. Interestingly, for both SV7 and SV8, a specific potential promoter region could be identified. To conclude, the majority of mouse prominin-1 splice variants are widely expressed in mouse tissues. However, specific expression of a few variants, likely driven by specific promoters, suggests distinct regulation and a potential important function for these variants in certain tissues.

  3. A superovulation protocol for the spiny mouse (Acomys cahirinus).

    Science.gov (United States)

    Pasco, Rachael; Gardner, David K; Walker, David W; Dickinson, Hayley

    2012-01-01

    This study aimed to develop a superovulation protocol for the spiny mouse (Acomys cahirinus). The spiny mouse is a desert-adapted rodent species, with a long oestrus cycle (11 days) compared with rat and mouse, and gives birth to few (mean litter size is 3) precocial offspring after a relatively long gestation (39 days). We successfully optimised a superovulation protocol that elicited a 5-fold increase in the normal ovulation rate of this species. To induce superovulation in the spiny mouse 2 injections of equine chorionic gonadotrophin (eCG, 10 IU each), 9h apart, were required, followed by 20 IU of human chorionic gonadotrophin (hCG). This protocol was successful in 100% of females trialed and at 33 h post-hCG an average of 14.7 ± 1.5, 1-2 cell embryos were recovered. Histological analysis of ovaries following superovulation revealed large corpus lutea and post-ovulatory follicles occupying a large part of the ovary. Ovulation commenced 6-12 h after the hCG injection and continued until 24-33 h post-hCG as indicated by both histological analysis of ovaries and the presence of oocytes/embryos in the oviduct. This superovulation protocol will facilitate the development of an in vitro culture system for spiny mouse embryos.

  4. In vivo axial loading of the mouse tibia.

    Science.gov (United States)

    Melville, Katherine M; Robling, Alexander G; van der Meulen, Marjolein C H

    2015-01-01

    Noninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days.

  5. Cytoarchitecture of mouse and rat cingulate cortex with human homologies.

    Science.gov (United States)

    Vogt, Brent A; Paxinos, George

    2014-01-01

    A gulf exists between cingulate area designations in human neurocytology and those used in rodent brain atlases with a major underpinning of the former being midcingulate cortex (MCC). The present study used images extracted from the Franklin and Paxinos mouse atlas and Paxinos and Watson rat atlas to demonstrate areas comprising MCC and modifications of anterior cingulate (ACC) and retrosplenial cortices. The laminar architecture not available in the atlases is also provided for each cingulate area. Both mouse and rat have a MCC with neurons in all layers that are larger than in ACC and layer Va has particularly prominent neurons and reduced neuron densities. An undifferentiated ACC area 33 lies along the rostral callosal sulcus in rat but not in mouse and area 32 has dorsal and ventral subdivisions with the former having particularly large pyramidal neurons in layer Vb. Both mouse and rat have anterior and posterior divisions of retrosplenial areas 29c and 30, although their cytology is different in rat and mouse. Maps of the rodent cingulate cortices provide for direct comparisons with each region in the human including MCC and it is significant that rodents do not have a posterior cingulate region composed of areas 23 and 31 like the human. It is concluded that rodents and primates, including humans, possess a MCC and this homology along with those in ACC and retrosplenial cortices permit scientists inspired by human considerations to test hypotheses on rodent models of human diseases.

  6. Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox.

    Science.gov (United States)

    Lee, Chungki; Oostenveld, Robert; Lee, Soo Hyun; Kim, Lae Hyun; Sung, Hokun; Choi, Jee Hyun

    2013-01-01

    The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.

  7. Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox.

    Directory of Open Access Journals (Sweden)

    Chungki Lee

    Full Text Available The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE, scanning with multiple signal classification (MUSIC, and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.

  8. Piezo-actuated mouse intracytoplasmic sperm injection (ICSI).

    Science.gov (United States)

    Yoshida, Naoko; Perry, Anthony C F

    2007-01-01

    The mouse is a genetically tractable model organism widely used to study mammalian development and disease. However, mouse metaphase II (mII) oocytes are exquisitely sensitive and intracytoplasmic sperm injection (ICSI) with conventional pipettes generally kills them. This problem can be solved with piezo-actuated micromanipulation, in which the piezo-electric effect (crystal deformation in response to an externally applied voltage) propels a microinjection needle tip forward in a precise and rapid movement. Piezo-actuated micromanipulation enhances the penetration of membranes and matrices, and mouse ICSI is a major application. Here we describe a comprehensive, step-by-step mouse piezo ICSI protocol for non-specialists that can be completed in 2-4 h. The protocol is a basic prelude to multiple applications, including nuclear transfer cloning, spermatid injection, blastocyst injection, mII transgenesis, and streamlining micromanipulation in primates and livestock. Moreover, piezo ICSI can be used to obtain offspring from 'dead' (non-motile) sperm, enabling trivial sperm freezing protocols for mouse strain storage and shipment.

  9. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome.

    Science.gov (United States)

    Schmid, Annina B; Kubler, Paul A; Johnston, Venerina; Coppieters, Michel W

    2015-03-01

    Non-neutral wrist positions and external pressure leading to increased carpal tunnel pressure during computer use have been associated with a heightened risk of carpal tunnel syndrome (CTS). This study investigated whether commonly used ergonomic devices reduce carpal tunnel pressure in patients with CTS. Carpal tunnel pressure was measured in twenty-one patients with CTS before, during and after a computer mouse task using a standard mouse, a vertical mouse, a gel mouse pad and a gliding palm support. Carpal tunnel pressure increased while operating a computer mouse. Although the vertical mouse significantly reduced ulnar deviation and the gel mouse pad and gliding palm support decreased wrist extension, none of the ergonomic devices reduced carpal tunnel pressure. The findings of this study do therefore not endorse a strong recommendation for or against any of the ergonomic devices commonly recommended for patients with CTS. Selection of ergonomic devices remains dependent on personal preference.

  10. Differentiations of transplanted mouse spermatogonial stem cells in the adult mouse renal parenchyma in vivo

    Institute of Scientific and Technical Information of China (English)

    Da-peng WU; Da-lin HE; Xiang LI; Zhao-hui LIU

    2008-01-01

    Aim:Spermatogonial stem cells can initiate the process of cellular differentia-tion to generate mature spermatozoa, but whether it possess the characteristic of pluripotency and plasticity, similar to embryonic stem cells, has not been elucidated. This study was designed to evaluate the differentiation potential of spermatogonial stem cells into renal cells in vivo. Methods: Neonatal mouse spermatogonial stem cells were transplanted into mature male mice lacking en-dogenous spermatogenesis. The restoration of fertility in recipient males was observed. Spermatogonial stem cells were then injected into renal parenchyma of mature female mice to make a new extracellular environment for differentia-tion. Fluorescence in situ hybridization technology (FISH) was used to detect the expression of chromosome Y in recipient renal tissues. To determine the type of cells differentiated from spermatogonial stem cells, the expression of ricinus communis agglutinin, vimentin, CD45, and F4/80 proteins were examined in the renal tissues by immunohistochemistry. Results: The proliferation of seminiferous epithelial cells was distinctly observed in seminiferous tubules of transplanted testes, whereas no regeneration of spermatogenesis was observed in non-transplanted control testes. In transplanted female renal tissues, FISH showed a much stronger immuno-fluorescence signal of chromosome Y in the nucleolus of epithelial cells of the renal tubule and podocytes of the glomerulus. Conclusion: The spermatogonial stem cells were successfully purified from mouse testicles. This finding demonstrated that spermatogonial stem cells could not only restore damaged spermatogenesis, but were also capable of differentiat-ing into mature renal parenchyma cells in vivo.

  11. Study on Isolation, Passage, Cryopreservation and Histology of Mouse Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-xue; LIU Yan; HU Peng-fei

    2004-01-01

    The embryonic ages were determined for the best preparation of mouse fibroblasts. Four methods were adapted to verify cryopreservation of mouse fibroblasts. The results showed that embryonic cryopreserving method was best one with 0.86 of thawing viability. The embryos from 13-14 d pregnant mouse were superior to 11-12 d and 15-16 d in isolating, growing, laying and living. The first 6 generations were better than following ones in the same aspects above. Cell laying time became longer and vailable time became shorter after the sixth generation. With culture time increasing, fibroblast nuclear size became larger, fibrous filament appeared among fibroblasts, and macrocyst vesicle with fioccule appeared in the cells. Cyst vesicle structure with pyknotic granule appeared in 24 h cultured fibroblasts and macrocyst vesicle also appeared in passaging fibroblasts.

  12. Genomic responses in mouse models poorly mimic human inflammatory diseases

    Science.gov (United States)

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  13. Study on the Vesiculation during Mouse Sperm Acrosome Reaction

    Institute of Scientific and Technical Information of China (English)

    林家豪; 周作民; 胡志刚; 王黎熔; 林敏; 张适

    1994-01-01

    The location of the mono-membrane and the bi-membrane vesicles of mouse sperm was identified using Con A in conjugation with the colloidal gold. The observation showed that both mono-membrane vesicfes and outer layer of the hi-membrane vesicles come from the outer acrosome membrane. The inner membrane layer of the bi-member vesicles and residual membrane distributed among the vesicles are really the ptasmatemma. It is suggested that the outer acrosome membrane did not fuse with the pfasmafemma during mouse sperm acrosome reaction and that both the mono-membrane and the bi-membrane vesicles of mouse sperm were formed due to winding of the outer acrosome membrane.

  14. Protocol for Isolating the Mouse Circle of Willis.

    Science.gov (United States)

    Hur, Justine Claire; Blaise, Régis; Limon, Isabelle

    2016-10-22

    The cerebral arterial circle (circulus arteriosus cerebri) or circle of Willis (CoW) is a circulatory anastomosis surrounding the optic chiasma and hypothalamus that supplies blood to the brain and surrounding structures. It has been implicated in several cerebrovascular disorders, including cerebral amyloid angiopathy (CAA)-associated vasculopathies, intracranial atherosclerosis and intracranial aneurysms. Studies of the molecular mechanisms underlying these diseases for the identification of novel drug targets for their prevention require animal models. Some of these models may be transgenic, whereas others will involve isolation of the cerebro-vasculature, including the CoW.The method described here is suitable for CoW isolation in any mouse lineage and has considerable potential for screening (expression of genes, protein production, posttranslational protein modifications, secretome analysis, etc.) studies on the large vessels of the mouse cerebro-vasculature. It can also be used for ex vivo studies, by adapting the organ bath system developed for isolated mouse olfactory arteries.

  15. The value of incomplete mouse models of Alzheimer's disease.

    Science.gov (United States)

    Radde, Rebecca; Duma, Cecilia; Goedert, Michel; Jucker, Mathias

    2008-03-01

    To study Alzheimer's disease (AD), a variety of mouse models has been generated through the overexpression of the amyloid precursor protein and/or the presenilins harboring one or several mutations found in familial AD. With aging, these mice develop several lesions similar to those of AD, including diffuse and neuritic amyloid deposits, cerebral amyloid angiopathy, dystrophic neurites and synapses, and amyloid-associated neuroinflammation. Other characteristics of AD, such as neurofibrillary tangles and nerve cell loss, are not satisfactorily reproduced in these models. Mouse models that recapitulate only specific aspects of AD pathogenesis are of great advantage when deciphering the complexity of the disease and can contribute substantially to diagnostic and therapeutic innovations. Incomplete mouse models have been key to the development of Abeta42-targeted therapies, as well as to the current understanding of the interrelationship between cerebral beta-amyloidosis and tau neurofibrillary lesions, and are currently being used to develop novel diagnostic agents for in vivo imaging.

  16. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  17. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum

    Energy Technology Data Exchange (ETDEWEB)

    Sosula, L.; Nicholls, E.M.; Skeen, M.

    1988-04-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and natural animal and human Campylobacter infections.

  18. Characterization of mouse Dach2, a homologue of Drosophila dachshund.

    Science.gov (United States)

    Davis, R J; Shen, W; Sandler, Y I; Heanue, T A; Mardon, G

    2001-04-01

    The Drosophila genes eyeless, eyes absent, sine oculis and dachshund cooperate as components of a network to control retinal determination. Vertebrate homologues of these genes have been identified and implicated in the control of cell fate. We present the cloning and characterization of mouse Dach2, a homologue of dachshund. In situ hybridization studies demonstrate Dach2 expression in embryonic nervous tissues, sensory organs and limbs. This pattern is similar to mouse Dach1, suggesting a partially redundant role for these genes during development. In addition, we determine that Dach2 expression in the forebrain of Pax6 mutants and dermamyotome of Pax3 mutants is not detectably altered. Finally, genetic mapping experiments place mouse Dach2 on the X chromosome between Xist and Esx1. The identification of human DACH2 sequences at Xq21 suggests a possible role for this gene in Allan-Herndon syndrome, Miles-Carpenter syndrome, X-linked cleft palate and/or Megalocornea.

  19. Immune Responses Following Mouse Peripheral Nerve Xenotransplantation in Rats

    Directory of Open Access Journals (Sweden)

    Lai-Jin Lu

    2009-01-01

    Full Text Available Xenotransplantation offers a potentially unlimited source for tissues and organs for transplantation, but the strong xenoimmune responses pose a major obstacle to its application in the clinic. In this study, we investigate the rejection of mouse peripheral nerve xenografts in rats. Severe intragraft mononuclear cell infiltration, graft distension, and necrosis were detected in the recipients as early as 2 weeks after mouse nerve xenotransplantation. The number of axons in xenografts reduced progressively and became almost undetectable at week 8. However, mouse nerve xenotransplantation only led to a transient and moderate increase in the production of Th1 cytokines, including IL-2, IFN-γ, and TNF-α. The data implicate that cellular immune responses play a critical role in nerve xenograft rejection but that further identification of the major effector cells mediating the rejection is required for developing effective means to prevent peripheral nerve xenograft rejection.

  20. mouseTube – a database to collaboratively unravel mouse ultrasonic communication [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nicolas Torquet

    2016-09-01

    Full Text Available Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1 the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2 the biological protocol used to elicit ultrasonic vocalisations; 3 the characteristics of the individual emitting ultrasonic vocalisations (e.g., strain, sex, age. To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.

  1. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  2. Enhancement of mouse sperm motility by trophinin-binding peptide

    Directory of Open Access Journals (Sweden)

    Park Seong

    2012-11-01

    Full Text Available Abstract Background Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine peptide enhanced motility of human sperm. Methods Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA. Results Anti-trophinin antibody stained the principal (central piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. Conclusions Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.

  3. Expression of lactoperoxidase in differentiated mouse colon epithelial cells.

    Science.gov (United States)

    Kim, Byung-Wook; Esworthy, R Steven; Hahn, Maria A; Pfeifer, Gerd P; Chu, Fong-Fong

    2012-05-01

    Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.

  4. Effects of morphine in the isolated mouse urinary bladder.

    Science.gov (United States)

    Acevedo, C G; Tamayo, L; Contreras, E

    1986-01-01

    Acute morphine increased the responses to acetylcholine of the isolated mouse urinary bladder. A chronic morphine treatment did not change the responses of the urinary bladder to acetylcholine or ATP. The acute administration of morphine did not modify the contractile response to ATP in the urinary bladders from untreated or chronically morphine treated mice. Methadone and ketocyclazocine decreased the responses to the electrical stimulation of the urinary bladder. These depressant effects were not modified by naloxone. The results suggest the nonexistence of opiate receptors in the mouse urinary bladder and the lack of direct effects of morphine on the neuroeffector junction.

  5. Application of hepatitis B virus replication mouse model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To evaluate the value of the hepatitis B virus(HBV) replication mouse model with regard to several aspects of the study of HBV biology.METHODS:To evaluate the HBV replication mouse model in detecting the efficacy of anti-HBV agents,the interferon inducer polyinosinic-polytidylin acid(polyIC) and nucleotide analogues adefovir and entecavir were administered to mice injected with wild type pHBV4.1,and the inhibiting effect of these agents on HBV DNA replication was evaluated.To identify the model's value ...

  6. Methods of in-vivo mouse lung micro-CT

    Science.gov (United States)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  7. Expression of casein kinase 2 during mouse embryogenesis

    DEFF Research Database (Denmark)

    Mestres, P; Boldyreff, B; Ebensperger, C;

    1994-01-01

    This paper deals with the expression and distribution of casein kinase 2 (CK-2) subunits in mouse embryos at different developmental stages. Expression was investigated at the mRNA level of CK-2 alpha- and beta-subunits by in situ hybridization and distribution at the protein level by immunohisto......This paper deals with the expression and distribution of casein kinase 2 (CK-2) subunits in mouse embryos at different developmental stages. Expression was investigated at the mRNA level of CK-2 alpha- and beta-subunits by in situ hybridization and distribution at the protein level...

  8. Endothelial and lipoprotein lipases in human and mouse placenta

    DEFF Research Database (Denmark)

    Lindegaard, Marie Louise Skakkebæk; Olivecrona, Gunilla; Christoffersen, Christina;

    2005-01-01

    Placenta expresses various lipase activities. However, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin...... protein associated with both cell types. In mouse placentas, lack of LPL expression resulted in increased EL mRNA expression. These results suggest that the cellular expression of EL and LPL in human placenta is different. Nevertheless, the two lipases might have overlapping functions in the mouse...... placenta. Our data also suggest that the major portions of both proteins are stored in an inactive form in human term placenta....

  9. Partial agonistic action of endomorphins in the mouse spinal cord.

    Science.gov (United States)

    Mizoguchi, H; Wu, H E; Narita, M

    2001-09-07

    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  10. A Polarization and Spectral Study of the Mouse

    Science.gov (United States)

    Yusef-Zadeh, F.; Gaensler, B.; Law, C.

    Recent detection of a young pulsar powering the Mouse G359.23-0.82 (Camilo et al. 2002) as well as the discovery of diffuse X-ray emission from the nebula (Gaensler et al. 2004) have motivated us to investigate the structural details of this remarkable source in radio wavelengths. We present multi-configuration VLA observations of the Mouse with its pulsar powered bow shock between 2 and 90cm wavelengths and compare the morphological details of its polarized and total intensity emission. We also show the spectral characteristics across this elongated radio and X-ray source

  11. In mouse oocytes the mitochondrion-originated germinal body-like structures accumulate mouse Vasa homologue (MVH) protein.

    Science.gov (United States)

    Reunov, Arkadiy A; Reunova, Yulia A

    2015-08-01

    Mouse Vasa homologue (MVH) antibodies were applied to mouse Graafian oocytes to clarify if mitochondrion-originated germinal body-like structures, described previously by conventional electron microscopy, were associated with the germ plasm. It was found that both the mitochondrion-like structures with cristae and the germinal body-like structures that lacked any signs of cristae were labelled specifically by the anti-MVH antibody. Moreover, some granules were MVH-positive ultrastructural hybrids of the mitochondria and germinal body-like structures, the presence of which clearly supported the idea of a mitochondrial origin for the germinal body-like structures. This finding is the first evidence that mitochondrion-originated germinal body-like granules represent mouse germ plasm.

  12. The effects of X-rays on the mitotic activity of mouse epidermis

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, N.P. Jr.; Hempelmann, L.H.; Hoffman, J.G.

    1949-04-19

    This report describes a simplified technique of obtaining the mitotic index of mouse skin and indicates the surprising sensitivity of the mitotic activity of mouse epithelium to the effects of x-rays.

  13. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    Science.gov (United States)

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  14. Species status assessment report New Mexico meadow jumping mouse (Zapus hudsonius luteus)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The New Mexico meadow jumping mouse (Zapus hudsonius luteus) (jumping mouse) lives in dense riparian herbaceous vegetation along streams from southern Colorado to...

  15. Hypoplastic basement membrane of the lens anlage in the inheritable lens aplastic mouse (lap mouse).

    Science.gov (United States)

    Aso, S; Baba, R; Noda, S; Ikuno, S; Fujita, M

    2000-04-01

    Adult homozygous lap mice show various eye abnormalities such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode appears to develop normally. However, the lens vesicle develops abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. Apoptotic cell death is associated with the disappearance of the lens anlage. We examined the basement membranes of the lens anlage of this mutant by immunohistochemical methods under light microscopy using antibodies against basement membrane components of the lens anlage, type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan, and entactin and by transmission electron microscopy. Immunohistochemistry showed the distribution and intensity of antibody binding to the lens anlage to be almost the same for each these antibodies regardless of the stage of gestation or whether the anlagen were from normal BALB/c or lap mice. Thus, positive continuous reactions were observed around the exterior region of the lens anlage from day 10 of gestation for type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan antibodies, and at least from day 11of gestation for entactin antibody. The basement membrane lamina densa of both normal and lap mice was shown by electron microscopy to be discontinuous at days 10 and 10.5 of gestation. However, by day 11 the lamina densa was continuous in the lens anlagen of normal mice but still discontinuous in the lap mice. By day 12 of gestation, the lamina densa had thickened markedly in normal mice, whereas in lap mice it remained discontinuous and its thinness indicated hypoplasia. These results indicate that, while all basement components examined are produced and deposited in the normal region of the lens anlage in the lap mouse, the basement membrane is, for some reason, imperfectly formed. The time at which hypoplasia of the basement membrane was observed

  16. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    Science.gov (United States)

    Taylor, Richard S.; Wilson, William R.

    2010-01-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration…

  17. Determination of alternative pathway of complement activity in mouse serum using rabbit erythrocytes

    NARCIS (Netherlands)

    Dijk, H. van; Rademaker, P.M.; Willers, J.M.N

    1980-01-01

    Rabbit, mouse and sheep erythrocytes expressing different concentrations of membrane sialic acid were used to study possible modes of activation of the alternative complement (C) pathway in mouse, human and guinea pig serum. Mouse erythrocytes activated only human serum, whereas rabbit erythrocytes

  18. Expression of TRAIL in Mouse Uterine Endometrium during Embryo Implantation

    Institute of Scientific and Technical Information of China (English)

    Dong-mei TAN; Ming-zhong HE; Qi CHEN; Guo-qi LAI; Li-zhi WANG; Yi TAN

    2006-01-01

    Objective To investigate the expression of TRAIL in mouse uterine endometrium during embryo implantation and its role in the apoptosis of decidual cells.Methods Expression of TRAIL in uterine endometrium of pregnant mouse from d 1 to d 8 was detected with RT-PCR and immunohistochemistry.Results The expressed level of TRAIL mRNA in uterine endometrium of pregnant mouse from d 1 to d 8 was higher during embryo implantation than that prior to embryo implantation (P<0. 05). No expression of TRAIL protein in mouse utrine endometrium was detected through d 1 to d 3. However, TRAIL protein was found in the luminal epithelial cells to which embryos attached on d 4. Moreover, TRAIL was expressed solely in decidual cells around invadting embryos through d 5 to d 6 while in trophoblastic cells adjacent to decidua through d 7 to d 8.Conclusion Apoptosis of luminal epithelial cells of endometrium induced by TRAIL could be one of mechanisms with which embryos penertrated the epithelial barrier,and apoptosis of both decidual cells and trophoblastic cells induced by TRAIL may play an important role during accruate invasion of trophoblastic cells.

  19. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  20. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Directory of Open Access Journals (Sweden)

    Seyfried Thomas N

    2005-08-01

    Full Text Available Abstract Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors.

  1. 9 CFR 113.33 - Mouse safety tests.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS...

  2. History and milestones of mouse models of autoimmune diseases.

    Science.gov (United States)

    Yu, Xinhua; Huang, Qiaoniang; Petersen, Frank

    2015-01-01

    Autoimmune diseases are a group of disorders mediated by self-reactive T cells and/or autoantibodies. Mice, as the most widely used animal for modeling autoimmune disorders, have been extensively used in the investigation of disease pathogenesis as well as in the search for novel therapeutics. Since the first mouse model of multiple sclerosis was established more than 60 years ago, hundreds of mouse models have been established for tens of autoimmune diseases. These mouse models can be divided into three categories based on the approaches used for disease induction. The first one represents the induced models in which autoimmunity is initiated in mice by immunization, adoptive transfer or environmental factors. The second group is formed by the spontaneous models where mice develop autoimmune disorders without further induction. The third group refers to the humanized models in which mice bearing humanized cells, tissues, or genes, develop autoimmune diseases either spontaneously or by induction. This article reviews the history and highlights the milestones of the mouse models of autoimmune diseases.

  3. Regulation of hematopoietic stem cells during mouse development

    NARCIS (Netherlands)

    C. Orelio (Claudia)

    2003-01-01

    textabstractThe hematopoietic system is comprised of many different cell types that fulfill important physiological functions throughout embryonic and adult stages of mouse development. As the mature blood cells have a limited life-span, the pool of blood cells needs constant replenishing. At the ba

  4. SIRT1 regulates the mouse gastric emptying and intestinal growth

    Science.gov (United States)

    This study addressed physiological significance of SIRT1 gene on mouse gastrointestinal growth and function (gastric emptying and intestinal growth). SIRT1 (a NAD+-dependent histone deacetylase) is a key cellular energy sensor, and involved in a wide variety of cellular functions including energy me...

  5. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Science.gov (United States)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  6. Social organization of the golden brown mouse lemur (Microcebus ravelobensis)

    NARCIS (Netherlands)

    Weidt, A.; Hagenah, N.; Randrianambinina, B.; Radespiel, U.

    2004-01-01

    Our study provides the first data on the social organization of the golden brown mouse lemur, a nocturnal primate discovered in northwestern Madagascar in 1994. The study was carried out in two 6-month field periods during the dry season, covering time before and during the mating season. The spatia

  7. Oxidative DNA damage in mouse sperm chromosomes: Size matters.

    Science.gov (United States)

    Kocer, Ayhan; Henry-Berger, Joelle; Noblanc, Anais; Champroux, Alexandre; Pogorelcnik, Romain; Guiton, Rachel; Janny, Laurent; Pons-Rejraji, Hanae; Saez, Fabrice; Johnson, Graham D; Krawetz, Stephen A; Alvarez, Juan G; Aitken, R John; Drevet, Joël R

    2015-12-01

    Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.

  8. Calcium Glucarate Prevents Tumor Formation in Mouse Skin

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective Calcium Glucarate (Cag), Ca salt of D-glucaric acid is a naturally occurring non-toxic compound present in fruits, vegetables and seeds of some plants, and suppress tumor growth in different models. Due to lack of knowledge about its mode of action its uses are limited in cancer chemotherapy thus the objective of the study was to study the mechanism of action of Cag on mouse skin tumorigenesis. Methods We have estimated effect of Cag on DMBA induced mouse skin tumor development following complete carcinogenesis protocol. We measured, epidermal transglutaminase activity (TG), a marker of cell differentiation after DMBA and/or Cag treatment and [3H] thymidine incorporation into DNA as a marker for cell proliferation. Results Topical application of Cag suppressed the DMBA induced mouse skin tumor development. Topical application of Cag significantly modifies the critical events of proliferation and differentiation TG activity was found to be reduced after DMBA treatment. Reduction of the TG activity was dependent on the dose of DMBA and duration of DMBA exposure. Topical application of Cag significantly alleviated DMBA induced inhibition of TG. DMBA also caused stimulation of DNA synthesis in epidermis, which was inhibited by Cag. Conclusion Cag inhibits DMBA induced mouse skin tumor development. Since stimulation of DNA synthesis reflects proliferation and induction of TG represents differentiation, the antitumorigenic effect of Cag is considered to be possibly due to stimulation of differentiation and suppression of proliferation.

  9. CHARACTERIZATION OF AEROMONAS VIRULENCE USING AN IMMUNOCOMPROMISED MOUSE MODEL

    Science.gov (United States)

    An immunocompromised mouse model was used to characterize Aeromonas strains for their ability to cause opportunistic, extraintestinal infections. A total of 34 isolates of Aeromonas (A. hydrophila [n = 12]), A. veronii biotype sobria [n = 7], A. caviae [n = 4], A. enchelia [n = 4...

  10. Modeling fragile X syndrome in the Fmr1 knockout mouse.

    Science.gov (United States)

    Kazdoba, Tatiana M; Leach, Prescott T; Silverman, Jill L; Crawley, Jacqueline N

    2014-11-01

    Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS.

  11. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  12. Phenotypic and functional characterization of Bst+/− mouse retina

    Directory of Open Access Journals (Sweden)

    Hamidreza Riazifar

    2015-08-01

    Full Text Available The belly spot and tail (Bst+/− mouse phenotype is caused by mutations of the ribosomal protein L24 (Rpl24. Among various phenotypes in Bst+/− mice, the most interesting are its retinal abnormalities, consisting of delayed closure of choroid fissures, decreased ganglion cells and subretinal vascularization. We further characterized the Bst+/− mouse and investigated the underlying molecular mechanisms to assess the feasibility of using this strain as a model for stem cell therapy of retinal degenerative diseases due to retinal ganglion cell (RGC loss. We found that, although RGCs are significantly reduced in retinal ganglion cell layer in Bst+/− mouse, melanopsin+ RGCs, also called ipRGCs, appear to be unchanged. Pupillary light reflex was completely absent in Bst+/− mice but they had a normal circadian rhythm. In order to examine the pathological abnormalities in Bst+/− mice, we performed electron microscopy in RGC and found that mitochondria morphology was deformed, having irregular borders and lacking cristae. The complex activities of the mitochondrial electron transport chain were significantly decreased. Finally, for subretinal vascularization, we also found that angiogenesis is delayed in Bst+/− associated with delayed hyaloid regression. Characterization of Bst+/− retina suggests that the Bst+/− mouse strain could be a useful murine model. It might be used to explore further the pathogenesis and strategy of treatment of retinal degenerative diseases by employing stem cell technology.

  13. On the Winternest of the Dwarf-Mouse (Mus minutus)

    NARCIS (Netherlands)

    Schlegel, H.

    1881-01-01

    The mode of nidification of the Dwarf- or Harvest-Mouse, essentially different from that of its congeners, is a fact well known to naturalists, and so singular in its nature, that it must attract the curiosity of every one. Little, however, is known about the varieties which the nests present and no

  14. A simplified immunohistochemical classification of skeletal muscle fibres in mouse

    Directory of Open Access Journals (Sweden)

    M. Kammoun

    2014-06-01

    Full Text Available The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immunohistochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse

  15. Controlling complexity : the clinical relevance of mouse complex genetics

    NARCIS (Netherlands)

    Schughart, Klaus; Libert, Claude; Kas, Martien J

    2013-01-01

    Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key in

  16. A scaling analysis of a cat and mouse Markov chain

    NARCIS (Netherlands)

    Litvak, Nelly; Robert, Philippe

    2012-01-01

    If ($C_n$) a Markov chain on a discrete state space $S$, a Markov chain ($C_n, M_n$) on the product space $S \\times S$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain behaves like the original Markov chain and the second component changes only when both coo

  17. A scaling analysis of a cat and mouse Markov chain

    NARCIS (Netherlands)

    Litvak, Nelly; Robert, Philippe

    2009-01-01

    Motivated by an original on-line page-ranking algorithm, starting from an arbitrary Markov chain $(C_n)$ on a discrete state space ${\\cal S}$, a Markov chain $(C_n,M_n)$ on the product space ${\\cal S}^2$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov

  18. Somatic structural rearrangements in genetically engineered mouse mammary tumors

    NARCIS (Netherlands)

    Varela, I.; Klijn, C.N.; Stephens, P.J.; Mudie, L.J.; Stebbings, L.; Galappaththige, D.; Van der Gulden, H.; Schut, E.; Klarenbeek, S.; Campbell, P.J.; Wessels, L.F.A.; Stratton, M.R.; Jonkers, J.; Futreal, P.A.; Adams, D.J.

    2010-01-01

    Background: Here we present the first paired-end sequencing of tumors from genetically engineered mouse models of cancer to determine how faithfully these models recapitulate the landscape of somatic rearrangements found in human tumors. These were models of Trp53-mutated breast cancer, Brca1- and B

  19. Detection of Mouse Mammary Tumour Virus in house mice

    DEFF Research Database (Denmark)

    Steffensen, Lise K; Leirs, Herwig; Heiberg, Ann-Charlotte

    The prevalence of human breast cancer (HBC) is affected by several parameters. For the past decades MMTV, Mouse Mammary Tumor Virus, known to cause breast cancer in mice, has been hypothesized to affect the frequency of hormone dependent HBC. Though conclusive evidence has not been produced, still...

  20. Automatic Detection of Wild-type Mouse Cranial Sutures

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Hermann, Nuno V.;

    , automatic detection of the cranial sutures becomes important. We have previously built a craniofacial, wild-type mouse atlas from a set of 10 Micro CT scans using a B-spline-based nonrigid registration method by Rueckert et al. Subsequently, all volumes were registered nonrigidly to the atlas. Using...

  1. In vivo intrinsic optical signal imaging of mouse retinas

    Science.gov (United States)

    Wang, Benquan; Yao, Xincheng

    2016-03-01

    Intrinsic optical signal (IOS) imaging is a promising noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, more IOS studies employing animal models are necessary to establish the relationship between IOS distortions and eye diseases. Ample mouse models are available for investigating the relationship between IOS distortions and eye diseases. However, in vivo IOS imaging of mouse retinas is challenging due to the small ocular lens (compared to frog eyes) and inevitable eye movements. We report here in vivo IOS imaging of mouse retinas using a custom-designed functional OCT. The OCT system provided high resolution (3 μm) and high speed (up to 500 frames/s) imaging of mouse retinas. An animal holder equipped with a custom designed ear bar and bite bar was used to minimize eye movement due to breathing and heartbeats. Residual eye movement in OCT images was further compensated by accurate image registration. Dynamic OCT imaging revealed rapid IOSs from photoreceptor outer segments immediately (IOS changes were also observed from inner retinal layers with delayed time courses compared to that of photoreceptor IOSs.

  2. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Directory of Open Access Journals (Sweden)

    Christian Much

    2016-06-01

    Full Text Available Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  3. Topography and areal organization of mouse visual cortex.

    Science.gov (United States)

    Garrett, Marina E; Nauhaus, Ian; Marshel, James H; Callaway, Edward M

    2014-09-10

    To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.

  4. A mouse monoclonal antibody against Alexa Fluor 647.

    Science.gov (United States)

    Wuethrich, Irene; Guillen, Eduardo; Ploegh, Hidde L

    2014-04-01

    Fluorophores are essential tools in molecular and cell biology. However, their application is mostly confined to the singular exploitation of their fluorescent properties. To enhance the versatility and expand the use of the fluorophore Alexa Fluor 647 (AF647), we generated a mouse monoclonal antibody against it. We demonstrate its use of AF647 for immunoblot, immunoprecipitation, and cytofluorimetry.

  5. Establishing the colitis-associated cancer progression mouse models.

    Science.gov (United States)

    Zheng, Haiming; Lu, Zhanjun; Wang, Ruhua; Chen, Niwei; Zheng, Ping

    2016-12-01

    Inflammatory bowel disease (IBD) has been reported as an important inducer of colorectal cancer (CRC). The most malignant IBD-associated CRC type has been highlighted as colitis-associated cancer (CAC). However, lack of CAC cases and difficulties of the long follow-up research have challenged researchers in molecular mechanism probing. Here, we established pre-CAC mouse models (dextran sulfate sodium [DSS] group and azoxymethane [AOM] group) and CAC mouse model (DSS/AOM group) to mimic human CAC development through singly or combinational treatment with DSS and AOM followed by disease activity index analysis. We found that these CAC mice showed much more severe disease phenotype, including serious diarrhea, body weight loss, rectal prolapse and bleeding, bloody stool, tumor burden, and bad survival. By detecting expression patterns of several therapeutic targets-Apc, p53, Kras, and TNF-α-in these mouse models through western blot, histology analysis, qRT-PCR, and ELISA methods, we found that the oncogene Kras expression remained unchanged, while the tumor suppressors-Apc and p53 expression were both significantly downregulated with malignancy progression from pre-CAC to CAC, and TNF-α level was elevated the most in CAC mice blood which is of potential clinical use. These data indicated the successful establishment of CAC development mouse models, which mimics human CAC well both in disease phenotype and molecular level, and highlighted the promoting role of inflammation in CAC progression. This useful tool will facilitate the further study in CAC molecular mechanism.

  6. 40 CFR 798.5200 - Mouse visible specific locus test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Mouse visible specific locus test. 798.5200 Section 798.5200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...)F1 or (101×C3H)F1 hybrids. Females shall be T stock virgins. (ii) Age. Healthy sexually...

  7. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  8. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...

  9. Subplate in the developing cortex of mouse and human

    DEFF Research Database (Denmark)

    Wang, Wei Zhi; Hoerder-Suabedissen, Anna; Oeschger, Franziska M

    2010-01-01

    Abstract The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are amon...

  10. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  11. Mouse allergen, lung function, and atopy in Puerto Rican children.

    Directory of Open Access Journals (Sweden)

    Erick Forno

    Full Text Available To examine the relation between mouse allergen exposure and asthma in Puerto Rican children.Mus m 1, Der p 1, Bla g 2, and Fel d 1 allergens were measured in dust samples from homes of Puerto Rican children with (cases and without (controls asthma in Hartford, CT (n = 449 and San Juan (SJ, Puerto Rico (n = 678. Linear or logistic regression was used for the multivariate analysis of mouse allergen (Mus m 1 and lung function (FEV(1 and FEV(1/FVC and allergy (total IgE and skin test reactivity (STR to ≥1 allergen measures.Homes in SJ had lower mouse allergen levels than those in Hartford. In multivariate analyses, mouse allergen was associated with higher FEV(1 in cases in Hartford (+70.6 ml, 95% confidence interval (CI = 8.6-132.7 ml, P = 0.03 and SJ (+45.1 ml, 95% CI =  -0.5 to 90.6 ml, P = 0.05. In multivariate analyses of controls, mouse allergen was inversely associated with STR to ≥1 allergen in non-sensitized children (odds ratio [OR] for each log-unit increment in Mus m 1 = 0.7, 95% CI = 0.5-0.9, P<0.01. In a multivariate analysis including all children at both study sites, each log-increment in mouse allergen was positively associated with FEV(1 (+28.3 ml, 95% CI = 1.4-55.2 ml, P = 0.04 and inversely associated with STR to ≥1 allergen (OR for each log-unit increment in Mus m 1 = 0.8, 95% CI = 0.6-0.9, P<0.01.Mouse allergen is associated with a higher FEV(1 and lower odds of STR to ≥1 allergen in Puerto Rican children. This may be explained by the allergen itself or correlated microbial exposures.

  12. Detection of single photons by toad and mouse rods.

    Science.gov (United States)

    Reingruber, Jürgen; Pahlberg, Johan; Woodruff, Michael L; Sampath, Alapakkam P; Fain, Gordon L; Holcman, David

    2013-11-26

    Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.

  13. Periodic properties of the histaminergic system of the mouse brain.

    Science.gov (United States)

    Rozov, Stanislav V; Zant, Janneke C; Karlstedt, Kaj; Porkka-Heiskanen, Tarja; Panula, Pertti

    2014-01-01

    Brain histamine is involved in the regulation of the sleep-wake cycle and alertness. Despite the widespread use of the mouse as an experimental model, the periodic properties of major markers of the mouse histaminergic system have not been comprehensively characterized. We analysed the daily levels of histamine and its first metabolite, 1-methylhistamine, in different brain structures of C57BL/6J and CBA/J mouse strains, and the mRNA level and activity of histidine decarboxylase and histamine-N-methyltransferase in C57BL/6J mice. In the C57BL/6J strain, histamine release, assessed by in vivo microdialysis, underwent prominent periodic changes. The main period was 24 h peaking during the activity period. Additional 8 h periods were also observed. The release was highly positively correlated with active wakefulness, as shown by electroencephalography. In both mouse strains, tissue histamine levels remained steady for 24 h in all structures except for the hypothalamus of CBA/J mice, where 24-h periodicity was observed. Brain tissue 1-methylhistamine levels in both strains reached their maxima in the periods of activity. The mRNA level of histidine decarboxylase in the tuberomamillary nucleus and the activities of histidine decarboxylase and histamine-N-methyltransferase in the striatum and cortex did not show a 24-h rhythm, whereas in the hypothalamus the activities of both enzymes had a 12-h periodicity. These results show that the activities of histamine-metabolizing enzymes are not under simple direct circadian regulation. The complex and non-uniform temporal patterns of the histaminergic system of the mouse brain suggest that histamine is strongly involved in the maintenance of active wakefulness.

  14. Effect of genistein on mouse blastocyst development in vitro

    Institute of Scientific and Technical Information of China (English)

    Wen-hsiung CHAN; Hsiang-yu LU; Nion-heng SHIAO

    2007-01-01

    Aim: To examine the cytotoxic effects of genistein, an isoflavone compound, on early postimplantation embryonic development in vitro. Methods: Mouse blastocysts were incubated in medium with or without genistein (25 or 50 μmol/L) or daidzein (50 μmol/L) for 24 h. Cell proliferation and growth was investigated by dual differential staining, apoptosis was analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, and apoptotic or necrotic cells were visualized by Annexin-V and propidium iodide (PI) staining. Implantation and postimplantation development of embryos were measured by in vitro development analysis. Results: TUNEL staining and Annexin-V/PI staining. showed that genistein dose-dependently increased apoptosis in mouse blastocysts, while daidzein, another soy isoflavone, had no such effect. The pretreatment of the blastocysts with genistein caused fewer cells than the control group and this effect was primary in the inner cell mass. The genistein-pretreated blastocysts showed normal levels of implantation on culture dishes in vitro, but significantly fewer genistein-pretreated embryos reached the later stages of embryonic development versus the controls, with many of the former embryos dying at relatively early stages of development. In addition, genistein treatment de-creased the development of morulas into blastocysts, and dietary genistein was found to induce cell apoptosis and decrease cell proliferation in an animal assay model of embryogenesis. Conclusions: Our results collectively indicate that genistein treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards early postimplantation blastocyst development, and increases early-stage blastocyst death in vitro, while dietary genistein appears to negatively affect mouse embryonic development in vivo by inducing cell apoptosis and inhibiting cell proliferation. These novel findings provide important new insights into the effect of genistein

  15. A Mouse Model for Laser-induced Choroidal Neovascularization.

    Science.gov (United States)

    Shah, Ronil S; Soetikno, Brian T; Lajko, Michelle; Fawzi, Amani A

    2015-12-27

    The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.

  16. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Science.gov (United States)

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  17. Osteopontin is expressed in the mouse uterus during early pregnancy and promotes mouse blastocyst attachment and invasion in vitro.

    Directory of Open Access Journals (Sweden)

    Qian-Rong Qi

    Full Text Available Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.

  18. Automated classification of mouse pup isolation syllables: from cluster analysis to an Excel-based "mouse pup syllable classification calculator".

    Science.gov (United States)

    Grimsley, Jasmine M S; Gadziola, Marie A; Wenstrup, Jeffrey J

    2012-01-01

    Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified 10 syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.

  19. Rescue of retinal morphology and function in a humanized mouse at the mouse retinol-binding protein locus.

    Science.gov (United States)

    Liu, Li; Suzuki, Tomohiro; Shen, Jingling; Wakana, Shigeharu; Araki, Kimi; Yamamura, Ken-Ichi; Lei, Lei; Li, Zhenghua

    2017-01-30

    Retinol-binding protein RBP4 is the specific carrier for retinol in the blood. We previously produced a Rbp4-deficient (Rbp4(-/-)) mouse that showed electroretinogram (ERG) abnormalities, accompanied by histological and electron-microscopic changes such as fewer synapses in the inner plexiform layer in the central retina. To address whether human RBP4 gene expression can rescue the phenotypes observed in Rbp4(-/-) mice, we produced a humanized (Rbp4(hRBP4orf/ hRBP4orf)) mouse with a human RBP4 open reading frame in the mouse Rbp4 locus using a Cre-mutant lox recombination system. In Rbp4(hRBP4orf/hRBP4orf) mice, the tissue-specific expression pattern of hRBP4orf was roughly the same as that of mouse Rbp4. ERG and morphological abnormalities observed in Rbp4(-/-) mice were rescued in Rbp4(hRBP4orf/hRBP4orf) mice as early as 7 weeks of age. The temporal expression pattern of hRBP4orf in the liver of Rbp4(hRBP4orf/hRBP4orf) mice was similar to that of mouse Rbp4 in Rbp4(+/+)mice. In contrast, hRBP4orf expression levels in eyes were significantly lower at 6 and 12 weeks of age compared with mouse Rbp4 but were restored to the control levels at 24 weeks. The serum hRBP4 levels in Rbp4(hRBP4orf/hRBP4orf) mice were approximately 30% of those in Rbp4(+/+) at all ages examined. In accordance with this finding, the plasma retinol levels remained low in Rbp4(hRBP4orf/hRBP4orf) mice. Retinol accumulation in the liver occurred in control and Rbp4(hRBP4orf/hRBP4orf) mice but was higher in Rbp4(hRBP4orf/hRBP4orf) mice at 30 weeks of age. Mouse transthyretin expression was not altered in Rbp4(-/-) or Rbp4(hRBP4orf/hRBP4orf) mice. Taken together, 30% of the serum RBP4 level was sufficient to correct the abnormal phenotypes observed in Rbp4(-/-) mice.Laboratory Investigation advance online publication, 30 January 2017; doi:10.1038/labinvest.2016.156.

  20. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    OpenAIRE

    Zhongchao Tan; Wenzhi Sun; Tsai-Wen Chen; Douglas Kim; Na Ji

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a compara...

  1. Effect of computer mouse gain and visual demand on mouse clicking performance and muscle activation in a young and elderly group of experienced computer users

    DEFF Research Database (Denmark)

    Sandfeld, Jesper; Jensen, Bente R.

    2005-01-01

    The present study evaluated the specific effects of motor demand and visual demands on the ability to control motor output in terms of performance and muscle activation. Young and elderly subjects performed multidirectional pointing tasks with the computer mouse. Three levels of mouse gain...... was only to a minor degree influenced by mouse gain (and target sizes) indicating that stability of the forearm/hand is of significance during computer mouse control. The study has implications for ergonomists, pointing device manufacturers and software developers....

  2. Micro-imaging of the Mouse Lung via MRI

    Science.gov (United States)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  3. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    Science.gov (United States)

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  4. Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells.

    Science.gov (United States)

    Lai, Meng-Shao; Cheng, Yu-Sheng; Chen, Pei-Rong; Tsai, Shaw-Jenq; Huang, Bu-Miin

    2014-01-01

    Fibroblast growth factor 9 (FGF9) is a multifunctional polypeptide belonging to the FGF family and has functions related to bone formation, lens-fiber differentiation, nerve development, gap-junction formation and sex determination. In a previous study, we demonstrated that FGF9 stimulates the production of testosterone in mouse Leydig cells. In the present study, we used both primary mouse Leydig cells and MA-10 mouse Leydig tumor cells to further investigate the molecular mechanism of FGF9-stimulated steroidogenesis. Results showed that FGF9 significantly activated steroidogenesis in both mouse primary and tumor Leydig cells (psteroidogenesis in mouse Leydig cells. In conclusion, FGF9 specifically activated the Akt and ERK1/2 in normal mouse Leydig cells and the Akt, JNK and ERK1/2 in MA-10 mouse Leydig tumor cells to stimulate steroidogenesis.

  5. Posterolateral inter-transverse lumbar fusion in a mouse model

    Directory of Open Access Journals (Sweden)

    Bobyn Justin

    2013-01-01

    Full Text Available Abstract Background Spinal fusion is a common orthopaedic procedure that has been previously modeled using canine, lapine, and rodent subjects. Despite the increasing availability of genetically modified mouse strains, murine models have only been infrequently described. Purpose To present an efficient and minimally traumatic procedure for achieving spinal fusion in a mouse model and determine the optimal rhBMP-2 dose to achieve sufficient fusion mass. Method MicroCT reconstructions of the unfused mouse spine and human spine were compared to design a surgical approach. In phase 1, posterolateral lumbar spine fusion in the mouse was evaluated using 18 animals allocated to three experimental groups. Group 1 received decortication only (n = 3, Group 2 received 10 μg rhBMP-2 in a collagen sponge bilaterally (n = 6, and Group 3 received 10 μg rhBMP-2 + decortication (n = 9. The surgical technique was assessed for intra-operative safety, efficacy, access and reproducibility. Spines were harvested for analysis at 3 weeks (Groups 1, 2 and 1, 2, and 3 weeks (Group 3. In phase 2, a dose response study was carried out in an additional 18 animals with C57BL6 mice receiving sponges containing 0, 0.5, 1, 2.5, 5 μg of rhBMP-2 per sponge bilaterally. Results The operative procedure via midline access was rapid and reproducible, and fusion of the murine articular processes was found to be analogous to the human procedure. Unlike reports from other species, decortication alone (Group 1 yielded no new bone formation. Addition of rhBMP-2 (Groups 2 and 3 yielded a significant bone mass that bridged the L4-L6 vertebrae. The subsequent dose response experiment revealed that 0.5 μg rhBMP-2 per sponge was sufficient to create a fusion mass. Conclusion We describe a new approach for mouse lumbar spine fusion that is safe, efficient, and highly reproducible. The technique we employed is analogous to the human midline procedure and may be highly

  6. Some properties of the smooth muscle of mouse vas deferens.

    Science.gov (United States)

    Holman, M E; Taylor, G S; Tomita, T

    1977-04-01

    1. Contractions of the mouse vas deferens in response to electrical stimulation differ form those recorded form the guinea-pig vas deferens in that they are abolished by tetrodotoxin. 2. Changes in membrane potentials were recorded form the smooth muscle of both preparations in response to stimulation with current pulses applied by an intracellular electrode and by alrge extracellular plate electrodes. 3. Both preparations behaved similarly in response to intracellular stimulation. Electrotonic potentials in response to extracellular current pulses spread in a longitudinal direction in the guinea-pig vas deferens in accordance with the cable-like properties of this preparation. In contrast, no longitudinal spread of eletrotonus was observed in the mouse vas deferens. 4. Responses to nerve stimulation differed in the two preparations. In the guinea-pig, single stimuli caused excitatory junction potentials (e.j.p.s) which gave rise to action potentials. Some cells from the mouse vas deferens showed similar e.j.p.s and action potentials, although the threshold for the initiation of action potentials was lower and more variable. 5. The majority of cells in the mouse vas deferens failed to show action potentials in response to a single stimuli even though the amplitude of e.j.p.s was from 35 to 40 mV. This was probably due to the large resting membrane potentials of these cells, as all-or-nothing action potentials could be evoked if successive e.j.p.s were allowed to sum with each other or if a depolarizing current pulse was applied at the peak of an e.j.p. 6. The nature of the response to nerve stimulation recorded from differnt cells in the mouse vas deferens could be correlated with the amplitude and time course of the response of the same cell to intracellular stimulation. 7. It is concluded that individual smooth muscle cells in both preparations are probably coupled electrically but that there are few, if any, low resistance pathways in the longitudinal direction

  7. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Improve Computer Pointing Efficiency through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2009-01-01

    This study evaluated whether two people with multiple disabilities and minimal motor behavior would be able to improve their pointing performance using finger poke ability with a mouse wheel through a Dynamic Pointing Assistive Program (DPAP) and a newly developed mouse driver (i.e., a new mouse driver replaces standard mouse driver, changes a…

  8. Axon and muscle spindle hyperplasia in the myostatin null mouse.

    Science.gov (United States)

    Elashry, Mohamed I; Otto, Anthony; Matsakas, Antonios; El-Morsy, Salah E; Jones, Lisa; Anderson, Bethan; Patel, Ketan

    2011-02-01

    Germline deletion of the myostatin gene results in hyperplasia and hypertrophy of the tension-generating (extrafusal) fibres in skeletal muscle. As this gene is expressed predominantly in myogenic tissues it offers an excellent model with which to investigate the quantitative relationship between muscle and axonal development. Here we show that skeletal muscle hyperplasia in myostatin null mouse is accompanied by an increase in nerve fibres in major nerves of both the fore- and hindlimbs. We show that axons within these nerves undergo hypertrophy. Furthermore, we provide evidence that the age-related neural atrophic process is delayed in the absence of myostatin. Finally, we show that skeletal muscle hyperplasia in the myostatin null mouse is accompanied by an increase in the number of muscle spindles (also called stretch receptors or proprioceptors). However, our work demonstrates that the mechanisms regulating intrafusal fibre hyperplasia and hypertrophy differ from those that control the aetiology of extrafusal fibres.

  9. Fast and Reliable Mouse Picking Using Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Hanli Zhao

    2009-01-01

    Full Text Available Mouse picking is the most commonly used intuitive operation to interact with 3D scenes in a variety of 3D graphics applications. High performance for such operation is necessary in order to provide users with fast responses. This paper proposes a fast and reliable mouse picking algorithm using graphics hardware for 3D triangular scenes. Our approach uses a multi-layer rendering algorithm to perform the picking operation in linear time complexity. The objectspace based ray-triangle intersection test is implemented in a highly parallelized geometry shader. After applying the hardware-supported occlusion queries, only a small number of objects (or sub-objects are rendered in subsequent layers, which accelerates the picking efficiency. Experimental results demonstrate the high performance of our novel approach. Due to its simplicity, our algorithm can be easily integrated into existing real-time rendering systems.

  10. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  11. Optical mapping system for visualizing arrhythmias in isolated mouse atria.

    Science.gov (United States)

    Schmidt, Robyn; Nygren, Anders

    2006-01-01

    Optical mapping has become an important technique in the study of cardiac electrophysiology, especially in terms of investigating the mechanisms of cardiac arrhythmias. The increasing availability of transgenic mice as models for cardiovascular disease is driving the need for instrumentation suitable for the study of electrical activity in the mouse heart. In this paper we evaluate our optical mapping system's ability to clearly record induced arrhythmic activity in an isolated mouse atrial preparation. Preliminary results indicate that the signal quality is high enough that individual optically recorded action potentials can be discerned in many pixels, even without post-processing for noise removal. The optical mapping video is clear enough for general observations regarding the patterns of electrical propagation during arrhythmic behaviour. The induced arrhythmias appear to have a regular pattern of activity, and are likely best classified as atrial tachycardias.

  12. Vascular development and hemodynamic force in the mouse yolk sac

    Directory of Open Access Journals (Sweden)

    Monica D Garcia

    2014-08-01

    Full Text Available Vascular remodeling of the mouse embryonic yolk sac is a highly dynamic process dependent on multiple genetic signaling pathways as well as biomechanical factors regulating proliferation, differentiation, migration, cell-cell and cell-matrix interactions. During this early developmental window, the initial primitive vascular network of the yolk sac undergoes a dynamic remodeling process concurrent with the onset of blood flow, in which endothelial cells establish a branched, hierarchical structure of large vessels and smaller capillary beds. In this review, we will describe the molecular and biomechanical regulators which guide vascular remodeling in the mouse embryonic yolk sac, as well as live imaging methods for characterizing endothelial cell and hemodynamic function in cultured embryos.

  13. Current Concepts: Mouse Models of Sjögren's Syndrome

    Directory of Open Access Journals (Sweden)

    Tegan N. Lavoie

    2011-01-01

    Full Text Available Sjögren's syndrome (SjS is a complex chronic autoimmune disease of unknown etiology which primarily targets the exocrine glands, resulting in eventual loss of secretory function. The disease can present as either primary SjS or secondary SjS, the latter of which occurs concomitantly with another autoimmune disease such as rheumatoid arthritis, systemic lupus erythematosus, scleroderma, or primary biliary cirrhosis. Current advancements in therapeutic prevention and treatment for SjS are impeded by lack of understanding in the pathophysiological and clinical progression of the disease. Development of appropriate mouse models for both primary and secondary SjS is needed in order to advance knowledge of this disease. This paper details important features, advantages, and pitfalls of current animal models of SjS, including spontaneous, transgenic, knockout, immunization, and transplantation chimera mouse models, and emphasizes the need for a better model in representing the human SjS phenotype.

  14. Mixing Board Versus Mouse Interaction In Value Adjustment Tasks

    CERN Document Server

    Bergner, Steven; Kirkpatrick, Arthur E; Möller, Torsten

    2011-01-01

    We present a controlled, quantitative study with 12 participants comparing interaction with a haptically enhanced mixing board against interaction with a mouse in an abstract task that is motivated by several practical parameter space exploration settings. The study participants received 24 sets of one to eight integer values between 0 and 127, which they had to match by making adjustments with physical or graphical sliders. Based on recorded slider motion path data, we developed an analysis algorithm that identifies and measures different types of activity intervals, including error time moving irrelevant sliders and end time in breaks after completing each trial item. Our results showed a significant increase in speed of the mixing board interaction accompanied by reduced perceived cognitive load when compared with the traditional mouse-based GUI interaction. The gains in speed are largely due to the improved times required for the hand to reach for the first slider (acquisition time) and also when moving b...

  15. Genetic Mouse Models: The Powerful Tools to Study Fat Tissues.

    Science.gov (United States)

    Kong, Xingxing; Williams, Kevin W; Liu, Tiemin

    2017-01-01

    Obesity and Type 2 diabetes (T2D) are associated with a variety of comorbidities that contribute to mortality around the world. Although significant effort has been expended in understanding mechanisms that mitigate the consequences of this epidemic, the field has experienced limited success thus far. The potential ability of brown adipose tissue (BAT) to counteract obesity and metabolic disease in rodents (and potentially in humans) has been a topical realization. Recently, there is also another thermogenic fat cell called beige adipocytes, which are located among white adipocytes and share similar activated responses to cyclic AMP as classical BAT. In this chapter, we review contemporary molecular strategies to investigate the role of adipose tissue depots in metabolism. In particular, we will discuss the generation of adipose tissue-specific knockout and overexpression of target genes in various mouse models. We will also discuss how to use different Cre (cyclization recombination) mouse lines to investigate diverse types of adipocytes.

  16. Laser Doppler velocimetry using a modified computer mouse

    Science.gov (United States)

    Zaron, Edward D.

    2016-10-01

    A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.

  17. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E

    2009-01-01

    BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described...... the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...

  18. Dissecting Alzheimer disease in Down syndrome using mouse models

    Directory of Open Access Journals (Sweden)

    Xun Yu eChoong

    2015-10-01

    Full Text Available Down syndrome (DS is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21. This greatly increases the risk for Alzheimer disease (AD, but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS, and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.

  19. Gain and frequency tuning within the mouse cochlear apex

    Energy Technology Data Exchange (ETDEWEB)

    Oghalai, John S.; Raphael, Patrick D. [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Gao, Simon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Bioengineering, Rice University, Houston, Texas (United States); Lee, Hee Yoon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Electrical Engineering, Stanford University, Stanford, California (United States); Groves, Andrew K. [Department of Neuroscience, Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas (United States); Zuo, Jian [Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  20. The expression of SEIPIN in the mouse central nervous system.

    Science.gov (United States)

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  1. Segmentation of the mouse hippocampal formation in magnetic resonance images.

    Science.gov (United States)

    Richards, Kay; Watson, Charles; Buckley, Rachel F; Kurniawan, Nyoman D; Yang, Zhengyi; Keller, Marianne D; Beare, Richard; Bartlett, Perry F; Egan, Gary F; Galloway, Graham J; Paxinos, George; Petrou, Steven; Reutens, David C

    2011-10-01

    The hippocampal formation plays an important role in cognition, spatial navigation, learning, and memory. High resolution magnetic resonance (MR) imaging makes it possible to study in vivo changes in the hippocampus over time and is useful for comparing hippocampal volume and structure in wild type and mutant mice. Such comparisons demand a reliable way to segment the hippocampal formation. We have developed a method for the systematic segmentation of the hippocampal formation using the perfusion-fixed C57BL/6 mouse brain for application in longitudinal and comparative studies. Our aim was to develop a guide for segmenting over 40 structures in an adult mouse brain using 30 μm isotropic resolution images acquired with a 16.4 T MR imaging system and combined using super-resolution reconstruction.

  2. Computerized assessment of social approach behavior in mouse

    Directory of Open Access Journals (Sweden)

    Damon T Page

    2009-11-01

    Full Text Available Altered sociability is a core feature of a variety of human neurological disorders, including autism. Social behaviors may be tested in animal models, such as mice, to study the biological bases of sociability and how this is altered in neurodevelopmental disorders. An easily quantifiable social behavior frequently used to assess sociability in the mouse is the tendency to approach and interact with an unfamiliar mouse. Here we present a novel computer-assisted method for scoring social approach behavior in mice using a three-chambered apparatus. We find consistent results between data scored using the computer assisted method and a human observer, making computerized assessment a reliable, low cost, high-throughput method for testing sociability.

  3. Simultaneous molecular and anatomical imaging of the mouse in vivo.

    Science.gov (United States)

    Goertzen, Andrew L; Meadors, A Ken; Silverman, Robert W; Cherry, Simon R

    2002-12-21

    Non-invasive imaging technologies are opening up new windows into mouse biology. We have developed a mouse imaging system that integrates positron emission tomography (PET) with x-ray computed tomography (CT), allowing simultaneous anatomic and molecular imaging in vivo with the potential for precise registration of the two image volumes. The x-ray system consists of a compact mini-focal x-ray tube and an amorphous selenium flat panel x-ray detector with a low-noise CMOS readout. The PET system uses planar arrays of lutetium oxyorthosilicate scintillator coupled to position-sensitive photomultiplier tubes. We describe the design of this dual-modality imaging system and show, for the first time, simultaneously acquired PET and CT images in a phantom and in mice.

  4. Transgenic mouse - Methods and protocols, 2nd edition

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available Marten H. Hofner (from the Dept. of Pathology of the Groningen University and Jan M. van Deursen (from the Mayo College of Medicine at Rochester, MN, USA provided us with the valuable second edition of Transgenic mouse: in fact, eventhough we are in the –omics era and already equipped with the state-of-the-art techniques in whatsoever field, still we need to have gene(s functional analysis data to understand common and complex deseases. Transgenesis is still an irreplaceable method and protocols to well perform it are more than welcome. Here, how to get genetic modified mice (the quintessential model of so many human deseases considering how much of the human genes are conserved in the mouse and the great block of genic synteny existing between the two genomes is analysed in deep and presented in clearly detailed step by step protocols....

  5. How Age Affects Pointing with Mouse and Touchpad

    DEFF Research Database (Denmark)

    Hertzum, Morten; Hornbæk, Kasper Anders Søren

    2010-01-01

    Effects of age on pointing performance have become increasingly important as computers have become extensively used by still larger parts of the population. This study empirically investigates young (12-14 years), adult (25-33 years), and elderly (61-69 years) participants' performance when...... pointing with mouse and touchpad. The goal is to provide an integrated analysis of (a) how these three age groups differ in pointing performance, (b) how these differences are affected by the two pointing devices, and (c) how the submovement structure of cursor trajectories may explain performance...... neither more nor less errors than young and adult participants. All three age groups were slower and made more errors with the touchpad than the mouse, but the touchpad slowed down elderly participants more than young participants, who in turn were slowed down more than adult participants. Adult...

  6. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    Science.gov (United States)

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-07-06

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  7. Genetically modified mouse models for premature ovarian failure (POF).

    Science.gov (United States)

    Jagarlamudi, Krishna; Reddy, Pradeep; Adhikari, Deepak; Liu, Kui

    2010-02-01

    Premature ovarian failure (POF) is a complex disorder that affects approximately 1% of women. POF is characterized by the depletion of functional ovarian follicles before the age of 40 years, and clinically, patients may present with primary amenorrhea or secondary amenorrhea. Although some genes have been hypothesized to be candidates responsible for POF, the etiology of most of the cases is idiopathic, with the underlying causes still unidentified because of the heterogeneity of the disease. In this review, we consider some mutant mouse models that exhibit phenotypes which are comparable to human POF, and we suggest that the use of these mouse models may help us to gain a better understanding of the molecular mechanisms underlying POF in humans.

  8. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  9. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus.

    Science.gov (United States)

    Onoue, Takeshi; Goto, Motomitsu; Tominaga, Takashi; Sugiyama, Mariko; Tsunekawa, Taku; Hagiwara, Daisuke; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2016-04-21

    In the hypothalamus, several reports have implied that ROS mediate physiological effects of insulin. In this study, we investigated the mechanisms of insulin-induced ROS production and the effect of ROS on insulin signal transduction in mouse hypothalamic organotypic cultures. Insulin increased intracellular ROS, which were suppressed by NADPH oxidase inhibitor. H2O2 increased phospho-insulin receptor β (p-IRβ) and phospho-Akt (p-Akt) levels. Insulin-induced increases in p-IRβ and p-Akt levels were attenuated by ROS scavenger or NADPH oxidase inhibitor. Our data suggest that insulin-induced phosphorylation of IRβ and Akt is mediated via ROS which are predominantly produced by NADPH oxidase in mouse hypothalamus.

  10. Mouse models of myeloproliferative neoplasms: JAK of all grades

    Directory of Open Access Journals (Sweden)

    Juan Li

    2011-05-01

    Full Text Available In 2005, several groups identified a single gain-of-function point mutation in the JAK2 kinase that was present in the majority of patients with myeloproliferative neoplasms (MPNs. Since this discovery, much effort has been dedicated to understanding the molecular consequences of the JAK2V617F mutation in the haematopoietic system. Three waves of mouse models have been produced recently (bone marrow transplantation, transgenic and targeted knock-in, which have facilitated the understanding of the molecular pathogenesis of JAK2V617F-positive MPNs, providing potential platforms for designing and validating novel therapies in humans. This Commentary briefly summarises the first two types of mouse models and then focuses on the more recently generated knock-in models.

  11. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  12. Transcriptomic profiling of trichloroethylene exposure in male mouse liver

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2015-03-01

    Full Text Available Chronic Trichloroethylene (TCE exposure could induce hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE for 5 days. As a beginning step, we profiled gene expression alterations induced by the TCE in mouse livers. Here we describe in detail the experimental methods, quality controls, and other information associated with our data deposited into Gene Expression Omnibus (GEO under GSE58819. Our data provide useful information for gene expression responses to TCE in mouse liver.

  13. Three-dimensional diffusion tensor microscopy of fixed mouse hearts.

    Science.gov (United States)

    Jiang, Yi; Pandya, Kumar; Smithies, Oliver; Hsu, Edward W

    2004-09-01

    The relative utility of 3D, microscopic resolution assessments of fixed mouse myocardial structure via diffusion tensor imaging is demonstrated in this study. Isotropic 100-microm resolution fiber orientation mapping within 5.5 degrees accuracy was achieved in 9.1 hr scan time. Preliminary characterization of the diffusion tensor primary eigenvector reveals a smooth and largely linear angular rotation across the left ventricular wall. Moreover, a higher level of structural hierarchy is evident from the organized secondary and tertiary eigenvector fields. These findings are consistent with the known myocardial fiber and laminar structures reported in the literature and suggest an essential role of diffusion tensor microscopy in developing quantitative atlases for studying the structure-function relationships of mouse hearts.

  14. Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-06-01

    Full Text Available The incidence and mortality of prostate cancer (PCa vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1, which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN, and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt, FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC, and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN. In summary, targeted overexpression of h

  15. Phytoestrogens are partial estrogen agonists in the adult male mouse.

    OpenAIRE

    Mäkelä, S; Santti, R; Salo, L; McLachlan, J A

    1995-01-01

    The intake, as well as serum and urinary concentrations, of phytoestrogens is high in countries where incidence of prostate cancer is low, suggesting a chemopreventive role for phytoestrogens. Their significance could be explained by the ability to antagonize the action of more potent endogenous estrogens in initiation or promotion of tumor formation. We have studied estrogenicity and antiestrogenicity of dietary soy and two phytoestrogens, coumestrol and daidzein, in our neoDES mouse model f...

  16. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  17. A unified gene catalog for the laboratory mouse reference genome.

    Science.gov (United States)

    Zhu, Y; Richardson, J E; Hale, P; Baldarelli, R M; Reed, D J; Recla, J M; Sinclair, R; Reddy, T B K; Bult, C J

    2015-08-01

    We report here a semi-automated process by which mouse genome feature predictions and curated annotations (i.e., genes, pseudogenes, functional RNAs, etc.) from Ensembl, NCBI and Vertebrate Genome Annotation database (Vega) are reconciled with the genome features in the Mouse Genome Informatics (MGI) database (http://www.informatics.jax.org) into a comprehensive and non-redundant catalog. Our gene unification method employs an algorithm (fjoin--feature join) for efficient detection of genome coordinate overlaps among features represented in two annotation data sets. Following the analysis with fjoin, genome features are binned into six possible categories (1:1, 1:0, 0:1, 1:n, n:1, n:m) based on coordinate overlaps. These categories are subsequently prioritized for assessment of annotation equivalencies and differences. The version of the unified catalog reported here contains more than 59,000 entries, including 22,599 protein-coding coding genes, 12,455 pseudogenes, and 24,007 other feature types (e.g., microRNAs, lincRNAs, etc.). More than 23,000 of the entries in the MGI gene catalog have equivalent gene models in the annotation files obtained from NCBI, Vega, and Ensembl. 12,719 of the features are unique to NCBI relative to Ensembl/Vega; 11,957 are unique to Ensembl/Vega relative to NCBI, and 3095 are unique to MGI. More than 4000 genome features fall into categories that require manual inspection to resolve structural differences in the gene models from different annotation sources. Using the MGI unified gene catalog, researchers can easily generate a comprehensive report of mouse genome features from a single source and compare the details of gene and transcript structure using MGI's mouse genome browser.

  18. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Science.gov (United States)

    Musicki, Biljana; Zhang, Yuxi; Chen, Haolin; Brown, Terry R; Zirkin, Barry R; Burnett, Arthur L

    2015-01-01

    Testosterone deficiency is associated with sickle cell disease (SCD), but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle) exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH) levels compared with wild type (WT) mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol)- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR), but not cholesterol side-chain cleavage enzyme (P450scc), in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi) exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  19. High-throughput transgenic mouse phenotyping using microscopic-MRI

    OpenAIRE

    Cleary, J. O. S.

    2012-01-01

    With the completion of the human genome sequence in 2003, efforts have shifted towards elucidating gene function. Such phenotypic investigations are aided by advances in techniques for genetic modification of mice, with whom we share ~99% of genes. Mice are key models for both examination of basic gene function and translational study of human conditions. Furthering these efforts, ambitious programmes are underway to produce knockout mice for the ~25,000 mouse genes. In the coming years, meth...

  20. Towards Transgenic Primates: What can we learn from mouse genetics?

    Institute of Scientific and Technical Information of China (English)

    KUANG Hui; WANG Phillip L.; TSIEN Joe Z.

    2009-01-01

    Considering the great physiological and behavioral similarities with humans, monkeys represent the ideal models not only for the study of complex cognitive behavior but also for the precUnical research and development of novel therapeutics for treating human diseases. Various powerful genetic tech-nologies initially developed for making mouse models are being explored for generating transgenic primate models. We review the latest genetic engineering technologies and discuss the potentials and limitations for systematic production of transgenic primates.

  1. Creatine uptake in mouse hearts with genetically altered creatine levels

    OpenAIRE

    2008-01-01

    Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl...

  2. Macrophage Isolation from the Mouse Small and Large Intestine

    Science.gov (United States)

    Harusato, Akihito; Geem, Duke; Denning, Timothy L.

    2016-01-01

    Macrophages play important roles in maintaining intestinal homeostasis via their ability to orchestrate responses to the normal microbiota as well as pathogens. One of the most important steps in beginning to understand the functions of these cells is the ability to effectively isolate them from the complex intestinal environment. Here, we detail methodology for the isolation and phenotypic characterization of macrophages from the mouse small and large intestine. PMID:27246032

  3. Auditory development in progressive motor neuronopathy mouse mutants.

    Science.gov (United States)

    Volkenstein, Stefan; Brors, Dominik; Hansen, Stefan; Berend, Achim; Mlynski, Robert; Aletsee, Christoph; Dazert, Stefan

    2009-11-06

    The present study was performed to elucidate the hearing development in the progressive motor neuronopathy (pmn) mouse mutant. This mouse has been used as a model for human motoneuron disease. A missense mutation in the tubulin-specific chaperon E (Tbce) gene on mouse chromosome 13 was localized as the underlying genetic defect. The protein encoded by the Tbce gene is essential for the formation of primary tubulin complexes. Studies on motoneurons show disorganization in microtubules and disturbed axonal transport, followed by retrograde degeneration of the motoneurons. A similar pathomechanism is also possible for hearing disorders where disrupted microtubules could cause functional deficits in spiral ganglion neurons or in cochlear hair cells. Click auditory brainstem response (ABR) audiometry in homozygous pmn mutants showed a normal onset of hearing, but an increasing hearing threshold from postnatal day 26 (P26) on to death, compared to heterozygous mutants and wild-type mice. Histological sections of the cochlea at different ages showed a regular morphology. Additionally, spiral ganglion explants from mutant and wild-type mice were cultured. The neurite length from pmn mutants was shorter than in wild-type mice, and the neurite number/explant was significantly decreased in pmn mutants. We show that the pmn mouse mutant is a model for a progressive rapid hearing loss from P26 on, after initially normal hearing development. Heterozygous mice are not affected by this defect. With the knowledge of the well-known pathomechanism of this defect in motoneurons, a dysfunction of cellular mechanisms regulating tubulin assembling suggests that tubulin assembling plays an essential role in hearing function and maintenance.

  4. Endonucleases: new tools to edit the mouse genome.

    Science.gov (United States)

    Wijshake, Tobias; Baker, Darren J; van de Sluis, Bart

    2014-10-01

    Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it is time-consuming and quite laborious. Over the last decade a number of new genome editing technologies have been developed, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas). These systems are characterized by a designed DNA binding protein or RNA sequence fused or co-expressed with a non-specific endonuclease, respectively. The engineered DNA binding protein or RNA sequence guides the nuclease to a specific target sequence in the genome to induce a double strand break. The subsequent activation of the DNA repair machinery then enables the introduction of gene modifications at the target site, such as gene disruption, correction or insertion. Nuclease-mediated genome editing has numerous advantages over conventional gene targeting, including increased efficiency in gene editing, reduced generation time of mutant mice, and the ability to mutagenize multiple genes simultaneously. Although nuclease-driven modifications in the genome are a powerful tool to generate mutant mice, there are concerns about off-target cleavage, especially when using the CRISPR/Cas system. Here, we describe the basic principles of these new strategies in mouse genome manipulation, their inherent advantages, and their potential disadvantages compared to current technologies used to study gene function in mouse models. This article is part of a Special Issue entitled: From Genome to Function.

  5. Mouse genetic models for temporomandibular joint development and disorders.

    Science.gov (United States)

    Suzuki, A; Iwata, J

    2016-01-01

    The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40-70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understanding of TMD in mouse models.

  6. Linkage of Pep-2 and Apk on mouse chromosome 10.

    Science.gov (United States)

    Womack, J E; Ashley, S; Barnett, L B; Lewis, S E

    1986-10-01

    An ethylnitrosourea (ENU)-induced electrophoretic variant of mouse PEP-2, a tripeptidase, has been used to determine the location of the structural gene on chromosome 10. Gene order and recombination frequencies were estimated as Apk-21.8 +/- 3.9%-Pep-2-3.7 +/- 2.1%-Sl. Methods for rapid determination of Apk and Pep-2 alleles by cellulose acetate electrophoresis and a valuable linkage testing stock carrying the unique Apkm and Pep-2b alleles are described.

  7. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Directory of Open Access Journals (Sweden)

    Biljana Musicki

    Full Text Available Testosterone deficiency is associated with sickle cell disease (SCD, but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH levels compared with wild type (WT mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR, but not cholesterol side-chain cleavage enzyme (P450scc, in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  8. Immune Cell Isolation from Mouse Femur Bone Marrow

    OpenAIRE

    Liu, Xiaoyu; Quan, Ning

    2015-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of sp...

  9. Real-Time Bioluminescence Imaging of Nitroreductase in Mouse Model.

    Science.gov (United States)

    Feng, Ping; Zhang, Huateng; Deng, Quankun; Liu, Wei; Yang, Linghui; Li, Guobo; Chen, Guo; Du, Lupei; Ke, Bowen; Li, Minyong

    2016-06-01

    Nitroreductase (NTR) is an endogenous reductase overexpressed in hypoxic tumors; however, its precise detection in living cells and animals remains a considerable challenge. Herein, we developed three reaction-based probes and a related bioluminescence assay for the real-time NTR detection. The high sensitivity and selectivity of probe 3, combined with its remarkable potential of bioluminescence imaging, affords a valuable approach for in vivo imaging of NTR in a tumor model mouse.

  10. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required.

  11. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    OpenAIRE

    Cao, Hongcui; Yu, Jiong; Xu, Wei; Jia, Xiaofei; Yang, Jinfeng; Pan, Qiaoling; Zhang, Qiyi; Sheng, Guoping; Li, Jun; Pan, Xiaoping; Wang, Yingjie; Li, Lanjuan

    2009-01-01

    Background Although 70% (or 2/3) partial hepatectomy (PH) is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH) has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s) under this milder b...

  12. Delimiting species without nuclear monophyly in Madagascar's mouse lemurs.

    Directory of Open Access Journals (Sweden)

    David W Weisrock

    Full Text Available BACKGROUND: Speciation begins when populations become genetically separated through a substantial reduction in gene flow, and it is at this point that a genetically cohesive set of populations attain the sole property of species: the independent evolution of a population-level lineage. The comprehensive delimitation of species within biodiversity hotspots, regardless of their level of divergence, is important for understanding the factors that drive the diversification of biota and for identifying them as targets for conservation. However, delimiting recently diverged species is challenging due to insufficient time for the differential evolution of characters--including morphological differences, reproductive isolation, and gene tree monophyly--that are typically used as evidence for separately evolving lineages. METHODOLOGY: In this study, we assembled multiple lines of evidence from the analysis of mtDNA and nDNA sequence data for the delimitation of a high diversity of cryptically diverged population-level mouse lemur lineages across the island of Madagascar. Our study uses a multi-faceted approach that applies phylogenetic, population genetic, and genealogical analysis for recognizing lineage diversity and presents the most thoroughly sampled species delimitation of mouse lemur ever performed. CONCLUSIONS: The resolution of a large number of geographically defined clades in the mtDNA gene tree provides strong initial evidence for recognizing a high diversity of population-level lineages in mouse lemurs. We find additional support for lineage recognition in the striking concordance between mtDNA clades and patterns of nuclear population structure. Lineages identified using these two sources of evidence also exhibit patterns of population divergence according to genealogical exclusivity estimates. Mouse lemur lineage diversity is reflected in both a geographically fine-scaled pattern of population divergence within established and

  13. Escherichia coli Pathotypes Occupy Distinct Niches in the Mouse Intestine

    OpenAIRE

    Jessica P Meador; Caldwell, Matthew E.; Cohen, Paul S.; Conway, Tyrrell

    2014-01-01

    Since the first step of the infection process is colonization of the host, it is important to understand how Escherichia coli pathogens successfully colonize the intestine. We previously showed that enterohemorrhagic O157:H7 strain E. coli EDL933 colonizes a niche in the streptomycin-treated mouse intestine that is distinct from that of human commensal strains, which explains how E. coli EDL933 overcomes colonization resistance imparted by some, but not all, commensal E. coli strains. Here we...

  14. The Mouse Universal Genotyping Array: From Substrains to Subspecies

    Directory of Open Access Journals (Sweden)

    Andrew P. Morgan

    2016-02-01

    Full Text Available Genotyping microarrays are an important resource for genetic mapping, population genetics, and monitoring of the genetic integrity of laboratory stocks. We have developed the third generation of the Mouse Universal Genotyping Array (MUGA series, GigaMUGA, a 143,259-probe Illumina Infinium II array for the house mouse (Mus musculus. The bulk of the content of GigaMUGA is optimized for genetic mapping in the Collaborative Cross and Diversity Outbred populations, and for substrain-level identification of laboratory mice. In addition to 141,090 single nucleotide polymorphism probes, GigaMUGA contains 2006 probes for copy number concentrated in structurally polymorphic regions of the mouse genome. The performance of the array is characterized in a set of 500 high-quality reference samples spanning laboratory inbred strains, recombinant inbred lines, outbred stocks, and wild-caught mice. GigaMUGA is highly informative across a wide range of genetically diverse samples, from laboratory substrains to other Mus species. In addition to describing the content and performance of the array, we provide detailed probe-level annotation and recommendations for quality control.

  15. Psychosine-induced alterations in peroxisomes of Twitcher Mouse Liver

    Science.gov (United States)

    Contreras, Miguel Agustin; Haq, Ehtishamul; Uto, Takuhiro; Singh, Inderjit; Singh, Avtar Kaur

    2008-01-01

    Krabbe’s disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/function in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-α and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-α, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where the induction of TNF-α and IL-6 compromise peroxisomal structure and function. PMID:18602885

  16. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  17. Noise Reduction for a MEMS-Gyroscope-Based Head Mouse.

    Science.gov (United States)

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2015-01-01

    In this paper, four different signal processing algorithms which can be applied to reduce the noise from a MEMS-gyroscope-based computer head mouse are presented. MEMS-gyroscopes are small, light, cheap and widely used in many electrical products. MultiPos, a MEMS-gyroscope-based computer head mouse system was designed for persons with movement disorders. Noise such as physiological tremor and electrical noise is a common problem for the MultiPos system. In this study four different signal processing algorithms were applied and evaluated by simulation in MATLAB and implementation in a dsPIC, with aim to minimize the noise in MultiPos. The algorithms were low-pass filter, Least Mean Square (LMS) algorithm, Kalman filter and Weighted Fourier Linear Combiner (WFLC) algorithm. Comparisons and system tests show that these signal processing algorithms can be used to improve the MultiPos system. The WFLC algorithm was found the best method for noise reduction in the application of a MEMS-gyroscope-based head mouse.

  18. Tetanus neurotoxin-induced epilepsy in mouse visual cortex.

    Science.gov (United States)

    Mainardi, Marco; Pietrasanta, Marta; Vannini, Eleonora; Rossetto, Ornella; Caleo, Matteo

    2012-07-01

    Tetanus neurotoxin (TeNT) is a metalloprotease that cleaves the synaptic protein VAMP/synaptobrevin, leading to focal epilepsy. Although this model is widely used in rats, the time course and spatial specificity of TeNT proteolytic action have not been precisely defined. Here we have studied the biochemical, electrographic, and anatomic characteristics of TeNT-induced epilepsy in mouse visual cortex (V1). We found that VAMP cleavage peaked at 10 days, was reduced at 21 days, and completely extinguished 45 days following TeNT delivery. VAMP proteolysis was restricted to the injected V1 and ipsilateral thalamus, whereas it was undetectable in other cortical areas. Electrographic epileptiform activity was evident both during and after the time window of TeNT effects, indicating development of chronic epilepsy. Anatomic analyses found no evidence for long-term tissue damage, such as neuronal loss or microglia activation. These data show that TeNT reliably induces nonlesional epilepsy in mouse cortex. Due to the excellent physiologic knowledge of the visual cortex and the availability of mouse transgenic strains, this model will be useful for examining the network and cellular alterations underlying hyperexcitability within an epileptic focus.

  19. Characteristics of transposable element exonization within human and mouse.

    Directory of Open Access Journals (Sweden)

    Noa Sela

    Full Text Available Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.

  20. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  1. Update of human and mouse forkhead box (FOX gene families

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2010-06-01

    Full Text Available Abstract The forkhead box (FOX proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6. Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.

  2. Improved definition of the mouse transcriptome via targeted RNA sequencing.

    Science.gov (United States)

    Bussotti, Giovanni; Leonardi, Tommaso; Clark, Michael B; Mercer, Tim R; Crawford, Joanna; Malquori, Lorenzo; Notredame, Cedric; Dinger, Marcel E; Mattick, John S; Enright, Anton J

    2016-05-01

    Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.

  3. The mouse Gene Expression Database (GXD): 2017 update

    Science.gov (United States)

    Finger, Jacqueline H.; Smith, Constance M.; Hayamizu, Terry F.; McCright, Ingeborg J.; Xu, Jingxia; Law, Meiyee; Shaw, David R.; Baldarelli, Richard M.; Beal, Jon S.; Blodgett, Olin; Campbell, Jeff W.; Corbani, Lori E.; Lewis, Jill R.; Forthofer, Kim L.; Frost, Pete J.; Giannatto, Sharon C.; Hutchins, Lucie N.; Miers, Dave B.; Motenko, Howie; Stone, Kevin R.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2017-01-01

    The Gene Expression Database (GXD; www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. Through curation of the scientific literature and by collaborations with large-scale expression projects, GXD collects and integrates data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. Expression data from both wild-type and mutant mice are included. The expression data are combined with genetic and phenotypic data in Mouse Genome Informatics (MGI) and made readily accessible to many types of database searches. At present, GXD includes over 1.5 million expression results and more than 300 000 images, all annotated with detailed and standardized metadata. Since our last report in 2014, we have added a large amount of data, we have enhanced data and database infrastructure, and we have implemented many new search and display features. Interface enhancements include: a new Mouse Developmental Anatomy Browser; interactive tissue-by-developmental stage and tissue-by-gene matrix views; capabilities to filter and sort expression data summaries; a batch search utility; gene-based expression overviews; and links to expression data from other species. PMID:27899677

  4. RNA isolation from mouse pancreas: a ribonuclease-rich tissue.

    Science.gov (United States)

    Azevedo-Pouly, Ana Clara P; Elgamal, Ola A; Schmittgen, Thomas D

    2014-08-02

    Isolation of high-quality RNA from ribonuclease-rich tissue such as mouse pancreas presents a challenge. As a primary function of the pancreas is to aid in digestion, mouse pancreas may contain as much a 75 mg of ribonuclease. We report modifications of standard phenol/guanidine thiocyanate lysis reagent protocols to isolate RNA from mouse pancreas. Guanidine thiocyanate is a strong protein denaturant and will effectively disrupt the activity of ribonuclease under most conditions. However, critical modifications to standard protocols are necessary to successfully isolate RNA from ribonuclease-rich tissues. Key steps include a high lysis reagent to tissue ratio, removal of undigested tissue prior to phase separation and inclusion of a ribonuclease inhibitor to the RNA solution. Using these and other modifications, we routinely isolate RNA with RNA Integrity Number (RIN) greater than 7. The isolated RNA is of suitable quality for routine gene expression analysis. Adaptation of this protocol to isolate RNA from ribonuclease rich tissues besides the pancreas should be readily achievable.

  5. Genetically engineered mucin mouse models for inflammation and cancer

    Science.gov (United States)

    Joshi, Suhasini; Kumar, Sushil; Bafna, Sangeeta; Rachagani, Satyanarayana; Wagner, Kay-Uwe; Jain, Maneesh

    2015-01-01

    Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer. PMID:25634251

  6. How informative is the mouse for human gut microbiota research?

    Directory of Open Access Journals (Sweden)

    Thi Loan Anh Nguyen

    2015-01-01

    Full Text Available The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes, cancer and even neurodevelopmental disorders (e.g. autism. Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.

  7. Characterization of mutations at the mouse phenylalanine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.D.; Charlton, C.K. [Wichita State Univ., KS (United States)

    1997-02-01

    Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. In PAH{sup ENU1}, the phenotype is mild. The Pah{sup enu1} mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. In PAH{sup ENU2} the phenotype is severe. The Pah{sup enu2} mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. In PAH{sup ENU2}, the sequence information was used to devise a direct genotyping system based on the creation of a new Alw26I restriction endonuclease site. 26 refs., 2 figs., 1 tab.

  8. Influence of age, irradiation and humanization on NSG mouse phenotypes

    Directory of Open Access Journals (Sweden)

    Jaclyn S. Knibbe-Hollinger

    2015-10-01

    Full Text Available Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.

  9. Differential expression and regulation of Tdo2 during mouse decidualization.

    Science.gov (United States)

    Li, Dang-Dang; Gao, Ying-Jie; Tian, Xue-Chao; Yang, Zhan-Qing; Cao, Hang; Zhang, Qiao-Ling; Guo, Bin; Yue, Zhan-Peng

    2014-01-01

    Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6-8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1-8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.

  10. An MRI atlas of the mouse basal ganglia.

    Science.gov (United States)

    Ullmann, Jeremy F P; Watson, Charles; Janke, Andrew L; Kurniawan, Nyoman D; Paxinos, George; Reutens, David C

    2014-07-01

    The basal ganglia are a group of subpallial nuclei that play an important role in motor, emotional, and cognitive functions. Morphological changes and disrupted afferent/efferent connections in the basal ganglia have been associated with a variety of neurological disorders including psychiatric and movement disorders. While high-resolution magnetic resonance imaging has been used to characterize changes in brain structure in mouse models of these disorders, no systematic method for segmentation of the C57BL/6 J mouse basal ganglia exists. In this study we have used high-resolution MR images of ex vivo C57BL/6 J mouse brain to create a detailed protocol for segmenting the basal ganglia. We created a three-dimensional minimum deformation atlas, which includes the segmentation of 35 striatal, pallidal, and basal ganglia-related structures. In addition, we provide mean volumes, mean T2 contrast intensities and mean FA and ADC values for each structure. This MR atlas is available for download, and enables researchers to perform automated segmentation in genetic models of basal ganglia disorders.

  11. Host genetic and environmental effects on mouse intestinal microbiota.

    Science.gov (United States)

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana; Campbell, Alisha G; Yang, Zamin K; Wymore, Ann; Palumbo, Anthony V; Chesler, Elissa J; Podar, Mircea

    2012-11-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  12. The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles

    Science.gov (United States)

    Lim, Ai Khim; Lorthongpanich, Chanchao; Chew, Ting Gang; Tan, Chin Wee Godwin; Shue, Yan Ting; Balu, Sathish; Gounko, Natalia; Kuramochi-Miyagawa, Satomi; Matzuk, Martin M.; Chuma, Shinichiro; Messerschmidt, Daniel M.; Solter, Davor; Knowles, Barbara B.

    2013-01-01

    Mobilization of endogenous retrotransposons can destabilize the genome, an imminent danger during epigenetic reprogramming of cells in the germline. The P-element-induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway is known to silence retrotransposons in the mouse testes. Several piRNA pathway components localize to the unique, germline structure known as the nuage. In this study, we surveyed mouse ovaries and found, for the first time, transient appearance of nuage-like structures in oocytes of primordial follicles. Mouse vasa homolog (MVH), Piwi-like 2 (PIWIL2/MILI) and tudor domain-containing 9 (TDRD9) are present in these structures, whereas aggregates of germ cell protein with ankyrin repeats, sterile alpha motif and leucine zipper (GASZ) localize separately in the cytoplasm. Retrotransposons are silenced in primordial ovarian follicles, and de-repressed upon reduction of piRNA expression in Mvh, Mili or Gasz mutants. However, these null-mutant females, unlike their male counterparts, are fertile, uncoupling retrotransposon activation from sterility. PMID:23924633

  13. Dynamic reorganization of intrinsic functional networks in the mouse brain.

    Science.gov (United States)

    Grandjean, Joanes; Preti, Maria Giulia; Bolton, Thomas A W; Buerge, Michaela; Seifritz, Erich; Pryce, Christopher R; Van De Ville, Dimitri; Rudin, Markus

    2017-03-14

    Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have assumed stationary interactions between brain regions, without considering the dynamic aspects of network organization. Only recently has the latter received increased attention, predominantly in human studies. Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed to make a major contribution to information integration and processing in the healthy and diseased brain.

  14. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James H [ORNL; Foster, Carmen M [ORNL; Vishnivetskaya, Tatiana A [ORNL; Campbell, Alisha G [ORNL; Yang, Zamin Koo [ORNL; Wymore, Ann [ORNL; Palumbo, Anthony Vito [ORNL; Podar, Mircea [ORNL

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  15. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.

  16. CURRENT WAYS TO HARVEST ENERGY USING A COMPUTER MOUSE

    Directory of Open Access Journals (Sweden)

    Frantisek Horvat

    2014-02-01

    Full Text Available This paper deals with the idea of an energy harvesting (EH system that uses the mechanical energy from finger presses on the buttons of a computer mouse by means of a piezomaterial (PVF2. The piezomaterial is placed in the mouse at the interface between the button and the body. This paper reviews the parameters of the PVF2 piezomaterial and tests their possible implementation into EH systems utilizing these types of mechanical interactions. The paper tests the viability of two EH concepts: a battery management system, and a semi-autonomous system. A statistical estimate of the button operations is performed for various computer activities, showing that an average of up to 3300 mouse clicks per hour was produced for gaming applications, representing a tip frequency of 0.91 Hz on the PVF2 member. This frequency is tested on the PVF2 system, and an assessment of the two EH systems is reviewed. The results show that fully autonomous systems are not suitable for capturing low-frequency mechanical interactions, due to the parameters of current piezomaterials, and the resulting very long startup phase. However, a hybrid EH system which uses available power to initiate the circuit and eliminate the startup phase may be explored for future studies.

  17. A mouse informatics platform for phenotypic and translational discovery.

    Science.gov (United States)

    Ring, Natalie; Meehan, Terrence F; Blake, Andrew; Brown, James; Chen, Chao-Kung; Conte, Nathalie; Di Fenza, Armida; Fiegel, Tanja; Horner, Neil; Jacobsen, Julius O B; Karp, Natasha; Lawson, Thomas; Mason, Jeremy C; Matthews, Peter; Morgan, Hugh; Relac, Mike; Santos, Luis; Smedley, Damian; Sneddon, Duncan; Pengelly, Alice; Tudose, Ilinca; Warren, Jonathan W G; Westerberg, Henrik; Yaikhom, Gagarine; Parkinson, Helen; Mallon, Ann-Marie

    2015-10-01

    The International Mouse Phenotyping Consortium (IMPC) is providing the world's first functional catalogue of a mammalian genome by characterising a knockout mouse strain for every gene. A robust and highly structured informatics platform has been developed to systematically collate, analyse and disseminate the data produced by the IMPC. As the first phase of the project, in which 5000 new knockout strains are being broadly phenotyped, nears completion, the informatics platform is extending and adapting to support the increasing volume and complexity of the data produced as well as addressing a large volume of users and emerging user groups. An intuitive interface helps researchers explore IMPC data by giving overviews and the ability to find and visualise data that support a phenotype assertion. Dedicated disease pages allow researchers to find new mouse models of human diseases, and novel viewers provide high-resolution images of embryonic and adult dysmorphologies. With each monthly release, the informatics platform will continue to evolve to support the increased data volume and to maintain its position as the primary route of access to IMPC data and as an invaluable resource for clinical and non-clinical researchers.

  18. A novel R-loop in mouse mitochondrial DNA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Mammalian mitochondrial D-loop L-strand RNA (DL-RNA) is thought functionally not important because no obvious function has been found so far. In this study, we detected a novel D-loop L-strand RNA (DL-RNA) in mouse mitochondrion by RT-PCR. The L-strand RNA spans the whole D-loop region of mouse mtDNA, and is resistant to RNase A and RNase T1 but not RNase H digestion. After binding of the L-strand RNA to D-loop, the DL-RNA complex can protect the D-loop from digestion by restriction endonuclease HaeⅢ. These results indicate that a novel RNA-DNA triplex hybrid (R-loop) can be formed in mouse mtDNA D-loop region, and that the DL-RNA structure is capable of protecting the D-loop from certain microbial restriction enzyme digestion. And the similar R-loop structure can not be found in Cyt.b gene in control experiment which confirmed this R-loop is not the fleeting structure in RNA transcription. Considering the D-loop represents the control region of mtDNA, the novel triplex DNA-RNA complex may play an important role in mtDNA replication and transcription.

  19. MicroRNA expression in the aging mouse thymus.

    Science.gov (United States)

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (pthymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  20. Sex effects in mouse prion disease incubation time.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrP(C levels nor in the neuropathological markers of prion disease: PrP(Sc distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.

  1. Screening for Stress Resistance Mutations in the Mouse

    Directory of Open Access Journals (Sweden)

    Wallace S Chick

    2014-09-01

    Full Text Available Longevity is correlated with stress resistance in many animal models. However, previous efforts through the boosting of the antioxidant defense system did not extend life span, suggesting that longevity related stress resistance is mediated by other uncharacterized pathways. We have developed a high-throughput platform for screening and rapid identification of novel genetic mutants in the mouse that are stress-resistant. Selection for resistance to stressors occurs in mutagenized mouse embryonic stem (ES cells, which are carefully treated so as to maintain pluripotency for mouse production. Initial characterization of these mutant ES cells revealed mutations in Pigl, Tiam1, and Rffl, among others. These genes are implicated in glycosylphosphatidylinositol biosynthesis, NADPH oxidase function, and inflammation. These mutants: (1 are resistant to two different oxidative stressors, paraquat and the omission of 2-mercaptoethanol, (2 have reduced levels of endogenous reactive oxygen species (ROS, (3 are capable of generating live mice, and (4 transmit the stress resistance phenotype to the mice. This strategy offers an efficient way to select for new mutants expressing a stress resistance phenotype, to rapidly identify the causative genes, and to develop mice for in vivo studies.

  2. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  3. [Evaluation of Antilles fish ciguatoxicity by mouse and chick bioassays].

    Science.gov (United States)

    Pottier, I; Vernoux, J P

    2003-03-01

    Ciguatera is a common seafood poisoning in Western Atlantic and French West Indies. Ciguatera fish poisoning in the Caribbean is a public health problem. A toxicological study was carried out on 178 Caribbean fish specimens (26 species) captured off Guadeloupe and Saint Barthelemy between 1993 and 1999. The mouse bioassay and the chick feeding test were used to control fish edibility. Ciguatoxins presence was assumed when symptomatology was typical of ciguatera in mouse and chick. Fishes were classified in three groups: non toxic fish (edible), low toxic fish (not edible) and toxic fish (not edible). 75% of fishes were non toxic. Toxic fish specimens belonged to four families of high trophic level carnivores: Carangidae, Lutjanidae, Serranidae et Sphyraenidae. Percentages of toxic fishes to humans reached 55% for Caranx latus and 33% for Caranx bartholomaei and Caranx lugubris. Only a significant correlation between weight and toxicity was only found for C. latus and snappers. Small carnivorous groupers (Serranidae) were also toxic. Atoxic fish species were (a) pelagic fish (Coryphaena hippurus, Auxis thazard and Euthynnus pelamis), (b) invertebrates feeders (Malacanthus plumieri, Balistes vetula), (c) small high-risk fish or (d) fish of edible benthic fish families. Liver of four fishes (Mycteroperca venenosa, Caranx bartholomaei, Seriola rivoliana, Gymnothorax funebris) contained ciguatoxins at a significant level although their flesh was safe. This study confirms the usefulness of mouse and chick bioassays for sanitary control of fish.

  4. The expression profile of microRNAs in mouse embryos.

    Science.gov (United States)

    Mineno, Junichi; Okamoto, Sachiko; Ando, Tatsuya; Sato, Masahiro; Chono, Hideto; Izu, Hiroyuki; Takayama, Masanori; Asada, Kiyozo; Mirochnitchenko, Oleg; Inouye, Masayori; Kato, Ikunoshin

    2006-01-01

    MicroRNAs (miRNAs), which are non-coding RNAs 18-25 nt in length, regulate a variety of biological processes, including vertebrate development. To identify new species of miRNA and to simultaneously obtain a comprehensive quantitative profile of small RNA expression in mouse embryos, we used the massively parallel signature sequencing technology that potentially identifies virtually all of the small RNAs in a sample. This approach allowed us to detect a total of 390 miRNAs, including 195 known miRNAs covering approximately 80% of previously registered mouse miRNAs as well as 195 new miRNAs, which are so far unknown in mouse. Some of these miRNAs showed temporal expression profiles during prenatal development (E9.5, E10.5 and E11.5). Several miRNAs were positioned in polycistron clusters, including one particular large transcription unit consisting of 16 known and 23 new miRNAs. Our results indicate existence of a significant number of new miRNAs expressed at specific stages of mammalian embryonic development and which were not detected by earlier methods.

  5. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  6. Can mouse imaging studies bring order to autism connectivity chaos?

    Directory of Open Access Journals (Sweden)

    Adam Liska

    2016-11-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI has consistently highlighted impaired or aberrant functional connectivity across brain regions of autism spectrum disorder (ASD patients. However, the manifestation and neural substrates of these alterations are highly heterogeneous and often conflicting. Moreover, their neurobiological underpinnings and etiopathological significance remain largely unknown. A deeper understanding of the complex pathophysiological cascade leading to aberrant connectivity in ASD can greatly benefit from the use of model organisms where individual pathophysiological or phenotypic components of ASD can be recreated and investigated via approaches that are either off limits or confounded by clinical heterogeneity. Despite some obvious limitations in reliably modelling the full phenotypic spectrum of a complex developmental disorder like ASD, mouse models have played a central role in advancing our basic mechanistic and molecular understanding of this syndrome. Recent progress in mouse brain connectivity mapping via resting-state fMRI (rsfMRI offers the opportunity to generate and test mechanistic hypotheses about the elusive origin and significance of connectional aberrations observed in autism. Here we discuss recent progress towards this goal, and illustrate initial examples of how the approach can be employed to establish causal links between ASD-related mutations, developmental processes, and brain connectional architecture. As the spectrum of genetic and pathophysiological components of ASD modelled in the mouse is rapidly expanding, the use of rsfMRI can advance our mechanistic understanding of the origin and significance of the connectional alterations associated with autism, and their heterogeneous expression across patient cohorts.

  7. Analyzing spatial data from mouse tracker methodology: An entropic approach.

    Science.gov (United States)

    Calcagnì, Antonio; Lombardi, Luigi; Sulpizio, Simone

    2017-01-11

    Mouse tracker methodology has recently been advocated to explore the motor components of the cognitive dynamics involved in experimental tasks like categorization, decision-making, and language comprehension. This methodology relies on the analysis of computer-mouse trajectories, by evaluating whether they significantly differ in terms of direction, amplitude, and location when a given experimental factor is manipulated. In this kind of study, a descriptive geometric approach is usually adopted in the analysis of raw trajectories, where they are summarized with several measures, such as maximum-deviation and area under the curve. However, using raw trajectories to extract spatial descriptors of the movements is problematic due to the noisy and irregular nature of empirical movement paths. Moreover, other significant components of the movement, such as motor pauses, are disregarded. To overcome these drawbacks, we present a novel approach (EMOT) to analyze computer-mouse trajectories that quantifies movement features in terms of entropy while modeling trajectories as composed by fast movements and motor pauses. A dedicated entropy decomposition analysis is additionally developed for the model parameters estimation. Two real case studies from categorization tasks are finally used to test and evaluate the characteristics of the new approach.

  8. Proteomic interactions in the mouse vitreous-retina complex.

    Directory of Open Access Journals (Sweden)

    Jessica M Skeie

    Full Text Available PURPOSE: Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina. METHODS: Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software. RESULTS: We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor. CONCLUSIONS: Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  9. Use of adenovirus vector expressing the mouse full estrogen receptor alpha gene to infect mouse primary neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao HU; Lei Lou; Jun Yuan; Xing Wan; Jianyi Wang; Xinyue Qin

    2010-01-01

    Estrogen plays important regulatory and protective roles in the central nervous system through estrogen receptor a mediation.Previous studies applied eukaryotic expression and lentiviral vectors carrying estrogen receptor a to clarify the undedying mechanisms,in the present study,an adenovirus vector expressing the mouse full estrogen receptor a gene was constructed to identify biological characteristics of estrogen receptor a recombinant adenovirus infecting nerve cells.Primary cultured mouse nerve cells were first infected with estrogen receptor a recombinant adenovirus at various multiplicities of infection,followed by 100 multiplicity of infection.Results showed overexpression of estrogen receptor a mRNA and protein in the infected nerve cells.Estrogen receptor a recombinant adenovirus at 100 multiplicity of infection successfully infected neurons and upregulated estrogen receptor a mRNA and protein expression.

  10. Dual effects of fluoxetine on mouse early embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Woon [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723 (Korea, Republic of); Choe, Changyong [National Institute of Animal Science, RDA, Cheonan 330-801 (Korea, Republic of); Kim, Eun-Jin [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Lee, Jae-Ik [Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Yoon, Sook-Young [Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081 (Korea, Republic of); Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of)

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  11. Human more complex than mouse at cellular level.

    Directory of Open Access Journals (Sweden)

    Alexander E Vinogradov

    Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.

  12. Cloning of Mouse Enamel Matrix Serine Proteinase Encoding Mature Protein

    Institute of Scientific and Technical Information of China (English)

    MU Ya-bing; SUN Hong-chen; ZHANG Ze-bing; OUYANG Jie

    2003-01-01

    Objective: To clone cDNA of enamel matrix serine proteinase (EMSP1) encoding mature protein from mouse dental germs. Methods: Total RNA was isolated from developing incisors and molars of 7 days mouse pups and reverse-transcribed into cDNA. Two pairs of specific primers was designed to obtain the desired gene by Touchdown PCR and Nested PCR. The segment was inserted into Vector pMD-18T, and recombined vectors was transformed into E.coli JM109.The positive clone was chose and analysed by restriction endonuclease mapping and DNA sequencing. Results:700 bp of cDNA of mouse EMSP1 was sueccessfully cloned from mouse tooth germs tissue. The sequence was consistent with that displayed in PubMed. Conclusion:The mouse EMSP1 cDNA encoding mature protein is obtained for further study.%目的:克隆小鼠牙胚组织中釉基质丝氨酸蛋白酶(EMSP1)成熟肽编码区基因.方法:提取出生后7 d昆明种小白鼠切牙、磨牙牙胚总RNA,逆转录为cDNA,设计两对特异性引物,采用Touchdown PCR 和嵌套PCR方法,扩增出小鼠EMSP1起始密码子至终止密码子基因片段.将目的基因连入载体pMD-18T,转化入大肠杆菌JM109,通过蓝白筛选,挑选阳性克隆培养扩增,纯化重组质粒进行限制性酶切和核苷酸序列分析鉴定.结果:限制性酶切图谱和核苷酸序列分析均表明所克隆cDNA为小鼠700 bp的EMSP1成熟肽基因编码.结论:成功地克隆了小鼠编码EMSP1成熟肽基因片段.

  13. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  14. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  15. The Inhibitory Effects of Mouse ICOS-Ig Gene-Modified Mouse Dendritic Cells on T Cells

    Institute of Scientific and Technical Information of China (English)

    GuohuaWang; LijuanZhu; PingHu; HuifenZhu; PingLei; WenjunLiao; BingYu; FeiliGong; GuanxinShen

    2004-01-01

    The main approach to reduce graft rejection has been focused on the development of immunosuppressive agents at present. Although these strategies have reportedly reduced graft rejection, there has been a reciprocal increase in more severe immunosuppression and lethal infections, as well as severe side effects. Blockade of costimulatory T cell response has been proved as one of useful strategies to reduce graft rejection. Furthermore, it has been shown that infusion of dendritic cells (DCs) with a potent negative regulatory ability for T cells could prolong allograft survival. In this study mouse DCs (mDCs) were transfected with the recombinant plasmid pcDNA3.0 containing mouse inducible costimulator-Ig (mICOS-Ig) cDNA by electroporation. The transient expression of mICOS-Ig in mDC could be detected by ELISA and SDS-PAGE. Mouse ICOS~Ig fusion protein expressed in mDC and mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in mixed lymphocyte culture (MLC) in vitro. Furthermore, mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in recipient mice. These results suggested that mICOS-Ig gene-modified mDC exerted inhibitory effects on T cells, and might be suitable for treatment or prevention of graft rejection and immunopathologic diseases. Cellular & Molecular Immunology. 2004;1(2):153-157.

  16. Mechanism of ethylbenzene-induced mouse-specific lung tumor: metabolism of ethylbenzene by rat, mouse, and human liver and lung microsomes.

    Science.gov (United States)

    Saghir, Shakil A; Rick, David L; McClymont, E L; Zhang, Fagen; Bartels, Michael J; Bus, James S

    2009-02-01

    This study was conducted to determine species differences in the metabolism of ethylbenzene (EB) in liver and lung. EB (0.22-7.0mM) was incubated with mouse, rat and human liver and lung microsomes and the formation of 1-phenylethanol (1PE), acetophenone (AcPh), 2-ethylphenol (2EP), 4-ethylphenol (4EP), 2,5-ethylquinone, and 3,4-ethylquinone were measured. Reactive metabolites (2,5-dihydroxyethylbenzene-GSH [2EP-GSH] and 3,4-dihydroxyethylbenzene-GSH [4EP-GSH]) were monitored via glutathione (GSH) trapping technique. None of the metabolites were formed at detectable levels in incubations with human lung microsomes. Percent conversion of EB to 1PE ranged from 1% (rat lung; 7.0mM EB) to 58% (mouse lung; 0.22 mM EB). More 1PE was formed in mouse lung than in mouse liver microsomes, although formation of 1PE by rat liver and lung microsomes was similar. Metabolism of EB to 1PE was in the order of mouse > rat > human. Formation of AcPh was roughly an order of magnitude lower than 1PE. Conversion of EB to ring-hydroxylated metabolites was much lower (0.0001% [4EP-GSH; rat lung] to 0.6% [2EP-GSH; mouse lung]); 2EP-GSH was typically 10-fold higher than 4EP-GSH. Formation of 2EP-GSH was higher by lung (highest by mouse lung) than liver microsomes and the formation of 2EP-GSH by mouse liver microsomes was higher than rat and human liver microsomes. Increasing concentrations of EB did lead to a decrease in amount of some formed metabolites. This may indicate some level of substrate- or metabolite-mediated inhibition. High concentrations of 2EP and 4EP were incubated with microsomes to further investigate their oxidation to ethylcatechol (ECat) and ethylhydroquinone (EHQ). Conversion of 2EP to EHQ ranged from 6% to 9% by liver (mouse > human > rat) and from 0.1% to 18% by lung microsomes (mouse > rat > human). Conversion of 4EP to ECat ranged from 2% to 4% by liver (mouse > human approximately rat) and from 0.3% to 7% by lung microsomes (mouse > rat > human). Although ring

  17. Activation of tumor cell proliferation by thyroid hormone in a mouse model of follicular thyroid carcinoma

    OpenAIRE

    2011-01-01

    Thyroid cancers are the most common malignancy of the endocrine system in humans. To understand the molecular genetic events underlying thyroid carcinogenesis, we have generated a mouse model that spontaneously develops follicular thyroid carcinoma similar to human thyroid cancer (ThrbPV/PV mouse). This mutant mouse harbors a dominantnegative mutated thyroid hormone receptor β (denoted PV). The PV mutation was identified in a patient with resistance to thyroid hormone (TH). ThrbPV/PV mice exh...

  18. Gene expression and functional annotation of the human and mouse choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available BACKGROUND: The choroid plexus epithelium (CPE is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF, which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE

  19. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36.

    Science.gov (United States)

    Vreugde, Sarah; Erven, Alexandra; Kros, Corné J; Marcotti, Walter; Fuchs, Helmut; Kurima, Kiyoto; Wilcox, Edward R; Friedman, Thomas B; Griffith, Andrew J; Balling, Rudi; Hrabé De Angelis, Martin; Avraham, Karen B; Steel, Karen P

    2002-03-01

    Despite recent progress in identifying genes underlying deafness, there are still relatively few mouse models of specific forms of human deafness. Here we describe the phenotype of the Beethoven (Bth) mouse mutant and a missense mutation in Tmc1 (transmembrane cochlear-expressed gene 1). Progressive hearing loss (DFNA36) and profound congenital deafness (DFNB7/B11) are caused by dominant and recessive mutations of the human ortholog, TMC1 (ref. 1), for which Bth and deafness (dn) are mouse models, respectively.

  20. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    Science.gov (United States)

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  1. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  2. A comparison of some organizational characteristics of the mouse central retina and the human macula.

    Science.gov (United States)

    Volland, Stefanie; Esteve-Rudd, Julian; Hoo, Juyea; Yee, Claudine; Williams, David S

    2015-01-01

    Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch's membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch's membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident.

  3. An MRI-based atlas and database of the developing mouse brain.

    Science.gov (United States)

    Chuang, Nelson; Mori, Susumu; Yamamoto, Akira; Jiang, Hangyi; Ye, Xin; Xu, Xin; Richards, Linda J; Nathans, Jeremy; Miller, Michael I; Toga, Arthur W; Sidman, Richard L; Zhang, Jiangyang

    2011-01-01

    The advent of mammalian gene engineering and genetically modified mouse models has led to renewed interest in developing resources for referencing and quantitative analysis of mouse brain anatomy. In this study, we used diffusion tensor imaging (DTI) for quantitative characterization of anatomical phenotypes in the developing mouse brain. As an anatomical reference for neuroscience research using mouse models, this paper presents DTI based atlases of ex vivo C57BL/6 mouse brains at several developmental stages. The atlas complements existing histology and MRI-based atlases by providing users access to three-dimensional, high-resolution images of the developing mouse brain, with distinct tissue contrasts and segmentations of major gray matter and white matter structures. The usefulness of the atlas and database was demonstrated by quantitative measurements of the development of major gray matter and white matter structures. Population average images of the mouse brain at several postnatal stages were created using large deformation diffeomorphic metric mapping and their anatomical variations were quantitatively characterized. The atlas and database enhance our ability to examine the neuroanatomy in normal or genetically engineered mouse strains and mouse models of neurological diseases.

  4. In vivo high-resolution diffusion tensor imaging of the mouse brain.

    Science.gov (United States)

    Wu, Dan; Xu, Jiadi; McMahon, Michael T; van Zijl, Peter C M; Mori, Susumu; Northington, Frances J; Zhang, Jiangyang

    2013-12-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 T. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately 2 h. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI-based mouse brain atlas.

  5. Mapping of multiple intestinal neoplasia (Min) to proximal chromosome 18 of the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, C.; Gould, K.A.; Moser, A.R. (Univ. of Wisconsin, Madison (United States)); Su, Likuo; Kinzler, K.W.; Vogelstein, B. (Johns Hopkins Oncology Center, Baltimore, MD (United States)); Dietrich, W.; Lander, E.S. (MIT, Cambridge (United States))

    1993-01-01

    The Min (multiple intestinal neoplasia) mutation of the mouse has been mapped by analyzing the inheritance of restriction fragment length polymorphisms and simple sequence length polymorphisms in progeny from two intraspecific crosses segregating for the Min mutation. Min, a mutant allele of Apc, the mouse homo- log of the human APC (adenomatous polyposis coli) gene, maps to proximal chromosome 18. The synteny between Apc and Mcc, the mouse homolog of the human MCC (mutated in colorectal cancer) gene, is conserved between mouse and human, although the gene order in the Apc to Mcc interval is different from that in the APC to MCC interval. 29 refs., 3 figs.

  6. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  7. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    OpenAIRE

    Wahnschaffe U; Bitsch A; Kielhorn J; Mangelsdorf I

    2005-01-01

    Abstract As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse system...

  8. Dynamics of muscle fibre growth during postnatal mouse development

    Directory of Open Access Journals (Sweden)

    Gnocchi Viola F

    2010-02-01

    Full Text Available Abstract Background Postnatal growth in mouse is rapid, with total skeletal muscle mass increasing several-fold in the first few weeks. Muscle growth can be achieved by either an increase in muscle fibre number or an increase in the size of individual myofibres, or a combination of both. Where myofibre hypertrophy during growth requires the addition of new myonuclei, these are supplied by muscle satellite cells, the resident stem cells of skeletal muscle. Results Here, we report on the dynamics of postnatal myofibre growth in the mouse extensor digitorum longus (EDL muscle, which is essentially composed of fast type II fibres in adult. We found that there was no net gain in myofibre number in the EDL between P7 and P56 (adulthood. However, myofibre cross-sectional area increased by 7.6-fold, and length by 1.9-fold between these ages, resulting in an increase in total myofibre volume of 14.1-fold: showing the extent of myofibre hypertrophy during the postnatal period. To determine how the number of myonuclei changes during this period of intense muscle fibre hypertrophy, we used two complementary mouse models: 3F-nlacZ-E mice express nlacZ only in myonuclei, while Myf5nlacZ/+ mice have β-galactosidase activity in satellite cells. There was a ~5-fold increase in myonuclear number per myofibre between P3 and P21. Thus myofibre hypertrophy is initially accompanied by a significant addition of myonuclei. Despite this, the estimated myonuclear domain still doubled between P7 and P21 to 9.2 × 103 μm3. There was no further addition of myonuclei from P21, but myofibre volume continued to increase, resulting in an estimated ~3-fold expansion of the myonuclear domain to 26.5 × 103 μm3 by P56. We also used our two mouse models to determine the number of satellite cells per myofibre during postnatal growth. Satellite cell number in EDL was initially ~14 satellite cells per myofibre at P7, but then fell to reach the adult level of ~5 by P21. Conclusions

  9. Mechanistic Investigation of Toxaphene Induced Mouse Liver Tumors.

    Science.gov (United States)

    Wang, Zemin; Neal, Barbara H; Lamb, James C; Klaunig, James E

    2015-10-01

    Chronic exposure to toxaphene resulted in an increase in liver tumors in B6C3F1 mice. This study was performed to investigate the mode of action of toxaphene induced mouse liver tumors. Following an initial 14 day dietary dose range-finding study in male mice, a mechanistic study (0, 3, 32, and 320 ppm toxaphene in diet for 7, 14, and 28 days of treatment) was performed to examine the potential mechanisms of toxaphene induced mouse liver tumors. Toxaphene induced a significant increase in expression of constitutive androstane receptor (CAR) target genes (Cyp2b10, Cyp3a11) at 32 and 320 ppm toxaphene. aryl hydrocarbon receptor (AhR) target genes (Cyp1a1 and Cyp1a2) were slightly increased in expression at the highest toxaphene dose (320 ppm). No increase in peroxisome proliferator-activated receptor alpha activity or related genes was seen following toxaphene treatment. Lipid peroxidation was seen following treatment with 320 ppm toxaphene. These changes correlated with increases in hepatic DNA synthesis. To confirm the role of CAR in this mode of action, CAR knockout mice (CAR(-/-)) treated with toxaphene confirmed that the induction of CAR responsive genes seen in wild-type mice was abolished following treatment with toxaphene for 14 days. These findings, taken together with previously reported studies, support the mode of action of toxaphene induced mouse liver tumors is through a nongenotoxic mechanism involving primarily a CAR-mediated processes that results in an increase in cell proliferation in the liver, promotes the clonal expansion of preneoplastic lesions leading to adenoma formation.

  10. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  11. Establishment of crown-root domain borders in mouse incisor.

    Science.gov (United States)

    Juuri, Emma; Saito, Kan; Lefebvre, Sylvie; Michon, Frederic

    2013-10-01

    Teeth are composed of two domains, the enamel-covered crown and the enamel-free root. The understanding of the initiation and regulation of crown and root domain formation is important for the development of bioengineered teeth. In most teeth the crown develops before the root, and erupts to the oral cavity whereas the root anchors the tooth to the jawbone. However, in the continuously growing mouse incisor the crown and root domains form simultaneously, the crown domain forming the labial and the root domain the lingual part of the tooth. While the crown-root border on the incisor distal side supports the distal enamel extent, reflecting an evolutionary diet adaptation, on the incisor mesial side the root-like surface is necessary for the attachment of the interdental ligament between the two incisors. Therefore, the mouse incisor exhibits a functional distal-mesial asymmetry. Here, we used the mouse incisor as a model to understand the mechanisms involved in the crown-root border formation. We analyzed the cellular origins and gene expression patterns leading to the development of the mesial and distal crown-root borders. We discovered that Barx2, En1, Wnt11, and Runx3 were exclusively expressed on the mesial crown-root border. In addition, the distal border of the crown-root domain might be established by cells from a different origin and by an early Follistatin expression, factor known to be involved in the root domain formation. The use of different mechanisms to establish domain borders gives indications of the incisor functional asymmetry.

  12. Biochemical and structural properties of mouse kynurenine aminotransferase III.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2009-02-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60 degrees C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  13. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III▿

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A.; Li, Jianyong

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60°C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain. PMID:19029248

  14. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  15. Hyperelastic Material Properties of Mouse Skin under Compression.

    Directory of Open Access Journals (Sweden)

    Yuxiang Wang

    Full Text Available The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus. These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks and intermediate (13-19 weeks adult ages but by body weight in mature mice (26-34 weeks. Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given

  16. Regression of retinopathy by squalamine in a mouse model.

    Science.gov (United States)

    Higgins, Rosemary D; Yan, Yun; Geng, Yixun; Zasloff, Michael; Williams, Jon I

    2004-07-01

    The goal of this study was to determine whether an antiangiogenic agent, squalamine, given late during the evolution of oxygen-induced retinopathy (OIR) in the mouse, could improve retinal neovascularization. OIR was induced in neonatal C57BL6 mice and the neonates were treated s.c. with squalamine doses begun at various times after OIR induction. A system of retinal whole mounts and assessment of neovascular nuclei extending beyond the inner limiting membrane from animals reared under room air or OIR conditions and killed periodically from d 12 to 21 were used to assess retinopathy in squalamine-treated and untreated animals. OIR evolved after 75% oxygen exposure in neonatal mice with florid retinal neovascularization developing by d 14. Squalamine (single dose, 25 mg/kg s.c.) given on d 15 or 16, but not d 17, substantially improved retinal neovascularization in the mouse model of OIR. There was improvement seen in the degree of blood vessel tuft formation, blood vessel tortuosity, and central vasoconstriction with squalamine treatment at d 15 or 16. Single-dose squalamine at d 12 was effective at reducing subsequent development of retinal neovascularization at doses as low as 1 mg/kg. Squalamine is a very active inhibitor of OIR in mouse neonates at doses as low as 1 mg/kg given once. Further, squalamine given late in the course of OIR improves retinopathy by inducing regression of retinal neovessels and abrogating invasion of new vessels beyond the inner-limiting membrane of the retina.

  17. Adaptive optics retinal imaging in the living mouse eye.

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H; Sharma, Robin; Libby, Richard T; Williams, David R

    2012-04-01

    Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

  18. Mouse models of dengue virus infection for vaccine testing.

    Science.gov (United States)

    Sarathy, Vanessa V; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-12-10

    Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple

  19. Differential Gene Expression in Chemically Induced Mouse Lung Adenomas

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2003-01-01

    Full Text Available Because of similarities in histopathology and tumor progression stages between mouse and human lung adenocarcinomas, the mouse lung tumor model with lung adenomas as the endpoint has been used extensively to evaluate the efficacy of putative lung cancer chemopreventive agents. In this study, a competitive cDNA library screening (CCLS was employed to determine changes in the expression of mRNA in chemically induced lung adenomas compared with paired normal lung tissues. A total of 2555 clones having altered expression in tumors were observed following competitive hybridization between normal lung and lung adenomas after primary screening of over 160,000 clones from a mouse lung cDNA library. Among the 755 clones confirmed by dot blot hybridization, 240 clones were underexpressed, whereas 515 clones were overexpressed in tumors. Sixty-five clones with the most frequently altered expression in six individual tumors were confirmed by semiquantitative RT-PCR. When examining the 58 known genes, 39 clones had increased expression and 19 had decreased expression, whereas the 7 novel genes showed overexpression. A high percentage (>60% of overexpressed or underexpressed genes was observed in at least two or three of the lesions. Reproducibly overexpressed genes included ERK-1, JAK-1, surfactant proteins A, B, and C, NFAT1, α-1 protease inhibitor, helix-loop-helix ubiquitous kinase (CHUK, α-adaptin, α-1 PI2, thioether S-methyltransferase, and CYP2C40. Reproducibly underexpressed genes included paroxanase, ALDH II, CC10, von Ebner salivary gland protein, and α- and β-globin. In addition, CCLS identified several novel genes or genes not previously associated with lung carcinogenesis, including a hypothetical protein (FLJ11240 and a guanine nucleotide exchange factor homologue. This study shows the efficacy of this methodology for identifying genes with altered expression. These genes may prove to be helpful in our understanding of the genetic basis of

  20. A method for the immortalization of newborn mouse skin keratinocytes

    Directory of Open Access Journals (Sweden)

    Brianna O Hammiller

    2015-07-01

    Full Text Available Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers, while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures, revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation.

  1. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Pan Xiaoping

    2009-12-01

    Full Text Available Abstract Background Although 70% (or 2/3 partial hepatectomy (PH is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s under this milder but clinically more relevant condition. Results Proteins from sham-operated mouse livers and livers regenerating for 24 h after 50% PH were separated by SDS-PAGE and analyzed by nanoUPLC-Q-Tof mass spectrometry. Compared to sham-operated group, there were totally 87 differentially expressed proteins (with 50 up-regulated and 37 down-regulated ones identified in the regenerating mouse livers, most of which have not been previously related to liver regeneration. Remarkably, over 25 differentially expressed proteins were located at mitochondria. Several of the mitochondria-resident proteins which play important roles in citric acid cycle, oxidative phosphorylation and ATP production were found to be down-regulated, consistent with the recently-proposed model in which the reduction of ATP content in the remnant liver gives rise to early stress signals that contribute to the onset of liver regeneration. Pathway analysis revealed a central role of c-Myc in the regulation of liver regeneration. Conclusions Our study provides novel evidence for mitochondria as a pivotal organelle that is connected to liver regeneration, and lays the foundation for further studies on key factors and pathways involved in liver regeneration following 50% PH, a condition frequently used for partial liver transplantation and conservative liver resection.

  2. Factors affecting the cryosurvival of mouse two-cell embryos.

    Science.gov (United States)

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A new mouse model of metabolic syndrome and associated complications.

    Science.gov (United States)

    Wang, Yun; Zheng, Yue; Nishina, Patsy M; Naggert, Jürgen K

    2009-07-01

    Metabolic syndrome (MS) encompasses a clustering of risk factors for cardiovascular disease, including obesity, insulin resistance, and dyslipidemia. We characterized a new mouse model carrying a dominant mutation, C57BL/6J-Nmf15/+ (B6-Nmf15/+), which develops additional complications of MS such as adipose tissue inflammation and cardiomyopathy. A backcross was used to genetically map the Nmf15 locus. Mice were examined in the comprehensive laboratory animal monitoring system, and dual energy X-ray absorptiometry and blood chemistry analyses were performed. Hypothalamic LEPR, SOCS1, and STAT3 phosphorylation were examined. Cardiac function was assessed by echo- and electrocardiography. Adipose tissue inflammation was characterized by in situ hybridization and measurement of Jun kinase activity. The Nmf15 locus mapped to distal mouse chromosome 5 with an LOD (logarithm of odds) score of 13.8. Nmf15 mice developed obesity by 12 weeks of age. Plasma leptin levels were significantly elevated in pre-obese Nmf15 mice at 8 weeks of age and an attenuated STAT3 phosphorylation in the hypothalamus suggests a primary leptin resistance. Adipose tissue from Nmf15 mice showed a remarkable degree of inflammation and macrophage infiltration as indicated by expression of the F4/80 marker and increased phosphorylation of JUN N-terminal kinase 1/2. Lipidosis was observed in tubular epithelial cells and glomeruli of the kidney. Nmf15 mice demonstrate both histological and pathophysiological evidence of cardiomyopathy. The Nmf15 mouse model provides a new entry point into pathways mediating leptin resistance and obesity. It is one of few models that combine many aspects of MS and can be useful for testing new therapeutic approaches for combating obesity complications, particularly cardiomyopathy.

  4. Characterization of a spontaneous retinal neovascular mouse model.

    Directory of Open Access Journals (Sweden)

    Eiichi Hasegawa

    Full Text Available BACKGROUND: Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP is a subgroup of neovascular age-related macular degeneration (AMD, whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2, shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model. METHODS: The NRV2 mice were examined from postnatal day 12 (p12 to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software. RESULTS: We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p15 and extended toward retinal pigment epithelium (RPE. By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space. CONCLUSIONS: The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease.

  5. Tributyltin exposure alters cytokine levels in mouse serum.

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M

    2016-11-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.

  6. Developmental genes during placentation: insights from mouse mutants

    Institute of Scientific and Technical Information of China (English)

    Jinhu a LU; Qiang WANG; Bingyan WANG; Fengchao WANG; Haibin WANG

    2011-01-01

    Placenta,a temporary organ first formed during the development of a new life is essential for the survival and growth of the fetus in eutherian mammals.It serves as an interface for the exchange of nutrients,gases and wastes between the maternal and fetal compartments.During the past decades,studies employing gene-engineered mouse mutants have revealed a wide range of signaling molecules governing the trophoblast development and function during placentation under various pathophysiological conditions.Here,we summarize the recent progress with particular respect to the involvement of developmental genes during placentation.

  7. Cross-Presentation in Mouse and Human Dendritic Cells.

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  8. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    This paper presents the Toki toolkit: a do-it-yourself guide and API to support the rapid prototyping of tangibles. The toolkit provides support for two common requirements for tangibles: capture of touch input by an user and commu- nication of such input to a computer. At the core of the toolkit...... lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  9. A glycoside of Nicotina tabacum affects mouse dopaminergic behavior.

    Science.gov (United States)

    Masuda, Y; Ohnuma, S; Kawagoe, M; Sugiyama, T

    2003-01-01

    Climbing in the forced swimming test is considered a dopaminergic-specific behavior. A substance of Nicotina tabacum affecting dopamine neuronal activity was investigated using the mouse behavioral system. The substance was found to be a glycoside with the peripheral sugar chain structures Fuc alpha 1-2Gal, Gal beta 1-4GlcNAc and GalNAc alpha 1-3GalNAc and with basic polymannoses. The glycoside dose-dependently increased behavior via D2 neuronal activity, but not D1 activity. This suggests that smoking can affect human brain function not only via the nicotinic cholinergic neuron, but also via the D2 neuron.

  10. Surgical technique for lung retransplantation in the mouse

    Science.gov (United States)

    Li, Wenjun; Goldstein, Daniel R.; Bribriesco, Alejandro C.; Nava, Ruben G.; Spahn, Jessica H.; Wang, Xingan; Gelman, Andrew E.; Krupnick, Alexander S.

    2013-01-01

    Microsurgical cuff techniques for orthotopic vascularized murine lung transplantation have allowed for the design of studies that examine mechanisms contributing to the high failure rate of pulmonary grafts. Here, we provide a detailed technical description of orthotopic lung retransplantation in mice, which we have thus far performed in 144 animals. The total time of the retransplantation procedure is approximately 55 minutes, 20 minutes for donor harvest and 35 minutes for the implantation, with a success rate exceeding 95%. The mouse lung retransplantation model represents a novel and powerful tool to examine how cells that reside in or infiltrate pulmonary grafts shape immune responses. PMID:23825768

  11. Glutamatergic and Dopaminergic Neurons in the Mouse Ventral Tegmental Area

    OpenAIRE

    Yamaguchi, Tsuyoshi; Qi, Jia; Wang, Hui-Ling; Zhang, Shiliang; Morales, Marisela

    2015-01-01

    The ventral tegmental area (VTA) comprises dopamine (DA), GABA and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2-mRNA and TH-immunoreactivity (TH-IR), we determined the cellular e...

  12. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  13. Mouse bone marrow cytogenetic damage produced by residues of tequila.

    Science.gov (United States)

    Madrigal-Bujaidar, E; Rojas, A; Ramos, A; Rosas, E; Díaz Barriga-Arceo, S

    1990-06-01

    Five concentrations (50-860 mg/kg) of residues obtained after distillation and lyophilization of commercial tequila were injected into mice for evaluation of chromosome aberrations, sister-chromatid exchanges, and proliferation kinetics in mouse bone marrow cells. Appropriate positive and negative controls were included. Our results showed significant dose-related increases of chromosomal aberrations starting at 50 mg/kg and for sister-chromatid exchanges at 430 mg/kg. Cellular proliferation kinetics showed no alterations. With these data we demonstrated that the residues of tequila are genotoxic in vivo.

  14. Survival of Enterococcus faecalis in Mouse Peritoneal Macrophages

    OpenAIRE

    Gentry-Weeks, Claudia R.; Karkhoff-Schweizer, RoxAnn; Pikis, Andreas; Estay, Monica; Keith, Jerry M.

    1999-01-01

    Enterococcus faecalis was tested for the ability to persist in mouse peritoneal macrophages in two separate studies. In the first study, the intracellular survival of serum-passaged E. faecalis 418 and two isogenic mutants [cytolytic strain FA2-2(pAM714) and non-cytolytic strain FA2-2(pAM771)] was compared with that of Escherichia coli DH5α by infecting BALB/c mice intraperitoneally and then monitoring the survival of the bacteria within lavaged peritoneal macrophages over a 72-h period. All ...

  15. Intravenous transplantation of mouse embryonic stem cells attenuates demyelination in an ICR outbred mouse model of demyelinating diseases

    Institute of Scientific and Technical Information of China (English)

    Kidsadagon Pringproa; Anucha Sathanawongs; Chananthida Khamphilai; Sarocha Sukkarinprom; Apichart Oranratnachai

    2016-01-01

    Induction of demyelination in the central nervous system (CNS) of experimental mice using cuprizone is widely used as an animal model for studying the pathogenesis and treatment of demyelination. How-ever, different mouse strains used result in different pathological outcomes. Moreover, because current medicinal treatments are not always effective in multiple sclerosis patients, so the study of exogenous cell transplantation in an animal model is of great importance. hTe aims of the present study were to establish an alternative ICR outbred mouse model for studying demyelination and to evaluate the effects of intrave-nous cell transplantation in the present developed mouse model. Two sets of experiments were conducted. Firstly, ICR outbred and BALB/c inbred mice were fed with 0.2% cuprizone for 6 consecutive weeks; then demyelinating scores determined by luxol fast blue stain or immunolabeling with CNPase were evaluated. Secondly, attenuation of demyelination in ICR mice by intravenous injection of mES cells was studied. Scores for demyelination in the brains of ICR mice receiving cell injection (mES cells-injected group) and vehicle (sham-inoculated group) were assessed and compared. hTe results showed that cuprizone signiif-cantly induced demyelination in the cerebral cortex and corpus callosum of both ICR and BALB/c mice. Additionally, intravenous transplantation of mES cells potentially attenuated demyelination in ICR mice compared with sham-inoculated groups. hTe present study is among the earliest reports to describe the cuprizone-induced demyelination in ICR outbred mice. Although it remains unclear whether mES cells or trophic effects from mES cells are the cause of enhanced remyelination, the results of the present study may shed some light on exogenous cell therapy in central nervous system demyelinating diseases.

  16. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus

    DEFF Research Database (Denmark)

    Fabricius, K.; Wörtwein, Gitta; Pakkenberg, B.

    2008-01-01

    , the number of errors made by the MS24 mice compared to controls and in total distance moved. The mice were subsequently sacrificed and the total number of neurons estimated in the hippocampus using the optical fractionator. We found a significant loss of neurons in the dentate gyrus in MS mice compared...... to controls. Apparently a single maternal separation can impact the number of neurons in mouse hippocampus either by a decrease of neurogenesis or as an increase in neuron apoptosis. This study is the first to assess the result of maternal separation combining behaviour and stereology Udgivelsesdato: 2008/2...

  17. Expression of murine APOBEC3 alleles in different mouse strains and their effect on mouse mammary tumor virus infection.

    Science.gov (United States)

    Okeoma, Chioma M; Petersen, Josiah; Ross, Susan R

    2009-04-01

    Recent work has shown that mouse APOBEC3 restricts infection by mouse mammary tumor virus (MMTV) and murine leukemia virus (MLV) and that there are polymorphic APOBEC3 alleles found in different inbred mouse strains. For example, C57BL/6 mice, which are resistant to Friend MLV (F-MLV), encode a APOBEC3 gene different from that encoded by F-MLV-susceptible BALB/c mice; the predominant RNA produced in C57BL/6 mice lacks exon 5 (mA3(-5)) and encodes a protein with 15 polymorphic amino acids. It has also been reported that BALB/c mice produce only a variant RNA that lacks exon 2 (mA3(-2)). In this study, we examined the effect of these polymorphic APOBEC3 proteins on MMTV infection. We found that the major RNA made in C57BL/6 and B10.BR mice lacks exon 5 but that BALB/c and C3H/HeN mice predominantly express an RNA that contains all nine exons. In addition to producing the splice variant, C57BL/6 and B10.BR cells and tissues had levels of mA3 RNA fivefold higher than those from BALB/c and C3H/HeN mice. A cloned C57BL/6-derived mA3 protein lacking exon 5 inhibited MMTV infection better than a cloned full-length protein derived from 129/Ola RNA when packaged into MMTV virions. We also tested dendritic cells derived from different inbred mouse strains for their abilities to be infected by MMTV and showed that susceptibility to infection correlated with the presence of the exon 5-encoding allele. In vivo susceptibility to infection cosegregated with the inherited mA3 allele in a C57BL/6 x BALB/c backcross analysis. Moreover, virus produced in vivo in the mammary tissue of mA3 knockout and BALB/c mice was more infectious than that produced in the tissue of C57BL/6 mice. These data indicate that mA3 plays a role in the genetics of susceptibility and resistance to MMTV infection.

  18. Expression of luteinizing hormone receptors in the mouse penis.

    Science.gov (United States)

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  19. Olfactory classical conditioning in neonatal mouse pups using thermal stimuli.

    Science.gov (United States)

    Bollen, Bieke; Matrot, Boris; Ramanantsoa, Nelina; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2012-04-01

    Mouse models are increasingly used to investigate genetic contributions to developmental disorders in children, especially newborns. In particular, early cognitive assessment in newborn mice is critical to evaluate pediatric drug efficacy and toxicity. Unfortunately, methods for behavioral tests in newborn mice are scarce. Therefore, developing such tests for newborn mice is a priority challenge for neurogenetics and pharmacological research. The aim of the present study was to develop a conditioning method well suited to high-throughput cognitive screening in newborn mice. To this end, we developed an odor-preference conditioning test using ambient temperature as an unconditioned stimulus (US) and artificial odors as conditioned stimuli (CS). First, we showed that mouse pups move toward the thermoneutral temperature when offered a choice between a thermoneutral and cold environment, thus showing thermotaxis. Second, we conducted a classical conditioning paradigm in pups aged six to ten days. In terms of central nervous system development, this period corresponds to extreme prematurity to early post-term period in humans. During acquisition, the pups were alternatively exposed to odor CS paired with either cold or warm temperatures. Immediately after acquisition, the pups underwent a two-odor choice test, which showed preference for the odor previously paired with the warm temperature, thus showing conditioning. The proposed paradigm is easy to conduct, and requires modest experimenter interference. The method is well suited for high-throughput screening of early associative disorders in newborn mice.

  20. Calciumreleasing activity induced by nuclei of mouse fertilized early embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    At fertilization, repetitive transient rises of intracellular calcium concentration occur in all mammals studied so far. It has been shown that calcium rises could be induced when mouse fertilized 1-, 2-cell nuclei were transplanted into unfertilized eggs and that the reconstituted embryo could be activated. However, whether the capability of inducing calcium rises occurs in all stages of mammalian embryos remains unknown. In this study, by using the nuclear transplantation technique and measurement of intracellular calcium rises in living cells, we showed that only the nuclei from mouse fertilized 1-cell and 2-cell embryos, neither the nuclei from 4-, 8-cell and ethanol activated parthenogenetic embryos nor 2 or 3 nuclei of electrofused 4-cell stage syncytium, have calcium-releasing activity when they were transferred into unfertilized mature oocytes. Our results indicate that the calcium-releasing activity in nuclei of 1-, 2-cell embryos is produced during fertilization and exists at the special stage of fertilized early embryos. These suggested that the capacity of inducing calcium release activity in fertilized early embryos is important for normal embryonic development.

  1. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex.

    Directory of Open Access Journals (Sweden)

    Ingrid Bureau

    2006-11-01

    Full Text Available Primary sensory cortical areas receive information through multiple thalamic channels. In the rodent whisker system, lemniscal and paralemniscal thalamocortical projections, from the ventral posteromedial nucleus (VPM and posterior medial nucleus (POm respectively, carry distinct types of sensory information to cortex. Little is known about how these separate streams of activity are parsed and integrated within the neocortical microcircuit. We used quantitative laser scanning photostimulation to probe the organization of functional thalamocortical and ascending intracortical projections in the mouse barrel cortex. To map the thalamocortical projections, we recorded from neocortical excitatory neurons while stimulating VPM or POm. Neurons in layers (L4, L5, and L6A received dense input from thalamus (L4, L5B, and L6A from VPM; and L5A from POm, whereas L2/3 neurons rarely received thalamic input. We further mapped the lemniscal and paralemniscal circuits from L4 and L5A to L2/3. Lemniscal L4 neurons targeted L3 within a column. Paralemniscal L5A neurons targeted a superficial band (thickness, 60 mum of neurons immediately below L1, defining a functionally distinct L2 in the mouse barrel cortex. L2 neurons received input from lemniscal L3 cells and paralemniscal L5A cells spread over multiple columns. Our data indicate that lemniscal and paralemniscal information is segregated into interdigitated cortical layers.

  2. Aberrant DNA methylation patterns in cultured mouse embryos

    Institute of Scientific and Technical Information of China (English)

    HOU Jian; CUI Xiuhong; LEI Tinghua; LIU Lei; AN Xiaorong; CHEN Yongfu

    2005-01-01

    Mouse early embryos undergo genome-wide demethylation and remethylation events during pre-implantation development. Abnormal methylation reprogramming is thought to be associated with development arrest. Using immunofiuorescence staining with an antibody against 5-methylcytosine (MeC), we examined the genome methylation patterns of mouse embryos cultured in vitro. The results did not show the difference in staining patterns between development-blocked two-cell embryos that cultured in vitro and the two-cell embryos that were freshly collected from the donor mice. But in vitro-arrested morulae displayed a strong positive staining when compared to the morulae freshly collected from the donor mice. At the blastocyst stage, although most embryos showed the expected methylation patterns, with highly stained inner cell mass (ICM) and weekly stained trophectoderm (TE), a proportion of embryos were dimly stained in both ICM and TE. These results indicated that the methylation profile of the embryos could be changed by culturing in vitro when the embryos were in the transition from morulae to blastocyst.

  3. The first knockin mouse model of episodic ataxia type 2.

    Science.gov (United States)

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes.

  4. MicroRNAs in mouse models of lymphoid malignancies

    Directory of Open Access Journals (Sweden)

    Nicola A. O. Zanesi

    2010-05-01

    Full Text Available The discovery of microRNAs (miRNAs has revealed a new layer of gene expression regulation that affects many normal and pathologic biological systems. Among the malignancies affected by the dysregulation of miRNAs there are cancers of lymphoid origin, in which miRNAs are thought to have tumor suppressive or tumor promoting activities, depending on the nature of their specific targets. In the last 4-5 years, the experimental field that provided the deepest insights into the in vivo biology of miRNAs is that of mouse modeling in which transgenic and knockout animals mimic, respectively, over-expression or down-regulation of specific miRNAs involved in human leukemia/lymphoma. This review discusses recent advances in our understanding of lymphoid malignancies based on the natural and engineered mouse models of three different miRNAs, miR-15a/16-1 cluster, miR-155, and miR-17-92 cluster.

  5. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier

    2012-06-01

    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  6. Heterogeneity in rates of recombination across the mouse genome

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, M.W.; Churchill, G.A. [Cornell Univ., Ithaca, NY (United States)

    1996-02-01

    If loci are randomly distributed on a physical map, the density of markers on a genetic map will be inversely proportional to recombination rate. First proposed by Mary Lyon, we have used this idea to estimate recombination rates from the Drosophila melanogaster linkage map. These results were compared with results of two other studies that estimated regional recombination rates in D. melanogaster using both physical and genetic maps. The three methods were largely concordant in identifying large-scale genomic patterns of recombination. The marker density method was then applied to the Mus musculus microsatellite linkage map. The distribution of microsatellites provided evidence for heterogeneity in recombination rates. Centromeric regions for several mouse chromosomes had significantly greater numbers of markers than expected, suggesting that recombination rates were lower in these regions. In contrast, most telomeric regions contained significantly fewer markers than expected. This indicates that recombination rates are elevated at the telomeres of many mouse chromosomes and is consistent with a comparison of the genetic and cytogenetic maps in these regions. The density of markers on a genetic map may provide a generally useful way to estimate regional recombination rates in species for which genetic, but not physical, maps are available. 44 refs., 5 figs., 4 tabs.

  7. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  8. A solar powered wireless computer mouse. Industrial design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; Van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Veefkind, M.; Silvester, S. [Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft (Netherlands)

    2009-02-15

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared the following: appropriate selection of integrated PV type, battery capacity and type, possible electronic circuitries for PV-battery coupling, and material properties concerning mechanical incorporation of PV into the encasing. Besides technical requirements, ergonomic aspects and design aesthetics with respect to good 'sun-harvesting' properties influenced the design process. This is particularly important as simulations show users can positively influence energy balances by 'sun-bathing' the PV mouse. A total of 15 SPM prototypes were manufactured and tested by actual users. Although user satisfaction proved the SPM concept to be feasible, future research still needs to address user acceptance related to product dimensions and user willingness to pro-actively 'sun-bath' PV powered products in greater detail. (author)

  9. Transcriptome analysis of mouse stem cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Alexei A Sharov

    2003-12-01

    Full Text Available Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.

  10. Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    Science.gov (United States)

    Sharov, Alexei A; Piao, Yulan; Matoba, Ryo; Dudekula, Dawood B; Qian, Yong; VanBuren, Vincent; Falco, Geppino; Martin, Patrick R; Stagg, Carole A; Bassey, Uwem C; Wang, Yuxia; Carter, Mark G; Hamatani, Toshio; Aiba, Kazuhiro; Akutsu, Hidenori; Sharova, Lioudmila; Tanaka, Tetsuya S; Kimber, Wendy L; Yoshikawa, Toshiyuki; Jaradat, Saied A; Pantano, Serafino; Nagaraja, Ramaiah; Boheler, Kenneth R; Taub, Dennis; Hodes, Richard J; Longo, Dan L; Schlessinger, David; Keller, Jonathan; Klotz, Emily; Kelsoe, Garnett; Umezawa, Akihiro; Vescovi, Angelo L; Rossant, Janet; Kunath, Tilo; Hogan, Brigid L. M; Curci, Anna; D'Urso, Michele; Kelso, Janet; Hide, Winston

    2003-01-01

    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. PMID:14691545

  11. Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling.

    Science.gov (United States)

    Toocheck, Corey; Clister, Terri; Shupe, John; Crum, Chelsea; Ravindranathan, Preethi; Lee, Tae-Kyung; Ahn, Jung-Mo; Raj, Ganesh V; Sukhwani, Meena; Orwig, Kyle E; Walker, William H

    2016-01-01

    Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.

  12. Non-Typeable Haemophilus influenzae Infection of the Junbo Mouse.

    Science.gov (United States)

    Cheeseman, Michael T; Hood, Derek W

    2017-03-02

    Acute otitis media, inflammation of the middle ear bulla, is the most common bacterial infection in children. For one of the principal otopathogens, non-typeable Haemophilus influenzae (NTHi), animal models allow us to investigate host-microbial interactions relevant to the onset and progression of infection and to study treatment of middle ear disease. We have established a robust model of NTHi middle ear infection in the Junbo mouse. Intranasal inoculation with NTHi produces high rates of bulla infection and high bacterial titers in bulla fluids; bacteria can also spread down the respiratory tract to the mouse lung. An innate immune response is detected in the bulla of Junbo mice following NTHi infection, and bacteria are maintained in some ears at least up to day 56 post-inoculation. The Junbo/NTHi infection model facilitates studies on bacterial pathogenesis and antimicrobial intervention regimens and vaccines for better treatment and prevention of NTHi middle ear infection. © 2017 by John Wiley & Sons, Inc.

  13. Transgenic mouse models of spinal and bulbar muscular atrophy (SBMA).

    Science.gov (United States)

    Katsuno, M; Adachi, H; Inukai, A; Sobue, G

    2003-01-01

    Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. Only males develop symptoms, while female carriers usually are asymptomatic. A specific treatment for SBMA has not been established. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract, in the first exon of the androgen receptor (AR) gene. The pathologic hallmark is nuclear inclusions (NIs) containing the mutant and truncated AR with expanded polyQ in the residual motor neurons in the brainstem and spinal cord as well as in some other visceral organs. Several transgenic (Tg) mouse models have been created for studying the pathogenesis of SBMA. The Tg mouse model carrying pure 239 CAGs under human AR promoter and another model carrying truncated AR with expanded CAGs show motor impairment and nuclear NIs in spinal motor neurons. Interestingly, Tg mice carrying full-length human AR with expanded polyQ demonstrate progressive motor impairment and neurogenic pathology as well as sexual difference of phenotypes. These models recapitulate the phenotypic expression observed in SBMA. The ligand-dependent nuclear localization of the mutant AR is found to be involved in the disease mechanism, and hormonal therapy is suggested to be a therapeutic approach applicable to SBMA.

  14. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  15. Genetics of primary and timing effects in the mnd mouse

    Energy Technology Data Exchange (ETDEWEB)

    Messer, A.; Plummer, J.; MacMillen, M.C. [New York State, Albany, NY (United States)] [and others

    1995-06-05

    The mnd mouse shows a spontaneous adult-onset hereditary neurological disease, with motor abnormality by 6 months of age, progressing to severe spastic paralysis and premature death. The disease is autosomal recessive, with heterozygote effects seen under stress. It maps to mouse chromosome (chr) 8. Histopathology with Nissl stains documents substantial abnormalities of upper and lower motor neurons, and there is retinal degeneration beginning in the first month, even without light exposure. Increasing levels of autofluorescent lipopigment are found in both neuronal and non-neuronal tissues as the mnd mice age. Recently, NCL-like inclusions and accumulating subunit c have also been described. When mnd is outcrossed to the AKR/J genetic background, ca. 40% of the mnd/mnd F2 progeny show early onset (onset by 4.5-5 months and death by 7 months). This accelerated timing effect seems to be strain-specific, and unlinked to the mnd gene itself. Our current working hypothesis is that the timing effect is due to 2 or 3 unlinked dominant genes with incomplete penetrance at any single locus. In a combined RFLP/PCR fragment genetic analysis, the strongest deviation from the expected ratio of AKR vs B6 alleles occurs with markers on proximal half of chr 1. Additional loci on chrs 5 and 10 may also be involved. The mechanism of interaction of these modifying genes with the primary mnd gene may offer new therapeutic avenues. 22 refs., 2 tabs.

  16. Disparate metabolic response to fructose feeding between different mouse strains.

    Science.gov (United States)

    Montgomery, M K; Fiveash, C E; Braude, J P; Osborne, B; Brown, S H J; Mitchell, T W; Turner, N

    2015-12-22

    Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges.

  17. Craniofacial characteristics of fragile X syndrome in mouse and man.

    Science.gov (United States)

    Heulens, Inge; Suttie, Michael; Postnov, Andrei; De Clerck, Nora; Perrotta, Concetta S; Mattina, Teresa; Faravelli, Francesca; Forzano, Francesca; Kooy, R Frank; Hammond, Peter

    2013-08-01

    For a disorder as common as fragile X syndrome, the most common hereditary form of cognitive impairment, the facial features are relatively ill defined. An elongated face and prominent ears are the most commonly accepted dysmorphic hallmarks. We analysed 3D facial photographs of 51 males and 15 females with full FMR1 mutations and 9 females with a premutation using dense-surface modelling techniques and a new technique that forms a directed graph with normalized face shapes as nodes and edges linking those with closest dysmorphism. In addition to reconfirming known features, we confirmed the occurrence of some at an earlier age than previously recorded. We also identified as yet unrecorded facial characteristics such as reduced facial depth, hypoplasticity of the nasal bone-cartilage interface and narrow mid-facial width exaggerating ear prominence. As no consistent craniofacial abnormalities had been reported in animal models, we analysed micro-CT images of the fragile X mouse model. Results indicated altered dimensions in the mandible and both outer and inner skull, with the latter potentially reflecting differences in neuroanatomy. We extrapolated the mouse results to face shape differences of the human fragile X face.

  18. Web-based analysis of the mouse transcriptome using Genevestigator

    Directory of Open Access Journals (Sweden)

    Gruissem Wilhelm

    2006-06-01

    Full Text Available Abstract Background Gene function analysis often requires a complex and laborious sequence of laboratory and computer-based experiments. Choosing an effective experimental design generally results from hypotheses derived from prior knowledge or experimentation. Knowledge obtained from meta-analyzing compendia of expression data with annotation libraries can provide significant clues in understanding gene and network function, resulting in better hypotheses that can be tested in the laboratory. Description Genevestigator is a microarray database and analysis system allowing context-driven queries. Simple but powerful tools allow biologists with little computational background to retrieve information about when, where and how genes are expressed. We manually curated and quality-controlled 3110 mouse Affymetrix arrays from public repositories. Data queries can be run against an annotation library comprising 160 anatomy categories, 12 developmental stage groups, 80 stimuli, and 182 genetic backgrounds or modifications. The quality of results obtained through Genevestigator is illustrated by a number of biological scenarios that are substantiated by other types of experimentation in the literature. Conclusion The Genevestigator-Mouse database effectively provides biologically meaningful results and can be accessed at https://www.genevestigator.ethz.ch.

  19. Study of Endometrial Receptivity during Implantation in Implantation Dysfunction Mouse

    Institute of Scientific and Technical Information of China (English)

    Yan-juan LIU; Guang-ying HUANG; Ming-wei YANG; Fu-er LU

    2008-01-01

    Objective To establish the mice model of implantation dysfunction and to study the endometrial receptivity during implantation in implantation dysfunction mouse. Methods Sexually mature female virgin, Kunming mice were randomly assigned to the control group and the model group postcoitally. The model mice at 9 : 00 AM on d 4 of pregnancy(d 4) were injected subcutaneously with mifepristone. All animals were sacrificed at 9:00 PM on d 4 and their uterine horns were examined for the presence of implanted embryos. Histopathology of uterine endometrium was observed by light-microscope. The endometrial expressions of estrogen receptor (ER) and progesterone receptor (PR) assessed by immunnohistochemical SP method. The endometrial expressions of ER mRNA and PR mRNA were assessed by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR).Results Compared with control group, implantation rates and average embryo number significently decreased in model group, the development of endometrium was inhibited. In model group, absorbency and area rate of ER and PR in the gland and stroma were lower than those in control group (P<0.05). Expressions of ER mRNA and PR mRNA in model uterus were significantly lower than those in the control.Conclusion The endometrial receptivity and implantation decreased in mifepristoneinduced implantation dysfunction mouse.

  20. Spinal cord projections to the cerebellum in the mouse.

    Science.gov (United States)

    Sengul, Gulgun; Fu, YuHong; Yu, You; Paxinos, George

    2015-09-01

    The projections from the spinal cord to the cerebellar cortex were studied using retrograde neuronal tracers. Thus far, no study has shown the detailed topographic mapping of the projections from the spinal neuron clusters to the cerebellar cortex regions for experimental animals, and there are no studies for the mouse. Tracers Fluoro-Gold and cholera toxin B were injected into circumscribed regions of the cerebellar cortex, and retrogradely labeled spinal cord neurons were mapped throughout the spinal cord. Spinal projections to the cerebellar cortex were mainly from five neuronal columns--central cervical nucleus, dorsal nucleus, lumbar and sacral precerebellar nuclei, and lumbar border precerebellar cells--and from scattered neurons located in the deep dorsal horn and laminae 6-8. The spinocerebellar projections to the cortex were mainly to the vermis. All five precerebellar cell columns projected to both anterior and posterior parts of the cerebellar cortex. Results of this study provide an amendment to the known rostral and caudal boundaries of the precerebellar cell columns in the mouse. Scattered precerebellar neurons in the most caudal deep dorsal horn and laminae 6-8 projected exclusively to the anterior part of the cerebellar cortex. In this study, no labeled spinal neurons were found to project to the lobules 6 and 7 of the cerebellar vermis, the flocculus, and the paraflocculus. Spinocerebellar neurons were located bilaterally, but the majority of the projections were contralateral for the central cervical nucleus, and ipsilateral for the remaining spinal precerebellar neuronal clusters.

  1. Reorganization of cytoskeletal proteins of mouse oocytes mediated by integrins

    Institute of Scientific and Technical Information of China (English)

    YUE Limin; ZHANG Lei; HE Yaping; ZHANG Jinhu; ZHENG Jie; HE Yanfang; ZHENG Yu; ZHANG Jie; ZHANG Li

    2004-01-01

    To study whether integrins on cell membrane ligate with intracellular cytoskeletal proteins and mediate their reorganization in egg activation, female mice were used for superovulation. The zona-free oocytes were incubated separately with specific ligand of integrins,an active RGD peptide, in vitro for certain period of time. RGE peptide and mouse capacitated sperm were used as controls. Freshly ovulated oocytes and those treated with different factors were immunostained with FITC-labeled anti-actin antibody, then detected with confocal microscope. The results demonstrated that freshly ovulated mouse oocytes, oocytes incubated for 2 h in vitro and those treated with control RGE peptide for 15 min showed hardly visible fluorescene or only thin fluorescence in plasma membrane region. Oocytes coincubated with sperms for 15 min and those treated with active RGD peptide for 10 min, 30 min and 2 hours respectively had strong and thick fluorescence in the plasma membrane and cortical region of oocytes, and some of them showed asymmetrically fluorescent distribution. It is proved that integrins on membrane are ligated directly with cytoskeletal protein. Integrins binding with their ligands regulate reorganization of cytoskelal protein, which may be involved in transmembrane signaling in egg activation.

  2. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    Science.gov (United States)

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

  3. Mouse models of acute exacerbations of allergic asthma.

    Science.gov (United States)

    Kumar, Rakesh K; Herbert, Cristan; Foster, Paul S

    2016-07-01

    Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.

  4. Morphogenetic movements in the neural plate and neural tube: mouse.

    Science.gov (United States)

    Massarwa, R'ada; Ray, Heather J; Niswander, Lee

    2014-01-01

    The neural tube (NT), the embryonic precursor of the vertebrate brain and spinal cord, is generated by a complex and highly dynamic morphological process. In mammals, the initially flat neural plate bends and lifts bilaterally to generate the neural folds followed by fusion of the folds at the midline during the process of neural tube closure (NTC). Failures in any step of this process can lead to neural tube defects (NTDs), a common class of birth defects that occur in approximately 1 in 1000 live births. These severe birth abnormalities include spina bifida, a failure of closure at the spinal level; craniorachischisis, a failure of NTC along the entire body axis; and exencephaly, a failure of the cranial neural folds to close which leads to degeneration of the exposed brain tissue termed anencephaly. The mouse embryo presents excellent opportunities to explore the genetic basis of NTC in mammals; however, its in utero development has also presented great challenges in generating a deeper understanding of how gene function regulates the cell and tissue behaviors that drive this highly dynamic process. Recent technological advances are now allowing researchers to address these questions through visualization of NTC dynamics in the mouse embryo in real time, thus offering new insights into the morphogenesis of mammalian NTC.

  5. Human and mouse mitochondrial orthologs of bacterial ClpX

    DEFF Research Database (Denmark)

    Corydon, T J; Wilsbech, M; Jespersgaard, C;

    2000-01-01

    We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N-terminal puta......We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N......-terminal putative mitochondrial transit peptide, and expression of a full-length ClpX cDNA tagged at its C-terminus (Myc-His) shows that the polypeptide is transported into mitochondria. FISH analysis localized the CLPX gene to human Chromosome (Chr) 15q22.1-22.32. This localization was refined by radiation hybrid...... variability between mouse ClpX cDNAs from different strains. Alignment of the human and mouse ClpX amino acid sequences with ClpX sequences from other organisms shows that they display the typical modular organization of domains with one AAA(+) domain common to a large group of ATPases and several other...

  6. Prolactin stimulates precursor cells in the adult mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Tara L Walker

    Full Text Available In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80% in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory.

  7. Differential Apoptosis Radiosensitivity of Neural Progenitors in Adult Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Yu-Qing Li

    2016-06-01

    Full Text Available Mammalian tissue-specific stem cells and progenitors demonstrate differential DNA damage response. Neural progenitors in dentate gyrus of the hippocampus are known to undergo apoptosis after irradiation. Using a mouse model of hippocampal neuronal development, we characterized the apoptosis sensitivity of the different neural progenitor subpopulations in adult mouse dentate gyrus after irradiation. Two different bromodeoxyuridine incorporation paradigms were used for cell fate mapping. We identified two apoptosis sensitive neural progenitor subpopulations after irradiation. The first represented non-proliferative and non-newborn neuroblasts and immature neurons that expressed doublecortin, calretinin or both. The second consisted of proliferative intermediate neural progenitors. The putative radial glia-like neural stem cells or type-1 cells, regardless of proliferation status, were apoptosis resistant after irradiation. There was no evidence of radiation-induced apoptosis in the absence of the Trp53 (p53 gene but absence of Cdkn1a (p21 did not alter the apoptotic response. Upregulation of nuclear p53 was observed in neuroblasts after irradiation. We conclude that adult hippocampal neural progenitors may demonstrate differential p53-dependent apoptosis sensitivity after irradiation.

  8. MFng is dispensable for mouse pancreas development and function.

    Science.gov (United States)

    Svensson, Per; Bergqvist, Ingela; Norlin, Stefan; Edlund, Helena

    2009-04-01

    Notch signaling regulates pancreatic cell differentiation, and mutations of various Notch signaling components result in perturbed pancreas development. Members of the Fringe family of beta1,3-N-acetylglucosaminyltransferases, Manic Fringe (MFng), Lunatic Fringe (LFng), and Radical Fringe (RFng), modulate Notch signaling, and MFng has been suggested to regulate pancreatic endocrine cell differentiation. We have characterized the expression of the three mouse Fringe genes in the developing mouse pancreas between embryonic days 9 and 14 and show that the expression of MFng colocalized with the proendocrine transcription factor Ngn3. In contrast, the expression of LFng colocalized with the exocrine marker Ptf1a, whereas RFng was not expressed. Moreover, we show that expression of MFng is lost in Ngn3 mutant mice, providing evidence that MFng is genetically downstream of Ngn3. Gain- and loss-of-function analyses of MFng by the generation of mice that overexpress MFng in early pancreatic progenitor cells and mice with a targeted deletion of MFng provide, however, evidence that MFng is dispensable for pancreas development and function, since no pancreatic defects in these mice were observed.

  9. Detection of meiotic DNA breaks in mouse testicular germ cells.

    Science.gov (United States)

    Qin, Jian; Subramanian, Jaichandar; Arnheim, Norman

    2009-01-01

    The study of location and intensity of double-strand breaks (DSBs) in mammalian systems is more challenging than in yeast because, unlike yeast, the progression through meiosis is not synchronous and only a small fraction of all testis cells are actually at the stage where DSB formation is initiated. We devised a quantitative approach that is sensitive enough to detect the position of rare DNA strand breaks in mouse germ cell-enriched testicular cell populations. The method can detect DNA breaks at any desired location in the genome but is not specific for DSBs-overhangs, nicks, or gaps with a free 3' OH group are also detected. The method was successfully used to compare testicular cells from mouse strains that possess or lack an active recombination hot spot at the H2-Ea gene. Breaks that were due to meiotic hot spot activity could be distinguished from the background of DNA breaks. This highly sensitive approach could be used to study other biological processes where rare DNA breaks are generated.

  10. Recovery and Cultivation of Keratinocytes From Shipped Mouse Skin.

    Science.gov (United States)

    Yang, Hsin-Ya; La, Thi Dinh; Gurenko, Zhanna; Steenhuis, Pieter; Liu, Wei; Isseroff, R Rivkah

    2015-02-01

    Murine keratinocyte culture from neonatal skin is an important tool for studying the functional role of specific genes in epithelial biology. However, when the transgenic animal is only available in a geographically distant local, obtaining viable keratinocytes can be problematic. A method for transferring the isolated murine skin from collaborating labs could decrease the cost of shipping live animals, and would allow the efficient use of the tissues from the transgenic animals. Here we optimized shipping conditions and characterized the cells retrieved and cultured from mouse skin shipped for 48 h at 0 °C. The cultured keratinocytes from the control, non-shipped skin and the 2-day shipped skin were 43.6 +/- 7.8% viable, doubled every 2 days, and expressed comparable amounts of heat shock proteins and CD29/integrin beta-1. However, under the same shipping conditions, the 3-day shipped tissue failed to establish colonies in the culture. Therefore, this 2-day shipping technique allows the transfer mouse skin from distant locations with recovery of viable, propagatable keratinocytes, facilitating long-distance collaborations.

  11. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  12. EGFR-specific nanoprobe biodistribution in mouse models

    Science.gov (United States)

    Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.

    2015-06-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.

  13. Quantitative analysis of tumor burden in mouse lung via MRI.

    Science.gov (United States)

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  14. Presence and integration of HBV DNA in mouse oocytes

    Institute of Scientific and Technical Information of China (English)

    Tian-Hua Huang; Qing-Jian Zhang; Qing-Dong Xie; Li-Ping Zeng; Xi-Fan Zeng

    2005-01-01

    AIM: Hepatitis B is a worldwide public health problem. To explore the feasibility of hepatitis B virus (HBV) vertical transmission via oocytes, the presence and integration of HBV DNA in mouse oocytes were studied. METHODS: Genomic DNA was isolated and metaphases were prepared, respectively from mouse oocytes cocultured with pBR322-HBV DNA plasmids. PCR, Southern blot, dot hybridization and fluorescence in situ hybridization (FISH) were performed to explore the existence and integration of HBV DNA in oocytes.RESULTS: PCR detected positive bands in the tested samples, and then Southern blot revealed clear hybridization signals in PCR products. Final washing solutions were collected for dot hybridization and no signal for HBV DNA was observed, which excluded the possibility that contamination of washing solutions gave rise to positive results of PCR and Southern blot. FISH demonstrated that 36 of 1 000 metaphases presented positive signals. CONCLUSION: HBV DNA sequences are able to pass through the zona and oolemma to enter into oocytes and tointegrate into their chromosomes. HBV DNA sequences might be brought into embryo via oocytes as vectors when they are fertilized with normal spermatozoa.

  15. A computational clonal analysis of the developing mouse limb bud.

    Directory of Open Access Journals (Sweden)

    Luciano Marcon

    Full Text Available A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis.

  16. The truth about mouse, human, worms and yeast

    Directory of Open Access Journals (Sweden)

    Nelson David R

    2004-01-01

    Full Text Available Abstract Genome comparisons are behind the powerful new annotation methods being developed to find all human genes, as well as genes from other genomes. Genomes are now frequently being studied in pairs to provide cross-comparison datasets. This 'Noah's Ark' approach often reveals unsuspected genes and may support the deletion of false-positive predictions. Joining mouse and human as the cross-comparison dataset for the first two mammals are: two Drosophila species, D. melanogaster and D. pseudoobscura; two sea squirts, Ciona intestinalis and Ciona savignyi; four yeast (Saccharomyces species; two nematodes, Caenorhabditis elegans and Caenorhabditis briggsae; and two pufferfish (Takefugu rubripes and Tetraodon nigroviridis. Even genomes like yeast and C. elegans, which have been known for more than five years, are now being significantly improved. Methods developed for yeast or nematodes will now be applied to mouse and human, and soon to additional mammals such as rat and dog, to identify all the mammalian protein-coding genes. Current large disparities between human Unigene predictions (127,835 genes and gene-scanning methods (45,000 genes still need to be resolved. This will be the challenge during the next few years.

  17. Characterization of the promoter region of the mouse Xist gene.

    Science.gov (United States)

    Pillet, N; Bonny, C; Schorderet, D F

    1995-01-01

    The mouse Xist gene is expressed exclusively from the inactive X chromosome and may be implicated in initiating X inactivation. To better understand the mechanisms underlying the control of Xist expression, we investigated the upstream regulatory region of the mouse Xist promoter. A 1.2-kb upstream region of the Xist gene was sequenced and promoter activity was studied by chloramphenicol acetyltransferase (CAT) assays after transfection in murine XX and XY cell lines. The region analyzed (-1157 to +917 showed no in vitro sex-specific promoter activity. However, a minimal constitutional promoter was assigned to a region from -81 to +1, and a cis element from -41 to -15 regulates promoter activity. We showed that a nuclear factor binds to an element located at -30 to -25 (TTAAAG). A second sequence at -41 to -15 does not act as an enhancer and is unable to confer transcriptional activity to the Xist gene on its own. A third region from -82 to -41 is needed for correct expression. Deletion of the segment -441 to -231 is associated with an increase in CAT activity and may represent a silencer element. Images Fig. 3 PMID:8618932

  18. Recent advances in mouse models of obesityandnonalcoholic steatohepatitis-associatedhepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth mostcommon cancer, and obesity has been establishedas a risk factor for HCC development. Nonalcoholicsteatohepatitis (NASH) is apparently the key linkbetween obesity and hepatocarcinogenesis, and obesityalso accelerates HCC development synergistically withother risk factors, such as hepatitis virus infectionand alcohol consumption. As an explanation for thepathogenesis of NASH, the so-called "two-hit" theoryhas been widely accepted, but recently, a better model,the so-called "multiple-hits hypothesis" was proposed,which states that many disease-promoting factors mayoccur in parallel, rather than consecutively. However,the overall mechanism remains largely unknown. Variouscell-cell and organ-organ interactions are involved inthe pathogenesis of NASH, and thus appropriate in vivodisease models are essential for a deeper understanding.However, replicating the full spectrum of human NASHhas been difficult, as NASH involves obesity, insulinresistance, steatohepatitis, fibrosis, and ultimately HCC,and the lack of an appropriate mouse model has beena considerable barrier to determining the missing linksamong obesity, NASH, and HCC. In recent years, severalinnovative mouse models presenting obesity- and NASHassociatedHCC have been established by modifieddiets, chemotoxic agents, genetic manipulation, or acombination of these factors, shedding some light onthis complex network and providing new therapeuticstrategies. Thus, in this paper, I review the mousemodels of obesity- and NASH-associated HCC, especiallyfocusing on recent advances and their clinical relevance.

  19. The effect of the melatonin on cryopreserved mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2016-01-01

    Full Text Available Background: After improvements in various cancer treatments, life expectancy has been raised, but success in treatment causes loss of fertility in many of the survived young men. Cryopreservation of immature testicular tissues or cells introduced as the only way to preserve fertility. However, freezing has some harmful effects. Melatonin, a pineal gland hormone, has receptors in reproductive systems of different species. It is assumed that melatonin has free radical scavenger properties. Objective: The aim of this study was to evaluate the effects of melatonin on the cryopreserved testicular cells in mouse. Materials and Methods: Cells from 7- 10 days old NMRI mice testes were isolated using two step enzymatic digestion. The testicular cells were divided into two groups randomly and cryopreserved in two different freezing media with and without the addition of 100 μm melatonin. Finally, apoptosis of the cells was assayed by flow cytometry. Also, lactate dehydrogenase activity test was performed to assess the cytotoxicity. Results: The results of lactate dehydrogenase showed the nearly cytotoxic effect of melatonin. The results of flow cytometry showed increase in apoptosis in the cryopreserved cells in the media containing melatonin compared to the control group. Conclusion: The present study shows that melatonin has an apoptotic effect on cryopreserved mouse testicular cells.

  20. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.